1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements semantic analysis for declarations.
11 //===----------------------------------------------------------------------===//
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/CommentDiagnostic.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/NonTrivialTypeVisitor.h"
27 #include "clang/AST/Randstruct.h"
28 #include "clang/AST/StmtCXX.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/HLSLRuntime.h"
31 #include "clang/Basic/PartialDiagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
35 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
36 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
37 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
38 #include "clang/Sema/CXXFieldCollector.h"
39 #include "clang/Sema/DeclSpec.h"
40 #include "clang/Sema/DelayedDiagnostic.h"
41 #include "clang/Sema/Initialization.h"
42 #include "clang/Sema/Lookup.h"
43 #include "clang/Sema/ParsedTemplate.h"
44 #include "clang/Sema/Scope.h"
45 #include "clang/Sema/ScopeInfo.h"
46 #include "clang/Sema/SemaInternal.h"
47 #include "clang/Sema/Template.h"
48 #include "llvm/ADT/SmallString.h"
49 #include "llvm/ADT/StringExtras.h"
50 #include "llvm/TargetParser/Triple.h"
55 #include <unordered_map>
57 using namespace clang
;
60 Sema::DeclGroupPtrTy
Sema::ConvertDeclToDeclGroup(Decl
*Ptr
, Decl
*OwnedType
) {
62 Decl
*Group
[2] = { OwnedType
, Ptr
};
63 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context
, Group
, 2));
66 return DeclGroupPtrTy::make(DeclGroupRef(Ptr
));
71 class TypeNameValidatorCCC final
: public CorrectionCandidateCallback
{
73 TypeNameValidatorCCC(bool AllowInvalid
, bool WantClass
= false,
74 bool AllowTemplates
= false,
75 bool AllowNonTemplates
= true)
76 : AllowInvalidDecl(AllowInvalid
), WantClassName(WantClass
),
77 AllowTemplates(AllowTemplates
), AllowNonTemplates(AllowNonTemplates
) {
78 WantExpressionKeywords
= false;
79 WantCXXNamedCasts
= false;
80 WantRemainingKeywords
= false;
83 bool ValidateCandidate(const TypoCorrection
&candidate
) override
{
84 if (NamedDecl
*ND
= candidate
.getCorrectionDecl()) {
85 if (!AllowInvalidDecl
&& ND
->isInvalidDecl())
88 if (getAsTypeTemplateDecl(ND
))
89 return AllowTemplates
;
91 bool IsType
= isa
<TypeDecl
>(ND
) || isa
<ObjCInterfaceDecl
>(ND
);
95 if (AllowNonTemplates
)
98 // An injected-class-name of a class template (specialization) is valid
99 // as a template or as a non-template.
100 if (AllowTemplates
) {
101 auto *RD
= dyn_cast
<CXXRecordDecl
>(ND
);
102 if (!RD
|| !RD
->isInjectedClassName())
104 RD
= cast
<CXXRecordDecl
>(RD
->getDeclContext());
105 return RD
->getDescribedClassTemplate() ||
106 isa
<ClassTemplateSpecializationDecl
>(RD
);
112 return !WantClassName
&& candidate
.isKeyword();
115 std::unique_ptr
<CorrectionCandidateCallback
> clone() override
{
116 return std::make_unique
<TypeNameValidatorCCC
>(*this);
120 bool AllowInvalidDecl
;
123 bool AllowNonTemplates
;
126 } // end anonymous namespace
128 /// Determine whether the token kind starts a simple-type-specifier.
129 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind
) const {
131 // FIXME: Take into account the current language when deciding whether a
132 // token kind is a valid type specifier
135 case tok::kw___int64
:
136 case tok::kw___int128
:
138 case tok::kw_unsigned
:
146 case tok::kw__Float16
:
147 case tok::kw___float128
:
148 case tok::kw___ibm128
:
149 case tok::kw_wchar_t
:
151 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
152 #include "clang/Basic/TransformTypeTraits.def"
153 case tok::kw___auto_type
:
156 case tok::annot_typename
:
157 case tok::kw_char16_t
:
158 case tok::kw_char32_t
:
160 case tok::annot_decltype
:
161 case tok::kw_decltype
:
162 return getLangOpts().CPlusPlus
;
164 case tok::kw_char8_t
:
165 return getLangOpts().Char8
;
175 enum class UnqualifiedTypeNameLookupResult
{
180 } // end anonymous namespace
182 /// Tries to perform unqualified lookup of the type decls in bases for
184 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
185 /// type decl, \a FoundType if only type decls are found.
186 static UnqualifiedTypeNameLookupResult
187 lookupUnqualifiedTypeNameInBase(Sema
&S
, const IdentifierInfo
&II
,
188 SourceLocation NameLoc
,
189 const CXXRecordDecl
*RD
) {
190 if (!RD
->hasDefinition())
191 return UnqualifiedTypeNameLookupResult::NotFound
;
192 // Look for type decls in base classes.
193 UnqualifiedTypeNameLookupResult FoundTypeDecl
=
194 UnqualifiedTypeNameLookupResult::NotFound
;
195 for (const auto &Base
: RD
->bases()) {
196 const CXXRecordDecl
*BaseRD
= nullptr;
197 if (auto *BaseTT
= Base
.getType()->getAs
<TagType
>())
198 BaseRD
= BaseTT
->getAsCXXRecordDecl();
199 else if (auto *TST
= Base
.getType()->getAs
<TemplateSpecializationType
>()) {
200 // Look for type decls in dependent base classes that have known primary
202 if (!TST
|| !TST
->isDependentType())
204 auto *TD
= TST
->getTemplateName().getAsTemplateDecl();
207 if (auto *BasePrimaryTemplate
=
208 dyn_cast_or_null
<CXXRecordDecl
>(TD
->getTemplatedDecl())) {
209 if (BasePrimaryTemplate
->getCanonicalDecl() != RD
->getCanonicalDecl())
210 BaseRD
= BasePrimaryTemplate
;
211 else if (auto *CTD
= dyn_cast
<ClassTemplateDecl
>(TD
)) {
212 if (const ClassTemplatePartialSpecializationDecl
*PS
=
213 CTD
->findPartialSpecialization(Base
.getType()))
214 if (PS
->getCanonicalDecl() != RD
->getCanonicalDecl())
220 for (NamedDecl
*ND
: BaseRD
->lookup(&II
)) {
221 if (!isa
<TypeDecl
>(ND
))
222 return UnqualifiedTypeNameLookupResult::FoundNonType
;
223 FoundTypeDecl
= UnqualifiedTypeNameLookupResult::FoundType
;
225 if (FoundTypeDecl
== UnqualifiedTypeNameLookupResult::NotFound
) {
226 switch (lookupUnqualifiedTypeNameInBase(S
, II
, NameLoc
, BaseRD
)) {
227 case UnqualifiedTypeNameLookupResult::FoundNonType
:
228 return UnqualifiedTypeNameLookupResult::FoundNonType
;
229 case UnqualifiedTypeNameLookupResult::FoundType
:
230 FoundTypeDecl
= UnqualifiedTypeNameLookupResult::FoundType
;
232 case UnqualifiedTypeNameLookupResult::NotFound
:
239 return FoundTypeDecl
;
242 static ParsedType
recoverFromTypeInKnownDependentBase(Sema
&S
,
243 const IdentifierInfo
&II
,
244 SourceLocation NameLoc
) {
245 // Lookup in the parent class template context, if any.
246 const CXXRecordDecl
*RD
= nullptr;
247 UnqualifiedTypeNameLookupResult FoundTypeDecl
=
248 UnqualifiedTypeNameLookupResult::NotFound
;
249 for (DeclContext
*DC
= S
.CurContext
;
250 DC
&& FoundTypeDecl
== UnqualifiedTypeNameLookupResult::NotFound
;
251 DC
= DC
->getParent()) {
252 // Look for type decls in dependent base classes that have known primary
254 RD
= dyn_cast
<CXXRecordDecl
>(DC
);
255 if (RD
&& RD
->getDescribedClassTemplate())
256 FoundTypeDecl
= lookupUnqualifiedTypeNameInBase(S
, II
, NameLoc
, RD
);
258 if (FoundTypeDecl
!= UnqualifiedTypeNameLookupResult::FoundType
)
261 // We found some types in dependent base classes. Recover as if the user
262 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
263 // lookup during template instantiation.
264 S
.Diag(NameLoc
, diag::ext_found_in_dependent_base
) << &II
;
266 ASTContext
&Context
= S
.Context
;
267 auto *NNS
= NestedNameSpecifier::Create(Context
, nullptr, false,
268 cast
<Type
>(Context
.getRecordType(RD
)));
270 Context
.getDependentNameType(ElaboratedTypeKeyword::Typename
, NNS
, &II
);
273 SS
.MakeTrivial(Context
, NNS
, SourceRange(NameLoc
));
275 TypeLocBuilder Builder
;
276 DependentNameTypeLoc DepTL
= Builder
.push
<DependentNameTypeLoc
>(T
);
277 DepTL
.setNameLoc(NameLoc
);
278 DepTL
.setElaboratedKeywordLoc(SourceLocation());
279 DepTL
.setQualifierLoc(SS
.getWithLocInContext(Context
));
280 return S
.CreateParsedType(T
, Builder
.getTypeSourceInfo(Context
, T
));
283 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
284 static ParsedType
buildNamedType(Sema
&S
, const CXXScopeSpec
*SS
, QualType T
,
285 SourceLocation NameLoc
,
286 bool WantNontrivialTypeSourceInfo
= true) {
287 switch (T
->getTypeClass()) {
288 case Type::DeducedTemplateSpecialization
:
290 case Type::InjectedClassName
:
293 case Type::UnresolvedUsing
:
296 // These can never be qualified so an ElaboratedType node
297 // would carry no additional meaning.
298 case Type::ObjCInterface
:
299 case Type::ObjCTypeParam
:
300 case Type::TemplateTypeParm
:
301 return ParsedType::make(T
);
303 llvm_unreachable("Unexpected Type Class");
306 if (!SS
|| SS
->isEmpty())
307 return ParsedType::make(S
.Context
.getElaboratedType(
308 ElaboratedTypeKeyword::None
, nullptr, T
, nullptr));
310 QualType ElTy
= S
.getElaboratedType(ElaboratedTypeKeyword::None
, *SS
, T
);
311 if (!WantNontrivialTypeSourceInfo
)
312 return ParsedType::make(ElTy
);
314 TypeLocBuilder Builder
;
315 Builder
.pushTypeSpec(T
).setNameLoc(NameLoc
);
316 ElaboratedTypeLoc ElabTL
= Builder
.push
<ElaboratedTypeLoc
>(ElTy
);
317 ElabTL
.setElaboratedKeywordLoc(SourceLocation());
318 ElabTL
.setQualifierLoc(SS
->getWithLocInContext(S
.Context
));
319 return S
.CreateParsedType(ElTy
, Builder
.getTypeSourceInfo(S
.Context
, ElTy
));
322 /// If the identifier refers to a type name within this scope,
323 /// return the declaration of that type.
325 /// This routine performs ordinary name lookup of the identifier II
326 /// within the given scope, with optional C++ scope specifier SS, to
327 /// determine whether the name refers to a type. If so, returns an
328 /// opaque pointer (actually a QualType) corresponding to that
329 /// type. Otherwise, returns NULL.
330 ParsedType
Sema::getTypeName(const IdentifierInfo
&II
, SourceLocation NameLoc
,
331 Scope
*S
, CXXScopeSpec
*SS
, bool isClassName
,
332 bool HasTrailingDot
, ParsedType ObjectTypePtr
,
333 bool IsCtorOrDtorName
,
334 bool WantNontrivialTypeSourceInfo
,
335 bool IsClassTemplateDeductionContext
,
336 ImplicitTypenameContext AllowImplicitTypename
,
337 IdentifierInfo
**CorrectedII
) {
338 // FIXME: Consider allowing this outside C++1z mode as an extension.
339 bool AllowDeducedTemplate
= IsClassTemplateDeductionContext
&&
340 getLangOpts().CPlusPlus17
&& !IsCtorOrDtorName
&&
341 !isClassName
&& !HasTrailingDot
;
343 // Determine where we will perform name lookup.
344 DeclContext
*LookupCtx
= nullptr;
346 QualType ObjectType
= ObjectTypePtr
.get();
347 if (ObjectType
->isRecordType())
348 LookupCtx
= computeDeclContext(ObjectType
);
349 } else if (SS
&& SS
->isNotEmpty()) {
350 LookupCtx
= computeDeclContext(*SS
, false);
353 if (isDependentScopeSpecifier(*SS
)) {
355 // A qualified-id that refers to a type and in which the
356 // nested-name-specifier depends on a template-parameter (14.6.2)
357 // shall be prefixed by the keyword typename to indicate that the
358 // qualified-id denotes a type, forming an
359 // elaborated-type-specifier (7.1.5.3).
361 // We therefore do not perform any name lookup if the result would
362 // refer to a member of an unknown specialization.
363 // In C++2a, in several contexts a 'typename' is not required. Also
364 // allow this as an extension.
365 if (AllowImplicitTypename
== ImplicitTypenameContext::No
&&
366 !isClassName
&& !IsCtorOrDtorName
)
368 bool IsImplicitTypename
= !isClassName
&& !IsCtorOrDtorName
;
369 if (IsImplicitTypename
) {
370 SourceLocation QualifiedLoc
= SS
->getRange().getBegin();
371 if (getLangOpts().CPlusPlus20
)
372 Diag(QualifiedLoc
, diag::warn_cxx17_compat_implicit_typename
);
374 Diag(QualifiedLoc
, diag::ext_implicit_typename
)
375 << SS
->getScopeRep() << II
.getName()
376 << FixItHint::CreateInsertion(QualifiedLoc
, "typename ");
379 // We know from the grammar that this name refers to a type,
380 // so build a dependent node to describe the type.
381 if (WantNontrivialTypeSourceInfo
)
382 return ActOnTypenameType(S
, SourceLocation(), *SS
, II
, NameLoc
,
383 (ImplicitTypenameContext
)IsImplicitTypename
)
386 NestedNameSpecifierLoc QualifierLoc
= SS
->getWithLocInContext(Context
);
387 QualType T
= CheckTypenameType(
388 IsImplicitTypename
? ElaboratedTypeKeyword::Typename
389 : ElaboratedTypeKeyword::None
,
390 SourceLocation(), QualifierLoc
, II
, NameLoc
);
391 return ParsedType::make(T
);
397 if (!LookupCtx
->isDependentContext() &&
398 RequireCompleteDeclContext(*SS
, LookupCtx
))
402 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
403 // lookup for class-names.
404 LookupNameKind Kind
= isClassName
? LookupNestedNameSpecifierName
:
406 LookupResult
Result(*this, &II
, NameLoc
, Kind
);
408 // Perform "qualified" name lookup into the declaration context we
409 // computed, which is either the type of the base of a member access
410 // expression or the declaration context associated with a prior
411 // nested-name-specifier.
412 LookupQualifiedName(Result
, LookupCtx
);
414 if (ObjectTypePtr
&& Result
.empty()) {
415 // C++ [basic.lookup.classref]p3:
416 // If the unqualified-id is ~type-name, the type-name is looked up
417 // in the context of the entire postfix-expression. If the type T of
418 // the object expression is of a class type C, the type-name is also
419 // looked up in the scope of class C. At least one of the lookups shall
420 // find a name that refers to (possibly cv-qualified) T.
421 LookupName(Result
, S
);
424 // Perform unqualified name lookup.
425 LookupName(Result
, S
);
427 // For unqualified lookup in a class template in MSVC mode, look into
428 // dependent base classes where the primary class template is known.
429 if (Result
.empty() && getLangOpts().MSVCCompat
&& (!SS
|| SS
->isEmpty())) {
430 if (ParsedType TypeInBase
=
431 recoverFromTypeInKnownDependentBase(*this, II
, NameLoc
))
436 NamedDecl
*IIDecl
= nullptr;
437 UsingShadowDecl
*FoundUsingShadow
= nullptr;
438 switch (Result
.getResultKind()) {
439 case LookupResult::NotFound
:
440 case LookupResult::NotFoundInCurrentInstantiation
:
442 TypeNameValidatorCCC
CCC(/*AllowInvalid=*/true, isClassName
,
443 AllowDeducedTemplate
);
444 TypoCorrection Correction
= CorrectTypo(Result
.getLookupNameInfo(), Kind
,
445 S
, SS
, CCC
, CTK_ErrorRecovery
);
446 IdentifierInfo
*NewII
= Correction
.getCorrectionAsIdentifierInfo();
448 bool MemberOfUnknownSpecialization
;
449 UnqualifiedId TemplateName
;
450 TemplateName
.setIdentifier(NewII
, NameLoc
);
451 NestedNameSpecifier
*NNS
= Correction
.getCorrectionSpecifier();
452 CXXScopeSpec NewSS
, *NewSSPtr
= SS
;
454 NewSS
.MakeTrivial(Context
, NNS
, SourceRange(NameLoc
));
457 if (Correction
&& (NNS
|| NewII
!= &II
) &&
458 // Ignore a correction to a template type as the to-be-corrected
459 // identifier is not a template (typo correction for template names
460 // is handled elsewhere).
461 !(getLangOpts().CPlusPlus
&& NewSSPtr
&&
462 isTemplateName(S
, *NewSSPtr
, false, TemplateName
, nullptr, false,
463 Template
, MemberOfUnknownSpecialization
))) {
464 ParsedType Ty
= getTypeName(*NewII
, NameLoc
, S
, NewSSPtr
,
465 isClassName
, HasTrailingDot
, ObjectTypePtr
,
467 WantNontrivialTypeSourceInfo
,
468 IsClassTemplateDeductionContext
);
470 diagnoseTypo(Correction
,
471 PDiag(diag::err_unknown_type_or_class_name_suggest
)
472 << Result
.getLookupName() << isClassName
);
474 SS
->MakeTrivial(Context
, NNS
, SourceRange(NameLoc
));
475 *CorrectedII
= NewII
;
480 // If typo correction failed or was not performed, fall through
482 case LookupResult::FoundOverloaded
:
483 case LookupResult::FoundUnresolvedValue
:
484 Result
.suppressDiagnostics();
487 case LookupResult::Ambiguous
:
488 // Recover from type-hiding ambiguities by hiding the type. We'll
489 // do the lookup again when looking for an object, and we can
490 // diagnose the error then. If we don't do this, then the error
491 // about hiding the type will be immediately followed by an error
492 // that only makes sense if the identifier was treated like a type.
493 if (Result
.getAmbiguityKind() == LookupResult::AmbiguousTagHiding
) {
494 Result
.suppressDiagnostics();
498 // Look to see if we have a type anywhere in the list of results.
499 for (LookupResult::iterator Res
= Result
.begin(), ResEnd
= Result
.end();
500 Res
!= ResEnd
; ++Res
) {
501 NamedDecl
*RealRes
= (*Res
)->getUnderlyingDecl();
502 if (isa
<TypeDecl
, ObjCInterfaceDecl
, UnresolvedUsingIfExistsDecl
>(
504 (AllowDeducedTemplate
&& getAsTypeTemplateDecl(RealRes
))) {
506 // Make the selection of the recovery decl deterministic.
507 RealRes
->getLocation() < IIDecl
->getLocation()) {
509 FoundUsingShadow
= dyn_cast
<UsingShadowDecl
>(*Res
);
515 // None of the entities we found is a type, so there is no way
516 // to even assume that the result is a type. In this case, don't
517 // complain about the ambiguity. The parser will either try to
518 // perform this lookup again (e.g., as an object name), which
519 // will produce the ambiguity, or will complain that it expected
521 Result
.suppressDiagnostics();
525 // We found a type within the ambiguous lookup; diagnose the
526 // ambiguity and then return that type. This might be the right
527 // answer, or it might not be, but it suppresses any attempt to
528 // perform the name lookup again.
531 case LookupResult::Found
:
532 IIDecl
= Result
.getFoundDecl();
533 FoundUsingShadow
= dyn_cast
<UsingShadowDecl
>(*Result
.begin());
537 assert(IIDecl
&& "Didn't find decl");
540 if (TypeDecl
*TD
= dyn_cast
<TypeDecl
>(IIDecl
)) {
541 // C++ [class.qual]p2: A lookup that would find the injected-class-name
542 // instead names the constructors of the class, except when naming a class.
543 // This is ill-formed when we're not actually forming a ctor or dtor name.
544 auto *LookupRD
= dyn_cast_or_null
<CXXRecordDecl
>(LookupCtx
);
545 auto *FoundRD
= dyn_cast
<CXXRecordDecl
>(TD
);
546 if (!isClassName
&& !IsCtorOrDtorName
&& LookupRD
&& FoundRD
&&
547 FoundRD
->isInjectedClassName() &&
548 declaresSameEntity(LookupRD
, cast
<Decl
>(FoundRD
->getParent())))
549 Diag(NameLoc
, diag::err_out_of_line_qualified_id_type_names_constructor
)
552 DiagnoseUseOfDecl(IIDecl
, NameLoc
);
554 T
= Context
.getTypeDeclType(TD
);
555 MarkAnyDeclReferenced(TD
->getLocation(), TD
, /*OdrUse=*/false);
556 } else if (ObjCInterfaceDecl
*IDecl
= dyn_cast
<ObjCInterfaceDecl
>(IIDecl
)) {
557 (void)DiagnoseUseOfDecl(IDecl
, NameLoc
);
559 T
= Context
.getObjCInterfaceType(IDecl
);
560 FoundUsingShadow
= nullptr; // FIXME: Target must be a TypeDecl.
561 } else if (auto *UD
= dyn_cast
<UnresolvedUsingIfExistsDecl
>(IIDecl
)) {
562 (void)DiagnoseUseOfDecl(UD
, NameLoc
);
563 // Recover with 'int'
564 return ParsedType::make(Context
.IntTy
);
565 } else if (AllowDeducedTemplate
) {
566 if (auto *TD
= getAsTypeTemplateDecl(IIDecl
)) {
567 assert(!FoundUsingShadow
|| FoundUsingShadow
->getTargetDecl() == TD
);
568 TemplateName Template
=
569 FoundUsingShadow
? TemplateName(FoundUsingShadow
) : TemplateName(TD
);
570 T
= Context
.getDeducedTemplateSpecializationType(Template
, QualType(),
572 // Don't wrap in a further UsingType.
573 FoundUsingShadow
= nullptr;
578 // If it's not plausibly a type, suppress diagnostics.
579 Result
.suppressDiagnostics();
583 if (FoundUsingShadow
)
584 T
= Context
.getUsingType(FoundUsingShadow
, T
);
586 return buildNamedType(*this, SS
, T
, NameLoc
, WantNontrivialTypeSourceInfo
);
589 // Builds a fake NNS for the given decl context.
590 static NestedNameSpecifier
*
591 synthesizeCurrentNestedNameSpecifier(ASTContext
&Context
, DeclContext
*DC
) {
592 for (;; DC
= DC
->getLookupParent()) {
593 DC
= DC
->getPrimaryContext();
594 auto *ND
= dyn_cast
<NamespaceDecl
>(DC
);
595 if (ND
&& !ND
->isInline() && !ND
->isAnonymousNamespace())
596 return NestedNameSpecifier::Create(Context
, nullptr, ND
);
597 else if (auto *RD
= dyn_cast
<CXXRecordDecl
>(DC
))
598 return NestedNameSpecifier::Create(Context
, nullptr, RD
->isTemplateDecl(),
599 RD
->getTypeForDecl());
600 else if (isa
<TranslationUnitDecl
>(DC
))
601 return NestedNameSpecifier::GlobalSpecifier(Context
);
603 llvm_unreachable("something isn't in TU scope?");
606 /// Find the parent class with dependent bases of the innermost enclosing method
607 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
608 /// up allowing unqualified dependent type names at class-level, which MSVC
609 /// correctly rejects.
610 static const CXXRecordDecl
*
611 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext
*DC
) {
612 for (; DC
&& DC
->isDependentContext(); DC
= DC
->getLookupParent()) {
613 DC
= DC
->getPrimaryContext();
614 if (const auto *MD
= dyn_cast
<CXXMethodDecl
>(DC
))
615 if (MD
->getParent()->hasAnyDependentBases())
616 return MD
->getParent();
621 ParsedType
Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo
&II
,
622 SourceLocation NameLoc
,
623 bool IsTemplateTypeArg
) {
624 assert(getLangOpts().MSVCCompat
&& "shouldn't be called in non-MSVC mode");
626 NestedNameSpecifier
*NNS
= nullptr;
627 if (IsTemplateTypeArg
&& getCurScope()->isTemplateParamScope()) {
628 // If we weren't able to parse a default template argument, delay lookup
629 // until instantiation time by making a non-dependent DependentTypeName. We
630 // pretend we saw a NestedNameSpecifier referring to the current scope, and
631 // lookup is retried.
632 // FIXME: This hurts our diagnostic quality, since we get errors like "no
633 // type named 'Foo' in 'current_namespace'" when the user didn't write any
635 NNS
= synthesizeCurrentNestedNameSpecifier(Context
, CurContext
);
636 Diag(NameLoc
, diag::ext_ms_delayed_template_argument
) << &II
;
637 } else if (const CXXRecordDecl
*RD
=
638 findRecordWithDependentBasesOfEnclosingMethod(CurContext
)) {
639 // Build a DependentNameType that will perform lookup into RD at
640 // instantiation time.
641 NNS
= NestedNameSpecifier::Create(Context
, nullptr, RD
->isTemplateDecl(),
642 RD
->getTypeForDecl());
644 // Diagnose that this identifier was undeclared, and retry the lookup during
645 // template instantiation.
646 Diag(NameLoc
, diag::ext_undeclared_unqual_id_with_dependent_base
) << &II
649 // This is not a situation that we should recover from.
654 Context
.getDependentNameType(ElaboratedTypeKeyword::None
, NNS
, &II
);
656 // Build type location information. We synthesized the qualifier, so we have
657 // to build a fake NestedNameSpecifierLoc.
658 NestedNameSpecifierLocBuilder NNSLocBuilder
;
659 NNSLocBuilder
.MakeTrivial(Context
, NNS
, SourceRange(NameLoc
));
660 NestedNameSpecifierLoc QualifierLoc
= NNSLocBuilder
.getWithLocInContext(Context
);
662 TypeLocBuilder Builder
;
663 DependentNameTypeLoc DepTL
= Builder
.push
<DependentNameTypeLoc
>(T
);
664 DepTL
.setNameLoc(NameLoc
);
665 DepTL
.setElaboratedKeywordLoc(SourceLocation());
666 DepTL
.setQualifierLoc(QualifierLoc
);
667 return CreateParsedType(T
, Builder
.getTypeSourceInfo(Context
, T
));
670 /// isTagName() - This method is called *for error recovery purposes only*
671 /// to determine if the specified name is a valid tag name ("struct foo"). If
672 /// so, this returns the TST for the tag corresponding to it (TST_enum,
673 /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
674 /// cases in C where the user forgot to specify the tag.
675 DeclSpec::TST
Sema::isTagName(IdentifierInfo
&II
, Scope
*S
) {
676 // Do a tag name lookup in this scope.
677 LookupResult
R(*this, &II
, SourceLocation(), LookupTagName
);
678 LookupName(R
, S
, false);
679 R
.suppressDiagnostics();
680 if (R
.getResultKind() == LookupResult::Found
)
681 if (const TagDecl
*TD
= R
.getAsSingle
<TagDecl
>()) {
682 switch (TD
->getTagKind()) {
683 case TagTypeKind::Struct
:
684 return DeclSpec::TST_struct
;
685 case TagTypeKind::Interface
:
686 return DeclSpec::TST_interface
;
687 case TagTypeKind::Union
:
688 return DeclSpec::TST_union
;
689 case TagTypeKind::Class
:
690 return DeclSpec::TST_class
;
691 case TagTypeKind::Enum
:
692 return DeclSpec::TST_enum
;
696 return DeclSpec::TST_unspecified
;
699 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
700 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
701 /// then downgrade the missing typename error to a warning.
702 /// This is needed for MSVC compatibility; Example:
704 /// template<class T> class A {
706 /// typedef int TYPE;
708 /// template<class T> class B : public A<T> {
710 /// A<T>::TYPE a; // no typename required because A<T> is a base class.
713 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec
*SS
, Scope
*S
) {
714 if (CurContext
->isRecord()) {
715 if (SS
->getScopeRep()->getKind() == NestedNameSpecifier::Super
)
718 const Type
*Ty
= SS
->getScopeRep()->getAsType();
720 CXXRecordDecl
*RD
= cast
<CXXRecordDecl
>(CurContext
);
721 for (const auto &Base
: RD
->bases())
722 if (Ty
&& Context
.hasSameUnqualifiedType(QualType(Ty
, 1), Base
.getType()))
724 return S
->isFunctionPrototypeScope();
726 return CurContext
->isFunctionOrMethod() || S
->isFunctionPrototypeScope();
729 void Sema::DiagnoseUnknownTypeName(IdentifierInfo
*&II
,
730 SourceLocation IILoc
,
733 ParsedType
&SuggestedType
,
734 bool IsTemplateName
) {
735 // Don't report typename errors for editor placeholders.
736 if (II
->isEditorPlaceholder())
738 // We don't have anything to suggest (yet).
739 SuggestedType
= nullptr;
741 // There may have been a typo in the name of the type. Look up typo
742 // results, in case we have something that we can suggest.
743 TypeNameValidatorCCC
CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
744 /*AllowTemplates=*/IsTemplateName
,
745 /*AllowNonTemplates=*/!IsTemplateName
);
746 if (TypoCorrection Corrected
=
747 CorrectTypo(DeclarationNameInfo(II
, IILoc
), LookupOrdinaryName
, S
, SS
,
748 CCC
, CTK_ErrorRecovery
)) {
749 // FIXME: Support error recovery for the template-name case.
750 bool CanRecover
= !IsTemplateName
;
751 if (Corrected
.isKeyword()) {
752 // We corrected to a keyword.
753 diagnoseTypo(Corrected
,
754 PDiag(IsTemplateName
? diag::err_no_template_suggest
755 : diag::err_unknown_typename_suggest
)
757 II
= Corrected
.getCorrectionAsIdentifierInfo();
759 // We found a similarly-named type or interface; suggest that.
760 if (!SS
|| !SS
->isSet()) {
761 diagnoseTypo(Corrected
,
762 PDiag(IsTemplateName
? diag::err_no_template_suggest
763 : diag::err_unknown_typename_suggest
)
765 } else if (DeclContext
*DC
= computeDeclContext(*SS
, false)) {
766 std::string
CorrectedStr(Corrected
.getAsString(getLangOpts()));
767 bool DroppedSpecifier
= Corrected
.WillReplaceSpecifier() &&
768 II
->getName().equals(CorrectedStr
);
769 diagnoseTypo(Corrected
,
771 ? diag::err_no_member_template_suggest
772 : diag::err_unknown_nested_typename_suggest
)
773 << II
<< DC
<< DroppedSpecifier
<< SS
->getRange(),
776 llvm_unreachable("could not have corrected a typo here");
783 if (Corrected
.getCorrectionSpecifier())
784 tmpSS
.MakeTrivial(Context
, Corrected
.getCorrectionSpecifier(),
786 // FIXME: Support class template argument deduction here.
788 getTypeName(*Corrected
.getCorrectionAsIdentifierInfo(), IILoc
, S
,
789 tmpSS
.isSet() ? &tmpSS
: SS
, false, false, nullptr,
790 /*IsCtorOrDtorName=*/false,
791 /*WantNontrivialTypeSourceInfo=*/true);
796 if (getLangOpts().CPlusPlus
&& !IsTemplateName
) {
797 // See if II is a class template that the user forgot to pass arguments to.
799 Name
.setIdentifier(II
, IILoc
);
800 CXXScopeSpec EmptySS
;
801 TemplateTy TemplateResult
;
802 bool MemberOfUnknownSpecialization
;
803 if (isTemplateName(S
, SS
? *SS
: EmptySS
, /*hasTemplateKeyword=*/false,
804 Name
, nullptr, true, TemplateResult
,
805 MemberOfUnknownSpecialization
) == TNK_Type_template
) {
806 diagnoseMissingTemplateArguments(TemplateResult
.get(), IILoc
);
811 // FIXME: Should we move the logic that tries to recover from a missing tag
812 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
814 if (!SS
|| (!SS
->isSet() && !SS
->isInvalid()))
815 Diag(IILoc
, IsTemplateName
? diag::err_no_template
816 : diag::err_unknown_typename
)
818 else if (DeclContext
*DC
= computeDeclContext(*SS
, false))
819 Diag(IILoc
, IsTemplateName
? diag::err_no_member_template
820 : diag::err_typename_nested_not_found
)
821 << II
<< DC
<< SS
->getRange();
822 else if (SS
->isValid() && SS
->getScopeRep()->containsErrors()) {
824 ActOnTypenameType(S
, SourceLocation(), *SS
, *II
, IILoc
).get();
825 } else if (isDependentScopeSpecifier(*SS
)) {
826 unsigned DiagID
= diag::err_typename_missing
;
827 if (getLangOpts().MSVCCompat
&& isMicrosoftMissingTypename(SS
, S
))
828 DiagID
= diag::ext_typename_missing
;
830 Diag(SS
->getRange().getBegin(), DiagID
)
831 << SS
->getScopeRep() << II
->getName()
832 << SourceRange(SS
->getRange().getBegin(), IILoc
)
833 << FixItHint::CreateInsertion(SS
->getRange().getBegin(), "typename ");
834 SuggestedType
= ActOnTypenameType(S
, SourceLocation(),
835 *SS
, *II
, IILoc
).get();
837 assert(SS
&& SS
->isInvalid() &&
838 "Invalid scope specifier has already been diagnosed");
842 /// Determine whether the given result set contains either a type name
844 static bool isResultTypeOrTemplate(LookupResult
&R
, const Token
&NextToken
) {
845 bool CheckTemplate
= R
.getSema().getLangOpts().CPlusPlus
&&
846 NextToken
.is(tok::less
);
848 for (LookupResult::iterator I
= R
.begin(), IEnd
= R
.end(); I
!= IEnd
; ++I
) {
849 if (isa
<TypeDecl
>(*I
) || isa
<ObjCInterfaceDecl
>(*I
))
852 if (CheckTemplate
&& isa
<TemplateDecl
>(*I
))
859 static bool isTagTypeWithMissingTag(Sema
&SemaRef
, LookupResult
&Result
,
860 Scope
*S
, CXXScopeSpec
&SS
,
861 IdentifierInfo
*&Name
,
862 SourceLocation NameLoc
) {
863 LookupResult
R(SemaRef
, Name
, NameLoc
, Sema::LookupTagName
);
864 SemaRef
.LookupParsedName(R
, S
, &SS
);
865 if (TagDecl
*Tag
= R
.getAsSingle
<TagDecl
>()) {
866 StringRef FixItTagName
;
867 switch (Tag
->getTagKind()) {
868 case TagTypeKind::Class
:
869 FixItTagName
= "class ";
872 case TagTypeKind::Enum
:
873 FixItTagName
= "enum ";
876 case TagTypeKind::Struct
:
877 FixItTagName
= "struct ";
880 case TagTypeKind::Interface
:
881 FixItTagName
= "__interface ";
884 case TagTypeKind::Union
:
885 FixItTagName
= "union ";
889 StringRef TagName
= FixItTagName
.drop_back();
890 SemaRef
.Diag(NameLoc
, diag::err_use_of_tag_name_without_tag
)
891 << Name
<< TagName
<< SemaRef
.getLangOpts().CPlusPlus
892 << FixItHint::CreateInsertion(NameLoc
, FixItTagName
);
894 for (LookupResult::iterator I
= Result
.begin(), IEnd
= Result
.end();
896 SemaRef
.Diag((*I
)->getLocation(), diag::note_decl_hiding_tag_type
)
899 // Replace lookup results with just the tag decl.
900 Result
.clear(Sema::LookupTagName
);
901 SemaRef
.LookupParsedName(Result
, S
, &SS
);
908 Sema::NameClassification
Sema::ClassifyName(Scope
*S
, CXXScopeSpec
&SS
,
909 IdentifierInfo
*&Name
,
910 SourceLocation NameLoc
,
911 const Token
&NextToken
,
912 CorrectionCandidateCallback
*CCC
) {
913 DeclarationNameInfo
NameInfo(Name
, NameLoc
);
914 ObjCMethodDecl
*CurMethod
= getCurMethodDecl();
916 assert(NextToken
.isNot(tok::coloncolon
) &&
917 "parse nested name specifiers before calling ClassifyName");
918 if (getLangOpts().CPlusPlus
&& SS
.isSet() &&
919 isCurrentClassName(*Name
, S
, &SS
)) {
920 // Per [class.qual]p2, this names the constructors of SS, not the
921 // injected-class-name. We don't have a classification for that.
922 // There's not much point caching this result, since the parser
923 // will reject it later.
924 return NameClassification::Unknown();
927 LookupResult
Result(*this, Name
, NameLoc
, LookupOrdinaryName
);
928 LookupParsedName(Result
, S
, &SS
, !CurMethod
);
931 return NameClassification::Error();
933 // For unqualified lookup in a class template in MSVC mode, look into
934 // dependent base classes where the primary class template is known.
935 if (Result
.empty() && SS
.isEmpty() && getLangOpts().MSVCCompat
) {
936 if (ParsedType TypeInBase
=
937 recoverFromTypeInKnownDependentBase(*this, *Name
, NameLoc
))
941 // Perform lookup for Objective-C instance variables (including automatically
942 // synthesized instance variables), if we're in an Objective-C method.
943 // FIXME: This lookup really, really needs to be folded in to the normal
944 // unqualified lookup mechanism.
945 if (SS
.isEmpty() && CurMethod
&& !isResultTypeOrTemplate(Result
, NextToken
)) {
946 DeclResult Ivar
= LookupIvarInObjCMethod(Result
, S
, Name
);
947 if (Ivar
.isInvalid())
948 return NameClassification::Error();
950 return NameClassification::NonType(cast
<NamedDecl
>(Ivar
.get()));
952 // We defer builtin creation until after ivar lookup inside ObjC methods.
954 LookupBuiltin(Result
);
957 bool SecondTry
= false;
958 bool IsFilteredTemplateName
= false;
961 switch (Result
.getResultKind()) {
962 case LookupResult::NotFound
:
963 // If an unqualified-id is followed by a '(', then we have a function
965 if (SS
.isEmpty() && NextToken
.is(tok::l_paren
)) {
966 // In C++, this is an ADL-only call.
968 if (getLangOpts().CPlusPlus
)
969 return NameClassification::UndeclaredNonType();
972 // If the expression that precedes the parenthesized argument list in a
973 // function call consists solely of an identifier, and if no
974 // declaration is visible for this identifier, the identifier is
975 // implicitly declared exactly as if, in the innermost block containing
976 // the function call, the declaration
978 // extern int identifier ();
982 // We also allow this in C99 as an extension. However, this is not
983 // allowed in all language modes as functions without prototypes may not
985 if (getLangOpts().implicitFunctionsAllowed()) {
986 if (NamedDecl
*D
= ImplicitlyDefineFunction(NameLoc
, *Name
, S
))
987 return NameClassification::NonType(D
);
991 if (getLangOpts().CPlusPlus20
&& SS
.isEmpty() && NextToken
.is(tok::less
)) {
992 // In C++20 onwards, this could be an ADL-only call to a function
993 // template, and we're required to assume that this is a template name.
995 // FIXME: Find a way to still do typo correction in this case.
996 TemplateName Template
=
997 Context
.getAssumedTemplateName(NameInfo
.getName());
998 return NameClassification::UndeclaredTemplate(Template
);
1001 // In C, we first see whether there is a tag type by the same name, in
1002 // which case it's likely that the user just forgot to write "enum",
1003 // "struct", or "union".
1004 if (!getLangOpts().CPlusPlus
&& !SecondTry
&&
1005 isTagTypeWithMissingTag(*this, Result
, S
, SS
, Name
, NameLoc
)) {
1009 // Perform typo correction to determine if there is another name that is
1010 // close to this name.
1011 if (!SecondTry
&& CCC
) {
1013 if (TypoCorrection Corrected
=
1014 CorrectTypo(Result
.getLookupNameInfo(), Result
.getLookupKind(), S
,
1015 &SS
, *CCC
, CTK_ErrorRecovery
)) {
1016 unsigned UnqualifiedDiag
= diag::err_undeclared_var_use_suggest
;
1017 unsigned QualifiedDiag
= diag::err_no_member_suggest
;
1019 NamedDecl
*FirstDecl
= Corrected
.getFoundDecl();
1020 NamedDecl
*UnderlyingFirstDecl
= Corrected
.getCorrectionDecl();
1021 if (getLangOpts().CPlusPlus
&& NextToken
.is(tok::less
) &&
1022 UnderlyingFirstDecl
&& isa
<TemplateDecl
>(UnderlyingFirstDecl
)) {
1023 UnqualifiedDiag
= diag::err_no_template_suggest
;
1024 QualifiedDiag
= diag::err_no_member_template_suggest
;
1025 } else if (UnderlyingFirstDecl
&&
1026 (isa
<TypeDecl
>(UnderlyingFirstDecl
) ||
1027 isa
<ObjCInterfaceDecl
>(UnderlyingFirstDecl
) ||
1028 isa
<ObjCCompatibleAliasDecl
>(UnderlyingFirstDecl
))) {
1029 UnqualifiedDiag
= diag::err_unknown_typename_suggest
;
1030 QualifiedDiag
= diag::err_unknown_nested_typename_suggest
;
1034 diagnoseTypo(Corrected
, PDiag(UnqualifiedDiag
) << Name
);
1035 } else {// FIXME: is this even reachable? Test it.
1036 std::string
CorrectedStr(Corrected
.getAsString(getLangOpts()));
1037 bool DroppedSpecifier
= Corrected
.WillReplaceSpecifier() &&
1038 Name
->getName().equals(CorrectedStr
);
1039 diagnoseTypo(Corrected
, PDiag(QualifiedDiag
)
1040 << Name
<< computeDeclContext(SS
, false)
1041 << DroppedSpecifier
<< SS
.getRange());
1044 // Update the name, so that the caller has the new name.
1045 Name
= Corrected
.getCorrectionAsIdentifierInfo();
1047 // Typo correction corrected to a keyword.
1048 if (Corrected
.isKeyword())
1051 // Also update the LookupResult...
1052 // FIXME: This should probably go away at some point
1054 Result
.setLookupName(Corrected
.getCorrection());
1056 Result
.addDecl(FirstDecl
);
1058 // If we found an Objective-C instance variable, let
1059 // LookupInObjCMethod build the appropriate expression to
1060 // reference the ivar.
1061 // FIXME: This is a gross hack.
1062 if (ObjCIvarDecl
*Ivar
= Result
.getAsSingle
<ObjCIvarDecl
>()) {
1064 LookupIvarInObjCMethod(Result
, S
, Ivar
->getIdentifier());
1066 return NameClassification::Error();
1068 return NameClassification::NonType(Ivar
);
1075 // We failed to correct; just fall through and let the parser deal with it.
1076 Result
.suppressDiagnostics();
1077 return NameClassification::Unknown();
1079 case LookupResult::NotFoundInCurrentInstantiation
: {
1080 // We performed name lookup into the current instantiation, and there were
1081 // dependent bases, so we treat this result the same way as any other
1082 // dependent nested-name-specifier.
1084 // C++ [temp.res]p2:
1085 // A name used in a template declaration or definition and that is
1086 // dependent on a template-parameter is assumed not to name a type
1087 // unless the applicable name lookup finds a type name or the name is
1088 // qualified by the keyword typename.
1090 // FIXME: If the next token is '<', we might want to ask the parser to
1091 // perform some heroics to see if we actually have a
1092 // template-argument-list, which would indicate a missing 'template'
1094 return NameClassification::DependentNonType();
1097 case LookupResult::Found
:
1098 case LookupResult::FoundOverloaded
:
1099 case LookupResult::FoundUnresolvedValue
:
1102 case LookupResult::Ambiguous
:
1103 if (getLangOpts().CPlusPlus
&& NextToken
.is(tok::less
) &&
1104 hasAnyAcceptableTemplateNames(Result
, /*AllowFunctionTemplates=*/true,
1105 /*AllowDependent=*/false)) {
1106 // C++ [temp.local]p3:
1107 // A lookup that finds an injected-class-name (10.2) can result in an
1108 // ambiguity in certain cases (for example, if it is found in more than
1109 // one base class). If all of the injected-class-names that are found
1110 // refer to specializations of the same class template, and if the name
1111 // is followed by a template-argument-list, the reference refers to the
1112 // class template itself and not a specialization thereof, and is not
1115 // This filtering can make an ambiguous result into an unambiguous one,
1116 // so try again after filtering out template names.
1117 FilterAcceptableTemplateNames(Result
);
1118 if (!Result
.isAmbiguous()) {
1119 IsFilteredTemplateName
= true;
1124 // Diagnose the ambiguity and return an error.
1125 return NameClassification::Error();
1128 if (getLangOpts().CPlusPlus
&& NextToken
.is(tok::less
) &&
1129 (IsFilteredTemplateName
||
1130 hasAnyAcceptableTemplateNames(
1131 Result
, /*AllowFunctionTemplates=*/true,
1132 /*AllowDependent=*/false,
1133 /*AllowNonTemplateFunctions*/ SS
.isEmpty() &&
1134 getLangOpts().CPlusPlus20
))) {
1135 // C++ [temp.names]p3:
1136 // After name lookup (3.4) finds that a name is a template-name or that
1137 // an operator-function-id or a literal- operator-id refers to a set of
1138 // overloaded functions any member of which is a function template if
1139 // this is followed by a <, the < is always taken as the delimiter of a
1140 // template-argument-list and never as the less-than operator.
1141 // C++2a [temp.names]p2:
1142 // A name is also considered to refer to a template if it is an
1143 // unqualified-id followed by a < and name lookup finds either one
1144 // or more functions or finds nothing.
1145 if (!IsFilteredTemplateName
)
1146 FilterAcceptableTemplateNames(Result
);
1148 bool IsFunctionTemplate
;
1150 TemplateName Template
;
1151 if (Result
.end() - Result
.begin() > 1) {
1152 IsFunctionTemplate
= true;
1153 Template
= Context
.getOverloadedTemplateName(Result
.begin(),
1155 } else if (!Result
.empty()) {
1156 auto *TD
= cast
<TemplateDecl
>(getAsTemplateNameDecl(
1157 *Result
.begin(), /*AllowFunctionTemplates=*/true,
1158 /*AllowDependent=*/false));
1159 IsFunctionTemplate
= isa
<FunctionTemplateDecl
>(TD
);
1160 IsVarTemplate
= isa
<VarTemplateDecl
>(TD
);
1162 UsingShadowDecl
*FoundUsingShadow
=
1163 dyn_cast
<UsingShadowDecl
>(*Result
.begin());
1164 assert(!FoundUsingShadow
||
1165 TD
== cast
<TemplateDecl
>(FoundUsingShadow
->getTargetDecl()));
1167 FoundUsingShadow
? TemplateName(FoundUsingShadow
) : TemplateName(TD
);
1168 if (SS
.isNotEmpty())
1169 Template
= Context
.getQualifiedTemplateName(SS
.getScopeRep(),
1170 /*TemplateKeyword=*/false,
1173 // All results were non-template functions. This is a function template
1175 IsFunctionTemplate
= true;
1176 Template
= Context
.getAssumedTemplateName(NameInfo
.getName());
1179 if (IsFunctionTemplate
) {
1180 // Function templates always go through overload resolution, at which
1181 // point we'll perform the various checks (e.g., accessibility) we need
1182 // to based on which function we selected.
1183 Result
.suppressDiagnostics();
1185 return NameClassification::FunctionTemplate(Template
);
1188 return IsVarTemplate
? NameClassification::VarTemplate(Template
)
1189 : NameClassification::TypeTemplate(Template
);
1192 auto BuildTypeFor
= [&](TypeDecl
*Type
, NamedDecl
*Found
) {
1193 QualType T
= Context
.getTypeDeclType(Type
);
1194 if (const auto *USD
= dyn_cast
<UsingShadowDecl
>(Found
))
1195 T
= Context
.getUsingType(USD
, T
);
1196 return buildNamedType(*this, &SS
, T
, NameLoc
);
1199 NamedDecl
*FirstDecl
= (*Result
.begin())->getUnderlyingDecl();
1200 if (TypeDecl
*Type
= dyn_cast
<TypeDecl
>(FirstDecl
)) {
1201 DiagnoseUseOfDecl(Type
, NameLoc
);
1202 MarkAnyDeclReferenced(Type
->getLocation(), Type
, /*OdrUse=*/false);
1203 return BuildTypeFor(Type
, *Result
.begin());
1206 ObjCInterfaceDecl
*Class
= dyn_cast
<ObjCInterfaceDecl
>(FirstDecl
);
1208 // FIXME: It's unfortunate that we don't have a Type node for handling this.
1209 if (ObjCCompatibleAliasDecl
*Alias
=
1210 dyn_cast
<ObjCCompatibleAliasDecl
>(FirstDecl
))
1211 Class
= Alias
->getClassInterface();
1215 DiagnoseUseOfDecl(Class
, NameLoc
);
1217 if (NextToken
.is(tok::period
)) {
1218 // Interface. <something> is parsed as a property reference expression.
1219 // Just return "unknown" as a fall-through for now.
1220 Result
.suppressDiagnostics();
1221 return NameClassification::Unknown();
1224 QualType T
= Context
.getObjCInterfaceType(Class
);
1225 return ParsedType::make(T
);
1228 if (isa
<ConceptDecl
>(FirstDecl
))
1229 return NameClassification::Concept(
1230 TemplateName(cast
<TemplateDecl
>(FirstDecl
)));
1232 if (auto *EmptyD
= dyn_cast
<UnresolvedUsingIfExistsDecl
>(FirstDecl
)) {
1233 (void)DiagnoseUseOfDecl(EmptyD
, NameLoc
);
1234 return NameClassification::Error();
1237 // We can have a type template here if we're classifying a template argument.
1238 if (isa
<TemplateDecl
>(FirstDecl
) && !isa
<FunctionTemplateDecl
>(FirstDecl
) &&
1239 !isa
<VarTemplateDecl
>(FirstDecl
))
1240 return NameClassification::TypeTemplate(
1241 TemplateName(cast
<TemplateDecl
>(FirstDecl
)));
1243 // Check for a tag type hidden by a non-type decl in a few cases where it
1244 // seems likely a type is wanted instead of the non-type that was found.
1245 bool NextIsOp
= NextToken
.isOneOf(tok::amp
, tok::star
);
1246 if ((NextToken
.is(tok::identifier
) ||
1248 FirstDecl
->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1249 isTagTypeWithMissingTag(*this, Result
, S
, SS
, Name
, NameLoc
)) {
1250 TypeDecl
*Type
= Result
.getAsSingle
<TypeDecl
>();
1251 DiagnoseUseOfDecl(Type
, NameLoc
);
1252 return BuildTypeFor(Type
, *Result
.begin());
1255 // If we already know which single declaration is referenced, just annotate
1256 // that declaration directly. Defer resolving even non-overloaded class
1257 // member accesses, as we need to defer certain access checks until we know
1259 bool ADL
= UseArgumentDependentLookup(SS
, Result
, NextToken
.is(tok::l_paren
));
1260 if (Result
.isSingleResult() && !ADL
&&
1261 (!FirstDecl
->isCXXClassMember() || isa
<EnumConstantDecl
>(FirstDecl
)))
1262 return NameClassification::NonType(Result
.getRepresentativeDecl());
1264 // Otherwise, this is an overload set that we will need to resolve later.
1265 Result
.suppressDiagnostics();
1266 return NameClassification::OverloadSet(UnresolvedLookupExpr::Create(
1267 Context
, Result
.getNamingClass(), SS
.getWithLocInContext(Context
),
1268 Result
.getLookupNameInfo(), ADL
, Result
.isOverloadedResult(),
1269 Result
.begin(), Result
.end()));
1273 Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo
*Name
,
1274 SourceLocation NameLoc
) {
1275 assert(getLangOpts().CPlusPlus
&& "ADL-only call in C?");
1277 LookupResult
Result(*this, Name
, NameLoc
, LookupOrdinaryName
);
1278 return BuildDeclarationNameExpr(SS
, Result
, /*ADL=*/true);
1282 Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec
&SS
,
1283 IdentifierInfo
*Name
,
1284 SourceLocation NameLoc
,
1285 bool IsAddressOfOperand
) {
1286 DeclarationNameInfo
NameInfo(Name
, NameLoc
);
1287 return ActOnDependentIdExpression(SS
, /*TemplateKWLoc=*/SourceLocation(),
1288 NameInfo
, IsAddressOfOperand
,
1289 /*TemplateArgs=*/nullptr);
1292 ExprResult
Sema::ActOnNameClassifiedAsNonType(Scope
*S
, const CXXScopeSpec
&SS
,
1294 SourceLocation NameLoc
,
1295 const Token
&NextToken
) {
1296 if (getCurMethodDecl() && SS
.isEmpty())
1297 if (auto *Ivar
= dyn_cast
<ObjCIvarDecl
>(Found
->getUnderlyingDecl()))
1298 return BuildIvarRefExpr(S
, NameLoc
, Ivar
);
1300 // Reconstruct the lookup result.
1301 LookupResult
Result(*this, Found
->getDeclName(), NameLoc
, LookupOrdinaryName
);
1302 Result
.addDecl(Found
);
1303 Result
.resolveKind();
1305 bool ADL
= UseArgumentDependentLookup(SS
, Result
, NextToken
.is(tok::l_paren
));
1306 return BuildDeclarationNameExpr(SS
, Result
, ADL
, /*AcceptInvalidDecl=*/true);
1309 ExprResult
Sema::ActOnNameClassifiedAsOverloadSet(Scope
*S
, Expr
*E
) {
1310 // For an implicit class member access, transform the result into a member
1311 // access expression if necessary.
1312 auto *ULE
= cast
<UnresolvedLookupExpr
>(E
);
1313 if ((*ULE
->decls_begin())->isCXXClassMember()) {
1315 SS
.Adopt(ULE
->getQualifierLoc());
1317 // Reconstruct the lookup result.
1318 LookupResult
Result(*this, ULE
->getName(), ULE
->getNameLoc(),
1319 LookupOrdinaryName
);
1320 Result
.setNamingClass(ULE
->getNamingClass());
1321 for (auto I
= ULE
->decls_begin(), E
= ULE
->decls_end(); I
!= E
; ++I
)
1322 Result
.addDecl(*I
, I
.getAccess());
1323 Result
.resolveKind();
1324 return BuildPossibleImplicitMemberExpr(SS
, SourceLocation(), Result
,
1328 // Otherwise, this is already in the form we needed, and no further checks
1333 Sema::TemplateNameKindForDiagnostics
1334 Sema::getTemplateNameKindForDiagnostics(TemplateName Name
) {
1335 auto *TD
= Name
.getAsTemplateDecl();
1337 return TemplateNameKindForDiagnostics::DependentTemplate
;
1338 if (isa
<ClassTemplateDecl
>(TD
))
1339 return TemplateNameKindForDiagnostics::ClassTemplate
;
1340 if (isa
<FunctionTemplateDecl
>(TD
))
1341 return TemplateNameKindForDiagnostics::FunctionTemplate
;
1342 if (isa
<VarTemplateDecl
>(TD
))
1343 return TemplateNameKindForDiagnostics::VarTemplate
;
1344 if (isa
<TypeAliasTemplateDecl
>(TD
))
1345 return TemplateNameKindForDiagnostics::AliasTemplate
;
1346 if (isa
<TemplateTemplateParmDecl
>(TD
))
1347 return TemplateNameKindForDiagnostics::TemplateTemplateParam
;
1348 if (isa
<ConceptDecl
>(TD
))
1349 return TemplateNameKindForDiagnostics::Concept
;
1350 return TemplateNameKindForDiagnostics::DependentTemplate
;
1353 void Sema::PushDeclContext(Scope
*S
, DeclContext
*DC
) {
1354 assert(DC
->getLexicalParent() == CurContext
&&
1355 "The next DeclContext should be lexically contained in the current one.");
1360 void Sema::PopDeclContext() {
1361 assert(CurContext
&& "DeclContext imbalance!");
1363 CurContext
= CurContext
->getLexicalParent();
1364 assert(CurContext
&& "Popped translation unit!");
1367 Sema::SkippedDefinitionContext
Sema::ActOnTagStartSkippedDefinition(Scope
*S
,
1369 // Unlike PushDeclContext, the context to which we return is not necessarily
1370 // the containing DC of TD, because the new context will be some pre-existing
1371 // TagDecl definition instead of a fresh one.
1372 auto Result
= static_cast<SkippedDefinitionContext
>(CurContext
);
1373 CurContext
= cast
<TagDecl
>(D
)->getDefinition();
1374 assert(CurContext
&& "skipping definition of undefined tag");
1375 // Start lookups from the parent of the current context; we don't want to look
1376 // into the pre-existing complete definition.
1377 S
->setEntity(CurContext
->getLookupParent());
1381 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context
) {
1382 CurContext
= static_cast<decltype(CurContext
)>(Context
);
1385 /// EnterDeclaratorContext - Used when we must lookup names in the context
1386 /// of a declarator's nested name specifier.
1388 void Sema::EnterDeclaratorContext(Scope
*S
, DeclContext
*DC
) {
1389 // C++0x [basic.lookup.unqual]p13:
1390 // A name used in the definition of a static data member of class
1391 // X (after the qualified-id of the static member) is looked up as
1392 // if the name was used in a member function of X.
1393 // C++0x [basic.lookup.unqual]p14:
1394 // If a variable member of a namespace is defined outside of the
1395 // scope of its namespace then any name used in the definition of
1396 // the variable member (after the declarator-id) is looked up as
1397 // if the definition of the variable member occurred in its
1399 // Both of these imply that we should push a scope whose context
1400 // is the semantic context of the declaration. We can't use
1401 // PushDeclContext here because that context is not necessarily
1402 // lexically contained in the current context. Fortunately,
1403 // the containing scope should have the appropriate information.
1405 assert(!S
->getEntity() && "scope already has entity");
1408 Scope
*Ancestor
= S
->getParent();
1409 while (!Ancestor
->getEntity()) Ancestor
= Ancestor
->getParent();
1410 assert(Ancestor
->getEntity() == CurContext
&& "ancestor context mismatch");
1416 if (S
->getParent()->isTemplateParamScope()) {
1417 // Also set the corresponding entities for all immediately-enclosing
1418 // template parameter scopes.
1419 EnterTemplatedContext(S
->getParent(), DC
);
1423 void Sema::ExitDeclaratorContext(Scope
*S
) {
1424 assert(S
->getEntity() == CurContext
&& "Context imbalance!");
1426 // Switch back to the lexical context. The safety of this is
1427 // enforced by an assert in EnterDeclaratorContext.
1428 Scope
*Ancestor
= S
->getParent();
1429 while (!Ancestor
->getEntity()) Ancestor
= Ancestor
->getParent();
1430 CurContext
= Ancestor
->getEntity();
1432 // We don't need to do anything with the scope, which is going to
1436 void Sema::EnterTemplatedContext(Scope
*S
, DeclContext
*DC
) {
1437 assert(S
->isTemplateParamScope() &&
1438 "expected to be initializing a template parameter scope");
1440 // C++20 [temp.local]p7:
1441 // In the definition of a member of a class template that appears outside
1442 // of the class template definition, the name of a member of the class
1443 // template hides the name of a template-parameter of any enclosing class
1444 // templates (but not a template-parameter of the member if the member is a
1445 // class or function template).
1446 // C++20 [temp.local]p9:
1447 // In the definition of a class template or in the definition of a member
1448 // of such a template that appears outside of the template definition, for
1449 // each non-dependent base class (13.8.2.1), if the name of the base class
1450 // or the name of a member of the base class is the same as the name of a
1451 // template-parameter, the base class name or member name hides the
1452 // template-parameter name (6.4.10).
1454 // This means that a template parameter scope should be searched immediately
1455 // after searching the DeclContext for which it is a template parameter
1456 // scope. For example, for
1457 // template<typename T> template<typename U> template<typename V>
1458 // void N::A<T>::B<U>::f(...)
1459 // we search V then B<U> (and base classes) then U then A<T> (and base
1460 // classes) then T then N then ::.
1461 unsigned ScopeDepth
= getTemplateDepth(S
);
1462 for (; S
&& S
->isTemplateParamScope(); S
= S
->getParent(), --ScopeDepth
) {
1463 DeclContext
*SearchDCAfterScope
= DC
;
1464 for (; DC
; DC
= DC
->getLookupParent()) {
1465 if (const TemplateParameterList
*TPL
=
1466 cast
<Decl
>(DC
)->getDescribedTemplateParams()) {
1467 unsigned DCDepth
= TPL
->getDepth() + 1;
1468 if (DCDepth
> ScopeDepth
)
1470 if (ScopeDepth
== DCDepth
)
1471 SearchDCAfterScope
= DC
= DC
->getLookupParent();
1475 S
->setLookupEntity(SearchDCAfterScope
);
1479 void Sema::ActOnReenterFunctionContext(Scope
* S
, Decl
*D
) {
1480 // We assume that the caller has already called
1481 // ActOnReenterTemplateScope so getTemplatedDecl() works.
1482 FunctionDecl
*FD
= D
->getAsFunction();
1486 // Same implementation as PushDeclContext, but enters the context
1487 // from the lexical parent, rather than the top-level class.
1488 assert(CurContext
== FD
->getLexicalParent() &&
1489 "The next DeclContext should be lexically contained in the current one.");
1491 S
->setEntity(CurContext
);
1493 for (unsigned P
= 0, NumParams
= FD
->getNumParams(); P
< NumParams
; ++P
) {
1494 ParmVarDecl
*Param
= FD
->getParamDecl(P
);
1495 // If the parameter has an identifier, then add it to the scope
1496 if (Param
->getIdentifier()) {
1498 IdResolver
.AddDecl(Param
);
1503 void Sema::ActOnExitFunctionContext() {
1504 // Same implementation as PopDeclContext, but returns to the lexical parent,
1505 // rather than the top-level class.
1506 assert(CurContext
&& "DeclContext imbalance!");
1507 CurContext
= CurContext
->getLexicalParent();
1508 assert(CurContext
&& "Popped translation unit!");
1511 /// Determine whether overloading is allowed for a new function
1512 /// declaration considering prior declarations of the same name.
1514 /// This routine determines whether overloading is possible, not
1515 /// whether a new declaration actually overloads a previous one.
1516 /// It will return true in C++ (where overloads are alway permitted)
1517 /// or, as a C extension, when either the new declaration or a
1518 /// previous one is declared with the 'overloadable' attribute.
1519 static bool AllowOverloadingOfFunction(const LookupResult
&Previous
,
1520 ASTContext
&Context
,
1521 const FunctionDecl
*New
) {
1522 if (Context
.getLangOpts().CPlusPlus
|| New
->hasAttr
<OverloadableAttr
>())
1525 // Multiversion function declarations are not overloads in the
1526 // usual sense of that term, but lookup will report that an
1527 // overload set was found if more than one multiversion function
1528 // declaration is present for the same name. It is therefore
1529 // inadequate to assume that some prior declaration(s) had
1530 // the overloadable attribute; checking is required. Since one
1531 // declaration is permitted to omit the attribute, it is necessary
1532 // to check at least two; hence the 'any_of' check below. Note that
1533 // the overloadable attribute is implicitly added to declarations
1534 // that were required to have it but did not.
1535 if (Previous
.getResultKind() == LookupResult::FoundOverloaded
) {
1536 return llvm::any_of(Previous
, [](const NamedDecl
*ND
) {
1537 return ND
->hasAttr
<OverloadableAttr
>();
1539 } else if (Previous
.getResultKind() == LookupResult::Found
)
1540 return Previous
.getFoundDecl()->hasAttr
<OverloadableAttr
>();
1545 /// Add this decl to the scope shadowed decl chains.
1546 void Sema::PushOnScopeChains(NamedDecl
*D
, Scope
*S
, bool AddToContext
) {
1547 // Move up the scope chain until we find the nearest enclosing
1548 // non-transparent context. The declaration will be introduced into this
1550 while (S
->getEntity() && S
->getEntity()->isTransparentContext())
1553 // Add scoped declarations into their context, so that they can be
1554 // found later. Declarations without a context won't be inserted
1555 // into any context.
1557 CurContext
->addDecl(D
);
1559 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1560 // are function-local declarations.
1561 if (getLangOpts().CPlusPlus
&& D
->isOutOfLine() && !S
->getFnParent())
1564 // Template instantiations should also not be pushed into scope.
1565 if (isa
<FunctionDecl
>(D
) &&
1566 cast
<FunctionDecl
>(D
)->isFunctionTemplateSpecialization())
1569 // If this replaces anything in the current scope,
1570 IdentifierResolver::iterator I
= IdResolver
.begin(D
->getDeclName()),
1571 IEnd
= IdResolver
.end();
1572 for (; I
!= IEnd
; ++I
) {
1573 if (S
->isDeclScope(*I
) && D
->declarationReplaces(*I
)) {
1575 IdResolver
.RemoveDecl(*I
);
1577 // Should only need to replace one decl.
1584 if (isa
<LabelDecl
>(D
) && !cast
<LabelDecl
>(D
)->isGnuLocal()) {
1585 // Implicitly-generated labels may end up getting generated in an order that
1586 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1587 // the label at the appropriate place in the identifier chain.
1588 for (I
= IdResolver
.begin(D
->getDeclName()); I
!= IEnd
; ++I
) {
1589 DeclContext
*IDC
= (*I
)->getLexicalDeclContext()->getRedeclContext();
1590 if (IDC
== CurContext
) {
1591 if (!S
->isDeclScope(*I
))
1593 } else if (IDC
->Encloses(CurContext
))
1597 IdResolver
.InsertDeclAfter(I
, D
);
1599 IdResolver
.AddDecl(D
);
1601 warnOnReservedIdentifier(D
);
1604 bool Sema::isDeclInScope(NamedDecl
*D
, DeclContext
*Ctx
, Scope
*S
,
1605 bool AllowInlineNamespace
) const {
1606 return IdResolver
.isDeclInScope(D
, Ctx
, S
, AllowInlineNamespace
);
1609 Scope
*Sema::getScopeForDeclContext(Scope
*S
, DeclContext
*DC
) {
1610 DeclContext
*TargetDC
= DC
->getPrimaryContext();
1612 if (DeclContext
*ScopeDC
= S
->getEntity())
1613 if (ScopeDC
->getPrimaryContext() == TargetDC
)
1615 } while ((S
= S
->getParent()));
1620 static bool isOutOfScopePreviousDeclaration(NamedDecl
*,
1624 /// Filters out lookup results that don't fall within the given scope
1625 /// as determined by isDeclInScope.
1626 void Sema::FilterLookupForScope(LookupResult
&R
, DeclContext
*Ctx
, Scope
*S
,
1627 bool ConsiderLinkage
,
1628 bool AllowInlineNamespace
) {
1629 LookupResult::Filter F
= R
.makeFilter();
1630 while (F
.hasNext()) {
1631 NamedDecl
*D
= F
.next();
1633 if (isDeclInScope(D
, Ctx
, S
, AllowInlineNamespace
))
1636 if (ConsiderLinkage
&& isOutOfScopePreviousDeclaration(D
, Ctx
, Context
))
1645 /// We've determined that \p New is a redeclaration of \p Old. Check that they
1646 /// have compatible owning modules.
1647 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl
*New
, NamedDecl
*Old
) {
1648 // [module.interface]p7:
1649 // A declaration is attached to a module as follows:
1650 // - If the declaration is a non-dependent friend declaration that nominates a
1651 // function with a declarator-id that is a qualified-id or template-id or that
1652 // nominates a class other than with an elaborated-type-specifier with neither
1653 // a nested-name-specifier nor a simple-template-id, it is attached to the
1654 // module to which the friend is attached ([basic.link]).
1655 if (New
->getFriendObjectKind() &&
1656 Old
->getOwningModuleForLinkage() != New
->getOwningModuleForLinkage()) {
1657 New
->setLocalOwningModule(Old
->getOwningModule());
1658 makeMergedDefinitionVisible(New
);
1662 Module
*NewM
= New
->getOwningModule();
1663 Module
*OldM
= Old
->getOwningModule();
1665 if (NewM
&& NewM
->isPrivateModule())
1666 NewM
= NewM
->Parent
;
1667 if (OldM
&& OldM
->isPrivateModule())
1668 OldM
= OldM
->Parent
;
1674 // A module implementation unit has visibility of the decls in its
1675 // implicitly imported interface.
1676 if (NewM
->isModuleImplementation() && OldM
== ThePrimaryInterface
)
1679 // Partitions are part of the module, but a partition could import another
1680 // module, so verify that the PMIs agree.
1681 if ((NewM
->isModulePartition() || OldM
->isModulePartition()) &&
1682 NewM
->getPrimaryModuleInterfaceName() ==
1683 OldM
->getPrimaryModuleInterfaceName())
1687 bool NewIsModuleInterface
= NewM
&& NewM
->isModulePurview();
1688 bool OldIsModuleInterface
= OldM
&& OldM
->isModulePurview();
1689 if (NewIsModuleInterface
|| OldIsModuleInterface
) {
1690 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1691 // if a declaration of D [...] appears in the purview of a module, all
1692 // other such declarations shall appear in the purview of the same module
1693 Diag(New
->getLocation(), diag::err_mismatched_owning_module
)
1695 << NewIsModuleInterface
1696 << (NewIsModuleInterface
? NewM
->getFullModuleName() : "")
1697 << OldIsModuleInterface
1698 << (OldIsModuleInterface
? OldM
->getFullModuleName() : "");
1699 Diag(Old
->getLocation(), diag::note_previous_declaration
);
1700 New
->setInvalidDecl();
1707 // [module.interface]p6:
1708 // A redeclaration of an entity X is implicitly exported if X was introduced by
1709 // an exported declaration; otherwise it shall not be exported.
1710 bool Sema::CheckRedeclarationExported(NamedDecl
*New
, NamedDecl
*Old
) {
1711 // [module.interface]p1:
1712 // An export-declaration shall inhabit a namespace scope.
1714 // So it is meaningless to talk about redeclaration which is not at namespace
1716 if (!New
->getLexicalDeclContext()
1717 ->getNonTransparentContext()
1718 ->isFileContext() ||
1719 !Old
->getLexicalDeclContext()
1720 ->getNonTransparentContext()
1724 bool IsNewExported
= New
->isInExportDeclContext();
1725 bool IsOldExported
= Old
->isInExportDeclContext();
1727 // It should be irrevelant if both of them are not exported.
1728 if (!IsNewExported
&& !IsOldExported
)
1734 assert(IsNewExported
);
1736 auto Lk
= Old
->getFormalLinkage();
1738 if (Lk
== Linkage::Internal
)
1740 else if (Lk
== Linkage::Module
)
1742 Diag(New
->getLocation(), diag::err_redeclaration_non_exported
) << New
<< S
;
1743 Diag(Old
->getLocation(), diag::note_previous_declaration
);
1747 // A wrapper function for checking the semantic restrictions of
1748 // a redeclaration within a module.
1749 bool Sema::CheckRedeclarationInModule(NamedDecl
*New
, NamedDecl
*Old
) {
1750 if (CheckRedeclarationModuleOwnership(New
, Old
))
1753 if (CheckRedeclarationExported(New
, Old
))
1759 // Check the redefinition in C++20 Modules.
1761 // [basic.def.odr]p14:
1762 // For any definable item D with definitions in multiple translation units,
1763 // - if D is a non-inline non-templated function or variable, or
1764 // - if the definitions in different translation units do not satisfy the
1765 // following requirements,
1766 // the program is ill-formed; a diagnostic is required only if the definable
1767 // item is attached to a named module and a prior definition is reachable at
1768 // the point where a later definition occurs.
1769 // - Each such definition shall not be attached to a named module
1771 // - Each such definition shall consist of the same sequence of tokens, ...
1774 // Return true if the redefinition is not allowed. Return false otherwise.
1775 bool Sema::IsRedefinitionInModule(const NamedDecl
*New
,
1776 const NamedDecl
*Old
) const {
1777 assert(getASTContext().isSameEntity(New
, Old
) &&
1778 "New and Old are not the same definition, we should diagnostic it "
1779 "immediately instead of checking it.");
1780 assert(const_cast<Sema
*>(this)->isReachable(New
) &&
1781 const_cast<Sema
*>(this)->isReachable(Old
) &&
1782 "We shouldn't see unreachable definitions here.");
1784 Module
*NewM
= New
->getOwningModule();
1785 Module
*OldM
= Old
->getOwningModule();
1787 // We only checks for named modules here. The header like modules is skipped.
1788 // FIXME: This is not right if we import the header like modules in the module
1791 // For example, assuming "header.h" provides definition for `D`.
1795 // import "header.h"; // or #include "header.h" but import it by clang modules
1800 // import "header.h"; // or uses clang modules.
1803 // In this case, `D` has multiple definitions in multiple TU (M.cppm and
1804 // Use.cpp) and `D` is attached to a named module `M`. The compiler should
1805 // reject it. But the current implementation couldn't detect the case since we
1806 // don't record the information about the importee modules.
1808 // But this might not be painful in practice. Since the design of C++20 Named
1809 // Modules suggests us to use headers in global module fragment instead of
1811 if (NewM
&& NewM
->isHeaderLikeModule())
1813 if (OldM
&& OldM
->isHeaderLikeModule())
1819 // [basic.def.odr]p14.3
1820 // Each such definition shall not be attached to a named module
1822 if ((NewM
&& NewM
->isModulePurview()) || (OldM
&& OldM
->isModulePurview()))
1825 // Then New and Old lives in the same TU if their share one same module unit.
1827 NewM
= NewM
->getTopLevelModule();
1829 OldM
= OldM
->getTopLevelModule();
1830 return OldM
== NewM
;
1833 static bool isUsingDeclNotAtClassScope(NamedDecl
*D
) {
1834 if (D
->getDeclContext()->isFileContext())
1837 return isa
<UsingShadowDecl
>(D
) ||
1838 isa
<UnresolvedUsingTypenameDecl
>(D
) ||
1839 isa
<UnresolvedUsingValueDecl
>(D
);
1842 /// Removes using shadow declarations not at class scope from the lookup
1844 static void RemoveUsingDecls(LookupResult
&R
) {
1845 LookupResult::Filter F
= R
.makeFilter();
1847 if (isUsingDeclNotAtClassScope(F
.next()))
1853 /// Check for this common pattern:
1856 /// S(const S&); // DO NOT IMPLEMENT
1857 /// void operator=(const S&); // DO NOT IMPLEMENT
1860 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl
*D
) {
1861 // FIXME: Should check for private access too but access is set after we get
1863 if (D
->doesThisDeclarationHaveABody())
1866 if (const CXXConstructorDecl
*CD
= dyn_cast
<CXXConstructorDecl
>(D
))
1867 return CD
->isCopyConstructor();
1868 return D
->isCopyAssignmentOperator();
1871 // We need this to handle
1874 // void *foo() { return 0; }
1877 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1878 // for example. If 'A', foo will have external linkage. If we have '*A',
1879 // foo will have no linkage. Since we can't know until we get to the end
1880 // of the typedef, this function finds out if D might have non-external linkage.
1881 // Callers should verify at the end of the TU if it D has external linkage or
1883 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl
*D
) {
1884 const DeclContext
*DC
= D
->getDeclContext();
1885 while (!DC
->isTranslationUnit()) {
1886 if (const RecordDecl
*RD
= dyn_cast
<RecordDecl
>(DC
)){
1887 if (!RD
->hasNameForLinkage())
1890 DC
= DC
->getParent();
1893 return !D
->isExternallyVisible();
1896 // FIXME: This needs to be refactored; some other isInMainFile users want
1898 static bool isMainFileLoc(const Sema
&S
, SourceLocation Loc
) {
1899 if (S
.TUKind
!= TU_Complete
|| S
.getLangOpts().IsHeaderFile
)
1901 return S
.SourceMgr
.isInMainFile(Loc
);
1904 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl
*D
) const {
1907 if (D
->isInvalidDecl() || D
->isUsed() || D
->hasAttr
<UnusedAttr
>())
1910 // Ignore all entities declared within templates, and out-of-line definitions
1911 // of members of class templates.
1912 if (D
->getDeclContext()->isDependentContext() ||
1913 D
->getLexicalDeclContext()->isDependentContext())
1916 if (const FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
1917 if (FD
->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
)
1919 // A non-out-of-line declaration of a member specialization was implicitly
1920 // instantiated; it's the out-of-line declaration that we're interested in.
1921 if (FD
->getTemplateSpecializationKind() == TSK_ExplicitSpecialization
&&
1922 FD
->getMemberSpecializationInfo() && !FD
->isOutOfLine())
1925 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
1926 if (MD
->isVirtual() || IsDisallowedCopyOrAssign(MD
))
1929 // 'static inline' functions are defined in headers; don't warn.
1930 if (FD
->isInlined() && !isMainFileLoc(*this, FD
->getLocation()))
1934 if (FD
->doesThisDeclarationHaveABody() &&
1935 Context
.DeclMustBeEmitted(FD
))
1937 } else if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
1938 // Constants and utility variables are defined in headers with internal
1939 // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1941 if (!isMainFileLoc(*this, VD
->getLocation()))
1944 if (Context
.DeclMustBeEmitted(VD
))
1947 if (VD
->isStaticDataMember() &&
1948 VD
->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
)
1950 if (VD
->isStaticDataMember() &&
1951 VD
->getTemplateSpecializationKind() == TSK_ExplicitSpecialization
&&
1952 VD
->getMemberSpecializationInfo() && !VD
->isOutOfLine())
1955 if (VD
->isInline() && !isMainFileLoc(*this, VD
->getLocation()))
1961 // Only warn for unused decls internal to the translation unit.
1962 // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1963 // for inline functions defined in the main source file, for instance.
1964 return mightHaveNonExternalLinkage(D
);
1967 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl
*D
) {
1971 if (const FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
1972 const FunctionDecl
*First
= FD
->getFirstDecl();
1973 if (FD
!= First
&& ShouldWarnIfUnusedFileScopedDecl(First
))
1974 return; // First should already be in the vector.
1977 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
1978 const VarDecl
*First
= VD
->getFirstDecl();
1979 if (VD
!= First
&& ShouldWarnIfUnusedFileScopedDecl(First
))
1980 return; // First should already be in the vector.
1983 if (ShouldWarnIfUnusedFileScopedDecl(D
))
1984 UnusedFileScopedDecls
.push_back(D
);
1987 static bool ShouldDiagnoseUnusedDecl(const LangOptions
&LangOpts
,
1988 const NamedDecl
*D
) {
1989 if (D
->isInvalidDecl())
1992 if (auto *DD
= dyn_cast
<DecompositionDecl
>(D
)) {
1993 // For a decomposition declaration, warn if none of the bindings are
1994 // referenced, instead of if the variable itself is referenced (which
1995 // it is, by the bindings' expressions).
1996 bool IsAllPlaceholders
= true;
1997 for (auto *BD
: DD
->bindings()) {
1998 if (BD
->isReferenced())
2000 IsAllPlaceholders
= IsAllPlaceholders
&& BD
->isPlaceholderVar(LangOpts
);
2002 if (IsAllPlaceholders
)
2004 } else if (!D
->getDeclName()) {
2006 } else if (D
->isReferenced() || D
->isUsed()) {
2010 if (D
->isPlaceholderVar(LangOpts
))
2013 if (D
->hasAttr
<UnusedAttr
>() || D
->hasAttr
<ObjCPreciseLifetimeAttr
>() ||
2014 D
->hasAttr
<CleanupAttr
>())
2017 if (isa
<LabelDecl
>(D
))
2020 // Except for labels, we only care about unused decls that are local to
2022 bool WithinFunction
= D
->getDeclContext()->isFunctionOrMethod();
2023 if (const auto *R
= dyn_cast
<CXXRecordDecl
>(D
->getDeclContext()))
2024 // For dependent types, the diagnostic is deferred.
2026 WithinFunction
|| (R
->isLocalClass() && !R
->isDependentType());
2027 if (!WithinFunction
)
2030 if (isa
<TypedefNameDecl
>(D
))
2033 // White-list anything that isn't a local variable.
2034 if (!isa
<VarDecl
>(D
) || isa
<ParmVarDecl
>(D
) || isa
<ImplicitParamDecl
>(D
))
2037 // Types of valid local variables should be complete, so this should succeed.
2038 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
2040 const Expr
*Init
= VD
->getInit();
2041 if (const auto *Cleanups
= dyn_cast_or_null
<ExprWithCleanups
>(Init
))
2042 Init
= Cleanups
->getSubExpr();
2044 const auto *Ty
= VD
->getType().getTypePtr();
2046 // Only look at the outermost level of typedef.
2047 if (const TypedefType
*TT
= Ty
->getAs
<TypedefType
>()) {
2048 // Allow anything marked with __attribute__((unused)).
2049 if (TT
->getDecl()->hasAttr
<UnusedAttr
>())
2053 // Warn for reference variables whose initializtion performs lifetime
2055 if (const auto *MTE
= dyn_cast_or_null
<MaterializeTemporaryExpr
>(Init
)) {
2056 if (MTE
->getExtendingDecl()) {
2057 Ty
= VD
->getType().getNonReferenceType().getTypePtr();
2058 Init
= MTE
->getSubExpr()->IgnoreImplicitAsWritten();
2062 // If we failed to complete the type for some reason, or if the type is
2063 // dependent, don't diagnose the variable.
2064 if (Ty
->isIncompleteType() || Ty
->isDependentType())
2067 // Look at the element type to ensure that the warning behaviour is
2068 // consistent for both scalars and arrays.
2069 Ty
= Ty
->getBaseElementTypeUnsafe();
2071 if (const TagType
*TT
= Ty
->getAs
<TagType
>()) {
2072 const TagDecl
*Tag
= TT
->getDecl();
2073 if (Tag
->hasAttr
<UnusedAttr
>())
2076 if (const CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(Tag
)) {
2077 if (!RD
->hasTrivialDestructor() && !RD
->hasAttr
<WarnUnusedAttr
>())
2081 const CXXConstructExpr
*Construct
=
2082 dyn_cast
<CXXConstructExpr
>(Init
);
2083 if (Construct
&& !Construct
->isElidable()) {
2084 CXXConstructorDecl
*CD
= Construct
->getConstructor();
2085 if (!CD
->isTrivial() && !RD
->hasAttr
<WarnUnusedAttr
>() &&
2086 (VD
->getInit()->isValueDependent() || !VD
->evaluateValue()))
2090 // Suppress the warning if we don't know how this is constructed, and
2091 // it could possibly be non-trivial constructor.
2092 if (Init
->isTypeDependent()) {
2093 for (const CXXConstructorDecl
*Ctor
: RD
->ctors())
2094 if (!Ctor
->isTrivial())
2098 // Suppress the warning if the constructor is unresolved because
2099 // its arguments are dependent.
2100 if (isa
<CXXUnresolvedConstructExpr
>(Init
))
2106 // TODO: __attribute__((unused)) templates?
2112 static void GenerateFixForUnusedDecl(const NamedDecl
*D
, ASTContext
&Ctx
,
2114 if (isa
<LabelDecl
>(D
)) {
2115 SourceLocation AfterColon
= Lexer::findLocationAfterToken(
2116 D
->getEndLoc(), tok::colon
, Ctx
.getSourceManager(), Ctx
.getLangOpts(),
2117 /*SkipTrailingWhitespaceAndNewline=*/false);
2118 if (AfterColon
.isInvalid())
2120 Hint
= FixItHint::CreateRemoval(
2121 CharSourceRange::getCharRange(D
->getBeginLoc(), AfterColon
));
2125 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl
*D
) {
2126 DiagnoseUnusedNestedTypedefs(
2127 D
, [this](SourceLocation Loc
, PartialDiagnostic PD
) { Diag(Loc
, PD
); });
2130 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl
*D
,
2131 DiagReceiverTy DiagReceiver
) {
2132 if (D
->getTypeForDecl()->isDependentType())
2135 for (auto *TmpD
: D
->decls()) {
2136 if (const auto *T
= dyn_cast
<TypedefNameDecl
>(TmpD
))
2137 DiagnoseUnusedDecl(T
, DiagReceiver
);
2138 else if(const auto *R
= dyn_cast
<RecordDecl
>(TmpD
))
2139 DiagnoseUnusedNestedTypedefs(R
, DiagReceiver
);
2143 void Sema::DiagnoseUnusedDecl(const NamedDecl
*D
) {
2145 D
, [this](SourceLocation Loc
, PartialDiagnostic PD
) { Diag(Loc
, PD
); });
2148 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
2149 /// unless they are marked attr(unused).
2150 void Sema::DiagnoseUnusedDecl(const NamedDecl
*D
, DiagReceiverTy DiagReceiver
) {
2151 if (!ShouldDiagnoseUnusedDecl(getLangOpts(), D
))
2154 if (auto *TD
= dyn_cast
<TypedefNameDecl
>(D
)) {
2155 // typedefs can be referenced later on, so the diagnostics are emitted
2156 // at end-of-translation-unit.
2157 UnusedLocalTypedefNameCandidates
.insert(TD
);
2162 GenerateFixForUnusedDecl(D
, Context
, Hint
);
2165 if (isa
<VarDecl
>(D
) && cast
<VarDecl
>(D
)->isExceptionVariable())
2166 DiagID
= diag::warn_unused_exception_param
;
2167 else if (isa
<LabelDecl
>(D
))
2168 DiagID
= diag::warn_unused_label
;
2170 DiagID
= diag::warn_unused_variable
;
2172 SourceLocation DiagLoc
= D
->getLocation();
2173 DiagReceiver(DiagLoc
, PDiag(DiagID
) << D
<< Hint
<< SourceRange(DiagLoc
));
2176 void Sema::DiagnoseUnusedButSetDecl(const VarDecl
*VD
,
2177 DiagReceiverTy DiagReceiver
) {
2178 // If it's not referenced, it can't be set. If it has the Cleanup attribute,
2179 // it's not really unused.
2180 if (!VD
->isReferenced() || !VD
->getDeclName() || VD
->hasAttr
<CleanupAttr
>())
2183 // In C++, `_` variables behave as if they were maybe_unused
2184 if (VD
->hasAttr
<UnusedAttr
>() || VD
->isPlaceholderVar(getLangOpts()))
2187 const auto *Ty
= VD
->getType().getTypePtr()->getBaseElementTypeUnsafe();
2189 if (Ty
->isReferenceType() || Ty
->isDependentType())
2192 if (const TagType
*TT
= Ty
->getAs
<TagType
>()) {
2193 const TagDecl
*Tag
= TT
->getDecl();
2194 if (Tag
->hasAttr
<UnusedAttr
>())
2196 // In C++, don't warn for record types that don't have WarnUnusedAttr, to
2197 // mimic gcc's behavior.
2198 if (const CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(Tag
)) {
2199 if (!RD
->hasAttr
<WarnUnusedAttr
>())
2204 // Don't warn about __block Objective-C pointer variables, as they might
2205 // be assigned in the block but not used elsewhere for the purpose of lifetime
2207 if (VD
->hasAttr
<BlocksAttr
>() && Ty
->isObjCObjectPointerType())
2210 // Don't warn about Objective-C pointer variables with precise lifetime
2211 // semantics; they can be used to ensure ARC releases the object at a known
2212 // time, which may mean assignment but no other references.
2213 if (VD
->hasAttr
<ObjCPreciseLifetimeAttr
>() && Ty
->isObjCObjectPointerType())
2216 auto iter
= RefsMinusAssignments
.find(VD
);
2217 if (iter
== RefsMinusAssignments
.end())
2220 assert(iter
->getSecond() >= 0 &&
2221 "Found a negative number of references to a VarDecl");
2222 if (iter
->getSecond() != 0)
2224 unsigned DiagID
= isa
<ParmVarDecl
>(VD
) ? diag::warn_unused_but_set_parameter
2225 : diag::warn_unused_but_set_variable
;
2226 DiagReceiver(VD
->getLocation(), PDiag(DiagID
) << VD
);
2229 static void CheckPoppedLabel(LabelDecl
*L
, Sema
&S
,
2230 Sema::DiagReceiverTy DiagReceiver
) {
2231 // Verify that we have no forward references left. If so, there was a goto
2232 // or address of a label taken, but no definition of it. Label fwd
2233 // definitions are indicated with a null substmt which is also not a resolved
2234 // MS inline assembly label name.
2235 bool Diagnose
= false;
2236 if (L
->isMSAsmLabel())
2237 Diagnose
= !L
->isResolvedMSAsmLabel();
2239 Diagnose
= L
->getStmt() == nullptr;
2241 DiagReceiver(L
->getLocation(), S
.PDiag(diag::err_undeclared_label_use
)
2245 void Sema::ActOnPopScope(SourceLocation Loc
, Scope
*S
) {
2248 if (S
->decl_empty()) return;
2249 assert((S
->getFlags() & (Scope::DeclScope
| Scope::TemplateParamScope
)) &&
2250 "Scope shouldn't contain decls!");
2252 /// We visit the decls in non-deterministic order, but we want diagnostics
2253 /// emitted in deterministic order. Collect any diagnostic that may be emitted
2254 /// and sort the diagnostics before emitting them, after we visited all decls.
2257 std::optional
<SourceLocation
> PreviousDeclLoc
;
2258 PartialDiagnostic PD
;
2260 SmallVector
<LocAndDiag
, 16> DeclDiags
;
2261 auto addDiag
= [&DeclDiags
](SourceLocation Loc
, PartialDiagnostic PD
) {
2262 DeclDiags
.push_back(LocAndDiag
{Loc
, std::nullopt
, std::move(PD
)});
2264 auto addDiagWithPrev
= [&DeclDiags
](SourceLocation Loc
,
2265 SourceLocation PreviousDeclLoc
,
2266 PartialDiagnostic PD
) {
2267 DeclDiags
.push_back(LocAndDiag
{Loc
, PreviousDeclLoc
, std::move(PD
)});
2270 for (auto *TmpD
: S
->decls()) {
2271 assert(TmpD
&& "This decl didn't get pushed??");
2273 assert(isa
<NamedDecl
>(TmpD
) && "Decl isn't NamedDecl?");
2274 NamedDecl
*D
= cast
<NamedDecl
>(TmpD
);
2276 // Diagnose unused variables in this scope.
2277 if (!S
->hasUnrecoverableErrorOccurred()) {
2278 DiagnoseUnusedDecl(D
, addDiag
);
2279 if (const auto *RD
= dyn_cast
<RecordDecl
>(D
))
2280 DiagnoseUnusedNestedTypedefs(RD
, addDiag
);
2281 if (VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
2282 DiagnoseUnusedButSetDecl(VD
, addDiag
);
2283 RefsMinusAssignments
.erase(VD
);
2287 if (!D
->getDeclName()) continue;
2289 // If this was a forward reference to a label, verify it was defined.
2290 if (LabelDecl
*LD
= dyn_cast
<LabelDecl
>(D
))
2291 CheckPoppedLabel(LD
, *this, addDiag
);
2293 // Remove this name from our lexical scope, and warn on it if we haven't
2295 IdResolver
.RemoveDecl(D
);
2296 auto ShadowI
= ShadowingDecls
.find(D
);
2297 if (ShadowI
!= ShadowingDecls
.end()) {
2298 if (const auto *FD
= dyn_cast
<FieldDecl
>(ShadowI
->second
)) {
2299 addDiagWithPrev(D
->getLocation(), FD
->getLocation(),
2300 PDiag(diag::warn_ctor_parm_shadows_field
)
2301 << D
<< FD
<< FD
->getParent());
2303 ShadowingDecls
.erase(ShadowI
);
2307 llvm::sort(DeclDiags
,
2308 [](const LocAndDiag
&LHS
, const LocAndDiag
&RHS
) -> bool {
2309 // The particular order for diagnostics is not important, as long
2310 // as the order is deterministic. Using the raw location is going
2311 // to generally be in source order unless there are macro
2312 // expansions involved.
2313 return LHS
.Loc
.getRawEncoding() < RHS
.Loc
.getRawEncoding();
2315 for (const LocAndDiag
&D
: DeclDiags
) {
2317 if (D
.PreviousDeclLoc
)
2318 Diag(*D
.PreviousDeclLoc
, diag::note_previous_declaration
);
2322 /// Look for an Objective-C class in the translation unit.
2324 /// \param Id The name of the Objective-C class we're looking for. If
2325 /// typo-correction fixes this name, the Id will be updated
2326 /// to the fixed name.
2328 /// \param IdLoc The location of the name in the translation unit.
2330 /// \param DoTypoCorrection If true, this routine will attempt typo correction
2331 /// if there is no class with the given name.
2333 /// \returns The declaration of the named Objective-C class, or NULL if the
2334 /// class could not be found.
2335 ObjCInterfaceDecl
*Sema::getObjCInterfaceDecl(IdentifierInfo
*&Id
,
2336 SourceLocation IdLoc
,
2337 bool DoTypoCorrection
) {
2338 // The third "scope" argument is 0 since we aren't enabling lazy built-in
2339 // creation from this context.
2340 NamedDecl
*IDecl
= LookupSingleName(TUScope
, Id
, IdLoc
, LookupOrdinaryName
);
2342 if (!IDecl
&& DoTypoCorrection
) {
2343 // Perform typo correction at the given location, but only if we
2344 // find an Objective-C class name.
2345 DeclFilterCCC
<ObjCInterfaceDecl
> CCC
{};
2346 if (TypoCorrection C
=
2347 CorrectTypo(DeclarationNameInfo(Id
, IdLoc
), LookupOrdinaryName
,
2348 TUScope
, nullptr, CCC
, CTK_ErrorRecovery
)) {
2349 diagnoseTypo(C
, PDiag(diag::err_undef_interface_suggest
) << Id
);
2350 IDecl
= C
.getCorrectionDeclAs
<ObjCInterfaceDecl
>();
2351 Id
= IDecl
->getIdentifier();
2354 ObjCInterfaceDecl
*Def
= dyn_cast_or_null
<ObjCInterfaceDecl
>(IDecl
);
2355 // This routine must always return a class definition, if any.
2356 if (Def
&& Def
->getDefinition())
2357 Def
= Def
->getDefinition();
2361 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
2362 /// from S, where a non-field would be declared. This routine copes
2363 /// with the difference between C and C++ scoping rules in structs and
2364 /// unions. For example, the following code is well-formed in C but
2365 /// ill-formed in C++:
2371 /// void test_S6() {
2376 /// For the declaration of BAR, this routine will return a different
2377 /// scope. The scope S will be the scope of the unnamed enumeration
2378 /// within S6. In C++, this routine will return the scope associated
2379 /// with S6, because the enumeration's scope is a transparent
2380 /// context but structures can contain non-field names. In C, this
2381 /// routine will return the translation unit scope, since the
2382 /// enumeration's scope is a transparent context and structures cannot
2383 /// contain non-field names.
2384 Scope
*Sema::getNonFieldDeclScope(Scope
*S
) {
2385 while (((S
->getFlags() & Scope::DeclScope
) == 0) ||
2386 (S
->getEntity() && S
->getEntity()->isTransparentContext()) ||
2387 (S
->isClassScope() && !getLangOpts().CPlusPlus
))
2392 static StringRef
getHeaderName(Builtin::Context
&BuiltinInfo
, unsigned ID
,
2393 ASTContext::GetBuiltinTypeError Error
) {
2395 case ASTContext::GE_None
:
2397 case ASTContext::GE_Missing_type
:
2398 return BuiltinInfo
.getHeaderName(ID
);
2399 case ASTContext::GE_Missing_stdio
:
2401 case ASTContext::GE_Missing_setjmp
:
2403 case ASTContext::GE_Missing_ucontext
:
2404 return "ucontext.h";
2406 llvm_unreachable("unhandled error kind");
2409 FunctionDecl
*Sema::CreateBuiltin(IdentifierInfo
*II
, QualType Type
,
2410 unsigned ID
, SourceLocation Loc
) {
2411 DeclContext
*Parent
= Context
.getTranslationUnitDecl();
2413 if (getLangOpts().CPlusPlus
) {
2414 LinkageSpecDecl
*CLinkageDecl
= LinkageSpecDecl::Create(
2415 Context
, Parent
, Loc
, Loc
, LinkageSpecLanguageIDs::C
, false);
2416 CLinkageDecl
->setImplicit();
2417 Parent
->addDecl(CLinkageDecl
);
2418 Parent
= CLinkageDecl
;
2421 FunctionDecl
*New
= FunctionDecl::Create(Context
, Parent
, Loc
, Loc
, II
, Type
,
2422 /*TInfo=*/nullptr, SC_Extern
,
2423 getCurFPFeatures().isFPConstrained(),
2424 false, Type
->isFunctionProtoType());
2426 New
->addAttr(BuiltinAttr::CreateImplicit(Context
, ID
));
2428 // Create Decl objects for each parameter, adding them to the
2430 if (const FunctionProtoType
*FT
= dyn_cast
<FunctionProtoType
>(Type
)) {
2431 SmallVector
<ParmVarDecl
*, 16> Params
;
2432 for (unsigned i
= 0, e
= FT
->getNumParams(); i
!= e
; ++i
) {
2433 ParmVarDecl
*parm
= ParmVarDecl::Create(
2434 Context
, New
, SourceLocation(), SourceLocation(), nullptr,
2435 FT
->getParamType(i
), /*TInfo=*/nullptr, SC_None
, nullptr);
2436 parm
->setScopeInfo(0, i
);
2437 Params
.push_back(parm
);
2439 New
->setParams(Params
);
2442 AddKnownFunctionAttributes(New
);
2446 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
2447 /// file scope. lazily create a decl for it. ForRedeclaration is true
2448 /// if we're creating this built-in in anticipation of redeclaring the
2450 NamedDecl
*Sema::LazilyCreateBuiltin(IdentifierInfo
*II
, unsigned ID
,
2451 Scope
*S
, bool ForRedeclaration
,
2452 SourceLocation Loc
) {
2453 LookupNecessaryTypesForBuiltin(S
, ID
);
2455 ASTContext::GetBuiltinTypeError Error
;
2456 QualType R
= Context
.GetBuiltinType(ID
, Error
);
2458 if (!ForRedeclaration
)
2461 // If we have a builtin without an associated type we should not emit a
2462 // warning when we were not able to find a type for it.
2463 if (Error
== ASTContext::GE_Missing_type
||
2464 Context
.BuiltinInfo
.allowTypeMismatch(ID
))
2467 // If we could not find a type for setjmp it is because the jmp_buf type was
2468 // not defined prior to the setjmp declaration.
2469 if (Error
== ASTContext::GE_Missing_setjmp
) {
2470 Diag(Loc
, diag::warn_implicit_decl_no_jmp_buf
)
2471 << Context
.BuiltinInfo
.getName(ID
);
2475 // Generally, we emit a warning that the declaration requires the
2476 // appropriate header.
2477 Diag(Loc
, diag::warn_implicit_decl_requires_sysheader
)
2478 << getHeaderName(Context
.BuiltinInfo
, ID
, Error
)
2479 << Context
.BuiltinInfo
.getName(ID
);
2483 if (!ForRedeclaration
&&
2484 (Context
.BuiltinInfo
.isPredefinedLibFunction(ID
) ||
2485 Context
.BuiltinInfo
.isHeaderDependentFunction(ID
))) {
2486 Diag(Loc
, LangOpts
.C99
? diag::ext_implicit_lib_function_decl_c99
2487 : diag::ext_implicit_lib_function_decl
)
2488 << Context
.BuiltinInfo
.getName(ID
) << R
;
2489 if (const char *Header
= Context
.BuiltinInfo
.getHeaderName(ID
))
2490 Diag(Loc
, diag::note_include_header_or_declare
)
2491 << Header
<< Context
.BuiltinInfo
.getName(ID
);
2497 FunctionDecl
*New
= CreateBuiltin(II
, R
, ID
, Loc
);
2498 RegisterLocallyScopedExternCDecl(New
, S
);
2500 // TUScope is the translation-unit scope to insert this function into.
2501 // FIXME: This is hideous. We need to teach PushOnScopeChains to
2502 // relate Scopes to DeclContexts, and probably eliminate CurContext
2503 // entirely, but we're not there yet.
2504 DeclContext
*SavedContext
= CurContext
;
2505 CurContext
= New
->getDeclContext();
2506 PushOnScopeChains(New
, TUScope
);
2507 CurContext
= SavedContext
;
2511 /// Typedef declarations don't have linkage, but they still denote the same
2512 /// entity if their types are the same.
2513 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2515 static void filterNonConflictingPreviousTypedefDecls(Sema
&S
,
2516 TypedefNameDecl
*Decl
,
2517 LookupResult
&Previous
) {
2518 // This is only interesting when modules are enabled.
2519 if (!S
.getLangOpts().Modules
&& !S
.getLangOpts().ModulesLocalVisibility
)
2522 // Empty sets are uninteresting.
2523 if (Previous
.empty())
2526 LookupResult::Filter Filter
= Previous
.makeFilter();
2527 while (Filter
.hasNext()) {
2528 NamedDecl
*Old
= Filter
.next();
2530 // Non-hidden declarations are never ignored.
2531 if (S
.isVisible(Old
))
2534 // Declarations of the same entity are not ignored, even if they have
2535 // different linkages.
2536 if (auto *OldTD
= dyn_cast
<TypedefNameDecl
>(Old
)) {
2537 if (S
.Context
.hasSameType(OldTD
->getUnderlyingType(),
2538 Decl
->getUnderlyingType()))
2541 // If both declarations give a tag declaration a typedef name for linkage
2542 // purposes, then they declare the same entity.
2543 if (OldTD
->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2544 Decl
->getAnonDeclWithTypedefName())
2554 bool Sema::isIncompatibleTypedef(TypeDecl
*Old
, TypedefNameDecl
*New
) {
2556 if (TypedefNameDecl
*OldTypedef
= dyn_cast
<TypedefNameDecl
>(Old
))
2557 OldType
= OldTypedef
->getUnderlyingType();
2559 OldType
= Context
.getTypeDeclType(Old
);
2560 QualType NewType
= New
->getUnderlyingType();
2562 if (NewType
->isVariablyModifiedType()) {
2563 // Must not redefine a typedef with a variably-modified type.
2564 int Kind
= isa
<TypeAliasDecl
>(Old
) ? 1 : 0;
2565 Diag(New
->getLocation(), diag::err_redefinition_variably_modified_typedef
)
2567 if (Old
->getLocation().isValid())
2568 notePreviousDefinition(Old
, New
->getLocation());
2569 New
->setInvalidDecl();
2573 if (OldType
!= NewType
&&
2574 !OldType
->isDependentType() &&
2575 !NewType
->isDependentType() &&
2576 !Context
.hasSameType(OldType
, NewType
)) {
2577 int Kind
= isa
<TypeAliasDecl
>(Old
) ? 1 : 0;
2578 Diag(New
->getLocation(), diag::err_redefinition_different_typedef
)
2579 << Kind
<< NewType
<< OldType
;
2580 if (Old
->getLocation().isValid())
2581 notePreviousDefinition(Old
, New
->getLocation());
2582 New
->setInvalidDecl();
2588 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2589 /// same name and scope as a previous declaration 'Old'. Figure out
2590 /// how to resolve this situation, merging decls or emitting
2591 /// diagnostics as appropriate. If there was an error, set New to be invalid.
2593 void Sema::MergeTypedefNameDecl(Scope
*S
, TypedefNameDecl
*New
,
2594 LookupResult
&OldDecls
) {
2595 // If the new decl is known invalid already, don't bother doing any
2597 if (New
->isInvalidDecl()) return;
2599 // Allow multiple definitions for ObjC built-in typedefs.
2600 // FIXME: Verify the underlying types are equivalent!
2601 if (getLangOpts().ObjC
) {
2602 const IdentifierInfo
*TypeID
= New
->getIdentifier();
2603 switch (TypeID
->getLength()) {
2607 if (!TypeID
->isStr("id"))
2609 QualType T
= New
->getUnderlyingType();
2610 if (!T
->isPointerType())
2612 if (!T
->isVoidPointerType()) {
2613 QualType PT
= T
->castAs
<PointerType
>()->getPointeeType();
2614 if (!PT
->isStructureType())
2617 Context
.setObjCIdRedefinitionType(T
);
2618 // Install the built-in type for 'id', ignoring the current definition.
2619 New
->setTypeForDecl(Context
.getObjCIdType().getTypePtr());
2623 if (!TypeID
->isStr("Class"))
2625 Context
.setObjCClassRedefinitionType(New
->getUnderlyingType());
2626 // Install the built-in type for 'Class', ignoring the current definition.
2627 New
->setTypeForDecl(Context
.getObjCClassType().getTypePtr());
2630 if (!TypeID
->isStr("SEL"))
2632 Context
.setObjCSelRedefinitionType(New
->getUnderlyingType());
2633 // Install the built-in type for 'SEL', ignoring the current definition.
2634 New
->setTypeForDecl(Context
.getObjCSelType().getTypePtr());
2637 // Fall through - the typedef name was not a builtin type.
2640 // Verify the old decl was also a type.
2641 TypeDecl
*Old
= OldDecls
.getAsSingle
<TypeDecl
>();
2643 Diag(New
->getLocation(), diag::err_redefinition_different_kind
)
2644 << New
->getDeclName();
2646 NamedDecl
*OldD
= OldDecls
.getRepresentativeDecl();
2647 if (OldD
->getLocation().isValid())
2648 notePreviousDefinition(OldD
, New
->getLocation());
2650 return New
->setInvalidDecl();
2653 // If the old declaration is invalid, just give up here.
2654 if (Old
->isInvalidDecl())
2655 return New
->setInvalidDecl();
2657 if (auto *OldTD
= dyn_cast
<TypedefNameDecl
>(Old
)) {
2658 auto *OldTag
= OldTD
->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2659 auto *NewTag
= New
->getAnonDeclWithTypedefName();
2660 NamedDecl
*Hidden
= nullptr;
2661 if (OldTag
&& NewTag
&&
2662 OldTag
->getCanonicalDecl() != NewTag
->getCanonicalDecl() &&
2663 !hasVisibleDefinition(OldTag
, &Hidden
)) {
2664 // There is a definition of this tag, but it is not visible. Use it
2665 // instead of our tag.
2666 New
->setTypeForDecl(OldTD
->getTypeForDecl());
2667 if (OldTD
->isModed())
2668 New
->setModedTypeSourceInfo(OldTD
->getTypeSourceInfo(),
2669 OldTD
->getUnderlyingType());
2671 New
->setTypeSourceInfo(OldTD
->getTypeSourceInfo());
2673 // Make the old tag definition visible.
2674 makeMergedDefinitionVisible(Hidden
);
2676 // If this was an unscoped enumeration, yank all of its enumerators
2677 // out of the scope.
2678 if (isa
<EnumDecl
>(NewTag
)) {
2679 Scope
*EnumScope
= getNonFieldDeclScope(S
);
2680 for (auto *D
: NewTag
->decls()) {
2681 auto *ED
= cast
<EnumConstantDecl
>(D
);
2682 assert(EnumScope
->isDeclScope(ED
));
2683 EnumScope
->RemoveDecl(ED
);
2684 IdResolver
.RemoveDecl(ED
);
2685 ED
->getLexicalDeclContext()->removeDecl(ED
);
2691 // If the typedef types are not identical, reject them in all languages and
2692 // with any extensions enabled.
2693 if (isIncompatibleTypedef(Old
, New
))
2696 // The types match. Link up the redeclaration chain and merge attributes if
2697 // the old declaration was a typedef.
2698 if (TypedefNameDecl
*Typedef
= dyn_cast
<TypedefNameDecl
>(Old
)) {
2699 New
->setPreviousDecl(Typedef
);
2700 mergeDeclAttributes(New
, Old
);
2703 if (getLangOpts().MicrosoftExt
)
2706 if (getLangOpts().CPlusPlus
) {
2707 // C++ [dcl.typedef]p2:
2708 // In a given non-class scope, a typedef specifier can be used to
2709 // redefine the name of any type declared in that scope to refer
2710 // to the type to which it already refers.
2711 if (!isa
<CXXRecordDecl
>(CurContext
))
2714 // C++0x [dcl.typedef]p4:
2715 // In a given class scope, a typedef specifier can be used to redefine
2716 // any class-name declared in that scope that is not also a typedef-name
2717 // to refer to the type to which it already refers.
2719 // This wording came in via DR424, which was a correction to the
2720 // wording in DR56, which accidentally banned code like:
2723 // typedef struct A { } A;
2726 // in the C++03 standard. We implement the C++0x semantics, which
2727 // allow the above but disallow
2734 // since that was the intent of DR56.
2735 if (!isa
<TypedefNameDecl
>(Old
))
2738 Diag(New
->getLocation(), diag::err_redefinition
)
2739 << New
->getDeclName();
2740 notePreviousDefinition(Old
, New
->getLocation());
2741 return New
->setInvalidDecl();
2744 // Modules always permit redefinition of typedefs, as does C11.
2745 if (getLangOpts().Modules
|| getLangOpts().C11
)
2748 // If we have a redefinition of a typedef in C, emit a warning. This warning
2749 // is normally mapped to an error, but can be controlled with
2750 // -Wtypedef-redefinition. If either the original or the redefinition is
2751 // in a system header, don't emit this for compatibility with GCC.
2752 if (getDiagnostics().getSuppressSystemWarnings() &&
2753 // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2754 (Old
->isImplicit() ||
2755 Context
.getSourceManager().isInSystemHeader(Old
->getLocation()) ||
2756 Context
.getSourceManager().isInSystemHeader(New
->getLocation())))
2759 Diag(New
->getLocation(), diag::ext_redefinition_of_typedef
)
2760 << New
->getDeclName();
2761 notePreviousDefinition(Old
, New
->getLocation());
2764 /// DeclhasAttr - returns true if decl Declaration already has the target
2766 static bool DeclHasAttr(const Decl
*D
, const Attr
*A
) {
2767 const OwnershipAttr
*OA
= dyn_cast
<OwnershipAttr
>(A
);
2768 const AnnotateAttr
*Ann
= dyn_cast
<AnnotateAttr
>(A
);
2769 for (const auto *i
: D
->attrs())
2770 if (i
->getKind() == A
->getKind()) {
2772 if (Ann
->getAnnotation() == cast
<AnnotateAttr
>(i
)->getAnnotation())
2776 // FIXME: Don't hardcode this check
2777 if (OA
&& isa
<OwnershipAttr
>(i
))
2778 return OA
->getOwnKind() == cast
<OwnershipAttr
>(i
)->getOwnKind();
2785 static bool isAttributeTargetADefinition(Decl
*D
) {
2786 if (VarDecl
*VD
= dyn_cast
<VarDecl
>(D
))
2787 return VD
->isThisDeclarationADefinition();
2788 if (TagDecl
*TD
= dyn_cast
<TagDecl
>(D
))
2789 return TD
->isCompleteDefinition() || TD
->isBeingDefined();
2793 /// Merge alignment attributes from \p Old to \p New, taking into account the
2794 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2796 /// \return \c true if any attributes were added to \p New.
2797 static bool mergeAlignedAttrs(Sema
&S
, NamedDecl
*New
, Decl
*Old
) {
2798 // Look for alignas attributes on Old, and pick out whichever attribute
2799 // specifies the strictest alignment requirement.
2800 AlignedAttr
*OldAlignasAttr
= nullptr;
2801 AlignedAttr
*OldStrictestAlignAttr
= nullptr;
2802 unsigned OldAlign
= 0;
2803 for (auto *I
: Old
->specific_attrs
<AlignedAttr
>()) {
2804 // FIXME: We have no way of representing inherited dependent alignments
2806 // template<int A, int B> struct alignas(A) X;
2807 // template<int A, int B> struct alignas(B) X {};
2808 // For now, we just ignore any alignas attributes which are not on the
2809 // definition in such a case.
2810 if (I
->isAlignmentDependent())
2816 unsigned Align
= I
->getAlignment(S
.Context
);
2817 if (Align
> OldAlign
) {
2819 OldStrictestAlignAttr
= I
;
2823 // Look for alignas attributes on New.
2824 AlignedAttr
*NewAlignasAttr
= nullptr;
2825 unsigned NewAlign
= 0;
2826 for (auto *I
: New
->specific_attrs
<AlignedAttr
>()) {
2827 if (I
->isAlignmentDependent())
2833 unsigned Align
= I
->getAlignment(S
.Context
);
2834 if (Align
> NewAlign
)
2838 if (OldAlignasAttr
&& NewAlignasAttr
&& OldAlign
!= NewAlign
) {
2839 // Both declarations have 'alignas' attributes. We require them to match.
2840 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2841 // fall short. (If two declarations both have alignas, they must both match
2842 // every definition, and so must match each other if there is a definition.)
2844 // If either declaration only contains 'alignas(0)' specifiers, then it
2845 // specifies the natural alignment for the type.
2846 if (OldAlign
== 0 || NewAlign
== 0) {
2848 if (ValueDecl
*VD
= dyn_cast
<ValueDecl
>(New
))
2851 Ty
= S
.Context
.getTagDeclType(cast
<TagDecl
>(New
));
2854 OldAlign
= S
.Context
.getTypeAlign(Ty
);
2856 NewAlign
= S
.Context
.getTypeAlign(Ty
);
2859 if (OldAlign
!= NewAlign
) {
2860 S
.Diag(NewAlignasAttr
->getLocation(), diag::err_alignas_mismatch
)
2861 << (unsigned)S
.Context
.toCharUnitsFromBits(OldAlign
).getQuantity()
2862 << (unsigned)S
.Context
.toCharUnitsFromBits(NewAlign
).getQuantity();
2863 S
.Diag(OldAlignasAttr
->getLocation(), diag::note_previous_declaration
);
2867 if (OldAlignasAttr
&& !NewAlignasAttr
&& isAttributeTargetADefinition(New
)) {
2868 // C++11 [dcl.align]p6:
2869 // if any declaration of an entity has an alignment-specifier,
2870 // every defining declaration of that entity shall specify an
2871 // equivalent alignment.
2873 // If the definition of an object does not have an alignment
2874 // specifier, any other declaration of that object shall also
2875 // have no alignment specifier.
2876 S
.Diag(New
->getLocation(), diag::err_alignas_missing_on_definition
)
2878 S
.Diag(OldAlignasAttr
->getLocation(), diag::note_alignas_on_declaration
)
2882 bool AnyAdded
= false;
2884 // Ensure we have an attribute representing the strictest alignment.
2885 if (OldAlign
> NewAlign
) {
2886 AlignedAttr
*Clone
= OldStrictestAlignAttr
->clone(S
.Context
);
2887 Clone
->setInherited(true);
2888 New
->addAttr(Clone
);
2892 // Ensure we have an alignas attribute if the old declaration had one.
2893 if (OldAlignasAttr
&& !NewAlignasAttr
&&
2894 !(AnyAdded
&& OldStrictestAlignAttr
->isAlignas())) {
2895 AlignedAttr
*Clone
= OldAlignasAttr
->clone(S
.Context
);
2896 Clone
->setInherited(true);
2897 New
->addAttr(Clone
);
2904 #define WANT_DECL_MERGE_LOGIC
2905 #include "clang/Sema/AttrParsedAttrImpl.inc"
2906 #undef WANT_DECL_MERGE_LOGIC
2908 static bool mergeDeclAttribute(Sema
&S
, NamedDecl
*D
,
2909 const InheritableAttr
*Attr
,
2910 Sema::AvailabilityMergeKind AMK
) {
2911 // Diagnose any mutual exclusions between the attribute that we want to add
2912 // and attributes that already exist on the declaration.
2913 if (!DiagnoseMutualExclusions(S
, D
, Attr
))
2916 // This function copies an attribute Attr from a previous declaration to the
2917 // new declaration D if the new declaration doesn't itself have that attribute
2918 // yet or if that attribute allows duplicates.
2919 // If you're adding a new attribute that requires logic different from
2920 // "use explicit attribute on decl if present, else use attribute from
2921 // previous decl", for example if the attribute needs to be consistent
2922 // between redeclarations, you need to call a custom merge function here.
2923 InheritableAttr
*NewAttr
= nullptr;
2924 if (const auto *AA
= dyn_cast
<AvailabilityAttr
>(Attr
))
2925 NewAttr
= S
.mergeAvailabilityAttr(
2926 D
, *AA
, AA
->getPlatform(), AA
->isImplicit(), AA
->getIntroduced(),
2927 AA
->getDeprecated(), AA
->getObsoleted(), AA
->getUnavailable(),
2928 AA
->getMessage(), AA
->getStrict(), AA
->getReplacement(), AMK
,
2930 else if (const auto *VA
= dyn_cast
<VisibilityAttr
>(Attr
))
2931 NewAttr
= S
.mergeVisibilityAttr(D
, *VA
, VA
->getVisibility());
2932 else if (const auto *VA
= dyn_cast
<TypeVisibilityAttr
>(Attr
))
2933 NewAttr
= S
.mergeTypeVisibilityAttr(D
, *VA
, VA
->getVisibility());
2934 else if (const auto *ImportA
= dyn_cast
<DLLImportAttr
>(Attr
))
2935 NewAttr
= S
.mergeDLLImportAttr(D
, *ImportA
);
2936 else if (const auto *ExportA
= dyn_cast
<DLLExportAttr
>(Attr
))
2937 NewAttr
= S
.mergeDLLExportAttr(D
, *ExportA
);
2938 else if (const auto *EA
= dyn_cast
<ErrorAttr
>(Attr
))
2939 NewAttr
= S
.mergeErrorAttr(D
, *EA
, EA
->getUserDiagnostic());
2940 else if (const auto *FA
= dyn_cast
<FormatAttr
>(Attr
))
2941 NewAttr
= S
.mergeFormatAttr(D
, *FA
, FA
->getType(), FA
->getFormatIdx(),
2943 else if (const auto *SA
= dyn_cast
<SectionAttr
>(Attr
))
2944 NewAttr
= S
.mergeSectionAttr(D
, *SA
, SA
->getName());
2945 else if (const auto *CSA
= dyn_cast
<CodeSegAttr
>(Attr
))
2946 NewAttr
= S
.mergeCodeSegAttr(D
, *CSA
, CSA
->getName());
2947 else if (const auto *IA
= dyn_cast
<MSInheritanceAttr
>(Attr
))
2948 NewAttr
= S
.mergeMSInheritanceAttr(D
, *IA
, IA
->getBestCase(),
2949 IA
->getInheritanceModel());
2950 else if (const auto *AA
= dyn_cast
<AlwaysInlineAttr
>(Attr
))
2951 NewAttr
= S
.mergeAlwaysInlineAttr(D
, *AA
,
2952 &S
.Context
.Idents
.get(AA
->getSpelling()));
2953 else if (S
.getLangOpts().CUDA
&& isa
<FunctionDecl
>(D
) &&
2954 (isa
<CUDAHostAttr
>(Attr
) || isa
<CUDADeviceAttr
>(Attr
) ||
2955 isa
<CUDAGlobalAttr
>(Attr
))) {
2956 // CUDA target attributes are part of function signature for
2957 // overloading purposes and must not be merged.
2959 } else if (const auto *MA
= dyn_cast
<MinSizeAttr
>(Attr
))
2960 NewAttr
= S
.mergeMinSizeAttr(D
, *MA
);
2961 else if (const auto *SNA
= dyn_cast
<SwiftNameAttr
>(Attr
))
2962 NewAttr
= S
.mergeSwiftNameAttr(D
, *SNA
, SNA
->getName());
2963 else if (const auto *OA
= dyn_cast
<OptimizeNoneAttr
>(Attr
))
2964 NewAttr
= S
.mergeOptimizeNoneAttr(D
, *OA
);
2965 else if (const auto *InternalLinkageA
= dyn_cast
<InternalLinkageAttr
>(Attr
))
2966 NewAttr
= S
.mergeInternalLinkageAttr(D
, *InternalLinkageA
);
2967 else if (isa
<AlignedAttr
>(Attr
))
2968 // AlignedAttrs are handled separately, because we need to handle all
2969 // such attributes on a declaration at the same time.
2971 else if ((isa
<DeprecatedAttr
>(Attr
) || isa
<UnavailableAttr
>(Attr
)) &&
2972 (AMK
== Sema::AMK_Override
||
2973 AMK
== Sema::AMK_ProtocolImplementation
||
2974 AMK
== Sema::AMK_OptionalProtocolImplementation
))
2976 else if (const auto *UA
= dyn_cast
<UuidAttr
>(Attr
))
2977 NewAttr
= S
.mergeUuidAttr(D
, *UA
, UA
->getGuid(), UA
->getGuidDecl());
2978 else if (const auto *IMA
= dyn_cast
<WebAssemblyImportModuleAttr
>(Attr
))
2979 NewAttr
= S
.mergeImportModuleAttr(D
, *IMA
);
2980 else if (const auto *INA
= dyn_cast
<WebAssemblyImportNameAttr
>(Attr
))
2981 NewAttr
= S
.mergeImportNameAttr(D
, *INA
);
2982 else if (const auto *TCBA
= dyn_cast
<EnforceTCBAttr
>(Attr
))
2983 NewAttr
= S
.mergeEnforceTCBAttr(D
, *TCBA
);
2984 else if (const auto *TCBLA
= dyn_cast
<EnforceTCBLeafAttr
>(Attr
))
2985 NewAttr
= S
.mergeEnforceTCBLeafAttr(D
, *TCBLA
);
2986 else if (const auto *BTFA
= dyn_cast
<BTFDeclTagAttr
>(Attr
))
2987 NewAttr
= S
.mergeBTFDeclTagAttr(D
, *BTFA
);
2988 else if (const auto *NT
= dyn_cast
<HLSLNumThreadsAttr
>(Attr
))
2990 S
.mergeHLSLNumThreadsAttr(D
, *NT
, NT
->getX(), NT
->getY(), NT
->getZ());
2991 else if (const auto *SA
= dyn_cast
<HLSLShaderAttr
>(Attr
))
2992 NewAttr
= S
.mergeHLSLShaderAttr(D
, *SA
, SA
->getType());
2993 else if (Attr
->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D
, Attr
))
2994 NewAttr
= cast
<InheritableAttr
>(Attr
->clone(S
.Context
));
2997 NewAttr
->setInherited(true);
2998 D
->addAttr(NewAttr
);
2999 if (isa
<MSInheritanceAttr
>(NewAttr
))
3000 S
.Consumer
.AssignInheritanceModel(cast
<CXXRecordDecl
>(D
));
3007 static const NamedDecl
*getDefinition(const Decl
*D
) {
3008 if (const TagDecl
*TD
= dyn_cast
<TagDecl
>(D
))
3009 return TD
->getDefinition();
3010 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
3011 const VarDecl
*Def
= VD
->getDefinition();
3014 return VD
->getActingDefinition();
3016 if (const FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
3017 const FunctionDecl
*Def
= nullptr;
3018 if (FD
->isDefined(Def
, true))
3024 static bool hasAttribute(const Decl
*D
, attr::Kind Kind
) {
3025 for (const auto *Attribute
: D
->attrs())
3026 if (Attribute
->getKind() == Kind
)
3031 /// checkNewAttributesAfterDef - If we already have a definition, check that
3032 /// there are no new attributes in this declaration.
3033 static void checkNewAttributesAfterDef(Sema
&S
, Decl
*New
, const Decl
*Old
) {
3034 if (!New
->hasAttrs())
3037 const NamedDecl
*Def
= getDefinition(Old
);
3038 if (!Def
|| Def
== New
)
3041 AttrVec
&NewAttributes
= New
->getAttrs();
3042 for (unsigned I
= 0, E
= NewAttributes
.size(); I
!= E
;) {
3043 const Attr
*NewAttribute
= NewAttributes
[I
];
3045 if (isa
<AliasAttr
>(NewAttribute
) || isa
<IFuncAttr
>(NewAttribute
)) {
3046 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(New
)) {
3047 Sema::SkipBodyInfo SkipBody
;
3048 S
.CheckForFunctionRedefinition(FD
, cast
<FunctionDecl
>(Def
), &SkipBody
);
3050 // If we're skipping this definition, drop the "alias" attribute.
3051 if (SkipBody
.ShouldSkip
) {
3052 NewAttributes
.erase(NewAttributes
.begin() + I
);
3057 VarDecl
*VD
= cast
<VarDecl
>(New
);
3058 unsigned Diag
= cast
<VarDecl
>(Def
)->isThisDeclarationADefinition() ==
3059 VarDecl::TentativeDefinition
3060 ? diag::err_alias_after_tentative
3061 : diag::err_redefinition
;
3062 S
.Diag(VD
->getLocation(), Diag
) << VD
->getDeclName();
3063 if (Diag
== diag::err_redefinition
)
3064 S
.notePreviousDefinition(Def
, VD
->getLocation());
3066 S
.Diag(Def
->getLocation(), diag::note_previous_definition
);
3067 VD
->setInvalidDecl();
3073 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(Def
)) {
3074 // Tentative definitions are only interesting for the alias check above.
3075 if (VD
->isThisDeclarationADefinition() != VarDecl::Definition
) {
3081 if (hasAttribute(Def
, NewAttribute
->getKind())) {
3083 continue; // regular attr merging will take care of validating this.
3086 if (isa
<C11NoReturnAttr
>(NewAttribute
)) {
3087 // C's _Noreturn is allowed to be added to a function after it is defined.
3090 } else if (isa
<UuidAttr
>(NewAttribute
)) {
3091 // msvc will allow a subsequent definition to add an uuid to a class
3094 } else if (const AlignedAttr
*AA
= dyn_cast
<AlignedAttr
>(NewAttribute
)) {
3095 if (AA
->isAlignas()) {
3096 // C++11 [dcl.align]p6:
3097 // if any declaration of an entity has an alignment-specifier,
3098 // every defining declaration of that entity shall specify an
3099 // equivalent alignment.
3101 // If the definition of an object does not have an alignment
3102 // specifier, any other declaration of that object shall also
3103 // have no alignment specifier.
3104 S
.Diag(Def
->getLocation(), diag::err_alignas_missing_on_definition
)
3106 S
.Diag(NewAttribute
->getLocation(), diag::note_alignas_on_declaration
)
3108 NewAttributes
.erase(NewAttributes
.begin() + I
);
3112 } else if (isa
<LoaderUninitializedAttr
>(NewAttribute
)) {
3113 // If there is a C definition followed by a redeclaration with this
3114 // attribute then there are two different definitions. In C++, prefer the
3115 // standard diagnostics.
3116 if (!S
.getLangOpts().CPlusPlus
) {
3117 S
.Diag(NewAttribute
->getLocation(),
3118 diag::err_loader_uninitialized_redeclaration
);
3119 S
.Diag(Def
->getLocation(), diag::note_previous_definition
);
3120 NewAttributes
.erase(NewAttributes
.begin() + I
);
3124 } else if (isa
<SelectAnyAttr
>(NewAttribute
) &&
3125 cast
<VarDecl
>(New
)->isInline() &&
3126 !cast
<VarDecl
>(New
)->isInlineSpecified()) {
3127 // Don't warn about applying selectany to implicitly inline variables.
3128 // Older compilers and language modes would require the use of selectany
3129 // to make such variables inline, and it would have no effect if we
3133 } else if (isa
<OMPDeclareVariantAttr
>(NewAttribute
)) {
3134 // We allow to add OMP[Begin]DeclareVariantAttr to be added to
3135 // declarations after definitions.
3140 S
.Diag(NewAttribute
->getLocation(),
3141 diag::warn_attribute_precede_definition
);
3142 S
.Diag(Def
->getLocation(), diag::note_previous_definition
);
3143 NewAttributes
.erase(NewAttributes
.begin() + I
);
3148 static void diagnoseMissingConstinit(Sema
&S
, const VarDecl
*InitDecl
,
3149 const ConstInitAttr
*CIAttr
,
3150 bool AttrBeforeInit
) {
3151 SourceLocation InsertLoc
= InitDecl
->getInnerLocStart();
3153 // Figure out a good way to write this specifier on the old declaration.
3154 // FIXME: We should just use the spelling of CIAttr, but we don't preserve
3155 // enough of the attribute list spelling information to extract that without
3157 std::string SuitableSpelling
;
3158 if (S
.getLangOpts().CPlusPlus20
)
3159 SuitableSpelling
= std::string(
3160 S
.PP
.getLastMacroWithSpelling(InsertLoc
, {tok::kw_constinit
}));
3161 if (SuitableSpelling
.empty() && S
.getLangOpts().CPlusPlus11
)
3162 SuitableSpelling
= std::string(S
.PP
.getLastMacroWithSpelling(
3163 InsertLoc
, {tok::l_square
, tok::l_square
,
3164 S
.PP
.getIdentifierInfo("clang"), tok::coloncolon
,
3165 S
.PP
.getIdentifierInfo("require_constant_initialization"),
3166 tok::r_square
, tok::r_square
}));
3167 if (SuitableSpelling
.empty())
3168 SuitableSpelling
= std::string(S
.PP
.getLastMacroWithSpelling(
3169 InsertLoc
, {tok::kw___attribute
, tok::l_paren
, tok::r_paren
,
3170 S
.PP
.getIdentifierInfo("require_constant_initialization"),
3171 tok::r_paren
, tok::r_paren
}));
3172 if (SuitableSpelling
.empty() && S
.getLangOpts().CPlusPlus20
)
3173 SuitableSpelling
= "constinit";
3174 if (SuitableSpelling
.empty() && S
.getLangOpts().CPlusPlus11
)
3175 SuitableSpelling
= "[[clang::require_constant_initialization]]";
3176 if (SuitableSpelling
.empty())
3177 SuitableSpelling
= "__attribute__((require_constant_initialization))";
3178 SuitableSpelling
+= " ";
3180 if (AttrBeforeInit
) {
3181 // extern constinit int a;
3182 // int a = 0; // error (missing 'constinit'), accepted as extension
3183 assert(CIAttr
->isConstinit() && "should not diagnose this for attribute");
3184 S
.Diag(InitDecl
->getLocation(), diag::ext_constinit_missing
)
3185 << InitDecl
<< FixItHint::CreateInsertion(InsertLoc
, SuitableSpelling
);
3186 S
.Diag(CIAttr
->getLocation(), diag::note_constinit_specified_here
);
3189 // constinit extern int a; // error (missing 'constinit')
3190 S
.Diag(CIAttr
->getLocation(),
3191 CIAttr
->isConstinit() ? diag::err_constinit_added_too_late
3192 : diag::warn_require_const_init_added_too_late
)
3193 << FixItHint::CreateRemoval(SourceRange(CIAttr
->getLocation()));
3194 S
.Diag(InitDecl
->getLocation(), diag::note_constinit_missing_here
)
3195 << CIAttr
->isConstinit()
3196 << FixItHint::CreateInsertion(InsertLoc
, SuitableSpelling
);
3200 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
3201 void Sema::mergeDeclAttributes(NamedDecl
*New
, Decl
*Old
,
3202 AvailabilityMergeKind AMK
) {
3203 if (UsedAttr
*OldAttr
= Old
->getMostRecentDecl()->getAttr
<UsedAttr
>()) {
3204 UsedAttr
*NewAttr
= OldAttr
->clone(Context
);
3205 NewAttr
->setInherited(true);
3206 New
->addAttr(NewAttr
);
3208 if (RetainAttr
*OldAttr
= Old
->getMostRecentDecl()->getAttr
<RetainAttr
>()) {
3209 RetainAttr
*NewAttr
= OldAttr
->clone(Context
);
3210 NewAttr
->setInherited(true);
3211 New
->addAttr(NewAttr
);
3214 if (!Old
->hasAttrs() && !New
->hasAttrs())
3217 // [dcl.constinit]p1:
3218 // If the [constinit] specifier is applied to any declaration of a
3219 // variable, it shall be applied to the initializing declaration.
3220 const auto *OldConstInit
= Old
->getAttr
<ConstInitAttr
>();
3221 const auto *NewConstInit
= New
->getAttr
<ConstInitAttr
>();
3222 if (bool(OldConstInit
) != bool(NewConstInit
)) {
3223 const auto *OldVD
= cast
<VarDecl
>(Old
);
3224 auto *NewVD
= cast
<VarDecl
>(New
);
3226 // Find the initializing declaration. Note that we might not have linked
3227 // the new declaration into the redeclaration chain yet.
3228 const VarDecl
*InitDecl
= OldVD
->getInitializingDeclaration();
3230 (NewVD
->hasInit() || NewVD
->isThisDeclarationADefinition()))
3233 if (InitDecl
== NewVD
) {
3234 // This is the initializing declaration. If it would inherit 'constinit',
3235 // that's ill-formed. (Note that we do not apply this to the attribute
3237 if (OldConstInit
&& OldConstInit
->isConstinit())
3238 diagnoseMissingConstinit(*this, NewVD
, OldConstInit
,
3239 /*AttrBeforeInit=*/true);
3240 } else if (NewConstInit
) {
3241 // This is the first time we've been told that this declaration should
3242 // have a constant initializer. If we already saw the initializing
3243 // declaration, this is too late.
3244 if (InitDecl
&& InitDecl
!= NewVD
) {
3245 diagnoseMissingConstinit(*this, InitDecl
, NewConstInit
,
3246 /*AttrBeforeInit=*/false);
3247 NewVD
->dropAttr
<ConstInitAttr
>();
3252 // Attributes declared post-definition are currently ignored.
3253 checkNewAttributesAfterDef(*this, New
, Old
);
3255 if (AsmLabelAttr
*NewA
= New
->getAttr
<AsmLabelAttr
>()) {
3256 if (AsmLabelAttr
*OldA
= Old
->getAttr
<AsmLabelAttr
>()) {
3257 if (!OldA
->isEquivalent(NewA
)) {
3258 // This redeclaration changes __asm__ label.
3259 Diag(New
->getLocation(), diag::err_different_asm_label
);
3260 Diag(OldA
->getLocation(), diag::note_previous_declaration
);
3262 } else if (Old
->isUsed()) {
3263 // This redeclaration adds an __asm__ label to a declaration that has
3264 // already been ODR-used.
3265 Diag(New
->getLocation(), diag::err_late_asm_label_name
)
3266 << isa
<FunctionDecl
>(Old
) << New
->getAttr
<AsmLabelAttr
>()->getRange();
3270 // Re-declaration cannot add abi_tag's.
3271 if (const auto *NewAbiTagAttr
= New
->getAttr
<AbiTagAttr
>()) {
3272 if (const auto *OldAbiTagAttr
= Old
->getAttr
<AbiTagAttr
>()) {
3273 for (const auto &NewTag
: NewAbiTagAttr
->tags()) {
3274 if (!llvm::is_contained(OldAbiTagAttr
->tags(), NewTag
)) {
3275 Diag(NewAbiTagAttr
->getLocation(),
3276 diag::err_new_abi_tag_on_redeclaration
)
3278 Diag(OldAbiTagAttr
->getLocation(), diag::note_previous_declaration
);
3282 Diag(NewAbiTagAttr
->getLocation(), diag::err_abi_tag_on_redeclaration
);
3283 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3287 // This redeclaration adds a section attribute.
3288 if (New
->hasAttr
<SectionAttr
>() && !Old
->hasAttr
<SectionAttr
>()) {
3289 if (auto *VD
= dyn_cast
<VarDecl
>(New
)) {
3290 if (VD
->isThisDeclarationADefinition() == VarDecl::DeclarationOnly
) {
3291 Diag(New
->getLocation(), diag::warn_attribute_section_on_redeclaration
);
3292 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3297 // Redeclaration adds code-seg attribute.
3298 const auto *NewCSA
= New
->getAttr
<CodeSegAttr
>();
3299 if (NewCSA
&& !Old
->hasAttr
<CodeSegAttr
>() &&
3300 !NewCSA
->isImplicit() && isa
<CXXMethodDecl
>(New
)) {
3301 Diag(New
->getLocation(), diag::warn_mismatched_section
)
3303 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3306 if (!Old
->hasAttrs())
3309 bool foundAny
= New
->hasAttrs();
3311 // Ensure that any moving of objects within the allocated map is done before
3313 if (!foundAny
) New
->setAttrs(AttrVec());
3315 for (auto *I
: Old
->specific_attrs
<InheritableAttr
>()) {
3316 // Ignore deprecated/unavailable/availability attributes if requested.
3317 AvailabilityMergeKind LocalAMK
= AMK_None
;
3318 if (isa
<DeprecatedAttr
>(I
) ||
3319 isa
<UnavailableAttr
>(I
) ||
3320 isa
<AvailabilityAttr
>(I
)) {
3325 case AMK_Redeclaration
:
3327 case AMK_ProtocolImplementation
:
3328 case AMK_OptionalProtocolImplementation
:
3335 if (isa
<UsedAttr
>(I
) || isa
<RetainAttr
>(I
))
3338 if (mergeDeclAttribute(*this, New
, I
, LocalAMK
))
3342 if (mergeAlignedAttrs(*this, New
, Old
))
3345 if (!foundAny
) New
->dropAttrs();
3348 /// mergeParamDeclAttributes - Copy attributes from the old parameter
3350 static void mergeParamDeclAttributes(ParmVarDecl
*newDecl
,
3351 const ParmVarDecl
*oldDecl
,
3353 // C++11 [dcl.attr.depend]p2:
3354 // The first declaration of a function shall specify the
3355 // carries_dependency attribute for its declarator-id if any declaration
3356 // of the function specifies the carries_dependency attribute.
3357 const CarriesDependencyAttr
*CDA
= newDecl
->getAttr
<CarriesDependencyAttr
>();
3358 if (CDA
&& !oldDecl
->hasAttr
<CarriesDependencyAttr
>()) {
3359 S
.Diag(CDA
->getLocation(),
3360 diag::err_carries_dependency_missing_on_first_decl
) << 1/*Param*/;
3361 // Find the first declaration of the parameter.
3362 // FIXME: Should we build redeclaration chains for function parameters?
3363 const FunctionDecl
*FirstFD
=
3364 cast
<FunctionDecl
>(oldDecl
->getDeclContext())->getFirstDecl();
3365 const ParmVarDecl
*FirstVD
=
3366 FirstFD
->getParamDecl(oldDecl
->getFunctionScopeIndex());
3367 S
.Diag(FirstVD
->getLocation(),
3368 diag::note_carries_dependency_missing_first_decl
) << 1/*Param*/;
3371 if (!oldDecl
->hasAttrs())
3374 bool foundAny
= newDecl
->hasAttrs();
3376 // Ensure that any moving of objects within the allocated map is
3377 // done before we process them.
3378 if (!foundAny
) newDecl
->setAttrs(AttrVec());
3380 for (const auto *I
: oldDecl
->specific_attrs
<InheritableParamAttr
>()) {
3381 if (!DeclHasAttr(newDecl
, I
)) {
3382 InheritableAttr
*newAttr
=
3383 cast
<InheritableParamAttr
>(I
->clone(S
.Context
));
3384 newAttr
->setInherited(true);
3385 newDecl
->addAttr(newAttr
);
3390 if (!foundAny
) newDecl
->dropAttrs();
3393 static bool EquivalentArrayTypes(QualType Old
, QualType New
,
3394 const ASTContext
&Ctx
) {
3396 auto NoSizeInfo
= [&Ctx
](QualType Ty
) {
3397 if (Ty
->isIncompleteArrayType() || Ty
->isPointerType())
3399 if (const auto *VAT
= Ctx
.getAsVariableArrayType(Ty
))
3400 return VAT
->getSizeModifier() == ArraySizeModifier::Star
;
3404 // `type[]` is equivalent to `type *` and `type[*]`.
3405 if (NoSizeInfo(Old
) && NoSizeInfo(New
))
3408 // Don't try to compare VLA sizes, unless one of them has the star modifier.
3409 if (Old
->isVariableArrayType() && New
->isVariableArrayType()) {
3410 const auto *OldVAT
= Ctx
.getAsVariableArrayType(Old
);
3411 const auto *NewVAT
= Ctx
.getAsVariableArrayType(New
);
3412 if ((OldVAT
->getSizeModifier() == ArraySizeModifier::Star
) ^
3413 (NewVAT
->getSizeModifier() == ArraySizeModifier::Star
))
3418 // Only compare size, ignore Size modifiers and CVR.
3419 if (Old
->isConstantArrayType() && New
->isConstantArrayType()) {
3420 return Ctx
.getAsConstantArrayType(Old
)->getSize() ==
3421 Ctx
.getAsConstantArrayType(New
)->getSize();
3424 // Don't try to compare dependent sized array
3425 if (Old
->isDependentSizedArrayType() && New
->isDependentSizedArrayType()) {
3432 static void mergeParamDeclTypes(ParmVarDecl
*NewParam
,
3433 const ParmVarDecl
*OldParam
,
3435 if (auto Oldnullability
= OldParam
->getType()->getNullability()) {
3436 if (auto Newnullability
= NewParam
->getType()->getNullability()) {
3437 if (*Oldnullability
!= *Newnullability
) {
3438 S
.Diag(NewParam
->getLocation(), diag::warn_mismatched_nullability_attr
)
3439 << DiagNullabilityKind(
3441 ((NewParam
->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability
)
3443 << DiagNullabilityKind(
3445 ((OldParam
->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability
)
3447 S
.Diag(OldParam
->getLocation(), diag::note_previous_declaration
);
3450 QualType NewT
= NewParam
->getType();
3451 NewT
= S
.Context
.getAttributedType(
3452 AttributedType::getNullabilityAttrKind(*Oldnullability
),
3454 NewParam
->setType(NewT
);
3457 const auto *OldParamDT
= dyn_cast
<DecayedType
>(OldParam
->getType());
3458 const auto *NewParamDT
= dyn_cast
<DecayedType
>(NewParam
->getType());
3459 if (OldParamDT
&& NewParamDT
&&
3460 OldParamDT
->getPointeeType() == NewParamDT
->getPointeeType()) {
3461 QualType OldParamOT
= OldParamDT
->getOriginalType();
3462 QualType NewParamOT
= NewParamDT
->getOriginalType();
3463 if (!EquivalentArrayTypes(OldParamOT
, NewParamOT
, S
.getASTContext())) {
3464 S
.Diag(NewParam
->getLocation(), diag::warn_inconsistent_array_form
)
3465 << NewParam
<< NewParamOT
;
3466 S
.Diag(OldParam
->getLocation(), diag::note_previous_declaration_as
)
3474 /// Used in MergeFunctionDecl to keep track of function parameters in
3476 struct GNUCompatibleParamWarning
{
3477 ParmVarDecl
*OldParm
;
3478 ParmVarDecl
*NewParm
;
3479 QualType PromotedType
;
3482 } // end anonymous namespace
3484 // Determine whether the previous declaration was a definition, implicit
3485 // declaration, or a declaration.
3486 template <typename T
>
3487 static std::pair
<diag::kind
, SourceLocation
>
3488 getNoteDiagForInvalidRedeclaration(const T
*Old
, const T
*New
) {
3489 diag::kind PrevDiag
;
3490 SourceLocation OldLocation
= Old
->getLocation();
3491 if (Old
->isThisDeclarationADefinition())
3492 PrevDiag
= diag::note_previous_definition
;
3493 else if (Old
->isImplicit()) {
3494 PrevDiag
= diag::note_previous_implicit_declaration
;
3495 if (const auto *FD
= dyn_cast
<FunctionDecl
>(Old
)) {
3496 if (FD
->getBuiltinID())
3497 PrevDiag
= diag::note_previous_builtin_declaration
;
3499 if (OldLocation
.isInvalid())
3500 OldLocation
= New
->getLocation();
3502 PrevDiag
= diag::note_previous_declaration
;
3503 return std::make_pair(PrevDiag
, OldLocation
);
3506 /// canRedefineFunction - checks if a function can be redefined. Currently,
3507 /// only extern inline functions can be redefined, and even then only in
3509 static bool canRedefineFunction(const FunctionDecl
*FD
,
3510 const LangOptions
& LangOpts
) {
3511 return ((FD
->hasAttr
<GNUInlineAttr
>() || LangOpts
.GNUInline
) &&
3512 !LangOpts
.CPlusPlus
&&
3513 FD
->isInlineSpecified() &&
3514 FD
->getStorageClass() == SC_Extern
);
3517 const AttributedType
*Sema::getCallingConvAttributedType(QualType T
) const {
3518 const AttributedType
*AT
= T
->getAs
<AttributedType
>();
3519 while (AT
&& !AT
->isCallingConv())
3520 AT
= AT
->getModifiedType()->getAs
<AttributedType
>();
3524 template <typename T
>
3525 static bool haveIncompatibleLanguageLinkages(const T
*Old
, const T
*New
) {
3526 const DeclContext
*DC
= Old
->getDeclContext();
3530 LanguageLinkage OldLinkage
= Old
->getLanguageLinkage();
3531 if (OldLinkage
== CXXLanguageLinkage
&& New
->isInExternCContext())
3533 if (OldLinkage
== CLanguageLinkage
&& New
->isInExternCXXContext())
3538 template<typename T
> static bool isExternC(T
*D
) { return D
->isExternC(); }
3539 static bool isExternC(VarTemplateDecl
*) { return false; }
3540 static bool isExternC(FunctionTemplateDecl
*) { return false; }
3542 /// Check whether a redeclaration of an entity introduced by a
3543 /// using-declaration is valid, given that we know it's not an overload
3544 /// (nor a hidden tag declaration).
3545 template<typename ExpectedDecl
>
3546 static bool checkUsingShadowRedecl(Sema
&S
, UsingShadowDecl
*OldS
,
3547 ExpectedDecl
*New
) {
3548 // C++11 [basic.scope.declarative]p4:
3549 // Given a set of declarations in a single declarative region, each of
3550 // which specifies the same unqualified name,
3551 // -- they shall all refer to the same entity, or all refer to functions
3552 // and function templates; or
3553 // -- exactly one declaration shall declare a class name or enumeration
3554 // name that is not a typedef name and the other declarations shall all
3555 // refer to the same variable or enumerator, or all refer to functions
3556 // and function templates; in this case the class name or enumeration
3557 // name is hidden (3.3.10).
3559 // C++11 [namespace.udecl]p14:
3560 // If a function declaration in namespace scope or block scope has the
3561 // same name and the same parameter-type-list as a function introduced
3562 // by a using-declaration, and the declarations do not declare the same
3563 // function, the program is ill-formed.
3565 auto *Old
= dyn_cast
<ExpectedDecl
>(OldS
->getTargetDecl());
3567 !Old
->getDeclContext()->getRedeclContext()->Equals(
3568 New
->getDeclContext()->getRedeclContext()) &&
3569 !(isExternC(Old
) && isExternC(New
)))
3573 S
.Diag(New
->getLocation(), diag::err_using_decl_conflict_reverse
);
3574 S
.Diag(OldS
->getTargetDecl()->getLocation(), diag::note_using_decl_target
);
3575 S
.Diag(OldS
->getIntroducer()->getLocation(), diag::note_using_decl
) << 0;
3581 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl
*A
,
3582 const FunctionDecl
*B
) {
3583 assert(A
->getNumParams() == B
->getNumParams());
3585 auto AttrEq
= [](const ParmVarDecl
*A
, const ParmVarDecl
*B
) {
3586 const auto *AttrA
= A
->getAttr
<PassObjectSizeAttr
>();
3587 const auto *AttrB
= B
->getAttr
<PassObjectSizeAttr
>();
3590 return AttrA
&& AttrB
&& AttrA
->getType() == AttrB
->getType() &&
3591 AttrA
->isDynamic() == AttrB
->isDynamic();
3594 return std::equal(A
->param_begin(), A
->param_end(), B
->param_begin(), AttrEq
);
3597 /// If necessary, adjust the semantic declaration context for a qualified
3598 /// declaration to name the correct inline namespace within the qualifier.
3599 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl
*NewD
,
3600 DeclaratorDecl
*OldD
) {
3601 // The only case where we need to update the DeclContext is when
3602 // redeclaration lookup for a qualified name finds a declaration
3603 // in an inline namespace within the context named by the qualifier:
3605 // inline namespace N { int f(); }
3606 // int ::f(); // Sema DC needs adjusting from :: to N::.
3608 // For unqualified declarations, the semantic context *can* change
3609 // along the redeclaration chain (for local extern declarations,
3610 // extern "C" declarations, and friend declarations in particular).
3611 if (!NewD
->getQualifier())
3614 // NewD is probably already in the right context.
3615 auto *NamedDC
= NewD
->getDeclContext()->getRedeclContext();
3616 auto *SemaDC
= OldD
->getDeclContext()->getRedeclContext();
3617 if (NamedDC
->Equals(SemaDC
))
3620 assert((NamedDC
->InEnclosingNamespaceSetOf(SemaDC
) ||
3621 NewD
->isInvalidDecl() || OldD
->isInvalidDecl()) &&
3622 "unexpected context for redeclaration");
3624 auto *LexDC
= NewD
->getLexicalDeclContext();
3625 auto FixSemaDC
= [=](NamedDecl
*D
) {
3628 D
->setDeclContext(SemaDC
);
3629 D
->setLexicalDeclContext(LexDC
);
3633 if (auto *FD
= dyn_cast
<FunctionDecl
>(NewD
))
3634 FixSemaDC(FD
->getDescribedFunctionTemplate());
3635 else if (auto *VD
= dyn_cast
<VarDecl
>(NewD
))
3636 FixSemaDC(VD
->getDescribedVarTemplate());
3639 /// MergeFunctionDecl - We just parsed a function 'New' from
3640 /// declarator D which has the same name and scope as a previous
3641 /// declaration 'Old'. Figure out how to resolve this situation,
3642 /// merging decls or emitting diagnostics as appropriate.
3644 /// In C++, New and Old must be declarations that are not
3645 /// overloaded. Use IsOverload to determine whether New and Old are
3646 /// overloaded, and to select the Old declaration that New should be
3649 /// Returns true if there was an error, false otherwise.
3650 bool Sema::MergeFunctionDecl(FunctionDecl
*New
, NamedDecl
*&OldD
, Scope
*S
,
3651 bool MergeTypeWithOld
, bool NewDeclIsDefn
) {
3652 // Verify the old decl was also a function.
3653 FunctionDecl
*Old
= OldD
->getAsFunction();
3655 if (UsingShadowDecl
*Shadow
= dyn_cast
<UsingShadowDecl
>(OldD
)) {
3656 if (New
->getFriendObjectKind()) {
3657 Diag(New
->getLocation(), diag::err_using_decl_friend
);
3658 Diag(Shadow
->getTargetDecl()->getLocation(),
3659 diag::note_using_decl_target
);
3660 Diag(Shadow
->getIntroducer()->getLocation(), diag::note_using_decl
)
3665 // Check whether the two declarations might declare the same function or
3666 // function template.
3667 if (FunctionTemplateDecl
*NewTemplate
=
3668 New
->getDescribedFunctionTemplate()) {
3669 if (checkUsingShadowRedecl
<FunctionTemplateDecl
>(*this, Shadow
,
3672 OldD
= Old
= cast
<FunctionTemplateDecl
>(Shadow
->getTargetDecl())
3675 if (checkUsingShadowRedecl
<FunctionDecl
>(*this, Shadow
, New
))
3677 OldD
= Old
= cast
<FunctionDecl
>(Shadow
->getTargetDecl());
3680 Diag(New
->getLocation(), diag::err_redefinition_different_kind
)
3681 << New
->getDeclName();
3682 notePreviousDefinition(OldD
, New
->getLocation());
3687 // If the old declaration was found in an inline namespace and the new
3688 // declaration was qualified, update the DeclContext to match.
3689 adjustDeclContextForDeclaratorDecl(New
, Old
);
3691 // If the old declaration is invalid, just give up here.
3692 if (Old
->isInvalidDecl())
3695 // Disallow redeclaration of some builtins.
3696 if (!getASTContext().canBuiltinBeRedeclared(Old
)) {
3697 Diag(New
->getLocation(), diag::err_builtin_redeclare
) << Old
->getDeclName();
3698 Diag(Old
->getLocation(), diag::note_previous_builtin_declaration
)
3699 << Old
<< Old
->getType();
3703 diag::kind PrevDiag
;
3704 SourceLocation OldLocation
;
3705 std::tie(PrevDiag
, OldLocation
) =
3706 getNoteDiagForInvalidRedeclaration(Old
, New
);
3708 // Don't complain about this if we're in GNU89 mode and the old function
3709 // is an extern inline function.
3710 // Don't complain about specializations. They are not supposed to have
3712 if (!isa
<CXXMethodDecl
>(New
) && !isa
<CXXMethodDecl
>(Old
) &&
3713 New
->getStorageClass() == SC_Static
&&
3714 Old
->hasExternalFormalLinkage() &&
3715 !New
->getTemplateSpecializationInfo() &&
3716 !canRedefineFunction(Old
, getLangOpts())) {
3717 if (getLangOpts().MicrosoftExt
) {
3718 Diag(New
->getLocation(), diag::ext_static_non_static
) << New
;
3719 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
3721 Diag(New
->getLocation(), diag::err_static_non_static
) << New
;
3722 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
3727 if (const auto *ILA
= New
->getAttr
<InternalLinkageAttr
>())
3728 if (!Old
->hasAttr
<InternalLinkageAttr
>()) {
3729 Diag(New
->getLocation(), diag::err_attribute_missing_on_first_decl
)
3731 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3732 New
->dropAttr
<InternalLinkageAttr
>();
3735 if (auto *EA
= New
->getAttr
<ErrorAttr
>()) {
3736 if (!Old
->hasAttr
<ErrorAttr
>()) {
3737 Diag(EA
->getLocation(), diag::err_attribute_missing_on_first_decl
) << EA
;
3738 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3739 New
->dropAttr
<ErrorAttr
>();
3743 if (CheckRedeclarationInModule(New
, Old
))
3746 if (!getLangOpts().CPlusPlus
) {
3747 bool OldOvl
= Old
->hasAttr
<OverloadableAttr
>();
3748 if (OldOvl
!= New
->hasAttr
<OverloadableAttr
>() && !Old
->isImplicit()) {
3749 Diag(New
->getLocation(), diag::err_attribute_overloadable_mismatch
)
3752 // Try our best to find a decl that actually has the overloadable
3753 // attribute for the note. In most cases (e.g. programs with only one
3754 // broken declaration/definition), this won't matter.
3756 // FIXME: We could do this if we juggled some extra state in
3757 // OverloadableAttr, rather than just removing it.
3758 const Decl
*DiagOld
= Old
;
3760 auto OldIter
= llvm::find_if(Old
->redecls(), [](const Decl
*D
) {
3761 const auto *A
= D
->getAttr
<OverloadableAttr
>();
3762 return A
&& !A
->isImplicit();
3764 // If we've implicitly added *all* of the overloadable attrs to this
3765 // chain, emitting a "previous redecl" note is pointless.
3766 DiagOld
= OldIter
== Old
->redecls_end() ? nullptr : *OldIter
;
3770 Diag(DiagOld
->getLocation(),
3771 diag::note_attribute_overloadable_prev_overload
)
3775 New
->addAttr(OverloadableAttr::CreateImplicit(Context
));
3777 New
->dropAttr
<OverloadableAttr
>();
3781 // It is not permitted to redeclare an SME function with different SME
3783 if (IsInvalidSMECallConversion(Old
->getType(), New
->getType(),
3784 AArch64SMECallConversionKind::MatchExactly
)) {
3785 Diag(New
->getLocation(), diag::err_sme_attr_mismatch
)
3786 << New
->getType() << Old
->getType();
3787 Diag(OldLocation
, diag::note_previous_declaration
);
3791 // If a function is first declared with a calling convention, but is later
3792 // declared or defined without one, all following decls assume the calling
3793 // convention of the first.
3795 // It's OK if a function is first declared without a calling convention,
3796 // but is later declared or defined with the default calling convention.
3798 // To test if either decl has an explicit calling convention, we look for
3799 // AttributedType sugar nodes on the type as written. If they are missing or
3800 // were canonicalized away, we assume the calling convention was implicit.
3802 // Note also that we DO NOT return at this point, because we still have
3803 // other tests to run.
3804 QualType OldQType
= Context
.getCanonicalType(Old
->getType());
3805 QualType NewQType
= Context
.getCanonicalType(New
->getType());
3806 const FunctionType
*OldType
= cast
<FunctionType
>(OldQType
);
3807 const FunctionType
*NewType
= cast
<FunctionType
>(NewQType
);
3808 FunctionType::ExtInfo OldTypeInfo
= OldType
->getExtInfo();
3809 FunctionType::ExtInfo NewTypeInfo
= NewType
->getExtInfo();
3810 bool RequiresAdjustment
= false;
3812 if (OldTypeInfo
.getCC() != NewTypeInfo
.getCC()) {
3813 FunctionDecl
*First
= Old
->getFirstDecl();
3814 const FunctionType
*FT
=
3815 First
->getType().getCanonicalType()->castAs
<FunctionType
>();
3816 FunctionType::ExtInfo FI
= FT
->getExtInfo();
3817 bool NewCCExplicit
= getCallingConvAttributedType(New
->getType());
3818 if (!NewCCExplicit
) {
3819 // Inherit the CC from the previous declaration if it was specified
3820 // there but not here.
3821 NewTypeInfo
= NewTypeInfo
.withCallingConv(OldTypeInfo
.getCC());
3822 RequiresAdjustment
= true;
3823 } else if (Old
->getBuiltinID()) {
3824 // Builtin attribute isn't propagated to the new one yet at this point,
3825 // so we check if the old one is a builtin.
3827 // Calling Conventions on a Builtin aren't really useful and setting a
3828 // default calling convention and cdecl'ing some builtin redeclarations is
3829 // common, so warn and ignore the calling convention on the redeclaration.
3830 Diag(New
->getLocation(), diag::warn_cconv_unsupported
)
3831 << FunctionType::getNameForCallConv(NewTypeInfo
.getCC())
3832 << (int)CallingConventionIgnoredReason::BuiltinFunction
;
3833 NewTypeInfo
= NewTypeInfo
.withCallingConv(OldTypeInfo
.getCC());
3834 RequiresAdjustment
= true;
3836 // Calling conventions aren't compatible, so complain.
3837 bool FirstCCExplicit
= getCallingConvAttributedType(First
->getType());
3838 Diag(New
->getLocation(), diag::err_cconv_change
)
3839 << FunctionType::getNameForCallConv(NewTypeInfo
.getCC())
3841 << (!FirstCCExplicit
? "" :
3842 FunctionType::getNameForCallConv(FI
.getCC()));
3844 // Put the note on the first decl, since it is the one that matters.
3845 Diag(First
->getLocation(), diag::note_previous_declaration
);
3850 // FIXME: diagnose the other way around?
3851 if (OldTypeInfo
.getNoReturn() && !NewTypeInfo
.getNoReturn()) {
3852 NewTypeInfo
= NewTypeInfo
.withNoReturn(true);
3853 RequiresAdjustment
= true;
3856 // Merge regparm attribute.
3857 if (OldTypeInfo
.getHasRegParm() != NewTypeInfo
.getHasRegParm() ||
3858 OldTypeInfo
.getRegParm() != NewTypeInfo
.getRegParm()) {
3859 if (NewTypeInfo
.getHasRegParm()) {
3860 Diag(New
->getLocation(), diag::err_regparm_mismatch
)
3861 << NewType
->getRegParmType()
3862 << OldType
->getRegParmType();
3863 Diag(OldLocation
, diag::note_previous_declaration
);
3867 NewTypeInfo
= NewTypeInfo
.withRegParm(OldTypeInfo
.getRegParm());
3868 RequiresAdjustment
= true;
3871 // Merge ns_returns_retained attribute.
3872 if (OldTypeInfo
.getProducesResult() != NewTypeInfo
.getProducesResult()) {
3873 if (NewTypeInfo
.getProducesResult()) {
3874 Diag(New
->getLocation(), diag::err_function_attribute_mismatch
)
3875 << "'ns_returns_retained'";
3876 Diag(OldLocation
, diag::note_previous_declaration
);
3880 NewTypeInfo
= NewTypeInfo
.withProducesResult(true);
3881 RequiresAdjustment
= true;
3884 if (OldTypeInfo
.getNoCallerSavedRegs() !=
3885 NewTypeInfo
.getNoCallerSavedRegs()) {
3886 if (NewTypeInfo
.getNoCallerSavedRegs()) {
3887 AnyX86NoCallerSavedRegistersAttr
*Attr
=
3888 New
->getAttr
<AnyX86NoCallerSavedRegistersAttr
>();
3889 Diag(New
->getLocation(), diag::err_function_attribute_mismatch
) << Attr
;
3890 Diag(OldLocation
, diag::note_previous_declaration
);
3894 NewTypeInfo
= NewTypeInfo
.withNoCallerSavedRegs(true);
3895 RequiresAdjustment
= true;
3898 if (RequiresAdjustment
) {
3899 const FunctionType
*AdjustedType
= New
->getType()->getAs
<FunctionType
>();
3900 AdjustedType
= Context
.adjustFunctionType(AdjustedType
, NewTypeInfo
);
3901 New
->setType(QualType(AdjustedType
, 0));
3902 NewQType
= Context
.getCanonicalType(New
->getType());
3905 // If this redeclaration makes the function inline, we may need to add it to
3906 // UndefinedButUsed.
3907 if (!Old
->isInlined() && New
->isInlined() &&
3908 !New
->hasAttr
<GNUInlineAttr
>() &&
3909 !getLangOpts().GNUInline
&&
3910 Old
->isUsed(false) &&
3911 !Old
->isDefined() && !New
->isThisDeclarationADefinition())
3912 UndefinedButUsed
.insert(std::make_pair(Old
->getCanonicalDecl(),
3915 // If this redeclaration makes it newly gnu_inline, we don't want to warn
3917 if (New
->hasAttr
<GNUInlineAttr
>() &&
3918 Old
->isInlined() && !Old
->hasAttr
<GNUInlineAttr
>()) {
3919 UndefinedButUsed
.erase(Old
->getCanonicalDecl());
3922 // If pass_object_size params don't match up perfectly, this isn't a valid
3924 if (Old
->getNumParams() > 0 && Old
->getNumParams() == New
->getNumParams() &&
3925 !hasIdenticalPassObjectSizeAttrs(Old
, New
)) {
3926 Diag(New
->getLocation(), diag::err_different_pass_object_size_params
)
3927 << New
->getDeclName();
3928 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
3932 if (getLangOpts().CPlusPlus
) {
3933 OldQType
= Context
.getCanonicalType(Old
->getType());
3934 NewQType
= Context
.getCanonicalType(New
->getType());
3936 // Go back to the type source info to compare the declared return types,
3937 // per C++1y [dcl.type.auto]p13:
3938 // Redeclarations or specializations of a function or function template
3939 // with a declared return type that uses a placeholder type shall also
3940 // use that placeholder, not a deduced type.
3941 QualType OldDeclaredReturnType
= Old
->getDeclaredReturnType();
3942 QualType NewDeclaredReturnType
= New
->getDeclaredReturnType();
3943 if (!Context
.hasSameType(OldDeclaredReturnType
, NewDeclaredReturnType
) &&
3944 canFullyTypeCheckRedeclaration(New
, Old
, NewDeclaredReturnType
,
3945 OldDeclaredReturnType
)) {
3947 if (NewDeclaredReturnType
->isObjCObjectPointerType() &&
3948 OldDeclaredReturnType
->isObjCObjectPointerType())
3949 // FIXME: This does the wrong thing for a deduced return type.
3950 ResQT
= Context
.mergeObjCGCQualifiers(NewQType
, OldQType
);
3951 if (ResQT
.isNull()) {
3952 if (New
->isCXXClassMember() && New
->isOutOfLine())
3953 Diag(New
->getLocation(), diag::err_member_def_does_not_match_ret_type
)
3954 << New
<< New
->getReturnTypeSourceRange();
3956 Diag(New
->getLocation(), diag::err_ovl_diff_return_type
)
3957 << New
->getReturnTypeSourceRange();
3958 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType()
3959 << Old
->getReturnTypeSourceRange();
3966 QualType OldReturnType
= OldType
->getReturnType();
3967 QualType NewReturnType
= cast
<FunctionType
>(NewQType
)->getReturnType();
3968 if (OldReturnType
!= NewReturnType
) {
3969 // If this function has a deduced return type and has already been
3970 // defined, copy the deduced value from the old declaration.
3971 AutoType
*OldAT
= Old
->getReturnType()->getContainedAutoType();
3972 if (OldAT
&& OldAT
->isDeduced()) {
3973 QualType DT
= OldAT
->getDeducedType();
3975 New
->setType(SubstAutoTypeDependent(New
->getType()));
3976 NewQType
= Context
.getCanonicalType(SubstAutoTypeDependent(NewQType
));
3978 New
->setType(SubstAutoType(New
->getType(), DT
));
3979 NewQType
= Context
.getCanonicalType(SubstAutoType(NewQType
, DT
));
3984 const CXXMethodDecl
*OldMethod
= dyn_cast
<CXXMethodDecl
>(Old
);
3985 CXXMethodDecl
*NewMethod
= dyn_cast
<CXXMethodDecl
>(New
);
3986 if (OldMethod
&& NewMethod
) {
3987 // Preserve triviality.
3988 NewMethod
->setTrivial(OldMethod
->isTrivial());
3990 // MSVC allows explicit template specialization at class scope:
3991 // 2 CXXMethodDecls referring to the same function will be injected.
3992 // We don't want a redeclaration error.
3993 bool IsClassScopeExplicitSpecialization
=
3994 OldMethod
->isFunctionTemplateSpecialization() &&
3995 NewMethod
->isFunctionTemplateSpecialization();
3996 bool isFriend
= NewMethod
->getFriendObjectKind();
3998 if (!isFriend
&& NewMethod
->getLexicalDeclContext()->isRecord() &&
3999 !IsClassScopeExplicitSpecialization
) {
4000 // -- Member function declarations with the same name and the
4001 // same parameter types cannot be overloaded if any of them
4002 // is a static member function declaration.
4003 if (OldMethod
->isStatic() != NewMethod
->isStatic()) {
4004 Diag(New
->getLocation(), diag::err_ovl_static_nonstatic_member
);
4005 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
4009 // C++ [class.mem]p1:
4010 // [...] A member shall not be declared twice in the
4011 // member-specification, except that a nested class or member
4012 // class template can be declared and then later defined.
4013 if (!inTemplateInstantiation()) {
4015 if (isa
<CXXConstructorDecl
>(OldMethod
))
4016 NewDiag
= diag::err_constructor_redeclared
;
4017 else if (isa
<CXXDestructorDecl
>(NewMethod
))
4018 NewDiag
= diag::err_destructor_redeclared
;
4019 else if (isa
<CXXConversionDecl
>(NewMethod
))
4020 NewDiag
= diag::err_conv_function_redeclared
;
4022 NewDiag
= diag::err_member_redeclared
;
4024 Diag(New
->getLocation(), NewDiag
);
4026 Diag(New
->getLocation(), diag::err_member_redeclared_in_instantiation
)
4027 << New
<< New
->getType();
4029 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
4032 // Complain if this is an explicit declaration of a special
4033 // member that was initially declared implicitly.
4035 // As an exception, it's okay to befriend such methods in order
4036 // to permit the implicit constructor/destructor/operator calls.
4037 } else if (OldMethod
->isImplicit()) {
4039 NewMethod
->setImplicit();
4041 Diag(NewMethod
->getLocation(),
4042 diag::err_definition_of_implicitly_declared_member
)
4043 << New
<< getSpecialMember(OldMethod
);
4046 } else if (OldMethod
->getFirstDecl()->isExplicitlyDefaulted() && !isFriend
) {
4047 Diag(NewMethod
->getLocation(),
4048 diag::err_definition_of_explicitly_defaulted_member
)
4049 << getSpecialMember(OldMethod
);
4054 // C++1z [over.load]p2
4055 // Certain function declarations cannot be overloaded:
4056 // -- Function declarations that differ only in the return type,
4057 // the exception specification, or both cannot be overloaded.
4059 // Check the exception specifications match. This may recompute the type of
4060 // both Old and New if it resolved exception specifications, so grab the
4061 // types again after this. Because this updates the type, we do this before
4062 // any of the other checks below, which may update the "de facto" NewQType
4063 // but do not necessarily update the type of New.
4064 if (CheckEquivalentExceptionSpec(Old
, New
))
4067 // C++11 [dcl.attr.noreturn]p1:
4068 // The first declaration of a function shall specify the noreturn
4069 // attribute if any declaration of that function specifies the noreturn
4071 if (const auto *NRA
= New
->getAttr
<CXX11NoReturnAttr
>())
4072 if (!Old
->hasAttr
<CXX11NoReturnAttr
>()) {
4073 Diag(NRA
->getLocation(), diag::err_attribute_missing_on_first_decl
)
4075 Diag(Old
->getLocation(), diag::note_previous_declaration
);
4078 // C++11 [dcl.attr.depend]p2:
4079 // The first declaration of a function shall specify the
4080 // carries_dependency attribute for its declarator-id if any declaration
4081 // of the function specifies the carries_dependency attribute.
4082 const CarriesDependencyAttr
*CDA
= New
->getAttr
<CarriesDependencyAttr
>();
4083 if (CDA
&& !Old
->hasAttr
<CarriesDependencyAttr
>()) {
4084 Diag(CDA
->getLocation(),
4085 diag::err_carries_dependency_missing_on_first_decl
) << 0/*Function*/;
4086 Diag(Old
->getFirstDecl()->getLocation(),
4087 diag::note_carries_dependency_missing_first_decl
) << 0/*Function*/;
4091 // All declarations for a function shall agree exactly in both the
4092 // return type and the parameter-type-list.
4093 // We also want to respect all the extended bits except noreturn.
4095 // noreturn should now match unless the old type info didn't have it.
4096 QualType OldQTypeForComparison
= OldQType
;
4097 if (!OldTypeInfo
.getNoReturn() && NewTypeInfo
.getNoReturn()) {
4098 auto *OldType
= OldQType
->castAs
<FunctionProtoType
>();
4099 const FunctionType
*OldTypeForComparison
4100 = Context
.adjustFunctionType(OldType
, OldTypeInfo
.withNoReturn(true));
4101 OldQTypeForComparison
= QualType(OldTypeForComparison
, 0);
4102 assert(OldQTypeForComparison
.isCanonical());
4105 if (haveIncompatibleLanguageLinkages(Old
, New
)) {
4106 // As a special case, retain the language linkage from previous
4107 // declarations of a friend function as an extension.
4109 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
4110 // and is useful because there's otherwise no way to specify language
4111 // linkage within class scope.
4113 // Check cautiously as the friend object kind isn't yet complete.
4114 if (New
->getFriendObjectKind() != Decl::FOK_None
) {
4115 Diag(New
->getLocation(), diag::ext_retained_language_linkage
) << New
;
4116 Diag(OldLocation
, PrevDiag
);
4118 Diag(New
->getLocation(), diag::err_different_language_linkage
) << New
;
4119 Diag(OldLocation
, PrevDiag
);
4124 // If the function types are compatible, merge the declarations. Ignore the
4125 // exception specifier because it was already checked above in
4126 // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
4127 // about incompatible types under -fms-compatibility.
4128 if (Context
.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison
,
4130 return MergeCompatibleFunctionDecls(New
, Old
, S
, MergeTypeWithOld
);
4132 // If the types are imprecise (due to dependent constructs in friends or
4133 // local extern declarations), it's OK if they differ. We'll check again
4134 // during instantiation.
4135 if (!canFullyTypeCheckRedeclaration(New
, Old
, NewQType
, OldQType
))
4138 // Fall through for conflicting redeclarations and redefinitions.
4141 // C: Function types need to be compatible, not identical. This handles
4142 // duplicate function decls like "void f(int); void f(enum X);" properly.
4143 if (!getLangOpts().CPlusPlus
) {
4144 // C99 6.7.5.3p15: ...If one type has a parameter type list and the other
4145 // type is specified by a function definition that contains a (possibly
4146 // empty) identifier list, both shall agree in the number of parameters
4147 // and the type of each parameter shall be compatible with the type that
4148 // results from the application of default argument promotions to the
4149 // type of the corresponding identifier. ...
4150 // This cannot be handled by ASTContext::typesAreCompatible() because that
4151 // doesn't know whether the function type is for a definition or not when
4152 // eventually calling ASTContext::mergeFunctionTypes(). The only situation
4153 // we need to cover here is that the number of arguments agree as the
4154 // default argument promotion rules were already checked by
4155 // ASTContext::typesAreCompatible().
4156 if (Old
->hasPrototype() && !New
->hasWrittenPrototype() && NewDeclIsDefn
&&
4157 Old
->getNumParams() != New
->getNumParams() && !Old
->isImplicit()) {
4158 if (Old
->hasInheritedPrototype())
4159 Old
= Old
->getCanonicalDecl();
4160 Diag(New
->getLocation(), diag::err_conflicting_types
) << New
;
4161 Diag(Old
->getLocation(), PrevDiag
) << Old
<< Old
->getType();
4165 // If we are merging two functions where only one of them has a prototype,
4166 // we may have enough information to decide to issue a diagnostic that the
4167 // function without a protoype will change behavior in C23. This handles
4169 // void i(); void i(int j);
4170 // void i(int j); void i();
4171 // void i(); void i(int j) {}
4172 // See ActOnFinishFunctionBody() for other cases of the behavior change
4173 // diagnostic. See GetFullTypeForDeclarator() for handling of a function
4174 // type without a prototype.
4175 if (New
->hasWrittenPrototype() != Old
->hasWrittenPrototype() &&
4176 !New
->isImplicit() && !Old
->isImplicit()) {
4177 const FunctionDecl
*WithProto
, *WithoutProto
;
4178 if (New
->hasWrittenPrototype()) {
4186 if (WithProto
->getNumParams() != 0) {
4187 if (WithoutProto
->getBuiltinID() == 0 && !WithoutProto
->isImplicit()) {
4188 // The one without the prototype will be changing behavior in C23, so
4189 // warn about that one so long as it's a user-visible declaration.
4190 bool IsWithoutProtoADef
= false, IsWithProtoADef
= false;
4191 if (WithoutProto
== New
)
4192 IsWithoutProtoADef
= NewDeclIsDefn
;
4194 IsWithProtoADef
= NewDeclIsDefn
;
4195 Diag(WithoutProto
->getLocation(),
4196 diag::warn_non_prototype_changes_behavior
)
4197 << IsWithoutProtoADef
<< (WithoutProto
->getNumParams() ? 0 : 1)
4198 << (WithoutProto
== Old
) << IsWithProtoADef
;
4200 // The reason the one without the prototype will be changing behavior
4201 // is because of the one with the prototype, so note that so long as
4202 // it's a user-visible declaration. There is one exception to this:
4203 // when the new declaration is a definition without a prototype, the
4204 // old declaration with a prototype is not the cause of the issue,
4205 // and that does not need to be noted because the one with a
4206 // prototype will not change behavior in C23.
4207 if (WithProto
->getBuiltinID() == 0 && !WithProto
->isImplicit() &&
4208 !IsWithoutProtoADef
)
4209 Diag(WithProto
->getLocation(), diag::note_conflicting_prototype
);
4214 if (Context
.typesAreCompatible(OldQType
, NewQType
)) {
4215 const FunctionType
*OldFuncType
= OldQType
->getAs
<FunctionType
>();
4216 const FunctionType
*NewFuncType
= NewQType
->getAs
<FunctionType
>();
4217 const FunctionProtoType
*OldProto
= nullptr;
4218 if (MergeTypeWithOld
&& isa
<FunctionNoProtoType
>(NewFuncType
) &&
4219 (OldProto
= dyn_cast
<FunctionProtoType
>(OldFuncType
))) {
4220 // The old declaration provided a function prototype, but the
4221 // new declaration does not. Merge in the prototype.
4222 assert(!OldProto
->hasExceptionSpec() && "Exception spec in C");
4223 NewQType
= Context
.getFunctionType(NewFuncType
->getReturnType(),
4224 OldProto
->getParamTypes(),
4225 OldProto
->getExtProtoInfo());
4226 New
->setType(NewQType
);
4227 New
->setHasInheritedPrototype();
4229 // Synthesize parameters with the same types.
4230 SmallVector
<ParmVarDecl
*, 16> Params
;
4231 for (const auto &ParamType
: OldProto
->param_types()) {
4232 ParmVarDecl
*Param
= ParmVarDecl::Create(
4233 Context
, New
, SourceLocation(), SourceLocation(), nullptr,
4234 ParamType
, /*TInfo=*/nullptr, SC_None
, nullptr);
4235 Param
->setScopeInfo(0, Params
.size());
4236 Param
->setImplicit();
4237 Params
.push_back(Param
);
4240 New
->setParams(Params
);
4243 return MergeCompatibleFunctionDecls(New
, Old
, S
, MergeTypeWithOld
);
4247 // Check if the function types are compatible when pointer size address
4248 // spaces are ignored.
4249 if (Context
.hasSameFunctionTypeIgnoringPtrSizes(OldQType
, NewQType
))
4252 // GNU C permits a K&R definition to follow a prototype declaration
4253 // if the declared types of the parameters in the K&R definition
4254 // match the types in the prototype declaration, even when the
4255 // promoted types of the parameters from the K&R definition differ
4256 // from the types in the prototype. GCC then keeps the types from
4259 // If a variadic prototype is followed by a non-variadic K&R definition,
4260 // the K&R definition becomes variadic. This is sort of an edge case, but
4261 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
4263 if (!getLangOpts().CPlusPlus
&&
4264 Old
->hasPrototype() && !New
->hasPrototype() &&
4265 New
->getType()->getAs
<FunctionProtoType
>() &&
4266 Old
->getNumParams() == New
->getNumParams()) {
4267 SmallVector
<QualType
, 16> ArgTypes
;
4268 SmallVector
<GNUCompatibleParamWarning
, 16> Warnings
;
4269 const FunctionProtoType
*OldProto
4270 = Old
->getType()->getAs
<FunctionProtoType
>();
4271 const FunctionProtoType
*NewProto
4272 = New
->getType()->getAs
<FunctionProtoType
>();
4274 // Determine whether this is the GNU C extension.
4275 QualType MergedReturn
= Context
.mergeTypes(OldProto
->getReturnType(),
4276 NewProto
->getReturnType());
4277 bool LooseCompatible
= !MergedReturn
.isNull();
4278 for (unsigned Idx
= 0, End
= Old
->getNumParams();
4279 LooseCompatible
&& Idx
!= End
; ++Idx
) {
4280 ParmVarDecl
*OldParm
= Old
->getParamDecl(Idx
);
4281 ParmVarDecl
*NewParm
= New
->getParamDecl(Idx
);
4282 if (Context
.typesAreCompatible(OldParm
->getType(),
4283 NewProto
->getParamType(Idx
))) {
4284 ArgTypes
.push_back(NewParm
->getType());
4285 } else if (Context
.typesAreCompatible(OldParm
->getType(),
4287 /*CompareUnqualified=*/true)) {
4288 GNUCompatibleParamWarning Warn
= { OldParm
, NewParm
,
4289 NewProto
->getParamType(Idx
) };
4290 Warnings
.push_back(Warn
);
4291 ArgTypes
.push_back(NewParm
->getType());
4293 LooseCompatible
= false;
4296 if (LooseCompatible
) {
4297 for (unsigned Warn
= 0; Warn
< Warnings
.size(); ++Warn
) {
4298 Diag(Warnings
[Warn
].NewParm
->getLocation(),
4299 diag::ext_param_promoted_not_compatible_with_prototype
)
4300 << Warnings
[Warn
].PromotedType
4301 << Warnings
[Warn
].OldParm
->getType();
4302 if (Warnings
[Warn
].OldParm
->getLocation().isValid())
4303 Diag(Warnings
[Warn
].OldParm
->getLocation(),
4304 diag::note_previous_declaration
);
4307 if (MergeTypeWithOld
)
4308 New
->setType(Context
.getFunctionType(MergedReturn
, ArgTypes
,
4309 OldProto
->getExtProtoInfo()));
4310 return MergeCompatibleFunctionDecls(New
, Old
, S
, MergeTypeWithOld
);
4313 // Fall through to diagnose conflicting types.
4316 // A function that has already been declared has been redeclared or
4317 // defined with a different type; show an appropriate diagnostic.
4319 // If the previous declaration was an implicitly-generated builtin
4320 // declaration, then at the very least we should use a specialized note.
4322 if (Old
->isImplicit() && (BuiltinID
= Old
->getBuiltinID())) {
4323 // If it's actually a library-defined builtin function like 'malloc'
4324 // or 'printf', just warn about the incompatible redeclaration.
4325 if (Context
.BuiltinInfo
.isPredefinedLibFunction(BuiltinID
)) {
4326 Diag(New
->getLocation(), diag::warn_redecl_library_builtin
) << New
;
4327 Diag(OldLocation
, diag::note_previous_builtin_declaration
)
4328 << Old
<< Old
->getType();
4332 PrevDiag
= diag::note_previous_builtin_declaration
;
4335 Diag(New
->getLocation(), diag::err_conflicting_types
) << New
->getDeclName();
4336 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
4340 /// Completes the merge of two function declarations that are
4341 /// known to be compatible.
4343 /// This routine handles the merging of attributes and other
4344 /// properties of function declarations from the old declaration to
4345 /// the new declaration, once we know that New is in fact a
4346 /// redeclaration of Old.
4349 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl
*New
, FunctionDecl
*Old
,
4350 Scope
*S
, bool MergeTypeWithOld
) {
4351 // Merge the attributes
4352 mergeDeclAttributes(New
, Old
);
4354 // Merge "pure" flag.
4358 // Merge "used" flag.
4359 if (Old
->getMostRecentDecl()->isUsed(false))
4362 // Merge attributes from the parameters. These can mismatch with K&R
4364 if (New
->getNumParams() == Old
->getNumParams())
4365 for (unsigned i
= 0, e
= New
->getNumParams(); i
!= e
; ++i
) {
4366 ParmVarDecl
*NewParam
= New
->getParamDecl(i
);
4367 ParmVarDecl
*OldParam
= Old
->getParamDecl(i
);
4368 mergeParamDeclAttributes(NewParam
, OldParam
, *this);
4369 mergeParamDeclTypes(NewParam
, OldParam
, *this);
4372 if (getLangOpts().CPlusPlus
)
4373 return MergeCXXFunctionDecl(New
, Old
, S
);
4375 // Merge the function types so the we get the composite types for the return
4376 // and argument types. Per C11 6.2.7/4, only update the type if the old decl
4378 QualType Merged
= Context
.mergeTypes(Old
->getType(), New
->getType());
4379 if (!Merged
.isNull() && MergeTypeWithOld
)
4380 New
->setType(Merged
);
4385 void Sema::mergeObjCMethodDecls(ObjCMethodDecl
*newMethod
,
4386 ObjCMethodDecl
*oldMethod
) {
4387 // Merge the attributes, including deprecated/unavailable
4388 AvailabilityMergeKind MergeKind
=
4389 isa
<ObjCProtocolDecl
>(oldMethod
->getDeclContext())
4390 ? (oldMethod
->isOptional() ? AMK_OptionalProtocolImplementation
4391 : AMK_ProtocolImplementation
)
4392 : isa
<ObjCImplDecl
>(newMethod
->getDeclContext()) ? AMK_Redeclaration
4395 mergeDeclAttributes(newMethod
, oldMethod
, MergeKind
);
4397 // Merge attributes from the parameters.
4398 ObjCMethodDecl::param_const_iterator oi
= oldMethod
->param_begin(),
4399 oe
= oldMethod
->param_end();
4400 for (ObjCMethodDecl::param_iterator
4401 ni
= newMethod
->param_begin(), ne
= newMethod
->param_end();
4402 ni
!= ne
&& oi
!= oe
; ++ni
, ++oi
)
4403 mergeParamDeclAttributes(*ni
, *oi
, *this);
4405 CheckObjCMethodOverride(newMethod
, oldMethod
);
4408 static void diagnoseVarDeclTypeMismatch(Sema
&S
, VarDecl
*New
, VarDecl
* Old
) {
4409 assert(!S
.Context
.hasSameType(New
->getType(), Old
->getType()));
4411 S
.Diag(New
->getLocation(), New
->isThisDeclarationADefinition()
4412 ? diag::err_redefinition_different_type
4413 : diag::err_redeclaration_different_type
)
4414 << New
->getDeclName() << New
->getType() << Old
->getType();
4416 diag::kind PrevDiag
;
4417 SourceLocation OldLocation
;
4418 std::tie(PrevDiag
, OldLocation
)
4419 = getNoteDiagForInvalidRedeclaration(Old
, New
);
4420 S
.Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
4421 New
->setInvalidDecl();
4424 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
4425 /// scope as a previous declaration 'Old'. Figure out how to merge their types,
4426 /// emitting diagnostics as appropriate.
4428 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
4429 /// to here in AddInitializerToDecl. We can't check them before the initializer
4431 void Sema::MergeVarDeclTypes(VarDecl
*New
, VarDecl
*Old
,
4432 bool MergeTypeWithOld
) {
4433 if (New
->isInvalidDecl() || Old
->isInvalidDecl() || New
->getType()->containsErrors() || Old
->getType()->containsErrors())
4437 if (getLangOpts().CPlusPlus
) {
4438 if (New
->getType()->isUndeducedType()) {
4439 // We don't know what the new type is until the initializer is attached.
4441 } else if (Context
.hasSameType(New
->getType(), Old
->getType())) {
4442 // These could still be something that needs exception specs checked.
4443 return MergeVarDeclExceptionSpecs(New
, Old
);
4445 // C++ [basic.link]p10:
4446 // [...] the types specified by all declarations referring to a given
4447 // object or function shall be identical, except that declarations for an
4448 // array object can specify array types that differ by the presence or
4449 // absence of a major array bound (8.3.4).
4450 else if (Old
->getType()->isArrayType() && New
->getType()->isArrayType()) {
4451 const ArrayType
*OldArray
= Context
.getAsArrayType(Old
->getType());
4452 const ArrayType
*NewArray
= Context
.getAsArrayType(New
->getType());
4454 // We are merging a variable declaration New into Old. If it has an array
4455 // bound, and that bound differs from Old's bound, we should diagnose the
4457 if (!NewArray
->isIncompleteArrayType() && !NewArray
->isDependentType()) {
4458 for (VarDecl
*PrevVD
= Old
->getMostRecentDecl(); PrevVD
;
4459 PrevVD
= PrevVD
->getPreviousDecl()) {
4460 QualType PrevVDTy
= PrevVD
->getType();
4461 if (PrevVDTy
->isIncompleteArrayType() || PrevVDTy
->isDependentType())
4464 if (!Context
.hasSameType(New
->getType(), PrevVDTy
))
4465 return diagnoseVarDeclTypeMismatch(*this, New
, PrevVD
);
4469 if (OldArray
->isIncompleteArrayType() && NewArray
->isArrayType()) {
4470 if (Context
.hasSameType(OldArray
->getElementType(),
4471 NewArray
->getElementType()))
4472 MergedT
= New
->getType();
4474 // FIXME: Check visibility. New is hidden but has a complete type. If New
4475 // has no array bound, it should not inherit one from Old, if Old is not
4477 else if (OldArray
->isArrayType() && NewArray
->isIncompleteArrayType()) {
4478 if (Context
.hasSameType(OldArray
->getElementType(),
4479 NewArray
->getElementType()))
4480 MergedT
= Old
->getType();
4483 else if (New
->getType()->isObjCObjectPointerType() &&
4484 Old
->getType()->isObjCObjectPointerType()) {
4485 MergedT
= Context
.mergeObjCGCQualifiers(New
->getType(),
4490 // All declarations that refer to the same object or function shall have
4492 MergedT
= Context
.mergeTypes(New
->getType(), Old
->getType());
4494 if (MergedT
.isNull()) {
4495 // It's OK if we couldn't merge types if either type is dependent, for a
4496 // block-scope variable. In other cases (static data members of class
4497 // templates, variable templates, ...), we require the types to be
4499 // FIXME: The C++ standard doesn't say anything about this.
4500 if ((New
->getType()->isDependentType() ||
4501 Old
->getType()->isDependentType()) && New
->isLocalVarDecl()) {
4502 // If the old type was dependent, we can't merge with it, so the new type
4503 // becomes dependent for now. We'll reproduce the original type when we
4504 // instantiate the TypeSourceInfo for the variable.
4505 if (!New
->getType()->isDependentType() && MergeTypeWithOld
)
4506 New
->setType(Context
.DependentTy
);
4509 return diagnoseVarDeclTypeMismatch(*this, New
, Old
);
4512 // Don't actually update the type on the new declaration if the old
4513 // declaration was an extern declaration in a different scope.
4514 if (MergeTypeWithOld
)
4515 New
->setType(MergedT
);
4518 static bool mergeTypeWithPrevious(Sema
&S
, VarDecl
*NewVD
, VarDecl
*OldVD
,
4519 LookupResult
&Previous
) {
4521 // For an identifier with internal or external linkage declared
4522 // in a scope in which a prior declaration of that identifier is
4523 // visible, if the prior declaration specifies internal or
4524 // external linkage, the type of the identifier at the later
4525 // declaration becomes the composite type.
4527 // If the variable isn't visible, we do not merge with its type.
4528 if (Previous
.isShadowed())
4531 if (S
.getLangOpts().CPlusPlus
) {
4532 // C++11 [dcl.array]p3:
4533 // If there is a preceding declaration of the entity in the same
4534 // scope in which the bound was specified, an omitted array bound
4535 // is taken to be the same as in that earlier declaration.
4536 return NewVD
->isPreviousDeclInSameBlockScope() ||
4537 (!OldVD
->getLexicalDeclContext()->isFunctionOrMethod() &&
4538 !NewVD
->getLexicalDeclContext()->isFunctionOrMethod());
4540 // If the old declaration was function-local, don't merge with its
4541 // type unless we're in the same function.
4542 return !OldVD
->getLexicalDeclContext()->isFunctionOrMethod() ||
4543 OldVD
->getLexicalDeclContext() == NewVD
->getLexicalDeclContext();
4547 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
4548 /// and scope as a previous declaration 'Old'. Figure out how to resolve this
4549 /// situation, merging decls or emitting diagnostics as appropriate.
4551 /// Tentative definition rules (C99 6.9.2p2) are checked by
4552 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
4553 /// definitions here, since the initializer hasn't been attached.
4555 void Sema::MergeVarDecl(VarDecl
*New
, LookupResult
&Previous
) {
4556 // If the new decl is already invalid, don't do any other checking.
4557 if (New
->isInvalidDecl())
4560 if (!shouldLinkPossiblyHiddenDecl(Previous
, New
))
4563 VarTemplateDecl
*NewTemplate
= New
->getDescribedVarTemplate();
4565 // Verify the old decl was also a variable or variable template.
4566 VarDecl
*Old
= nullptr;
4567 VarTemplateDecl
*OldTemplate
= nullptr;
4568 if (Previous
.isSingleResult()) {
4570 OldTemplate
= dyn_cast
<VarTemplateDecl
>(Previous
.getFoundDecl());
4571 Old
= OldTemplate
? OldTemplate
->getTemplatedDecl() : nullptr;
4574 dyn_cast
<UsingShadowDecl
>(Previous
.getRepresentativeDecl()))
4575 if (checkUsingShadowRedecl
<VarTemplateDecl
>(*this, Shadow
, NewTemplate
))
4576 return New
->setInvalidDecl();
4578 Old
= dyn_cast
<VarDecl
>(Previous
.getFoundDecl());
4581 dyn_cast
<UsingShadowDecl
>(Previous
.getRepresentativeDecl()))
4582 if (checkUsingShadowRedecl
<VarDecl
>(*this, Shadow
, New
))
4583 return New
->setInvalidDecl();
4587 Diag(New
->getLocation(), diag::err_redefinition_different_kind
)
4588 << New
->getDeclName();
4589 notePreviousDefinition(Previous
.getRepresentativeDecl(),
4590 New
->getLocation());
4591 return New
->setInvalidDecl();
4594 // If the old declaration was found in an inline namespace and the new
4595 // declaration was qualified, update the DeclContext to match.
4596 adjustDeclContextForDeclaratorDecl(New
, Old
);
4598 // Ensure the template parameters are compatible.
4600 !TemplateParameterListsAreEqual(NewTemplate
->getTemplateParameters(),
4601 OldTemplate
->getTemplateParameters(),
4602 /*Complain=*/true, TPL_TemplateMatch
))
4603 return New
->setInvalidDecl();
4605 // C++ [class.mem]p1:
4606 // A member shall not be declared twice in the member-specification [...]
4608 // Here, we need only consider static data members.
4609 if (Old
->isStaticDataMember() && !New
->isOutOfLine()) {
4610 Diag(New
->getLocation(), diag::err_duplicate_member
)
4611 << New
->getIdentifier();
4612 Diag(Old
->getLocation(), diag::note_previous_declaration
);
4613 New
->setInvalidDecl();
4616 mergeDeclAttributes(New
, Old
);
4617 // Warn if an already-declared variable is made a weak_import in a subsequent
4619 if (New
->hasAttr
<WeakImportAttr
>() &&
4620 Old
->getStorageClass() == SC_None
&&
4621 !Old
->hasAttr
<WeakImportAttr
>()) {
4622 Diag(New
->getLocation(), diag::warn_weak_import
) << New
->getDeclName();
4623 Diag(Old
->getLocation(), diag::note_previous_declaration
);
4624 // Remove weak_import attribute on new declaration.
4625 New
->dropAttr
<WeakImportAttr
>();
4628 if (const auto *ILA
= New
->getAttr
<InternalLinkageAttr
>())
4629 if (!Old
->hasAttr
<InternalLinkageAttr
>()) {
4630 Diag(New
->getLocation(), diag::err_attribute_missing_on_first_decl
)
4632 Diag(Old
->getLocation(), diag::note_previous_declaration
);
4633 New
->dropAttr
<InternalLinkageAttr
>();
4637 VarDecl
*MostRecent
= Old
->getMostRecentDecl();
4638 if (MostRecent
!= Old
) {
4639 MergeVarDeclTypes(New
, MostRecent
,
4640 mergeTypeWithPrevious(*this, New
, MostRecent
, Previous
));
4641 if (New
->isInvalidDecl())
4645 MergeVarDeclTypes(New
, Old
, mergeTypeWithPrevious(*this, New
, Old
, Previous
));
4646 if (New
->isInvalidDecl())
4649 diag::kind PrevDiag
;
4650 SourceLocation OldLocation
;
4651 std::tie(PrevDiag
, OldLocation
) =
4652 getNoteDiagForInvalidRedeclaration(Old
, New
);
4654 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4655 if (New
->getStorageClass() == SC_Static
&&
4656 !New
->isStaticDataMember() &&
4657 Old
->hasExternalFormalLinkage()) {
4658 if (getLangOpts().MicrosoftExt
) {
4659 Diag(New
->getLocation(), diag::ext_static_non_static
)
4660 << New
->getDeclName();
4661 Diag(OldLocation
, PrevDiag
);
4663 Diag(New
->getLocation(), diag::err_static_non_static
)
4664 << New
->getDeclName();
4665 Diag(OldLocation
, PrevDiag
);
4666 return New
->setInvalidDecl();
4670 // For an identifier declared with the storage-class specifier
4671 // extern in a scope in which a prior declaration of that
4672 // identifier is visible,23) if the prior declaration specifies
4673 // internal or external linkage, the linkage of the identifier at
4674 // the later declaration is the same as the linkage specified at
4675 // the prior declaration. If no prior declaration is visible, or
4676 // if the prior declaration specifies no linkage, then the
4677 // identifier has external linkage.
4678 if (New
->hasExternalStorage() && Old
->hasLinkage())
4680 else if (New
->getCanonicalDecl()->getStorageClass() != SC_Static
&&
4681 !New
->isStaticDataMember() &&
4682 Old
->getCanonicalDecl()->getStorageClass() == SC_Static
) {
4683 Diag(New
->getLocation(), diag::err_non_static_static
) << New
->getDeclName();
4684 Diag(OldLocation
, PrevDiag
);
4685 return New
->setInvalidDecl();
4688 // Check if extern is followed by non-extern and vice-versa.
4689 if (New
->hasExternalStorage() &&
4690 !Old
->hasLinkage() && Old
->isLocalVarDeclOrParm()) {
4691 Diag(New
->getLocation(), diag::err_extern_non_extern
) << New
->getDeclName();
4692 Diag(OldLocation
, PrevDiag
);
4693 return New
->setInvalidDecl();
4695 if (Old
->hasLinkage() && New
->isLocalVarDeclOrParm() &&
4696 !New
->hasExternalStorage()) {
4697 Diag(New
->getLocation(), diag::err_non_extern_extern
) << New
->getDeclName();
4698 Diag(OldLocation
, PrevDiag
);
4699 return New
->setInvalidDecl();
4702 if (CheckRedeclarationInModule(New
, Old
))
4705 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4707 // FIXME: The test for external storage here seems wrong? We still
4708 // need to check for mismatches.
4709 if (!New
->hasExternalStorage() && !New
->isFileVarDecl() &&
4710 // Don't complain about out-of-line definitions of static members.
4711 !(Old
->getLexicalDeclContext()->isRecord() &&
4712 !New
->getLexicalDeclContext()->isRecord())) {
4713 Diag(New
->getLocation(), diag::err_redefinition
) << New
->getDeclName();
4714 Diag(OldLocation
, PrevDiag
);
4715 return New
->setInvalidDecl();
4718 if (New
->isInline() && !Old
->getMostRecentDecl()->isInline()) {
4719 if (VarDecl
*Def
= Old
->getDefinition()) {
4720 // C++1z [dcl.fcn.spec]p4:
4721 // If the definition of a variable appears in a translation unit before
4722 // its first declaration as inline, the program is ill-formed.
4723 Diag(New
->getLocation(), diag::err_inline_decl_follows_def
) << New
;
4724 Diag(Def
->getLocation(), diag::note_previous_definition
);
4728 // If this redeclaration makes the variable inline, we may need to add it to
4729 // UndefinedButUsed.
4730 if (!Old
->isInline() && New
->isInline() && Old
->isUsed(false) &&
4731 !Old
->getDefinition() && !New
->isThisDeclarationADefinition())
4732 UndefinedButUsed
.insert(std::make_pair(Old
->getCanonicalDecl(),
4735 if (New
->getTLSKind() != Old
->getTLSKind()) {
4736 if (!Old
->getTLSKind()) {
4737 Diag(New
->getLocation(), diag::err_thread_non_thread
) << New
->getDeclName();
4738 Diag(OldLocation
, PrevDiag
);
4739 } else if (!New
->getTLSKind()) {
4740 Diag(New
->getLocation(), diag::err_non_thread_thread
) << New
->getDeclName();
4741 Diag(OldLocation
, PrevDiag
);
4743 // Do not allow redeclaration to change the variable between requiring
4744 // static and dynamic initialization.
4745 // FIXME: GCC allows this, but uses the TLS keyword on the first
4746 // declaration to determine the kind. Do we need to be compatible here?
4747 Diag(New
->getLocation(), diag::err_thread_thread_different_kind
)
4748 << New
->getDeclName() << (New
->getTLSKind() == VarDecl::TLS_Dynamic
);
4749 Diag(OldLocation
, PrevDiag
);
4753 // C++ doesn't have tentative definitions, so go right ahead and check here.
4754 if (getLangOpts().CPlusPlus
) {
4755 if (Old
->isStaticDataMember() && Old
->getCanonicalDecl()->isInline() &&
4756 Old
->getCanonicalDecl()->isConstexpr()) {
4757 // This definition won't be a definition any more once it's been merged.
4758 Diag(New
->getLocation(),
4759 diag::warn_deprecated_redundant_constexpr_static_def
);
4760 } else if (New
->isThisDeclarationADefinition() == VarDecl::Definition
) {
4761 VarDecl
*Def
= Old
->getDefinition();
4762 if (Def
&& checkVarDeclRedefinition(Def
, New
))
4767 if (haveIncompatibleLanguageLinkages(Old
, New
)) {
4768 Diag(New
->getLocation(), diag::err_different_language_linkage
) << New
;
4769 Diag(OldLocation
, PrevDiag
);
4770 New
->setInvalidDecl();
4774 // Merge "used" flag.
4775 if (Old
->getMostRecentDecl()->isUsed(false))
4778 // Keep a chain of previous declarations.
4779 New
->setPreviousDecl(Old
);
4781 NewTemplate
->setPreviousDecl(OldTemplate
);
4783 // Inherit access appropriately.
4784 New
->setAccess(Old
->getAccess());
4786 NewTemplate
->setAccess(New
->getAccess());
4788 if (Old
->isInline())
4789 New
->setImplicitlyInline();
4792 void Sema::notePreviousDefinition(const NamedDecl
*Old
, SourceLocation New
) {
4793 SourceManager
&SrcMgr
= getSourceManager();
4794 auto FNewDecLoc
= SrcMgr
.getDecomposedLoc(New
);
4795 auto FOldDecLoc
= SrcMgr
.getDecomposedLoc(Old
->getLocation());
4796 auto *FNew
= SrcMgr
.getFileEntryForID(FNewDecLoc
.first
);
4797 auto FOld
= SrcMgr
.getFileEntryRefForID(FOldDecLoc
.first
);
4798 auto &HSI
= PP
.getHeaderSearchInfo();
4799 StringRef HdrFilename
=
4800 SrcMgr
.getFilename(SrcMgr
.getSpellingLoc(Old
->getLocation()));
4802 auto noteFromModuleOrInclude
= [&](Module
*Mod
,
4803 SourceLocation IncLoc
) -> bool {
4804 // Redefinition errors with modules are common with non modular mapped
4805 // headers, example: a non-modular header H in module A that also gets
4806 // included directly in a TU. Pointing twice to the same header/definition
4807 // is confusing, try to get better diagnostics when modules is on.
4808 if (IncLoc
.isValid()) {
4810 Diag(IncLoc
, diag::note_redefinition_modules_same_file
)
4811 << HdrFilename
.str() << Mod
->getFullModuleName();
4812 if (!Mod
->DefinitionLoc
.isInvalid())
4813 Diag(Mod
->DefinitionLoc
, diag::note_defined_here
)
4814 << Mod
->getFullModuleName();
4816 Diag(IncLoc
, diag::note_redefinition_include_same_file
)
4817 << HdrFilename
.str();
4825 // Is it the same file and same offset? Provide more information on why
4826 // this leads to a redefinition error.
4827 if (FNew
== FOld
&& FNewDecLoc
.second
== FOldDecLoc
.second
) {
4828 SourceLocation OldIncLoc
= SrcMgr
.getIncludeLoc(FOldDecLoc
.first
);
4829 SourceLocation NewIncLoc
= SrcMgr
.getIncludeLoc(FNewDecLoc
.first
);
4831 noteFromModuleOrInclude(Old
->getOwningModule(), OldIncLoc
);
4832 EmittedDiag
|= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc
);
4834 // If the header has no guards, emit a note suggesting one.
4835 if (FOld
&& !HSI
.isFileMultipleIncludeGuarded(*FOld
))
4836 Diag(Old
->getLocation(), diag::note_use_ifdef_guards
);
4842 // Redefinition coming from different files or couldn't do better above.
4843 if (Old
->getLocation().isValid())
4844 Diag(Old
->getLocation(), diag::note_previous_definition
);
4847 /// We've just determined that \p Old and \p New both appear to be definitions
4848 /// of the same variable. Either diagnose or fix the problem.
4849 bool Sema::checkVarDeclRedefinition(VarDecl
*Old
, VarDecl
*New
) {
4850 if (!hasVisibleDefinition(Old
) &&
4851 (New
->getFormalLinkage() == Linkage::Internal
|| New
->isInline() ||
4852 isa
<VarTemplateSpecializationDecl
>(New
) ||
4853 New
->getDescribedVarTemplate() || New
->getNumTemplateParameterLists() ||
4854 New
->getDeclContext()->isDependentContext())) {
4855 // The previous definition is hidden, and multiple definitions are
4856 // permitted (in separate TUs). Demote this to a declaration.
4857 New
->demoteThisDefinitionToDeclaration();
4859 // Make the canonical definition visible.
4860 if (auto *OldTD
= Old
->getDescribedVarTemplate())
4861 makeMergedDefinitionVisible(OldTD
);
4862 makeMergedDefinitionVisible(Old
);
4865 Diag(New
->getLocation(), diag::err_redefinition
) << New
;
4866 notePreviousDefinition(Old
, New
->getLocation());
4867 New
->setInvalidDecl();
4872 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4873 /// no declarator (e.g. "struct foo;") is parsed.
4874 Decl
*Sema::ParsedFreeStandingDeclSpec(Scope
*S
, AccessSpecifier AS
,
4876 const ParsedAttributesView
&DeclAttrs
,
4877 RecordDecl
*&AnonRecord
) {
4878 return ParsedFreeStandingDeclSpec(
4879 S
, AS
, DS
, DeclAttrs
, MultiTemplateParamsArg(), false, AnonRecord
);
4882 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4883 // disambiguate entities defined in different scopes.
4884 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4886 // We will pick our mangling number depending on which version of MSVC is being
4888 static unsigned getMSManglingNumber(const LangOptions
&LO
, Scope
*S
) {
4889 return LO
.isCompatibleWithMSVC(LangOptions::MSVC2015
)
4890 ? S
->getMSCurManglingNumber()
4891 : S
->getMSLastManglingNumber();
4894 void Sema::handleTagNumbering(const TagDecl
*Tag
, Scope
*TagScope
) {
4895 if (!Context
.getLangOpts().CPlusPlus
)
4898 if (isa
<CXXRecordDecl
>(Tag
->getParent())) {
4899 // If this tag is the direct child of a class, number it if
4901 if (!Tag
->getName().empty() || Tag
->getTypedefNameForAnonDecl())
4903 MangleNumberingContext
&MCtx
=
4904 Context
.getManglingNumberContext(Tag
->getParent());
4905 Context
.setManglingNumber(
4906 Tag
, MCtx
.getManglingNumber(
4907 Tag
, getMSManglingNumber(getLangOpts(), TagScope
)));
4911 // If this tag isn't a direct child of a class, number it if it is local.
4912 MangleNumberingContext
*MCtx
;
4913 Decl
*ManglingContextDecl
;
4914 std::tie(MCtx
, ManglingContextDecl
) =
4915 getCurrentMangleNumberContext(Tag
->getDeclContext());
4917 Context
.setManglingNumber(
4918 Tag
, MCtx
->getManglingNumber(
4919 Tag
, getMSManglingNumber(getLangOpts(), TagScope
)));
4924 struct NonCLikeKind
{
4936 explicit operator bool() { return Kind
!= None
; }
4940 /// Determine whether a class is C-like, according to the rules of C++
4941 /// [dcl.typedef] for anonymous classes with typedef names for linkage.
4942 static NonCLikeKind
getNonCLikeKindForAnonymousStruct(const CXXRecordDecl
*RD
) {
4943 if (RD
->isInvalidDecl())
4944 return {NonCLikeKind::Invalid
, {}};
4946 // C++ [dcl.typedef]p9: [P1766R1]
4947 // An unnamed class with a typedef name for linkage purposes shall not
4949 // -- have any base classes
4950 if (RD
->getNumBases())
4951 return {NonCLikeKind::BaseClass
,
4952 SourceRange(RD
->bases_begin()->getBeginLoc(),
4953 RD
->bases_end()[-1].getEndLoc())};
4954 bool Invalid
= false;
4955 for (Decl
*D
: RD
->decls()) {
4956 // Don't complain about things we already diagnosed.
4957 if (D
->isInvalidDecl()) {
4962 // -- have any [...] default member initializers
4963 if (auto *FD
= dyn_cast
<FieldDecl
>(D
)) {
4964 if (FD
->hasInClassInitializer()) {
4965 auto *Init
= FD
->getInClassInitializer();
4966 return {NonCLikeKind::DefaultMemberInit
,
4967 Init
? Init
->getSourceRange() : D
->getSourceRange()};
4972 // FIXME: We don't allow friend declarations. This violates the wording of
4973 // P1766, but not the intent.
4974 if (isa
<FriendDecl
>(D
))
4975 return {NonCLikeKind::Friend
, D
->getSourceRange()};
4977 // -- declare any members other than non-static data members, member
4978 // enumerations, or member classes,
4979 if (isa
<StaticAssertDecl
>(D
) || isa
<IndirectFieldDecl
>(D
) ||
4982 auto *MemberRD
= dyn_cast
<CXXRecordDecl
>(D
);
4984 if (D
->isImplicit())
4986 return {NonCLikeKind::OtherMember
, D
->getSourceRange()};
4989 // -- contain a lambda-expression,
4990 if (MemberRD
->isLambda())
4991 return {NonCLikeKind::Lambda
, MemberRD
->getSourceRange()};
4993 // and all member classes shall also satisfy these requirements
4995 if (MemberRD
->isThisDeclarationADefinition()) {
4996 if (auto Kind
= getNonCLikeKindForAnonymousStruct(MemberRD
))
5001 return {Invalid
? NonCLikeKind::Invalid
: NonCLikeKind::None
, {}};
5004 void Sema::setTagNameForLinkagePurposes(TagDecl
*TagFromDeclSpec
,
5005 TypedefNameDecl
*NewTD
) {
5006 if (TagFromDeclSpec
->isInvalidDecl())
5009 // Do nothing if the tag already has a name for linkage purposes.
5010 if (TagFromDeclSpec
->hasNameForLinkage())
5013 // A well-formed anonymous tag must always be a TUK_Definition.
5014 assert(TagFromDeclSpec
->isThisDeclarationADefinition());
5016 // The type must match the tag exactly; no qualifiers allowed.
5017 if (!Context
.hasSameType(NewTD
->getUnderlyingType(),
5018 Context
.getTagDeclType(TagFromDeclSpec
))) {
5019 if (getLangOpts().CPlusPlus
)
5020 Context
.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec
, NewTD
);
5024 // C++ [dcl.typedef]p9: [P1766R1, applied as DR]
5025 // An unnamed class with a typedef name for linkage purposes shall [be
5028 // FIXME: Also diagnose if we've already computed the linkage. That ideally
5029 // shouldn't happen, but there are constructs that the language rule doesn't
5030 // disallow for which we can't reasonably avoid computing linkage early.
5031 const CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(TagFromDeclSpec
);
5032 NonCLikeKind NonCLike
= RD
? getNonCLikeKindForAnonymousStruct(RD
)
5034 bool ChangesLinkage
= TagFromDeclSpec
->hasLinkageBeenComputed();
5035 if (NonCLike
|| ChangesLinkage
) {
5036 if (NonCLike
.Kind
== NonCLikeKind::Invalid
)
5039 unsigned DiagID
= diag::ext_non_c_like_anon_struct_in_typedef
;
5040 if (ChangesLinkage
) {
5041 // If the linkage changes, we can't accept this as an extension.
5042 if (NonCLike
.Kind
== NonCLikeKind::None
)
5043 DiagID
= diag::err_typedef_changes_linkage
;
5045 DiagID
= diag::err_non_c_like_anon_struct_in_typedef
;
5048 SourceLocation FixitLoc
=
5049 getLocForEndOfToken(TagFromDeclSpec
->getInnerLocStart());
5050 llvm::SmallString
<40> TextToInsert
;
5051 TextToInsert
+= ' ';
5052 TextToInsert
+= NewTD
->getIdentifier()->getName();
5054 Diag(FixitLoc
, DiagID
)
5055 << isa
<TypeAliasDecl
>(NewTD
)
5056 << FixItHint::CreateInsertion(FixitLoc
, TextToInsert
);
5057 if (NonCLike
.Kind
!= NonCLikeKind::None
) {
5058 Diag(NonCLike
.Range
.getBegin(), diag::note_non_c_like_anon_struct
)
5059 << NonCLike
.Kind
- 1 << NonCLike
.Range
;
5061 Diag(NewTD
->getLocation(), diag::note_typedef_for_linkage_here
)
5062 << NewTD
<< isa
<TypeAliasDecl
>(NewTD
);
5068 // Otherwise, set this as the anon-decl typedef for the tag.
5069 TagFromDeclSpec
->setTypedefNameForAnonDecl(NewTD
);
5072 static unsigned GetDiagnosticTypeSpecifierID(const DeclSpec
&DS
) {
5073 DeclSpec::TST T
= DS
.getTypeSpecType();
5075 case DeclSpec::TST_class
:
5077 case DeclSpec::TST_struct
:
5079 case DeclSpec::TST_interface
:
5081 case DeclSpec::TST_union
:
5083 case DeclSpec::TST_enum
:
5084 if (const auto *ED
= dyn_cast
<EnumDecl
>(DS
.getRepAsDecl())) {
5085 if (ED
->isScopedUsingClassTag())
5092 llvm_unreachable("unexpected type specifier");
5095 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
5096 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
5097 /// parameters to cope with template friend declarations.
5098 Decl
*Sema::ParsedFreeStandingDeclSpec(Scope
*S
, AccessSpecifier AS
,
5100 const ParsedAttributesView
&DeclAttrs
,
5101 MultiTemplateParamsArg TemplateParams
,
5102 bool IsExplicitInstantiation
,
5103 RecordDecl
*&AnonRecord
) {
5104 Decl
*TagD
= nullptr;
5105 TagDecl
*Tag
= nullptr;
5106 if (DS
.getTypeSpecType() == DeclSpec::TST_class
||
5107 DS
.getTypeSpecType() == DeclSpec::TST_struct
||
5108 DS
.getTypeSpecType() == DeclSpec::TST_interface
||
5109 DS
.getTypeSpecType() == DeclSpec::TST_union
||
5110 DS
.getTypeSpecType() == DeclSpec::TST_enum
) {
5111 TagD
= DS
.getRepAsDecl();
5113 if (!TagD
) // We probably had an error
5116 // Note that the above type specs guarantee that the
5117 // type rep is a Decl, whereas in many of the others
5119 if (isa
<TagDecl
>(TagD
))
5120 Tag
= cast
<TagDecl
>(TagD
);
5121 else if (ClassTemplateDecl
*CTD
= dyn_cast
<ClassTemplateDecl
>(TagD
))
5122 Tag
= CTD
->getTemplatedDecl();
5126 handleTagNumbering(Tag
, S
);
5127 Tag
->setFreeStanding();
5128 if (Tag
->isInvalidDecl())
5132 if (unsigned TypeQuals
= DS
.getTypeQualifiers()) {
5133 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
5134 // or incomplete types shall not be restrict-qualified."
5135 if (TypeQuals
& DeclSpec::TQ_restrict
)
5136 Diag(DS
.getRestrictSpecLoc(),
5137 diag::err_typecheck_invalid_restrict_not_pointer_noarg
)
5138 << DS
.getSourceRange();
5141 if (DS
.isInlineSpecified())
5142 Diag(DS
.getInlineSpecLoc(), diag::err_inline_non_function
)
5143 << getLangOpts().CPlusPlus17
;
5145 if (DS
.hasConstexprSpecifier()) {
5146 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
5147 // and definitions of functions and variables.
5148 // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
5149 // the declaration of a function or function template
5151 Diag(DS
.getConstexprSpecLoc(), diag::err_constexpr_tag
)
5152 << GetDiagnosticTypeSpecifierID(DS
)
5153 << static_cast<int>(DS
.getConstexprSpecifier());
5155 Diag(DS
.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind
)
5156 << static_cast<int>(DS
.getConstexprSpecifier());
5157 // Don't emit warnings after this error.
5161 DiagnoseFunctionSpecifiers(DS
);
5163 if (DS
.isFriendSpecified()) {
5164 // If we're dealing with a decl but not a TagDecl, assume that
5165 // whatever routines created it handled the friendship aspect.
5168 return ActOnFriendTypeDecl(S
, DS
, TemplateParams
);
5171 const CXXScopeSpec
&SS
= DS
.getTypeSpecScope();
5172 bool IsExplicitSpecialization
=
5173 !TemplateParams
.empty() && TemplateParams
.back()->size() == 0;
5174 if (Tag
&& SS
.isNotEmpty() && !Tag
->isCompleteDefinition() &&
5175 !IsExplicitInstantiation
&& !IsExplicitSpecialization
&&
5176 !isa
<ClassTemplatePartialSpecializationDecl
>(Tag
)) {
5177 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
5178 // nested-name-specifier unless it is an explicit instantiation
5179 // or an explicit specialization.
5181 // FIXME: We allow class template partial specializations here too, per the
5182 // obvious intent of DR1819.
5184 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
5185 Diag(SS
.getBeginLoc(), diag::err_standalone_class_nested_name_specifier
)
5186 << GetDiagnosticTypeSpecifierID(DS
) << SS
.getRange();
5190 // Track whether this decl-specifier declares anything.
5191 bool DeclaresAnything
= true;
5193 // Handle anonymous struct definitions.
5194 if (RecordDecl
*Record
= dyn_cast_or_null
<RecordDecl
>(Tag
)) {
5195 if (!Record
->getDeclName() && Record
->isCompleteDefinition() &&
5196 DS
.getStorageClassSpec() != DeclSpec::SCS_typedef
) {
5197 if (getLangOpts().CPlusPlus
||
5198 Record
->getDeclContext()->isRecord()) {
5199 // If CurContext is a DeclContext that can contain statements,
5200 // RecursiveASTVisitor won't visit the decls that
5201 // BuildAnonymousStructOrUnion() will put into CurContext.
5202 // Also store them here so that they can be part of the
5203 // DeclStmt that gets created in this case.
5204 // FIXME: Also return the IndirectFieldDecls created by
5205 // BuildAnonymousStructOr union, for the same reason?
5206 if (CurContext
->isFunctionOrMethod())
5207 AnonRecord
= Record
;
5208 return BuildAnonymousStructOrUnion(S
, DS
, AS
, Record
,
5209 Context
.getPrintingPolicy());
5212 DeclaresAnything
= false;
5217 // A struct-declaration that does not declare an anonymous structure or
5218 // anonymous union shall contain a struct-declarator-list.
5220 // This rule also existed in C89 and C99; the grammar for struct-declaration
5221 // did not permit a struct-declaration without a struct-declarator-list.
5222 if (!getLangOpts().CPlusPlus
&& CurContext
->isRecord() &&
5223 DS
.getStorageClassSpec() == DeclSpec::SCS_unspecified
) {
5224 // Check for Microsoft C extension: anonymous struct/union member.
5225 // Handle 2 kinds of anonymous struct/union:
5229 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
5230 // UNION_TYPE; <- where UNION_TYPE is a typedef union.
5231 if ((Tag
&& Tag
->getDeclName()) ||
5232 DS
.getTypeSpecType() == DeclSpec::TST_typename
) {
5233 RecordDecl
*Record
= nullptr;
5235 Record
= dyn_cast
<RecordDecl
>(Tag
);
5236 else if (const RecordType
*RT
=
5237 DS
.getRepAsType().get()->getAsStructureType())
5238 Record
= RT
->getDecl();
5239 else if (const RecordType
*UT
= DS
.getRepAsType().get()->getAsUnionType())
5240 Record
= UT
->getDecl();
5242 if (Record
&& getLangOpts().MicrosoftExt
) {
5243 Diag(DS
.getBeginLoc(), diag::ext_ms_anonymous_record
)
5244 << Record
->isUnion() << DS
.getSourceRange();
5245 return BuildMicrosoftCAnonymousStruct(S
, DS
, Record
);
5248 DeclaresAnything
= false;
5252 // Skip all the checks below if we have a type error.
5253 if (DS
.getTypeSpecType() == DeclSpec::TST_error
||
5254 (TagD
&& TagD
->isInvalidDecl()))
5257 if (getLangOpts().CPlusPlus
&&
5258 DS
.getStorageClassSpec() != DeclSpec::SCS_typedef
)
5259 if (EnumDecl
*Enum
= dyn_cast_or_null
<EnumDecl
>(Tag
))
5260 if (Enum
->enumerator_begin() == Enum
->enumerator_end() &&
5261 !Enum
->getIdentifier() && !Enum
->isInvalidDecl())
5262 DeclaresAnything
= false;
5264 if (!DS
.isMissingDeclaratorOk()) {
5265 // Customize diagnostic for a typedef missing a name.
5266 if (DS
.getStorageClassSpec() == DeclSpec::SCS_typedef
)
5267 Diag(DS
.getBeginLoc(), diag::ext_typedef_without_a_name
)
5268 << DS
.getSourceRange();
5270 DeclaresAnything
= false;
5273 if (DS
.isModulePrivateSpecified() &&
5274 Tag
&& Tag
->getDeclContext()->isFunctionOrMethod())
5275 Diag(DS
.getModulePrivateSpecLoc(), diag::err_module_private_local_class
)
5276 << llvm::to_underlying(Tag
->getTagKind())
5277 << FixItHint::CreateRemoval(DS
.getModulePrivateSpecLoc());
5279 ActOnDocumentableDecl(TagD
);
5282 // A declaration [...] shall declare at least a declarator [...], a tag,
5283 // or the members of an enumeration.
5285 // [If there are no declarators], and except for the declaration of an
5286 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
5287 // names into the program, or shall redeclare a name introduced by a
5288 // previous declaration.
5289 if (!DeclaresAnything
) {
5290 // In C, we allow this as a (popular) extension / bug. Don't bother
5291 // producing further diagnostics for redundant qualifiers after this.
5292 Diag(DS
.getBeginLoc(), (IsExplicitInstantiation
|| !TemplateParams
.empty())
5293 ? diag::err_no_declarators
5294 : diag::ext_no_declarators
)
5295 << DS
.getSourceRange();
5300 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
5301 // init-declarator-list of the declaration shall not be empty.
5302 // C++ [dcl.fct.spec]p1:
5303 // If a cv-qualifier appears in a decl-specifier-seq, the
5304 // init-declarator-list of the declaration shall not be empty.
5306 // Spurious qualifiers here appear to be valid in C.
5307 unsigned DiagID
= diag::warn_standalone_specifier
;
5308 if (getLangOpts().CPlusPlus
)
5309 DiagID
= diag::ext_standalone_specifier
;
5311 // Note that a linkage-specification sets a storage class, but
5312 // 'extern "C" struct foo;' is actually valid and not theoretically
5314 if (DeclSpec::SCS SCS
= DS
.getStorageClassSpec()) {
5315 if (SCS
== DeclSpec::SCS_mutable
)
5316 // Since mutable is not a viable storage class specifier in C, there is
5317 // no reason to treat it as an extension. Instead, diagnose as an error.
5318 Diag(DS
.getStorageClassSpecLoc(), diag::err_mutable_nonmember
);
5319 else if (!DS
.isExternInLinkageSpec() && SCS
!= DeclSpec::SCS_typedef
)
5320 Diag(DS
.getStorageClassSpecLoc(), DiagID
)
5321 << DeclSpec::getSpecifierName(SCS
);
5324 if (DeclSpec::TSCS TSCS
= DS
.getThreadStorageClassSpec())
5325 Diag(DS
.getThreadStorageClassSpecLoc(), DiagID
)
5326 << DeclSpec::getSpecifierName(TSCS
);
5327 if (DS
.getTypeQualifiers()) {
5328 if (DS
.getTypeQualifiers() & DeclSpec::TQ_const
)
5329 Diag(DS
.getConstSpecLoc(), DiagID
) << "const";
5330 if (DS
.getTypeQualifiers() & DeclSpec::TQ_volatile
)
5331 Diag(DS
.getConstSpecLoc(), DiagID
) << "volatile";
5332 // Restrict is covered above.
5333 if (DS
.getTypeQualifiers() & DeclSpec::TQ_atomic
)
5334 Diag(DS
.getAtomicSpecLoc(), DiagID
) << "_Atomic";
5335 if (DS
.getTypeQualifiers() & DeclSpec::TQ_unaligned
)
5336 Diag(DS
.getUnalignedSpecLoc(), DiagID
) << "__unaligned";
5339 // Warn about ignored type attributes, for example:
5340 // __attribute__((aligned)) struct A;
5341 // Attributes should be placed after tag to apply to type declaration.
5342 if (!DS
.getAttributes().empty() || !DeclAttrs
.empty()) {
5343 DeclSpec::TST TypeSpecType
= DS
.getTypeSpecType();
5344 if (TypeSpecType
== DeclSpec::TST_class
||
5345 TypeSpecType
== DeclSpec::TST_struct
||
5346 TypeSpecType
== DeclSpec::TST_interface
||
5347 TypeSpecType
== DeclSpec::TST_union
||
5348 TypeSpecType
== DeclSpec::TST_enum
) {
5349 for (const ParsedAttr
&AL
: DS
.getAttributes())
5350 Diag(AL
.getLoc(), AL
.isRegularKeywordAttribute()
5351 ? diag::err_declspec_keyword_has_no_effect
5352 : diag::warn_declspec_attribute_ignored
)
5353 << AL
<< GetDiagnosticTypeSpecifierID(DS
);
5354 for (const ParsedAttr
&AL
: DeclAttrs
)
5355 Diag(AL
.getLoc(), AL
.isRegularKeywordAttribute()
5356 ? diag::err_declspec_keyword_has_no_effect
5357 : diag::warn_declspec_attribute_ignored
)
5358 << AL
<< GetDiagnosticTypeSpecifierID(DS
);
5365 /// We are trying to inject an anonymous member into the given scope;
5366 /// check if there's an existing declaration that can't be overloaded.
5368 /// \return true if this is a forbidden redeclaration
5369 static bool CheckAnonMemberRedeclaration(Sema
&SemaRef
, Scope
*S
,
5371 DeclarationName Name
,
5372 SourceLocation NameLoc
, bool IsUnion
,
5374 LookupResult
R(SemaRef
, Name
, NameLoc
,
5375 Owner
->isRecord() ? Sema::LookupMemberName
5376 : Sema::LookupOrdinaryName
,
5377 Sema::ForVisibleRedeclaration
);
5378 if (!SemaRef
.LookupName(R
, S
)) return false;
5380 // Pick a representative declaration.
5381 NamedDecl
*PrevDecl
= R
.getRepresentativeDecl()->getUnderlyingDecl();
5382 assert(PrevDecl
&& "Expected a non-null Decl");
5384 if (!SemaRef
.isDeclInScope(PrevDecl
, Owner
, S
))
5387 if (SC
== StorageClass::SC_None
&&
5388 PrevDecl
->isPlaceholderVar(SemaRef
.getLangOpts()) &&
5389 (Owner
->isFunctionOrMethod() || Owner
->isRecord())) {
5390 if (!Owner
->isRecord())
5391 SemaRef
.DiagPlaceholderVariableDefinition(NameLoc
);
5395 SemaRef
.Diag(NameLoc
, diag::err_anonymous_record_member_redecl
)
5397 SemaRef
.Diag(PrevDecl
->getLocation(), diag::note_previous_declaration
);
5402 void Sema::ActOnDefinedDeclarationSpecifier(Decl
*D
) {
5403 if (auto *RD
= dyn_cast_if_present
<RecordDecl
>(D
))
5404 DiagPlaceholderFieldDeclDefinitions(RD
);
5407 /// Emit diagnostic warnings for placeholder members.
5408 /// We can only do that after the class is fully constructed,
5409 /// as anonymous union/structs can insert placeholders
5410 /// in their parent scope (which might be a Record).
5411 void Sema::DiagPlaceholderFieldDeclDefinitions(RecordDecl
*Record
) {
5412 if (!getLangOpts().CPlusPlus
)
5415 // This function can be parsed before we have validated the
5416 // structure as an anonymous struct
5417 if (Record
->isAnonymousStructOrUnion())
5420 const NamedDecl
*First
= 0;
5421 for (const Decl
*D
: Record
->decls()) {
5422 const NamedDecl
*ND
= dyn_cast
<NamedDecl
>(D
);
5423 if (!ND
|| !ND
->isPlaceholderVar(getLangOpts()))
5428 DiagPlaceholderVariableDefinition(ND
->getLocation());
5432 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
5433 /// anonymous struct or union AnonRecord into the owning context Owner
5434 /// and scope S. This routine will be invoked just after we realize
5435 /// that an unnamed union or struct is actually an anonymous union or
5442 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
5443 /// // f into the surrounding scope.x
5446 /// This routine is recursive, injecting the names of nested anonymous
5447 /// structs/unions into the owning context and scope as well.
5449 InjectAnonymousStructOrUnionMembers(Sema
&SemaRef
, Scope
*S
, DeclContext
*Owner
,
5450 RecordDecl
*AnonRecord
, AccessSpecifier AS
,
5452 SmallVectorImpl
<NamedDecl
*> &Chaining
) {
5453 bool Invalid
= false;
5455 // Look every FieldDecl and IndirectFieldDecl with a name.
5456 for (auto *D
: AnonRecord
->decls()) {
5457 if ((isa
<FieldDecl
>(D
) || isa
<IndirectFieldDecl
>(D
)) &&
5458 cast
<NamedDecl
>(D
)->getDeclName()) {
5459 ValueDecl
*VD
= cast
<ValueDecl
>(D
);
5460 if (CheckAnonMemberRedeclaration(SemaRef
, S
, Owner
, VD
->getDeclName(),
5461 VD
->getLocation(), AnonRecord
->isUnion(),
5463 // C++ [class.union]p2:
5464 // The names of the members of an anonymous union shall be
5465 // distinct from the names of any other entity in the
5466 // scope in which the anonymous union is declared.
5469 // C++ [class.union]p2:
5470 // For the purpose of name lookup, after the anonymous union
5471 // definition, the members of the anonymous union are
5472 // considered to have been defined in the scope in which the
5473 // anonymous union is declared.
5474 unsigned OldChainingSize
= Chaining
.size();
5475 if (IndirectFieldDecl
*IF
= dyn_cast
<IndirectFieldDecl
>(VD
))
5476 Chaining
.append(IF
->chain_begin(), IF
->chain_end());
5478 Chaining
.push_back(VD
);
5480 assert(Chaining
.size() >= 2);
5481 NamedDecl
**NamedChain
=
5482 new (SemaRef
.Context
)NamedDecl
*[Chaining
.size()];
5483 for (unsigned i
= 0; i
< Chaining
.size(); i
++)
5484 NamedChain
[i
] = Chaining
[i
];
5486 IndirectFieldDecl
*IndirectField
= IndirectFieldDecl::Create(
5487 SemaRef
.Context
, Owner
, VD
->getLocation(), VD
->getIdentifier(),
5488 VD
->getType(), {NamedChain
, Chaining
.size()});
5490 for (const auto *Attr
: VD
->attrs())
5491 IndirectField
->addAttr(Attr
->clone(SemaRef
.Context
));
5493 IndirectField
->setAccess(AS
);
5494 IndirectField
->setImplicit();
5495 SemaRef
.PushOnScopeChains(IndirectField
, S
);
5497 // That includes picking up the appropriate access specifier.
5498 if (AS
!= AS_none
) IndirectField
->setAccess(AS
);
5500 Chaining
.resize(OldChainingSize
);
5508 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
5509 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
5510 /// illegal input values are mapped to SC_None.
5512 StorageClassSpecToVarDeclStorageClass(const DeclSpec
&DS
) {
5513 DeclSpec::SCS StorageClassSpec
= DS
.getStorageClassSpec();
5514 assert(StorageClassSpec
!= DeclSpec::SCS_typedef
&&
5515 "Parser allowed 'typedef' as storage class VarDecl.");
5516 switch (StorageClassSpec
) {
5517 case DeclSpec::SCS_unspecified
: return SC_None
;
5518 case DeclSpec::SCS_extern
:
5519 if (DS
.isExternInLinkageSpec())
5522 case DeclSpec::SCS_static
: return SC_Static
;
5523 case DeclSpec::SCS_auto
: return SC_Auto
;
5524 case DeclSpec::SCS_register
: return SC_Register
;
5525 case DeclSpec::SCS_private_extern
: return SC_PrivateExtern
;
5526 // Illegal SCSs map to None: error reporting is up to the caller.
5527 case DeclSpec::SCS_mutable
: // Fall through.
5528 case DeclSpec::SCS_typedef
: return SC_None
;
5530 llvm_unreachable("unknown storage class specifier");
5533 static SourceLocation
findDefaultInitializer(const CXXRecordDecl
*Record
) {
5534 assert(Record
->hasInClassInitializer());
5536 for (const auto *I
: Record
->decls()) {
5537 const auto *FD
= dyn_cast
<FieldDecl
>(I
);
5538 if (const auto *IFD
= dyn_cast
<IndirectFieldDecl
>(I
))
5539 FD
= IFD
->getAnonField();
5540 if (FD
&& FD
->hasInClassInitializer())
5541 return FD
->getLocation();
5544 llvm_unreachable("couldn't find in-class initializer");
5547 static void checkDuplicateDefaultInit(Sema
&S
, CXXRecordDecl
*Parent
,
5548 SourceLocation DefaultInitLoc
) {
5549 if (!Parent
->isUnion() || !Parent
->hasInClassInitializer())
5552 S
.Diag(DefaultInitLoc
, diag::err_multiple_mem_union_initialization
);
5553 S
.Diag(findDefaultInitializer(Parent
), diag::note_previous_initializer
) << 0;
5556 static void checkDuplicateDefaultInit(Sema
&S
, CXXRecordDecl
*Parent
,
5557 CXXRecordDecl
*AnonUnion
) {
5558 if (!Parent
->isUnion() || !Parent
->hasInClassInitializer())
5561 checkDuplicateDefaultInit(S
, Parent
, findDefaultInitializer(AnonUnion
));
5564 /// BuildAnonymousStructOrUnion - Handle the declaration of an
5565 /// anonymous structure or union. Anonymous unions are a C++ feature
5566 /// (C++ [class.union]) and a C11 feature; anonymous structures
5567 /// are a C11 feature and GNU C++ extension.
5568 Decl
*Sema::BuildAnonymousStructOrUnion(Scope
*S
, DeclSpec
&DS
,
5571 const PrintingPolicy
&Policy
) {
5572 DeclContext
*Owner
= Record
->getDeclContext();
5574 // Diagnose whether this anonymous struct/union is an extension.
5575 if (Record
->isUnion() && !getLangOpts().CPlusPlus
&& !getLangOpts().C11
)
5576 Diag(Record
->getLocation(), diag::ext_anonymous_union
);
5577 else if (!Record
->isUnion() && getLangOpts().CPlusPlus
)
5578 Diag(Record
->getLocation(), diag::ext_gnu_anonymous_struct
);
5579 else if (!Record
->isUnion() && !getLangOpts().C11
)
5580 Diag(Record
->getLocation(), diag::ext_c11_anonymous_struct
);
5582 // C and C++ require different kinds of checks for anonymous
5584 bool Invalid
= false;
5585 if (getLangOpts().CPlusPlus
) {
5586 const char *PrevSpec
= nullptr;
5587 if (Record
->isUnion()) {
5588 // C++ [class.union]p6:
5589 // C++17 [class.union.anon]p2:
5590 // Anonymous unions declared in a named namespace or in the
5591 // global namespace shall be declared static.
5593 DeclContext
*OwnerScope
= Owner
->getRedeclContext();
5594 if (DS
.getStorageClassSpec() != DeclSpec::SCS_static
&&
5595 (OwnerScope
->isTranslationUnit() ||
5596 (OwnerScope
->isNamespace() &&
5597 !cast
<NamespaceDecl
>(OwnerScope
)->isAnonymousNamespace()))) {
5598 Diag(Record
->getLocation(), diag::err_anonymous_union_not_static
)
5599 << FixItHint::CreateInsertion(Record
->getLocation(), "static ");
5601 // Recover by adding 'static'.
5602 DS
.SetStorageClassSpec(*this, DeclSpec::SCS_static
, SourceLocation(),
5603 PrevSpec
, DiagID
, Policy
);
5605 // C++ [class.union]p6:
5606 // A storage class is not allowed in a declaration of an
5607 // anonymous union in a class scope.
5608 else if (DS
.getStorageClassSpec() != DeclSpec::SCS_unspecified
&&
5609 isa
<RecordDecl
>(Owner
)) {
5610 Diag(DS
.getStorageClassSpecLoc(),
5611 diag::err_anonymous_union_with_storage_spec
)
5612 << FixItHint::CreateRemoval(DS
.getStorageClassSpecLoc());
5614 // Recover by removing the storage specifier.
5615 DS
.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified
,
5617 PrevSpec
, DiagID
, Context
.getPrintingPolicy());
5621 // Ignore const/volatile/restrict qualifiers.
5622 if (DS
.getTypeQualifiers()) {
5623 if (DS
.getTypeQualifiers() & DeclSpec::TQ_const
)
5624 Diag(DS
.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified
)
5625 << Record
->isUnion() << "const"
5626 << FixItHint::CreateRemoval(DS
.getConstSpecLoc());
5627 if (DS
.getTypeQualifiers() & DeclSpec::TQ_volatile
)
5628 Diag(DS
.getVolatileSpecLoc(),
5629 diag::ext_anonymous_struct_union_qualified
)
5630 << Record
->isUnion() << "volatile"
5631 << FixItHint::CreateRemoval(DS
.getVolatileSpecLoc());
5632 if (DS
.getTypeQualifiers() & DeclSpec::TQ_restrict
)
5633 Diag(DS
.getRestrictSpecLoc(),
5634 diag::ext_anonymous_struct_union_qualified
)
5635 << Record
->isUnion() << "restrict"
5636 << FixItHint::CreateRemoval(DS
.getRestrictSpecLoc());
5637 if (DS
.getTypeQualifiers() & DeclSpec::TQ_atomic
)
5638 Diag(DS
.getAtomicSpecLoc(),
5639 diag::ext_anonymous_struct_union_qualified
)
5640 << Record
->isUnion() << "_Atomic"
5641 << FixItHint::CreateRemoval(DS
.getAtomicSpecLoc());
5642 if (DS
.getTypeQualifiers() & DeclSpec::TQ_unaligned
)
5643 Diag(DS
.getUnalignedSpecLoc(),
5644 diag::ext_anonymous_struct_union_qualified
)
5645 << Record
->isUnion() << "__unaligned"
5646 << FixItHint::CreateRemoval(DS
.getUnalignedSpecLoc());
5648 DS
.ClearTypeQualifiers();
5651 // C++ [class.union]p2:
5652 // The member-specification of an anonymous union shall only
5653 // define non-static data members. [Note: nested types and
5654 // functions cannot be declared within an anonymous union. ]
5655 for (auto *Mem
: Record
->decls()) {
5656 // Ignore invalid declarations; we already diagnosed them.
5657 if (Mem
->isInvalidDecl())
5660 if (auto *FD
= dyn_cast
<FieldDecl
>(Mem
)) {
5661 // C++ [class.union]p3:
5662 // An anonymous union shall not have private or protected
5663 // members (clause 11).
5664 assert(FD
->getAccess() != AS_none
);
5665 if (FD
->getAccess() != AS_public
) {
5666 Diag(FD
->getLocation(), diag::err_anonymous_record_nonpublic_member
)
5667 << Record
->isUnion() << (FD
->getAccess() == AS_protected
);
5671 // C++ [class.union]p1
5672 // An object of a class with a non-trivial constructor, a non-trivial
5673 // copy constructor, a non-trivial destructor, or a non-trivial copy
5674 // assignment operator cannot be a member of a union, nor can an
5675 // array of such objects.
5676 if (CheckNontrivialField(FD
))
5678 } else if (Mem
->isImplicit()) {
5679 // Any implicit members are fine.
5680 } else if (isa
<TagDecl
>(Mem
) && Mem
->getDeclContext() != Record
) {
5681 // This is a type that showed up in an
5682 // elaborated-type-specifier inside the anonymous struct or
5683 // union, but which actually declares a type outside of the
5684 // anonymous struct or union. It's okay.
5685 } else if (auto *MemRecord
= dyn_cast
<RecordDecl
>(Mem
)) {
5686 if (!MemRecord
->isAnonymousStructOrUnion() &&
5687 MemRecord
->getDeclName()) {
5688 // Visual C++ allows type definition in anonymous struct or union.
5689 if (getLangOpts().MicrosoftExt
)
5690 Diag(MemRecord
->getLocation(), diag::ext_anonymous_record_with_type
)
5691 << Record
->isUnion();
5693 // This is a nested type declaration.
5694 Diag(MemRecord
->getLocation(), diag::err_anonymous_record_with_type
)
5695 << Record
->isUnion();
5699 // This is an anonymous type definition within another anonymous type.
5700 // This is a popular extension, provided by Plan9, MSVC and GCC, but
5701 // not part of standard C++.
5702 Diag(MemRecord
->getLocation(),
5703 diag::ext_anonymous_record_with_anonymous_type
)
5704 << Record
->isUnion();
5706 } else if (isa
<AccessSpecDecl
>(Mem
)) {
5707 // Any access specifier is fine.
5708 } else if (isa
<StaticAssertDecl
>(Mem
)) {
5709 // In C++1z, static_assert declarations are also fine.
5711 // We have something that isn't a non-static data
5712 // member. Complain about it.
5713 unsigned DK
= diag::err_anonymous_record_bad_member
;
5714 if (isa
<TypeDecl
>(Mem
))
5715 DK
= diag::err_anonymous_record_with_type
;
5716 else if (isa
<FunctionDecl
>(Mem
))
5717 DK
= diag::err_anonymous_record_with_function
;
5718 else if (isa
<VarDecl
>(Mem
))
5719 DK
= diag::err_anonymous_record_with_static
;
5721 // Visual C++ allows type definition in anonymous struct or union.
5722 if (getLangOpts().MicrosoftExt
&&
5723 DK
== diag::err_anonymous_record_with_type
)
5724 Diag(Mem
->getLocation(), diag::ext_anonymous_record_with_type
)
5725 << Record
->isUnion();
5727 Diag(Mem
->getLocation(), DK
) << Record
->isUnion();
5733 // C++11 [class.union]p8 (DR1460):
5734 // At most one variant member of a union may have a
5735 // brace-or-equal-initializer.
5736 if (cast
<CXXRecordDecl
>(Record
)->hasInClassInitializer() &&
5738 checkDuplicateDefaultInit(*this, cast
<CXXRecordDecl
>(Owner
),
5739 cast
<CXXRecordDecl
>(Record
));
5742 if (!Record
->isUnion() && !Owner
->isRecord()) {
5743 Diag(Record
->getLocation(), diag::err_anonymous_struct_not_member
)
5744 << getLangOpts().CPlusPlus
;
5749 // [If there are no declarators], and except for the declaration of an
5750 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
5751 // names into the program
5752 // C++ [class.mem]p2:
5753 // each such member-declaration shall either declare at least one member
5754 // name of the class or declare at least one unnamed bit-field
5756 // For C this is an error even for a named struct, and is diagnosed elsewhere.
5757 if (getLangOpts().CPlusPlus
&& Record
->field_empty())
5758 Diag(DS
.getBeginLoc(), diag::ext_no_declarators
) << DS
.getSourceRange();
5760 // Mock up a declarator.
5761 Declarator
Dc(DS
, ParsedAttributesView::none(), DeclaratorContext::Member
);
5762 StorageClass SC
= StorageClassSpecToVarDeclStorageClass(DS
);
5763 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(Dc
, S
);
5764 assert(TInfo
&& "couldn't build declarator info for anonymous struct/union");
5766 // Create a declaration for this anonymous struct/union.
5767 NamedDecl
*Anon
= nullptr;
5768 if (RecordDecl
*OwningClass
= dyn_cast
<RecordDecl
>(Owner
)) {
5769 Anon
= FieldDecl::Create(
5770 Context
, OwningClass
, DS
.getBeginLoc(), Record
->getLocation(),
5771 /*IdentifierInfo=*/nullptr, Context
.getTypeDeclType(Record
), TInfo
,
5772 /*BitWidth=*/nullptr, /*Mutable=*/false,
5773 /*InitStyle=*/ICIS_NoInit
);
5774 Anon
->setAccess(AS
);
5775 ProcessDeclAttributes(S
, Anon
, Dc
);
5777 if (getLangOpts().CPlusPlus
)
5778 FieldCollector
->Add(cast
<FieldDecl
>(Anon
));
5780 DeclSpec::SCS SCSpec
= DS
.getStorageClassSpec();
5781 if (SCSpec
== DeclSpec::SCS_mutable
) {
5782 // mutable can only appear on non-static class members, so it's always
5784 Diag(Record
->getLocation(), diag::err_mutable_nonmember
);
5789 Anon
= VarDecl::Create(Context
, Owner
, DS
.getBeginLoc(),
5790 Record
->getLocation(), /*IdentifierInfo=*/nullptr,
5791 Context
.getTypeDeclType(Record
), TInfo
, SC
);
5792 ProcessDeclAttributes(S
, Anon
, Dc
);
5794 // Default-initialize the implicit variable. This initialization will be
5795 // trivial in almost all cases, except if a union member has an in-class
5797 // union { int n = 0; };
5798 ActOnUninitializedDecl(Anon
);
5800 Anon
->setImplicit();
5802 // Mark this as an anonymous struct/union type.
5803 Record
->setAnonymousStructOrUnion(true);
5805 // Add the anonymous struct/union object to the current
5806 // context. We'll be referencing this object when we refer to one of
5808 Owner
->addDecl(Anon
);
5810 // Inject the members of the anonymous struct/union into the owning
5811 // context and into the identifier resolver chain for name lookup
5813 SmallVector
<NamedDecl
*, 2> Chain
;
5814 Chain
.push_back(Anon
);
5816 if (InjectAnonymousStructOrUnionMembers(*this, S
, Owner
, Record
, AS
, SC
,
5820 if (VarDecl
*NewVD
= dyn_cast
<VarDecl
>(Anon
)) {
5821 if (getLangOpts().CPlusPlus
&& NewVD
->isStaticLocal()) {
5822 MangleNumberingContext
*MCtx
;
5823 Decl
*ManglingContextDecl
;
5824 std::tie(MCtx
, ManglingContextDecl
) =
5825 getCurrentMangleNumberContext(NewVD
->getDeclContext());
5827 Context
.setManglingNumber(
5828 NewVD
, MCtx
->getManglingNumber(
5829 NewVD
, getMSManglingNumber(getLangOpts(), S
)));
5830 Context
.setStaticLocalNumber(NewVD
, MCtx
->getStaticLocalNumber(NewVD
));
5836 Anon
->setInvalidDecl();
5841 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
5842 /// Microsoft C anonymous structure.
5843 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
5846 /// struct A { int a; };
5847 /// struct B { struct A; int b; };
5854 Decl
*Sema::BuildMicrosoftCAnonymousStruct(Scope
*S
, DeclSpec
&DS
,
5855 RecordDecl
*Record
) {
5856 assert(Record
&& "expected a record!");
5858 // Mock up a declarator.
5859 Declarator
Dc(DS
, ParsedAttributesView::none(), DeclaratorContext::TypeName
);
5860 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(Dc
, S
);
5861 assert(TInfo
&& "couldn't build declarator info for anonymous struct");
5863 auto *ParentDecl
= cast
<RecordDecl
>(CurContext
);
5864 QualType RecTy
= Context
.getTypeDeclType(Record
);
5866 // Create a declaration for this anonymous struct.
5868 FieldDecl::Create(Context
, ParentDecl
, DS
.getBeginLoc(), DS
.getBeginLoc(),
5869 /*IdentifierInfo=*/nullptr, RecTy
, TInfo
,
5870 /*BitWidth=*/nullptr, /*Mutable=*/false,
5871 /*InitStyle=*/ICIS_NoInit
);
5872 Anon
->setImplicit();
5874 // Add the anonymous struct object to the current context.
5875 CurContext
->addDecl(Anon
);
5877 // Inject the members of the anonymous struct into the current
5878 // context and into the identifier resolver chain for name lookup
5880 SmallVector
<NamedDecl
*, 2> Chain
;
5881 Chain
.push_back(Anon
);
5883 RecordDecl
*RecordDef
= Record
->getDefinition();
5884 if (RequireCompleteSizedType(Anon
->getLocation(), RecTy
,
5885 diag::err_field_incomplete_or_sizeless
) ||
5886 InjectAnonymousStructOrUnionMembers(
5887 *this, S
, CurContext
, RecordDef
, AS_none
,
5888 StorageClassSpecToVarDeclStorageClass(DS
), Chain
)) {
5889 Anon
->setInvalidDecl();
5890 ParentDecl
->setInvalidDecl();
5896 /// GetNameForDeclarator - Determine the full declaration name for the
5897 /// given Declarator.
5898 DeclarationNameInfo
Sema::GetNameForDeclarator(Declarator
&D
) {
5899 return GetNameFromUnqualifiedId(D
.getName());
5902 /// Retrieves the declaration name from a parsed unqualified-id.
5904 Sema::GetNameFromUnqualifiedId(const UnqualifiedId
&Name
) {
5905 DeclarationNameInfo NameInfo
;
5906 NameInfo
.setLoc(Name
.StartLocation
);
5908 switch (Name
.getKind()) {
5910 case UnqualifiedIdKind::IK_ImplicitSelfParam
:
5911 case UnqualifiedIdKind::IK_Identifier
:
5912 NameInfo
.setName(Name
.Identifier
);
5915 case UnqualifiedIdKind::IK_DeductionGuideName
: {
5916 // C++ [temp.deduct.guide]p3:
5917 // The simple-template-id shall name a class template specialization.
5918 // The template-name shall be the same identifier as the template-name
5919 // of the simple-template-id.
5920 // These together intend to imply that the template-name shall name a
5922 // FIXME: template<typename T> struct X {};
5923 // template<typename T> using Y = X<T>;
5924 // Y(int) -> Y<int>;
5925 // satisfies these rules but does not name a class template.
5926 TemplateName TN
= Name
.TemplateName
.get().get();
5927 auto *Template
= TN
.getAsTemplateDecl();
5928 if (!Template
|| !isa
<ClassTemplateDecl
>(Template
)) {
5929 Diag(Name
.StartLocation
,
5930 diag::err_deduction_guide_name_not_class_template
)
5931 << (int)getTemplateNameKindForDiagnostics(TN
) << TN
;
5933 Diag(Template
->getLocation(), diag::note_template_decl_here
);
5934 return DeclarationNameInfo();
5938 Context
.DeclarationNames
.getCXXDeductionGuideName(Template
));
5942 case UnqualifiedIdKind::IK_OperatorFunctionId
:
5943 NameInfo
.setName(Context
.DeclarationNames
.getCXXOperatorName(
5944 Name
.OperatorFunctionId
.Operator
));
5945 NameInfo
.setCXXOperatorNameRange(SourceRange(
5946 Name
.OperatorFunctionId
.SymbolLocations
[0], Name
.EndLocation
));
5949 case UnqualifiedIdKind::IK_LiteralOperatorId
:
5950 NameInfo
.setName(Context
.DeclarationNames
.getCXXLiteralOperatorName(
5952 NameInfo
.setCXXLiteralOperatorNameLoc(Name
.EndLocation
);
5955 case UnqualifiedIdKind::IK_ConversionFunctionId
: {
5956 TypeSourceInfo
*TInfo
;
5957 QualType Ty
= GetTypeFromParser(Name
.ConversionFunctionId
, &TInfo
);
5959 return DeclarationNameInfo();
5960 NameInfo
.setName(Context
.DeclarationNames
.getCXXConversionFunctionName(
5961 Context
.getCanonicalType(Ty
)));
5962 NameInfo
.setNamedTypeInfo(TInfo
);
5966 case UnqualifiedIdKind::IK_ConstructorName
: {
5967 TypeSourceInfo
*TInfo
;
5968 QualType Ty
= GetTypeFromParser(Name
.ConstructorName
, &TInfo
);
5970 return DeclarationNameInfo();
5971 NameInfo
.setName(Context
.DeclarationNames
.getCXXConstructorName(
5972 Context
.getCanonicalType(Ty
)));
5973 NameInfo
.setNamedTypeInfo(TInfo
);
5977 case UnqualifiedIdKind::IK_ConstructorTemplateId
: {
5978 // In well-formed code, we can only have a constructor
5979 // template-id that refers to the current context, so go there
5980 // to find the actual type being constructed.
5981 CXXRecordDecl
*CurClass
= dyn_cast
<CXXRecordDecl
>(CurContext
);
5982 if (!CurClass
|| CurClass
->getIdentifier() != Name
.TemplateId
->Name
)
5983 return DeclarationNameInfo();
5985 // Determine the type of the class being constructed.
5986 QualType CurClassType
= Context
.getTypeDeclType(CurClass
);
5988 // FIXME: Check two things: that the template-id names the same type as
5989 // CurClassType, and that the template-id does not occur when the name
5992 NameInfo
.setName(Context
.DeclarationNames
.getCXXConstructorName(
5993 Context
.getCanonicalType(CurClassType
)));
5994 // FIXME: should we retrieve TypeSourceInfo?
5995 NameInfo
.setNamedTypeInfo(nullptr);
5999 case UnqualifiedIdKind::IK_DestructorName
: {
6000 TypeSourceInfo
*TInfo
;
6001 QualType Ty
= GetTypeFromParser(Name
.DestructorName
, &TInfo
);
6003 return DeclarationNameInfo();
6004 NameInfo
.setName(Context
.DeclarationNames
.getCXXDestructorName(
6005 Context
.getCanonicalType(Ty
)));
6006 NameInfo
.setNamedTypeInfo(TInfo
);
6010 case UnqualifiedIdKind::IK_TemplateId
: {
6011 TemplateName TName
= Name
.TemplateId
->Template
.get();
6012 SourceLocation TNameLoc
= Name
.TemplateId
->TemplateNameLoc
;
6013 return Context
.getNameForTemplate(TName
, TNameLoc
);
6016 } // switch (Name.getKind())
6018 llvm_unreachable("Unknown name kind");
6021 static QualType
getCoreType(QualType Ty
) {
6023 if (Ty
->isPointerType() || Ty
->isReferenceType())
6024 Ty
= Ty
->getPointeeType();
6025 else if (Ty
->isArrayType())
6026 Ty
= Ty
->castAsArrayTypeUnsafe()->getElementType();
6028 return Ty
.withoutLocalFastQualifiers();
6032 /// hasSimilarParameters - Determine whether the C++ functions Declaration
6033 /// and Definition have "nearly" matching parameters. This heuristic is
6034 /// used to improve diagnostics in the case where an out-of-line function
6035 /// definition doesn't match any declaration within the class or namespace.
6036 /// Also sets Params to the list of indices to the parameters that differ
6037 /// between the declaration and the definition. If hasSimilarParameters
6038 /// returns true and Params is empty, then all of the parameters match.
6039 static bool hasSimilarParameters(ASTContext
&Context
,
6040 FunctionDecl
*Declaration
,
6041 FunctionDecl
*Definition
,
6042 SmallVectorImpl
<unsigned> &Params
) {
6044 if (Declaration
->param_size() != Definition
->param_size())
6046 for (unsigned Idx
= 0; Idx
< Declaration
->param_size(); ++Idx
) {
6047 QualType DeclParamTy
= Declaration
->getParamDecl(Idx
)->getType();
6048 QualType DefParamTy
= Definition
->getParamDecl(Idx
)->getType();
6050 // The parameter types are identical
6051 if (Context
.hasSameUnqualifiedType(DefParamTy
, DeclParamTy
))
6054 QualType DeclParamBaseTy
= getCoreType(DeclParamTy
);
6055 QualType DefParamBaseTy
= getCoreType(DefParamTy
);
6056 const IdentifierInfo
*DeclTyName
= DeclParamBaseTy
.getBaseTypeIdentifier();
6057 const IdentifierInfo
*DefTyName
= DefParamBaseTy
.getBaseTypeIdentifier();
6059 if (Context
.hasSameUnqualifiedType(DeclParamBaseTy
, DefParamBaseTy
) ||
6060 (DeclTyName
&& DeclTyName
== DefTyName
))
6061 Params
.push_back(Idx
);
6062 else // The two parameters aren't even close
6069 /// RebuildDeclaratorInCurrentInstantiation - Checks whether the given
6070 /// declarator needs to be rebuilt in the current instantiation.
6071 /// Any bits of declarator which appear before the name are valid for
6072 /// consideration here. That's specifically the type in the decl spec
6073 /// and the base type in any member-pointer chunks.
6074 static bool RebuildDeclaratorInCurrentInstantiation(Sema
&S
, Declarator
&D
,
6075 DeclarationName Name
) {
6076 // The types we specifically need to rebuild are:
6077 // - typenames, typeofs, and decltypes
6078 // - types which will become injected class names
6079 // Of course, we also need to rebuild any type referencing such a
6080 // type. It's safest to just say "dependent", but we call out a
6083 DeclSpec
&DS
= D
.getMutableDeclSpec();
6084 switch (DS
.getTypeSpecType()) {
6085 case DeclSpec::TST_typename
:
6086 case DeclSpec::TST_typeofType
:
6087 case DeclSpec::TST_typeof_unqualType
:
6088 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
6089 #include "clang/Basic/TransformTypeTraits.def"
6090 case DeclSpec::TST_atomic
: {
6091 // Grab the type from the parser.
6092 TypeSourceInfo
*TSI
= nullptr;
6093 QualType T
= S
.GetTypeFromParser(DS
.getRepAsType(), &TSI
);
6094 if (T
.isNull() || !T
->isInstantiationDependentType()) break;
6096 // Make sure there's a type source info. This isn't really much
6097 // of a waste; most dependent types should have type source info
6098 // attached already.
6100 TSI
= S
.Context
.getTrivialTypeSourceInfo(T
, DS
.getTypeSpecTypeLoc());
6102 // Rebuild the type in the current instantiation.
6103 TSI
= S
.RebuildTypeInCurrentInstantiation(TSI
, D
.getIdentifierLoc(), Name
);
6104 if (!TSI
) return true;
6106 // Store the new type back in the decl spec.
6107 ParsedType LocType
= S
.CreateParsedType(TSI
->getType(), TSI
);
6108 DS
.UpdateTypeRep(LocType
);
6112 case DeclSpec::TST_decltype
:
6113 case DeclSpec::TST_typeof_unqualExpr
:
6114 case DeclSpec::TST_typeofExpr
: {
6115 Expr
*E
= DS
.getRepAsExpr();
6116 ExprResult Result
= S
.RebuildExprInCurrentInstantiation(E
);
6117 if (Result
.isInvalid()) return true;
6118 DS
.UpdateExprRep(Result
.get());
6123 // Nothing to do for these decl specs.
6127 // It doesn't matter what order we do this in.
6128 for (unsigned I
= 0, E
= D
.getNumTypeObjects(); I
!= E
; ++I
) {
6129 DeclaratorChunk
&Chunk
= D
.getTypeObject(I
);
6131 // The only type information in the declarator which can come
6132 // before the declaration name is the base type of a member
6134 if (Chunk
.Kind
!= DeclaratorChunk::MemberPointer
)
6137 // Rebuild the scope specifier in-place.
6138 CXXScopeSpec
&SS
= Chunk
.Mem
.Scope();
6139 if (S
.RebuildNestedNameSpecifierInCurrentInstantiation(SS
))
6146 /// Returns true if the declaration is declared in a system header or from a
6148 static bool isFromSystemHeader(SourceManager
&SM
, const Decl
*D
) {
6149 return SM
.isInSystemHeader(D
->getLocation()) ||
6150 SM
.isInSystemMacro(D
->getLocation());
6153 void Sema::warnOnReservedIdentifier(const NamedDecl
*D
) {
6154 // Avoid warning twice on the same identifier, and don't warn on redeclaration
6156 if (D
->getPreviousDecl() || D
->isImplicit())
6158 ReservedIdentifierStatus Status
= D
->isReserved(getLangOpts());
6159 if (Status
!= ReservedIdentifierStatus::NotReserved
&&
6160 !isFromSystemHeader(Context
.getSourceManager(), D
)) {
6161 Diag(D
->getLocation(), diag::warn_reserved_extern_symbol
)
6162 << D
<< static_cast<int>(Status
);
6166 Decl
*Sema::ActOnDeclarator(Scope
*S
, Declarator
&D
) {
6167 D
.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration
);
6169 // Check if we are in an `omp begin/end declare variant` scope. Handle this
6170 // declaration only if the `bind_to_declaration` extension is set.
6171 SmallVector
<FunctionDecl
*, 4> Bases
;
6172 if (LangOpts
.OpenMP
&& isInOpenMPDeclareVariantScope())
6173 if (getOMPTraitInfoForSurroundingScope()->isExtensionActive(llvm::omp::TraitProperty::
6174 implementation_extension_bind_to_declaration
))
6175 ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
6176 S
, D
, MultiTemplateParamsArg(), Bases
);
6178 Decl
*Dcl
= HandleDeclarator(S
, D
, MultiTemplateParamsArg());
6180 if (OriginalLexicalContext
&& OriginalLexicalContext
->isObjCContainer() &&
6181 Dcl
&& Dcl
->getDeclContext()->isFileContext())
6182 Dcl
->setTopLevelDeclInObjCContainer();
6185 ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl
, Bases
);
6190 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
6191 /// If T is the name of a class, then each of the following shall have a
6192 /// name different from T:
6193 /// - every static data member of class T;
6194 /// - every member function of class T
6195 /// - every member of class T that is itself a type;
6196 /// \returns true if the declaration name violates these rules.
6197 bool Sema::DiagnoseClassNameShadow(DeclContext
*DC
,
6198 DeclarationNameInfo NameInfo
) {
6199 DeclarationName Name
= NameInfo
.getName();
6201 CXXRecordDecl
*Record
= dyn_cast
<CXXRecordDecl
>(DC
);
6202 while (Record
&& Record
->isAnonymousStructOrUnion())
6203 Record
= dyn_cast
<CXXRecordDecl
>(Record
->getParent());
6204 if (Record
&& Record
->getIdentifier() && Record
->getDeclName() == Name
) {
6205 Diag(NameInfo
.getLoc(), diag::err_member_name_of_class
) << Name
;
6212 /// Diagnose a declaration whose declarator-id has the given
6213 /// nested-name-specifier.
6215 /// \param SS The nested-name-specifier of the declarator-id.
6217 /// \param DC The declaration context to which the nested-name-specifier
6220 /// \param Name The name of the entity being declared.
6222 /// \param Loc The location of the name of the entity being declared.
6224 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
6225 /// we're declaring an explicit / partial specialization / instantiation.
6227 /// \returns true if we cannot safely recover from this error, false otherwise.
6228 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec
&SS
, DeclContext
*DC
,
6229 DeclarationName Name
,
6230 SourceLocation Loc
, bool IsTemplateId
) {
6231 DeclContext
*Cur
= CurContext
;
6232 while (isa
<LinkageSpecDecl
>(Cur
) || isa
<CapturedDecl
>(Cur
))
6233 Cur
= Cur
->getParent();
6235 // If the user provided a superfluous scope specifier that refers back to the
6236 // class in which the entity is already declared, diagnose and ignore it.
6242 // Note, it was once ill-formed to give redundant qualification in all
6243 // contexts, but that rule was removed by DR482.
6244 if (Cur
->Equals(DC
)) {
6245 if (Cur
->isRecord()) {
6246 Diag(Loc
, LangOpts
.MicrosoftExt
? diag::warn_member_extra_qualification
6247 : diag::err_member_extra_qualification
)
6248 << Name
<< FixItHint::CreateRemoval(SS
.getRange());
6251 Diag(Loc
, diag::warn_namespace_member_extra_qualification
) << Name
;
6256 // Check whether the qualifying scope encloses the scope of the original
6257 // declaration. For a template-id, we perform the checks in
6258 // CheckTemplateSpecializationScope.
6259 if (!Cur
->Encloses(DC
) && !IsTemplateId
) {
6260 if (Cur
->isRecord())
6261 Diag(Loc
, diag::err_member_qualification
)
6262 << Name
<< SS
.getRange();
6263 else if (isa
<TranslationUnitDecl
>(DC
))
6264 Diag(Loc
, diag::err_invalid_declarator_global_scope
)
6265 << Name
<< SS
.getRange();
6266 else if (isa
<FunctionDecl
>(Cur
))
6267 Diag(Loc
, diag::err_invalid_declarator_in_function
)
6268 << Name
<< SS
.getRange();
6269 else if (isa
<BlockDecl
>(Cur
))
6270 Diag(Loc
, diag::err_invalid_declarator_in_block
)
6271 << Name
<< SS
.getRange();
6272 else if (isa
<ExportDecl
>(Cur
)) {
6273 if (!isa
<NamespaceDecl
>(DC
))
6274 Diag(Loc
, diag::err_export_non_namespace_scope_name
)
6275 << Name
<< SS
.getRange();
6277 // The cases that DC is not NamespaceDecl should be handled in
6278 // CheckRedeclarationExported.
6281 Diag(Loc
, diag::err_invalid_declarator_scope
)
6282 << Name
<< cast
<NamedDecl
>(Cur
) << cast
<NamedDecl
>(DC
) << SS
.getRange();
6287 if (Cur
->isRecord()) {
6288 // Cannot qualify members within a class.
6289 Diag(Loc
, diag::err_member_qualification
)
6290 << Name
<< SS
.getRange();
6293 // C++ constructors and destructors with incorrect scopes can break
6294 // our AST invariants by having the wrong underlying types. If
6295 // that's the case, then drop this declaration entirely.
6296 if ((Name
.getNameKind() == DeclarationName::CXXConstructorName
||
6297 Name
.getNameKind() == DeclarationName::CXXDestructorName
) &&
6298 !Context
.hasSameType(Name
.getCXXNameType(),
6299 Context
.getTypeDeclType(cast
<CXXRecordDecl
>(Cur
))))
6305 // C++11 [dcl.meaning]p1:
6306 // [...] "The nested-name-specifier of the qualified declarator-id shall
6307 // not begin with a decltype-specifer"
6308 NestedNameSpecifierLoc
SpecLoc(SS
.getScopeRep(), SS
.location_data());
6309 while (SpecLoc
.getPrefix())
6310 SpecLoc
= SpecLoc
.getPrefix();
6311 if (isa_and_nonnull
<DecltypeType
>(
6312 SpecLoc
.getNestedNameSpecifier()->getAsType()))
6313 Diag(Loc
, diag::err_decltype_in_declarator
)
6314 << SpecLoc
.getTypeLoc().getSourceRange();
6319 NamedDecl
*Sema::HandleDeclarator(Scope
*S
, Declarator
&D
,
6320 MultiTemplateParamsArg TemplateParamLists
) {
6321 // TODO: consider using NameInfo for diagnostic.
6322 DeclarationNameInfo NameInfo
= GetNameForDeclarator(D
);
6323 DeclarationName Name
= NameInfo
.getName();
6325 // All of these full declarators require an identifier. If it doesn't have
6326 // one, the ParsedFreeStandingDeclSpec action should be used.
6327 if (D
.isDecompositionDeclarator()) {
6328 return ActOnDecompositionDeclarator(S
, D
, TemplateParamLists
);
6330 if (!D
.isInvalidType()) // Reject this if we think it is valid.
6331 Diag(D
.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident
)
6332 << D
.getDeclSpec().getSourceRange() << D
.getSourceRange();
6334 } else if (DiagnoseUnexpandedParameterPack(NameInfo
, UPPC_DeclarationType
))
6337 // The scope passed in may not be a decl scope. Zip up the scope tree until
6338 // we find one that is.
6339 while ((S
->getFlags() & Scope::DeclScope
) == 0 ||
6340 (S
->getFlags() & Scope::TemplateParamScope
) != 0)
6343 DeclContext
*DC
= CurContext
;
6344 if (D
.getCXXScopeSpec().isInvalid())
6346 else if (D
.getCXXScopeSpec().isSet()) {
6347 if (DiagnoseUnexpandedParameterPack(D
.getCXXScopeSpec(),
6348 UPPC_DeclarationQualifier
))
6351 bool EnteringContext
= !D
.getDeclSpec().isFriendSpecified();
6352 DC
= computeDeclContext(D
.getCXXScopeSpec(), EnteringContext
);
6353 if (!DC
|| isa
<EnumDecl
>(DC
)) {
6354 // If we could not compute the declaration context, it's because the
6355 // declaration context is dependent but does not refer to a class,
6356 // class template, or class template partial specialization. Complain
6357 // and return early, to avoid the coming semantic disaster.
6358 Diag(D
.getIdentifierLoc(),
6359 diag::err_template_qualified_declarator_no_match
)
6360 << D
.getCXXScopeSpec().getScopeRep()
6361 << D
.getCXXScopeSpec().getRange();
6364 bool IsDependentContext
= DC
->isDependentContext();
6366 if (!IsDependentContext
&&
6367 RequireCompleteDeclContext(D
.getCXXScopeSpec(), DC
))
6370 // If a class is incomplete, do not parse entities inside it.
6371 if (isa
<CXXRecordDecl
>(DC
) && !cast
<CXXRecordDecl
>(DC
)->hasDefinition()) {
6372 Diag(D
.getIdentifierLoc(),
6373 diag::err_member_def_undefined_record
)
6374 << Name
<< DC
<< D
.getCXXScopeSpec().getRange();
6377 if (!D
.getDeclSpec().isFriendSpecified()) {
6378 if (diagnoseQualifiedDeclaration(
6379 D
.getCXXScopeSpec(), DC
, Name
, D
.getIdentifierLoc(),
6380 D
.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
)) {
6388 // Check whether we need to rebuild the type of the given
6389 // declaration in the current instantiation.
6390 if (EnteringContext
&& IsDependentContext
&&
6391 TemplateParamLists
.size() != 0) {
6392 ContextRAII
SavedContext(*this, DC
);
6393 if (RebuildDeclaratorInCurrentInstantiation(*this, D
, Name
))
6398 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(D
, S
);
6399 QualType R
= TInfo
->getType();
6401 if (DiagnoseUnexpandedParameterPack(D
.getIdentifierLoc(), TInfo
,
6402 UPPC_DeclarationType
))
6405 LookupResult
Previous(*this, NameInfo
, LookupOrdinaryName
,
6406 forRedeclarationInCurContext());
6408 // See if this is a redefinition of a variable in the same scope.
6409 if (!D
.getCXXScopeSpec().isSet()) {
6410 bool IsLinkageLookup
= false;
6411 bool CreateBuiltins
= false;
6413 // If the declaration we're planning to build will be a function
6414 // or object with linkage, then look for another declaration with
6415 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
6417 // If the declaration we're planning to build will be declared with
6418 // external linkage in the translation unit, create any builtin with
6420 if (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef
)
6422 else if (CurContext
->isFunctionOrMethod() &&
6423 (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern
||
6424 R
->isFunctionType())) {
6425 IsLinkageLookup
= true;
6427 CurContext
->getEnclosingNamespaceContext()->isTranslationUnit();
6428 } else if (CurContext
->getRedeclContext()->isTranslationUnit() &&
6429 D
.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static
)
6430 CreateBuiltins
= true;
6432 if (IsLinkageLookup
) {
6433 Previous
.clear(LookupRedeclarationWithLinkage
);
6434 Previous
.setRedeclarationKind(ForExternalRedeclaration
);
6437 LookupName(Previous
, S
, CreateBuiltins
);
6438 } else { // Something like "int foo::x;"
6439 LookupQualifiedName(Previous
, DC
);
6441 // C++ [dcl.meaning]p1:
6442 // When the declarator-id is qualified, the declaration shall refer to a
6443 // previously declared member of the class or namespace to which the
6444 // qualifier refers (or, in the case of a namespace, of an element of the
6445 // inline namespace set of that namespace (7.3.1)) or to a specialization
6448 // Note that we already checked the context above, and that we do not have
6449 // enough information to make sure that Previous contains the declaration
6450 // we want to match. For example, given:
6457 // void X::f(int) { } // ill-formed
6459 // In this case, Previous will point to the overload set
6460 // containing the two f's declared in X, but neither of them
6463 RemoveUsingDecls(Previous
);
6466 if (Previous
.isSingleResult() &&
6467 Previous
.getFoundDecl()->isTemplateParameter()) {
6468 // Maybe we will complain about the shadowed template parameter.
6469 if (!D
.isInvalidType())
6470 DiagnoseTemplateParameterShadow(D
.getIdentifierLoc(),
6471 Previous
.getFoundDecl());
6473 // Just pretend that we didn't see the previous declaration.
6477 if (!R
->isFunctionType() && DiagnoseClassNameShadow(DC
, NameInfo
))
6478 // Forget that the previous declaration is the injected-class-name.
6481 // In C++, the previous declaration we find might be a tag type
6482 // (class or enum). In this case, the new declaration will hide the
6483 // tag type. Note that this applies to functions, function templates, and
6484 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
6485 if (Previous
.isSingleTagDecl() &&
6486 D
.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef
&&
6487 (TemplateParamLists
.size() == 0 || R
->isFunctionType()))
6490 // Check that there are no default arguments other than in the parameters
6491 // of a function declaration (C++ only).
6492 if (getLangOpts().CPlusPlus
)
6493 CheckExtraCXXDefaultArguments(D
);
6497 bool AddToScope
= true;
6498 if (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef
) {
6499 if (TemplateParamLists
.size()) {
6500 Diag(D
.getIdentifierLoc(), diag::err_template_typedef
);
6504 New
= ActOnTypedefDeclarator(S
, D
, DC
, TInfo
, Previous
);
6505 } else if (R
->isFunctionType()) {
6506 New
= ActOnFunctionDeclarator(S
, D
, DC
, TInfo
, Previous
,
6510 New
= ActOnVariableDeclarator(S
, D
, DC
, TInfo
, Previous
, TemplateParamLists
,
6517 // If this has an identifier and is not a function template specialization,
6518 // add it to the scope stack.
6519 if (New
->getDeclName() && AddToScope
)
6520 PushOnScopeChains(New
, S
);
6522 if (isInOpenMPDeclareTargetContext())
6523 checkDeclIsAllowedInOpenMPTarget(nullptr, New
);
6528 /// Helper method to turn variable array types into constant array
6529 /// types in certain situations which would otherwise be errors (for
6530 /// GCC compatibility).
6531 static QualType
TryToFixInvalidVariablyModifiedType(QualType T
,
6532 ASTContext
&Context
,
6533 bool &SizeIsNegative
,
6534 llvm::APSInt
&Oversized
) {
6535 // This method tries to turn a variable array into a constant
6536 // array even when the size isn't an ICE. This is necessary
6537 // for compatibility with code that depends on gcc's buggy
6538 // constant expression folding, like struct {char x[(int)(char*)2];}
6539 SizeIsNegative
= false;
6542 if (T
->isDependentType())
6545 QualifierCollector Qs
;
6546 const Type
*Ty
= Qs
.strip(T
);
6548 if (const PointerType
* PTy
= dyn_cast
<PointerType
>(Ty
)) {
6549 QualType Pointee
= PTy
->getPointeeType();
6550 QualType FixedType
=
6551 TryToFixInvalidVariablyModifiedType(Pointee
, Context
, SizeIsNegative
,
6553 if (FixedType
.isNull()) return FixedType
;
6554 FixedType
= Context
.getPointerType(FixedType
);
6555 return Qs
.apply(Context
, FixedType
);
6557 if (const ParenType
* PTy
= dyn_cast
<ParenType
>(Ty
)) {
6558 QualType Inner
= PTy
->getInnerType();
6559 QualType FixedType
=
6560 TryToFixInvalidVariablyModifiedType(Inner
, Context
, SizeIsNegative
,
6562 if (FixedType
.isNull()) return FixedType
;
6563 FixedType
= Context
.getParenType(FixedType
);
6564 return Qs
.apply(Context
, FixedType
);
6567 const VariableArrayType
* VLATy
= dyn_cast
<VariableArrayType
>(T
);
6571 QualType ElemTy
= VLATy
->getElementType();
6572 if (ElemTy
->isVariablyModifiedType()) {
6573 ElemTy
= TryToFixInvalidVariablyModifiedType(ElemTy
, Context
,
6574 SizeIsNegative
, Oversized
);
6575 if (ElemTy
.isNull())
6579 Expr::EvalResult Result
;
6580 if (!VLATy
->getSizeExpr() ||
6581 !VLATy
->getSizeExpr()->EvaluateAsInt(Result
, Context
))
6584 llvm::APSInt Res
= Result
.Val
.getInt();
6586 // Check whether the array size is negative.
6587 if (Res
.isSigned() && Res
.isNegative()) {
6588 SizeIsNegative
= true;
6592 // Check whether the array is too large to be addressed.
6593 unsigned ActiveSizeBits
=
6594 (!ElemTy
->isDependentType() && !ElemTy
->isVariablyModifiedType() &&
6595 !ElemTy
->isIncompleteType() && !ElemTy
->isUndeducedType())
6596 ? ConstantArrayType::getNumAddressingBits(Context
, ElemTy
, Res
)
6597 : Res
.getActiveBits();
6598 if (ActiveSizeBits
> ConstantArrayType::getMaxSizeBits(Context
)) {
6603 QualType FoldedArrayType
= Context
.getConstantArrayType(
6604 ElemTy
, Res
, VLATy
->getSizeExpr(), ArraySizeModifier::Normal
, 0);
6605 return Qs
.apply(Context
, FoldedArrayType
);
6609 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL
, TypeLoc DstTL
) {
6610 SrcTL
= SrcTL
.getUnqualifiedLoc();
6611 DstTL
= DstTL
.getUnqualifiedLoc();
6612 if (PointerTypeLoc SrcPTL
= SrcTL
.getAs
<PointerTypeLoc
>()) {
6613 PointerTypeLoc DstPTL
= DstTL
.castAs
<PointerTypeLoc
>();
6614 FixInvalidVariablyModifiedTypeLoc(SrcPTL
.getPointeeLoc(),
6615 DstPTL
.getPointeeLoc());
6616 DstPTL
.setStarLoc(SrcPTL
.getStarLoc());
6619 if (ParenTypeLoc SrcPTL
= SrcTL
.getAs
<ParenTypeLoc
>()) {
6620 ParenTypeLoc DstPTL
= DstTL
.castAs
<ParenTypeLoc
>();
6621 FixInvalidVariablyModifiedTypeLoc(SrcPTL
.getInnerLoc(),
6622 DstPTL
.getInnerLoc());
6623 DstPTL
.setLParenLoc(SrcPTL
.getLParenLoc());
6624 DstPTL
.setRParenLoc(SrcPTL
.getRParenLoc());
6627 ArrayTypeLoc SrcATL
= SrcTL
.castAs
<ArrayTypeLoc
>();
6628 ArrayTypeLoc DstATL
= DstTL
.castAs
<ArrayTypeLoc
>();
6629 TypeLoc SrcElemTL
= SrcATL
.getElementLoc();
6630 TypeLoc DstElemTL
= DstATL
.getElementLoc();
6631 if (VariableArrayTypeLoc SrcElemATL
=
6632 SrcElemTL
.getAs
<VariableArrayTypeLoc
>()) {
6633 ConstantArrayTypeLoc DstElemATL
= DstElemTL
.castAs
<ConstantArrayTypeLoc
>();
6634 FixInvalidVariablyModifiedTypeLoc(SrcElemATL
, DstElemATL
);
6636 DstElemTL
.initializeFullCopy(SrcElemTL
);
6638 DstATL
.setLBracketLoc(SrcATL
.getLBracketLoc());
6639 DstATL
.setSizeExpr(SrcATL
.getSizeExpr());
6640 DstATL
.setRBracketLoc(SrcATL
.getRBracketLoc());
6643 /// Helper method to turn variable array types into constant array
6644 /// types in certain situations which would otherwise be errors (for
6645 /// GCC compatibility).
6646 static TypeSourceInfo
*
6647 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo
*TInfo
,
6648 ASTContext
&Context
,
6649 bool &SizeIsNegative
,
6650 llvm::APSInt
&Oversized
) {
6652 = TryToFixInvalidVariablyModifiedType(TInfo
->getType(), Context
,
6653 SizeIsNegative
, Oversized
);
6654 if (FixedTy
.isNull())
6656 TypeSourceInfo
*FixedTInfo
= Context
.getTrivialTypeSourceInfo(FixedTy
);
6657 FixInvalidVariablyModifiedTypeLoc(TInfo
->getTypeLoc(),
6658 FixedTInfo
->getTypeLoc());
6662 /// Attempt to fold a variable-sized type to a constant-sized type, returning
6663 /// true if we were successful.
6664 bool Sema::tryToFixVariablyModifiedVarType(TypeSourceInfo
*&TInfo
,
6665 QualType
&T
, SourceLocation Loc
,
6666 unsigned FailedFoldDiagID
) {
6667 bool SizeIsNegative
;
6668 llvm::APSInt Oversized
;
6669 TypeSourceInfo
*FixedTInfo
= TryToFixInvalidVariablyModifiedTypeSourceInfo(
6670 TInfo
, Context
, SizeIsNegative
, Oversized
);
6672 Diag(Loc
, diag::ext_vla_folded_to_constant
);
6674 T
= FixedTInfo
->getType();
6679 Diag(Loc
, diag::err_typecheck_negative_array_size
);
6680 else if (Oversized
.getBoolValue())
6681 Diag(Loc
, diag::err_array_too_large
) << toString(Oversized
, 10);
6682 else if (FailedFoldDiagID
)
6683 Diag(Loc
, FailedFoldDiagID
);
6687 /// Register the given locally-scoped extern "C" declaration so
6688 /// that it can be found later for redeclarations. We include any extern "C"
6689 /// declaration that is not visible in the translation unit here, not just
6690 /// function-scope declarations.
6692 Sema::RegisterLocallyScopedExternCDecl(NamedDecl
*ND
, Scope
*S
) {
6693 if (!getLangOpts().CPlusPlus
&&
6694 ND
->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
6695 // Don't need to track declarations in the TU in C.
6698 // Note that we have a locally-scoped external with this name.
6699 Context
.getExternCContextDecl()->makeDeclVisibleInContext(ND
);
6702 NamedDecl
*Sema::findLocallyScopedExternCDecl(DeclarationName Name
) {
6703 // FIXME: We can have multiple results via __attribute__((overloadable)).
6704 auto Result
= Context
.getExternCContextDecl()->lookup(Name
);
6705 return Result
.empty() ? nullptr : *Result
.begin();
6708 /// Diagnose function specifiers on a declaration of an identifier that
6709 /// does not identify a function.
6710 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec
&DS
) {
6711 // FIXME: We should probably indicate the identifier in question to avoid
6712 // confusion for constructs like "virtual int a(), b;"
6713 if (DS
.isVirtualSpecified())
6714 Diag(DS
.getVirtualSpecLoc(),
6715 diag::err_virtual_non_function
);
6717 if (DS
.hasExplicitSpecifier())
6718 Diag(DS
.getExplicitSpecLoc(),
6719 diag::err_explicit_non_function
);
6721 if (DS
.isNoreturnSpecified())
6722 Diag(DS
.getNoreturnSpecLoc(),
6723 diag::err_noreturn_non_function
);
6727 Sema::ActOnTypedefDeclarator(Scope
* S
, Declarator
& D
, DeclContext
* DC
,
6728 TypeSourceInfo
*TInfo
, LookupResult
&Previous
) {
6729 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
6730 if (D
.getCXXScopeSpec().isSet()) {
6731 Diag(D
.getIdentifierLoc(), diag::err_qualified_typedef_declarator
)
6732 << D
.getCXXScopeSpec().getRange();
6734 // Pretend we didn't see the scope specifier.
6739 DiagnoseFunctionSpecifiers(D
.getDeclSpec());
6741 if (D
.getDeclSpec().isInlineSpecified())
6742 Diag(D
.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function
)
6743 << getLangOpts().CPlusPlus17
;
6744 if (D
.getDeclSpec().hasConstexprSpecifier())
6745 Diag(D
.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr
)
6746 << 1 << static_cast<int>(D
.getDeclSpec().getConstexprSpecifier());
6748 if (D
.getName().getKind() != UnqualifiedIdKind::IK_Identifier
) {
6749 if (D
.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName
)
6750 Diag(D
.getName().StartLocation
,
6751 diag::err_deduction_guide_invalid_specifier
)
6754 Diag(D
.getName().StartLocation
, diag::err_typedef_not_identifier
)
6755 << D
.getName().getSourceRange();
6759 TypedefDecl
*NewTD
= ParseTypedefDecl(S
, D
, TInfo
->getType(), TInfo
);
6760 if (!NewTD
) return nullptr;
6762 // Handle attributes prior to checking for duplicates in MergeVarDecl
6763 ProcessDeclAttributes(S
, NewTD
, D
);
6765 CheckTypedefForVariablyModifiedType(S
, NewTD
);
6767 bool Redeclaration
= D
.isRedeclaration();
6768 NamedDecl
*ND
= ActOnTypedefNameDecl(S
, DC
, NewTD
, Previous
, Redeclaration
);
6769 D
.setRedeclaration(Redeclaration
);
6774 Sema::CheckTypedefForVariablyModifiedType(Scope
*S
, TypedefNameDecl
*NewTD
) {
6775 // C99 6.7.7p2: If a typedef name specifies a variably modified type
6776 // then it shall have block scope.
6777 // Note that variably modified types must be fixed before merging the decl so
6778 // that redeclarations will match.
6779 TypeSourceInfo
*TInfo
= NewTD
->getTypeSourceInfo();
6780 QualType T
= TInfo
->getType();
6781 if (T
->isVariablyModifiedType()) {
6782 setFunctionHasBranchProtectedScope();
6784 if (S
->getFnParent() == nullptr) {
6785 bool SizeIsNegative
;
6786 llvm::APSInt Oversized
;
6787 TypeSourceInfo
*FixedTInfo
=
6788 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo
, Context
,
6792 Diag(NewTD
->getLocation(), diag::ext_vla_folded_to_constant
);
6793 NewTD
->setTypeSourceInfo(FixedTInfo
);
6796 Diag(NewTD
->getLocation(), diag::err_typecheck_negative_array_size
);
6797 else if (T
->isVariableArrayType())
6798 Diag(NewTD
->getLocation(), diag::err_vla_decl_in_file_scope
);
6799 else if (Oversized
.getBoolValue())
6800 Diag(NewTD
->getLocation(), diag::err_array_too_large
)
6801 << toString(Oversized
, 10);
6803 Diag(NewTD
->getLocation(), diag::err_vm_decl_in_file_scope
);
6804 NewTD
->setInvalidDecl();
6810 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
6811 /// declares a typedef-name, either using the 'typedef' type specifier or via
6812 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
6814 Sema::ActOnTypedefNameDecl(Scope
*S
, DeclContext
*DC
, TypedefNameDecl
*NewTD
,
6815 LookupResult
&Previous
, bool &Redeclaration
) {
6817 // Find the shadowed declaration before filtering for scope.
6818 NamedDecl
*ShadowedDecl
= getShadowedDeclaration(NewTD
, Previous
);
6820 // Merge the decl with the existing one if appropriate. If the decl is
6821 // in an outer scope, it isn't the same thing.
6822 FilterLookupForScope(Previous
, DC
, S
, /*ConsiderLinkage*/false,
6823 /*AllowInlineNamespace*/false);
6824 filterNonConflictingPreviousTypedefDecls(*this, NewTD
, Previous
);
6825 if (!Previous
.empty()) {
6826 Redeclaration
= true;
6827 MergeTypedefNameDecl(S
, NewTD
, Previous
);
6829 inferGslPointerAttribute(NewTD
);
6832 if (ShadowedDecl
&& !Redeclaration
)
6833 CheckShadow(NewTD
, ShadowedDecl
, Previous
);
6835 // If this is the C FILE type, notify the AST context.
6836 if (IdentifierInfo
*II
= NewTD
->getIdentifier())
6837 if (!NewTD
->isInvalidDecl() &&
6838 NewTD
->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6839 switch (II
->getInterestingIdentifierID()) {
6840 case tok::InterestingIdentifierKind::FILE:
6841 Context
.setFILEDecl(NewTD
);
6843 case tok::InterestingIdentifierKind::jmp_buf:
6844 Context
.setjmp_bufDecl(NewTD
);
6846 case tok::InterestingIdentifierKind::sigjmp_buf
:
6847 Context
.setsigjmp_bufDecl(NewTD
);
6849 case tok::InterestingIdentifierKind::ucontext_t
:
6850 Context
.setucontext_tDecl(NewTD
);
6852 case tok::InterestingIdentifierKind::float_t
:
6853 case tok::InterestingIdentifierKind::double_t
:
6854 NewTD
->addAttr(AvailableOnlyInDefaultEvalMethodAttr::Create(Context
));
6864 /// Determines whether the given declaration is an out-of-scope
6865 /// previous declaration.
6867 /// This routine should be invoked when name lookup has found a
6868 /// previous declaration (PrevDecl) that is not in the scope where a
6869 /// new declaration by the same name is being introduced. If the new
6870 /// declaration occurs in a local scope, previous declarations with
6871 /// linkage may still be considered previous declarations (C99
6872 /// 6.2.2p4-5, C++ [basic.link]p6).
6874 /// \param PrevDecl the previous declaration found by name
6877 /// \param DC the context in which the new declaration is being
6880 /// \returns true if PrevDecl is an out-of-scope previous declaration
6881 /// for a new delcaration with the same name.
6883 isOutOfScopePreviousDeclaration(NamedDecl
*PrevDecl
, DeclContext
*DC
,
6884 ASTContext
&Context
) {
6888 if (!PrevDecl
->hasLinkage())
6891 if (Context
.getLangOpts().CPlusPlus
) {
6892 // C++ [basic.link]p6:
6893 // If there is a visible declaration of an entity with linkage
6894 // having the same name and type, ignoring entities declared
6895 // outside the innermost enclosing namespace scope, the block
6896 // scope declaration declares that same entity and receives the
6897 // linkage of the previous declaration.
6898 DeclContext
*OuterContext
= DC
->getRedeclContext();
6899 if (!OuterContext
->isFunctionOrMethod())
6900 // This rule only applies to block-scope declarations.
6903 DeclContext
*PrevOuterContext
= PrevDecl
->getDeclContext();
6904 if (PrevOuterContext
->isRecord())
6905 // We found a member function: ignore it.
6908 // Find the innermost enclosing namespace for the new and
6909 // previous declarations.
6910 OuterContext
= OuterContext
->getEnclosingNamespaceContext();
6911 PrevOuterContext
= PrevOuterContext
->getEnclosingNamespaceContext();
6913 // The previous declaration is in a different namespace, so it
6914 // isn't the same function.
6915 if (!OuterContext
->Equals(PrevOuterContext
))
6922 static void SetNestedNameSpecifier(Sema
&S
, DeclaratorDecl
*DD
, Declarator
&D
) {
6923 CXXScopeSpec
&SS
= D
.getCXXScopeSpec();
6924 if (!SS
.isSet()) return;
6925 DD
->setQualifierInfo(SS
.getWithLocInContext(S
.Context
));
6928 bool Sema::inferObjCARCLifetime(ValueDecl
*decl
) {
6929 QualType type
= decl
->getType();
6930 Qualifiers::ObjCLifetime lifetime
= type
.getObjCLifetime();
6931 if (lifetime
== Qualifiers::OCL_Autoreleasing
) {
6932 // Various kinds of declaration aren't allowed to be __autoreleasing.
6933 unsigned kind
= -1U;
6934 if (VarDecl
*var
= dyn_cast
<VarDecl
>(decl
)) {
6935 if (var
->hasAttr
<BlocksAttr
>())
6936 kind
= 0; // __block
6937 else if (!var
->hasLocalStorage())
6939 } else if (isa
<ObjCIvarDecl
>(decl
)) {
6941 } else if (isa
<FieldDecl
>(decl
)) {
6946 Diag(decl
->getLocation(), diag::err_arc_autoreleasing_var
)
6949 } else if (lifetime
== Qualifiers::OCL_None
) {
6950 // Try to infer lifetime.
6951 if (!type
->isObjCLifetimeType())
6954 lifetime
= type
->getObjCARCImplicitLifetime();
6955 type
= Context
.getLifetimeQualifiedType(type
, lifetime
);
6956 decl
->setType(type
);
6959 if (VarDecl
*var
= dyn_cast
<VarDecl
>(decl
)) {
6960 // Thread-local variables cannot have lifetime.
6961 if (lifetime
&& lifetime
!= Qualifiers::OCL_ExplicitNone
&&
6962 var
->getTLSKind()) {
6963 Diag(var
->getLocation(), diag::err_arc_thread_ownership
)
6972 void Sema::deduceOpenCLAddressSpace(ValueDecl
*Decl
) {
6973 if (Decl
->getType().hasAddressSpace())
6975 if (Decl
->getType()->isDependentType())
6977 if (VarDecl
*Var
= dyn_cast
<VarDecl
>(Decl
)) {
6978 QualType Type
= Var
->getType();
6979 if (Type
->isSamplerT() || Type
->isVoidType())
6981 LangAS ImplAS
= LangAS::opencl_private
;
6982 // OpenCL C v3.0 s6.7.8 - For OpenCL C 2.0 or with the
6983 // __opencl_c_program_scope_global_variables feature, the address space
6984 // for a variable at program scope or a static or extern variable inside
6985 // a function are inferred to be __global.
6986 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()) &&
6987 Var
->hasGlobalStorage())
6988 ImplAS
= LangAS::opencl_global
;
6989 // If the original type from a decayed type is an array type and that array
6990 // type has no address space yet, deduce it now.
6991 if (auto DT
= dyn_cast
<DecayedType
>(Type
)) {
6992 auto OrigTy
= DT
->getOriginalType();
6993 if (!OrigTy
.hasAddressSpace() && OrigTy
->isArrayType()) {
6994 // Add the address space to the original array type and then propagate
6995 // that to the element type through `getAsArrayType`.
6996 OrigTy
= Context
.getAddrSpaceQualType(OrigTy
, ImplAS
);
6997 OrigTy
= QualType(Context
.getAsArrayType(OrigTy
), 0);
6998 // Re-generate the decayed type.
6999 Type
= Context
.getDecayedType(OrigTy
);
7002 Type
= Context
.getAddrSpaceQualType(Type
, ImplAS
);
7003 // Apply any qualifiers (including address space) from the array type to
7004 // the element type. This implements C99 6.7.3p8: "If the specification of
7005 // an array type includes any type qualifiers, the element type is so
7006 // qualified, not the array type."
7007 if (Type
->isArrayType())
7008 Type
= QualType(Context
.getAsArrayType(Type
), 0);
7009 Decl
->setType(Type
);
7013 static void checkAttributesAfterMerging(Sema
&S
, NamedDecl
&ND
) {
7014 // Ensure that an auto decl is deduced otherwise the checks below might cache
7015 // the wrong linkage.
7016 assert(S
.ParsingInitForAutoVars
.count(&ND
) == 0);
7018 // 'weak' only applies to declarations with external linkage.
7019 if (WeakAttr
*Attr
= ND
.getAttr
<WeakAttr
>()) {
7020 if (!ND
.isExternallyVisible()) {
7021 S
.Diag(Attr
->getLocation(), diag::err_attribute_weak_static
);
7022 ND
.dropAttr
<WeakAttr
>();
7025 if (WeakRefAttr
*Attr
= ND
.getAttr
<WeakRefAttr
>()) {
7026 if (ND
.isExternallyVisible()) {
7027 S
.Diag(Attr
->getLocation(), diag::err_attribute_weakref_not_static
);
7028 ND
.dropAttr
<WeakRefAttr
>();
7029 ND
.dropAttr
<AliasAttr
>();
7033 if (auto *VD
= dyn_cast
<VarDecl
>(&ND
)) {
7034 if (VD
->hasInit()) {
7035 if (const auto *Attr
= VD
->getAttr
<AliasAttr
>()) {
7036 assert(VD
->isThisDeclarationADefinition() &&
7037 !VD
->isExternallyVisible() && "Broken AliasAttr handled late!");
7038 S
.Diag(Attr
->getLocation(), diag::err_alias_is_definition
) << VD
<< 0;
7039 VD
->dropAttr
<AliasAttr
>();
7044 // 'selectany' only applies to externally visible variable declarations.
7045 // It does not apply to functions.
7046 if (SelectAnyAttr
*Attr
= ND
.getAttr
<SelectAnyAttr
>()) {
7047 if (isa
<FunctionDecl
>(ND
) || !ND
.isExternallyVisible()) {
7048 S
.Diag(Attr
->getLocation(),
7049 diag::err_attribute_selectany_non_extern_data
);
7050 ND
.dropAttr
<SelectAnyAttr
>();
7054 if (const InheritableAttr
*Attr
= getDLLAttr(&ND
)) {
7055 auto *VD
= dyn_cast
<VarDecl
>(&ND
);
7056 bool IsAnonymousNS
= false;
7057 bool IsMicrosoft
= S
.Context
.getTargetInfo().getCXXABI().isMicrosoft();
7059 const NamespaceDecl
*NS
= dyn_cast
<NamespaceDecl
>(VD
->getDeclContext());
7060 while (NS
&& !IsAnonymousNS
) {
7061 IsAnonymousNS
= NS
->isAnonymousNamespace();
7062 NS
= dyn_cast
<NamespaceDecl
>(NS
->getParent());
7065 // dll attributes require external linkage. Static locals may have external
7066 // linkage but still cannot be explicitly imported or exported.
7067 // In Microsoft mode, a variable defined in anonymous namespace must have
7068 // external linkage in order to be exported.
7069 bool AnonNSInMicrosoftMode
= IsAnonymousNS
&& IsMicrosoft
;
7070 if ((ND
.isExternallyVisible() && AnonNSInMicrosoftMode
) ||
7071 (!AnonNSInMicrosoftMode
&&
7072 (!ND
.isExternallyVisible() || (VD
&& VD
->isStaticLocal())))) {
7073 S
.Diag(ND
.getLocation(), diag::err_attribute_dll_not_extern
)
7075 ND
.setInvalidDecl();
7079 // Check the attributes on the function type, if any.
7080 if (const auto *FD
= dyn_cast
<FunctionDecl
>(&ND
)) {
7081 // Don't declare this variable in the second operand of the for-statement;
7082 // GCC miscompiles that by ending its lifetime before evaluating the
7083 // third operand. See gcc.gnu.org/PR86769.
7084 AttributedTypeLoc ATL
;
7085 for (TypeLoc TL
= FD
->getTypeSourceInfo()->getTypeLoc();
7086 (ATL
= TL
.getAsAdjusted
<AttributedTypeLoc
>());
7087 TL
= ATL
.getModifiedLoc()) {
7088 // The [[lifetimebound]] attribute can be applied to the implicit object
7089 // parameter of a non-static member function (other than a ctor or dtor)
7090 // by applying it to the function type.
7091 if (const auto *A
= ATL
.getAttrAs
<LifetimeBoundAttr
>()) {
7092 const auto *MD
= dyn_cast
<CXXMethodDecl
>(FD
);
7093 if (!MD
|| MD
->isStatic()) {
7094 S
.Diag(A
->getLocation(), diag::err_lifetimebound_no_object_param
)
7095 << !MD
<< A
->getRange();
7096 } else if (isa
<CXXConstructorDecl
>(MD
) || isa
<CXXDestructorDecl
>(MD
)) {
7097 S
.Diag(A
->getLocation(), diag::err_lifetimebound_ctor_dtor
)
7098 << isa
<CXXDestructorDecl
>(MD
) << A
->getRange();
7105 static void checkDLLAttributeRedeclaration(Sema
&S
, NamedDecl
*OldDecl
,
7107 bool IsSpecialization
,
7108 bool IsDefinition
) {
7109 if (OldDecl
->isInvalidDecl() || NewDecl
->isInvalidDecl())
7112 bool IsTemplate
= false;
7113 if (TemplateDecl
*OldTD
= dyn_cast
<TemplateDecl
>(OldDecl
)) {
7114 OldDecl
= OldTD
->getTemplatedDecl();
7116 if (!IsSpecialization
)
7117 IsDefinition
= false;
7119 if (TemplateDecl
*NewTD
= dyn_cast
<TemplateDecl
>(NewDecl
)) {
7120 NewDecl
= NewTD
->getTemplatedDecl();
7124 if (!OldDecl
|| !NewDecl
)
7127 const DLLImportAttr
*OldImportAttr
= OldDecl
->getAttr
<DLLImportAttr
>();
7128 const DLLExportAttr
*OldExportAttr
= OldDecl
->getAttr
<DLLExportAttr
>();
7129 const DLLImportAttr
*NewImportAttr
= NewDecl
->getAttr
<DLLImportAttr
>();
7130 const DLLExportAttr
*NewExportAttr
= NewDecl
->getAttr
<DLLExportAttr
>();
7132 // dllimport and dllexport are inheritable attributes so we have to exclude
7133 // inherited attribute instances.
7134 bool HasNewAttr
= (NewImportAttr
&& !NewImportAttr
->isInherited()) ||
7135 (NewExportAttr
&& !NewExportAttr
->isInherited());
7137 // A redeclaration is not allowed to add a dllimport or dllexport attribute,
7138 // the only exception being explicit specializations.
7139 // Implicitly generated declarations are also excluded for now because there
7140 // is no other way to switch these to use dllimport or dllexport.
7141 bool AddsAttr
= !(OldImportAttr
|| OldExportAttr
) && HasNewAttr
;
7143 if (AddsAttr
&& !IsSpecialization
&& !OldDecl
->isImplicit()) {
7144 // Allow with a warning for free functions and global variables.
7145 bool JustWarn
= false;
7146 if (!OldDecl
->isCXXClassMember()) {
7147 auto *VD
= dyn_cast
<VarDecl
>(OldDecl
);
7148 if (VD
&& !VD
->getDescribedVarTemplate())
7150 auto *FD
= dyn_cast
<FunctionDecl
>(OldDecl
);
7151 if (FD
&& FD
->getTemplatedKind() == FunctionDecl::TK_NonTemplate
)
7155 // We cannot change a declaration that's been used because IR has already
7156 // been emitted. Dllimported functions will still work though (modulo
7157 // address equality) as they can use the thunk.
7158 if (OldDecl
->isUsed())
7159 if (!isa
<FunctionDecl
>(OldDecl
) || !NewImportAttr
)
7162 unsigned DiagID
= JustWarn
? diag::warn_attribute_dll_redeclaration
7163 : diag::err_attribute_dll_redeclaration
;
7164 S
.Diag(NewDecl
->getLocation(), DiagID
)
7166 << (NewImportAttr
? (const Attr
*)NewImportAttr
: NewExportAttr
);
7167 S
.Diag(OldDecl
->getLocation(), diag::note_previous_declaration
);
7169 NewDecl
->setInvalidDecl();
7174 // A redeclaration is not allowed to drop a dllimport attribute, the only
7175 // exceptions being inline function definitions (except for function
7176 // templates), local extern declarations, qualified friend declarations or
7177 // special MSVC extension: in the last case, the declaration is treated as if
7178 // it were marked dllexport.
7179 bool IsInline
= false, IsStaticDataMember
= false, IsQualifiedFriend
= false;
7180 bool IsMicrosoftABI
= S
.Context
.getTargetInfo().shouldDLLImportComdatSymbols();
7181 if (const auto *VD
= dyn_cast
<VarDecl
>(NewDecl
)) {
7182 // Ignore static data because out-of-line definitions are diagnosed
7184 IsStaticDataMember
= VD
->isStaticDataMember();
7185 IsDefinition
= VD
->isThisDeclarationADefinition(S
.Context
) !=
7186 VarDecl::DeclarationOnly
;
7187 } else if (const auto *FD
= dyn_cast
<FunctionDecl
>(NewDecl
)) {
7188 IsInline
= FD
->isInlined();
7189 IsQualifiedFriend
= FD
->getQualifier() &&
7190 FD
->getFriendObjectKind() == Decl::FOK_Declared
;
7193 if (OldImportAttr
&& !HasNewAttr
&&
7194 (!IsInline
|| (IsMicrosoftABI
&& IsTemplate
)) && !IsStaticDataMember
&&
7195 !NewDecl
->isLocalExternDecl() && !IsQualifiedFriend
) {
7196 if (IsMicrosoftABI
&& IsDefinition
) {
7197 if (IsSpecialization
) {
7199 NewDecl
->getLocation(),
7200 diag::err_attribute_dllimport_function_specialization_definition
);
7201 S
.Diag(OldImportAttr
->getLocation(), diag::note_attribute
);
7202 NewDecl
->dropAttr
<DLLImportAttr
>();
7204 S
.Diag(NewDecl
->getLocation(),
7205 diag::warn_redeclaration_without_import_attribute
)
7207 S
.Diag(OldDecl
->getLocation(), diag::note_previous_declaration
);
7208 NewDecl
->dropAttr
<DLLImportAttr
>();
7209 NewDecl
->addAttr(DLLExportAttr::CreateImplicit(
7210 S
.Context
, NewImportAttr
->getRange()));
7212 } else if (IsMicrosoftABI
&& IsSpecialization
) {
7213 assert(!IsDefinition
);
7214 // MSVC allows this. Keep the inherited attribute.
7216 S
.Diag(NewDecl
->getLocation(),
7217 diag::warn_redeclaration_without_attribute_prev_attribute_ignored
)
7218 << NewDecl
<< OldImportAttr
;
7219 S
.Diag(OldDecl
->getLocation(), diag::note_previous_declaration
);
7220 S
.Diag(OldImportAttr
->getLocation(), diag::note_previous_attribute
);
7221 OldDecl
->dropAttr
<DLLImportAttr
>();
7222 NewDecl
->dropAttr
<DLLImportAttr
>();
7224 } else if (IsInline
&& OldImportAttr
&& !IsMicrosoftABI
) {
7225 // In MinGW, seeing a function declared inline drops the dllimport
7227 OldDecl
->dropAttr
<DLLImportAttr
>();
7228 NewDecl
->dropAttr
<DLLImportAttr
>();
7229 S
.Diag(NewDecl
->getLocation(),
7230 diag::warn_dllimport_dropped_from_inline_function
)
7231 << NewDecl
<< OldImportAttr
;
7234 // A specialization of a class template member function is processed here
7235 // since it's a redeclaration. If the parent class is dllexport, the
7236 // specialization inherits that attribute. This doesn't happen automatically
7237 // since the parent class isn't instantiated until later.
7238 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(NewDecl
)) {
7239 if (MD
->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization
&&
7240 !NewImportAttr
&& !NewExportAttr
) {
7241 if (const DLLExportAttr
*ParentExportAttr
=
7242 MD
->getParent()->getAttr
<DLLExportAttr
>()) {
7243 DLLExportAttr
*NewAttr
= ParentExportAttr
->clone(S
.Context
);
7244 NewAttr
->setInherited(true);
7245 NewDecl
->addAttr(NewAttr
);
7251 /// Given that we are within the definition of the given function,
7252 /// will that definition behave like C99's 'inline', where the
7253 /// definition is discarded except for optimization purposes?
7254 static bool isFunctionDefinitionDiscarded(Sema
&S
, FunctionDecl
*FD
) {
7255 // Try to avoid calling GetGVALinkageForFunction.
7257 // All cases of this require the 'inline' keyword.
7258 if (!FD
->isInlined()) return false;
7260 // This is only possible in C++ with the gnu_inline attribute.
7261 if (S
.getLangOpts().CPlusPlus
&& !FD
->hasAttr
<GNUInlineAttr
>())
7264 // Okay, go ahead and call the relatively-more-expensive function.
7265 return S
.Context
.GetGVALinkageForFunction(FD
) == GVA_AvailableExternally
;
7268 /// Determine whether a variable is extern "C" prior to attaching
7269 /// an initializer. We can't just call isExternC() here, because that
7270 /// will also compute and cache whether the declaration is externally
7271 /// visible, which might change when we attach the initializer.
7273 /// This can only be used if the declaration is known to not be a
7274 /// redeclaration of an internal linkage declaration.
7280 /// Attaching the initializer here makes this declaration not externally
7281 /// visible, because its type has internal linkage.
7283 /// FIXME: This is a hack.
7284 template<typename T
>
7285 static bool isIncompleteDeclExternC(Sema
&S
, const T
*D
) {
7286 if (S
.getLangOpts().CPlusPlus
) {
7287 // In C++, the overloadable attribute negates the effects of extern "C".
7288 if (!D
->isInExternCContext() || D
->template hasAttr
<OverloadableAttr
>())
7291 // So do CUDA's host/device attributes.
7292 if (S
.getLangOpts().CUDA
&& (D
->template hasAttr
<CUDADeviceAttr
>() ||
7293 D
->template hasAttr
<CUDAHostAttr
>()))
7296 return D
->isExternC();
7299 static bool shouldConsiderLinkage(const VarDecl
*VD
) {
7300 const DeclContext
*DC
= VD
->getDeclContext()->getRedeclContext();
7301 if (DC
->isFunctionOrMethod() || isa
<OMPDeclareReductionDecl
>(DC
) ||
7302 isa
<OMPDeclareMapperDecl
>(DC
))
7303 return VD
->hasExternalStorage();
7304 if (DC
->isFileContext())
7308 if (DC
->getDeclKind() == Decl::HLSLBuffer
)
7311 if (isa
<RequiresExprBodyDecl
>(DC
))
7313 llvm_unreachable("Unexpected context");
7316 static bool shouldConsiderLinkage(const FunctionDecl
*FD
) {
7317 const DeclContext
*DC
= FD
->getDeclContext()->getRedeclContext();
7318 if (DC
->isFileContext() || DC
->isFunctionOrMethod() ||
7319 isa
<OMPDeclareReductionDecl
>(DC
) || isa
<OMPDeclareMapperDecl
>(DC
))
7323 llvm_unreachable("Unexpected context");
7326 static bool hasParsedAttr(Scope
*S
, const Declarator
&PD
,
7327 ParsedAttr::Kind Kind
) {
7328 // Check decl attributes on the DeclSpec.
7329 if (PD
.getDeclSpec().getAttributes().hasAttribute(Kind
))
7332 // Walk the declarator structure, checking decl attributes that were in a type
7333 // position to the decl itself.
7334 for (unsigned I
= 0, E
= PD
.getNumTypeObjects(); I
!= E
; ++I
) {
7335 if (PD
.getTypeObject(I
).getAttrs().hasAttribute(Kind
))
7339 // Finally, check attributes on the decl itself.
7340 return PD
.getAttributes().hasAttribute(Kind
) ||
7341 PD
.getDeclarationAttributes().hasAttribute(Kind
);
7344 /// Adjust the \c DeclContext for a function or variable that might be a
7345 /// function-local external declaration.
7346 bool Sema::adjustContextForLocalExternDecl(DeclContext
*&DC
) {
7347 if (!DC
->isFunctionOrMethod())
7350 // If this is a local extern function or variable declared within a function
7351 // template, don't add it into the enclosing namespace scope until it is
7352 // instantiated; it might have a dependent type right now.
7353 if (DC
->isDependentContext())
7356 // C++11 [basic.link]p7:
7357 // When a block scope declaration of an entity with linkage is not found to
7358 // refer to some other declaration, then that entity is a member of the
7359 // innermost enclosing namespace.
7361 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
7362 // semantically-enclosing namespace, not a lexically-enclosing one.
7363 while (!DC
->isFileContext() && !isa
<LinkageSpecDecl
>(DC
))
7364 DC
= DC
->getParent();
7368 /// Returns true if given declaration has external C language linkage.
7369 static bool isDeclExternC(const Decl
*D
) {
7370 if (const auto *FD
= dyn_cast
<FunctionDecl
>(D
))
7371 return FD
->isExternC();
7372 if (const auto *VD
= dyn_cast
<VarDecl
>(D
))
7373 return VD
->isExternC();
7375 llvm_unreachable("Unknown type of decl!");
7378 /// Returns true if there hasn't been any invalid type diagnosed.
7379 static bool diagnoseOpenCLTypes(Sema
&Se
, VarDecl
*NewVD
) {
7380 DeclContext
*DC
= NewVD
->getDeclContext();
7381 QualType R
= NewVD
->getType();
7383 // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
7384 // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
7386 if (R
->isImageType() || R
->isPipeType()) {
7387 Se
.Diag(NewVD
->getLocation(),
7388 diag::err_opencl_type_can_only_be_used_as_function_parameter
)
7390 NewVD
->setInvalidDecl();
7394 // OpenCL v1.2 s6.9.r:
7395 // The event type cannot be used to declare a program scope variable.
7396 // OpenCL v2.0 s6.9.q:
7397 // The clk_event_t and reserve_id_t types cannot be declared in program
7399 if (NewVD
->hasGlobalStorage() && !NewVD
->isStaticLocal()) {
7400 if (R
->isReserveIDT() || R
->isClkEventT() || R
->isEventT()) {
7401 Se
.Diag(NewVD
->getLocation(),
7402 diag::err_invalid_type_for_program_scope_var
)
7404 NewVD
->setInvalidDecl();
7409 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
7410 if (!Se
.getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
7411 Se
.getLangOpts())) {
7412 QualType NR
= R
.getCanonicalType();
7413 while (NR
->isPointerType() || NR
->isMemberFunctionPointerType() ||
7414 NR
->isReferenceType()) {
7415 if (NR
->isFunctionPointerType() || NR
->isMemberFunctionPointerType() ||
7416 NR
->isFunctionReferenceType()) {
7417 Se
.Diag(NewVD
->getLocation(), diag::err_opencl_function_pointer
)
7418 << NR
->isReferenceType();
7419 NewVD
->setInvalidDecl();
7422 NR
= NR
->getPointeeType();
7426 if (!Se
.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
7427 Se
.getLangOpts())) {
7428 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
7429 // half array type (unless the cl_khr_fp16 extension is enabled).
7430 if (Se
.Context
.getBaseElementType(R
)->isHalfType()) {
7431 Se
.Diag(NewVD
->getLocation(), diag::err_opencl_half_declaration
) << R
;
7432 NewVD
->setInvalidDecl();
7437 // OpenCL v1.2 s6.9.r:
7438 // The event type cannot be used with the __local, __constant and __global
7439 // address space qualifiers.
7440 if (R
->isEventT()) {
7441 if (R
.getAddressSpace() != LangAS::opencl_private
) {
7442 Se
.Diag(NewVD
->getBeginLoc(), diag::err_event_t_addr_space_qual
);
7443 NewVD
->setInvalidDecl();
7448 if (R
->isSamplerT()) {
7449 // OpenCL v1.2 s6.9.b p4:
7450 // The sampler type cannot be used with the __local and __global address
7451 // space qualifiers.
7452 if (R
.getAddressSpace() == LangAS::opencl_local
||
7453 R
.getAddressSpace() == LangAS::opencl_global
) {
7454 Se
.Diag(NewVD
->getLocation(), diag::err_wrong_sampler_addressspace
);
7455 NewVD
->setInvalidDecl();
7458 // OpenCL v1.2 s6.12.14.1:
7459 // A global sampler must be declared with either the constant address
7460 // space qualifier or with the const qualifier.
7461 if (DC
->isTranslationUnit() &&
7462 !(R
.getAddressSpace() == LangAS::opencl_constant
||
7463 R
.isConstQualified())) {
7464 Se
.Diag(NewVD
->getLocation(), diag::err_opencl_nonconst_global_sampler
);
7465 NewVD
->setInvalidDecl();
7467 if (NewVD
->isInvalidDecl())
7474 template <typename AttrTy
>
7475 static void copyAttrFromTypedefToDecl(Sema
&S
, Decl
*D
, const TypedefType
*TT
) {
7476 const TypedefNameDecl
*TND
= TT
->getDecl();
7477 if (const auto *Attribute
= TND
->getAttr
<AttrTy
>()) {
7478 AttrTy
*Clone
= Attribute
->clone(S
.Context
);
7479 Clone
->setInherited(true);
7484 // This function emits warning and a corresponding note based on the
7485 // ReadOnlyPlacementAttr attribute. The warning checks that all global variable
7486 // declarations of an annotated type must be const qualified.
7487 void emitReadOnlyPlacementAttrWarning(Sema
&S
, const VarDecl
*VD
) {
7488 QualType VarType
= VD
->getType().getCanonicalType();
7490 // Ignore local declarations (for now) and those with const qualification.
7491 // TODO: Local variables should not be allowed if their type declaration has
7492 // ReadOnlyPlacementAttr attribute. To be handled in follow-up patch.
7493 if (!VD
|| VD
->hasLocalStorage() || VD
->getType().isConstQualified())
7496 if (VarType
->isArrayType()) {
7497 // Retrieve element type for array declarations.
7498 VarType
= S
.getASTContext().getBaseElementType(VarType
);
7501 const RecordDecl
*RD
= VarType
->getAsRecordDecl();
7503 // Check if the record declaration is present and if it has any attributes.
7507 if (const auto *ConstDecl
= RD
->getAttr
<ReadOnlyPlacementAttr
>()) {
7508 S
.Diag(VD
->getLocation(), diag::warn_var_decl_not_read_only
) << RD
;
7509 S
.Diag(ConstDecl
->getLocation(), diag::note_enforce_read_only_placement
);
7514 NamedDecl
*Sema::ActOnVariableDeclarator(
7515 Scope
*S
, Declarator
&D
, DeclContext
*DC
, TypeSourceInfo
*TInfo
,
7516 LookupResult
&Previous
, MultiTemplateParamsArg TemplateParamLists
,
7517 bool &AddToScope
, ArrayRef
<BindingDecl
*> Bindings
) {
7518 QualType R
= TInfo
->getType();
7519 DeclarationName Name
= GetNameForDeclarator(D
).getName();
7521 IdentifierInfo
*II
= Name
.getAsIdentifierInfo();
7522 bool IsPlaceholderVariable
= false;
7524 if (D
.isDecompositionDeclarator()) {
7525 // Take the name of the first declarator as our name for diagnostic
7527 auto &Decomp
= D
.getDecompositionDeclarator();
7528 if (!Decomp
.bindings().empty()) {
7529 II
= Decomp
.bindings()[0].Name
;
7533 Diag(D
.getIdentifierLoc(), diag::err_bad_variable_name
) << Name
;
7538 DeclSpec::SCS SCSpec
= D
.getDeclSpec().getStorageClassSpec();
7539 StorageClass SC
= StorageClassSpecToVarDeclStorageClass(D
.getDeclSpec());
7541 if (LangOpts
.CPlusPlus
&& (DC
->isClosure() || DC
->isFunctionOrMethod()) &&
7542 SC
!= SC_Static
&& SC
!= SC_Extern
&& II
&& II
->isPlaceholder()) {
7543 IsPlaceholderVariable
= true;
7544 if (!Previous
.empty()) {
7545 NamedDecl
*PrevDecl
= *Previous
.begin();
7546 bool SameDC
= PrevDecl
->getDeclContext()->getRedeclContext()->Equals(
7547 DC
->getRedeclContext());
7548 if (SameDC
&& isDeclInScope(PrevDecl
, CurContext
, S
, false))
7549 DiagPlaceholderVariableDefinition(D
.getIdentifierLoc());
7553 // dllimport globals without explicit storage class are treated as extern. We
7554 // have to change the storage class this early to get the right DeclContext.
7555 if (SC
== SC_None
&& !DC
->isRecord() &&
7556 hasParsedAttr(S
, D
, ParsedAttr::AT_DLLImport
) &&
7557 !hasParsedAttr(S
, D
, ParsedAttr::AT_DLLExport
))
7560 DeclContext
*OriginalDC
= DC
;
7561 bool IsLocalExternDecl
= SC
== SC_Extern
&&
7562 adjustContextForLocalExternDecl(DC
);
7564 if (SCSpec
== DeclSpec::SCS_mutable
) {
7565 // mutable can only appear on non-static class members, so it's always
7567 Diag(D
.getIdentifierLoc(), diag::err_mutable_nonmember
);
7572 if (getLangOpts().CPlusPlus11
&& SCSpec
== DeclSpec::SCS_register
&&
7573 !D
.getAsmLabel() && !getSourceManager().isInSystemMacro(
7574 D
.getDeclSpec().getStorageClassSpecLoc())) {
7575 // In C++11, the 'register' storage class specifier is deprecated.
7576 // Suppress the warning in system macros, it's used in macros in some
7577 // popular C system headers, such as in glibc's htonl() macro.
7578 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
7579 getLangOpts().CPlusPlus17
? diag::ext_register_storage_class
7580 : diag::warn_deprecated_register
)
7581 << FixItHint::CreateRemoval(D
.getDeclSpec().getStorageClassSpecLoc());
7584 DiagnoseFunctionSpecifiers(D
.getDeclSpec());
7586 if (!DC
->isRecord() && S
->getFnParent() == nullptr) {
7587 // C99 6.9p2: The storage-class specifiers auto and register shall not
7588 // appear in the declaration specifiers in an external declaration.
7589 // Global Register+Asm is a GNU extension we support.
7590 if (SC
== SC_Auto
|| (SC
== SC_Register
&& !D
.getAsmLabel())) {
7591 Diag(D
.getIdentifierLoc(), diag::err_typecheck_sclass_fscope
);
7596 // If this variable has a VLA type and an initializer, try to
7597 // fold to a constant-sized type. This is otherwise invalid.
7598 if (D
.hasInitializer() && R
->isVariableArrayType())
7599 tryToFixVariablyModifiedVarType(TInfo
, R
, D
.getIdentifierLoc(),
7602 bool IsMemberSpecialization
= false;
7603 bool IsVariableTemplateSpecialization
= false;
7604 bool IsPartialSpecialization
= false;
7605 bool IsVariableTemplate
= false;
7606 VarDecl
*NewVD
= nullptr;
7607 VarTemplateDecl
*NewTemplate
= nullptr;
7608 TemplateParameterList
*TemplateParams
= nullptr;
7609 if (!getLangOpts().CPlusPlus
) {
7610 NewVD
= VarDecl::Create(Context
, DC
, D
.getBeginLoc(), D
.getIdentifierLoc(),
7613 if (R
->getContainedDeducedType())
7614 ParsingInitForAutoVars
.insert(NewVD
);
7616 if (D
.isInvalidType())
7617 NewVD
->setInvalidDecl();
7619 if (NewVD
->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
7620 NewVD
->hasLocalStorage())
7621 checkNonTrivialCUnion(NewVD
->getType(), NewVD
->getLocation(),
7622 NTCUC_AutoVar
, NTCUK_Destruct
);
7624 bool Invalid
= false;
7626 if (DC
->isRecord() && !CurContext
->isRecord()) {
7627 // This is an out-of-line definition of a static data member.
7632 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
7633 diag::err_static_out_of_line
)
7634 << FixItHint::CreateRemoval(D
.getDeclSpec().getStorageClassSpecLoc());
7639 // [dcl.stc] p2: The auto or register specifiers shall be applied only
7640 // to names of variables declared in a block or to function parameters.
7641 // [dcl.stc] p6: The extern specifier cannot be used in the declaration
7644 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
7645 diag::err_storage_class_for_static_member
)
7646 << FixItHint::CreateRemoval(D
.getDeclSpec().getStorageClassSpecLoc());
7648 case SC_PrivateExtern
:
7649 llvm_unreachable("C storage class in c++!");
7653 if (SC
== SC_Static
&& CurContext
->isRecord()) {
7654 if (const CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(DC
)) {
7655 // Walk up the enclosing DeclContexts to check for any that are
7656 // incompatible with static data members.
7657 const DeclContext
*FunctionOrMethod
= nullptr;
7658 const CXXRecordDecl
*AnonStruct
= nullptr;
7659 for (DeclContext
*Ctxt
= DC
; Ctxt
; Ctxt
= Ctxt
->getParent()) {
7660 if (Ctxt
->isFunctionOrMethod()) {
7661 FunctionOrMethod
= Ctxt
;
7664 const CXXRecordDecl
*ParentDecl
= dyn_cast
<CXXRecordDecl
>(Ctxt
);
7665 if (ParentDecl
&& !ParentDecl
->getDeclName()) {
7666 AnonStruct
= ParentDecl
;
7670 if (FunctionOrMethod
) {
7671 // C++ [class.static.data]p5: A local class shall not have static data
7673 Diag(D
.getIdentifierLoc(),
7674 diag::err_static_data_member_not_allowed_in_local_class
)
7675 << Name
<< RD
->getDeclName()
7676 << llvm::to_underlying(RD
->getTagKind());
7677 } else if (AnonStruct
) {
7678 // C++ [class.static.data]p4: Unnamed classes and classes contained
7679 // directly or indirectly within unnamed classes shall not contain
7680 // static data members.
7681 Diag(D
.getIdentifierLoc(),
7682 diag::err_static_data_member_not_allowed_in_anon_struct
)
7683 << Name
<< llvm::to_underlying(AnonStruct
->getTagKind());
7685 } else if (RD
->isUnion()) {
7686 // C++98 [class.union]p1: If a union contains a static data member,
7687 // the program is ill-formed. C++11 drops this restriction.
7688 Diag(D
.getIdentifierLoc(),
7689 getLangOpts().CPlusPlus11
7690 ? diag::warn_cxx98_compat_static_data_member_in_union
7691 : diag::ext_static_data_member_in_union
) << Name
;
7696 // Match up the template parameter lists with the scope specifier, then
7697 // determine whether we have a template or a template specialization.
7698 bool InvalidScope
= false;
7699 TemplateParams
= MatchTemplateParametersToScopeSpecifier(
7700 D
.getDeclSpec().getBeginLoc(), D
.getIdentifierLoc(),
7701 D
.getCXXScopeSpec(),
7702 D
.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
7703 ? D
.getName().TemplateId
7706 /*never a friend*/ false, IsMemberSpecialization
, InvalidScope
);
7707 Invalid
|= InvalidScope
;
7709 if (TemplateParams
) {
7710 if (!TemplateParams
->size() &&
7711 D
.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) {
7712 // There is an extraneous 'template<>' for this variable. Complain
7713 // about it, but allow the declaration of the variable.
7714 Diag(TemplateParams
->getTemplateLoc(),
7715 diag::err_template_variable_noparams
)
7717 << SourceRange(TemplateParams
->getTemplateLoc(),
7718 TemplateParams
->getRAngleLoc());
7719 TemplateParams
= nullptr;
7721 // Check that we can declare a template here.
7722 if (CheckTemplateDeclScope(S
, TemplateParams
))
7725 if (D
.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
) {
7726 // This is an explicit specialization or a partial specialization.
7727 IsVariableTemplateSpecialization
= true;
7728 IsPartialSpecialization
= TemplateParams
->size() > 0;
7729 } else { // if (TemplateParams->size() > 0)
7730 // This is a template declaration.
7731 IsVariableTemplate
= true;
7733 // Only C++1y supports variable templates (N3651).
7734 Diag(D
.getIdentifierLoc(),
7735 getLangOpts().CPlusPlus14
7736 ? diag::warn_cxx11_compat_variable_template
7737 : diag::ext_variable_template
);
7741 // Check that we can declare a member specialization here.
7742 if (!TemplateParamLists
.empty() && IsMemberSpecialization
&&
7743 CheckTemplateDeclScope(S
, TemplateParamLists
.back()))
7746 D
.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) &&
7747 "should have a 'template<>' for this decl");
7750 if (IsVariableTemplateSpecialization
) {
7751 SourceLocation TemplateKWLoc
=
7752 TemplateParamLists
.size() > 0
7753 ? TemplateParamLists
[0]->getTemplateLoc()
7755 DeclResult Res
= ActOnVarTemplateSpecialization(
7756 S
, D
, TInfo
, TemplateKWLoc
, TemplateParams
, SC
,
7757 IsPartialSpecialization
);
7758 if (Res
.isInvalid())
7760 NewVD
= cast
<VarDecl
>(Res
.get());
7762 } else if (D
.isDecompositionDeclarator()) {
7763 NewVD
= DecompositionDecl::Create(Context
, DC
, D
.getBeginLoc(),
7764 D
.getIdentifierLoc(), R
, TInfo
, SC
,
7767 NewVD
= VarDecl::Create(Context
, DC
, D
.getBeginLoc(),
7768 D
.getIdentifierLoc(), II
, R
, TInfo
, SC
);
7770 // If this is supposed to be a variable template, create it as such.
7771 if (IsVariableTemplate
) {
7773 VarTemplateDecl::Create(Context
, DC
, D
.getIdentifierLoc(), Name
,
7774 TemplateParams
, NewVD
);
7775 NewVD
->setDescribedVarTemplate(NewTemplate
);
7778 // If this decl has an auto type in need of deduction, make a note of the
7779 // Decl so we can diagnose uses of it in its own initializer.
7780 if (R
->getContainedDeducedType())
7781 ParsingInitForAutoVars
.insert(NewVD
);
7783 if (D
.isInvalidType() || Invalid
) {
7784 NewVD
->setInvalidDecl();
7786 NewTemplate
->setInvalidDecl();
7789 SetNestedNameSpecifier(*this, NewVD
, D
);
7791 // If we have any template parameter lists that don't directly belong to
7792 // the variable (matching the scope specifier), store them.
7793 // An explicit variable template specialization does not own any template
7795 bool IsExplicitSpecialization
=
7796 IsVariableTemplateSpecialization
&& !IsPartialSpecialization
;
7797 unsigned VDTemplateParamLists
=
7798 (TemplateParams
&& !IsExplicitSpecialization
) ? 1 : 0;
7799 if (TemplateParamLists
.size() > VDTemplateParamLists
)
7800 NewVD
->setTemplateParameterListsInfo(
7801 Context
, TemplateParamLists
.drop_back(VDTemplateParamLists
));
7804 if (D
.getDeclSpec().isInlineSpecified()) {
7805 if (!getLangOpts().CPlusPlus
) {
7806 Diag(D
.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function
)
7808 } else if (CurContext
->isFunctionOrMethod()) {
7809 // 'inline' is not allowed on block scope variable declaration.
7810 Diag(D
.getDeclSpec().getInlineSpecLoc(),
7811 diag::err_inline_declaration_block_scope
) << Name
7812 << FixItHint::CreateRemoval(D
.getDeclSpec().getInlineSpecLoc());
7814 Diag(D
.getDeclSpec().getInlineSpecLoc(),
7815 getLangOpts().CPlusPlus17
? diag::warn_cxx14_compat_inline_variable
7816 : diag::ext_inline_variable
);
7817 NewVD
->setInlineSpecified();
7821 // Set the lexical context. If the declarator has a C++ scope specifier, the
7822 // lexical context will be different from the semantic context.
7823 NewVD
->setLexicalDeclContext(CurContext
);
7825 NewTemplate
->setLexicalDeclContext(CurContext
);
7827 if (IsLocalExternDecl
) {
7828 if (D
.isDecompositionDeclarator())
7829 for (auto *B
: Bindings
)
7830 B
->setLocalExternDecl();
7832 NewVD
->setLocalExternDecl();
7835 bool EmitTLSUnsupportedError
= false;
7836 if (DeclSpec::TSCS TSCS
= D
.getDeclSpec().getThreadStorageClassSpec()) {
7837 // C++11 [dcl.stc]p4:
7838 // When thread_local is applied to a variable of block scope the
7839 // storage-class-specifier static is implied if it does not appear
7841 // Core issue: 'static' is not implied if the variable is declared
7843 if (NewVD
->hasLocalStorage() &&
7844 (SCSpec
!= DeclSpec::SCS_unspecified
||
7845 TSCS
!= DeclSpec::TSCS_thread_local
||
7846 !DC
->isFunctionOrMethod()))
7847 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
7848 diag::err_thread_non_global
)
7849 << DeclSpec::getSpecifierName(TSCS
);
7850 else if (!Context
.getTargetInfo().isTLSSupported()) {
7851 if (getLangOpts().CUDA
|| getLangOpts().OpenMPIsTargetDevice
||
7852 getLangOpts().SYCLIsDevice
) {
7853 // Postpone error emission until we've collected attributes required to
7854 // figure out whether it's a host or device variable and whether the
7855 // error should be ignored.
7856 EmitTLSUnsupportedError
= true;
7857 // We still need to mark the variable as TLS so it shows up in AST with
7858 // proper storage class for other tools to use even if we're not going
7859 // to emit any code for it.
7860 NewVD
->setTSCSpec(TSCS
);
7862 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
7863 diag::err_thread_unsupported
);
7865 NewVD
->setTSCSpec(TSCS
);
7868 switch (D
.getDeclSpec().getConstexprSpecifier()) {
7869 case ConstexprSpecKind::Unspecified
:
7872 case ConstexprSpecKind::Consteval
:
7873 Diag(D
.getDeclSpec().getConstexprSpecLoc(),
7874 diag::err_constexpr_wrong_decl_kind
)
7875 << static_cast<int>(D
.getDeclSpec().getConstexprSpecifier());
7878 case ConstexprSpecKind::Constexpr
:
7879 NewVD
->setConstexpr(true);
7880 // C++1z [dcl.spec.constexpr]p1:
7881 // A static data member declared with the constexpr specifier is
7882 // implicitly an inline variable.
7883 if (NewVD
->isStaticDataMember() &&
7884 (getLangOpts().CPlusPlus17
||
7885 Context
.getTargetInfo().getCXXABI().isMicrosoft()))
7886 NewVD
->setImplicitlyInline();
7889 case ConstexprSpecKind::Constinit
:
7890 if (!NewVD
->hasGlobalStorage())
7891 Diag(D
.getDeclSpec().getConstexprSpecLoc(),
7892 diag::err_constinit_local_variable
);
7895 ConstInitAttr::Create(Context
, D
.getDeclSpec().getConstexprSpecLoc(),
7896 ConstInitAttr::Keyword_constinit
));
7901 // An inline definition of a function with external linkage shall
7902 // not contain a definition of a modifiable object with static or
7903 // thread storage duration...
7904 // We only apply this when the function is required to be defined
7905 // elsewhere, i.e. when the function is not 'extern inline'. Note
7906 // that a local variable with thread storage duration still has to
7907 // be marked 'static'. Also note that it's possible to get these
7908 // semantics in C++ using __attribute__((gnu_inline)).
7909 if (SC
== SC_Static
&& S
->getFnParent() != nullptr &&
7910 !NewVD
->getType().isConstQualified()) {
7911 FunctionDecl
*CurFD
= getCurFunctionDecl();
7912 if (CurFD
&& isFunctionDefinitionDiscarded(*this, CurFD
)) {
7913 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
7914 diag::warn_static_local_in_extern_inline
);
7915 MaybeSuggestAddingStaticToDecl(CurFD
);
7919 if (D
.getDeclSpec().isModulePrivateSpecified()) {
7920 if (IsVariableTemplateSpecialization
)
7921 Diag(NewVD
->getLocation(), diag::err_module_private_specialization
)
7922 << (IsPartialSpecialization
? 1 : 0)
7923 << FixItHint::CreateRemoval(
7924 D
.getDeclSpec().getModulePrivateSpecLoc());
7925 else if (IsMemberSpecialization
)
7926 Diag(NewVD
->getLocation(), diag::err_module_private_specialization
)
7928 << FixItHint::CreateRemoval(D
.getDeclSpec().getModulePrivateSpecLoc());
7929 else if (NewVD
->hasLocalStorage())
7930 Diag(NewVD
->getLocation(), diag::err_module_private_local
)
7932 << SourceRange(D
.getDeclSpec().getModulePrivateSpecLoc())
7933 << FixItHint::CreateRemoval(
7934 D
.getDeclSpec().getModulePrivateSpecLoc());
7936 NewVD
->setModulePrivate();
7938 NewTemplate
->setModulePrivate();
7939 for (auto *B
: Bindings
)
7940 B
->setModulePrivate();
7944 if (getLangOpts().OpenCL
) {
7945 deduceOpenCLAddressSpace(NewVD
);
7947 DeclSpec::TSCS TSC
= D
.getDeclSpec().getThreadStorageClassSpec();
7948 if (TSC
!= TSCS_unspecified
) {
7949 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
7950 diag::err_opencl_unknown_type_specifier
)
7951 << getLangOpts().getOpenCLVersionString()
7952 << DeclSpec::getSpecifierName(TSC
) << 1;
7953 NewVD
->setInvalidDecl();
7957 // WebAssembly tables are always in address space 1 (wasm_var). Don't apply
7958 // address space if the table has local storage (semantic checks elsewhere
7959 // will produce an error anyway).
7960 if (const auto *ATy
= dyn_cast
<ArrayType
>(NewVD
->getType())) {
7961 if (ATy
&& ATy
->getElementType().isWebAssemblyReferenceType() &&
7962 !NewVD
->hasLocalStorage()) {
7963 QualType Type
= Context
.getAddrSpaceQualType(
7964 NewVD
->getType(), Context
.getLangASForBuiltinAddressSpace(1));
7965 NewVD
->setType(Type
);
7969 // Handle attributes prior to checking for duplicates in MergeVarDecl
7970 ProcessDeclAttributes(S
, NewVD
, D
);
7972 // FIXME: This is probably the wrong location to be doing this and we should
7973 // probably be doing this for more attributes (especially for function
7974 // pointer attributes such as format, warn_unused_result, etc.). Ideally
7975 // the code to copy attributes would be generated by TableGen.
7976 if (R
->isFunctionPointerType())
7977 if (const auto *TT
= R
->getAs
<TypedefType
>())
7978 copyAttrFromTypedefToDecl
<AllocSizeAttr
>(*this, NewVD
, TT
);
7980 if (getLangOpts().CUDA
|| getLangOpts().OpenMPIsTargetDevice
||
7981 getLangOpts().SYCLIsDevice
) {
7982 if (EmitTLSUnsupportedError
&&
7983 ((getLangOpts().CUDA
&& DeclAttrsMatchCUDAMode(getLangOpts(), NewVD
)) ||
7984 (getLangOpts().OpenMPIsTargetDevice
&&
7985 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD
))))
7986 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
7987 diag::err_thread_unsupported
);
7989 if (EmitTLSUnsupportedError
&&
7990 (LangOpts
.SYCLIsDevice
||
7991 (LangOpts
.OpenMP
&& LangOpts
.OpenMPIsTargetDevice
)))
7992 targetDiag(D
.getIdentifierLoc(), diag::err_thread_unsupported
);
7993 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
7994 // storage [duration]."
7995 if (SC
== SC_None
&& S
->getFnParent() != nullptr &&
7996 (NewVD
->hasAttr
<CUDASharedAttr
>() ||
7997 NewVD
->hasAttr
<CUDAConstantAttr
>())) {
7998 NewVD
->setStorageClass(SC_Static
);
8002 // Ensure that dllimport globals without explicit storage class are treated as
8003 // extern. The storage class is set above using parsed attributes. Now we can
8004 // check the VarDecl itself.
8005 assert(!NewVD
->hasAttr
<DLLImportAttr
>() ||
8006 NewVD
->getAttr
<DLLImportAttr
>()->isInherited() ||
8007 NewVD
->isStaticDataMember() || NewVD
->getStorageClass() != SC_None
);
8009 // In auto-retain/release, infer strong retension for variables of
8011 if (getLangOpts().ObjCAutoRefCount
&& inferObjCARCLifetime(NewVD
))
8012 NewVD
->setInvalidDecl();
8014 // Handle GNU asm-label extension (encoded as an attribute).
8015 if (Expr
*E
= (Expr
*)D
.getAsmLabel()) {
8016 // The parser guarantees this is a string.
8017 StringLiteral
*SE
= cast
<StringLiteral
>(E
);
8018 StringRef Label
= SE
->getString();
8019 if (S
->getFnParent() != nullptr) {
8023 Diag(E
->getExprLoc(), diag::warn_asm_label_on_auto_decl
) << Label
;
8026 // Local Named register
8027 if (!Context
.getTargetInfo().isValidGCCRegisterName(Label
) &&
8028 DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
8029 Diag(E
->getExprLoc(), diag::err_asm_unknown_register_name
) << Label
;
8033 case SC_PrivateExtern
:
8036 } else if (SC
== SC_Register
) {
8037 // Global Named register
8038 if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD
)) {
8039 const auto &TI
= Context
.getTargetInfo();
8040 bool HasSizeMismatch
;
8042 if (!TI
.isValidGCCRegisterName(Label
))
8043 Diag(E
->getExprLoc(), diag::err_asm_unknown_register_name
) << Label
;
8044 else if (!TI
.validateGlobalRegisterVariable(Label
,
8045 Context
.getTypeSize(R
),
8047 Diag(E
->getExprLoc(), diag::err_asm_invalid_global_var_reg
) << Label
;
8048 else if (HasSizeMismatch
)
8049 Diag(E
->getExprLoc(), diag::err_asm_register_size_mismatch
) << Label
;
8052 if (!R
->isIntegralType(Context
) && !R
->isPointerType()) {
8053 Diag(D
.getBeginLoc(), diag::err_asm_bad_register_type
);
8054 NewVD
->setInvalidDecl(true);
8058 NewVD
->addAttr(AsmLabelAttr::Create(Context
, Label
,
8059 /*IsLiteralLabel=*/true,
8060 SE
->getStrTokenLoc(0)));
8061 } else if (!ExtnameUndeclaredIdentifiers
.empty()) {
8062 llvm::DenseMap
<IdentifierInfo
*,AsmLabelAttr
*>::iterator I
=
8063 ExtnameUndeclaredIdentifiers
.find(NewVD
->getIdentifier());
8064 if (I
!= ExtnameUndeclaredIdentifiers
.end()) {
8065 if (isDeclExternC(NewVD
)) {
8066 NewVD
->addAttr(I
->second
);
8067 ExtnameUndeclaredIdentifiers
.erase(I
);
8069 Diag(NewVD
->getLocation(), diag::warn_redefine_extname_not_applied
)
8070 << /*Variable*/1 << NewVD
;
8074 // Find the shadowed declaration before filtering for scope.
8075 NamedDecl
*ShadowedDecl
= D
.getCXXScopeSpec().isEmpty()
8076 ? getShadowedDeclaration(NewVD
, Previous
)
8079 // Don't consider existing declarations that are in a different
8080 // scope and are out-of-semantic-context declarations (if the new
8081 // declaration has linkage).
8082 FilterLookupForScope(Previous
, OriginalDC
, S
, shouldConsiderLinkage(NewVD
),
8083 D
.getCXXScopeSpec().isNotEmpty() ||
8084 IsMemberSpecialization
||
8085 IsVariableTemplateSpecialization
);
8087 // Check whether the previous declaration is in the same block scope. This
8088 // affects whether we merge types with it, per C++11 [dcl.array]p3.
8089 if (getLangOpts().CPlusPlus
&&
8090 NewVD
->isLocalVarDecl() && NewVD
->hasExternalStorage())
8091 NewVD
->setPreviousDeclInSameBlockScope(
8092 Previous
.isSingleResult() && !Previous
.isShadowed() &&
8093 isDeclInScope(Previous
.getFoundDecl(), OriginalDC
, S
, false));
8095 if (!getLangOpts().CPlusPlus
) {
8096 D
.setRedeclaration(CheckVariableDeclaration(NewVD
, Previous
));
8098 // If this is an explicit specialization of a static data member, check it.
8099 if (IsMemberSpecialization
&& !NewVD
->isInvalidDecl() &&
8100 CheckMemberSpecialization(NewVD
, Previous
))
8101 NewVD
->setInvalidDecl();
8103 // Merge the decl with the existing one if appropriate.
8104 if (!Previous
.empty()) {
8105 if (Previous
.isSingleResult() &&
8106 isa
<FieldDecl
>(Previous
.getFoundDecl()) &&
8107 D
.getCXXScopeSpec().isSet()) {
8108 // The user tried to define a non-static data member
8109 // out-of-line (C++ [dcl.meaning]p1).
8110 Diag(NewVD
->getLocation(), diag::err_nonstatic_member_out_of_line
)
8111 << D
.getCXXScopeSpec().getRange();
8113 NewVD
->setInvalidDecl();
8115 } else if (D
.getCXXScopeSpec().isSet()) {
8116 // No previous declaration in the qualifying scope.
8117 Diag(D
.getIdentifierLoc(), diag::err_no_member
)
8118 << Name
<< computeDeclContext(D
.getCXXScopeSpec(), true)
8119 << D
.getCXXScopeSpec().getRange();
8120 NewVD
->setInvalidDecl();
8123 if (!IsVariableTemplateSpecialization
&& !IsPlaceholderVariable
)
8124 D
.setRedeclaration(CheckVariableDeclaration(NewVD
, Previous
));
8126 // CheckVariableDeclaration will set NewVD as invalid if something is in
8127 // error like WebAssembly tables being declared as arrays with a non-zero
8128 // size, but then parsing continues and emits further errors on that line.
8129 // To avoid that we check here if it happened and return nullptr.
8130 if (NewVD
->getType()->isWebAssemblyTableType() && NewVD
->isInvalidDecl())
8134 VarTemplateDecl
*PrevVarTemplate
=
8135 NewVD
->getPreviousDecl()
8136 ? NewVD
->getPreviousDecl()->getDescribedVarTemplate()
8139 // Check the template parameter list of this declaration, possibly
8140 // merging in the template parameter list from the previous variable
8141 // template declaration.
8142 if (CheckTemplateParameterList(
8144 PrevVarTemplate
? PrevVarTemplate
->getTemplateParameters()
8146 (D
.getCXXScopeSpec().isSet() && DC
&& DC
->isRecord() &&
8147 DC
->isDependentContext())
8148 ? TPC_ClassTemplateMember
8150 NewVD
->setInvalidDecl();
8152 // If we are providing an explicit specialization of a static variable
8153 // template, make a note of that.
8154 if (PrevVarTemplate
&&
8155 PrevVarTemplate
->getInstantiatedFromMemberTemplate())
8156 PrevVarTemplate
->setMemberSpecialization();
8160 // Diagnose shadowed variables iff this isn't a redeclaration.
8161 if (!IsPlaceholderVariable
&& ShadowedDecl
&& !D
.isRedeclaration())
8162 CheckShadow(NewVD
, ShadowedDecl
, Previous
);
8164 ProcessPragmaWeak(S
, NewVD
);
8166 // If this is the first declaration of an extern C variable, update
8167 // the map of such variables.
8168 if (NewVD
->isFirstDecl() && !NewVD
->isInvalidDecl() &&
8169 isIncompleteDeclExternC(*this, NewVD
))
8170 RegisterLocallyScopedExternCDecl(NewVD
, S
);
8172 if (getLangOpts().CPlusPlus
&& NewVD
->isStaticLocal()) {
8173 MangleNumberingContext
*MCtx
;
8174 Decl
*ManglingContextDecl
;
8175 std::tie(MCtx
, ManglingContextDecl
) =
8176 getCurrentMangleNumberContext(NewVD
->getDeclContext());
8178 Context
.setManglingNumber(
8179 NewVD
, MCtx
->getManglingNumber(
8180 NewVD
, getMSManglingNumber(getLangOpts(), S
)));
8181 Context
.setStaticLocalNumber(NewVD
, MCtx
->getStaticLocalNumber(NewVD
));
8185 // Special handling of variable named 'main'.
8186 if (Name
.getAsIdentifierInfo() && Name
.getAsIdentifierInfo()->isStr("main") &&
8187 NewVD
->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8188 !getLangOpts().Freestanding
&& !NewVD
->getDescribedVarTemplate()) {
8190 // C++ [basic.start.main]p3
8191 // A program that declares a variable main at global scope is ill-formed.
8192 if (getLangOpts().CPlusPlus
)
8193 Diag(D
.getBeginLoc(), diag::err_main_global_variable
);
8195 // In C, and external-linkage variable named main results in undefined
8197 else if (NewVD
->hasExternalFormalLinkage())
8198 Diag(D
.getBeginLoc(), diag::warn_main_redefined
);
8201 if (D
.isRedeclaration() && !Previous
.empty()) {
8202 NamedDecl
*Prev
= Previous
.getRepresentativeDecl();
8203 checkDLLAttributeRedeclaration(*this, Prev
, NewVD
, IsMemberSpecialization
,
8204 D
.isFunctionDefinition());
8208 if (NewVD
->isInvalidDecl())
8209 NewTemplate
->setInvalidDecl();
8210 ActOnDocumentableDecl(NewTemplate
);
8214 if (IsMemberSpecialization
&& !NewVD
->isInvalidDecl())
8215 CompleteMemberSpecialization(NewVD
, Previous
);
8217 emitReadOnlyPlacementAttrWarning(*this, NewVD
);
8222 /// Enum describing the %select options in diag::warn_decl_shadow.
8223 enum ShadowedDeclKind
{
8230 SDK_StructuredBinding
8233 /// Determine what kind of declaration we're shadowing.
8234 static ShadowedDeclKind
computeShadowedDeclKind(const NamedDecl
*ShadowedDecl
,
8235 const DeclContext
*OldDC
) {
8236 if (isa
<TypeAliasDecl
>(ShadowedDecl
))
8238 else if (isa
<TypedefDecl
>(ShadowedDecl
))
8240 else if (isa
<BindingDecl
>(ShadowedDecl
))
8241 return SDK_StructuredBinding
;
8242 else if (isa
<RecordDecl
>(OldDC
))
8243 return isa
<FieldDecl
>(ShadowedDecl
) ? SDK_Field
: SDK_StaticMember
;
8245 return OldDC
->isFileContext() ? SDK_Global
: SDK_Local
;
8248 /// Return the location of the capture if the given lambda captures the given
8249 /// variable \p VD, or an invalid source location otherwise.
8250 static SourceLocation
getCaptureLocation(const LambdaScopeInfo
*LSI
,
8251 const VarDecl
*VD
) {
8252 for (const Capture
&Capture
: LSI
->Captures
) {
8253 if (Capture
.isVariableCapture() && Capture
.getVariable() == VD
)
8254 return Capture
.getLocation();
8256 return SourceLocation();
8259 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine
&Diags
,
8260 const LookupResult
&R
) {
8261 // Only diagnose if we're shadowing an unambiguous field or variable.
8262 if (R
.getResultKind() != LookupResult::Found
)
8265 // Return false if warning is ignored.
8266 return !Diags
.isIgnored(diag::warn_decl_shadow
, R
.getNameLoc());
8269 /// Return the declaration shadowed by the given variable \p D, or null
8270 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8271 NamedDecl
*Sema::getShadowedDeclaration(const VarDecl
*D
,
8272 const LookupResult
&R
) {
8273 if (!shouldWarnIfShadowedDecl(Diags
, R
))
8276 // Don't diagnose declarations at file scope.
8277 if (D
->hasGlobalStorage() && !D
->isStaticLocal())
8280 NamedDecl
*ShadowedDecl
= R
.getFoundDecl();
8281 return isa
<VarDecl
, FieldDecl
, BindingDecl
>(ShadowedDecl
) ? ShadowedDecl
8285 /// Return the declaration shadowed by the given typedef \p D, or null
8286 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8287 NamedDecl
*Sema::getShadowedDeclaration(const TypedefNameDecl
*D
,
8288 const LookupResult
&R
) {
8289 // Don't warn if typedef declaration is part of a class
8290 if (D
->getDeclContext()->isRecord())
8293 if (!shouldWarnIfShadowedDecl(Diags
, R
))
8296 NamedDecl
*ShadowedDecl
= R
.getFoundDecl();
8297 return isa
<TypedefNameDecl
>(ShadowedDecl
) ? ShadowedDecl
: nullptr;
8300 /// Return the declaration shadowed by the given variable \p D, or null
8301 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8302 NamedDecl
*Sema::getShadowedDeclaration(const BindingDecl
*D
,
8303 const LookupResult
&R
) {
8304 if (!shouldWarnIfShadowedDecl(Diags
, R
))
8307 NamedDecl
*ShadowedDecl
= R
.getFoundDecl();
8308 return isa
<VarDecl
, FieldDecl
, BindingDecl
>(ShadowedDecl
) ? ShadowedDecl
8312 /// Diagnose variable or built-in function shadowing. Implements
8315 /// This method is called whenever a VarDecl is added to a "useful"
8318 /// \param ShadowedDecl the declaration that is shadowed by the given variable
8319 /// \param R the lookup of the name
8321 void Sema::CheckShadow(NamedDecl
*D
, NamedDecl
*ShadowedDecl
,
8322 const LookupResult
&R
) {
8323 DeclContext
*NewDC
= D
->getDeclContext();
8325 if (FieldDecl
*FD
= dyn_cast
<FieldDecl
>(ShadowedDecl
)) {
8326 // Fields are not shadowed by variables in C++ static methods.
8327 if (CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(NewDC
))
8331 // Fields shadowed by constructor parameters are a special case. Usually
8332 // the constructor initializes the field with the parameter.
8333 if (isa
<CXXConstructorDecl
>(NewDC
))
8334 if (const auto PVD
= dyn_cast
<ParmVarDecl
>(D
)) {
8335 // Remember that this was shadowed so we can either warn about its
8336 // modification or its existence depending on warning settings.
8337 ShadowingDecls
.insert({PVD
->getCanonicalDecl(), FD
});
8342 if (VarDecl
*shadowedVar
= dyn_cast
<VarDecl
>(ShadowedDecl
))
8343 if (shadowedVar
->isExternC()) {
8344 // For shadowing external vars, make sure that we point to the global
8345 // declaration, not a locally scoped extern declaration.
8346 for (auto *I
: shadowedVar
->redecls())
8347 if (I
->isFileVarDecl()) {
8353 DeclContext
*OldDC
= ShadowedDecl
->getDeclContext()->getRedeclContext();
8355 unsigned WarningDiag
= diag::warn_decl_shadow
;
8356 SourceLocation CaptureLoc
;
8357 if (isa
<VarDecl
>(D
) && isa
<VarDecl
>(ShadowedDecl
) && NewDC
&&
8358 isa
<CXXMethodDecl
>(NewDC
)) {
8359 if (const auto *RD
= dyn_cast
<CXXRecordDecl
>(NewDC
->getParent())) {
8360 if (RD
->isLambda() && OldDC
->Encloses(NewDC
->getLexicalParent())) {
8361 if (RD
->getLambdaCaptureDefault() == LCD_None
) {
8362 // Try to avoid warnings for lambdas with an explicit capture list.
8363 const auto *LSI
= cast
<LambdaScopeInfo
>(getCurFunction());
8364 // Warn only when the lambda captures the shadowed decl explicitly.
8365 CaptureLoc
= getCaptureLocation(LSI
, cast
<VarDecl
>(ShadowedDecl
));
8366 if (CaptureLoc
.isInvalid())
8367 WarningDiag
= diag::warn_decl_shadow_uncaptured_local
;
8369 // Remember that this was shadowed so we can avoid the warning if the
8370 // shadowed decl isn't captured and the warning settings allow it.
8371 cast
<LambdaScopeInfo
>(getCurFunction())
8372 ->ShadowingDecls
.push_back(
8373 {cast
<VarDecl
>(D
), cast
<VarDecl
>(ShadowedDecl
)});
8378 if (cast
<VarDecl
>(ShadowedDecl
)->hasLocalStorage()) {
8379 // A variable can't shadow a local variable in an enclosing scope, if
8380 // they are separated by a non-capturing declaration context.
8381 for (DeclContext
*ParentDC
= NewDC
;
8382 ParentDC
&& !ParentDC
->Equals(OldDC
);
8383 ParentDC
= getLambdaAwareParentOfDeclContext(ParentDC
)) {
8384 // Only block literals, captured statements, and lambda expressions
8385 // can capture; other scopes don't.
8386 if (!isa
<BlockDecl
>(ParentDC
) && !isa
<CapturedDecl
>(ParentDC
) &&
8387 !isLambdaCallOperator(ParentDC
)) {
8395 // Never warn about shadowing a placeholder variable.
8396 if (ShadowedDecl
->isPlaceholderVar(getLangOpts()))
8399 // Only warn about certain kinds of shadowing for class members.
8400 if (NewDC
&& NewDC
->isRecord()) {
8401 // In particular, don't warn about shadowing non-class members.
8402 if (!OldDC
->isRecord())
8405 // TODO: should we warn about static data members shadowing
8406 // static data members from base classes?
8408 // TODO: don't diagnose for inaccessible shadowed members.
8409 // This is hard to do perfectly because we might friend the
8410 // shadowing context, but that's just a false negative.
8414 DeclarationName Name
= R
.getLookupName();
8416 // Emit warning and note.
8417 ShadowedDeclKind Kind
= computeShadowedDeclKind(ShadowedDecl
, OldDC
);
8418 Diag(R
.getNameLoc(), WarningDiag
) << Name
<< Kind
<< OldDC
;
8419 if (!CaptureLoc
.isInvalid())
8420 Diag(CaptureLoc
, diag::note_var_explicitly_captured_here
)
8421 << Name
<< /*explicitly*/ 1;
8422 Diag(ShadowedDecl
->getLocation(), diag::note_previous_declaration
);
8425 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
8426 /// when these variables are captured by the lambda.
8427 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo
*LSI
) {
8428 for (const auto &Shadow
: LSI
->ShadowingDecls
) {
8429 const VarDecl
*ShadowedDecl
= Shadow
.ShadowedDecl
;
8430 // Try to avoid the warning when the shadowed decl isn't captured.
8431 SourceLocation CaptureLoc
= getCaptureLocation(LSI
, ShadowedDecl
);
8432 const DeclContext
*OldDC
= ShadowedDecl
->getDeclContext();
8433 Diag(Shadow
.VD
->getLocation(), CaptureLoc
.isInvalid()
8434 ? diag::warn_decl_shadow_uncaptured_local
8435 : diag::warn_decl_shadow
)
8436 << Shadow
.VD
->getDeclName()
8437 << computeShadowedDeclKind(ShadowedDecl
, OldDC
) << OldDC
;
8438 if (!CaptureLoc
.isInvalid())
8439 Diag(CaptureLoc
, diag::note_var_explicitly_captured_here
)
8440 << Shadow
.VD
->getDeclName() << /*explicitly*/ 0;
8441 Diag(ShadowedDecl
->getLocation(), diag::note_previous_declaration
);
8445 /// Check -Wshadow without the advantage of a previous lookup.
8446 void Sema::CheckShadow(Scope
*S
, VarDecl
*D
) {
8447 if (Diags
.isIgnored(diag::warn_decl_shadow
, D
->getLocation()))
8450 LookupResult
R(*this, D
->getDeclName(), D
->getLocation(),
8451 Sema::LookupOrdinaryName
, Sema::ForVisibleRedeclaration
);
8453 if (NamedDecl
*ShadowedDecl
= getShadowedDeclaration(D
, R
))
8454 CheckShadow(D
, ShadowedDecl
, R
);
8457 /// Check if 'E', which is an expression that is about to be modified, refers
8458 /// to a constructor parameter that shadows a field.
8459 void Sema::CheckShadowingDeclModification(Expr
*E
, SourceLocation Loc
) {
8460 // Quickly ignore expressions that can't be shadowing ctor parameters.
8461 if (!getLangOpts().CPlusPlus
|| ShadowingDecls
.empty())
8463 E
= E
->IgnoreParenImpCasts();
8464 auto *DRE
= dyn_cast
<DeclRefExpr
>(E
);
8467 const NamedDecl
*D
= cast
<NamedDecl
>(DRE
->getDecl()->getCanonicalDecl());
8468 auto I
= ShadowingDecls
.find(D
);
8469 if (I
== ShadowingDecls
.end())
8471 const NamedDecl
*ShadowedDecl
= I
->second
;
8472 const DeclContext
*OldDC
= ShadowedDecl
->getDeclContext();
8473 Diag(Loc
, diag::warn_modifying_shadowing_decl
) << D
<< OldDC
;
8474 Diag(D
->getLocation(), diag::note_var_declared_here
) << D
;
8475 Diag(ShadowedDecl
->getLocation(), diag::note_previous_declaration
);
8477 // Avoid issuing multiple warnings about the same decl.
8478 ShadowingDecls
.erase(I
);
8481 /// Check for conflict between this global or extern "C" declaration and
8482 /// previous global or extern "C" declarations. This is only used in C++.
8483 template<typename T
>
8484 static bool checkGlobalOrExternCConflict(
8485 Sema
&S
, const T
*ND
, bool IsGlobal
, LookupResult
&Previous
) {
8486 assert(S
.getLangOpts().CPlusPlus
&& "only C++ has extern \"C\"");
8487 NamedDecl
*Prev
= S
.findLocallyScopedExternCDecl(ND
->getDeclName());
8489 if (!Prev
&& IsGlobal
&& !isIncompleteDeclExternC(S
, ND
)) {
8490 // The common case: this global doesn't conflict with any extern "C"
8496 if (!IsGlobal
|| isIncompleteDeclExternC(S
, ND
)) {
8497 // Both the old and new declarations have C language linkage. This is a
8500 Previous
.addDecl(Prev
);
8504 // This is a global, non-extern "C" declaration, and there is a previous
8505 // non-global extern "C" declaration. Diagnose if this is a variable
8507 if (!isa
<VarDecl
>(ND
))
8510 // The declaration is extern "C". Check for any declaration in the
8511 // translation unit which might conflict.
8513 // We have already performed the lookup into the translation unit.
8515 for (LookupResult::iterator I
= Previous
.begin(), E
= Previous
.end();
8517 if (isa
<VarDecl
>(*I
)) {
8523 DeclContext::lookup_result R
=
8524 S
.Context
.getTranslationUnitDecl()->lookup(ND
->getDeclName());
8525 for (DeclContext::lookup_result::iterator I
= R
.begin(), E
= R
.end();
8527 if (isa
<VarDecl
>(*I
)) {
8531 // FIXME: If we have any other entity with this name in global scope,
8532 // the declaration is ill-formed, but that is a defect: it breaks the
8533 // 'stat' hack, for instance. Only variables can have mangled name
8534 // clashes with extern "C" declarations, so only they deserve a
8543 // Use the first declaration's location to ensure we point at something which
8544 // is lexically inside an extern "C" linkage-spec.
8545 assert(Prev
&& "should have found a previous declaration to diagnose");
8546 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(Prev
))
8547 Prev
= FD
->getFirstDecl();
8549 Prev
= cast
<VarDecl
>(Prev
)->getFirstDecl();
8551 S
.Diag(ND
->getLocation(), diag::err_extern_c_global_conflict
)
8553 S
.Diag(Prev
->getLocation(), diag::note_extern_c_global_conflict
)
8558 /// Apply special rules for handling extern "C" declarations. Returns \c true
8559 /// if we have found that this is a redeclaration of some prior entity.
8561 /// Per C++ [dcl.link]p6:
8562 /// Two declarations [for a function or variable] with C language linkage
8563 /// with the same name that appear in different scopes refer to the same
8564 /// [entity]. An entity with C language linkage shall not be declared with
8565 /// the same name as an entity in global scope.
8566 template<typename T
>
8567 static bool checkForConflictWithNonVisibleExternC(Sema
&S
, const T
*ND
,
8568 LookupResult
&Previous
) {
8569 if (!S
.getLangOpts().CPlusPlus
) {
8570 // In C, when declaring a global variable, look for a corresponding 'extern'
8571 // variable declared in function scope. We don't need this in C++, because
8572 // we find local extern decls in the surrounding file-scope DeclContext.
8573 if (ND
->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
8574 if (NamedDecl
*Prev
= S
.findLocallyScopedExternCDecl(ND
->getDeclName())) {
8576 Previous
.addDecl(Prev
);
8583 // A declaration in the translation unit can conflict with an extern "C"
8585 if (ND
->getDeclContext()->getRedeclContext()->isTranslationUnit())
8586 return checkGlobalOrExternCConflict(S
, ND
, /*IsGlobal*/true, Previous
);
8588 // An extern "C" declaration can conflict with a declaration in the
8589 // translation unit or can be a redeclaration of an extern "C" declaration
8590 // in another scope.
8591 if (isIncompleteDeclExternC(S
,ND
))
8592 return checkGlobalOrExternCConflict(S
, ND
, /*IsGlobal*/false, Previous
);
8594 // Neither global nor extern "C": nothing to do.
8598 void Sema::CheckVariableDeclarationType(VarDecl
*NewVD
) {
8599 // If the decl is already known invalid, don't check it.
8600 if (NewVD
->isInvalidDecl())
8603 QualType T
= NewVD
->getType();
8605 // Defer checking an 'auto' type until its initializer is attached.
8606 if (T
->isUndeducedType())
8609 if (NewVD
->hasAttrs())
8610 CheckAlignasUnderalignment(NewVD
);
8612 if (T
->isObjCObjectType()) {
8613 Diag(NewVD
->getLocation(), diag::err_statically_allocated_object
)
8614 << FixItHint::CreateInsertion(NewVD
->getLocation(), "*");
8615 T
= Context
.getObjCObjectPointerType(T
);
8619 // Emit an error if an address space was applied to decl with local storage.
8620 // This includes arrays of objects with address space qualifiers, but not
8621 // automatic variables that point to other address spaces.
8622 // ISO/IEC TR 18037 S5.1.2
8623 if (!getLangOpts().OpenCL
&& NewVD
->hasLocalStorage() &&
8624 T
.getAddressSpace() != LangAS::Default
) {
8625 Diag(NewVD
->getLocation(), diag::err_as_qualified_auto_decl
) << 0;
8626 NewVD
->setInvalidDecl();
8630 // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
8632 if (getLangOpts().OpenCLVersion
== 120 &&
8633 !getOpenCLOptions().isAvailableOption("cl_clang_storage_class_specifiers",
8635 NewVD
->isStaticLocal()) {
8636 Diag(NewVD
->getLocation(), diag::err_static_function_scope
);
8637 NewVD
->setInvalidDecl();
8641 if (getLangOpts().OpenCL
) {
8642 if (!diagnoseOpenCLTypes(*this, NewVD
))
8645 // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
8646 if (NewVD
->hasAttr
<BlocksAttr
>()) {
8647 Diag(NewVD
->getLocation(), diag::err_opencl_block_storage_type
);
8651 if (T
->isBlockPointerType()) {
8652 // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
8653 // can't use 'extern' storage class.
8654 if (!T
.isConstQualified()) {
8655 Diag(NewVD
->getLocation(), diag::err_opencl_invalid_block_declaration
)
8657 NewVD
->setInvalidDecl();
8660 if (NewVD
->hasExternalStorage()) {
8661 Diag(NewVD
->getLocation(), diag::err_opencl_extern_block_declaration
);
8662 NewVD
->setInvalidDecl();
8667 // FIXME: Adding local AS in C++ for OpenCL might make sense.
8668 if (NewVD
->isFileVarDecl() || NewVD
->isStaticLocal() ||
8669 NewVD
->hasExternalStorage()) {
8670 if (!T
->isSamplerT() && !T
->isDependentType() &&
8671 !(T
.getAddressSpace() == LangAS::opencl_constant
||
8672 (T
.getAddressSpace() == LangAS::opencl_global
&&
8673 getOpenCLOptions().areProgramScopeVariablesSupported(
8675 int Scope
= NewVD
->isStaticLocal() | NewVD
->hasExternalStorage() << 1;
8676 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()))
8677 Diag(NewVD
->getLocation(), diag::err_opencl_global_invalid_addr_space
)
8678 << Scope
<< "global or constant";
8680 Diag(NewVD
->getLocation(), diag::err_opencl_global_invalid_addr_space
)
8681 << Scope
<< "constant";
8682 NewVD
->setInvalidDecl();
8686 if (T
.getAddressSpace() == LangAS::opencl_global
) {
8687 Diag(NewVD
->getLocation(), diag::err_opencl_function_variable
)
8688 << 1 /*is any function*/ << "global";
8689 NewVD
->setInvalidDecl();
8692 if (T
.getAddressSpace() == LangAS::opencl_constant
||
8693 T
.getAddressSpace() == LangAS::opencl_local
) {
8694 FunctionDecl
*FD
= getCurFunctionDecl();
8695 // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
8697 if (FD
&& !FD
->hasAttr
<OpenCLKernelAttr
>()) {
8698 if (T
.getAddressSpace() == LangAS::opencl_constant
)
8699 Diag(NewVD
->getLocation(), diag::err_opencl_function_variable
)
8700 << 0 /*non-kernel only*/ << "constant";
8702 Diag(NewVD
->getLocation(), diag::err_opencl_function_variable
)
8703 << 0 /*non-kernel only*/ << "local";
8704 NewVD
->setInvalidDecl();
8707 // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
8708 // in the outermost scope of a kernel function.
8709 if (FD
&& FD
->hasAttr
<OpenCLKernelAttr
>()) {
8710 if (!getCurScope()->isFunctionScope()) {
8711 if (T
.getAddressSpace() == LangAS::opencl_constant
)
8712 Diag(NewVD
->getLocation(), diag::err_opencl_addrspace_scope
)
8715 Diag(NewVD
->getLocation(), diag::err_opencl_addrspace_scope
)
8717 NewVD
->setInvalidDecl();
8721 } else if (T
.getAddressSpace() != LangAS::opencl_private
&&
8722 // If we are parsing a template we didn't deduce an addr
8724 T
.getAddressSpace() != LangAS::Default
) {
8725 // Do not allow other address spaces on automatic variable.
8726 Diag(NewVD
->getLocation(), diag::err_as_qualified_auto_decl
) << 1;
8727 NewVD
->setInvalidDecl();
8733 if (NewVD
->hasLocalStorage() && T
.isObjCGCWeak()
8734 && !NewVD
->hasAttr
<BlocksAttr
>()) {
8735 if (getLangOpts().getGC() != LangOptions::NonGC
)
8736 Diag(NewVD
->getLocation(), diag::warn_gc_attribute_weak_on_local
);
8738 assert(!getLangOpts().ObjCAutoRefCount
);
8739 Diag(NewVD
->getLocation(), diag::warn_attribute_weak_on_local
);
8743 // WebAssembly tables must be static with a zero length and can't be
8744 // declared within functions.
8745 if (T
->isWebAssemblyTableType()) {
8746 if (getCurScope()->getParent()) { // Parent is null at top-level
8747 Diag(NewVD
->getLocation(), diag::err_wasm_table_in_function
);
8748 NewVD
->setInvalidDecl();
8751 if (NewVD
->getStorageClass() != SC_Static
) {
8752 Diag(NewVD
->getLocation(), diag::err_wasm_table_must_be_static
);
8753 NewVD
->setInvalidDecl();
8756 const auto *ATy
= dyn_cast
<ConstantArrayType
>(T
.getTypePtr());
8757 if (!ATy
|| ATy
->getSize().getSExtValue() != 0) {
8758 Diag(NewVD
->getLocation(),
8759 diag::err_typecheck_wasm_table_must_have_zero_length
);
8760 NewVD
->setInvalidDecl();
8765 bool isVM
= T
->isVariablyModifiedType();
8766 if (isVM
|| NewVD
->hasAttr
<CleanupAttr
>() ||
8767 NewVD
->hasAttr
<BlocksAttr
>())
8768 setFunctionHasBranchProtectedScope();
8770 if ((isVM
&& NewVD
->hasLinkage()) ||
8771 (T
->isVariableArrayType() && NewVD
->hasGlobalStorage())) {
8772 bool SizeIsNegative
;
8773 llvm::APSInt Oversized
;
8774 TypeSourceInfo
*FixedTInfo
= TryToFixInvalidVariablyModifiedTypeSourceInfo(
8775 NewVD
->getTypeSourceInfo(), Context
, SizeIsNegative
, Oversized
);
8777 if (FixedTInfo
&& T
== NewVD
->getTypeSourceInfo()->getType())
8778 FixedT
= FixedTInfo
->getType();
8779 else if (FixedTInfo
) {
8780 // Type and type-as-written are canonically different. We need to fix up
8781 // both types separately.
8782 FixedT
= TryToFixInvalidVariablyModifiedType(T
, Context
, SizeIsNegative
,
8785 if ((!FixedTInfo
|| FixedT
.isNull()) && T
->isVariableArrayType()) {
8786 const VariableArrayType
*VAT
= Context
.getAsVariableArrayType(T
);
8787 // FIXME: This won't give the correct result for
8789 SourceRange SizeRange
= VAT
->getSizeExpr()->getSourceRange();
8791 if (NewVD
->isFileVarDecl())
8792 Diag(NewVD
->getLocation(), diag::err_vla_decl_in_file_scope
)
8794 else if (NewVD
->isStaticLocal())
8795 Diag(NewVD
->getLocation(), diag::err_vla_decl_has_static_storage
)
8798 Diag(NewVD
->getLocation(), diag::err_vla_decl_has_extern_linkage
)
8800 NewVD
->setInvalidDecl();
8805 if (NewVD
->isFileVarDecl())
8806 Diag(NewVD
->getLocation(), diag::err_vm_decl_in_file_scope
);
8808 Diag(NewVD
->getLocation(), diag::err_vm_decl_has_extern_linkage
);
8809 NewVD
->setInvalidDecl();
8813 Diag(NewVD
->getLocation(), diag::ext_vla_folded_to_constant
);
8814 NewVD
->setType(FixedT
);
8815 NewVD
->setTypeSourceInfo(FixedTInfo
);
8818 if (T
->isVoidType()) {
8819 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
8820 // of objects and functions.
8821 if (NewVD
->isThisDeclarationADefinition() || getLangOpts().CPlusPlus
) {
8822 Diag(NewVD
->getLocation(), diag::err_typecheck_decl_incomplete_type
)
8824 NewVD
->setInvalidDecl();
8829 if (!NewVD
->hasLocalStorage() && NewVD
->hasAttr
<BlocksAttr
>()) {
8830 Diag(NewVD
->getLocation(), diag::err_block_on_nonlocal
);
8831 NewVD
->setInvalidDecl();
8835 if (!NewVD
->hasLocalStorage() && T
->isSizelessType() &&
8836 !T
.isWebAssemblyReferenceType()) {
8837 Diag(NewVD
->getLocation(), diag::err_sizeless_nonlocal
) << T
;
8838 NewVD
->setInvalidDecl();
8842 if (isVM
&& NewVD
->hasAttr
<BlocksAttr
>()) {
8843 Diag(NewVD
->getLocation(), diag::err_block_on_vm
);
8844 NewVD
->setInvalidDecl();
8848 if (NewVD
->isConstexpr() && !T
->isDependentType() &&
8849 RequireLiteralType(NewVD
->getLocation(), T
,
8850 diag::err_constexpr_var_non_literal
)) {
8851 NewVD
->setInvalidDecl();
8855 // PPC MMA non-pointer types are not allowed as non-local variable types.
8856 if (Context
.getTargetInfo().getTriple().isPPC64() &&
8857 !NewVD
->isLocalVarDecl() &&
8858 CheckPPCMMAType(T
, NewVD
->getLocation())) {
8859 NewVD
->setInvalidDecl();
8863 // Check that SVE types are only used in functions with SVE available.
8864 if (T
->isSVESizelessBuiltinType() && isa
<FunctionDecl
>(CurContext
)) {
8865 const FunctionDecl
*FD
= cast
<FunctionDecl
>(CurContext
);
8866 llvm::StringMap
<bool> CallerFeatureMap
;
8867 Context
.getFunctionFeatureMap(CallerFeatureMap
, FD
);
8868 if (!Builtin::evaluateRequiredTargetFeatures(
8869 "sve", CallerFeatureMap
)) {
8870 Diag(NewVD
->getLocation(), diag::err_sve_vector_in_non_sve_target
) << T
;
8871 NewVD
->setInvalidDecl();
8877 checkRVVTypeSupport(T
, NewVD
->getLocation(), cast
<Decl
>(CurContext
));
8880 /// Perform semantic checking on a newly-created variable
8883 /// This routine performs all of the type-checking required for a
8884 /// variable declaration once it has been built. It is used both to
8885 /// check variables after they have been parsed and their declarators
8886 /// have been translated into a declaration, and to check variables
8887 /// that have been instantiated from a template.
8889 /// Sets NewVD->isInvalidDecl() if an error was encountered.
8891 /// Returns true if the variable declaration is a redeclaration.
8892 bool Sema::CheckVariableDeclaration(VarDecl
*NewVD
, LookupResult
&Previous
) {
8893 CheckVariableDeclarationType(NewVD
);
8895 // If the decl is already known invalid, don't check it.
8896 if (NewVD
->isInvalidDecl())
8899 // If we did not find anything by this name, look for a non-visible
8900 // extern "C" declaration with the same name.
8901 if (Previous
.empty() &&
8902 checkForConflictWithNonVisibleExternC(*this, NewVD
, Previous
))
8903 Previous
.setShadowed();
8905 if (!Previous
.empty()) {
8906 MergeVarDecl(NewVD
, Previous
);
8912 /// AddOverriddenMethods - See if a method overrides any in the base classes,
8913 /// and if so, check that it's a valid override and remember it.
8914 bool Sema::AddOverriddenMethods(CXXRecordDecl
*DC
, CXXMethodDecl
*MD
) {
8915 llvm::SmallPtrSet
<const CXXMethodDecl
*, 4> Overridden
;
8917 // Look for methods in base classes that this method might override.
8918 CXXBasePaths
Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
8919 /*DetectVirtual=*/false);
8920 auto VisitBase
= [&] (const CXXBaseSpecifier
*Specifier
, CXXBasePath
&Path
) {
8921 CXXRecordDecl
*BaseRecord
= Specifier
->getType()->getAsCXXRecordDecl();
8922 DeclarationName Name
= MD
->getDeclName();
8924 if (Name
.getNameKind() == DeclarationName::CXXDestructorName
) {
8925 // We really want to find the base class destructor here.
8926 QualType T
= Context
.getTypeDeclType(BaseRecord
);
8927 CanQualType CT
= Context
.getCanonicalType(T
);
8928 Name
= Context
.DeclarationNames
.getCXXDestructorName(CT
);
8931 for (NamedDecl
*BaseND
: BaseRecord
->lookup(Name
)) {
8932 CXXMethodDecl
*BaseMD
=
8933 dyn_cast
<CXXMethodDecl
>(BaseND
->getCanonicalDecl());
8934 if (!BaseMD
|| !BaseMD
->isVirtual() ||
8935 IsOverride(MD
, BaseMD
, /*UseMemberUsingDeclRules=*/false,
8936 /*ConsiderCudaAttrs=*/true))
8938 if (!CheckExplicitObjectOverride(MD
, BaseMD
))
8940 if (Overridden
.insert(BaseMD
).second
) {
8941 MD
->addOverriddenMethod(BaseMD
);
8942 CheckOverridingFunctionReturnType(MD
, BaseMD
);
8943 CheckOverridingFunctionAttributes(MD
, BaseMD
);
8944 CheckOverridingFunctionExceptionSpec(MD
, BaseMD
);
8945 CheckIfOverriddenFunctionIsMarkedFinal(MD
, BaseMD
);
8948 // A method can only override one function from each base class. We
8949 // don't track indirectly overridden methods from bases of bases.
8956 DC
->lookupInBases(VisitBase
, Paths
);
8957 return !Overridden
.empty();
8961 // Struct for holding all of the extra arguments needed by
8962 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
8963 struct ActOnFDArgs
{
8966 MultiTemplateParamsArg TemplateParamLists
;
8969 } // end anonymous namespace
8973 // Callback to only accept typo corrections that have a non-zero edit distance.
8974 // Also only accept corrections that have the same parent decl.
8975 class DifferentNameValidatorCCC final
: public CorrectionCandidateCallback
{
8977 DifferentNameValidatorCCC(ASTContext
&Context
, FunctionDecl
*TypoFD
,
8978 CXXRecordDecl
*Parent
)
8979 : Context(Context
), OriginalFD(TypoFD
),
8980 ExpectedParent(Parent
? Parent
->getCanonicalDecl() : nullptr) {}
8982 bool ValidateCandidate(const TypoCorrection
&candidate
) override
{
8983 if (candidate
.getEditDistance() == 0)
8986 SmallVector
<unsigned, 1> MismatchedParams
;
8987 for (TypoCorrection::const_decl_iterator CDecl
= candidate
.begin(),
8988 CDeclEnd
= candidate
.end();
8989 CDecl
!= CDeclEnd
; ++CDecl
) {
8990 FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(*CDecl
);
8992 if (FD
&& !FD
->hasBody() &&
8993 hasSimilarParameters(Context
, FD
, OriginalFD
, MismatchedParams
)) {
8994 if (CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
8995 CXXRecordDecl
*Parent
= MD
->getParent();
8996 if (Parent
&& Parent
->getCanonicalDecl() == ExpectedParent
)
8998 } else if (!ExpectedParent
) {
9007 std::unique_ptr
<CorrectionCandidateCallback
> clone() override
{
9008 return std::make_unique
<DifferentNameValidatorCCC
>(*this);
9012 ASTContext
&Context
;
9013 FunctionDecl
*OriginalFD
;
9014 CXXRecordDecl
*ExpectedParent
;
9017 } // end anonymous namespace
9019 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl
*F
) {
9020 TypoCorrectedFunctionDefinitions
.insert(F
);
9023 /// Generate diagnostics for an invalid function redeclaration.
9025 /// This routine handles generating the diagnostic messages for an invalid
9026 /// function redeclaration, including finding possible similar declarations
9027 /// or performing typo correction if there are no previous declarations with
9030 /// Returns a NamedDecl iff typo correction was performed and substituting in
9031 /// the new declaration name does not cause new errors.
9032 static NamedDecl
*DiagnoseInvalidRedeclaration(
9033 Sema
&SemaRef
, LookupResult
&Previous
, FunctionDecl
*NewFD
,
9034 ActOnFDArgs
&ExtraArgs
, bool IsLocalFriend
, Scope
*S
) {
9035 DeclarationName Name
= NewFD
->getDeclName();
9036 DeclContext
*NewDC
= NewFD
->getDeclContext();
9037 SmallVector
<unsigned, 1> MismatchedParams
;
9038 SmallVector
<std::pair
<FunctionDecl
*, unsigned>, 1> NearMatches
;
9039 TypoCorrection Correction
;
9040 bool IsDefinition
= ExtraArgs
.D
.isFunctionDefinition();
9042 IsLocalFriend
? diag::err_no_matching_local_friend
:
9043 NewFD
->getFriendObjectKind() ? diag::err_qualified_friend_no_match
:
9044 diag::err_member_decl_does_not_match
;
9045 LookupResult
Prev(SemaRef
, Name
, NewFD
->getLocation(),
9046 IsLocalFriend
? Sema::LookupLocalFriendName
9047 : Sema::LookupOrdinaryName
,
9048 Sema::ForVisibleRedeclaration
);
9050 NewFD
->setInvalidDecl();
9052 SemaRef
.LookupName(Prev
, S
);
9054 SemaRef
.LookupQualifiedName(Prev
, NewDC
);
9055 assert(!Prev
.isAmbiguous() &&
9056 "Cannot have an ambiguity in previous-declaration lookup");
9057 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(NewFD
);
9058 DifferentNameValidatorCCC
CCC(SemaRef
.Context
, NewFD
,
9059 MD
? MD
->getParent() : nullptr);
9060 if (!Prev
.empty()) {
9061 for (LookupResult::iterator Func
= Prev
.begin(), FuncEnd
= Prev
.end();
9062 Func
!= FuncEnd
; ++Func
) {
9063 FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(*Func
);
9065 hasSimilarParameters(SemaRef
.Context
, FD
, NewFD
, MismatchedParams
)) {
9066 // Add 1 to the index so that 0 can mean the mismatch didn't
9067 // involve a parameter
9069 MismatchedParams
.empty() ? 0 : MismatchedParams
.front() + 1;
9070 NearMatches
.push_back(std::make_pair(FD
, ParamNum
));
9073 // If the qualified name lookup yielded nothing, try typo correction
9074 } else if ((Correction
= SemaRef
.CorrectTypo(
9075 Prev
.getLookupNameInfo(), Prev
.getLookupKind(), S
,
9076 &ExtraArgs
.D
.getCXXScopeSpec(), CCC
, Sema::CTK_ErrorRecovery
,
9077 IsLocalFriend
? nullptr : NewDC
))) {
9078 // Set up everything for the call to ActOnFunctionDeclarator
9079 ExtraArgs
.D
.SetIdentifier(Correction
.getCorrectionAsIdentifierInfo(),
9080 ExtraArgs
.D
.getIdentifierLoc());
9082 Previous
.setLookupName(Correction
.getCorrection());
9083 for (TypoCorrection::decl_iterator CDecl
= Correction
.begin(),
9084 CDeclEnd
= Correction
.end();
9085 CDecl
!= CDeclEnd
; ++CDecl
) {
9086 FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(*CDecl
);
9087 if (FD
&& !FD
->hasBody() &&
9088 hasSimilarParameters(SemaRef
.Context
, FD
, NewFD
, MismatchedParams
)) {
9089 Previous
.addDecl(FD
);
9092 bool wasRedeclaration
= ExtraArgs
.D
.isRedeclaration();
9095 // Retry building the function declaration with the new previous
9096 // declarations, and with errors suppressed.
9099 Sema::SFINAETrap
Trap(SemaRef
);
9101 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
9102 // pieces need to verify the typo-corrected C++ declaration and hopefully
9103 // eliminate the need for the parameter pack ExtraArgs.
9104 Result
= SemaRef
.ActOnFunctionDeclarator(
9105 ExtraArgs
.S
, ExtraArgs
.D
,
9106 Correction
.getCorrectionDecl()->getDeclContext(),
9107 NewFD
->getTypeSourceInfo(), Previous
, ExtraArgs
.TemplateParamLists
,
9108 ExtraArgs
.AddToScope
);
9110 if (Trap
.hasErrorOccurred())
9115 // Determine which correction we picked.
9116 Decl
*Canonical
= Result
->getCanonicalDecl();
9117 for (LookupResult::iterator I
= Previous
.begin(), E
= Previous
.end();
9119 if ((*I
)->getCanonicalDecl() == Canonical
)
9120 Correction
.setCorrectionDecl(*I
);
9122 // Let Sema know about the correction.
9123 SemaRef
.MarkTypoCorrectedFunctionDefinition(Result
);
9124 SemaRef
.diagnoseTypo(
9126 SemaRef
.PDiag(IsLocalFriend
9127 ? diag::err_no_matching_local_friend_suggest
9128 : diag::err_member_decl_does_not_match_suggest
)
9129 << Name
<< NewDC
<< IsDefinition
);
9133 // Pretend the typo correction never occurred
9134 ExtraArgs
.D
.SetIdentifier(Name
.getAsIdentifierInfo(),
9135 ExtraArgs
.D
.getIdentifierLoc());
9136 ExtraArgs
.D
.setRedeclaration(wasRedeclaration
);
9138 Previous
.setLookupName(Name
);
9141 SemaRef
.Diag(NewFD
->getLocation(), DiagMsg
)
9142 << Name
<< NewDC
<< IsDefinition
<< NewFD
->getLocation();
9144 bool NewFDisConst
= false;
9145 if (CXXMethodDecl
*NewMD
= dyn_cast
<CXXMethodDecl
>(NewFD
))
9146 NewFDisConst
= NewMD
->isConst();
9148 for (SmallVectorImpl
<std::pair
<FunctionDecl
*, unsigned> >::iterator
9149 NearMatch
= NearMatches
.begin(), NearMatchEnd
= NearMatches
.end();
9150 NearMatch
!= NearMatchEnd
; ++NearMatch
) {
9151 FunctionDecl
*FD
= NearMatch
->first
;
9152 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
);
9153 bool FDisConst
= MD
&& MD
->isConst();
9154 bool IsMember
= MD
|| !IsLocalFriend
;
9156 // FIXME: These notes are poorly worded for the local friend case.
9157 if (unsigned Idx
= NearMatch
->second
) {
9158 ParmVarDecl
*FDParam
= FD
->getParamDecl(Idx
-1);
9159 SourceLocation Loc
= FDParam
->getTypeSpecStartLoc();
9160 if (Loc
.isInvalid()) Loc
= FD
->getLocation();
9161 SemaRef
.Diag(Loc
, IsMember
? diag::note_member_def_close_param_match
9162 : diag::note_local_decl_close_param_match
)
9163 << Idx
<< FDParam
->getType()
9164 << NewFD
->getParamDecl(Idx
- 1)->getType();
9165 } else if (FDisConst
!= NewFDisConst
) {
9166 SemaRef
.Diag(FD
->getLocation(), diag::note_member_def_close_const_match
)
9167 << NewFDisConst
<< FD
->getSourceRange().getEnd()
9169 ? FixItHint::CreateRemoval(ExtraArgs
.D
.getFunctionTypeInfo()
9170 .getConstQualifierLoc())
9171 : FixItHint::CreateInsertion(ExtraArgs
.D
.getFunctionTypeInfo()
9173 .getLocWithOffset(1),
9176 SemaRef
.Diag(FD
->getLocation(),
9177 IsMember
? diag::note_member_def_close_match
9178 : diag::note_local_decl_close_match
);
9183 static StorageClass
getFunctionStorageClass(Sema
&SemaRef
, Declarator
&D
) {
9184 switch (D
.getDeclSpec().getStorageClassSpec()) {
9185 default: llvm_unreachable("Unknown storage class!");
9186 case DeclSpec::SCS_auto
:
9187 case DeclSpec::SCS_register
:
9188 case DeclSpec::SCS_mutable
:
9189 SemaRef
.Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
9190 diag::err_typecheck_sclass_func
);
9191 D
.getMutableDeclSpec().ClearStorageClassSpecs();
9194 case DeclSpec::SCS_unspecified
: break;
9195 case DeclSpec::SCS_extern
:
9196 if (D
.getDeclSpec().isExternInLinkageSpec())
9199 case DeclSpec::SCS_static
: {
9200 if (SemaRef
.CurContext
->getRedeclContext()->isFunctionOrMethod()) {
9202 // The declaration of an identifier for a function that has
9203 // block scope shall have no explicit storage-class specifier
9204 // other than extern
9205 // See also (C++ [dcl.stc]p4).
9206 SemaRef
.Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
9207 diag::err_static_block_func
);
9212 case DeclSpec::SCS_private_extern
: return SC_PrivateExtern
;
9215 // No explicit storage class has already been returned
9219 static FunctionDecl
*CreateNewFunctionDecl(Sema
&SemaRef
, Declarator
&D
,
9220 DeclContext
*DC
, QualType
&R
,
9221 TypeSourceInfo
*TInfo
,
9223 bool &IsVirtualOkay
) {
9224 DeclarationNameInfo NameInfo
= SemaRef
.GetNameForDeclarator(D
);
9225 DeclarationName Name
= NameInfo
.getName();
9227 FunctionDecl
*NewFD
= nullptr;
9228 bool isInline
= D
.getDeclSpec().isInlineSpecified();
9230 if (!SemaRef
.getLangOpts().CPlusPlus
) {
9231 // Determine whether the function was written with a prototype. This is
9233 // - there is a prototype in the declarator, or
9234 // - the type R of the function is some kind of typedef or other non-
9235 // attributed reference to a type name (which eventually refers to a
9236 // function type). Note, we can't always look at the adjusted type to
9237 // check this case because attributes may cause a non-function
9238 // declarator to still have a function type. e.g.,
9239 // typedef void func(int a);
9240 // __attribute__((noreturn)) func other_func; // This has a prototype
9242 (D
.isFunctionDeclarator() && D
.getFunctionTypeInfo().hasPrototype
) ||
9243 (D
.getDeclSpec().isTypeRep() &&
9244 SemaRef
.GetTypeFromParser(D
.getDeclSpec().getRepAsType(), nullptr)
9245 ->isFunctionProtoType()) ||
9246 (!R
->getAsAdjusted
<FunctionType
>() && R
->isFunctionProtoType());
9248 (HasPrototype
|| !SemaRef
.getLangOpts().requiresStrictPrototypes()) &&
9249 "Strict prototypes are required");
9251 NewFD
= FunctionDecl::Create(
9252 SemaRef
.Context
, DC
, D
.getBeginLoc(), NameInfo
, R
, TInfo
, SC
,
9253 SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
, HasPrototype
,
9254 ConstexprSpecKind::Unspecified
,
9255 /*TrailingRequiresClause=*/nullptr);
9256 if (D
.isInvalidType())
9257 NewFD
->setInvalidDecl();
9262 ExplicitSpecifier ExplicitSpecifier
= D
.getDeclSpec().getExplicitSpecifier();
9264 ConstexprSpecKind ConstexprKind
= D
.getDeclSpec().getConstexprSpecifier();
9265 if (ConstexprKind
== ConstexprSpecKind::Constinit
) {
9266 SemaRef
.Diag(D
.getDeclSpec().getConstexprSpecLoc(),
9267 diag::err_constexpr_wrong_decl_kind
)
9268 << static_cast<int>(ConstexprKind
);
9269 ConstexprKind
= ConstexprSpecKind::Unspecified
;
9270 D
.getMutableDeclSpec().ClearConstexprSpec();
9272 Expr
*TrailingRequiresClause
= D
.getTrailingRequiresClause();
9274 SemaRef
.CheckExplicitObjectMemberFunction(DC
, D
, Name
, R
);
9276 if (Name
.getNameKind() == DeclarationName::CXXConstructorName
) {
9277 // This is a C++ constructor declaration.
9278 assert(DC
->isRecord() &&
9279 "Constructors can only be declared in a member context");
9281 R
= SemaRef
.CheckConstructorDeclarator(D
, R
, SC
);
9282 return CXXConstructorDecl::Create(
9283 SemaRef
.Context
, cast
<CXXRecordDecl
>(DC
), D
.getBeginLoc(), NameInfo
, R
,
9284 TInfo
, ExplicitSpecifier
, SemaRef
.getCurFPFeatures().isFPConstrained(),
9285 isInline
, /*isImplicitlyDeclared=*/false, ConstexprKind
,
9286 InheritedConstructor(), TrailingRequiresClause
);
9288 } else if (Name
.getNameKind() == DeclarationName::CXXDestructorName
) {
9289 // This is a C++ destructor declaration.
9290 if (DC
->isRecord()) {
9291 R
= SemaRef
.CheckDestructorDeclarator(D
, R
, SC
);
9292 CXXRecordDecl
*Record
= cast
<CXXRecordDecl
>(DC
);
9293 CXXDestructorDecl
*NewDD
= CXXDestructorDecl::Create(
9294 SemaRef
.Context
, Record
, D
.getBeginLoc(), NameInfo
, R
, TInfo
,
9295 SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
,
9296 /*isImplicitlyDeclared=*/false, ConstexprKind
,
9297 TrailingRequiresClause
);
9298 // User defined destructors start as not selected if the class definition is still
9300 if (Record
->isBeingDefined())
9301 NewDD
->setIneligibleOrNotSelected(true);
9303 // If the destructor needs an implicit exception specification, set it
9304 // now. FIXME: It'd be nice to be able to create the right type to start
9305 // with, but the type needs to reference the destructor declaration.
9306 if (SemaRef
.getLangOpts().CPlusPlus11
)
9307 SemaRef
.AdjustDestructorExceptionSpec(NewDD
);
9309 IsVirtualOkay
= true;
9313 SemaRef
.Diag(D
.getIdentifierLoc(), diag::err_destructor_not_member
);
9316 // Create a FunctionDecl to satisfy the function definition parsing
9318 return FunctionDecl::Create(
9319 SemaRef
.Context
, DC
, D
.getBeginLoc(), D
.getIdentifierLoc(), Name
, R
,
9320 TInfo
, SC
, SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
,
9321 /*hasPrototype=*/true, ConstexprKind
, TrailingRequiresClause
);
9324 } else if (Name
.getNameKind() == DeclarationName::CXXConversionFunctionName
) {
9325 if (!DC
->isRecord()) {
9326 SemaRef
.Diag(D
.getIdentifierLoc(),
9327 diag::err_conv_function_not_member
);
9331 SemaRef
.CheckConversionDeclarator(D
, R
, SC
);
9332 if (D
.isInvalidType())
9335 IsVirtualOkay
= true;
9336 return CXXConversionDecl::Create(
9337 SemaRef
.Context
, cast
<CXXRecordDecl
>(DC
), D
.getBeginLoc(), NameInfo
, R
,
9338 TInfo
, SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
,
9339 ExplicitSpecifier
, ConstexprKind
, SourceLocation(),
9340 TrailingRequiresClause
);
9342 } else if (Name
.getNameKind() == DeclarationName::CXXDeductionGuideName
) {
9343 if (TrailingRequiresClause
)
9344 SemaRef
.Diag(TrailingRequiresClause
->getBeginLoc(),
9345 diag::err_trailing_requires_clause_on_deduction_guide
)
9346 << TrailingRequiresClause
->getSourceRange();
9347 if (SemaRef
.CheckDeductionGuideDeclarator(D
, R
, SC
))
9349 return CXXDeductionGuideDecl::Create(SemaRef
.Context
, DC
, D
.getBeginLoc(),
9350 ExplicitSpecifier
, NameInfo
, R
, TInfo
,
9352 } else if (DC
->isRecord()) {
9353 // If the name of the function is the same as the name of the record,
9354 // then this must be an invalid constructor that has a return type.
9355 // (The parser checks for a return type and makes the declarator a
9356 // constructor if it has no return type).
9357 if (Name
.getAsIdentifierInfo() &&
9358 Name
.getAsIdentifierInfo() == cast
<CXXRecordDecl
>(DC
)->getIdentifier()){
9359 SemaRef
.Diag(D
.getIdentifierLoc(), diag::err_constructor_return_type
)
9360 << SourceRange(D
.getDeclSpec().getTypeSpecTypeLoc())
9361 << SourceRange(D
.getIdentifierLoc());
9365 // This is a C++ method declaration.
9366 CXXMethodDecl
*Ret
= CXXMethodDecl::Create(
9367 SemaRef
.Context
, cast
<CXXRecordDecl
>(DC
), D
.getBeginLoc(), NameInfo
, R
,
9368 TInfo
, SC
, SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
,
9369 ConstexprKind
, SourceLocation(), TrailingRequiresClause
);
9370 IsVirtualOkay
= !Ret
->isStatic();
9374 SemaRef
.getLangOpts().CPlusPlus
&& D
.getDeclSpec().isFriendSpecified();
9375 if (!isFriend
&& SemaRef
.CurContext
->isRecord())
9378 // Determine whether the function was written with a
9379 // prototype. This true when:
9380 // - we're in C++ (where every function has a prototype),
9381 return FunctionDecl::Create(
9382 SemaRef
.Context
, DC
, D
.getBeginLoc(), NameInfo
, R
, TInfo
, SC
,
9383 SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
,
9384 true /*HasPrototype*/, ConstexprKind
, TrailingRequiresClause
);
9388 enum OpenCLParamType
{
9392 InvalidAddrSpacePtrKernelParam
,
9397 static bool isOpenCLSizeDependentType(ASTContext
&C
, QualType Ty
) {
9398 // Size dependent types are just typedefs to normal integer types
9399 // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
9400 // integers other than by their names.
9401 StringRef SizeTypeNames
[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
9403 // Remove typedefs one by one until we reach a typedef
9404 // for a size dependent type.
9405 QualType DesugaredTy
= Ty
;
9407 ArrayRef
<StringRef
> Names(SizeTypeNames
);
9408 auto Match
= llvm::find(Names
, DesugaredTy
.getUnqualifiedType().getAsString());
9409 if (Names
.end() != Match
)
9413 DesugaredTy
= Ty
.getSingleStepDesugaredType(C
);
9414 } while (DesugaredTy
!= Ty
);
9419 static OpenCLParamType
getOpenCLKernelParameterType(Sema
&S
, QualType PT
) {
9420 if (PT
->isDependentType())
9421 return InvalidKernelParam
;
9423 if (PT
->isPointerType() || PT
->isReferenceType()) {
9424 QualType PointeeType
= PT
->getPointeeType();
9425 if (PointeeType
.getAddressSpace() == LangAS::opencl_generic
||
9426 PointeeType
.getAddressSpace() == LangAS::opencl_private
||
9427 PointeeType
.getAddressSpace() == LangAS::Default
)
9428 return InvalidAddrSpacePtrKernelParam
;
9430 if (PointeeType
->isPointerType()) {
9431 // This is a pointer to pointer parameter.
9432 // Recursively check inner type.
9433 OpenCLParamType ParamKind
= getOpenCLKernelParameterType(S
, PointeeType
);
9434 if (ParamKind
== InvalidAddrSpacePtrKernelParam
||
9435 ParamKind
== InvalidKernelParam
)
9438 // OpenCL v3.0 s6.11.a:
9439 // A restriction to pass pointers to pointers only applies to OpenCL C
9441 if (S
.getLangOpts().getOpenCLCompatibleVersion() > 120)
9442 return ValidKernelParam
;
9444 return PtrPtrKernelParam
;
9447 // C++ for OpenCL v1.0 s2.4:
9448 // Moreover the types used in parameters of the kernel functions must be:
9449 // Standard layout types for pointer parameters. The same applies to
9450 // reference if an implementation supports them in kernel parameters.
9451 if (S
.getLangOpts().OpenCLCPlusPlus
&&
9452 !S
.getOpenCLOptions().isAvailableOption(
9453 "__cl_clang_non_portable_kernel_param_types", S
.getLangOpts())) {
9454 auto CXXRec
= PointeeType
.getCanonicalType()->getAsCXXRecordDecl();
9455 bool IsStandardLayoutType
= true;
9457 // If template type is not ODR-used its definition is only available
9458 // in the template definition not its instantiation.
9459 // FIXME: This logic doesn't work for types that depend on template
9460 // parameter (PR58590).
9461 if (!CXXRec
->hasDefinition())
9462 CXXRec
= CXXRec
->getTemplateInstantiationPattern();
9463 if (!CXXRec
|| !CXXRec
->hasDefinition() || !CXXRec
->isStandardLayout())
9464 IsStandardLayoutType
= false;
9466 if (!PointeeType
->isAtomicType() && !PointeeType
->isVoidType() &&
9467 !IsStandardLayoutType
)
9468 return InvalidKernelParam
;
9471 // OpenCL v1.2 s6.9.p:
9472 // A restriction to pass pointers only applies to OpenCL C v1.2 or below.
9473 if (S
.getLangOpts().getOpenCLCompatibleVersion() > 120)
9474 return ValidKernelParam
;
9476 return PtrKernelParam
;
9479 // OpenCL v1.2 s6.9.k:
9480 // Arguments to kernel functions in a program cannot be declared with the
9481 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9482 // uintptr_t or a struct and/or union that contain fields declared to be one
9483 // of these built-in scalar types.
9484 if (isOpenCLSizeDependentType(S
.getASTContext(), PT
))
9485 return InvalidKernelParam
;
9487 if (PT
->isImageType())
9488 return PtrKernelParam
;
9490 if (PT
->isBooleanType() || PT
->isEventT() || PT
->isReserveIDT())
9491 return InvalidKernelParam
;
9493 // OpenCL extension spec v1.2 s9.5:
9494 // This extension adds support for half scalar and vector types as built-in
9495 // types that can be used for arithmetic operations, conversions etc.
9496 if (!S
.getOpenCLOptions().isAvailableOption("cl_khr_fp16", S
.getLangOpts()) &&
9498 return InvalidKernelParam
;
9500 // Look into an array argument to check if it has a forbidden type.
9501 if (PT
->isArrayType()) {
9502 const Type
*UnderlyingTy
= PT
->getPointeeOrArrayElementType();
9503 // Call ourself to check an underlying type of an array. Since the
9504 // getPointeeOrArrayElementType returns an innermost type which is not an
9505 // array, this recursive call only happens once.
9506 return getOpenCLKernelParameterType(S
, QualType(UnderlyingTy
, 0));
9509 // C++ for OpenCL v1.0 s2.4:
9510 // Moreover the types used in parameters of the kernel functions must be:
9511 // Trivial and standard-layout types C++17 [basic.types] (plain old data
9512 // types) for parameters passed by value;
9513 if (S
.getLangOpts().OpenCLCPlusPlus
&&
9514 !S
.getOpenCLOptions().isAvailableOption(
9515 "__cl_clang_non_portable_kernel_param_types", S
.getLangOpts()) &&
9516 !PT
->isOpenCLSpecificType() && !PT
.isPODType(S
.Context
))
9517 return InvalidKernelParam
;
9519 if (PT
->isRecordType())
9520 return RecordKernelParam
;
9522 return ValidKernelParam
;
9525 static void checkIsValidOpenCLKernelParameter(
9529 llvm::SmallPtrSetImpl
<const Type
*> &ValidTypes
) {
9530 QualType PT
= Param
->getType();
9532 // Cache the valid types we encounter to avoid rechecking structs that are
9534 if (ValidTypes
.count(PT
.getTypePtr()))
9537 switch (getOpenCLKernelParameterType(S
, PT
)) {
9538 case PtrPtrKernelParam
:
9539 // OpenCL v3.0 s6.11.a:
9540 // A kernel function argument cannot be declared as a pointer to a pointer
9541 // type. [...] This restriction only applies to OpenCL C 1.2 or below.
9542 S
.Diag(Param
->getLocation(), diag::err_opencl_ptrptr_kernel_param
);
9546 case InvalidAddrSpacePtrKernelParam
:
9547 // OpenCL v1.0 s6.5:
9548 // __kernel function arguments declared to be a pointer of a type can point
9549 // to one of the following address spaces only : __global, __local or
9551 S
.Diag(Param
->getLocation(), diag::err_kernel_arg_address_space
);
9555 // OpenCL v1.2 s6.9.k:
9556 // Arguments to kernel functions in a program cannot be declared with the
9557 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9558 // uintptr_t or a struct and/or union that contain fields declared to be
9559 // one of these built-in scalar types.
9561 case InvalidKernelParam
:
9562 // OpenCL v1.2 s6.8 n:
9563 // A kernel function argument cannot be declared
9565 // Do not diagnose half type since it is diagnosed as invalid argument
9566 // type for any function elsewhere.
9567 if (!PT
->isHalfType()) {
9568 S
.Diag(Param
->getLocation(), diag::err_bad_kernel_param_type
) << PT
;
9570 // Explain what typedefs are involved.
9571 const TypedefType
*Typedef
= nullptr;
9572 while ((Typedef
= PT
->getAs
<TypedefType
>())) {
9573 SourceLocation Loc
= Typedef
->getDecl()->getLocation();
9574 // SourceLocation may be invalid for a built-in type.
9576 S
.Diag(Loc
, diag::note_entity_declared_at
) << PT
;
9577 PT
= Typedef
->desugar();
9584 case PtrKernelParam
:
9585 case ValidKernelParam
:
9586 ValidTypes
.insert(PT
.getTypePtr());
9589 case RecordKernelParam
:
9593 // Track nested structs we will inspect
9594 SmallVector
<const Decl
*, 4> VisitStack
;
9596 // Track where we are in the nested structs. Items will migrate from
9597 // VisitStack to HistoryStack as we do the DFS for bad field.
9598 SmallVector
<const FieldDecl
*, 4> HistoryStack
;
9599 HistoryStack
.push_back(nullptr);
9601 // At this point we already handled everything except of a RecordType or
9602 // an ArrayType of a RecordType.
9603 assert((PT
->isArrayType() || PT
->isRecordType()) && "Unexpected type.");
9604 const RecordType
*RecTy
=
9605 PT
->getPointeeOrArrayElementType()->getAs
<RecordType
>();
9606 const RecordDecl
*OrigRecDecl
= RecTy
->getDecl();
9608 VisitStack
.push_back(RecTy
->getDecl());
9609 assert(VisitStack
.back() && "First decl null?");
9612 const Decl
*Next
= VisitStack
.pop_back_val();
9614 assert(!HistoryStack
.empty());
9615 // Found a marker, we have gone up a level
9616 if (const FieldDecl
*Hist
= HistoryStack
.pop_back_val())
9617 ValidTypes
.insert(Hist
->getType().getTypePtr());
9622 // Adds everything except the original parameter declaration (which is not a
9623 // field itself) to the history stack.
9624 const RecordDecl
*RD
;
9625 if (const FieldDecl
*Field
= dyn_cast
<FieldDecl
>(Next
)) {
9626 HistoryStack
.push_back(Field
);
9628 QualType FieldTy
= Field
->getType();
9629 // Other field types (known to be valid or invalid) are handled while we
9630 // walk around RecordDecl::fields().
9631 assert((FieldTy
->isArrayType() || FieldTy
->isRecordType()) &&
9632 "Unexpected type.");
9633 const Type
*FieldRecTy
= FieldTy
->getPointeeOrArrayElementType();
9635 RD
= FieldRecTy
->castAs
<RecordType
>()->getDecl();
9637 RD
= cast
<RecordDecl
>(Next
);
9640 // Add a null marker so we know when we've gone back up a level
9641 VisitStack
.push_back(nullptr);
9643 for (const auto *FD
: RD
->fields()) {
9644 QualType QT
= FD
->getType();
9646 if (ValidTypes
.count(QT
.getTypePtr()))
9649 OpenCLParamType ParamType
= getOpenCLKernelParameterType(S
, QT
);
9650 if (ParamType
== ValidKernelParam
)
9653 if (ParamType
== RecordKernelParam
) {
9654 VisitStack
.push_back(FD
);
9658 // OpenCL v1.2 s6.9.p:
9659 // Arguments to kernel functions that are declared to be a struct or union
9660 // do not allow OpenCL objects to be passed as elements of the struct or
9661 // union. This restriction was lifted in OpenCL v2.0 with the introduction
9663 if (ParamType
== PtrKernelParam
|| ParamType
== PtrPtrKernelParam
||
9664 ParamType
== InvalidAddrSpacePtrKernelParam
) {
9665 S
.Diag(Param
->getLocation(),
9666 diag::err_record_with_pointers_kernel_param
)
9667 << PT
->isUnionType()
9670 S
.Diag(Param
->getLocation(), diag::err_bad_kernel_param_type
) << PT
;
9673 S
.Diag(OrigRecDecl
->getLocation(), diag::note_within_field_of_type
)
9674 << OrigRecDecl
->getDeclName();
9676 // We have an error, now let's go back up through history and show where
9677 // the offending field came from
9678 for (ArrayRef
<const FieldDecl
*>::const_iterator
9679 I
= HistoryStack
.begin() + 1,
9680 E
= HistoryStack
.end();
9682 const FieldDecl
*OuterField
= *I
;
9683 S
.Diag(OuterField
->getLocation(), diag::note_within_field_of_type
)
9684 << OuterField
->getType();
9687 S
.Diag(FD
->getLocation(), diag::note_illegal_field_declared_here
)
9688 << QT
->isPointerType()
9693 } while (!VisitStack
.empty());
9696 /// Find the DeclContext in which a tag is implicitly declared if we see an
9697 /// elaborated type specifier in the specified context, and lookup finds
9699 static DeclContext
*getTagInjectionContext(DeclContext
*DC
) {
9700 while (!DC
->isFileContext() && !DC
->isFunctionOrMethod())
9701 DC
= DC
->getParent();
9705 /// Find the Scope in which a tag is implicitly declared if we see an
9706 /// elaborated type specifier in the specified context, and lookup finds
9708 static Scope
*getTagInjectionScope(Scope
*S
, const LangOptions
&LangOpts
) {
9709 while (S
->isClassScope() ||
9710 (LangOpts
.CPlusPlus
&&
9711 S
->isFunctionPrototypeScope()) ||
9712 ((S
->getFlags() & Scope::DeclScope
) == 0) ||
9713 (S
->getEntity() && S
->getEntity()->isTransparentContext()))
9718 /// Determine whether a declaration matches a known function in namespace std.
9719 static bool isStdBuiltin(ASTContext
&Ctx
, FunctionDecl
*FD
,
9720 unsigned BuiltinID
) {
9721 switch (BuiltinID
) {
9722 case Builtin::BI__GetExceptionInfo
:
9723 // No type checking whatsoever.
9724 return Ctx
.getTargetInfo().getCXXABI().isMicrosoft();
9726 case Builtin::BIaddressof
:
9727 case Builtin::BI__addressof
:
9728 case Builtin::BIforward
:
9729 case Builtin::BIforward_like
:
9730 case Builtin::BImove
:
9731 case Builtin::BImove_if_noexcept
:
9732 case Builtin::BIas_const
: {
9733 // Ensure that we don't treat the algorithm
9734 // OutputIt std::move(InputIt, InputIt, OutputIt)
9735 // as the builtin std::move.
9736 const auto *FPT
= FD
->getType()->castAs
<FunctionProtoType
>();
9737 return FPT
->getNumParams() == 1 && !FPT
->isVariadic();
9746 Sema::ActOnFunctionDeclarator(Scope
*S
, Declarator
&D
, DeclContext
*DC
,
9747 TypeSourceInfo
*TInfo
, LookupResult
&Previous
,
9748 MultiTemplateParamsArg TemplateParamListsRef
,
9750 QualType R
= TInfo
->getType();
9752 assert(R
->isFunctionType());
9753 if (R
.getCanonicalType()->castAs
<FunctionType
>()->getCmseNSCallAttr())
9754 Diag(D
.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call
);
9756 SmallVector
<TemplateParameterList
*, 4> TemplateParamLists
;
9757 llvm::append_range(TemplateParamLists
, TemplateParamListsRef
);
9758 if (TemplateParameterList
*Invented
= D
.getInventedTemplateParameterList()) {
9759 if (!TemplateParamLists
.empty() &&
9760 Invented
->getDepth() == TemplateParamLists
.back()->getDepth())
9761 TemplateParamLists
.back() = Invented
;
9763 TemplateParamLists
.push_back(Invented
);
9766 // TODO: consider using NameInfo for diagnostic.
9767 DeclarationNameInfo NameInfo
= GetNameForDeclarator(D
);
9768 DeclarationName Name
= NameInfo
.getName();
9769 StorageClass SC
= getFunctionStorageClass(*this, D
);
9771 if (DeclSpec::TSCS TSCS
= D
.getDeclSpec().getThreadStorageClassSpec())
9772 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
9773 diag::err_invalid_thread
)
9774 << DeclSpec::getSpecifierName(TSCS
);
9776 if (D
.isFirstDeclarationOfMember())
9777 adjustMemberFunctionCC(
9778 R
, !(D
.isStaticMember() || D
.isExplicitObjectMemberFunction()),
9779 D
.isCtorOrDtor(), D
.getIdentifierLoc());
9781 bool isFriend
= false;
9782 FunctionTemplateDecl
*FunctionTemplate
= nullptr;
9783 bool isMemberSpecialization
= false;
9784 bool isFunctionTemplateSpecialization
= false;
9786 bool HasExplicitTemplateArgs
= false;
9787 TemplateArgumentListInfo TemplateArgs
;
9789 bool isVirtualOkay
= false;
9791 DeclContext
*OriginalDC
= DC
;
9792 bool IsLocalExternDecl
= adjustContextForLocalExternDecl(DC
);
9794 FunctionDecl
*NewFD
= CreateNewFunctionDecl(*this, D
, DC
, R
, TInfo
, SC
,
9796 if (!NewFD
) return nullptr;
9798 if (OriginalLexicalContext
&& OriginalLexicalContext
->isObjCContainer())
9799 NewFD
->setTopLevelDeclInObjCContainer();
9801 // Set the lexical context. If this is a function-scope declaration, or has a
9802 // C++ scope specifier, or is the object of a friend declaration, the lexical
9803 // context will be different from the semantic context.
9804 NewFD
->setLexicalDeclContext(CurContext
);
9806 if (IsLocalExternDecl
)
9807 NewFD
->setLocalExternDecl();
9809 if (getLangOpts().CPlusPlus
) {
9810 // The rules for implicit inlines changed in C++20 for methods and friends
9811 // with an in-class definition (when such a definition is not attached to
9812 // the global module). User-specified 'inline' overrides this (set when
9813 // the function decl is created above).
9814 // FIXME: We need a better way to separate C++ standard and clang modules.
9815 bool ImplicitInlineCXX20
= !getLangOpts().CPlusPlusModules
||
9816 !NewFD
->getOwningModule() ||
9817 NewFD
->getOwningModule()->isGlobalModule() ||
9818 NewFD
->getOwningModule()->isHeaderLikeModule();
9819 bool isInline
= D
.getDeclSpec().isInlineSpecified();
9820 bool isVirtual
= D
.getDeclSpec().isVirtualSpecified();
9821 bool hasExplicit
= D
.getDeclSpec().hasExplicitSpecifier();
9822 isFriend
= D
.getDeclSpec().isFriendSpecified();
9823 if (isFriend
&& !isInline
&& D
.isFunctionDefinition()) {
9824 // Pre-C++20 [class.friend]p5
9825 // A function can be defined in a friend declaration of a
9826 // class . . . . Such a function is implicitly inline.
9827 // Post C++20 [class.friend]p7
9828 // Such a function is implicitly an inline function if it is attached
9829 // to the global module.
9830 NewFD
->setImplicitlyInline(ImplicitInlineCXX20
);
9833 // If this is a method defined in an __interface, and is not a constructor
9834 // or an overloaded operator, then set the pure flag (isVirtual will already
9836 if (const CXXRecordDecl
*Parent
=
9837 dyn_cast
<CXXRecordDecl
>(NewFD
->getDeclContext())) {
9838 if (Parent
->isInterface() && cast
<CXXMethodDecl
>(NewFD
)->isUserProvided())
9839 NewFD
->setPure(true);
9841 // C++ [class.union]p2
9842 // A union can have member functions, but not virtual functions.
9843 if (isVirtual
&& Parent
->isUnion()) {
9844 Diag(D
.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union
);
9845 NewFD
->setInvalidDecl();
9847 if ((Parent
->isClass() || Parent
->isStruct()) &&
9848 Parent
->hasAttr
<SYCLSpecialClassAttr
>() &&
9849 NewFD
->getKind() == Decl::Kind::CXXMethod
&& NewFD
->getIdentifier() &&
9850 NewFD
->getName() == "__init" && D
.isFunctionDefinition()) {
9851 if (auto *Def
= Parent
->getDefinition())
9852 Def
->setInitMethod(true);
9856 SetNestedNameSpecifier(*this, NewFD
, D
);
9857 isMemberSpecialization
= false;
9858 isFunctionTemplateSpecialization
= false;
9859 if (D
.isInvalidType())
9860 NewFD
->setInvalidDecl();
9862 // Match up the template parameter lists with the scope specifier, then
9863 // determine whether we have a template or a template specialization.
9864 bool Invalid
= false;
9865 TemplateParameterList
*TemplateParams
=
9866 MatchTemplateParametersToScopeSpecifier(
9867 D
.getDeclSpec().getBeginLoc(), D
.getIdentifierLoc(),
9868 D
.getCXXScopeSpec(),
9869 D
.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
9870 ? D
.getName().TemplateId
9872 TemplateParamLists
, isFriend
, isMemberSpecialization
,
9874 if (TemplateParams
) {
9875 // Check that we can declare a template here.
9876 if (CheckTemplateDeclScope(S
, TemplateParams
))
9877 NewFD
->setInvalidDecl();
9879 if (TemplateParams
->size() > 0) {
9880 // This is a function template
9882 // A destructor cannot be a template.
9883 if (Name
.getNameKind() == DeclarationName::CXXDestructorName
) {
9884 Diag(NewFD
->getLocation(), diag::err_destructor_template
);
9885 NewFD
->setInvalidDecl();
9888 // If we're adding a template to a dependent context, we may need to
9889 // rebuilding some of the types used within the template parameter list,
9890 // now that we know what the current instantiation is.
9891 if (DC
->isDependentContext()) {
9892 ContextRAII
SavedContext(*this, DC
);
9893 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams
))
9897 FunctionTemplate
= FunctionTemplateDecl::Create(Context
, DC
,
9898 NewFD
->getLocation(),
9899 Name
, TemplateParams
,
9901 FunctionTemplate
->setLexicalDeclContext(CurContext
);
9902 NewFD
->setDescribedFunctionTemplate(FunctionTemplate
);
9904 // For source fidelity, store the other template param lists.
9905 if (TemplateParamLists
.size() > 1) {
9906 NewFD
->setTemplateParameterListsInfo(Context
,
9907 ArrayRef
<TemplateParameterList
*>(TemplateParamLists
)
9911 // This is a function template specialization.
9912 isFunctionTemplateSpecialization
= true;
9913 // For source fidelity, store all the template param lists.
9914 if (TemplateParamLists
.size() > 0)
9915 NewFD
->setTemplateParameterListsInfo(Context
, TemplateParamLists
);
9917 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
9919 // We want to remove the "template<>", found here.
9920 SourceRange RemoveRange
= TemplateParams
->getSourceRange();
9922 // If we remove the template<> and the name is not a
9923 // template-id, we're actually silently creating a problem:
9924 // the friend declaration will refer to an untemplated decl,
9925 // and clearly the user wants a template specialization. So
9926 // we need to insert '<>' after the name.
9927 SourceLocation InsertLoc
;
9928 if (D
.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) {
9929 InsertLoc
= D
.getName().getSourceRange().getEnd();
9930 InsertLoc
= getLocForEndOfToken(InsertLoc
);
9933 Diag(D
.getIdentifierLoc(), diag::err_template_spec_decl_friend
)
9934 << Name
<< RemoveRange
9935 << FixItHint::CreateRemoval(RemoveRange
)
9936 << FixItHint::CreateInsertion(InsertLoc
, "<>");
9941 // Check that we can declare a template here.
9942 if (!TemplateParamLists
.empty() && isMemberSpecialization
&&
9943 CheckTemplateDeclScope(S
, TemplateParamLists
.back()))
9944 NewFD
->setInvalidDecl();
9946 // All template param lists were matched against the scope specifier:
9947 // this is NOT (an explicit specialization of) a template.
9948 if (TemplateParamLists
.size() > 0)
9949 // For source fidelity, store all the template param lists.
9950 NewFD
->setTemplateParameterListsInfo(Context
, TemplateParamLists
);
9954 NewFD
->setInvalidDecl();
9955 if (FunctionTemplate
)
9956 FunctionTemplate
->setInvalidDecl();
9959 // C++ [dcl.fct.spec]p5:
9960 // The virtual specifier shall only be used in declarations of
9961 // nonstatic class member functions that appear within a
9962 // member-specification of a class declaration; see 10.3.
9964 if (isVirtual
&& !NewFD
->isInvalidDecl()) {
9965 if (!isVirtualOkay
) {
9966 Diag(D
.getDeclSpec().getVirtualSpecLoc(),
9967 diag::err_virtual_non_function
);
9968 } else if (!CurContext
->isRecord()) {
9969 // 'virtual' was specified outside of the class.
9970 Diag(D
.getDeclSpec().getVirtualSpecLoc(),
9971 diag::err_virtual_out_of_class
)
9972 << FixItHint::CreateRemoval(D
.getDeclSpec().getVirtualSpecLoc());
9973 } else if (NewFD
->getDescribedFunctionTemplate()) {
9974 // C++ [temp.mem]p3:
9975 // A member function template shall not be virtual.
9976 Diag(D
.getDeclSpec().getVirtualSpecLoc(),
9977 diag::err_virtual_member_function_template
)
9978 << FixItHint::CreateRemoval(D
.getDeclSpec().getVirtualSpecLoc());
9980 // Okay: Add virtual to the method.
9981 NewFD
->setVirtualAsWritten(true);
9984 if (getLangOpts().CPlusPlus14
&&
9985 NewFD
->getReturnType()->isUndeducedType())
9986 Diag(D
.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual
);
9989 if (getLangOpts().CPlusPlus14
&&
9990 (NewFD
->isDependentContext() ||
9991 (isFriend
&& CurContext
->isDependentContext())) &&
9992 NewFD
->getReturnType()->isUndeducedType()) {
9993 // If the function template is referenced directly (for instance, as a
9994 // member of the current instantiation), pretend it has a dependent type.
9995 // This is not really justified by the standard, but is the only sane
9997 // FIXME: For a friend function, we have not marked the function as being
9998 // a friend yet, so 'isDependentContext' on the FD doesn't work.
9999 const FunctionProtoType
*FPT
=
10000 NewFD
->getType()->castAs
<FunctionProtoType
>();
10001 QualType Result
= SubstAutoTypeDependent(FPT
->getReturnType());
10002 NewFD
->setType(Context
.getFunctionType(Result
, FPT
->getParamTypes(),
10003 FPT
->getExtProtoInfo()));
10006 // C++ [dcl.fct.spec]p3:
10007 // The inline specifier shall not appear on a block scope function
10009 if (isInline
&& !NewFD
->isInvalidDecl()) {
10010 if (CurContext
->isFunctionOrMethod()) {
10011 // 'inline' is not allowed on block scope function declaration.
10012 Diag(D
.getDeclSpec().getInlineSpecLoc(),
10013 diag::err_inline_declaration_block_scope
) << Name
10014 << FixItHint::CreateRemoval(D
.getDeclSpec().getInlineSpecLoc());
10018 // C++ [dcl.fct.spec]p6:
10019 // The explicit specifier shall be used only in the declaration of a
10020 // constructor or conversion function within its class definition;
10021 // see 12.3.1 and 12.3.2.
10022 if (hasExplicit
&& !NewFD
->isInvalidDecl() &&
10023 !isa
<CXXDeductionGuideDecl
>(NewFD
)) {
10024 if (!CurContext
->isRecord()) {
10025 // 'explicit' was specified outside of the class.
10026 Diag(D
.getDeclSpec().getExplicitSpecLoc(),
10027 diag::err_explicit_out_of_class
)
10028 << FixItHint::CreateRemoval(D
.getDeclSpec().getExplicitSpecRange());
10029 } else if (!isa
<CXXConstructorDecl
>(NewFD
) &&
10030 !isa
<CXXConversionDecl
>(NewFD
)) {
10031 // 'explicit' was specified on a function that wasn't a constructor
10032 // or conversion function.
10033 Diag(D
.getDeclSpec().getExplicitSpecLoc(),
10034 diag::err_explicit_non_ctor_or_conv_function
)
10035 << FixItHint::CreateRemoval(D
.getDeclSpec().getExplicitSpecRange());
10039 ConstexprSpecKind ConstexprKind
= D
.getDeclSpec().getConstexprSpecifier();
10040 if (ConstexprKind
!= ConstexprSpecKind::Unspecified
) {
10041 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
10042 // are implicitly inline.
10043 NewFD
->setImplicitlyInline();
10045 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
10046 // be either constructors or to return a literal type. Therefore,
10047 // destructors cannot be declared constexpr.
10048 if (isa
<CXXDestructorDecl
>(NewFD
) &&
10049 (!getLangOpts().CPlusPlus20
||
10050 ConstexprKind
== ConstexprSpecKind::Consteval
)) {
10051 Diag(D
.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor
)
10052 << static_cast<int>(ConstexprKind
);
10053 NewFD
->setConstexprKind(getLangOpts().CPlusPlus20
10054 ? ConstexprSpecKind::Unspecified
10055 : ConstexprSpecKind::Constexpr
);
10057 // C++20 [dcl.constexpr]p2: An allocation function, or a
10058 // deallocation function shall not be declared with the consteval
10060 if (ConstexprKind
== ConstexprSpecKind::Consteval
&&
10061 (NewFD
->getOverloadedOperator() == OO_New
||
10062 NewFD
->getOverloadedOperator() == OO_Array_New
||
10063 NewFD
->getOverloadedOperator() == OO_Delete
||
10064 NewFD
->getOverloadedOperator() == OO_Array_Delete
)) {
10065 Diag(D
.getDeclSpec().getConstexprSpecLoc(),
10066 diag::err_invalid_consteval_decl_kind
)
10068 NewFD
->setConstexprKind(ConstexprSpecKind::Constexpr
);
10072 // If __module_private__ was specified, mark the function accordingly.
10073 if (D
.getDeclSpec().isModulePrivateSpecified()) {
10074 if (isFunctionTemplateSpecialization
) {
10075 SourceLocation ModulePrivateLoc
10076 = D
.getDeclSpec().getModulePrivateSpecLoc();
10077 Diag(ModulePrivateLoc
, diag::err_module_private_specialization
)
10079 << FixItHint::CreateRemoval(ModulePrivateLoc
);
10081 NewFD
->setModulePrivate();
10082 if (FunctionTemplate
)
10083 FunctionTemplate
->setModulePrivate();
10088 if (FunctionTemplate
) {
10089 FunctionTemplate
->setObjectOfFriendDecl();
10090 FunctionTemplate
->setAccess(AS_public
);
10092 NewFD
->setObjectOfFriendDecl();
10093 NewFD
->setAccess(AS_public
);
10096 // If a function is defined as defaulted or deleted, mark it as such now.
10097 // We'll do the relevant checks on defaulted / deleted functions later.
10098 switch (D
.getFunctionDefinitionKind()) {
10099 case FunctionDefinitionKind::Declaration
:
10100 case FunctionDefinitionKind::Definition
:
10103 case FunctionDefinitionKind::Defaulted
:
10104 NewFD
->setDefaulted();
10107 case FunctionDefinitionKind::Deleted
:
10108 NewFD
->setDeletedAsWritten();
10112 if (isa
<CXXMethodDecl
>(NewFD
) && DC
== CurContext
&&
10113 D
.isFunctionDefinition() && !isInline
) {
10114 // Pre C++20 [class.mfct]p2:
10115 // A member function may be defined (8.4) in its class definition, in
10116 // which case it is an inline member function (7.1.2)
10117 // Post C++20 [class.mfct]p1:
10118 // If a member function is attached to the global module and is defined
10119 // in its class definition, it is inline.
10120 NewFD
->setImplicitlyInline(ImplicitInlineCXX20
);
10123 if (SC
== SC_Static
&& isa
<CXXMethodDecl
>(NewFD
) &&
10124 !CurContext
->isRecord()) {
10125 // C++ [class.static]p1:
10126 // A data or function member of a class may be declared static
10127 // in a class definition, in which case it is a static member of
10130 // Complain about the 'static' specifier if it's on an out-of-line
10131 // member function definition.
10133 // MSVC permits the use of a 'static' storage specifier on an out-of-line
10134 // member function template declaration and class member template
10135 // declaration (MSVC versions before 2015), warn about this.
10136 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
10137 ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015
) &&
10138 cast
<CXXRecordDecl
>(DC
)->getDescribedClassTemplate()) ||
10139 (getLangOpts().MSVCCompat
&& NewFD
->getDescribedFunctionTemplate()))
10140 ? diag::ext_static_out_of_line
: diag::err_static_out_of_line
)
10141 << FixItHint::CreateRemoval(D
.getDeclSpec().getStorageClassSpecLoc());
10144 // C++11 [except.spec]p15:
10145 // A deallocation function with no exception-specification is treated
10146 // as if it were specified with noexcept(true).
10147 const FunctionProtoType
*FPT
= R
->getAs
<FunctionProtoType
>();
10148 if ((Name
.getCXXOverloadedOperator() == OO_Delete
||
10149 Name
.getCXXOverloadedOperator() == OO_Array_Delete
) &&
10150 getLangOpts().CPlusPlus11
&& FPT
&& !FPT
->hasExceptionSpec())
10151 NewFD
->setType(Context
.getFunctionType(
10152 FPT
->getReturnType(), FPT
->getParamTypes(),
10153 FPT
->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept
)));
10155 // C++20 [dcl.inline]/7
10156 // If an inline function or variable that is attached to a named module
10157 // is declared in a definition domain, it shall be defined in that
10159 // So, if the current declaration does not have a definition, we must
10160 // check at the end of the TU (or when the PMF starts) to see that we
10161 // have a definition at that point.
10162 if (isInline
&& !D
.isFunctionDefinition() && getLangOpts().CPlusPlus20
&&
10163 NewFD
->hasOwningModule() &&
10164 NewFD
->getOwningModule()->isModulePurview()) {
10165 PendingInlineFuncDecls
.insert(NewFD
);
10169 // Filter out previous declarations that don't match the scope.
10170 FilterLookupForScope(Previous
, OriginalDC
, S
, shouldConsiderLinkage(NewFD
),
10171 D
.getCXXScopeSpec().isNotEmpty() ||
10172 isMemberSpecialization
||
10173 isFunctionTemplateSpecialization
);
10175 // Handle GNU asm-label extension (encoded as an attribute).
10176 if (Expr
*E
= (Expr
*) D
.getAsmLabel()) {
10177 // The parser guarantees this is a string.
10178 StringLiteral
*SE
= cast
<StringLiteral
>(E
);
10179 NewFD
->addAttr(AsmLabelAttr::Create(Context
, SE
->getString(),
10180 /*IsLiteralLabel=*/true,
10181 SE
->getStrTokenLoc(0)));
10182 } else if (!ExtnameUndeclaredIdentifiers
.empty()) {
10183 llvm::DenseMap
<IdentifierInfo
*,AsmLabelAttr
*>::iterator I
=
10184 ExtnameUndeclaredIdentifiers
.find(NewFD
->getIdentifier());
10185 if (I
!= ExtnameUndeclaredIdentifiers
.end()) {
10186 if (isDeclExternC(NewFD
)) {
10187 NewFD
->addAttr(I
->second
);
10188 ExtnameUndeclaredIdentifiers
.erase(I
);
10190 Diag(NewFD
->getLocation(), diag::warn_redefine_extname_not_applied
)
10191 << /*Variable*/0 << NewFD
;
10195 // Copy the parameter declarations from the declarator D to the function
10196 // declaration NewFD, if they are available. First scavenge them into Params.
10197 SmallVector
<ParmVarDecl
*, 16> Params
;
10199 if (D
.isFunctionDeclarator(FTIIdx
)) {
10200 DeclaratorChunk::FunctionTypeInfo
&FTI
= D
.getTypeObject(FTIIdx
).Fun
;
10202 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
10203 // function that takes no arguments, not a function that takes a
10204 // single void argument.
10205 // We let through "const void" here because Sema::GetTypeForDeclarator
10206 // already checks for that case.
10207 if (FTIHasNonVoidParameters(FTI
) && FTI
.Params
[0].Param
) {
10208 for (unsigned i
= 0, e
= FTI
.NumParams
; i
!= e
; ++i
) {
10209 ParmVarDecl
*Param
= cast
<ParmVarDecl
>(FTI
.Params
[i
].Param
);
10210 assert(Param
->getDeclContext() != NewFD
&& "Was set before ?");
10211 Param
->setDeclContext(NewFD
);
10212 Params
.push_back(Param
);
10214 if (Param
->isInvalidDecl())
10215 NewFD
->setInvalidDecl();
10219 if (!getLangOpts().CPlusPlus
) {
10220 // In C, find all the tag declarations from the prototype and move them
10221 // into the function DeclContext. Remove them from the surrounding tag
10222 // injection context of the function, which is typically but not always
10224 DeclContext
*PrototypeTagContext
=
10225 getTagInjectionContext(NewFD
->getLexicalDeclContext());
10226 for (NamedDecl
*NonParmDecl
: FTI
.getDeclsInPrototype()) {
10227 auto *TD
= dyn_cast
<TagDecl
>(NonParmDecl
);
10229 // We don't want to reparent enumerators. Look at their parent enum
10232 if (auto *ECD
= dyn_cast
<EnumConstantDecl
>(NonParmDecl
))
10233 TD
= cast
<EnumDecl
>(ECD
->getDeclContext());
10237 DeclContext
*TagDC
= TD
->getLexicalDeclContext();
10238 if (!TagDC
->containsDecl(TD
))
10240 TagDC
->removeDecl(TD
);
10241 TD
->setDeclContext(NewFD
);
10242 NewFD
->addDecl(TD
);
10244 // Preserve the lexical DeclContext if it is not the surrounding tag
10245 // injection context of the FD. In this example, the semantic context of
10246 // E will be f and the lexical context will be S, while both the
10247 // semantic and lexical contexts of S will be f:
10248 // void f(struct S { enum E { a } f; } s);
10249 if (TagDC
!= PrototypeTagContext
)
10250 TD
->setLexicalDeclContext(TagDC
);
10253 } else if (const FunctionProtoType
*FT
= R
->getAs
<FunctionProtoType
>()) {
10254 // When we're declaring a function with a typedef, typeof, etc as in the
10255 // following example, we'll need to synthesize (unnamed)
10256 // parameters for use in the declaration.
10259 // typedef void fn(int);
10263 // Synthesize a parameter for each argument type.
10264 for (const auto &AI
: FT
->param_types()) {
10265 ParmVarDecl
*Param
=
10266 BuildParmVarDeclForTypedef(NewFD
, D
.getIdentifierLoc(), AI
);
10267 Param
->setScopeInfo(0, Params
.size());
10268 Params
.push_back(Param
);
10271 assert(R
->isFunctionNoProtoType() && NewFD
->getNumParams() == 0 &&
10272 "Should not need args for typedef of non-prototype fn");
10275 // Finally, we know we have the right number of parameters, install them.
10276 NewFD
->setParams(Params
);
10278 if (D
.getDeclSpec().isNoreturnSpecified())
10280 C11NoReturnAttr::Create(Context
, D
.getDeclSpec().getNoreturnSpecLoc()));
10282 // Functions returning a variably modified type violate C99 6.7.5.2p2
10283 // because all functions have linkage.
10284 if (!NewFD
->isInvalidDecl() &&
10285 NewFD
->getReturnType()->isVariablyModifiedType()) {
10286 Diag(NewFD
->getLocation(), diag::err_vm_func_decl
);
10287 NewFD
->setInvalidDecl();
10290 // Apply an implicit SectionAttr if '#pragma clang section text' is active
10291 if (PragmaClangTextSection
.Valid
&& D
.isFunctionDefinition() &&
10292 !NewFD
->hasAttr
<SectionAttr
>())
10293 NewFD
->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
10294 Context
, PragmaClangTextSection
.SectionName
,
10295 PragmaClangTextSection
.PragmaLocation
));
10297 // Apply an implicit SectionAttr if #pragma code_seg is active.
10298 if (CodeSegStack
.CurrentValue
&& D
.isFunctionDefinition() &&
10299 !NewFD
->hasAttr
<SectionAttr
>()) {
10300 NewFD
->addAttr(SectionAttr::CreateImplicit(
10301 Context
, CodeSegStack
.CurrentValue
->getString(),
10302 CodeSegStack
.CurrentPragmaLocation
, SectionAttr::Declspec_allocate
));
10303 if (UnifySection(CodeSegStack
.CurrentValue
->getString(),
10304 ASTContext::PSF_Implicit
| ASTContext::PSF_Execute
|
10305 ASTContext::PSF_Read
,
10307 NewFD
->dropAttr
<SectionAttr
>();
10310 // Apply an implicit StrictGuardStackCheckAttr if #pragma strict_gs_check is
10312 if (StrictGuardStackCheckStack
.CurrentValue
&& D
.isFunctionDefinition() &&
10313 !NewFD
->hasAttr
<StrictGuardStackCheckAttr
>())
10314 NewFD
->addAttr(StrictGuardStackCheckAttr::CreateImplicit(
10315 Context
, PragmaClangTextSection
.PragmaLocation
));
10317 // Apply an implicit CodeSegAttr from class declspec or
10318 // apply an implicit SectionAttr from #pragma code_seg if active.
10319 if (!NewFD
->hasAttr
<CodeSegAttr
>()) {
10320 if (Attr
*SAttr
= getImplicitCodeSegOrSectionAttrForFunction(NewFD
,
10321 D
.isFunctionDefinition())) {
10322 NewFD
->addAttr(SAttr
);
10326 // Handle attributes.
10327 ProcessDeclAttributes(S
, NewFD
, D
);
10328 const auto *NewTVA
= NewFD
->getAttr
<TargetVersionAttr
>();
10329 if (NewTVA
&& !NewTVA
->isDefaultVersion() &&
10330 !Context
.getTargetInfo().hasFeature("fmv")) {
10331 // Don't add to scope fmv functions declarations if fmv disabled
10332 AddToScope
= false;
10336 if (getLangOpts().OpenCL
|| getLangOpts().HLSL
) {
10337 // Neither OpenCL nor HLSL allow an address space qualifyer on a return
10340 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
10341 // type declaration will generate a compilation error.
10342 LangAS AddressSpace
= NewFD
->getReturnType().getAddressSpace();
10343 if (AddressSpace
!= LangAS::Default
) {
10344 Diag(NewFD
->getLocation(), diag::err_return_value_with_address_space
);
10345 NewFD
->setInvalidDecl();
10349 if (!getLangOpts().CPlusPlus
) {
10350 // Perform semantic checking on the function declaration.
10351 if (!NewFD
->isInvalidDecl() && NewFD
->isMain())
10352 CheckMain(NewFD
, D
.getDeclSpec());
10354 if (!NewFD
->isInvalidDecl() && NewFD
->isMSVCRTEntryPoint())
10355 CheckMSVCRTEntryPoint(NewFD
);
10357 if (!NewFD
->isInvalidDecl())
10358 D
.setRedeclaration(CheckFunctionDeclaration(S
, NewFD
, Previous
,
10359 isMemberSpecialization
,
10360 D
.isFunctionDefinition()));
10361 else if (!Previous
.empty())
10362 // Recover gracefully from an invalid redeclaration.
10363 D
.setRedeclaration(true);
10364 assert((NewFD
->isInvalidDecl() || !D
.isRedeclaration() ||
10365 Previous
.getResultKind() != LookupResult::FoundOverloaded
) &&
10366 "previous declaration set still overloaded");
10368 // Diagnose no-prototype function declarations with calling conventions that
10369 // don't support variadic calls. Only do this in C and do it after merging
10370 // possibly prototyped redeclarations.
10371 const FunctionType
*FT
= NewFD
->getType()->castAs
<FunctionType
>();
10372 if (isa
<FunctionNoProtoType
>(FT
) && !D
.isFunctionDefinition()) {
10373 CallingConv CC
= FT
->getExtInfo().getCC();
10374 if (!supportsVariadicCall(CC
)) {
10375 // Windows system headers sometimes accidentally use stdcall without
10376 // (void) parameters, so we relax this to a warning.
10378 CC
== CC_X86StdCall
? diag::warn_cconv_knr
: diag::err_cconv_knr
;
10379 Diag(NewFD
->getLocation(), DiagID
)
10380 << FunctionType::getNameForCallConv(CC
);
10384 if (NewFD
->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
10385 NewFD
->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
10386 checkNonTrivialCUnion(NewFD
->getReturnType(),
10387 NewFD
->getReturnTypeSourceRange().getBegin(),
10388 NTCUC_FunctionReturn
, NTCUK_Destruct
|NTCUK_Copy
);
10390 // C++11 [replacement.functions]p3:
10391 // The program's definitions shall not be specified as inline.
10393 // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
10395 // Suppress the diagnostic if the function is __attribute__((used)), since
10396 // that forces an external definition to be emitted.
10397 if (D
.getDeclSpec().isInlineSpecified() &&
10398 NewFD
->isReplaceableGlobalAllocationFunction() &&
10399 !NewFD
->hasAttr
<UsedAttr
>())
10400 Diag(D
.getDeclSpec().getInlineSpecLoc(),
10401 diag::ext_operator_new_delete_declared_inline
)
10402 << NewFD
->getDeclName();
10404 // If the declarator is a template-id, translate the parser's template
10405 // argument list into our AST format.
10406 if (D
.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
) {
10407 TemplateIdAnnotation
*TemplateId
= D
.getName().TemplateId
;
10408 TemplateArgs
.setLAngleLoc(TemplateId
->LAngleLoc
);
10409 TemplateArgs
.setRAngleLoc(TemplateId
->RAngleLoc
);
10410 ASTTemplateArgsPtr
TemplateArgsPtr(TemplateId
->getTemplateArgs(),
10411 TemplateId
->NumArgs
);
10412 translateTemplateArguments(TemplateArgsPtr
,
10415 HasExplicitTemplateArgs
= true;
10417 if (NewFD
->isInvalidDecl()) {
10418 HasExplicitTemplateArgs
= false;
10419 } else if (FunctionTemplate
) {
10420 // Function template with explicit template arguments.
10421 Diag(D
.getIdentifierLoc(), diag::err_function_template_partial_spec
)
10422 << SourceRange(TemplateId
->LAngleLoc
, TemplateId
->RAngleLoc
);
10424 HasExplicitTemplateArgs
= false;
10425 } else if (isFriend
) {
10426 // "friend void foo<>(int);" is an implicit specialization decl.
10427 isFunctionTemplateSpecialization
= true;
10429 assert(isFunctionTemplateSpecialization
&&
10430 "should have a 'template<>' for this decl");
10432 } else if (isFriend
&& isFunctionTemplateSpecialization
) {
10433 // This combination is only possible in a recovery case; the user
10434 // wrote something like:
10435 // template <> friend void foo(int);
10436 // which we're recovering from as if the user had written:
10437 // friend void foo<>(int);
10438 // Go ahead and fake up a template id.
10439 HasExplicitTemplateArgs
= true;
10440 TemplateArgs
.setLAngleLoc(D
.getIdentifierLoc());
10441 TemplateArgs
.setRAngleLoc(D
.getIdentifierLoc());
10444 // We do not add HD attributes to specializations here because
10445 // they may have different constexpr-ness compared to their
10446 // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
10447 // may end up with different effective targets. Instead, a
10448 // specialization inherits its target attributes from its template
10449 // in the CheckFunctionTemplateSpecialization() call below.
10450 if (getLangOpts().CUDA
&& !isFunctionTemplateSpecialization
)
10451 maybeAddCUDAHostDeviceAttrs(NewFD
, Previous
);
10453 // Handle explict specializations of function templates
10454 // and friend function declarations with an explicit
10455 // template argument list.
10456 if (isFunctionTemplateSpecialization
) {
10457 bool isDependentSpecialization
= false;
10459 // For friend function specializations, this is a dependent
10460 // specialization if its semantic context is dependent, its
10461 // type is dependent, or if its template-id is dependent.
10462 isDependentSpecialization
=
10463 DC
->isDependentContext() || NewFD
->getType()->isDependentType() ||
10464 (HasExplicitTemplateArgs
&&
10465 TemplateSpecializationType::
10466 anyInstantiationDependentTemplateArguments(
10467 TemplateArgs
.arguments()));
10468 assert((!isDependentSpecialization
||
10469 (HasExplicitTemplateArgs
== isDependentSpecialization
)) &&
10470 "dependent friend function specialization without template "
10473 // For class-scope explicit specializations of function templates,
10474 // if the lexical context is dependent, then the specialization
10476 isDependentSpecialization
=
10477 CurContext
->isRecord() && CurContext
->isDependentContext();
10480 TemplateArgumentListInfo
*ExplicitTemplateArgs
=
10481 HasExplicitTemplateArgs
? &TemplateArgs
: nullptr;
10482 if (isDependentSpecialization
) {
10483 // If it's a dependent specialization, it may not be possible
10484 // to determine the primary template (for explicit specializations)
10485 // or befriended declaration (for friends) until the enclosing
10486 // template is instantiated. In such cases, we store the declarations
10487 // found by name lookup and defer resolution until instantiation.
10488 if (CheckDependentFunctionTemplateSpecialization(
10489 NewFD
, ExplicitTemplateArgs
, Previous
))
10490 NewFD
->setInvalidDecl();
10491 } else if (!NewFD
->isInvalidDecl()) {
10492 if (CheckFunctionTemplateSpecialization(NewFD
, ExplicitTemplateArgs
,
10494 NewFD
->setInvalidDecl();
10497 // C++ [dcl.stc]p1:
10498 // A storage-class-specifier shall not be specified in an explicit
10499 // specialization (14.7.3)
10500 // FIXME: We should be checking this for dependent specializations.
10501 FunctionTemplateSpecializationInfo
*Info
=
10502 NewFD
->getTemplateSpecializationInfo();
10503 if (Info
&& SC
!= SC_None
) {
10504 if (SC
!= Info
->getTemplate()->getTemplatedDecl()->getStorageClass())
10505 Diag(NewFD
->getLocation(),
10506 diag::err_explicit_specialization_inconsistent_storage_class
)
10508 << FixItHint::CreateRemoval(
10509 D
.getDeclSpec().getStorageClassSpecLoc());
10512 Diag(NewFD
->getLocation(),
10513 diag::ext_explicit_specialization_storage_class
)
10514 << FixItHint::CreateRemoval(
10515 D
.getDeclSpec().getStorageClassSpecLoc());
10517 } else if (isMemberSpecialization
&& isa
<CXXMethodDecl
>(NewFD
)) {
10518 if (CheckMemberSpecialization(NewFD
, Previous
))
10519 NewFD
->setInvalidDecl();
10522 // Perform semantic checking on the function declaration.
10523 if (!NewFD
->isInvalidDecl() && NewFD
->isMain())
10524 CheckMain(NewFD
, D
.getDeclSpec());
10526 if (!NewFD
->isInvalidDecl() && NewFD
->isMSVCRTEntryPoint())
10527 CheckMSVCRTEntryPoint(NewFD
);
10529 if (!NewFD
->isInvalidDecl())
10530 D
.setRedeclaration(CheckFunctionDeclaration(S
, NewFD
, Previous
,
10531 isMemberSpecialization
,
10532 D
.isFunctionDefinition()));
10533 else if (!Previous
.empty())
10534 // Recover gracefully from an invalid redeclaration.
10535 D
.setRedeclaration(true);
10537 assert((NewFD
->isInvalidDecl() || NewFD
->isMultiVersion() ||
10538 !D
.isRedeclaration() ||
10539 Previous
.getResultKind() != LookupResult::FoundOverloaded
) &&
10540 "previous declaration set still overloaded");
10542 NamedDecl
*PrincipalDecl
= (FunctionTemplate
10543 ? cast
<NamedDecl
>(FunctionTemplate
)
10546 if (isFriend
&& NewFD
->getPreviousDecl()) {
10547 AccessSpecifier Access
= AS_public
;
10548 if (!NewFD
->isInvalidDecl())
10549 Access
= NewFD
->getPreviousDecl()->getAccess();
10551 NewFD
->setAccess(Access
);
10552 if (FunctionTemplate
) FunctionTemplate
->setAccess(Access
);
10555 if (NewFD
->isOverloadedOperator() && !DC
->isRecord() &&
10556 PrincipalDecl
->isInIdentifierNamespace(Decl::IDNS_Ordinary
))
10557 PrincipalDecl
->setNonMemberOperator();
10559 // If we have a function template, check the template parameter
10560 // list. This will check and merge default template arguments.
10561 if (FunctionTemplate
) {
10562 FunctionTemplateDecl
*PrevTemplate
=
10563 FunctionTemplate
->getPreviousDecl();
10564 CheckTemplateParameterList(FunctionTemplate
->getTemplateParameters(),
10565 PrevTemplate
? PrevTemplate
->getTemplateParameters()
10567 D
.getDeclSpec().isFriendSpecified()
10568 ? (D
.isFunctionDefinition()
10569 ? TPC_FriendFunctionTemplateDefinition
10570 : TPC_FriendFunctionTemplate
)
10571 : (D
.getCXXScopeSpec().isSet() &&
10572 DC
&& DC
->isRecord() &&
10573 DC
->isDependentContext())
10574 ? TPC_ClassTemplateMember
10575 : TPC_FunctionTemplate
);
10578 if (NewFD
->isInvalidDecl()) {
10579 // Ignore all the rest of this.
10580 } else if (!D
.isRedeclaration()) {
10581 struct ActOnFDArgs ExtraArgs
= { S
, D
, TemplateParamLists
,
10583 // Fake up an access specifier if it's supposed to be a class member.
10584 if (isa
<CXXRecordDecl
>(NewFD
->getDeclContext()))
10585 NewFD
->setAccess(AS_public
);
10587 // Qualified decls generally require a previous declaration.
10588 if (D
.getCXXScopeSpec().isSet()) {
10589 // ...with the major exception of templated-scope or
10590 // dependent-scope friend declarations.
10592 // TODO: we currently also suppress this check in dependent
10593 // contexts because (1) the parameter depth will be off when
10594 // matching friend templates and (2) we might actually be
10595 // selecting a friend based on a dependent factor. But there
10596 // are situations where these conditions don't apply and we
10597 // can actually do this check immediately.
10599 // Unless the scope is dependent, it's always an error if qualified
10600 // redeclaration lookup found nothing at all. Diagnose that now;
10601 // nothing will diagnose that error later.
10603 (D
.getCXXScopeSpec().getScopeRep()->isDependent() ||
10604 (!Previous
.empty() && CurContext
->isDependentContext()))) {
10606 } else if (NewFD
->isCPUDispatchMultiVersion() ||
10607 NewFD
->isCPUSpecificMultiVersion()) {
10608 // ignore this, we allow the redeclaration behavior here to create new
10609 // versions of the function.
10611 // The user tried to provide an out-of-line definition for a
10612 // function that is a member of a class or namespace, but there
10613 // was no such member function declared (C++ [class.mfct]p2,
10614 // C++ [namespace.memdef]p2). For example:
10620 // void X::f() { } // ill-formed
10622 // Complain about this problem, and attempt to suggest close
10623 // matches (e.g., those that differ only in cv-qualifiers and
10624 // whether the parameter types are references).
10626 if (NamedDecl
*Result
= DiagnoseInvalidRedeclaration(
10627 *this, Previous
, NewFD
, ExtraArgs
, false, nullptr)) {
10628 AddToScope
= ExtraArgs
.AddToScope
;
10633 // Unqualified local friend declarations are required to resolve
10635 } else if (isFriend
&& cast
<CXXRecordDecl
>(CurContext
)->isLocalClass()) {
10636 if (NamedDecl
*Result
= DiagnoseInvalidRedeclaration(
10637 *this, Previous
, NewFD
, ExtraArgs
, true, S
)) {
10638 AddToScope
= ExtraArgs
.AddToScope
;
10642 } else if (!D
.isFunctionDefinition() &&
10643 isa
<CXXMethodDecl
>(NewFD
) && NewFD
->isOutOfLine() &&
10644 !isFriend
&& !isFunctionTemplateSpecialization
&&
10645 !isMemberSpecialization
) {
10646 // An out-of-line member function declaration must also be a
10647 // definition (C++ [class.mfct]p2).
10648 // Note that this is not the case for explicit specializations of
10649 // function templates or member functions of class templates, per
10650 // C++ [temp.expl.spec]p2. We also allow these declarations as an
10651 // extension for compatibility with old SWIG code which likes to
10653 Diag(NewFD
->getLocation(), diag::ext_out_of_line_declaration
)
10654 << D
.getCXXScopeSpec().getRange();
10658 if (getLangOpts().HLSL
&& D
.isFunctionDefinition()) {
10659 // Any top level function could potentially be specified as an entry.
10660 if (!NewFD
->isInvalidDecl() && S
->getDepth() == 0 && Name
.isIdentifier())
10661 ActOnHLSLTopLevelFunction(NewFD
);
10663 if (NewFD
->hasAttr
<HLSLShaderAttr
>())
10664 CheckHLSLEntryPoint(NewFD
);
10667 // If this is the first declaration of a library builtin function, add
10668 // attributes as appropriate.
10669 if (!D
.isRedeclaration()) {
10670 if (IdentifierInfo
*II
= Previous
.getLookupName().getAsIdentifierInfo()) {
10671 if (unsigned BuiltinID
= II
->getBuiltinID()) {
10672 bool InStdNamespace
= Context
.BuiltinInfo
.isInStdNamespace(BuiltinID
);
10673 if (!InStdNamespace
&&
10674 NewFD
->getDeclContext()->getRedeclContext()->isFileContext()) {
10675 if (NewFD
->getLanguageLinkage() == CLanguageLinkage
) {
10676 // Validate the type matches unless this builtin is specified as
10677 // matching regardless of its declared type.
10678 if (Context
.BuiltinInfo
.allowTypeMismatch(BuiltinID
)) {
10679 NewFD
->addAttr(BuiltinAttr::CreateImplicit(Context
, BuiltinID
));
10681 ASTContext::GetBuiltinTypeError Error
;
10682 LookupNecessaryTypesForBuiltin(S
, BuiltinID
);
10683 QualType BuiltinType
= Context
.GetBuiltinType(BuiltinID
, Error
);
10685 if (!Error
&& !BuiltinType
.isNull() &&
10686 Context
.hasSameFunctionTypeIgnoringExceptionSpec(
10687 NewFD
->getType(), BuiltinType
))
10688 NewFD
->addAttr(BuiltinAttr::CreateImplicit(Context
, BuiltinID
));
10691 } else if (InStdNamespace
&& NewFD
->isInStdNamespace() &&
10692 isStdBuiltin(Context
, NewFD
, BuiltinID
)) {
10693 NewFD
->addAttr(BuiltinAttr::CreateImplicit(Context
, BuiltinID
));
10699 ProcessPragmaWeak(S
, NewFD
);
10700 checkAttributesAfterMerging(*this, *NewFD
);
10702 AddKnownFunctionAttributes(NewFD
);
10704 if (NewFD
->hasAttr
<OverloadableAttr
>() &&
10705 !NewFD
->getType()->getAs
<FunctionProtoType
>()) {
10706 Diag(NewFD
->getLocation(),
10707 diag::err_attribute_overloadable_no_prototype
)
10709 NewFD
->dropAttr
<OverloadableAttr
>();
10712 // If there's a #pragma GCC visibility in scope, and this isn't a class
10713 // member, set the visibility of this function.
10714 if (!DC
->isRecord() && NewFD
->isExternallyVisible())
10715 AddPushedVisibilityAttribute(NewFD
);
10717 // If there's a #pragma clang arc_cf_code_audited in scope, consider
10718 // marking the function.
10719 AddCFAuditedAttribute(NewFD
);
10721 // If this is a function definition, check if we have to apply any
10722 // attributes (i.e. optnone and no_builtin) due to a pragma.
10723 if (D
.isFunctionDefinition()) {
10724 AddRangeBasedOptnone(NewFD
);
10725 AddImplicitMSFunctionNoBuiltinAttr(NewFD
);
10726 AddSectionMSAllocText(NewFD
);
10727 ModifyFnAttributesMSPragmaOptimize(NewFD
);
10730 // If this is the first declaration of an extern C variable, update
10731 // the map of such variables.
10732 if (NewFD
->isFirstDecl() && !NewFD
->isInvalidDecl() &&
10733 isIncompleteDeclExternC(*this, NewFD
))
10734 RegisterLocallyScopedExternCDecl(NewFD
, S
);
10736 // Set this FunctionDecl's range up to the right paren.
10737 NewFD
->setRangeEnd(D
.getSourceRange().getEnd());
10739 if (D
.isRedeclaration() && !Previous
.empty()) {
10740 NamedDecl
*Prev
= Previous
.getRepresentativeDecl();
10741 checkDLLAttributeRedeclaration(*this, Prev
, NewFD
,
10742 isMemberSpecialization
||
10743 isFunctionTemplateSpecialization
,
10744 D
.isFunctionDefinition());
10747 if (getLangOpts().CUDA
) {
10748 IdentifierInfo
*II
= NewFD
->getIdentifier();
10749 if (II
&& II
->isStr(getCudaConfigureFuncName()) &&
10750 !NewFD
->isInvalidDecl() &&
10751 NewFD
->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
10752 if (!R
->castAs
<FunctionType
>()->getReturnType()->isScalarType())
10753 Diag(NewFD
->getLocation(), diag::err_config_scalar_return
)
10754 << getCudaConfigureFuncName();
10755 Context
.setcudaConfigureCallDecl(NewFD
);
10758 // Variadic functions, other than a *declaration* of printf, are not allowed
10759 // in device-side CUDA code, unless someone passed
10760 // -fcuda-allow-variadic-functions.
10761 if (!getLangOpts().CUDAAllowVariadicFunctions
&& NewFD
->isVariadic() &&
10762 (NewFD
->hasAttr
<CUDADeviceAttr
>() ||
10763 NewFD
->hasAttr
<CUDAGlobalAttr
>()) &&
10764 !(II
&& II
->isStr("printf") && NewFD
->isExternC() &&
10765 !D
.isFunctionDefinition())) {
10766 Diag(NewFD
->getLocation(), diag::err_variadic_device_fn
);
10770 MarkUnusedFileScopedDecl(NewFD
);
10774 if (getLangOpts().OpenCL
&& NewFD
->hasAttr
<OpenCLKernelAttr
>()) {
10775 // OpenCL v1.2 s6.8 static is invalid for kernel functions.
10776 if (SC
== SC_Static
) {
10777 Diag(D
.getIdentifierLoc(), diag::err_static_kernel
);
10778 D
.setInvalidType();
10781 // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
10782 if (!NewFD
->getReturnType()->isVoidType()) {
10783 SourceRange RTRange
= NewFD
->getReturnTypeSourceRange();
10784 Diag(D
.getIdentifierLoc(), diag::err_expected_kernel_void_return_type
)
10785 << (RTRange
.isValid() ? FixItHint::CreateReplacement(RTRange
, "void")
10787 D
.setInvalidType();
10790 llvm::SmallPtrSet
<const Type
*, 16> ValidTypes
;
10791 for (auto *Param
: NewFD
->parameters())
10792 checkIsValidOpenCLKernelParameter(*this, D
, Param
, ValidTypes
);
10794 if (getLangOpts().OpenCLCPlusPlus
) {
10795 if (DC
->isRecord()) {
10796 Diag(D
.getIdentifierLoc(), diag::err_method_kernel
);
10797 D
.setInvalidType();
10799 if (FunctionTemplate
) {
10800 Diag(D
.getIdentifierLoc(), diag::err_template_kernel
);
10801 D
.setInvalidType();
10806 if (getLangOpts().CPlusPlus
) {
10807 // Precalculate whether this is a friend function template with a constraint
10808 // that depends on an enclosing template, per [temp.friend]p9.
10809 if (isFriend
&& FunctionTemplate
&&
10810 FriendConstraintsDependOnEnclosingTemplate(NewFD
))
10811 NewFD
->setFriendConstraintRefersToEnclosingTemplate(true);
10813 if (FunctionTemplate
) {
10814 if (NewFD
->isInvalidDecl())
10815 FunctionTemplate
->setInvalidDecl();
10816 return FunctionTemplate
;
10819 if (isMemberSpecialization
&& !NewFD
->isInvalidDecl())
10820 CompleteMemberSpecialization(NewFD
, Previous
);
10823 for (const ParmVarDecl
*Param
: NewFD
->parameters()) {
10824 QualType PT
= Param
->getType();
10826 // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
10828 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
10829 if(const PipeType
*PipeTy
= PT
->getAs
<PipeType
>()) {
10830 QualType ElemTy
= PipeTy
->getElementType();
10831 if (ElemTy
->isReferenceType() || ElemTy
->isPointerType()) {
10832 Diag(Param
->getTypeSpecStartLoc(), diag::err_reference_pipe_type
);
10833 D
.setInvalidType();
10837 // WebAssembly tables can't be used as function parameters.
10838 if (Context
.getTargetInfo().getTriple().isWasm()) {
10839 if (PT
->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) {
10840 Diag(Param
->getTypeSpecStartLoc(),
10841 diag::err_wasm_table_as_function_parameter
);
10842 D
.setInvalidType();
10847 // Diagnose availability attributes. Availability cannot be used on functions
10848 // that are run during load/unload.
10849 if (const auto *attr
= NewFD
->getAttr
<AvailabilityAttr
>()) {
10850 if (NewFD
->hasAttr
<ConstructorAttr
>()) {
10851 Diag(attr
->getLocation(), diag::warn_availability_on_static_initializer
)
10853 NewFD
->dropAttr
<AvailabilityAttr
>();
10855 if (NewFD
->hasAttr
<DestructorAttr
>()) {
10856 Diag(attr
->getLocation(), diag::warn_availability_on_static_initializer
)
10858 NewFD
->dropAttr
<AvailabilityAttr
>();
10862 // Diagnose no_builtin attribute on function declaration that are not a
10864 // FIXME: We should really be doing this in
10865 // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
10866 // the FunctionDecl and at this point of the code
10867 // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
10868 // because Sema::ActOnStartOfFunctionDef has not been called yet.
10869 if (const auto *NBA
= NewFD
->getAttr
<NoBuiltinAttr
>())
10870 switch (D
.getFunctionDefinitionKind()) {
10871 case FunctionDefinitionKind::Defaulted
:
10872 case FunctionDefinitionKind::Deleted
:
10873 Diag(NBA
->getLocation(),
10874 diag::err_attribute_no_builtin_on_defaulted_deleted_function
)
10875 << NBA
->getSpelling();
10877 case FunctionDefinitionKind::Declaration
:
10878 Diag(NBA
->getLocation(), diag::err_attribute_no_builtin_on_non_definition
)
10879 << NBA
->getSpelling();
10881 case FunctionDefinitionKind::Definition
:
10888 /// Return a CodeSegAttr from a containing class. The Microsoft docs say
10889 /// when __declspec(code_seg) "is applied to a class, all member functions of
10890 /// the class and nested classes -- this includes compiler-generated special
10891 /// member functions -- are put in the specified segment."
10892 /// The actual behavior is a little more complicated. The Microsoft compiler
10893 /// won't check outer classes if there is an active value from #pragma code_seg.
10894 /// The CodeSeg is always applied from the direct parent but only from outer
10895 /// classes when the #pragma code_seg stack is empty. See:
10896 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
10897 /// available since MS has removed the page.
10898 static Attr
*getImplicitCodeSegAttrFromClass(Sema
&S
, const FunctionDecl
*FD
) {
10899 const auto *Method
= dyn_cast
<CXXMethodDecl
>(FD
);
10902 const CXXRecordDecl
*Parent
= Method
->getParent();
10903 if (const auto *SAttr
= Parent
->getAttr
<CodeSegAttr
>()) {
10904 Attr
*NewAttr
= SAttr
->clone(S
.getASTContext());
10905 NewAttr
->setImplicit(true);
10909 // The Microsoft compiler won't check outer classes for the CodeSeg
10910 // when the #pragma code_seg stack is active.
10911 if (S
.CodeSegStack
.CurrentValue
)
10914 while ((Parent
= dyn_cast
<CXXRecordDecl
>(Parent
->getParent()))) {
10915 if (const auto *SAttr
= Parent
->getAttr
<CodeSegAttr
>()) {
10916 Attr
*NewAttr
= SAttr
->clone(S
.getASTContext());
10917 NewAttr
->setImplicit(true);
10924 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
10925 /// containing class. Otherwise it will return implicit SectionAttr if the
10926 /// function is a definition and there is an active value on CodeSegStack
10927 /// (from the current #pragma code-seg value).
10929 /// \param FD Function being declared.
10930 /// \param IsDefinition Whether it is a definition or just a declaration.
10931 /// \returns A CodeSegAttr or SectionAttr to apply to the function or
10932 /// nullptr if no attribute should be added.
10933 Attr
*Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl
*FD
,
10934 bool IsDefinition
) {
10935 if (Attr
*A
= getImplicitCodeSegAttrFromClass(*this, FD
))
10937 if (!FD
->hasAttr
<SectionAttr
>() && IsDefinition
&&
10938 CodeSegStack
.CurrentValue
)
10939 return SectionAttr::CreateImplicit(
10940 getASTContext(), CodeSegStack
.CurrentValue
->getString(),
10941 CodeSegStack
.CurrentPragmaLocation
, SectionAttr::Declspec_allocate
);
10945 /// Determines if we can perform a correct type check for \p D as a
10946 /// redeclaration of \p PrevDecl. If not, we can generally still perform a
10947 /// best-effort check.
10949 /// \param NewD The new declaration.
10950 /// \param OldD The old declaration.
10951 /// \param NewT The portion of the type of the new declaration to check.
10952 /// \param OldT The portion of the type of the old declaration to check.
10953 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl
*NewD
, ValueDecl
*OldD
,
10954 QualType NewT
, QualType OldT
) {
10955 if (!NewD
->getLexicalDeclContext()->isDependentContext())
10958 // For dependently-typed local extern declarations and friends, we can't
10959 // perform a correct type check in general until instantiation:
10962 // template<typename T> void g() { T f(); }
10964 // (valid if g() is only instantiated with T = int).
10965 if (NewT
->isDependentType() &&
10966 (NewD
->isLocalExternDecl() || NewD
->getFriendObjectKind()))
10969 // Similarly, if the previous declaration was a dependent local extern
10970 // declaration, we don't really know its type yet.
10971 if (OldT
->isDependentType() && OldD
->isLocalExternDecl())
10977 /// Checks if the new declaration declared in dependent context must be
10978 /// put in the same redeclaration chain as the specified declaration.
10980 /// \param D Declaration that is checked.
10981 /// \param PrevDecl Previous declaration found with proper lookup method for the
10982 /// same declaration name.
10983 /// \returns True if D must be added to the redeclaration chain which PrevDecl
10986 bool Sema::shouldLinkDependentDeclWithPrevious(Decl
*D
, Decl
*PrevDecl
) {
10987 if (!D
->getLexicalDeclContext()->isDependentContext())
10990 // Don't chain dependent friend function definitions until instantiation, to
10991 // permit cases like
10994 // template<typename T> class C1 { friend void func() {} };
10995 // template<typename T> class C2 { friend void func() {} };
10997 // ... which is valid if only one of C1 and C2 is ever instantiated.
10999 // FIXME: This need only apply to function definitions. For now, we proxy
11000 // this by checking for a file-scope function. We do not want this to apply
11001 // to friend declarations nominating member functions, because that gets in
11002 // the way of access checks.
11003 if (D
->getFriendObjectKind() && D
->getDeclContext()->isFileContext())
11006 auto *VD
= dyn_cast
<ValueDecl
>(D
);
11007 auto *PrevVD
= dyn_cast
<ValueDecl
>(PrevDecl
);
11008 return !VD
|| !PrevVD
||
11009 canFullyTypeCheckRedeclaration(VD
, PrevVD
, VD
->getType(),
11010 PrevVD
->getType());
11013 /// Check the target or target_version attribute of the function for
11014 /// MultiVersion validity.
11016 /// Returns true if there was an error, false otherwise.
11017 static bool CheckMultiVersionValue(Sema
&S
, const FunctionDecl
*FD
) {
11018 const auto *TA
= FD
->getAttr
<TargetAttr
>();
11019 const auto *TVA
= FD
->getAttr
<TargetVersionAttr
>();
11022 "MultiVersion candidate requires a target or target_version attribute");
11023 const TargetInfo
&TargetInfo
= S
.Context
.getTargetInfo();
11024 enum ErrType
{ Feature
= 0, Architecture
= 1 };
11027 ParsedTargetAttr ParseInfo
=
11028 S
.getASTContext().getTargetInfo().parseTargetAttr(TA
->getFeaturesStr());
11029 if (!ParseInfo
.CPU
.empty() && !TargetInfo
.validateCpuIs(ParseInfo
.CPU
)) {
11030 S
.Diag(FD
->getLocation(), diag::err_bad_multiversion_option
)
11031 << Architecture
<< ParseInfo
.CPU
;
11034 for (const auto &Feat
: ParseInfo
.Features
) {
11035 auto BareFeat
= StringRef
{Feat
}.substr(1);
11036 if (Feat
[0] == '-') {
11037 S
.Diag(FD
->getLocation(), diag::err_bad_multiversion_option
)
11038 << Feature
<< ("no-" + BareFeat
).str();
11042 if (!TargetInfo
.validateCpuSupports(BareFeat
) ||
11043 !TargetInfo
.isValidFeatureName(BareFeat
)) {
11044 S
.Diag(FD
->getLocation(), diag::err_bad_multiversion_option
)
11045 << Feature
<< BareFeat
;
11052 llvm::SmallVector
<StringRef
, 8> Feats
;
11053 TVA
->getFeatures(Feats
);
11054 for (const auto &Feat
: Feats
) {
11055 if (!TargetInfo
.validateCpuSupports(Feat
)) {
11056 S
.Diag(FD
->getLocation(), diag::err_bad_multiversion_option
)
11057 << Feature
<< Feat
;
11065 // Provide a white-list of attributes that are allowed to be combined with
11066 // multiversion functions.
11067 static bool AttrCompatibleWithMultiVersion(attr::Kind Kind
,
11068 MultiVersionKind MVKind
) {
11069 // Note: this list/diagnosis must match the list in
11070 // checkMultiversionAttributesAllSame.
11075 return MVKind
== MultiVersionKind::Target
;
11076 case attr::NonNull
:
11077 case attr::NoThrow
:
11082 static bool checkNonMultiVersionCompatAttributes(Sema
&S
,
11083 const FunctionDecl
*FD
,
11084 const FunctionDecl
*CausedFD
,
11085 MultiVersionKind MVKind
) {
11086 const auto Diagnose
= [FD
, CausedFD
, MVKind
](Sema
&S
, const Attr
*A
) {
11087 S
.Diag(FD
->getLocation(), diag::err_multiversion_disallowed_other_attr
)
11088 << static_cast<unsigned>(MVKind
) << A
;
11090 S
.Diag(CausedFD
->getLocation(), diag::note_multiversioning_caused_here
);
11094 for (const Attr
*A
: FD
->attrs()) {
11095 switch (A
->getKind()) {
11096 case attr::CPUDispatch
:
11097 case attr::CPUSpecific
:
11098 if (MVKind
!= MultiVersionKind::CPUDispatch
&&
11099 MVKind
!= MultiVersionKind::CPUSpecific
)
11100 return Diagnose(S
, A
);
11103 if (MVKind
!= MultiVersionKind::Target
)
11104 return Diagnose(S
, A
);
11106 case attr::TargetVersion
:
11107 if (MVKind
!= MultiVersionKind::TargetVersion
)
11108 return Diagnose(S
, A
);
11110 case attr::TargetClones
:
11111 if (MVKind
!= MultiVersionKind::TargetClones
)
11112 return Diagnose(S
, A
);
11115 if (!AttrCompatibleWithMultiVersion(A
->getKind(), MVKind
))
11116 return Diagnose(S
, A
);
11123 bool Sema::areMultiversionVariantFunctionsCompatible(
11124 const FunctionDecl
*OldFD
, const FunctionDecl
*NewFD
,
11125 const PartialDiagnostic
&NoProtoDiagID
,
11126 const PartialDiagnosticAt
&NoteCausedDiagIDAt
,
11127 const PartialDiagnosticAt
&NoSupportDiagIDAt
,
11128 const PartialDiagnosticAt
&DiffDiagIDAt
, bool TemplatesSupported
,
11129 bool ConstexprSupported
, bool CLinkageMayDiffer
) {
11130 enum DoesntSupport
{
11137 DefaultedFuncs
= 6,
11138 ConstexprFuncs
= 7,
11139 ConstevalFuncs
= 8,
11148 LanguageLinkage
= 5,
11151 if (NoProtoDiagID
.getDiagID() != 0 && OldFD
&&
11152 !OldFD
->getType()->getAs
<FunctionProtoType
>()) {
11153 Diag(OldFD
->getLocation(), NoProtoDiagID
);
11154 Diag(NoteCausedDiagIDAt
.first
, NoteCausedDiagIDAt
.second
);
11158 if (NoProtoDiagID
.getDiagID() != 0 &&
11159 !NewFD
->getType()->getAs
<FunctionProtoType
>())
11160 return Diag(NewFD
->getLocation(), NoProtoDiagID
);
11162 if (!TemplatesSupported
&&
11163 NewFD
->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate
)
11164 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11167 if (const auto *NewCXXFD
= dyn_cast
<CXXMethodDecl
>(NewFD
)) {
11168 if (NewCXXFD
->isVirtual())
11169 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11172 if (isa
<CXXConstructorDecl
>(NewCXXFD
))
11173 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11176 if (isa
<CXXDestructorDecl
>(NewCXXFD
))
11177 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11181 if (NewFD
->isDeleted())
11182 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11185 if (NewFD
->isDefaulted())
11186 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11189 if (!ConstexprSupported
&& NewFD
->isConstexpr())
11190 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11191 << (NewFD
->isConsteval() ? ConstevalFuncs
: ConstexprFuncs
);
11193 QualType NewQType
= Context
.getCanonicalType(NewFD
->getType());
11194 const auto *NewType
= cast
<FunctionType
>(NewQType
);
11195 QualType NewReturnType
= NewType
->getReturnType();
11197 if (NewReturnType
->isUndeducedType())
11198 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11201 // Ensure the return type is identical.
11203 QualType OldQType
= Context
.getCanonicalType(OldFD
->getType());
11204 const auto *OldType
= cast
<FunctionType
>(OldQType
);
11205 FunctionType::ExtInfo OldTypeInfo
= OldType
->getExtInfo();
11206 FunctionType::ExtInfo NewTypeInfo
= NewType
->getExtInfo();
11208 if (OldTypeInfo
.getCC() != NewTypeInfo
.getCC())
11209 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << CallingConv
;
11211 QualType OldReturnType
= OldType
->getReturnType();
11213 if (OldReturnType
!= NewReturnType
)
11214 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << ReturnType
;
11216 if (OldFD
->getConstexprKind() != NewFD
->getConstexprKind())
11217 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << ConstexprSpec
;
11219 if (OldFD
->isInlineSpecified() != NewFD
->isInlineSpecified())
11220 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << InlineSpec
;
11222 if (OldFD
->getFormalLinkage() != NewFD
->getFormalLinkage())
11223 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << Linkage
;
11225 if (!CLinkageMayDiffer
&& OldFD
->isExternC() != NewFD
->isExternC())
11226 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << LanguageLinkage
;
11228 if (CheckEquivalentExceptionSpec(
11229 OldFD
->getType()->getAs
<FunctionProtoType
>(), OldFD
->getLocation(),
11230 NewFD
->getType()->getAs
<FunctionProtoType
>(), NewFD
->getLocation()))
11236 static bool CheckMultiVersionAdditionalRules(Sema
&S
, const FunctionDecl
*OldFD
,
11237 const FunctionDecl
*NewFD
,
11239 MultiVersionKind MVKind
) {
11240 if (!S
.getASTContext().getTargetInfo().supportsMultiVersioning()) {
11241 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_not_supported
);
11243 S
.Diag(OldFD
->getLocation(), diag::note_previous_declaration
);
11247 bool IsCPUSpecificCPUDispatchMVKind
=
11248 MVKind
== MultiVersionKind::CPUDispatch
||
11249 MVKind
== MultiVersionKind::CPUSpecific
;
11251 if (CausesMV
&& OldFD
&&
11252 checkNonMultiVersionCompatAttributes(S
, OldFD
, NewFD
, MVKind
))
11255 if (checkNonMultiVersionCompatAttributes(S
, NewFD
, nullptr, MVKind
))
11258 // Only allow transition to MultiVersion if it hasn't been used.
11259 if (OldFD
&& CausesMV
&& OldFD
->isUsed(false))
11260 return S
.Diag(NewFD
->getLocation(), diag::err_multiversion_after_used
);
11262 return S
.areMultiversionVariantFunctionsCompatible(
11263 OldFD
, NewFD
, S
.PDiag(diag::err_multiversion_noproto
),
11264 PartialDiagnosticAt(NewFD
->getLocation(),
11265 S
.PDiag(diag::note_multiversioning_caused_here
)),
11266 PartialDiagnosticAt(NewFD
->getLocation(),
11267 S
.PDiag(diag::err_multiversion_doesnt_support
)
11268 << static_cast<unsigned>(MVKind
)),
11269 PartialDiagnosticAt(NewFD
->getLocation(),
11270 S
.PDiag(diag::err_multiversion_diff
)),
11271 /*TemplatesSupported=*/false,
11272 /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVKind
,
11273 /*CLinkageMayDiffer=*/false);
11276 /// Check the validity of a multiversion function declaration that is the
11277 /// first of its kind. Also sets the multiversion'ness' of the function itself.
11279 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11281 /// Returns true if there was an error, false otherwise.
11282 static bool CheckMultiVersionFirstFunction(Sema
&S
, FunctionDecl
*FD
) {
11283 MultiVersionKind MVKind
= FD
->getMultiVersionKind();
11284 assert(MVKind
!= MultiVersionKind::None
&&
11285 "Function lacks multiversion attribute");
11286 const auto *TA
= FD
->getAttr
<TargetAttr
>();
11287 const auto *TVA
= FD
->getAttr
<TargetVersionAttr
>();
11288 // Target and target_version only causes MV if it is default, otherwise this
11289 // is a normal function.
11290 if ((TA
&& !TA
->isDefaultVersion()) || (TVA
&& !TVA
->isDefaultVersion()))
11293 if ((TA
|| TVA
) && CheckMultiVersionValue(S
, FD
)) {
11294 FD
->setInvalidDecl();
11298 if (CheckMultiVersionAdditionalRules(S
, nullptr, FD
, true, MVKind
)) {
11299 FD
->setInvalidDecl();
11303 FD
->setIsMultiVersion();
11307 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl
*FD
) {
11308 for (const Decl
*D
= FD
->getPreviousDecl(); D
; D
= D
->getPreviousDecl()) {
11309 if (D
->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None
)
11316 static bool CheckTargetCausesMultiVersioning(Sema
&S
, FunctionDecl
*OldFD
,
11317 FunctionDecl
*NewFD
,
11318 bool &Redeclaration
,
11319 NamedDecl
*&OldDecl
,
11320 LookupResult
&Previous
) {
11321 const auto *NewTA
= NewFD
->getAttr
<TargetAttr
>();
11322 const auto *NewTVA
= NewFD
->getAttr
<TargetVersionAttr
>();
11323 const auto *OldTA
= OldFD
->getAttr
<TargetAttr
>();
11324 const auto *OldTVA
= OldFD
->getAttr
<TargetVersionAttr
>();
11325 // If the old decl is NOT MultiVersioned yet, and we don't cause that
11326 // to change, this is a simple redeclaration.
11327 if ((NewTA
&& !NewTA
->isDefaultVersion() &&
11328 (!OldTA
|| OldTA
->getFeaturesStr() == NewTA
->getFeaturesStr())) ||
11329 (NewTVA
&& !NewTVA
->isDefaultVersion() &&
11330 (!OldTVA
|| OldTVA
->getName() == NewTVA
->getName())))
11333 // Otherwise, this decl causes MultiVersioning.
11334 if (CheckMultiVersionAdditionalRules(S
, OldFD
, NewFD
, true,
11335 NewTVA
? MultiVersionKind::TargetVersion
11336 : MultiVersionKind::Target
)) {
11337 NewFD
->setInvalidDecl();
11341 if (CheckMultiVersionValue(S
, NewFD
)) {
11342 NewFD
->setInvalidDecl();
11346 // If this is 'default', permit the forward declaration.
11347 if (!OldFD
->isMultiVersion() &&
11348 ((NewTA
&& NewTA
->isDefaultVersion() && !OldTA
) ||
11349 (NewTVA
&& NewTVA
->isDefaultVersion() && !OldTVA
))) {
11350 Redeclaration
= true;
11352 OldFD
->setIsMultiVersion();
11353 NewFD
->setIsMultiVersion();
11357 if (CheckMultiVersionValue(S
, OldFD
)) {
11358 S
.Diag(NewFD
->getLocation(), diag::note_multiversioning_caused_here
);
11359 NewFD
->setInvalidDecl();
11364 ParsedTargetAttr OldParsed
=
11365 S
.getASTContext().getTargetInfo().parseTargetAttr(
11366 OldTA
->getFeaturesStr());
11367 llvm::sort(OldParsed
.Features
);
11368 ParsedTargetAttr NewParsed
=
11369 S
.getASTContext().getTargetInfo().parseTargetAttr(
11370 NewTA
->getFeaturesStr());
11371 // Sort order doesn't matter, it just needs to be consistent.
11372 llvm::sort(NewParsed
.Features
);
11373 if (OldParsed
== NewParsed
) {
11374 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_duplicate
);
11375 S
.Diag(OldFD
->getLocation(), diag::note_previous_declaration
);
11376 NewFD
->setInvalidDecl();
11382 llvm::SmallVector
<StringRef
, 8> Feats
;
11383 OldTVA
->getFeatures(Feats
);
11385 llvm::SmallVector
<StringRef
, 8> NewFeats
;
11386 NewTVA
->getFeatures(NewFeats
);
11387 llvm::sort(NewFeats
);
11389 if (Feats
== NewFeats
) {
11390 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_duplicate
);
11391 S
.Diag(OldFD
->getLocation(), diag::note_previous_declaration
);
11392 NewFD
->setInvalidDecl();
11397 for (const auto *FD
: OldFD
->redecls()) {
11398 const auto *CurTA
= FD
->getAttr
<TargetAttr
>();
11399 const auto *CurTVA
= FD
->getAttr
<TargetVersionAttr
>();
11400 // We allow forward declarations before ANY multiversioning attributes, but
11401 // nothing after the fact.
11402 if (PreviousDeclsHaveMultiVersionAttribute(FD
) &&
11403 ((NewTA
&& (!CurTA
|| CurTA
->isInherited())) ||
11404 (NewTVA
&& (!CurTVA
|| CurTVA
->isInherited())))) {
11405 S
.Diag(FD
->getLocation(), diag::err_multiversion_required_in_redecl
)
11406 << (NewTA
? 0 : 2);
11407 S
.Diag(NewFD
->getLocation(), diag::note_multiversioning_caused_here
);
11408 NewFD
->setInvalidDecl();
11413 OldFD
->setIsMultiVersion();
11414 NewFD
->setIsMultiVersion();
11415 Redeclaration
= false;
11421 static bool MultiVersionTypesCompatible(MultiVersionKind Old
,
11422 MultiVersionKind New
) {
11423 if (Old
== New
|| Old
== MultiVersionKind::None
||
11424 New
== MultiVersionKind::None
)
11427 return (Old
== MultiVersionKind::CPUDispatch
&&
11428 New
== MultiVersionKind::CPUSpecific
) ||
11429 (Old
== MultiVersionKind::CPUSpecific
&&
11430 New
== MultiVersionKind::CPUDispatch
);
11433 /// Check the validity of a new function declaration being added to an existing
11434 /// multiversioned declaration collection.
11435 static bool CheckMultiVersionAdditionalDecl(
11436 Sema
&S
, FunctionDecl
*OldFD
, FunctionDecl
*NewFD
,
11437 MultiVersionKind NewMVKind
, const CPUDispatchAttr
*NewCPUDisp
,
11438 const CPUSpecificAttr
*NewCPUSpec
, const TargetClonesAttr
*NewClones
,
11439 bool &Redeclaration
, NamedDecl
*&OldDecl
, LookupResult
&Previous
) {
11440 const auto *NewTA
= NewFD
->getAttr
<TargetAttr
>();
11441 const auto *NewTVA
= NewFD
->getAttr
<TargetVersionAttr
>();
11442 MultiVersionKind OldMVKind
= OldFD
->getMultiVersionKind();
11443 // Disallow mixing of multiversioning types.
11444 if (!MultiVersionTypesCompatible(OldMVKind
, NewMVKind
)) {
11445 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_types_mixed
);
11446 S
.Diag(OldFD
->getLocation(), diag::note_previous_declaration
);
11447 NewFD
->setInvalidDecl();
11451 ParsedTargetAttr NewParsed
;
11453 NewParsed
= S
.getASTContext().getTargetInfo().parseTargetAttr(
11454 NewTA
->getFeaturesStr());
11455 llvm::sort(NewParsed
.Features
);
11457 llvm::SmallVector
<StringRef
, 8> NewFeats
;
11459 NewTVA
->getFeatures(NewFeats
);
11460 llvm::sort(NewFeats
);
11463 bool UseMemberUsingDeclRules
=
11464 S
.CurContext
->isRecord() && !NewFD
->getFriendObjectKind();
11466 bool MayNeedOverloadableChecks
=
11467 AllowOverloadingOfFunction(Previous
, S
.Context
, NewFD
);
11469 // Next, check ALL non-invalid non-overloads to see if this is a redeclaration
11470 // of a previous member of the MultiVersion set.
11471 for (NamedDecl
*ND
: Previous
) {
11472 FunctionDecl
*CurFD
= ND
->getAsFunction();
11473 if (!CurFD
|| CurFD
->isInvalidDecl())
11475 if (MayNeedOverloadableChecks
&&
11476 S
.IsOverload(NewFD
, CurFD
, UseMemberUsingDeclRules
))
11479 if (NewMVKind
== MultiVersionKind::None
&&
11480 OldMVKind
== MultiVersionKind::TargetVersion
) {
11481 NewFD
->addAttr(TargetVersionAttr::CreateImplicit(
11482 S
.Context
, "default", NewFD
->getSourceRange()));
11483 NewFD
->setIsMultiVersion();
11484 NewMVKind
= MultiVersionKind::TargetVersion
;
11486 NewTVA
= NewFD
->getAttr
<TargetVersionAttr
>();
11487 NewTVA
->getFeatures(NewFeats
);
11488 llvm::sort(NewFeats
);
11492 switch (NewMVKind
) {
11493 case MultiVersionKind::None
:
11494 assert(OldMVKind
== MultiVersionKind::TargetClones
&&
11495 "Only target_clones can be omitted in subsequent declarations");
11497 case MultiVersionKind::Target
: {
11498 const auto *CurTA
= CurFD
->getAttr
<TargetAttr
>();
11499 if (CurTA
->getFeaturesStr() == NewTA
->getFeaturesStr()) {
11500 NewFD
->setIsMultiVersion();
11501 Redeclaration
= true;
11506 ParsedTargetAttr CurParsed
=
11507 S
.getASTContext().getTargetInfo().parseTargetAttr(
11508 CurTA
->getFeaturesStr());
11509 llvm::sort(CurParsed
.Features
);
11510 if (CurParsed
== NewParsed
) {
11511 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_duplicate
);
11512 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11513 NewFD
->setInvalidDecl();
11518 case MultiVersionKind::TargetVersion
: {
11519 const auto *CurTVA
= CurFD
->getAttr
<TargetVersionAttr
>();
11520 if (CurTVA
->getName() == NewTVA
->getName()) {
11521 NewFD
->setIsMultiVersion();
11522 Redeclaration
= true;
11526 llvm::SmallVector
<StringRef
, 8> CurFeats
;
11528 CurTVA
->getFeatures(CurFeats
);
11529 llvm::sort(CurFeats
);
11531 if (CurFeats
== NewFeats
) {
11532 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_duplicate
);
11533 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11534 NewFD
->setInvalidDecl();
11539 case MultiVersionKind::TargetClones
: {
11540 const auto *CurClones
= CurFD
->getAttr
<TargetClonesAttr
>();
11541 Redeclaration
= true;
11543 NewFD
->setIsMultiVersion();
11545 if (CurClones
&& NewClones
&&
11546 (CurClones
->featuresStrs_size() != NewClones
->featuresStrs_size() ||
11547 !std::equal(CurClones
->featuresStrs_begin(),
11548 CurClones
->featuresStrs_end(),
11549 NewClones
->featuresStrs_begin()))) {
11550 S
.Diag(NewFD
->getLocation(), diag::err_target_clone_doesnt_match
);
11551 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11552 NewFD
->setInvalidDecl();
11558 case MultiVersionKind::CPUSpecific
:
11559 case MultiVersionKind::CPUDispatch
: {
11560 const auto *CurCPUSpec
= CurFD
->getAttr
<CPUSpecificAttr
>();
11561 const auto *CurCPUDisp
= CurFD
->getAttr
<CPUDispatchAttr
>();
11562 // Handle CPUDispatch/CPUSpecific versions.
11563 // Only 1 CPUDispatch function is allowed, this will make it go through
11564 // the redeclaration errors.
11565 if (NewMVKind
== MultiVersionKind::CPUDispatch
&&
11566 CurFD
->hasAttr
<CPUDispatchAttr
>()) {
11567 if (CurCPUDisp
->cpus_size() == NewCPUDisp
->cpus_size() &&
11569 CurCPUDisp
->cpus_begin(), CurCPUDisp
->cpus_end(),
11570 NewCPUDisp
->cpus_begin(),
11571 [](const IdentifierInfo
*Cur
, const IdentifierInfo
*New
) {
11572 return Cur
->getName() == New
->getName();
11574 NewFD
->setIsMultiVersion();
11575 Redeclaration
= true;
11580 // If the declarations don't match, this is an error condition.
11581 S
.Diag(NewFD
->getLocation(), diag::err_cpu_dispatch_mismatch
);
11582 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11583 NewFD
->setInvalidDecl();
11586 if (NewMVKind
== MultiVersionKind::CPUSpecific
&& CurCPUSpec
) {
11587 if (CurCPUSpec
->cpus_size() == NewCPUSpec
->cpus_size() &&
11589 CurCPUSpec
->cpus_begin(), CurCPUSpec
->cpus_end(),
11590 NewCPUSpec
->cpus_begin(),
11591 [](const IdentifierInfo
*Cur
, const IdentifierInfo
*New
) {
11592 return Cur
->getName() == New
->getName();
11594 NewFD
->setIsMultiVersion();
11595 Redeclaration
= true;
11600 // Only 1 version of CPUSpecific is allowed for each CPU.
11601 for (const IdentifierInfo
*CurII
: CurCPUSpec
->cpus()) {
11602 for (const IdentifierInfo
*NewII
: NewCPUSpec
->cpus()) {
11603 if (CurII
== NewII
) {
11604 S
.Diag(NewFD
->getLocation(), diag::err_cpu_specific_multiple_defs
)
11606 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11607 NewFD
->setInvalidDecl();
11618 // Else, this is simply a non-redecl case. Checking the 'value' is only
11619 // necessary in the Target case, since The CPUSpecific/Dispatch cases are
11620 // handled in the attribute adding step.
11621 if ((NewMVKind
== MultiVersionKind::TargetVersion
||
11622 NewMVKind
== MultiVersionKind::Target
) &&
11623 CheckMultiVersionValue(S
, NewFD
)) {
11624 NewFD
->setInvalidDecl();
11628 if (CheckMultiVersionAdditionalRules(S
, OldFD
, NewFD
,
11629 !OldFD
->isMultiVersion(), NewMVKind
)) {
11630 NewFD
->setInvalidDecl();
11634 // Permit forward declarations in the case where these two are compatible.
11635 if (!OldFD
->isMultiVersion()) {
11636 OldFD
->setIsMultiVersion();
11637 NewFD
->setIsMultiVersion();
11638 Redeclaration
= true;
11643 NewFD
->setIsMultiVersion();
11644 Redeclaration
= false;
11650 /// Check the validity of a mulitversion function declaration.
11651 /// Also sets the multiversion'ness' of the function itself.
11653 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11655 /// Returns true if there was an error, false otherwise.
11656 static bool CheckMultiVersionFunction(Sema
&S
, FunctionDecl
*NewFD
,
11657 bool &Redeclaration
, NamedDecl
*&OldDecl
,
11658 LookupResult
&Previous
) {
11659 const auto *NewTA
= NewFD
->getAttr
<TargetAttr
>();
11660 const auto *NewTVA
= NewFD
->getAttr
<TargetVersionAttr
>();
11661 const auto *NewCPUDisp
= NewFD
->getAttr
<CPUDispatchAttr
>();
11662 const auto *NewCPUSpec
= NewFD
->getAttr
<CPUSpecificAttr
>();
11663 const auto *NewClones
= NewFD
->getAttr
<TargetClonesAttr
>();
11664 MultiVersionKind MVKind
= NewFD
->getMultiVersionKind();
11666 // Main isn't allowed to become a multiversion function, however it IS
11667 // permitted to have 'main' be marked with the 'target' optimization hint,
11668 // for 'target_version' only default is allowed.
11669 if (NewFD
->isMain()) {
11670 if (MVKind
!= MultiVersionKind::None
&&
11671 !(MVKind
== MultiVersionKind::Target
&& !NewTA
->isDefaultVersion()) &&
11672 !(MVKind
== MultiVersionKind::TargetVersion
&&
11673 NewTVA
->isDefaultVersion())) {
11674 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_not_allowed_on_main
);
11675 NewFD
->setInvalidDecl();
11681 // Target attribute on AArch64 is not used for multiversioning
11682 if (NewTA
&& S
.getASTContext().getTargetInfo().getTriple().isAArch64())
11685 if (!OldDecl
|| !OldDecl
->getAsFunction() ||
11686 OldDecl
->getDeclContext()->getRedeclContext() !=
11687 NewFD
->getDeclContext()->getRedeclContext()) {
11688 // If there's no previous declaration, AND this isn't attempting to cause
11689 // multiversioning, this isn't an error condition.
11690 if (MVKind
== MultiVersionKind::None
)
11692 return CheckMultiVersionFirstFunction(S
, NewFD
);
11695 FunctionDecl
*OldFD
= OldDecl
->getAsFunction();
11697 if (!OldFD
->isMultiVersion() && MVKind
== MultiVersionKind::None
) {
11698 if (NewTVA
|| !OldFD
->getAttr
<TargetVersionAttr
>())
11700 if (!NewFD
->getType()->getAs
<FunctionProtoType
>()) {
11701 // Multiversion declaration doesn't have prototype.
11702 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_noproto
);
11703 NewFD
->setInvalidDecl();
11705 // No "target_version" attribute is equivalent to "default" attribute.
11706 NewFD
->addAttr(TargetVersionAttr::CreateImplicit(
11707 S
.Context
, "default", NewFD
->getSourceRange()));
11708 NewFD
->setIsMultiVersion();
11709 OldFD
->setIsMultiVersion();
11711 Redeclaration
= true;
11716 // Multiversioned redeclarations aren't allowed to omit the attribute, except
11717 // for target_clones and target_version.
11718 if (OldFD
->isMultiVersion() && MVKind
== MultiVersionKind::None
&&
11719 OldFD
->getMultiVersionKind() != MultiVersionKind::TargetClones
&&
11720 OldFD
->getMultiVersionKind() != MultiVersionKind::TargetVersion
) {
11721 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_required_in_redecl
)
11722 << (OldFD
->getMultiVersionKind() != MultiVersionKind::Target
);
11723 NewFD
->setInvalidDecl();
11727 if (!OldFD
->isMultiVersion()) {
11729 case MultiVersionKind::Target
:
11730 case MultiVersionKind::TargetVersion
:
11731 return CheckTargetCausesMultiVersioning(S
, OldFD
, NewFD
, Redeclaration
,
11732 OldDecl
, Previous
);
11733 case MultiVersionKind::TargetClones
:
11734 if (OldFD
->isUsed(false)) {
11735 NewFD
->setInvalidDecl();
11736 return S
.Diag(NewFD
->getLocation(), diag::err_multiversion_after_used
);
11738 OldFD
->setIsMultiVersion();
11741 case MultiVersionKind::CPUDispatch
:
11742 case MultiVersionKind::CPUSpecific
:
11743 case MultiVersionKind::None
:
11748 // At this point, we have a multiversion function decl (in OldFD) AND an
11749 // appropriate attribute in the current function decl. Resolve that these are
11750 // still compatible with previous declarations.
11751 return CheckMultiVersionAdditionalDecl(S
, OldFD
, NewFD
, MVKind
, NewCPUDisp
,
11752 NewCPUSpec
, NewClones
, Redeclaration
,
11753 OldDecl
, Previous
);
11756 /// Perform semantic checking of a new function declaration.
11758 /// Performs semantic analysis of the new function declaration
11759 /// NewFD. This routine performs all semantic checking that does not
11760 /// require the actual declarator involved in the declaration, and is
11761 /// used both for the declaration of functions as they are parsed
11762 /// (called via ActOnDeclarator) and for the declaration of functions
11763 /// that have been instantiated via C++ template instantiation (called
11764 /// via InstantiateDecl).
11766 /// \param IsMemberSpecialization whether this new function declaration is
11767 /// a member specialization (that replaces any definition provided by the
11768 /// previous declaration).
11770 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11772 /// \returns true if the function declaration is a redeclaration.
11773 bool Sema::CheckFunctionDeclaration(Scope
*S
, FunctionDecl
*NewFD
,
11774 LookupResult
&Previous
,
11775 bool IsMemberSpecialization
,
11777 assert(!NewFD
->getReturnType()->isVariablyModifiedType() &&
11778 "Variably modified return types are not handled here");
11780 // Determine whether the type of this function should be merged with
11781 // a previous visible declaration. This never happens for functions in C++,
11782 // and always happens in C if the previous declaration was visible.
11783 bool MergeTypeWithPrevious
= !getLangOpts().CPlusPlus
&&
11784 !Previous
.isShadowed();
11786 bool Redeclaration
= false;
11787 NamedDecl
*OldDecl
= nullptr;
11788 bool MayNeedOverloadableChecks
= false;
11790 // Merge or overload the declaration with an existing declaration of
11791 // the same name, if appropriate.
11792 if (!Previous
.empty()) {
11793 // Determine whether NewFD is an overload of PrevDecl or
11794 // a declaration that requires merging. If it's an overload,
11795 // there's no more work to do here; we'll just add the new
11796 // function to the scope.
11797 if (!AllowOverloadingOfFunction(Previous
, Context
, NewFD
)) {
11798 NamedDecl
*Candidate
= Previous
.getRepresentativeDecl();
11799 if (shouldLinkPossiblyHiddenDecl(Candidate
, NewFD
)) {
11800 Redeclaration
= true;
11801 OldDecl
= Candidate
;
11804 MayNeedOverloadableChecks
= true;
11805 switch (CheckOverload(S
, NewFD
, Previous
, OldDecl
,
11806 /*NewIsUsingDecl*/ false)) {
11808 Redeclaration
= true;
11811 case Ovl_NonFunction
:
11812 Redeclaration
= true;
11816 Redeclaration
= false;
11822 // Check for a previous extern "C" declaration with this name.
11823 if (!Redeclaration
&&
11824 checkForConflictWithNonVisibleExternC(*this, NewFD
, Previous
)) {
11825 if (!Previous
.empty()) {
11826 // This is an extern "C" declaration with the same name as a previous
11827 // declaration, and thus redeclares that entity...
11828 Redeclaration
= true;
11829 OldDecl
= Previous
.getFoundDecl();
11830 MergeTypeWithPrevious
= false;
11832 // ... except in the presence of __attribute__((overloadable)).
11833 if (OldDecl
->hasAttr
<OverloadableAttr
>() ||
11834 NewFD
->hasAttr
<OverloadableAttr
>()) {
11835 if (IsOverload(NewFD
, cast
<FunctionDecl
>(OldDecl
), false)) {
11836 MayNeedOverloadableChecks
= true;
11837 Redeclaration
= false;
11844 if (CheckMultiVersionFunction(*this, NewFD
, Redeclaration
, OldDecl
, Previous
))
11845 return Redeclaration
;
11847 // PPC MMA non-pointer types are not allowed as function return types.
11848 if (Context
.getTargetInfo().getTriple().isPPC64() &&
11849 CheckPPCMMAType(NewFD
->getReturnType(), NewFD
->getLocation())) {
11850 NewFD
->setInvalidDecl();
11853 // C++11 [dcl.constexpr]p8:
11854 // A constexpr specifier for a non-static member function that is not
11855 // a constructor declares that member function to be const.
11857 // This needs to be delayed until we know whether this is an out-of-line
11858 // definition of a static member function.
11860 // This rule is not present in C++1y, so we produce a backwards
11861 // compatibility warning whenever it happens in C++11.
11862 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(NewFD
);
11863 if (!getLangOpts().CPlusPlus14
&& MD
&& MD
->isConstexpr() &&
11864 !MD
->isStatic() && !isa
<CXXConstructorDecl
>(MD
) &&
11865 !isa
<CXXDestructorDecl
>(MD
) && !MD
->getMethodQualifiers().hasConst()) {
11866 CXXMethodDecl
*OldMD
= nullptr;
11868 OldMD
= dyn_cast_or_null
<CXXMethodDecl
>(OldDecl
->getAsFunction());
11869 if (!OldMD
|| !OldMD
->isStatic()) {
11870 const FunctionProtoType
*FPT
=
11871 MD
->getType()->castAs
<FunctionProtoType
>();
11872 FunctionProtoType::ExtProtoInfo EPI
= FPT
->getExtProtoInfo();
11873 EPI
.TypeQuals
.addConst();
11874 MD
->setType(Context
.getFunctionType(FPT
->getReturnType(),
11875 FPT
->getParamTypes(), EPI
));
11877 // Warn that we did this, if we're not performing template instantiation.
11878 // In that case, we'll have warned already when the template was defined.
11879 if (!inTemplateInstantiation()) {
11880 SourceLocation AddConstLoc
;
11881 if (FunctionTypeLoc FTL
= MD
->getTypeSourceInfo()->getTypeLoc()
11882 .IgnoreParens().getAs
<FunctionTypeLoc
>())
11883 AddConstLoc
= getLocForEndOfToken(FTL
.getRParenLoc());
11885 Diag(MD
->getLocation(), diag::warn_cxx14_compat_constexpr_not_const
)
11886 << FixItHint::CreateInsertion(AddConstLoc
, " const");
11891 if (Redeclaration
) {
11892 // NewFD and OldDecl represent declarations that need to be
11894 if (MergeFunctionDecl(NewFD
, OldDecl
, S
, MergeTypeWithPrevious
,
11896 NewFD
->setInvalidDecl();
11897 return Redeclaration
;
11901 Previous
.addDecl(OldDecl
);
11903 if (FunctionTemplateDecl
*OldTemplateDecl
=
11904 dyn_cast
<FunctionTemplateDecl
>(OldDecl
)) {
11905 auto *OldFD
= OldTemplateDecl
->getTemplatedDecl();
11906 FunctionTemplateDecl
*NewTemplateDecl
11907 = NewFD
->getDescribedFunctionTemplate();
11908 assert(NewTemplateDecl
&& "Template/non-template mismatch");
11910 // The call to MergeFunctionDecl above may have created some state in
11911 // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
11912 // can add it as a redeclaration.
11913 NewTemplateDecl
->mergePrevDecl(OldTemplateDecl
);
11915 NewFD
->setPreviousDeclaration(OldFD
);
11916 if (NewFD
->isCXXClassMember()) {
11917 NewFD
->setAccess(OldTemplateDecl
->getAccess());
11918 NewTemplateDecl
->setAccess(OldTemplateDecl
->getAccess());
11921 // If this is an explicit specialization of a member that is a function
11922 // template, mark it as a member specialization.
11923 if (IsMemberSpecialization
&&
11924 NewTemplateDecl
->getInstantiatedFromMemberTemplate()) {
11925 NewTemplateDecl
->setMemberSpecialization();
11926 assert(OldTemplateDecl
->isMemberSpecialization());
11927 // Explicit specializations of a member template do not inherit deleted
11928 // status from the parent member template that they are specializing.
11929 if (OldFD
->isDeleted()) {
11930 // FIXME: This assert will not hold in the presence of modules.
11931 assert(OldFD
->getCanonicalDecl() == OldFD
);
11932 // FIXME: We need an update record for this AST mutation.
11933 OldFD
->setDeletedAsWritten(false);
11938 if (shouldLinkDependentDeclWithPrevious(NewFD
, OldDecl
)) {
11939 auto *OldFD
= cast
<FunctionDecl
>(OldDecl
);
11940 // This needs to happen first so that 'inline' propagates.
11941 NewFD
->setPreviousDeclaration(OldFD
);
11942 if (NewFD
->isCXXClassMember())
11943 NewFD
->setAccess(OldFD
->getAccess());
11946 } else if (!getLangOpts().CPlusPlus
&& MayNeedOverloadableChecks
&&
11947 !NewFD
->getAttr
<OverloadableAttr
>()) {
11948 assert((Previous
.empty() ||
11949 llvm::any_of(Previous
,
11950 [](const NamedDecl
*ND
) {
11951 return ND
->hasAttr
<OverloadableAttr
>();
11953 "Non-redecls shouldn't happen without overloadable present");
11955 auto OtherUnmarkedIter
= llvm::find_if(Previous
, [](const NamedDecl
*ND
) {
11956 const auto *FD
= dyn_cast
<FunctionDecl
>(ND
);
11957 return FD
&& !FD
->hasAttr
<OverloadableAttr
>();
11960 if (OtherUnmarkedIter
!= Previous
.end()) {
11961 Diag(NewFD
->getLocation(),
11962 diag::err_attribute_overloadable_multiple_unmarked_overloads
);
11963 Diag((*OtherUnmarkedIter
)->getLocation(),
11964 diag::note_attribute_overloadable_prev_overload
)
11967 NewFD
->addAttr(OverloadableAttr::CreateImplicit(Context
));
11971 if (LangOpts
.OpenMP
)
11972 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD
);
11974 // Semantic checking for this function declaration (in isolation).
11976 if (getLangOpts().CPlusPlus
) {
11977 // C++-specific checks.
11978 if (CXXConstructorDecl
*Constructor
= dyn_cast
<CXXConstructorDecl
>(NewFD
)) {
11979 CheckConstructor(Constructor
);
11980 } else if (CXXDestructorDecl
*Destructor
=
11981 dyn_cast
<CXXDestructorDecl
>(NewFD
)) {
11982 // We check here for invalid destructor names.
11983 // If we have a friend destructor declaration that is dependent, we can't
11984 // diagnose right away because cases like this are still valid:
11985 // template <class T> struct A { friend T::X::~Y(); };
11986 // struct B { struct Y { ~Y(); }; using X = Y; };
11987 // template struct A<B>;
11988 if (NewFD
->getFriendObjectKind() == Decl::FriendObjectKind::FOK_None
||
11989 !Destructor
->getFunctionObjectParameterType()->isDependentType()) {
11990 CXXRecordDecl
*Record
= Destructor
->getParent();
11991 QualType ClassType
= Context
.getTypeDeclType(Record
);
11993 DeclarationName Name
= Context
.DeclarationNames
.getCXXDestructorName(
11994 Context
.getCanonicalType(ClassType
));
11995 if (NewFD
->getDeclName() != Name
) {
11996 Diag(NewFD
->getLocation(), diag::err_destructor_name
);
11997 NewFD
->setInvalidDecl();
11998 return Redeclaration
;
12001 } else if (auto *Guide
= dyn_cast
<CXXDeductionGuideDecl
>(NewFD
)) {
12002 if (auto *TD
= Guide
->getDescribedFunctionTemplate())
12003 CheckDeductionGuideTemplate(TD
);
12005 // A deduction guide is not on the list of entities that can be
12006 // explicitly specialized.
12007 if (Guide
->getTemplateSpecializationKind() == TSK_ExplicitSpecialization
)
12008 Diag(Guide
->getBeginLoc(), diag::err_deduction_guide_specialized
)
12009 << /*explicit specialization*/ 1;
12012 // Find any virtual functions that this function overrides.
12013 if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(NewFD
)) {
12014 if (!Method
->isFunctionTemplateSpecialization() &&
12015 !Method
->getDescribedFunctionTemplate() &&
12016 Method
->isCanonicalDecl()) {
12017 AddOverriddenMethods(Method
->getParent(), Method
);
12019 if (Method
->isVirtual() && NewFD
->getTrailingRequiresClause())
12020 // C++2a [class.virtual]p6
12021 // A virtual method shall not have a requires-clause.
12022 Diag(NewFD
->getTrailingRequiresClause()->getBeginLoc(),
12023 diag::err_constrained_virtual_method
);
12025 if (Method
->isStatic())
12026 checkThisInStaticMemberFunctionType(Method
);
12029 // C++20: dcl.decl.general p4:
12030 // The optional requires-clause ([temp.pre]) in an init-declarator or
12031 // member-declarator shall be present only if the declarator declares a
12032 // templated function ([dcl.fct]).
12033 if (Expr
*TRC
= NewFD
->getTrailingRequiresClause()) {
12035 // An entity is templated if it is
12037 // - an entity defined ([basic.def]) or created ([class.temporary]) in a
12038 // templated entity,
12039 // - a member of a templated entity,
12040 // - an enumerator for an enumeration that is a templated entity, or
12041 // - the closure type of a lambda-expression ([expr.prim.lambda.closure])
12042 // appearing in the declaration of a templated entity. [Note 6: A local
12043 // class, a local or block variable, or a friend function defined in a
12044 // templated entity is a templated entity. — end note]
12046 // A templated function is a function template or a function that is
12047 // templated. A templated class is a class template or a class that is
12048 // templated. A templated variable is a variable template or a variable
12049 // that is templated.
12051 if (!NewFD
->getDescribedFunctionTemplate() && // -a template
12052 // defined... in a templated entity
12053 !(DeclIsDefn
&& NewFD
->isTemplated()) &&
12054 // a member of a templated entity
12055 !(isa
<CXXMethodDecl
>(NewFD
) && NewFD
->isTemplated()) &&
12056 // Don't complain about instantiations, they've already had these
12057 // rules + others enforced.
12058 !NewFD
->isTemplateInstantiation()) {
12059 Diag(TRC
->getBeginLoc(), diag::err_constrained_non_templated_function
);
12063 if (CXXConversionDecl
*Conversion
= dyn_cast
<CXXConversionDecl
>(NewFD
))
12064 ActOnConversionDeclarator(Conversion
);
12066 // Extra checking for C++ overloaded operators (C++ [over.oper]).
12067 if (NewFD
->isOverloadedOperator() &&
12068 CheckOverloadedOperatorDeclaration(NewFD
)) {
12069 NewFD
->setInvalidDecl();
12070 return Redeclaration
;
12073 // Extra checking for C++0x literal operators (C++0x [over.literal]).
12074 if (NewFD
->getLiteralIdentifier() &&
12075 CheckLiteralOperatorDeclaration(NewFD
)) {
12076 NewFD
->setInvalidDecl();
12077 return Redeclaration
;
12080 // In C++, check default arguments now that we have merged decls. Unless
12081 // the lexical context is the class, because in this case this is done
12082 // during delayed parsing anyway.
12083 if (!CurContext
->isRecord())
12084 CheckCXXDefaultArguments(NewFD
);
12086 // If this function is declared as being extern "C", then check to see if
12087 // the function returns a UDT (class, struct, or union type) that is not C
12088 // compatible, and if it does, warn the user.
12089 // But, issue any diagnostic on the first declaration only.
12090 if (Previous
.empty() && NewFD
->isExternC()) {
12091 QualType R
= NewFD
->getReturnType();
12092 if (R
->isIncompleteType() && !R
->isVoidType())
12093 Diag(NewFD
->getLocation(), diag::warn_return_value_udt_incomplete
)
12095 else if (!R
.isPODType(Context
) && !R
->isVoidType() &&
12096 !R
->isObjCObjectPointerType())
12097 Diag(NewFD
->getLocation(), diag::warn_return_value_udt
) << NewFD
<< R
;
12100 // C++1z [dcl.fct]p6:
12101 // [...] whether the function has a non-throwing exception-specification
12102 // [is] part of the function type
12104 // This results in an ABI break between C++14 and C++17 for functions whose
12105 // declared type includes an exception-specification in a parameter or
12106 // return type. (Exception specifications on the function itself are OK in
12107 // most cases, and exception specifications are not permitted in most other
12108 // contexts where they could make it into a mangling.)
12109 if (!getLangOpts().CPlusPlus17
&& !NewFD
->getPrimaryTemplate()) {
12110 auto HasNoexcept
= [&](QualType T
) -> bool {
12111 // Strip off declarator chunks that could be between us and a function
12112 // type. We don't need to look far, exception specifications are very
12113 // restricted prior to C++17.
12114 if (auto *RT
= T
->getAs
<ReferenceType
>())
12115 T
= RT
->getPointeeType();
12116 else if (T
->isAnyPointerType())
12117 T
= T
->getPointeeType();
12118 else if (auto *MPT
= T
->getAs
<MemberPointerType
>())
12119 T
= MPT
->getPointeeType();
12120 if (auto *FPT
= T
->getAs
<FunctionProtoType
>())
12121 if (FPT
->isNothrow())
12126 auto *FPT
= NewFD
->getType()->castAs
<FunctionProtoType
>();
12127 bool AnyNoexcept
= HasNoexcept(FPT
->getReturnType());
12128 for (QualType T
: FPT
->param_types())
12129 AnyNoexcept
|= HasNoexcept(T
);
12131 Diag(NewFD
->getLocation(),
12132 diag::warn_cxx17_compat_exception_spec_in_signature
)
12136 if (!Redeclaration
&& LangOpts
.CUDA
)
12137 checkCUDATargetOverload(NewFD
, Previous
);
12140 // Check if the function definition uses any AArch64 SME features without
12141 // having the '+sme' feature enabled.
12143 bool UsesSM
= NewFD
->hasAttr
<ArmLocallyStreamingAttr
>();
12144 bool UsesZA
= NewFD
->hasAttr
<ArmNewZAAttr
>();
12145 if (const auto *FPT
= NewFD
->getType()->getAs
<FunctionProtoType
>()) {
12146 FunctionProtoType::ExtProtoInfo EPI
= FPT
->getExtProtoInfo();
12148 EPI
.AArch64SMEAttributes
& FunctionType::SME_PStateSMEnabledMask
;
12149 UsesZA
|= EPI
.AArch64SMEAttributes
& FunctionType::SME_PStateZASharedMask
;
12152 if (UsesSM
|| UsesZA
) {
12153 llvm::StringMap
<bool> FeatureMap
;
12154 Context
.getFunctionFeatureMap(FeatureMap
, NewFD
);
12155 if (!FeatureMap
.contains("sme")) {
12157 Diag(NewFD
->getLocation(),
12158 diag::err_sme_definition_using_sm_in_non_sme_target
);
12160 Diag(NewFD
->getLocation(),
12161 diag::err_sme_definition_using_za_in_non_sme_target
);
12166 return Redeclaration
;
12169 void Sema::CheckMain(FunctionDecl
* FD
, const DeclSpec
& DS
) {
12170 // C++11 [basic.start.main]p3:
12171 // A program that [...] declares main to be inline, static or
12172 // constexpr is ill-formed.
12173 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
12174 // appear in a declaration of main.
12175 // static main is not an error under C99, but we should warn about it.
12176 // We accept _Noreturn main as an extension.
12177 if (FD
->getStorageClass() == SC_Static
)
12178 Diag(DS
.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
12179 ? diag::err_static_main
: diag::warn_static_main
)
12180 << FixItHint::CreateRemoval(DS
.getStorageClassSpecLoc());
12181 if (FD
->isInlineSpecified())
12182 Diag(DS
.getInlineSpecLoc(), diag::err_inline_main
)
12183 << FixItHint::CreateRemoval(DS
.getInlineSpecLoc());
12184 if (DS
.isNoreturnSpecified()) {
12185 SourceLocation NoreturnLoc
= DS
.getNoreturnSpecLoc();
12186 SourceRange
NoreturnRange(NoreturnLoc
, getLocForEndOfToken(NoreturnLoc
));
12187 Diag(NoreturnLoc
, diag::ext_noreturn_main
);
12188 Diag(NoreturnLoc
, diag::note_main_remove_noreturn
)
12189 << FixItHint::CreateRemoval(NoreturnRange
);
12191 if (FD
->isConstexpr()) {
12192 Diag(DS
.getConstexprSpecLoc(), diag::err_constexpr_main
)
12193 << FD
->isConsteval()
12194 << FixItHint::CreateRemoval(DS
.getConstexprSpecLoc());
12195 FD
->setConstexprKind(ConstexprSpecKind::Unspecified
);
12198 if (getLangOpts().OpenCL
) {
12199 Diag(FD
->getLocation(), diag::err_opencl_no_main
)
12200 << FD
->hasAttr
<OpenCLKernelAttr
>();
12201 FD
->setInvalidDecl();
12205 // Functions named main in hlsl are default entries, but don't have specific
12206 // signatures they are required to conform to.
12207 if (getLangOpts().HLSL
)
12210 QualType T
= FD
->getType();
12211 assert(T
->isFunctionType() && "function decl is not of function type");
12212 const FunctionType
* FT
= T
->castAs
<FunctionType
>();
12214 // Set default calling convention for main()
12215 if (FT
->getCallConv() != CC_C
) {
12216 FT
= Context
.adjustFunctionType(FT
, FT
->getExtInfo().withCallingConv(CC_C
));
12217 FD
->setType(QualType(FT
, 0));
12218 T
= Context
.getCanonicalType(FD
->getType());
12221 if (getLangOpts().GNUMode
&& !getLangOpts().CPlusPlus
) {
12222 // In C with GNU extensions we allow main() to have non-integer return
12223 // type, but we should warn about the extension, and we disable the
12224 // implicit-return-zero rule.
12226 // GCC in C mode accepts qualified 'int'.
12227 if (Context
.hasSameUnqualifiedType(FT
->getReturnType(), Context
.IntTy
))
12228 FD
->setHasImplicitReturnZero(true);
12230 Diag(FD
->getTypeSpecStartLoc(), diag::ext_main_returns_nonint
);
12231 SourceRange RTRange
= FD
->getReturnTypeSourceRange();
12232 if (RTRange
.isValid())
12233 Diag(RTRange
.getBegin(), diag::note_main_change_return_type
)
12234 << FixItHint::CreateReplacement(RTRange
, "int");
12237 // In C and C++, main magically returns 0 if you fall off the end;
12238 // set the flag which tells us that.
12239 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
12241 // All the standards say that main() should return 'int'.
12242 if (Context
.hasSameType(FT
->getReturnType(), Context
.IntTy
))
12243 FD
->setHasImplicitReturnZero(true);
12245 // Otherwise, this is just a flat-out error.
12246 SourceRange RTRange
= FD
->getReturnTypeSourceRange();
12247 Diag(FD
->getTypeSpecStartLoc(), diag::err_main_returns_nonint
)
12248 << (RTRange
.isValid() ? FixItHint::CreateReplacement(RTRange
, "int")
12250 FD
->setInvalidDecl(true);
12254 // Treat protoless main() as nullary.
12255 if (isa
<FunctionNoProtoType
>(FT
)) return;
12257 const FunctionProtoType
* FTP
= cast
<const FunctionProtoType
>(FT
);
12258 unsigned nparams
= FTP
->getNumParams();
12259 assert(FD
->getNumParams() == nparams
);
12261 bool HasExtraParameters
= (nparams
> 3);
12263 if (FTP
->isVariadic()) {
12264 Diag(FD
->getLocation(), diag::ext_variadic_main
);
12265 // FIXME: if we had information about the location of the ellipsis, we
12266 // could add a FixIt hint to remove it as a parameter.
12269 // Darwin passes an undocumented fourth argument of type char**. If
12270 // other platforms start sprouting these, the logic below will start
12272 if (nparams
== 4 && Context
.getTargetInfo().getTriple().isOSDarwin())
12273 HasExtraParameters
= false;
12275 if (HasExtraParameters
) {
12276 Diag(FD
->getLocation(), diag::err_main_surplus_args
) << nparams
;
12277 FD
->setInvalidDecl(true);
12281 // FIXME: a lot of the following diagnostics would be improved
12282 // if we had some location information about types.
12285 Context
.getPointerType(Context
.getPointerType(Context
.CharTy
));
12286 QualType Expected
[] = { Context
.IntTy
, CharPP
, CharPP
, CharPP
};
12288 for (unsigned i
= 0; i
< nparams
; ++i
) {
12289 QualType AT
= FTP
->getParamType(i
);
12291 bool mismatch
= true;
12293 if (Context
.hasSameUnqualifiedType(AT
, Expected
[i
]))
12295 else if (Expected
[i
] == CharPP
) {
12296 // As an extension, the following forms are okay:
12298 // char const * const *
12301 QualifierCollector qs
;
12302 const PointerType
* PT
;
12303 if ((PT
= qs
.strip(AT
)->getAs
<PointerType
>()) &&
12304 (PT
= qs
.strip(PT
->getPointeeType())->getAs
<PointerType
>()) &&
12305 Context
.hasSameType(QualType(qs
.strip(PT
->getPointeeType()), 0),
12308 mismatch
= !qs
.empty();
12313 Diag(FD
->getLocation(), diag::err_main_arg_wrong
) << i
<< Expected
[i
];
12314 // TODO: suggest replacing given type with expected type
12315 FD
->setInvalidDecl(true);
12319 if (nparams
== 1 && !FD
->isInvalidDecl()) {
12320 Diag(FD
->getLocation(), diag::warn_main_one_arg
);
12323 if (!FD
->isInvalidDecl() && FD
->getDescribedFunctionTemplate()) {
12324 Diag(FD
->getLocation(), diag::err_mainlike_template_decl
) << FD
;
12325 FD
->setInvalidDecl();
12329 static bool isDefaultStdCall(FunctionDecl
*FD
, Sema
&S
) {
12331 // Default calling convention for main and wmain is __cdecl
12332 if (FD
->getName() == "main" || FD
->getName() == "wmain")
12335 // Default calling convention for MinGW is __cdecl
12336 const llvm::Triple
&T
= S
.Context
.getTargetInfo().getTriple();
12337 if (T
.isWindowsGNUEnvironment())
12340 // Default calling convention for WinMain, wWinMain and DllMain
12341 // is __stdcall on 32 bit Windows
12342 if (T
.isOSWindows() && T
.getArch() == llvm::Triple::x86
)
12348 void Sema::CheckMSVCRTEntryPoint(FunctionDecl
*FD
) {
12349 QualType T
= FD
->getType();
12350 assert(T
->isFunctionType() && "function decl is not of function type");
12351 const FunctionType
*FT
= T
->castAs
<FunctionType
>();
12353 // Set an implicit return of 'zero' if the function can return some integral,
12354 // enumeration, pointer or nullptr type.
12355 if (FT
->getReturnType()->isIntegralOrEnumerationType() ||
12356 FT
->getReturnType()->isAnyPointerType() ||
12357 FT
->getReturnType()->isNullPtrType())
12358 // DllMain is exempt because a return value of zero means it failed.
12359 if (FD
->getName() != "DllMain")
12360 FD
->setHasImplicitReturnZero(true);
12362 // Explicity specified calling conventions are applied to MSVC entry points
12363 if (!hasExplicitCallingConv(T
)) {
12364 if (isDefaultStdCall(FD
, *this)) {
12365 if (FT
->getCallConv() != CC_X86StdCall
) {
12366 FT
= Context
.adjustFunctionType(
12367 FT
, FT
->getExtInfo().withCallingConv(CC_X86StdCall
));
12368 FD
->setType(QualType(FT
, 0));
12370 } else if (FT
->getCallConv() != CC_C
) {
12371 FT
= Context
.adjustFunctionType(FT
,
12372 FT
->getExtInfo().withCallingConv(CC_C
));
12373 FD
->setType(QualType(FT
, 0));
12377 if (!FD
->isInvalidDecl() && FD
->getDescribedFunctionTemplate()) {
12378 Diag(FD
->getLocation(), diag::err_mainlike_template_decl
) << FD
;
12379 FD
->setInvalidDecl();
12383 void Sema::ActOnHLSLTopLevelFunction(FunctionDecl
*FD
) {
12384 auto &TargetInfo
= getASTContext().getTargetInfo();
12386 if (FD
->getName() != TargetInfo
.getTargetOpts().HLSLEntry
)
12389 StringRef Env
= TargetInfo
.getTriple().getEnvironmentName();
12390 HLSLShaderAttr::ShaderType ShaderType
;
12391 if (HLSLShaderAttr::ConvertStrToShaderType(Env
, ShaderType
)) {
12392 if (const auto *Shader
= FD
->getAttr
<HLSLShaderAttr
>()) {
12393 // The entry point is already annotated - check that it matches the
12395 if (Shader
->getType() != ShaderType
) {
12396 Diag(Shader
->getLocation(), diag::err_hlsl_entry_shader_attr_mismatch
)
12398 FD
->setInvalidDecl();
12401 // Implicitly add the shader attribute if the entry function isn't
12402 // explicitly annotated.
12403 FD
->addAttr(HLSLShaderAttr::CreateImplicit(Context
, ShaderType
,
12404 FD
->getBeginLoc()));
12407 switch (TargetInfo
.getTriple().getEnvironment()) {
12408 case llvm::Triple::UnknownEnvironment
:
12409 case llvm::Triple::Library
:
12412 llvm_unreachable("Unhandled environment in triple");
12417 void Sema::CheckHLSLEntryPoint(FunctionDecl
*FD
) {
12418 const auto *ShaderAttr
= FD
->getAttr
<HLSLShaderAttr
>();
12419 assert(ShaderAttr
&& "Entry point has no shader attribute");
12420 HLSLShaderAttr::ShaderType ST
= ShaderAttr
->getType();
12423 case HLSLShaderAttr::Pixel
:
12424 case HLSLShaderAttr::Vertex
:
12425 case HLSLShaderAttr::Geometry
:
12426 case HLSLShaderAttr::Hull
:
12427 case HLSLShaderAttr::Domain
:
12428 case HLSLShaderAttr::RayGeneration
:
12429 case HLSLShaderAttr::Intersection
:
12430 case HLSLShaderAttr::AnyHit
:
12431 case HLSLShaderAttr::ClosestHit
:
12432 case HLSLShaderAttr::Miss
:
12433 case HLSLShaderAttr::Callable
:
12434 if (const auto *NT
= FD
->getAttr
<HLSLNumThreadsAttr
>()) {
12435 DiagnoseHLSLAttrStageMismatch(NT
, ST
,
12436 {HLSLShaderAttr::Compute
,
12437 HLSLShaderAttr::Amplification
,
12438 HLSLShaderAttr::Mesh
});
12439 FD
->setInvalidDecl();
12443 case HLSLShaderAttr::Compute
:
12444 case HLSLShaderAttr::Amplification
:
12445 case HLSLShaderAttr::Mesh
:
12446 if (!FD
->hasAttr
<HLSLNumThreadsAttr
>()) {
12447 Diag(FD
->getLocation(), diag::err_hlsl_missing_numthreads
)
12448 << HLSLShaderAttr::ConvertShaderTypeToStr(ST
);
12449 FD
->setInvalidDecl();
12454 for (ParmVarDecl
*Param
: FD
->parameters()) {
12455 if (const auto *AnnotationAttr
= Param
->getAttr
<HLSLAnnotationAttr
>()) {
12456 CheckHLSLSemanticAnnotation(FD
, Param
, AnnotationAttr
);
12458 // FIXME: Handle struct parameters where annotations are on struct fields.
12459 // See: https://github.com/llvm/llvm-project/issues/57875
12460 Diag(FD
->getLocation(), diag::err_hlsl_missing_semantic_annotation
);
12461 Diag(Param
->getLocation(), diag::note_previous_decl
) << Param
;
12462 FD
->setInvalidDecl();
12465 // FIXME: Verify return type semantic annotation.
12468 void Sema::CheckHLSLSemanticAnnotation(
12469 FunctionDecl
*EntryPoint
, const Decl
*Param
,
12470 const HLSLAnnotationAttr
*AnnotationAttr
) {
12471 auto *ShaderAttr
= EntryPoint
->getAttr
<HLSLShaderAttr
>();
12472 assert(ShaderAttr
&& "Entry point has no shader attribute");
12473 HLSLShaderAttr::ShaderType ST
= ShaderAttr
->getType();
12475 switch (AnnotationAttr
->getKind()) {
12476 case attr::HLSLSV_DispatchThreadID
:
12477 case attr::HLSLSV_GroupIndex
:
12478 if (ST
== HLSLShaderAttr::Compute
)
12480 DiagnoseHLSLAttrStageMismatch(AnnotationAttr
, ST
,
12481 {HLSLShaderAttr::Compute
});
12484 llvm_unreachable("Unknown HLSLAnnotationAttr");
12488 void Sema::DiagnoseHLSLAttrStageMismatch(
12489 const Attr
*A
, HLSLShaderAttr::ShaderType Stage
,
12490 std::initializer_list
<HLSLShaderAttr::ShaderType
> AllowedStages
) {
12491 SmallVector
<StringRef
, 8> StageStrings
;
12492 llvm::transform(AllowedStages
, std::back_inserter(StageStrings
),
12493 [](HLSLShaderAttr::ShaderType ST
) {
12495 HLSLShaderAttr::ConvertShaderTypeToStr(ST
));
12497 Diag(A
->getLoc(), diag::err_hlsl_attr_unsupported_in_stage
)
12498 << A
<< HLSLShaderAttr::ConvertShaderTypeToStr(Stage
)
12499 << (AllowedStages
.size() != 1) << join(StageStrings
, ", ");
12502 bool Sema::CheckForConstantInitializer(Expr
*Init
, QualType DclT
) {
12503 // FIXME: Need strict checking. In C89, we need to check for
12504 // any assignment, increment, decrement, function-calls, or
12505 // commas outside of a sizeof. In C99, it's the same list,
12506 // except that the aforementioned are allowed in unevaluated
12507 // expressions. Everything else falls under the
12508 // "may accept other forms of constant expressions" exception.
12510 // Regular C++ code will not end up here (exceptions: language extensions,
12511 // OpenCL C++ etc), so the constant expression rules there don't matter.
12512 if (Init
->isValueDependent()) {
12513 assert(Init
->containsErrors() &&
12514 "Dependent code should only occur in error-recovery path.");
12517 const Expr
*Culprit
;
12518 if (Init
->isConstantInitializer(Context
, false, &Culprit
))
12520 Diag(Culprit
->getExprLoc(), diag::err_init_element_not_constant
)
12521 << Culprit
->getSourceRange();
12526 // Visits an initialization expression to see if OrigDecl is evaluated in
12527 // its own initialization and throws a warning if it does.
12528 class SelfReferenceChecker
12529 : public EvaluatedExprVisitor
<SelfReferenceChecker
> {
12534 bool isReferenceType
;
12537 llvm::SmallVector
<unsigned, 4> InitFieldIndex
;
12540 typedef EvaluatedExprVisitor
<SelfReferenceChecker
> Inherited
;
12542 SelfReferenceChecker(Sema
&S
, Decl
*OrigDecl
) : Inherited(S
.Context
),
12543 S(S
), OrigDecl(OrigDecl
) {
12545 isRecordType
= false;
12546 isReferenceType
= false;
12547 isInitList
= false;
12548 if (ValueDecl
*VD
= dyn_cast
<ValueDecl
>(OrigDecl
)) {
12549 isPODType
= VD
->getType().isPODType(S
.Context
);
12550 isRecordType
= VD
->getType()->isRecordType();
12551 isReferenceType
= VD
->getType()->isReferenceType();
12555 // For most expressions, just call the visitor. For initializer lists,
12556 // track the index of the field being initialized since fields are
12557 // initialized in order allowing use of previously initialized fields.
12558 void CheckExpr(Expr
*E
) {
12559 InitListExpr
*InitList
= dyn_cast
<InitListExpr
>(E
);
12565 // Track and increment the index here.
12567 InitFieldIndex
.push_back(0);
12568 for (auto *Child
: InitList
->children()) {
12569 CheckExpr(cast
<Expr
>(Child
));
12570 ++InitFieldIndex
.back();
12572 InitFieldIndex
.pop_back();
12575 // Returns true if MemberExpr is checked and no further checking is needed.
12576 // Returns false if additional checking is required.
12577 bool CheckInitListMemberExpr(MemberExpr
*E
, bool CheckReference
) {
12578 llvm::SmallVector
<FieldDecl
*, 4> Fields
;
12580 bool ReferenceField
= false;
12582 // Get the field members used.
12583 while (MemberExpr
*ME
= dyn_cast
<MemberExpr
>(Base
)) {
12584 FieldDecl
*FD
= dyn_cast
<FieldDecl
>(ME
->getMemberDecl());
12587 Fields
.push_back(FD
);
12588 if (FD
->getType()->isReferenceType())
12589 ReferenceField
= true;
12590 Base
= ME
->getBase()->IgnoreParenImpCasts();
12593 // Keep checking only if the base Decl is the same.
12594 DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(Base
);
12595 if (!DRE
|| DRE
->getDecl() != OrigDecl
)
12598 // A reference field can be bound to an unininitialized field.
12599 if (CheckReference
&& !ReferenceField
)
12602 // Convert FieldDecls to their index number.
12603 llvm::SmallVector
<unsigned, 4> UsedFieldIndex
;
12604 for (const FieldDecl
*I
: llvm::reverse(Fields
))
12605 UsedFieldIndex
.push_back(I
->getFieldIndex());
12607 // See if a warning is needed by checking the first difference in index
12608 // numbers. If field being used has index less than the field being
12609 // initialized, then the use is safe.
12610 for (auto UsedIter
= UsedFieldIndex
.begin(),
12611 UsedEnd
= UsedFieldIndex
.end(),
12612 OrigIter
= InitFieldIndex
.begin(),
12613 OrigEnd
= InitFieldIndex
.end();
12614 UsedIter
!= UsedEnd
&& OrigIter
!= OrigEnd
; ++UsedIter
, ++OrigIter
) {
12615 if (*UsedIter
< *OrigIter
)
12617 if (*UsedIter
> *OrigIter
)
12621 // TODO: Add a different warning which will print the field names.
12622 HandleDeclRefExpr(DRE
);
12626 // For most expressions, the cast is directly above the DeclRefExpr.
12627 // For conditional operators, the cast can be outside the conditional
12628 // operator if both expressions are DeclRefExpr's.
12629 void HandleValue(Expr
*E
) {
12630 E
= E
->IgnoreParens();
12631 if (DeclRefExpr
* DRE
= dyn_cast
<DeclRefExpr
>(E
)) {
12632 HandleDeclRefExpr(DRE
);
12636 if (ConditionalOperator
*CO
= dyn_cast
<ConditionalOperator
>(E
)) {
12637 Visit(CO
->getCond());
12638 HandleValue(CO
->getTrueExpr());
12639 HandleValue(CO
->getFalseExpr());
12643 if (BinaryConditionalOperator
*BCO
=
12644 dyn_cast
<BinaryConditionalOperator
>(E
)) {
12645 Visit(BCO
->getCond());
12646 HandleValue(BCO
->getFalseExpr());
12650 if (OpaqueValueExpr
*OVE
= dyn_cast
<OpaqueValueExpr
>(E
)) {
12651 HandleValue(OVE
->getSourceExpr());
12655 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(E
)) {
12656 if (BO
->getOpcode() == BO_Comma
) {
12657 Visit(BO
->getLHS());
12658 HandleValue(BO
->getRHS());
12663 if (isa
<MemberExpr
>(E
)) {
12665 if (CheckInitListMemberExpr(cast
<MemberExpr
>(E
),
12666 false /*CheckReference*/))
12670 Expr
*Base
= E
->IgnoreParenImpCasts();
12671 while (MemberExpr
*ME
= dyn_cast
<MemberExpr
>(Base
)) {
12672 // Check for static member variables and don't warn on them.
12673 if (!isa
<FieldDecl
>(ME
->getMemberDecl()))
12675 Base
= ME
->getBase()->IgnoreParenImpCasts();
12677 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(Base
))
12678 HandleDeclRefExpr(DRE
);
12685 // Reference types not handled in HandleValue are handled here since all
12686 // uses of references are bad, not just r-value uses.
12687 void VisitDeclRefExpr(DeclRefExpr
*E
) {
12688 if (isReferenceType
)
12689 HandleDeclRefExpr(E
);
12692 void VisitImplicitCastExpr(ImplicitCastExpr
*E
) {
12693 if (E
->getCastKind() == CK_LValueToRValue
) {
12694 HandleValue(E
->getSubExpr());
12698 Inherited::VisitImplicitCastExpr(E
);
12701 void VisitMemberExpr(MemberExpr
*E
) {
12703 if (CheckInitListMemberExpr(E
, true /*CheckReference*/))
12707 // Don't warn on arrays since they can be treated as pointers.
12708 if (E
->getType()->canDecayToPointerType()) return;
12710 // Warn when a non-static method call is followed by non-static member
12711 // field accesses, which is followed by a DeclRefExpr.
12712 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(E
->getMemberDecl());
12713 bool Warn
= (MD
&& !MD
->isStatic());
12714 Expr
*Base
= E
->getBase()->IgnoreParenImpCasts();
12715 while (MemberExpr
*ME
= dyn_cast
<MemberExpr
>(Base
)) {
12716 if (!isa
<FieldDecl
>(ME
->getMemberDecl()))
12718 Base
= ME
->getBase()->IgnoreParenImpCasts();
12721 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(Base
)) {
12723 HandleDeclRefExpr(DRE
);
12727 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
12728 // Visit that expression.
12732 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr
*E
) {
12733 Expr
*Callee
= E
->getCallee();
12735 if (isa
<UnresolvedLookupExpr
>(Callee
))
12736 return Inherited::VisitCXXOperatorCallExpr(E
);
12739 for (auto Arg
: E
->arguments())
12740 HandleValue(Arg
->IgnoreParenImpCasts());
12743 void VisitUnaryOperator(UnaryOperator
*E
) {
12744 // For POD record types, addresses of its own members are well-defined.
12745 if (E
->getOpcode() == UO_AddrOf
&& isRecordType
&&
12746 isa
<MemberExpr
>(E
->getSubExpr()->IgnoreParens())) {
12748 HandleValue(E
->getSubExpr());
12752 if (E
->isIncrementDecrementOp()) {
12753 HandleValue(E
->getSubExpr());
12757 Inherited::VisitUnaryOperator(E
);
12760 void VisitObjCMessageExpr(ObjCMessageExpr
*E
) {}
12762 void VisitCXXConstructExpr(CXXConstructExpr
*E
) {
12763 if (E
->getConstructor()->isCopyConstructor()) {
12764 Expr
*ArgExpr
= E
->getArg(0);
12765 if (InitListExpr
*ILE
= dyn_cast
<InitListExpr
>(ArgExpr
))
12766 if (ILE
->getNumInits() == 1)
12767 ArgExpr
= ILE
->getInit(0);
12768 if (ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(ArgExpr
))
12769 if (ICE
->getCastKind() == CK_NoOp
)
12770 ArgExpr
= ICE
->getSubExpr();
12771 HandleValue(ArgExpr
);
12774 Inherited::VisitCXXConstructExpr(E
);
12777 void VisitCallExpr(CallExpr
*E
) {
12778 // Treat std::move as a use.
12779 if (E
->isCallToStdMove()) {
12780 HandleValue(E
->getArg(0));
12784 Inherited::VisitCallExpr(E
);
12787 void VisitBinaryOperator(BinaryOperator
*E
) {
12788 if (E
->isCompoundAssignmentOp()) {
12789 HandleValue(E
->getLHS());
12790 Visit(E
->getRHS());
12794 Inherited::VisitBinaryOperator(E
);
12797 // A custom visitor for BinaryConditionalOperator is needed because the
12798 // regular visitor would check the condition and true expression separately
12799 // but both point to the same place giving duplicate diagnostics.
12800 void VisitBinaryConditionalOperator(BinaryConditionalOperator
*E
) {
12801 Visit(E
->getCond());
12802 Visit(E
->getFalseExpr());
12805 void HandleDeclRefExpr(DeclRefExpr
*DRE
) {
12806 Decl
* ReferenceDecl
= DRE
->getDecl();
12807 if (OrigDecl
!= ReferenceDecl
) return;
12809 if (isReferenceType
) {
12810 diag
= diag::warn_uninit_self_reference_in_reference_init
;
12811 } else if (cast
<VarDecl
>(OrigDecl
)->isStaticLocal()) {
12812 diag
= diag::warn_static_self_reference_in_init
;
12813 } else if (isa
<TranslationUnitDecl
>(OrigDecl
->getDeclContext()) ||
12814 isa
<NamespaceDecl
>(OrigDecl
->getDeclContext()) ||
12815 DRE
->getDecl()->getType()->isRecordType()) {
12816 diag
= diag::warn_uninit_self_reference_in_init
;
12818 // Local variables will be handled by the CFG analysis.
12822 S
.DiagRuntimeBehavior(DRE
->getBeginLoc(), DRE
,
12824 << DRE
->getDecl() << OrigDecl
->getLocation()
12825 << DRE
->getSourceRange());
12829 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
12830 static void CheckSelfReference(Sema
&S
, Decl
* OrigDecl
, Expr
*E
,
12832 // Parameters arguments are occassionially constructed with itself,
12833 // for instance, in recursive functions. Skip them.
12834 if (isa
<ParmVarDecl
>(OrigDecl
))
12837 E
= E
->IgnoreParens();
12839 // Skip checking T a = a where T is not a record or reference type.
12840 // Doing so is a way to silence uninitialized warnings.
12841 if (!DirectInit
&& !cast
<VarDecl
>(OrigDecl
)->getType()->isRecordType())
12842 if (ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
))
12843 if (ICE
->getCastKind() == CK_LValueToRValue
)
12844 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(ICE
->getSubExpr()))
12845 if (DRE
->getDecl() == OrigDecl
)
12848 SelfReferenceChecker(S
, OrigDecl
).CheckExpr(E
);
12850 } // end anonymous namespace
12853 // Simple wrapper to add the name of a variable or (if no variable is
12854 // available) a DeclarationName into a diagnostic.
12855 struct VarDeclOrName
{
12857 DeclarationName Name
;
12859 friend const Sema::SemaDiagnosticBuilder
&
12860 operator<<(const Sema::SemaDiagnosticBuilder
&Diag
, VarDeclOrName VN
) {
12861 return VN
.VDecl
? Diag
<< VN
.VDecl
: Diag
<< VN
.Name
;
12864 } // end anonymous namespace
12866 QualType
Sema::deduceVarTypeFromInitializer(VarDecl
*VDecl
,
12867 DeclarationName Name
, QualType Type
,
12868 TypeSourceInfo
*TSI
,
12869 SourceRange Range
, bool DirectInit
,
12871 bool IsInitCapture
= !VDecl
;
12872 assert((!VDecl
|| !VDecl
->isInitCapture()) &&
12873 "init captures are expected to be deduced prior to initialization");
12875 VarDeclOrName VN
{VDecl
, Name
};
12877 DeducedType
*Deduced
= Type
->getContainedDeducedType();
12878 assert(Deduced
&& "deduceVarTypeFromInitializer for non-deduced type");
12880 // Diagnose auto array declarations in C23, unless it's a supported extension.
12881 if (getLangOpts().C23
&& Type
->isArrayType() &&
12882 !isa_and_present
<StringLiteral
, InitListExpr
>(Init
)) {
12883 Diag(Range
.getBegin(), diag::err_auto_not_allowed
)
12884 << (int)Deduced
->getContainedAutoType()->getKeyword()
12885 << /*in array decl*/ 23 << Range
;
12889 // C++11 [dcl.spec.auto]p3
12891 assert(VDecl
&& "no init for init capture deduction?");
12893 // Except for class argument deduction, and then for an initializing
12894 // declaration only, i.e. no static at class scope or extern.
12895 if (!isa
<DeducedTemplateSpecializationType
>(Deduced
) ||
12896 VDecl
->hasExternalStorage() ||
12897 VDecl
->isStaticDataMember()) {
12898 Diag(VDecl
->getLocation(), diag::err_auto_var_requires_init
)
12899 << VDecl
->getDeclName() << Type
;
12904 ArrayRef
<Expr
*> DeduceInits
;
12906 DeduceInits
= Init
;
12908 auto *PL
= dyn_cast_if_present
<ParenListExpr
>(Init
);
12909 if (DirectInit
&& PL
)
12910 DeduceInits
= PL
->exprs();
12912 if (isa
<DeducedTemplateSpecializationType
>(Deduced
)) {
12913 assert(VDecl
&& "non-auto type for init capture deduction?");
12914 InitializedEntity Entity
= InitializedEntity::InitializeVariable(VDecl
);
12915 InitializationKind Kind
= InitializationKind::CreateForInit(
12916 VDecl
->getLocation(), DirectInit
, Init
);
12917 // FIXME: Initialization should not be taking a mutable list of inits.
12918 SmallVector
<Expr
*, 8> InitsCopy(DeduceInits
.begin(), DeduceInits
.end());
12919 return DeduceTemplateSpecializationFromInitializer(TSI
, Entity
, Kind
,
12924 if (auto *IL
= dyn_cast
<InitListExpr
>(Init
))
12925 DeduceInits
= IL
->inits();
12928 // Deduction only works if we have exactly one source expression.
12929 if (DeduceInits
.empty()) {
12930 // It isn't possible to write this directly, but it is possible to
12931 // end up in this situation with "auto x(some_pack...);"
12932 Diag(Init
->getBeginLoc(), IsInitCapture
12933 ? diag::err_init_capture_no_expression
12934 : diag::err_auto_var_init_no_expression
)
12935 << VN
<< Type
<< Range
;
12939 if (DeduceInits
.size() > 1) {
12940 Diag(DeduceInits
[1]->getBeginLoc(),
12941 IsInitCapture
? diag::err_init_capture_multiple_expressions
12942 : diag::err_auto_var_init_multiple_expressions
)
12943 << VN
<< Type
<< Range
;
12947 Expr
*DeduceInit
= DeduceInits
[0];
12948 if (DirectInit
&& isa
<InitListExpr
>(DeduceInit
)) {
12949 Diag(Init
->getBeginLoc(), IsInitCapture
12950 ? diag::err_init_capture_paren_braces
12951 : diag::err_auto_var_init_paren_braces
)
12952 << isa
<InitListExpr
>(Init
) << VN
<< Type
<< Range
;
12956 // Expressions default to 'id' when we're in a debugger.
12957 bool DefaultedAnyToId
= false;
12958 if (getLangOpts().DebuggerCastResultToId
&&
12959 Init
->getType() == Context
.UnknownAnyTy
&& !IsInitCapture
) {
12960 ExprResult Result
= forceUnknownAnyToType(Init
, Context
.getObjCIdType());
12961 if (Result
.isInvalid()) {
12964 Init
= Result
.get();
12965 DefaultedAnyToId
= true;
12968 // C++ [dcl.decomp]p1:
12969 // If the assignment-expression [...] has array type A and no ref-qualifier
12970 // is present, e has type cv A
12971 if (VDecl
&& isa
<DecompositionDecl
>(VDecl
) &&
12972 Context
.hasSameUnqualifiedType(Type
, Context
.getAutoDeductType()) &&
12973 DeduceInit
->getType()->isConstantArrayType())
12974 return Context
.getQualifiedType(DeduceInit
->getType(),
12975 Type
.getQualifiers());
12977 QualType DeducedType
;
12978 TemplateDeductionInfo
Info(DeduceInit
->getExprLoc());
12979 TemplateDeductionResult Result
=
12980 DeduceAutoType(TSI
->getTypeLoc(), DeduceInit
, DeducedType
, Info
);
12981 if (Result
!= TDK_Success
&& Result
!= TDK_AlreadyDiagnosed
) {
12982 if (!IsInitCapture
)
12983 DiagnoseAutoDeductionFailure(VDecl
, DeduceInit
);
12984 else if (isa
<InitListExpr
>(Init
))
12985 Diag(Range
.getBegin(),
12986 diag::err_init_capture_deduction_failure_from_init_list
)
12988 << (DeduceInit
->getType().isNull() ? TSI
->getType()
12989 : DeduceInit
->getType())
12990 << DeduceInit
->getSourceRange();
12992 Diag(Range
.getBegin(), diag::err_init_capture_deduction_failure
)
12993 << VN
<< TSI
->getType()
12994 << (DeduceInit
->getType().isNull() ? TSI
->getType()
12995 : DeduceInit
->getType())
12996 << DeduceInit
->getSourceRange();
12999 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
13000 // 'id' instead of a specific object type prevents most of our usual
13002 // We only want to warn outside of template instantiations, though:
13003 // inside a template, the 'id' could have come from a parameter.
13004 if (!inTemplateInstantiation() && !DefaultedAnyToId
&& !IsInitCapture
&&
13005 !DeducedType
.isNull() && DeducedType
->isObjCIdType()) {
13006 SourceLocation Loc
= TSI
->getTypeLoc().getBeginLoc();
13007 Diag(Loc
, diag::warn_auto_var_is_id
) << VN
<< Range
;
13010 return DeducedType
;
13013 bool Sema::DeduceVariableDeclarationType(VarDecl
*VDecl
, bool DirectInit
,
13015 assert(!Init
|| !Init
->containsErrors());
13016 QualType DeducedType
= deduceVarTypeFromInitializer(
13017 VDecl
, VDecl
->getDeclName(), VDecl
->getType(), VDecl
->getTypeSourceInfo(),
13018 VDecl
->getSourceRange(), DirectInit
, Init
);
13019 if (DeducedType
.isNull()) {
13020 VDecl
->setInvalidDecl();
13024 VDecl
->setType(DeducedType
);
13025 assert(VDecl
->isLinkageValid());
13027 // In ARC, infer lifetime.
13028 if (getLangOpts().ObjCAutoRefCount
&& inferObjCARCLifetime(VDecl
))
13029 VDecl
->setInvalidDecl();
13031 if (getLangOpts().OpenCL
)
13032 deduceOpenCLAddressSpace(VDecl
);
13034 // If this is a redeclaration, check that the type we just deduced matches
13035 // the previously declared type.
13036 if (VarDecl
*Old
= VDecl
->getPreviousDecl()) {
13037 // We never need to merge the type, because we cannot form an incomplete
13038 // array of auto, nor deduce such a type.
13039 MergeVarDeclTypes(VDecl
, Old
, /*MergeTypeWithPrevious*/ false);
13042 // Check the deduced type is valid for a variable declaration.
13043 CheckVariableDeclarationType(VDecl
);
13044 return VDecl
->isInvalidDecl();
13047 void Sema::checkNonTrivialCUnionInInitializer(const Expr
*Init
,
13048 SourceLocation Loc
) {
13049 if (auto *EWC
= dyn_cast
<ExprWithCleanups
>(Init
))
13050 Init
= EWC
->getSubExpr();
13052 if (auto *CE
= dyn_cast
<ConstantExpr
>(Init
))
13053 Init
= CE
->getSubExpr();
13055 QualType InitType
= Init
->getType();
13056 assert((InitType
.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13057 InitType
.hasNonTrivialToPrimitiveCopyCUnion()) &&
13058 "shouldn't be called if type doesn't have a non-trivial C struct");
13059 if (auto *ILE
= dyn_cast
<InitListExpr
>(Init
)) {
13060 for (auto *I
: ILE
->inits()) {
13061 if (!I
->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
13062 !I
->getType().hasNonTrivialToPrimitiveCopyCUnion())
13064 SourceLocation SL
= I
->getExprLoc();
13065 checkNonTrivialCUnionInInitializer(I
, SL
.isValid() ? SL
: Loc
);
13070 if (isa
<ImplicitValueInitExpr
>(Init
)) {
13071 if (InitType
.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13072 checkNonTrivialCUnion(InitType
, Loc
, NTCUC_DefaultInitializedObject
,
13075 // Assume all other explicit initializers involving copying some existing
13077 // TODO: ignore any explicit initializers where we can guarantee
13079 if (InitType
.hasNonTrivialToPrimitiveCopyCUnion())
13080 checkNonTrivialCUnion(InitType
, Loc
, NTCUC_CopyInit
, NTCUK_Copy
);
13086 bool shouldIgnoreForRecordTriviality(const FieldDecl
*FD
) {
13087 // Ignore unavailable fields. A field can be marked as unavailable explicitly
13088 // in the source code or implicitly by the compiler if it is in a union
13089 // defined in a system header and has non-trivial ObjC ownership
13090 // qualifications. We don't want those fields to participate in determining
13091 // whether the containing union is non-trivial.
13092 return FD
->hasAttr
<UnavailableAttr
>();
13095 struct DiagNonTrivalCUnionDefaultInitializeVisitor
13096 : DefaultInitializedTypeVisitor
<DiagNonTrivalCUnionDefaultInitializeVisitor
,
13099 DefaultInitializedTypeVisitor
<DiagNonTrivalCUnionDefaultInitializeVisitor
,
13102 DiagNonTrivalCUnionDefaultInitializeVisitor(
13103 QualType OrigTy
, SourceLocation OrigLoc
,
13104 Sema::NonTrivialCUnionContext UseContext
, Sema
&S
)
13105 : OrigTy(OrigTy
), OrigLoc(OrigLoc
), UseContext(UseContext
), S(S
) {}
13107 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK
, QualType QT
,
13108 const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13109 if (const auto *AT
= S
.Context
.getAsArrayType(QT
))
13110 return this->asDerived().visit(S
.Context
.getBaseElementType(AT
), FD
,
13111 InNonTrivialUnion
);
13112 return Super::visitWithKind(PDIK
, QT
, FD
, InNonTrivialUnion
);
13115 void visitARCStrong(QualType QT
, const FieldDecl
*FD
,
13116 bool InNonTrivialUnion
) {
13117 if (InNonTrivialUnion
)
13118 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13119 << 1 << 0 << QT
<< FD
->getName();
13122 void visitARCWeak(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13123 if (InNonTrivialUnion
)
13124 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13125 << 1 << 0 << QT
<< FD
->getName();
13128 void visitStruct(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13129 const RecordDecl
*RD
= QT
->castAs
<RecordType
>()->getDecl();
13130 if (RD
->isUnion()) {
13131 if (OrigLoc
.isValid()) {
13132 bool IsUnion
= false;
13133 if (auto *OrigRD
= OrigTy
->getAsRecordDecl())
13134 IsUnion
= OrigRD
->isUnion();
13135 S
.Diag(OrigLoc
, diag::err_non_trivial_c_union_in_invalid_context
)
13136 << 0 << OrigTy
<< IsUnion
<< UseContext
;
13137 // Reset OrigLoc so that this diagnostic is emitted only once.
13138 OrigLoc
= SourceLocation();
13140 InNonTrivialUnion
= true;
13143 if (InNonTrivialUnion
)
13144 S
.Diag(RD
->getLocation(), diag::note_non_trivial_c_union
)
13145 << 0 << 0 << QT
.getUnqualifiedType() << "";
13147 for (const FieldDecl
*FD
: RD
->fields())
13148 if (!shouldIgnoreForRecordTriviality(FD
))
13149 asDerived().visit(FD
->getType(), FD
, InNonTrivialUnion
);
13152 void visitTrivial(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {}
13154 // The non-trivial C union type or the struct/union type that contains a
13155 // non-trivial C union.
13157 SourceLocation OrigLoc
;
13158 Sema::NonTrivialCUnionContext UseContext
;
13162 struct DiagNonTrivalCUnionDestructedTypeVisitor
13163 : DestructedTypeVisitor
<DiagNonTrivalCUnionDestructedTypeVisitor
, void> {
13165 DestructedTypeVisitor
<DiagNonTrivalCUnionDestructedTypeVisitor
, void>;
13167 DiagNonTrivalCUnionDestructedTypeVisitor(
13168 QualType OrigTy
, SourceLocation OrigLoc
,
13169 Sema::NonTrivialCUnionContext UseContext
, Sema
&S
)
13170 : OrigTy(OrigTy
), OrigLoc(OrigLoc
), UseContext(UseContext
), S(S
) {}
13172 void visitWithKind(QualType::DestructionKind DK
, QualType QT
,
13173 const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13174 if (const auto *AT
= S
.Context
.getAsArrayType(QT
))
13175 return this->asDerived().visit(S
.Context
.getBaseElementType(AT
), FD
,
13176 InNonTrivialUnion
);
13177 return Super::visitWithKind(DK
, QT
, FD
, InNonTrivialUnion
);
13180 void visitARCStrong(QualType QT
, const FieldDecl
*FD
,
13181 bool InNonTrivialUnion
) {
13182 if (InNonTrivialUnion
)
13183 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13184 << 1 << 1 << QT
<< FD
->getName();
13187 void visitARCWeak(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13188 if (InNonTrivialUnion
)
13189 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13190 << 1 << 1 << QT
<< FD
->getName();
13193 void visitStruct(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13194 const RecordDecl
*RD
= QT
->castAs
<RecordType
>()->getDecl();
13195 if (RD
->isUnion()) {
13196 if (OrigLoc
.isValid()) {
13197 bool IsUnion
= false;
13198 if (auto *OrigRD
= OrigTy
->getAsRecordDecl())
13199 IsUnion
= OrigRD
->isUnion();
13200 S
.Diag(OrigLoc
, diag::err_non_trivial_c_union_in_invalid_context
)
13201 << 1 << OrigTy
<< IsUnion
<< UseContext
;
13202 // Reset OrigLoc so that this diagnostic is emitted only once.
13203 OrigLoc
= SourceLocation();
13205 InNonTrivialUnion
= true;
13208 if (InNonTrivialUnion
)
13209 S
.Diag(RD
->getLocation(), diag::note_non_trivial_c_union
)
13210 << 0 << 1 << QT
.getUnqualifiedType() << "";
13212 for (const FieldDecl
*FD
: RD
->fields())
13213 if (!shouldIgnoreForRecordTriviality(FD
))
13214 asDerived().visit(FD
->getType(), FD
, InNonTrivialUnion
);
13217 void visitTrivial(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {}
13218 void visitCXXDestructor(QualType QT
, const FieldDecl
*FD
,
13219 bool InNonTrivialUnion
) {}
13221 // The non-trivial C union type or the struct/union type that contains a
13222 // non-trivial C union.
13224 SourceLocation OrigLoc
;
13225 Sema::NonTrivialCUnionContext UseContext
;
13229 struct DiagNonTrivalCUnionCopyVisitor
13230 : CopiedTypeVisitor
<DiagNonTrivalCUnionCopyVisitor
, false, void> {
13231 using Super
= CopiedTypeVisitor
<DiagNonTrivalCUnionCopyVisitor
, false, void>;
13233 DiagNonTrivalCUnionCopyVisitor(QualType OrigTy
, SourceLocation OrigLoc
,
13234 Sema::NonTrivialCUnionContext UseContext
,
13236 : OrigTy(OrigTy
), OrigLoc(OrigLoc
), UseContext(UseContext
), S(S
) {}
13238 void visitWithKind(QualType::PrimitiveCopyKind PCK
, QualType QT
,
13239 const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13240 if (const auto *AT
= S
.Context
.getAsArrayType(QT
))
13241 return this->asDerived().visit(S
.Context
.getBaseElementType(AT
), FD
,
13242 InNonTrivialUnion
);
13243 return Super::visitWithKind(PCK
, QT
, FD
, InNonTrivialUnion
);
13246 void visitARCStrong(QualType QT
, const FieldDecl
*FD
,
13247 bool InNonTrivialUnion
) {
13248 if (InNonTrivialUnion
)
13249 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13250 << 1 << 2 << QT
<< FD
->getName();
13253 void visitARCWeak(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13254 if (InNonTrivialUnion
)
13255 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13256 << 1 << 2 << QT
<< FD
->getName();
13259 void visitStruct(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13260 const RecordDecl
*RD
= QT
->castAs
<RecordType
>()->getDecl();
13261 if (RD
->isUnion()) {
13262 if (OrigLoc
.isValid()) {
13263 bool IsUnion
= false;
13264 if (auto *OrigRD
= OrigTy
->getAsRecordDecl())
13265 IsUnion
= OrigRD
->isUnion();
13266 S
.Diag(OrigLoc
, diag::err_non_trivial_c_union_in_invalid_context
)
13267 << 2 << OrigTy
<< IsUnion
<< UseContext
;
13268 // Reset OrigLoc so that this diagnostic is emitted only once.
13269 OrigLoc
= SourceLocation();
13271 InNonTrivialUnion
= true;
13274 if (InNonTrivialUnion
)
13275 S
.Diag(RD
->getLocation(), diag::note_non_trivial_c_union
)
13276 << 0 << 2 << QT
.getUnqualifiedType() << "";
13278 for (const FieldDecl
*FD
: RD
->fields())
13279 if (!shouldIgnoreForRecordTriviality(FD
))
13280 asDerived().visit(FD
->getType(), FD
, InNonTrivialUnion
);
13283 void preVisit(QualType::PrimitiveCopyKind PCK
, QualType QT
,
13284 const FieldDecl
*FD
, bool InNonTrivialUnion
) {}
13285 void visitTrivial(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {}
13286 void visitVolatileTrivial(QualType QT
, const FieldDecl
*FD
,
13287 bool InNonTrivialUnion
) {}
13289 // The non-trivial C union type or the struct/union type that contains a
13290 // non-trivial C union.
13292 SourceLocation OrigLoc
;
13293 Sema::NonTrivialCUnionContext UseContext
;
13299 void Sema::checkNonTrivialCUnion(QualType QT
, SourceLocation Loc
,
13300 NonTrivialCUnionContext UseContext
,
13301 unsigned NonTrivialKind
) {
13302 assert((QT
.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13303 QT
.hasNonTrivialToPrimitiveDestructCUnion() ||
13304 QT
.hasNonTrivialToPrimitiveCopyCUnion()) &&
13305 "shouldn't be called if type doesn't have a non-trivial C union");
13307 if ((NonTrivialKind
& NTCUK_Init
) &&
13308 QT
.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13309 DiagNonTrivalCUnionDefaultInitializeVisitor(QT
, Loc
, UseContext
, *this)
13310 .visit(QT
, nullptr, false);
13311 if ((NonTrivialKind
& NTCUK_Destruct
) &&
13312 QT
.hasNonTrivialToPrimitiveDestructCUnion())
13313 DiagNonTrivalCUnionDestructedTypeVisitor(QT
, Loc
, UseContext
, *this)
13314 .visit(QT
, nullptr, false);
13315 if ((NonTrivialKind
& NTCUK_Copy
) && QT
.hasNonTrivialToPrimitiveCopyCUnion())
13316 DiagNonTrivalCUnionCopyVisitor(QT
, Loc
, UseContext
, *this)
13317 .visit(QT
, nullptr, false);
13320 /// AddInitializerToDecl - Adds the initializer Init to the
13321 /// declaration dcl. If DirectInit is true, this is C++ direct
13322 /// initialization rather than copy initialization.
13323 void Sema::AddInitializerToDecl(Decl
*RealDecl
, Expr
*Init
, bool DirectInit
) {
13324 // If there is no declaration, there was an error parsing it. Just ignore
13325 // the initializer.
13326 if (!RealDecl
|| RealDecl
->isInvalidDecl()) {
13327 CorrectDelayedTyposInExpr(Init
, dyn_cast_or_null
<VarDecl
>(RealDecl
));
13331 if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(RealDecl
)) {
13332 // Pure-specifiers are handled in ActOnPureSpecifier.
13333 Diag(Method
->getLocation(), diag::err_member_function_initialization
)
13334 << Method
->getDeclName() << Init
->getSourceRange();
13335 Method
->setInvalidDecl();
13339 VarDecl
*VDecl
= dyn_cast
<VarDecl
>(RealDecl
);
13341 assert(!isa
<FieldDecl
>(RealDecl
) && "field init shouldn't get here");
13342 Diag(RealDecl
->getLocation(), diag::err_illegal_initializer
);
13343 RealDecl
->setInvalidDecl();
13347 // WebAssembly tables can't be used to initialise a variable.
13348 if (Init
&& !Init
->getType().isNull() &&
13349 Init
->getType()->isWebAssemblyTableType()) {
13350 Diag(Init
->getExprLoc(), diag::err_wasm_table_art
) << 0;
13351 VDecl
->setInvalidDecl();
13355 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
13356 if (VDecl
->getType()->isUndeducedType()) {
13357 // Attempt typo correction early so that the type of the init expression can
13358 // be deduced based on the chosen correction if the original init contains a
13360 ExprResult Res
= CorrectDelayedTyposInExpr(Init
, VDecl
);
13361 if (!Res
.isUsable()) {
13362 // There are unresolved typos in Init, just drop them.
13363 // FIXME: improve the recovery strategy to preserve the Init.
13364 RealDecl
->setInvalidDecl();
13367 if (Res
.get()->containsErrors()) {
13368 // Invalidate the decl as we don't know the type for recovery-expr yet.
13369 RealDecl
->setInvalidDecl();
13370 VDecl
->setInit(Res
.get());
13375 if (DeduceVariableDeclarationType(VDecl
, DirectInit
, Init
))
13379 // dllimport cannot be used on variable definitions.
13380 if (VDecl
->hasAttr
<DLLImportAttr
>() && !VDecl
->isStaticDataMember()) {
13381 Diag(VDecl
->getLocation(), diag::err_attribute_dllimport_data_definition
);
13382 VDecl
->setInvalidDecl();
13386 // C99 6.7.8p5. If the declaration of an identifier has block scope, and
13387 // the identifier has external or internal linkage, the declaration shall
13388 // have no initializer for the identifier.
13389 // C++14 [dcl.init]p5 is the same restriction for C++.
13390 if (VDecl
->isLocalVarDecl() && VDecl
->hasExternalStorage()) {
13391 Diag(VDecl
->getLocation(), diag::err_block_extern_cant_init
);
13392 VDecl
->setInvalidDecl();
13396 if (!VDecl
->getType()->isDependentType()) {
13397 // A definition must end up with a complete type, which means it must be
13398 // complete with the restriction that an array type might be completed by
13399 // the initializer; note that later code assumes this restriction.
13400 QualType BaseDeclType
= VDecl
->getType();
13401 if (const ArrayType
*Array
= Context
.getAsIncompleteArrayType(BaseDeclType
))
13402 BaseDeclType
= Array
->getElementType();
13403 if (RequireCompleteType(VDecl
->getLocation(), BaseDeclType
,
13404 diag::err_typecheck_decl_incomplete_type
)) {
13405 RealDecl
->setInvalidDecl();
13409 // The variable can not have an abstract class type.
13410 if (RequireNonAbstractType(VDecl
->getLocation(), VDecl
->getType(),
13411 diag::err_abstract_type_in_decl
,
13412 AbstractVariableType
))
13413 VDecl
->setInvalidDecl();
13416 // C++ [module.import/6] external definitions are not permitted in header
13418 if (getLangOpts().CPlusPlusModules
&& currentModuleIsHeaderUnit() &&
13419 !VDecl
->isInvalidDecl() && VDecl
->isThisDeclarationADefinition() &&
13420 VDecl
->getFormalLinkage() == Linkage::External
&& !VDecl
->isInline() &&
13421 !VDecl
->isTemplated() && !isa
<VarTemplateSpecializationDecl
>(VDecl
)) {
13422 Diag(VDecl
->getLocation(), diag::err_extern_def_in_header_unit
);
13423 VDecl
->setInvalidDecl();
13426 // If adding the initializer will turn this declaration into a definition,
13427 // and we already have a definition for this variable, diagnose or otherwise
13428 // handle the situation.
13429 if (VarDecl
*Def
= VDecl
->getDefinition())
13430 if (Def
!= VDecl
&&
13431 (!VDecl
->isStaticDataMember() || VDecl
->isOutOfLine()) &&
13432 !VDecl
->isThisDeclarationADemotedDefinition() &&
13433 checkVarDeclRedefinition(Def
, VDecl
))
13436 if (getLangOpts().CPlusPlus
) {
13437 // C++ [class.static.data]p4
13438 // If a static data member is of const integral or const
13439 // enumeration type, its declaration in the class definition can
13440 // specify a constant-initializer which shall be an integral
13441 // constant expression (5.19). In that case, the member can appear
13442 // in integral constant expressions. The member shall still be
13443 // defined in a namespace scope if it is used in the program and the
13444 // namespace scope definition shall not contain an initializer.
13446 // We already performed a redefinition check above, but for static
13447 // data members we also need to check whether there was an in-class
13448 // declaration with an initializer.
13449 if (VDecl
->isStaticDataMember() && VDecl
->getCanonicalDecl()->hasInit()) {
13450 Diag(Init
->getExprLoc(), diag::err_static_data_member_reinitialization
)
13451 << VDecl
->getDeclName();
13452 Diag(VDecl
->getCanonicalDecl()->getInit()->getExprLoc(),
13453 diag::note_previous_initializer
)
13458 if (VDecl
->hasLocalStorage())
13459 setFunctionHasBranchProtectedScope();
13461 if (DiagnoseUnexpandedParameterPack(Init
, UPPC_Initializer
)) {
13462 VDecl
->setInvalidDecl();
13467 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
13468 // a kernel function cannot be initialized."
13469 if (VDecl
->getType().getAddressSpace() == LangAS::opencl_local
) {
13470 Diag(VDecl
->getLocation(), diag::err_local_cant_init
);
13471 VDecl
->setInvalidDecl();
13475 // The LoaderUninitialized attribute acts as a definition (of undef).
13476 if (VDecl
->hasAttr
<LoaderUninitializedAttr
>()) {
13477 Diag(VDecl
->getLocation(), diag::err_loader_uninitialized_cant_init
);
13478 VDecl
->setInvalidDecl();
13482 // Get the decls type and save a reference for later, since
13483 // CheckInitializerTypes may change it.
13484 QualType DclT
= VDecl
->getType(), SavT
= DclT
;
13486 // Expressions default to 'id' when we're in a debugger
13487 // and we are assigning it to a variable of Objective-C pointer type.
13488 if (getLangOpts().DebuggerCastResultToId
&& DclT
->isObjCObjectPointerType() &&
13489 Init
->getType() == Context
.UnknownAnyTy
) {
13490 ExprResult Result
= forceUnknownAnyToType(Init
, Context
.getObjCIdType());
13491 if (Result
.isInvalid()) {
13492 VDecl
->setInvalidDecl();
13495 Init
= Result
.get();
13498 // Perform the initialization.
13499 ParenListExpr
*CXXDirectInit
= dyn_cast
<ParenListExpr
>(Init
);
13500 bool IsParenListInit
= false;
13501 if (!VDecl
->isInvalidDecl()) {
13502 InitializedEntity Entity
= InitializedEntity::InitializeVariable(VDecl
);
13503 InitializationKind Kind
= InitializationKind::CreateForInit(
13504 VDecl
->getLocation(), DirectInit
, Init
);
13506 MultiExprArg Args
= Init
;
13508 Args
= MultiExprArg(CXXDirectInit
->getExprs(),
13509 CXXDirectInit
->getNumExprs());
13511 // Try to correct any TypoExprs in the initialization arguments.
13512 for (size_t Idx
= 0; Idx
< Args
.size(); ++Idx
) {
13513 ExprResult Res
= CorrectDelayedTyposInExpr(
13514 Args
[Idx
], VDecl
, /*RecoverUncorrectedTypos=*/true,
13515 [this, Entity
, Kind
](Expr
*E
) {
13516 InitializationSequence
Init(*this, Entity
, Kind
, MultiExprArg(E
));
13517 return Init
.Failed() ? ExprError() : E
;
13519 if (Res
.isInvalid()) {
13520 VDecl
->setInvalidDecl();
13521 } else if (Res
.get() != Args
[Idx
]) {
13522 Args
[Idx
] = Res
.get();
13525 if (VDecl
->isInvalidDecl())
13528 InitializationSequence
InitSeq(*this, Entity
, Kind
, Args
,
13529 /*TopLevelOfInitList=*/false,
13530 /*TreatUnavailableAsInvalid=*/false);
13531 ExprResult Result
= InitSeq
.Perform(*this, Entity
, Kind
, Args
, &DclT
);
13532 if (Result
.isInvalid()) {
13533 // If the provided initializer fails to initialize the var decl,
13534 // we attach a recovery expr for better recovery.
13535 auto RecoveryExpr
=
13536 CreateRecoveryExpr(Init
->getBeginLoc(), Init
->getEndLoc(), Args
);
13537 if (RecoveryExpr
.get())
13538 VDecl
->setInit(RecoveryExpr
.get());
13542 Init
= Result
.getAs
<Expr
>();
13543 IsParenListInit
= !InitSeq
.steps().empty() &&
13544 InitSeq
.step_begin()->Kind
==
13545 InitializationSequence::SK_ParenthesizedListInit
;
13546 QualType VDeclType
= VDecl
->getType();
13547 if (Init
&& !Init
->getType().isNull() &&
13548 !Init
->getType()->isDependentType() && !VDeclType
->isDependentType() &&
13549 Context
.getAsIncompleteArrayType(VDeclType
) &&
13550 Context
.getAsIncompleteArrayType(Init
->getType())) {
13551 // Bail out if it is not possible to deduce array size from the
13553 Diag(VDecl
->getLocation(), diag::err_typecheck_decl_incomplete_type
)
13555 VDecl
->setInvalidDecl();
13560 // Check for self-references within variable initializers.
13561 // Variables declared within a function/method body (except for references)
13562 // are handled by a dataflow analysis.
13563 // This is undefined behavior in C++, but valid in C.
13564 if (getLangOpts().CPlusPlus
)
13565 if (!VDecl
->hasLocalStorage() || VDecl
->getType()->isRecordType() ||
13566 VDecl
->getType()->isReferenceType())
13567 CheckSelfReference(*this, RealDecl
, Init
, DirectInit
);
13569 // If the type changed, it means we had an incomplete type that was
13570 // completed by the initializer. For example:
13571 // int ary[] = { 1, 3, 5 };
13572 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
13573 if (!VDecl
->isInvalidDecl() && (DclT
!= SavT
))
13574 VDecl
->setType(DclT
);
13576 if (!VDecl
->isInvalidDecl()) {
13577 checkUnsafeAssigns(VDecl
->getLocation(), VDecl
->getType(), Init
);
13579 if (VDecl
->hasAttr
<BlocksAttr
>())
13580 checkRetainCycles(VDecl
, Init
);
13582 // It is safe to assign a weak reference into a strong variable.
13583 // Although this code can still have problems:
13584 // id x = self.weakProp;
13585 // id y = self.weakProp;
13586 // we do not warn to warn spuriously when 'x' and 'y' are on separate
13587 // paths through the function. This should be revisited if
13588 // -Wrepeated-use-of-weak is made flow-sensitive.
13589 if (FunctionScopeInfo
*FSI
= getCurFunction())
13590 if ((VDecl
->getType().getObjCLifetime() == Qualifiers::OCL_Strong
||
13591 VDecl
->getType().isNonWeakInMRRWithObjCWeak(Context
)) &&
13592 !Diags
.isIgnored(diag::warn_arc_repeated_use_of_weak
,
13593 Init
->getBeginLoc()))
13594 FSI
->markSafeWeakUse(Init
);
13597 // The initialization is usually a full-expression.
13599 // FIXME: If this is a braced initialization of an aggregate, it is not
13600 // an expression, and each individual field initializer is a separate
13601 // full-expression. For instance, in:
13603 // struct Temp { ~Temp(); };
13604 // struct S { S(Temp); };
13605 // struct T { S a, b; } t = { Temp(), Temp() }
13607 // we should destroy the first Temp before constructing the second.
13608 ExprResult Result
=
13609 ActOnFinishFullExpr(Init
, VDecl
->getLocation(),
13610 /*DiscardedValue*/ false, VDecl
->isConstexpr());
13611 if (Result
.isInvalid()) {
13612 VDecl
->setInvalidDecl();
13615 Init
= Result
.get();
13617 // Attach the initializer to the decl.
13618 VDecl
->setInit(Init
);
13620 if (VDecl
->isLocalVarDecl()) {
13621 // Don't check the initializer if the declaration is malformed.
13622 if (VDecl
->isInvalidDecl()) {
13625 // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
13626 // This is true even in C++ for OpenCL.
13627 } else if (VDecl
->getType().getAddressSpace() == LangAS::opencl_constant
) {
13628 CheckForConstantInitializer(Init
, DclT
);
13630 // Otherwise, C++ does not restrict the initializer.
13631 } else if (getLangOpts().CPlusPlus
) {
13634 // C99 6.7.8p4: All the expressions in an initializer for an object that has
13635 // static storage duration shall be constant expressions or string literals.
13636 } else if (VDecl
->getStorageClass() == SC_Static
) {
13637 CheckForConstantInitializer(Init
, DclT
);
13639 // C89 is stricter than C99 for aggregate initializers.
13640 // C89 6.5.7p3: All the expressions [...] in an initializer list
13641 // for an object that has aggregate or union type shall be
13642 // constant expressions.
13643 } else if (!getLangOpts().C99
&& VDecl
->getType()->isAggregateType() &&
13644 isa
<InitListExpr
>(Init
)) {
13645 const Expr
*Culprit
;
13646 if (!Init
->isConstantInitializer(Context
, false, &Culprit
)) {
13647 Diag(Culprit
->getExprLoc(),
13648 diag::ext_aggregate_init_not_constant
)
13649 << Culprit
->getSourceRange();
13653 if (auto *E
= dyn_cast
<ExprWithCleanups
>(Init
))
13654 if (auto *BE
= dyn_cast
<BlockExpr
>(E
->getSubExpr()->IgnoreParens()))
13655 if (VDecl
->hasLocalStorage())
13656 BE
->getBlockDecl()->setCanAvoidCopyToHeap();
13657 } else if (VDecl
->isStaticDataMember() && !VDecl
->isInline() &&
13658 VDecl
->getLexicalDeclContext()->isRecord()) {
13659 // This is an in-class initialization for a static data member, e.g.,
13662 // static const int value = 17;
13665 // C++ [class.mem]p4:
13666 // A member-declarator can contain a constant-initializer only
13667 // if it declares a static member (9.4) of const integral or
13668 // const enumeration type, see 9.4.2.
13670 // C++11 [class.static.data]p3:
13671 // If a non-volatile non-inline const static data member is of integral
13672 // or enumeration type, its declaration in the class definition can
13673 // specify a brace-or-equal-initializer in which every initializer-clause
13674 // that is an assignment-expression is a constant expression. A static
13675 // data member of literal type can be declared in the class definition
13676 // with the constexpr specifier; if so, its declaration shall specify a
13677 // brace-or-equal-initializer in which every initializer-clause that is
13678 // an assignment-expression is a constant expression.
13680 // Do nothing on dependent types.
13681 if (DclT
->isDependentType()) {
13683 // Allow any 'static constexpr' members, whether or not they are of literal
13684 // type. We separately check that every constexpr variable is of literal
13686 } else if (VDecl
->isConstexpr()) {
13688 // Require constness.
13689 } else if (!DclT
.isConstQualified()) {
13690 Diag(VDecl
->getLocation(), diag::err_in_class_initializer_non_const
)
13691 << Init
->getSourceRange();
13692 VDecl
->setInvalidDecl();
13694 // We allow integer constant expressions in all cases.
13695 } else if (DclT
->isIntegralOrEnumerationType()) {
13696 // Check whether the expression is a constant expression.
13697 SourceLocation Loc
;
13698 if (getLangOpts().CPlusPlus11
&& DclT
.isVolatileQualified())
13699 // In C++11, a non-constexpr const static data member with an
13700 // in-class initializer cannot be volatile.
13701 Diag(VDecl
->getLocation(), diag::err_in_class_initializer_volatile
);
13702 else if (Init
->isValueDependent())
13703 ; // Nothing to check.
13704 else if (Init
->isIntegerConstantExpr(Context
, &Loc
))
13705 ; // Ok, it's an ICE!
13706 else if (Init
->getType()->isScopedEnumeralType() &&
13707 Init
->isCXX11ConstantExpr(Context
))
13708 ; // Ok, it is a scoped-enum constant expression.
13709 else if (Init
->isEvaluatable(Context
)) {
13710 // If we can constant fold the initializer through heroics, accept it,
13711 // but report this as a use of an extension for -pedantic.
13712 Diag(Loc
, diag::ext_in_class_initializer_non_constant
)
13713 << Init
->getSourceRange();
13715 // Otherwise, this is some crazy unknown case. Report the issue at the
13716 // location provided by the isIntegerConstantExpr failed check.
13717 Diag(Loc
, diag::err_in_class_initializer_non_constant
)
13718 << Init
->getSourceRange();
13719 VDecl
->setInvalidDecl();
13722 // We allow foldable floating-point constants as an extension.
13723 } else if (DclT
->isFloatingType()) { // also permits complex, which is ok
13724 // In C++98, this is a GNU extension. In C++11, it is not, but we support
13725 // it anyway and provide a fixit to add the 'constexpr'.
13726 if (getLangOpts().CPlusPlus11
) {
13727 Diag(VDecl
->getLocation(),
13728 diag::ext_in_class_initializer_float_type_cxx11
)
13729 << DclT
<< Init
->getSourceRange();
13730 Diag(VDecl
->getBeginLoc(),
13731 diag::note_in_class_initializer_float_type_cxx11
)
13732 << FixItHint::CreateInsertion(VDecl
->getBeginLoc(), "constexpr ");
13734 Diag(VDecl
->getLocation(), diag::ext_in_class_initializer_float_type
)
13735 << DclT
<< Init
->getSourceRange();
13737 if (!Init
->isValueDependent() && !Init
->isEvaluatable(Context
)) {
13738 Diag(Init
->getExprLoc(), diag::err_in_class_initializer_non_constant
)
13739 << Init
->getSourceRange();
13740 VDecl
->setInvalidDecl();
13744 // Suggest adding 'constexpr' in C++11 for literal types.
13745 } else if (getLangOpts().CPlusPlus11
&& DclT
->isLiteralType(Context
)) {
13746 Diag(VDecl
->getLocation(), diag::err_in_class_initializer_literal_type
)
13747 << DclT
<< Init
->getSourceRange()
13748 << FixItHint::CreateInsertion(VDecl
->getBeginLoc(), "constexpr ");
13749 VDecl
->setConstexpr(true);
13752 Diag(VDecl
->getLocation(), diag::err_in_class_initializer_bad_type
)
13753 << DclT
<< Init
->getSourceRange();
13754 VDecl
->setInvalidDecl();
13756 } else if (VDecl
->isFileVarDecl()) {
13757 // In C, extern is typically used to avoid tentative definitions when
13758 // declaring variables in headers, but adding an intializer makes it a
13759 // definition. This is somewhat confusing, so GCC and Clang both warn on it.
13760 // In C++, extern is often used to give implictly static const variables
13761 // external linkage, so don't warn in that case. If selectany is present,
13762 // this might be header code intended for C and C++ inclusion, so apply the
13764 if (VDecl
->getStorageClass() == SC_Extern
&&
13765 ((!getLangOpts().CPlusPlus
&& !VDecl
->hasAttr
<SelectAnyAttr
>()) ||
13766 !Context
.getBaseElementType(VDecl
->getType()).isConstQualified()) &&
13767 !(getLangOpts().CPlusPlus
&& VDecl
->isExternC()) &&
13768 !isTemplateInstantiation(VDecl
->getTemplateSpecializationKind()))
13769 Diag(VDecl
->getLocation(), diag::warn_extern_init
);
13771 // In Microsoft C++ mode, a const variable defined in namespace scope has
13772 // external linkage by default if the variable is declared with
13773 // __declspec(dllexport).
13774 if (Context
.getTargetInfo().getCXXABI().isMicrosoft() &&
13775 getLangOpts().CPlusPlus
&& VDecl
->getType().isConstQualified() &&
13776 VDecl
->hasAttr
<DLLExportAttr
>() && VDecl
->getDefinition())
13777 VDecl
->setStorageClass(SC_Extern
);
13779 // C99 6.7.8p4. All file scoped initializers need to be constant.
13780 if (!getLangOpts().CPlusPlus
&& !VDecl
->isInvalidDecl())
13781 CheckForConstantInitializer(Init
, DclT
);
13784 QualType InitType
= Init
->getType();
13785 if (!InitType
.isNull() &&
13786 (InitType
.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13787 InitType
.hasNonTrivialToPrimitiveCopyCUnion()))
13788 checkNonTrivialCUnionInInitializer(Init
, Init
->getExprLoc());
13790 // We will represent direct-initialization similarly to copy-initialization:
13791 // int x(1); -as-> int x = 1;
13792 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
13794 // Clients that want to distinguish between the two forms, can check for
13795 // direct initializer using VarDecl::getInitStyle().
13796 // A major benefit is that clients that don't particularly care about which
13797 // exactly form was it (like the CodeGen) can handle both cases without
13798 // special case code.
13801 // The form of initialization (using parentheses or '=') is generally
13802 // insignificant, but does matter when the entity being initialized has a
13804 if (CXXDirectInit
) {
13805 assert(DirectInit
&& "Call-style initializer must be direct init.");
13806 VDecl
->setInitStyle(IsParenListInit
? VarDecl::ParenListInit
13807 : VarDecl::CallInit
);
13808 } else if (DirectInit
) {
13809 // This must be list-initialization. No other way is direct-initialization.
13810 VDecl
->setInitStyle(VarDecl::ListInit
);
13813 if (LangOpts
.OpenMP
&&
13814 (LangOpts
.OpenMPIsTargetDevice
|| !LangOpts
.OMPTargetTriples
.empty()) &&
13815 VDecl
->isFileVarDecl())
13816 DeclsToCheckForDeferredDiags
.insert(VDecl
);
13817 CheckCompleteVariableDeclaration(VDecl
);
13820 /// ActOnInitializerError - Given that there was an error parsing an
13821 /// initializer for the given declaration, try to at least re-establish
13822 /// invariants such as whether a variable's type is either dependent or
13824 void Sema::ActOnInitializerError(Decl
*D
) {
13825 // Our main concern here is re-establishing invariants like "a
13826 // variable's type is either dependent or complete".
13827 if (!D
|| D
->isInvalidDecl()) return;
13829 VarDecl
*VD
= dyn_cast
<VarDecl
>(D
);
13832 // Bindings are not usable if we can't make sense of the initializer.
13833 if (auto *DD
= dyn_cast
<DecompositionDecl
>(D
))
13834 for (auto *BD
: DD
->bindings())
13835 BD
->setInvalidDecl();
13837 // Auto types are meaningless if we can't make sense of the initializer.
13838 if (VD
->getType()->isUndeducedType()) {
13839 D
->setInvalidDecl();
13843 QualType Ty
= VD
->getType();
13844 if (Ty
->isDependentType()) return;
13846 // Require a complete type.
13847 if (RequireCompleteType(VD
->getLocation(),
13848 Context
.getBaseElementType(Ty
),
13849 diag::err_typecheck_decl_incomplete_type
)) {
13850 VD
->setInvalidDecl();
13854 // Require a non-abstract type.
13855 if (RequireNonAbstractType(VD
->getLocation(), Ty
,
13856 diag::err_abstract_type_in_decl
,
13857 AbstractVariableType
)) {
13858 VD
->setInvalidDecl();
13862 // Don't bother complaining about constructors or destructors,
13866 void Sema::ActOnUninitializedDecl(Decl
*RealDecl
) {
13867 // If there is no declaration, there was an error parsing it. Just ignore it.
13871 if (VarDecl
*Var
= dyn_cast
<VarDecl
>(RealDecl
)) {
13872 QualType Type
= Var
->getType();
13874 // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
13875 if (isa
<DecompositionDecl
>(RealDecl
)) {
13876 Diag(Var
->getLocation(), diag::err_decomp_decl_requires_init
) << Var
;
13877 Var
->setInvalidDecl();
13881 if (Type
->isUndeducedType() &&
13882 DeduceVariableDeclarationType(Var
, false, nullptr))
13885 // C++11 [class.static.data]p3: A static data member can be declared with
13886 // the constexpr specifier; if so, its declaration shall specify
13887 // a brace-or-equal-initializer.
13888 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
13889 // the definition of a variable [...] or the declaration of a static data
13891 if (Var
->isConstexpr() && !Var
->isThisDeclarationADefinition() &&
13892 !Var
->isThisDeclarationADemotedDefinition()) {
13893 if (Var
->isStaticDataMember()) {
13894 // C++1z removes the relevant rule; the in-class declaration is always
13895 // a definition there.
13896 if (!getLangOpts().CPlusPlus17
&&
13897 !Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
13898 Diag(Var
->getLocation(),
13899 diag::err_constexpr_static_mem_var_requires_init
)
13901 Var
->setInvalidDecl();
13905 Diag(Var
->getLocation(), diag::err_invalid_constexpr_var_decl
);
13906 Var
->setInvalidDecl();
13911 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
13913 if (!Var
->isInvalidDecl() &&
13914 Var
->getType().getAddressSpace() == LangAS::opencl_constant
&&
13915 Var
->getStorageClass() != SC_Extern
&& !Var
->getInit()) {
13916 bool HasConstExprDefaultConstructor
= false;
13917 if (CXXRecordDecl
*RD
= Var
->getType()->getAsCXXRecordDecl()) {
13918 for (auto *Ctor
: RD
->ctors()) {
13919 if (Ctor
->isConstexpr() && Ctor
->getNumParams() == 0 &&
13920 Ctor
->getMethodQualifiers().getAddressSpace() ==
13921 LangAS::opencl_constant
) {
13922 HasConstExprDefaultConstructor
= true;
13926 if (!HasConstExprDefaultConstructor
) {
13927 Diag(Var
->getLocation(), diag::err_opencl_constant_no_init
);
13928 Var
->setInvalidDecl();
13933 if (!Var
->isInvalidDecl() && RealDecl
->hasAttr
<LoaderUninitializedAttr
>()) {
13934 if (Var
->getStorageClass() == SC_Extern
) {
13935 Diag(Var
->getLocation(), diag::err_loader_uninitialized_extern_decl
)
13937 Var
->setInvalidDecl();
13940 if (RequireCompleteType(Var
->getLocation(), Var
->getType(),
13941 diag::err_typecheck_decl_incomplete_type
)) {
13942 Var
->setInvalidDecl();
13945 if (CXXRecordDecl
*RD
= Var
->getType()->getAsCXXRecordDecl()) {
13946 if (!RD
->hasTrivialDefaultConstructor()) {
13947 Diag(Var
->getLocation(), diag::err_loader_uninitialized_trivial_ctor
);
13948 Var
->setInvalidDecl();
13952 // The declaration is unitialized, no need for further checks.
13956 VarDecl::DefinitionKind DefKind
= Var
->isThisDeclarationADefinition();
13957 if (!Var
->isInvalidDecl() && DefKind
!= VarDecl::DeclarationOnly
&&
13958 Var
->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13959 checkNonTrivialCUnion(Var
->getType(), Var
->getLocation(),
13960 NTCUC_DefaultInitializedObject
, NTCUK_Init
);
13964 case VarDecl::Definition
:
13965 if (!Var
->isStaticDataMember() || !Var
->getAnyInitializer())
13968 // We have an out-of-line definition of a static data member
13969 // that has an in-class initializer, so we type-check this like
13974 case VarDecl::DeclarationOnly
:
13975 // It's only a declaration.
13977 // Block scope. C99 6.7p7: If an identifier for an object is
13978 // declared with no linkage (C99 6.2.2p6), the type for the
13979 // object shall be complete.
13980 if (!Type
->isDependentType() && Var
->isLocalVarDecl() &&
13981 !Var
->hasLinkage() && !Var
->isInvalidDecl() &&
13982 RequireCompleteType(Var
->getLocation(), Type
,
13983 diag::err_typecheck_decl_incomplete_type
))
13984 Var
->setInvalidDecl();
13986 // Make sure that the type is not abstract.
13987 if (!Type
->isDependentType() && !Var
->isInvalidDecl() &&
13988 RequireNonAbstractType(Var
->getLocation(), Type
,
13989 diag::err_abstract_type_in_decl
,
13990 AbstractVariableType
))
13991 Var
->setInvalidDecl();
13992 if (!Type
->isDependentType() && !Var
->isInvalidDecl() &&
13993 Var
->getStorageClass() == SC_PrivateExtern
) {
13994 Diag(Var
->getLocation(), diag::warn_private_extern
);
13995 Diag(Var
->getLocation(), diag::note_private_extern
);
13998 if (Context
.getTargetInfo().allowDebugInfoForExternalRef() &&
13999 !Var
->isInvalidDecl())
14000 ExternalDeclarations
.push_back(Var
);
14004 case VarDecl::TentativeDefinition
:
14005 // File scope. C99 6.9.2p2: A declaration of an identifier for an
14006 // object that has file scope without an initializer, and without a
14007 // storage-class specifier or with the storage-class specifier "static",
14008 // constitutes a tentative definition. Note: A tentative definition with
14009 // external linkage is valid (C99 6.2.2p5).
14010 if (!Var
->isInvalidDecl()) {
14011 if (const IncompleteArrayType
*ArrayT
14012 = Context
.getAsIncompleteArrayType(Type
)) {
14013 if (RequireCompleteSizedType(
14014 Var
->getLocation(), ArrayT
->getElementType(),
14015 diag::err_array_incomplete_or_sizeless_type
))
14016 Var
->setInvalidDecl();
14017 } else if (Var
->getStorageClass() == SC_Static
) {
14018 // C99 6.9.2p3: If the declaration of an identifier for an object is
14019 // a tentative definition and has internal linkage (C99 6.2.2p3), the
14020 // declared type shall not be an incomplete type.
14021 // NOTE: code such as the following
14022 // static struct s;
14023 // struct s { int a; };
14024 // is accepted by gcc. Hence here we issue a warning instead of
14025 // an error and we do not invalidate the static declaration.
14026 // NOTE: to avoid multiple warnings, only check the first declaration.
14027 if (Var
->isFirstDecl())
14028 RequireCompleteType(Var
->getLocation(), Type
,
14029 diag::ext_typecheck_decl_incomplete_type
);
14033 // Record the tentative definition; we're done.
14034 if (!Var
->isInvalidDecl())
14035 TentativeDefinitions
.push_back(Var
);
14039 // Provide a specific diagnostic for uninitialized variable
14040 // definitions with incomplete array type.
14041 if (Type
->isIncompleteArrayType()) {
14042 if (Var
->isConstexpr())
14043 Diag(Var
->getLocation(), diag::err_constexpr_var_requires_const_init
)
14046 Diag(Var
->getLocation(),
14047 diag::err_typecheck_incomplete_array_needs_initializer
);
14048 Var
->setInvalidDecl();
14052 // Provide a specific diagnostic for uninitialized variable
14053 // definitions with reference type.
14054 if (Type
->isReferenceType()) {
14055 Diag(Var
->getLocation(), diag::err_reference_var_requires_init
)
14056 << Var
<< SourceRange(Var
->getLocation(), Var
->getLocation());
14060 // Do not attempt to type-check the default initializer for a
14061 // variable with dependent type.
14062 if (Type
->isDependentType())
14065 if (Var
->isInvalidDecl())
14068 if (!Var
->hasAttr
<AliasAttr
>()) {
14069 if (RequireCompleteType(Var
->getLocation(),
14070 Context
.getBaseElementType(Type
),
14071 diag::err_typecheck_decl_incomplete_type
)) {
14072 Var
->setInvalidDecl();
14079 // The variable can not have an abstract class type.
14080 if (RequireNonAbstractType(Var
->getLocation(), Type
,
14081 diag::err_abstract_type_in_decl
,
14082 AbstractVariableType
)) {
14083 Var
->setInvalidDecl();
14087 // Check for jumps past the implicit initializer. C++0x
14088 // clarifies that this applies to a "variable with automatic
14089 // storage duration", not a "local variable".
14090 // C++11 [stmt.dcl]p3
14091 // A program that jumps from a point where a variable with automatic
14092 // storage duration is not in scope to a point where it is in scope is
14093 // ill-formed unless the variable has scalar type, class type with a
14094 // trivial default constructor and a trivial destructor, a cv-qualified
14095 // version of one of these types, or an array of one of the preceding
14096 // types and is declared without an initializer.
14097 if (getLangOpts().CPlusPlus
&& Var
->hasLocalStorage()) {
14098 if (const RecordType
*Record
14099 = Context
.getBaseElementType(Type
)->getAs
<RecordType
>()) {
14100 CXXRecordDecl
*CXXRecord
= cast
<CXXRecordDecl
>(Record
->getDecl());
14101 // Mark the function (if we're in one) for further checking even if the
14102 // looser rules of C++11 do not require such checks, so that we can
14103 // diagnose incompatibilities with C++98.
14104 if (!CXXRecord
->isPOD())
14105 setFunctionHasBranchProtectedScope();
14108 // In OpenCL, we can't initialize objects in the __local address space,
14109 // even implicitly, so don't synthesize an implicit initializer.
14110 if (getLangOpts().OpenCL
&&
14111 Var
->getType().getAddressSpace() == LangAS::opencl_local
)
14113 // C++03 [dcl.init]p9:
14114 // If no initializer is specified for an object, and the
14115 // object is of (possibly cv-qualified) non-POD class type (or
14116 // array thereof), the object shall be default-initialized; if
14117 // the object is of const-qualified type, the underlying class
14118 // type shall have a user-declared default
14119 // constructor. Otherwise, if no initializer is specified for
14120 // a non- static object, the object and its subobjects, if
14121 // any, have an indeterminate initial value); if the object
14122 // or any of its subobjects are of const-qualified type, the
14123 // program is ill-formed.
14124 // C++0x [dcl.init]p11:
14125 // If no initializer is specified for an object, the object is
14126 // default-initialized; [...].
14127 InitializedEntity Entity
= InitializedEntity::InitializeVariable(Var
);
14128 InitializationKind Kind
14129 = InitializationKind::CreateDefault(Var
->getLocation());
14131 InitializationSequence
InitSeq(*this, Entity
, Kind
, std::nullopt
);
14132 ExprResult Init
= InitSeq
.Perform(*this, Entity
, Kind
, std::nullopt
);
14135 Var
->setInit(MaybeCreateExprWithCleanups(Init
.get()));
14136 // This is important for template substitution.
14137 Var
->setInitStyle(VarDecl::CallInit
);
14138 } else if (Init
.isInvalid()) {
14139 // If default-init fails, attach a recovery-expr initializer to track
14140 // that initialization was attempted and failed.
14141 auto RecoveryExpr
=
14142 CreateRecoveryExpr(Var
->getLocation(), Var
->getLocation(), {});
14143 if (RecoveryExpr
.get())
14144 Var
->setInit(RecoveryExpr
.get());
14147 CheckCompleteVariableDeclaration(Var
);
14151 void Sema::ActOnCXXForRangeDecl(Decl
*D
) {
14152 // If there is no declaration, there was an error parsing it. Ignore it.
14156 VarDecl
*VD
= dyn_cast
<VarDecl
>(D
);
14158 Diag(D
->getLocation(), diag::err_for_range_decl_must_be_var
);
14159 D
->setInvalidDecl();
14163 VD
->setCXXForRangeDecl(true);
14165 // for-range-declaration cannot be given a storage class specifier.
14167 switch (VD
->getStorageClass()) {
14176 case SC_PrivateExtern
:
14187 // for-range-declaration cannot be given a storage class specifier con't.
14188 switch (VD
->getTSCSpec()) {
14189 case TSCS_thread_local
:
14192 case TSCS___thread
:
14193 case TSCS__Thread_local
:
14194 case TSCS_unspecified
:
14199 Diag(VD
->getOuterLocStart(), diag::err_for_range_storage_class
)
14201 D
->setInvalidDecl();
14205 StmtResult
Sema::ActOnCXXForRangeIdentifier(Scope
*S
, SourceLocation IdentLoc
,
14206 IdentifierInfo
*Ident
,
14207 ParsedAttributes
&Attrs
) {
14208 // C++1y [stmt.iter]p1:
14209 // A range-based for statement of the form
14210 // for ( for-range-identifier : for-range-initializer ) statement
14211 // is equivalent to
14212 // for ( auto&& for-range-identifier : for-range-initializer ) statement
14213 DeclSpec
DS(Attrs
.getPool().getFactory());
14215 const char *PrevSpec
;
14217 DS
.SetTypeSpecType(DeclSpec::TST_auto
, IdentLoc
, PrevSpec
, DiagID
,
14218 getPrintingPolicy());
14220 Declarator
D(DS
, ParsedAttributesView::none(), DeclaratorContext::ForInit
);
14221 D
.SetIdentifier(Ident
, IdentLoc
);
14222 D
.takeAttributes(Attrs
);
14224 D
.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc
, /*lvalue*/ false),
14226 Decl
*Var
= ActOnDeclarator(S
, D
);
14227 cast
<VarDecl
>(Var
)->setCXXForRangeDecl(true);
14228 FinalizeDeclaration(Var
);
14229 return ActOnDeclStmt(FinalizeDeclaratorGroup(S
, DS
, Var
), IdentLoc
,
14230 Attrs
.Range
.getEnd().isValid() ? Attrs
.Range
.getEnd()
14234 void Sema::CheckCompleteVariableDeclaration(VarDecl
*var
) {
14235 if (var
->isInvalidDecl()) return;
14237 MaybeAddCUDAConstantAttr(var
);
14239 if (getLangOpts().OpenCL
) {
14240 // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
14242 if (var
->getTypeSourceInfo()->getType()->isBlockPointerType() &&
14244 Diag(var
->getLocation(), diag::err_opencl_invalid_block_declaration
)
14246 var
->setInvalidDecl();
14251 // In Objective-C, don't allow jumps past the implicit initialization of a
14252 // local retaining variable.
14253 if (getLangOpts().ObjC
&&
14254 var
->hasLocalStorage()) {
14255 switch (var
->getType().getObjCLifetime()) {
14256 case Qualifiers::OCL_None
:
14257 case Qualifiers::OCL_ExplicitNone
:
14258 case Qualifiers::OCL_Autoreleasing
:
14261 case Qualifiers::OCL_Weak
:
14262 case Qualifiers::OCL_Strong
:
14263 setFunctionHasBranchProtectedScope();
14268 if (var
->hasLocalStorage() &&
14269 var
->getType().isDestructedType() == QualType::DK_nontrivial_c_struct
)
14270 setFunctionHasBranchProtectedScope();
14272 // Warn about externally-visible variables being defined without a
14273 // prior declaration. We only want to do this for global
14274 // declarations, but we also specifically need to avoid doing it for
14275 // class members because the linkage of an anonymous class can
14276 // change if it's later given a typedef name.
14277 if (var
->isThisDeclarationADefinition() &&
14278 var
->getDeclContext()->getRedeclContext()->isFileContext() &&
14279 var
->isExternallyVisible() && var
->hasLinkage() &&
14280 !var
->isInline() && !var
->getDescribedVarTemplate() &&
14281 var
->getStorageClass() != SC_Register
&&
14282 !isa
<VarTemplatePartialSpecializationDecl
>(var
) &&
14283 !isTemplateInstantiation(var
->getTemplateSpecializationKind()) &&
14284 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations
,
14285 var
->getLocation())) {
14286 // Find a previous declaration that's not a definition.
14287 VarDecl
*prev
= var
->getPreviousDecl();
14288 while (prev
&& prev
->isThisDeclarationADefinition())
14289 prev
= prev
->getPreviousDecl();
14292 Diag(var
->getLocation(), diag::warn_missing_variable_declarations
) << var
;
14293 Diag(var
->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage
)
14294 << /* variable */ 0;
14298 // Cache the result of checking for constant initialization.
14299 std::optional
<bool> CacheHasConstInit
;
14300 const Expr
*CacheCulprit
= nullptr;
14301 auto checkConstInit
= [&]() mutable {
14302 if (!CacheHasConstInit
)
14303 CacheHasConstInit
= var
->getInit()->isConstantInitializer(
14304 Context
, var
->getType()->isReferenceType(), &CacheCulprit
);
14305 return *CacheHasConstInit
;
14308 if (var
->getTLSKind() == VarDecl::TLS_Static
) {
14309 if (var
->getType().isDestructedType()) {
14310 // GNU C++98 edits for __thread, [basic.start.term]p3:
14311 // The type of an object with thread storage duration shall not
14312 // have a non-trivial destructor.
14313 Diag(var
->getLocation(), diag::err_thread_nontrivial_dtor
);
14314 if (getLangOpts().CPlusPlus11
)
14315 Diag(var
->getLocation(), diag::note_use_thread_local
);
14316 } else if (getLangOpts().CPlusPlus
&& var
->hasInit()) {
14317 if (!checkConstInit()) {
14318 // GNU C++98 edits for __thread, [basic.start.init]p4:
14319 // An object of thread storage duration shall not require dynamic
14321 // FIXME: Need strict checking here.
14322 Diag(CacheCulprit
->getExprLoc(), diag::err_thread_dynamic_init
)
14323 << CacheCulprit
->getSourceRange();
14324 if (getLangOpts().CPlusPlus11
)
14325 Diag(var
->getLocation(), diag::note_use_thread_local
);
14331 if (!var
->getType()->isStructureType() && var
->hasInit() &&
14332 isa
<InitListExpr
>(var
->getInit())) {
14333 const auto *ILE
= cast
<InitListExpr
>(var
->getInit());
14334 unsigned NumInits
= ILE
->getNumInits();
14336 for (unsigned I
= 0; I
< NumInits
; ++I
) {
14337 const auto *Init
= ILE
->getInit(I
);
14340 const auto *SL
= dyn_cast
<StringLiteral
>(Init
->IgnoreImpCasts());
14344 unsigned NumConcat
= SL
->getNumConcatenated();
14345 // Diagnose missing comma in string array initialization.
14346 // Do not warn when all the elements in the initializer are concatenated
14347 // together. Do not warn for macros too.
14348 if (NumConcat
== 2 && !SL
->getBeginLoc().isMacroID()) {
14349 bool OnlyOneMissingComma
= true;
14350 for (unsigned J
= I
+ 1; J
< NumInits
; ++J
) {
14351 const auto *Init
= ILE
->getInit(J
);
14354 const auto *SLJ
= dyn_cast
<StringLiteral
>(Init
->IgnoreImpCasts());
14355 if (!SLJ
|| SLJ
->getNumConcatenated() > 1) {
14356 OnlyOneMissingComma
= false;
14361 if (OnlyOneMissingComma
) {
14362 SmallVector
<FixItHint
, 1> Hints
;
14363 for (unsigned i
= 0; i
< NumConcat
- 1; ++i
)
14364 Hints
.push_back(FixItHint::CreateInsertion(
14365 PP
.getLocForEndOfToken(SL
->getStrTokenLoc(i
)), ","));
14367 Diag(SL
->getStrTokenLoc(1),
14368 diag::warn_concatenated_literal_array_init
)
14370 Diag(SL
->getBeginLoc(),
14371 diag::note_concatenated_string_literal_silence
);
14373 // In any case, stop now.
14380 QualType type
= var
->getType();
14382 if (var
->hasAttr
<BlocksAttr
>())
14383 getCurFunction()->addByrefBlockVar(var
);
14385 Expr
*Init
= var
->getInit();
14386 bool GlobalStorage
= var
->hasGlobalStorage();
14387 bool IsGlobal
= GlobalStorage
&& !var
->isStaticLocal();
14388 QualType baseType
= Context
.getBaseElementType(type
);
14389 bool HasConstInit
= true;
14391 // Check whether the initializer is sufficiently constant.
14392 if (getLangOpts().CPlusPlus
&& !type
->isDependentType() && Init
&&
14393 !Init
->isValueDependent() &&
14394 (GlobalStorage
|| var
->isConstexpr() ||
14395 var
->mightBeUsableInConstantExpressions(Context
))) {
14396 // If this variable might have a constant initializer or might be usable in
14397 // constant expressions, check whether or not it actually is now. We can't
14398 // do this lazily, because the result might depend on things that change
14399 // later, such as which constexpr functions happen to be defined.
14400 SmallVector
<PartialDiagnosticAt
, 8> Notes
;
14401 if (!getLangOpts().CPlusPlus11
) {
14402 // Prior to C++11, in contexts where a constant initializer is required,
14403 // the set of valid constant initializers is described by syntactic rules
14404 // in [expr.const]p2-6.
14405 // FIXME: Stricter checking for these rules would be useful for constinit /
14406 // -Wglobal-constructors.
14407 HasConstInit
= checkConstInit();
14409 // Compute and cache the constant value, and remember that we have a
14410 // constant initializer.
14411 if (HasConstInit
) {
14412 (void)var
->checkForConstantInitialization(Notes
);
14414 } else if (CacheCulprit
) {
14415 Notes
.emplace_back(CacheCulprit
->getExprLoc(),
14416 PDiag(diag::note_invalid_subexpr_in_const_expr
));
14417 Notes
.back().second
<< CacheCulprit
->getSourceRange();
14420 // Evaluate the initializer to see if it's a constant initializer.
14421 HasConstInit
= var
->checkForConstantInitialization(Notes
);
14424 if (HasConstInit
) {
14425 // FIXME: Consider replacing the initializer with a ConstantExpr.
14426 } else if (var
->isConstexpr()) {
14427 SourceLocation DiagLoc
= var
->getLocation();
14428 // If the note doesn't add any useful information other than a source
14429 // location, fold it into the primary diagnostic.
14430 if (Notes
.size() == 1 && Notes
[0].second
.getDiagID() ==
14431 diag::note_invalid_subexpr_in_const_expr
) {
14432 DiagLoc
= Notes
[0].first
;
14435 Diag(DiagLoc
, diag::err_constexpr_var_requires_const_init
)
14436 << var
<< Init
->getSourceRange();
14437 for (unsigned I
= 0, N
= Notes
.size(); I
!= N
; ++I
)
14438 Diag(Notes
[I
].first
, Notes
[I
].second
);
14439 } else if (GlobalStorage
&& var
->hasAttr
<ConstInitAttr
>()) {
14440 auto *Attr
= var
->getAttr
<ConstInitAttr
>();
14441 Diag(var
->getLocation(), diag::err_require_constant_init_failed
)
14442 << Init
->getSourceRange();
14443 Diag(Attr
->getLocation(), diag::note_declared_required_constant_init_here
)
14444 << Attr
->getRange() << Attr
->isConstinit();
14445 for (auto &it
: Notes
)
14446 Diag(it
.first
, it
.second
);
14447 } else if (IsGlobal
&&
14448 !getDiagnostics().isIgnored(diag::warn_global_constructor
,
14449 var
->getLocation())) {
14450 // Warn about globals which don't have a constant initializer. Don't
14451 // warn about globals with a non-trivial destructor because we already
14452 // warned about them.
14453 CXXRecordDecl
*RD
= baseType
->getAsCXXRecordDecl();
14454 if (!(RD
&& !RD
->hasTrivialDestructor())) {
14455 // checkConstInit() here permits trivial default initialization even in
14456 // C++11 onwards, where such an initializer is not a constant initializer
14457 // but nonetheless doesn't require a global constructor.
14458 if (!checkConstInit())
14459 Diag(var
->getLocation(), diag::warn_global_constructor
)
14460 << Init
->getSourceRange();
14465 // Apply section attributes and pragmas to global variables.
14466 if (GlobalStorage
&& var
->isThisDeclarationADefinition() &&
14467 !inTemplateInstantiation()) {
14468 PragmaStack
<StringLiteral
*> *Stack
= nullptr;
14469 int SectionFlags
= ASTContext::PSF_Read
;
14471 Context
.getTargetInfo().getTriple().isWindowsMSVCEnvironment();
14472 std::optional
<QualType::NonConstantStorageReason
> Reason
;
14473 if (HasConstInit
&&
14474 !(Reason
= var
->getType().isNonConstantStorage(Context
, true, false))) {
14475 Stack
= &ConstSegStack
;
14477 SectionFlags
|= ASTContext::PSF_Write
;
14478 Stack
= var
->hasInit() && HasConstInit
? &DataSegStack
: &BSSSegStack
;
14480 if (const SectionAttr
*SA
= var
->getAttr
<SectionAttr
>()) {
14481 if (SA
->getSyntax() == AttributeCommonInfo::AS_Declspec
)
14482 SectionFlags
|= ASTContext::PSF_Implicit
;
14483 UnifySection(SA
->getName(), SectionFlags
, var
);
14484 } else if (Stack
->CurrentValue
) {
14485 if (Stack
!= &ConstSegStack
&& MSVCEnv
&&
14486 ConstSegStack
.CurrentValue
!= ConstSegStack
.DefaultValue
&&
14487 var
->getType().isConstQualified()) {
14488 assert((!Reason
|| Reason
!= QualType::NonConstantStorageReason::
14489 NonConstNonReferenceType
) &&
14490 "This case should've already been handled elsewhere");
14491 Diag(var
->getLocation(), diag::warn_section_msvc_compat
)
14492 << var
<< ConstSegStack
.CurrentValue
<< (int)(!HasConstInit
14493 ? QualType::NonConstantStorageReason::NonTrivialCtor
14496 SectionFlags
|= ASTContext::PSF_Implicit
;
14497 auto SectionName
= Stack
->CurrentValue
->getString();
14498 var
->addAttr(SectionAttr::CreateImplicit(Context
, SectionName
,
14499 Stack
->CurrentPragmaLocation
,
14500 SectionAttr::Declspec_allocate
));
14501 if (UnifySection(SectionName
, SectionFlags
, var
))
14502 var
->dropAttr
<SectionAttr
>();
14505 // Apply the init_seg attribute if this has an initializer. If the
14506 // initializer turns out to not be dynamic, we'll end up ignoring this
14508 if (CurInitSeg
&& var
->getInit())
14509 var
->addAttr(InitSegAttr::CreateImplicit(Context
, CurInitSeg
->getString(),
14513 // All the following checks are C++ only.
14514 if (!getLangOpts().CPlusPlus
) {
14515 // If this variable must be emitted, add it as an initializer for the
14517 if (Context
.DeclMustBeEmitted(var
) && !ModuleScopes
.empty())
14518 Context
.addModuleInitializer(ModuleScopes
.back().Module
, var
);
14522 // Require the destructor.
14523 if (!type
->isDependentType())
14524 if (const RecordType
*recordType
= baseType
->getAs
<RecordType
>())
14525 FinalizeVarWithDestructor(var
, recordType
);
14527 // If this variable must be emitted, add it as an initializer for the current
14529 if (Context
.DeclMustBeEmitted(var
) && !ModuleScopes
.empty())
14530 Context
.addModuleInitializer(ModuleScopes
.back().Module
, var
);
14532 // Build the bindings if this is a structured binding declaration.
14533 if (auto *DD
= dyn_cast
<DecompositionDecl
>(var
))
14534 CheckCompleteDecompositionDeclaration(DD
);
14537 /// Check if VD needs to be dllexport/dllimport due to being in a
14538 /// dllexport/import function.
14539 void Sema::CheckStaticLocalForDllExport(VarDecl
*VD
) {
14540 assert(VD
->isStaticLocal());
14542 auto *FD
= dyn_cast_or_null
<FunctionDecl
>(VD
->getParentFunctionOrMethod());
14544 // Find outermost function when VD is in lambda function.
14545 while (FD
&& !getDLLAttr(FD
) &&
14546 !FD
->hasAttr
<DLLExportStaticLocalAttr
>() &&
14547 !FD
->hasAttr
<DLLImportStaticLocalAttr
>()) {
14548 FD
= dyn_cast_or_null
<FunctionDecl
>(FD
->getParentFunctionOrMethod());
14554 // Static locals inherit dll attributes from their function.
14555 if (Attr
*A
= getDLLAttr(FD
)) {
14556 auto *NewAttr
= cast
<InheritableAttr
>(A
->clone(getASTContext()));
14557 NewAttr
->setInherited(true);
14558 VD
->addAttr(NewAttr
);
14559 } else if (Attr
*A
= FD
->getAttr
<DLLExportStaticLocalAttr
>()) {
14560 auto *NewAttr
= DLLExportAttr::CreateImplicit(getASTContext(), *A
);
14561 NewAttr
->setInherited(true);
14562 VD
->addAttr(NewAttr
);
14564 // Export this function to enforce exporting this static variable even
14565 // if it is not used in this compilation unit.
14566 if (!FD
->hasAttr
<DLLExportAttr
>())
14567 FD
->addAttr(NewAttr
);
14569 } else if (Attr
*A
= FD
->getAttr
<DLLImportStaticLocalAttr
>()) {
14570 auto *NewAttr
= DLLImportAttr::CreateImplicit(getASTContext(), *A
);
14571 NewAttr
->setInherited(true);
14572 VD
->addAttr(NewAttr
);
14576 void Sema::CheckThreadLocalForLargeAlignment(VarDecl
*VD
) {
14577 assert(VD
->getTLSKind());
14579 // Perform TLS alignment check here after attributes attached to the variable
14580 // which may affect the alignment have been processed. Only perform the check
14581 // if the target has a maximum TLS alignment (zero means no constraints).
14582 if (unsigned MaxAlign
= Context
.getTargetInfo().getMaxTLSAlign()) {
14583 // Protect the check so that it's not performed on dependent types and
14584 // dependent alignments (we can't determine the alignment in that case).
14585 if (!VD
->hasDependentAlignment()) {
14586 CharUnits MaxAlignChars
= Context
.toCharUnitsFromBits(MaxAlign
);
14587 if (Context
.getDeclAlign(VD
) > MaxAlignChars
) {
14588 Diag(VD
->getLocation(), diag::err_tls_var_aligned_over_maximum
)
14589 << (unsigned)Context
.getDeclAlign(VD
).getQuantity() << VD
14590 << (unsigned)MaxAlignChars
.getQuantity();
14596 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
14597 /// any semantic actions necessary after any initializer has been attached.
14598 void Sema::FinalizeDeclaration(Decl
*ThisDecl
) {
14599 // Note that we are no longer parsing the initializer for this declaration.
14600 ParsingInitForAutoVars
.erase(ThisDecl
);
14602 VarDecl
*VD
= dyn_cast_or_null
<VarDecl
>(ThisDecl
);
14606 // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
14607 if (VD
->hasGlobalStorage() && VD
->isThisDeclarationADefinition() &&
14608 !inTemplateInstantiation() && !VD
->hasAttr
<SectionAttr
>()) {
14609 if (PragmaClangBSSSection
.Valid
)
14610 VD
->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
14611 Context
, PragmaClangBSSSection
.SectionName
,
14612 PragmaClangBSSSection
.PragmaLocation
));
14613 if (PragmaClangDataSection
.Valid
)
14614 VD
->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
14615 Context
, PragmaClangDataSection
.SectionName
,
14616 PragmaClangDataSection
.PragmaLocation
));
14617 if (PragmaClangRodataSection
.Valid
)
14618 VD
->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
14619 Context
, PragmaClangRodataSection
.SectionName
,
14620 PragmaClangRodataSection
.PragmaLocation
));
14621 if (PragmaClangRelroSection
.Valid
)
14622 VD
->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
14623 Context
, PragmaClangRelroSection
.SectionName
,
14624 PragmaClangRelroSection
.PragmaLocation
));
14627 if (auto *DD
= dyn_cast
<DecompositionDecl
>(ThisDecl
)) {
14628 for (auto *BD
: DD
->bindings()) {
14629 FinalizeDeclaration(BD
);
14633 checkAttributesAfterMerging(*this, *VD
);
14635 if (VD
->isStaticLocal())
14636 CheckStaticLocalForDllExport(VD
);
14638 if (VD
->getTLSKind())
14639 CheckThreadLocalForLargeAlignment(VD
);
14641 // Perform check for initializers of device-side global variables.
14642 // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
14643 // 7.5). We must also apply the same checks to all __shared__
14644 // variables whether they are local or not. CUDA also allows
14645 // constant initializers for __constant__ and __device__ variables.
14646 if (getLangOpts().CUDA
)
14647 checkAllowedCUDAInitializer(VD
);
14649 // Grab the dllimport or dllexport attribute off of the VarDecl.
14650 const InheritableAttr
*DLLAttr
= getDLLAttr(VD
);
14652 // Imported static data members cannot be defined out-of-line.
14653 if (const auto *IA
= dyn_cast_or_null
<DLLImportAttr
>(DLLAttr
)) {
14654 if (VD
->isStaticDataMember() && VD
->isOutOfLine() &&
14655 VD
->isThisDeclarationADefinition()) {
14656 // We allow definitions of dllimport class template static data members
14658 CXXRecordDecl
*Context
=
14659 cast
<CXXRecordDecl
>(VD
->getFirstDecl()->getDeclContext());
14660 bool IsClassTemplateMember
=
14661 isa
<ClassTemplatePartialSpecializationDecl
>(Context
) ||
14662 Context
->getDescribedClassTemplate();
14664 Diag(VD
->getLocation(),
14665 IsClassTemplateMember
14666 ? diag::warn_attribute_dllimport_static_field_definition
14667 : diag::err_attribute_dllimport_static_field_definition
);
14668 Diag(IA
->getLocation(), diag::note_attribute
);
14669 if (!IsClassTemplateMember
)
14670 VD
->setInvalidDecl();
14674 // dllimport/dllexport variables cannot be thread local, their TLS index
14675 // isn't exported with the variable.
14676 if (DLLAttr
&& VD
->getTLSKind()) {
14677 auto *F
= dyn_cast_or_null
<FunctionDecl
>(VD
->getParentFunctionOrMethod());
14678 if (F
&& getDLLAttr(F
)) {
14679 assert(VD
->isStaticLocal());
14680 // But if this is a static local in a dlimport/dllexport function, the
14681 // function will never be inlined, which means the var would never be
14682 // imported, so having it marked import/export is safe.
14684 Diag(VD
->getLocation(), diag::err_attribute_dll_thread_local
) << VD
14686 VD
->setInvalidDecl();
14690 if (UsedAttr
*Attr
= VD
->getAttr
<UsedAttr
>()) {
14691 if (!Attr
->isInherited() && !VD
->isThisDeclarationADefinition()) {
14692 Diag(Attr
->getLocation(), diag::warn_attribute_ignored_on_non_definition
)
14694 VD
->dropAttr
<UsedAttr
>();
14697 if (RetainAttr
*Attr
= VD
->getAttr
<RetainAttr
>()) {
14698 if (!Attr
->isInherited() && !VD
->isThisDeclarationADefinition()) {
14699 Diag(Attr
->getLocation(), diag::warn_attribute_ignored_on_non_definition
)
14701 VD
->dropAttr
<RetainAttr
>();
14705 const DeclContext
*DC
= VD
->getDeclContext();
14706 // If there's a #pragma GCC visibility in scope, and this isn't a class
14707 // member, set the visibility of this variable.
14708 if (DC
->getRedeclContext()->isFileContext() && VD
->isExternallyVisible())
14709 AddPushedVisibilityAttribute(VD
);
14711 // FIXME: Warn on unused var template partial specializations.
14712 if (VD
->isFileVarDecl() && !isa
<VarTemplatePartialSpecializationDecl
>(VD
))
14713 MarkUnusedFileScopedDecl(VD
);
14715 // Now we have parsed the initializer and can update the table of magic
14717 if (!VD
->hasAttr
<TypeTagForDatatypeAttr
>() ||
14718 !VD
->getType()->isIntegralOrEnumerationType())
14721 for (const auto *I
: ThisDecl
->specific_attrs
<TypeTagForDatatypeAttr
>()) {
14722 const Expr
*MagicValueExpr
= VD
->getInit();
14723 if (!MagicValueExpr
) {
14726 std::optional
<llvm::APSInt
> MagicValueInt
;
14727 if (!(MagicValueInt
= MagicValueExpr
->getIntegerConstantExpr(Context
))) {
14728 Diag(I
->getRange().getBegin(),
14729 diag::err_type_tag_for_datatype_not_ice
)
14730 << LangOpts
.CPlusPlus
<< MagicValueExpr
->getSourceRange();
14733 if (MagicValueInt
->getActiveBits() > 64) {
14734 Diag(I
->getRange().getBegin(),
14735 diag::err_type_tag_for_datatype_too_large
)
14736 << LangOpts
.CPlusPlus
<< MagicValueExpr
->getSourceRange();
14739 uint64_t MagicValue
= MagicValueInt
->getZExtValue();
14740 RegisterTypeTagForDatatype(I
->getArgumentKind(),
14742 I
->getMatchingCType(),
14743 I
->getLayoutCompatible(),
14744 I
->getMustBeNull());
14748 static bool hasDeducedAuto(DeclaratorDecl
*DD
) {
14749 auto *VD
= dyn_cast
<VarDecl
>(DD
);
14750 return VD
&& !VD
->getType()->hasAutoForTrailingReturnType();
14753 Sema::DeclGroupPtrTy
Sema::FinalizeDeclaratorGroup(Scope
*S
, const DeclSpec
&DS
,
14754 ArrayRef
<Decl
*> Group
) {
14755 SmallVector
<Decl
*, 8> Decls
;
14757 if (DS
.isTypeSpecOwned())
14758 Decls
.push_back(DS
.getRepAsDecl());
14760 DeclaratorDecl
*FirstDeclaratorInGroup
= nullptr;
14761 DecompositionDecl
*FirstDecompDeclaratorInGroup
= nullptr;
14762 bool DiagnosedMultipleDecomps
= false;
14763 DeclaratorDecl
*FirstNonDeducedAutoInGroup
= nullptr;
14764 bool DiagnosedNonDeducedAuto
= false;
14766 for (unsigned i
= 0, e
= Group
.size(); i
!= e
; ++i
) {
14767 if (Decl
*D
= Group
[i
]) {
14768 // Check if the Decl has been declared in '#pragma omp declare target'
14769 // directive and has static storage duration.
14770 if (auto *VD
= dyn_cast
<VarDecl
>(D
);
14771 LangOpts
.OpenMP
&& VD
&& VD
->hasAttr
<OMPDeclareTargetDeclAttr
>() &&
14772 VD
->hasGlobalStorage())
14773 ActOnOpenMPDeclareTargetInitializer(D
);
14774 // For declarators, there are some additional syntactic-ish checks we need
14776 if (auto *DD
= dyn_cast
<DeclaratorDecl
>(D
)) {
14777 if (!FirstDeclaratorInGroup
)
14778 FirstDeclaratorInGroup
= DD
;
14779 if (!FirstDecompDeclaratorInGroup
)
14780 FirstDecompDeclaratorInGroup
= dyn_cast
<DecompositionDecl
>(D
);
14781 if (!FirstNonDeducedAutoInGroup
&& DS
.hasAutoTypeSpec() &&
14782 !hasDeducedAuto(DD
))
14783 FirstNonDeducedAutoInGroup
= DD
;
14785 if (FirstDeclaratorInGroup
!= DD
) {
14786 // A decomposition declaration cannot be combined with any other
14787 // declaration in the same group.
14788 if (FirstDecompDeclaratorInGroup
&& !DiagnosedMultipleDecomps
) {
14789 Diag(FirstDecompDeclaratorInGroup
->getLocation(),
14790 diag::err_decomp_decl_not_alone
)
14791 << FirstDeclaratorInGroup
->getSourceRange()
14792 << DD
->getSourceRange();
14793 DiagnosedMultipleDecomps
= true;
14796 // A declarator that uses 'auto' in any way other than to declare a
14797 // variable with a deduced type cannot be combined with any other
14798 // declarator in the same group.
14799 if (FirstNonDeducedAutoInGroup
&& !DiagnosedNonDeducedAuto
) {
14800 Diag(FirstNonDeducedAutoInGroup
->getLocation(),
14801 diag::err_auto_non_deduced_not_alone
)
14802 << FirstNonDeducedAutoInGroup
->getType()
14803 ->hasAutoForTrailingReturnType()
14804 << FirstDeclaratorInGroup
->getSourceRange()
14805 << DD
->getSourceRange();
14806 DiagnosedNonDeducedAuto
= true;
14811 Decls
.push_back(D
);
14815 if (DeclSpec::isDeclRep(DS
.getTypeSpecType())) {
14816 if (TagDecl
*Tag
= dyn_cast_or_null
<TagDecl
>(DS
.getRepAsDecl())) {
14817 handleTagNumbering(Tag
, S
);
14818 if (FirstDeclaratorInGroup
&& !Tag
->hasNameForLinkage() &&
14819 getLangOpts().CPlusPlus
)
14820 Context
.addDeclaratorForUnnamedTagDecl(Tag
, FirstDeclaratorInGroup
);
14824 return BuildDeclaratorGroup(Decls
);
14827 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
14828 /// group, performing any necessary semantic checking.
14829 Sema::DeclGroupPtrTy
14830 Sema::BuildDeclaratorGroup(MutableArrayRef
<Decl
*> Group
) {
14831 // C++14 [dcl.spec.auto]p7: (DR1347)
14832 // If the type that replaces the placeholder type is not the same in each
14833 // deduction, the program is ill-formed.
14834 if (Group
.size() > 1) {
14836 VarDecl
*DeducedDecl
= nullptr;
14837 for (unsigned i
= 0, e
= Group
.size(); i
!= e
; ++i
) {
14838 VarDecl
*D
= dyn_cast
<VarDecl
>(Group
[i
]);
14839 if (!D
|| D
->isInvalidDecl())
14841 DeducedType
*DT
= D
->getType()->getContainedDeducedType();
14842 if (!DT
|| DT
->getDeducedType().isNull())
14844 if (Deduced
.isNull()) {
14845 Deduced
= DT
->getDeducedType();
14847 } else if (!Context
.hasSameType(DT
->getDeducedType(), Deduced
)) {
14848 auto *AT
= dyn_cast
<AutoType
>(DT
);
14849 auto Dia
= Diag(D
->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
14850 diag::err_auto_different_deductions
)
14851 << (AT
? (unsigned)AT
->getKeyword() : 3) << Deduced
14852 << DeducedDecl
->getDeclName() << DT
->getDeducedType()
14853 << D
->getDeclName();
14854 if (DeducedDecl
->hasInit())
14855 Dia
<< DeducedDecl
->getInit()->getSourceRange();
14857 Dia
<< D
->getInit()->getSourceRange();
14858 D
->setInvalidDecl();
14864 ActOnDocumentableDecls(Group
);
14866 return DeclGroupPtrTy::make(
14867 DeclGroupRef::Create(Context
, Group
.data(), Group
.size()));
14870 void Sema::ActOnDocumentableDecl(Decl
*D
) {
14871 ActOnDocumentableDecls(D
);
14874 void Sema::ActOnDocumentableDecls(ArrayRef
<Decl
*> Group
) {
14875 // Don't parse the comment if Doxygen diagnostics are ignored.
14876 if (Group
.empty() || !Group
[0])
14879 if (Diags
.isIgnored(diag::warn_doc_param_not_found
,
14880 Group
[0]->getLocation()) &&
14881 Diags
.isIgnored(diag::warn_unknown_comment_command_name
,
14882 Group
[0]->getLocation()))
14885 if (Group
.size() >= 2) {
14886 // This is a decl group. Normally it will contain only declarations
14887 // produced from declarator list. But in case we have any definitions or
14888 // additional declaration references:
14889 // 'typedef struct S {} S;'
14890 // 'typedef struct S *S;'
14892 // FinalizeDeclaratorGroup adds these as separate declarations.
14893 Decl
*MaybeTagDecl
= Group
[0];
14894 if (MaybeTagDecl
&& isa
<TagDecl
>(MaybeTagDecl
)) {
14895 Group
= Group
.slice(1);
14899 // FIMXE: We assume every Decl in the group is in the same file.
14900 // This is false when preprocessor constructs the group from decls in
14901 // different files (e. g. macros or #include).
14902 Context
.attachCommentsToJustParsedDecls(Group
, &getPreprocessor());
14905 /// Common checks for a parameter-declaration that should apply to both function
14906 /// parameters and non-type template parameters.
14907 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope
*S
, Declarator
&D
) {
14908 // Check that there are no default arguments inside the type of this
14910 if (getLangOpts().CPlusPlus
)
14911 CheckExtraCXXDefaultArguments(D
);
14913 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
14914 if (D
.getCXXScopeSpec().isSet()) {
14915 Diag(D
.getIdentifierLoc(), diag::err_qualified_param_declarator
)
14916 << D
.getCXXScopeSpec().getRange();
14919 // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
14920 // simple identifier except [...irrelevant cases...].
14921 switch (D
.getName().getKind()) {
14922 case UnqualifiedIdKind::IK_Identifier
:
14925 case UnqualifiedIdKind::IK_OperatorFunctionId
:
14926 case UnqualifiedIdKind::IK_ConversionFunctionId
:
14927 case UnqualifiedIdKind::IK_LiteralOperatorId
:
14928 case UnqualifiedIdKind::IK_ConstructorName
:
14929 case UnqualifiedIdKind::IK_DestructorName
:
14930 case UnqualifiedIdKind::IK_ImplicitSelfParam
:
14931 case UnqualifiedIdKind::IK_DeductionGuideName
:
14932 Diag(D
.getIdentifierLoc(), diag::err_bad_parameter_name
)
14933 << GetNameForDeclarator(D
).getName();
14936 case UnqualifiedIdKind::IK_TemplateId
:
14937 case UnqualifiedIdKind::IK_ConstructorTemplateId
:
14938 // GetNameForDeclarator would not produce a useful name in this case.
14939 Diag(D
.getIdentifierLoc(), diag::err_bad_parameter_name_template_id
);
14944 static void CheckExplicitObjectParameter(Sema
&S
, ParmVarDecl
*P
,
14945 SourceLocation ExplicitThisLoc
) {
14946 if (!ExplicitThisLoc
.isValid())
14948 assert(S
.getLangOpts().CPlusPlus
&&
14949 "explicit parameter in non-cplusplus mode");
14950 if (!S
.getLangOpts().CPlusPlus23
)
14951 S
.Diag(ExplicitThisLoc
, diag::err_cxx20_deducing_this
)
14952 << P
->getSourceRange();
14954 // C++2b [dcl.fct/7] An explicit object parameter shall not be a function
14956 if (P
->isParameterPack()) {
14957 S
.Diag(P
->getBeginLoc(), diag::err_explicit_object_parameter_pack
)
14958 << P
->getSourceRange();
14961 P
->setExplicitObjectParameterLoc(ExplicitThisLoc
);
14962 if (LambdaScopeInfo
*LSI
= S
.getCurLambda())
14963 LSI
->ExplicitObjectParameter
= P
;
14966 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
14967 /// to introduce parameters into function prototype scope.
14968 Decl
*Sema::ActOnParamDeclarator(Scope
*S
, Declarator
&D
,
14969 SourceLocation ExplicitThisLoc
) {
14970 const DeclSpec
&DS
= D
.getDeclSpec();
14972 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
14974 // C++03 [dcl.stc]p2 also permits 'auto'.
14975 StorageClass SC
= SC_None
;
14976 if (DS
.getStorageClassSpec() == DeclSpec::SCS_register
) {
14978 // In C++11, the 'register' storage class specifier is deprecated.
14979 // In C++17, it is not allowed, but we tolerate it as an extension.
14980 if (getLangOpts().CPlusPlus11
) {
14981 Diag(DS
.getStorageClassSpecLoc(),
14982 getLangOpts().CPlusPlus17
? diag::ext_register_storage_class
14983 : diag::warn_deprecated_register
)
14984 << FixItHint::CreateRemoval(DS
.getStorageClassSpecLoc());
14986 } else if (getLangOpts().CPlusPlus
&&
14987 DS
.getStorageClassSpec() == DeclSpec::SCS_auto
) {
14989 } else if (DS
.getStorageClassSpec() != DeclSpec::SCS_unspecified
) {
14990 Diag(DS
.getStorageClassSpecLoc(),
14991 diag::err_invalid_storage_class_in_func_decl
);
14992 D
.getMutableDeclSpec().ClearStorageClassSpecs();
14995 if (DeclSpec::TSCS TSCS
= DS
.getThreadStorageClassSpec())
14996 Diag(DS
.getThreadStorageClassSpecLoc(), diag::err_invalid_thread
)
14997 << DeclSpec::getSpecifierName(TSCS
);
14998 if (DS
.isInlineSpecified())
14999 Diag(DS
.getInlineSpecLoc(), diag::err_inline_non_function
)
15000 << getLangOpts().CPlusPlus17
;
15001 if (DS
.hasConstexprSpecifier())
15002 Diag(DS
.getConstexprSpecLoc(), diag::err_invalid_constexpr
)
15003 << 0 << static_cast<int>(D
.getDeclSpec().getConstexprSpecifier());
15005 DiagnoseFunctionSpecifiers(DS
);
15007 CheckFunctionOrTemplateParamDeclarator(S
, D
);
15009 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(D
, S
);
15010 QualType parmDeclType
= TInfo
->getType();
15012 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
15013 IdentifierInfo
*II
= D
.getIdentifier();
15015 LookupResult
R(*this, II
, D
.getIdentifierLoc(), LookupOrdinaryName
,
15016 ForVisibleRedeclaration
);
15019 NamedDecl
*PrevDecl
= *R
.begin();
15020 if (R
.isSingleResult() && PrevDecl
->isTemplateParameter()) {
15021 // Maybe we will complain about the shadowed template parameter.
15022 DiagnoseTemplateParameterShadow(D
.getIdentifierLoc(), PrevDecl
);
15023 // Just pretend that we didn't see the previous declaration.
15024 PrevDecl
= nullptr;
15026 if (PrevDecl
&& S
->isDeclScope(PrevDecl
)) {
15027 Diag(D
.getIdentifierLoc(), diag::err_param_redefinition
) << II
;
15028 Diag(PrevDecl
->getLocation(), diag::note_previous_declaration
);
15029 // Recover by removing the name
15031 D
.SetIdentifier(nullptr, D
.getIdentifierLoc());
15032 D
.setInvalidType(true);
15037 // Temporarily put parameter variables in the translation unit, not
15038 // the enclosing context. This prevents them from accidentally
15039 // looking like class members in C++.
15041 CheckParameter(Context
.getTranslationUnitDecl(), D
.getBeginLoc(),
15042 D
.getIdentifierLoc(), II
, parmDeclType
, TInfo
, SC
);
15044 if (D
.isInvalidType())
15045 New
->setInvalidDecl();
15047 CheckExplicitObjectParameter(*this, New
, ExplicitThisLoc
);
15049 assert(S
->isFunctionPrototypeScope());
15050 assert(S
->getFunctionPrototypeDepth() >= 1);
15051 New
->setScopeInfo(S
->getFunctionPrototypeDepth() - 1,
15052 S
->getNextFunctionPrototypeIndex());
15054 // Add the parameter declaration into this scope.
15057 IdResolver
.AddDecl(New
);
15059 ProcessDeclAttributes(S
, New
, D
);
15061 if (D
.getDeclSpec().isModulePrivateSpecified())
15062 Diag(New
->getLocation(), diag::err_module_private_local
)
15063 << 1 << New
<< SourceRange(D
.getDeclSpec().getModulePrivateSpecLoc())
15064 << FixItHint::CreateRemoval(D
.getDeclSpec().getModulePrivateSpecLoc());
15066 if (New
->hasAttr
<BlocksAttr
>()) {
15067 Diag(New
->getLocation(), diag::err_block_on_nonlocal
);
15070 if (getLangOpts().OpenCL
)
15071 deduceOpenCLAddressSpace(New
);
15076 /// Synthesizes a variable for a parameter arising from a
15078 ParmVarDecl
*Sema::BuildParmVarDeclForTypedef(DeclContext
*DC
,
15079 SourceLocation Loc
,
15081 /* FIXME: setting StartLoc == Loc.
15082 Would it be worth to modify callers so as to provide proper source
15083 location for the unnamed parameters, embedding the parameter's type? */
15084 ParmVarDecl
*Param
= ParmVarDecl::Create(Context
, DC
, Loc
, Loc
, nullptr,
15085 T
, Context
.getTrivialTypeSourceInfo(T
, Loc
),
15087 Param
->setImplicit();
15091 void Sema::DiagnoseUnusedParameters(ArrayRef
<ParmVarDecl
*> Parameters
) {
15092 // Don't diagnose unused-parameter errors in template instantiations; we
15093 // will already have done so in the template itself.
15094 if (inTemplateInstantiation())
15097 for (const ParmVarDecl
*Parameter
: Parameters
) {
15098 if (!Parameter
->isReferenced() && Parameter
->getDeclName() &&
15099 !Parameter
->hasAttr
<UnusedAttr
>() &&
15100 !Parameter
->getIdentifier()->isPlaceholder()) {
15101 Diag(Parameter
->getLocation(), diag::warn_unused_parameter
)
15102 << Parameter
->getDeclName();
15107 void Sema::DiagnoseSizeOfParametersAndReturnValue(
15108 ArrayRef
<ParmVarDecl
*> Parameters
, QualType ReturnTy
, NamedDecl
*D
) {
15109 if (LangOpts
.NumLargeByValueCopy
== 0) // No check.
15112 // Warn if the return value is pass-by-value and larger than the specified
15114 if (!ReturnTy
->isDependentType() && ReturnTy
.isPODType(Context
)) {
15115 unsigned Size
= Context
.getTypeSizeInChars(ReturnTy
).getQuantity();
15116 if (Size
> LangOpts
.NumLargeByValueCopy
)
15117 Diag(D
->getLocation(), diag::warn_return_value_size
) << D
<< Size
;
15120 // Warn if any parameter is pass-by-value and larger than the specified
15122 for (const ParmVarDecl
*Parameter
: Parameters
) {
15123 QualType T
= Parameter
->getType();
15124 if (T
->isDependentType() || !T
.isPODType(Context
))
15126 unsigned Size
= Context
.getTypeSizeInChars(T
).getQuantity();
15127 if (Size
> LangOpts
.NumLargeByValueCopy
)
15128 Diag(Parameter
->getLocation(), diag::warn_parameter_size
)
15129 << Parameter
<< Size
;
15133 ParmVarDecl
*Sema::CheckParameter(DeclContext
*DC
, SourceLocation StartLoc
,
15134 SourceLocation NameLoc
, IdentifierInfo
*Name
,
15135 QualType T
, TypeSourceInfo
*TSInfo
,
15137 // In ARC, infer a lifetime qualifier for appropriate parameter types.
15138 if (getLangOpts().ObjCAutoRefCount
&&
15139 T
.getObjCLifetime() == Qualifiers::OCL_None
&&
15140 T
->isObjCLifetimeType()) {
15142 Qualifiers::ObjCLifetime lifetime
;
15144 // Special cases for arrays:
15145 // - if it's const, use __unsafe_unretained
15146 // - otherwise, it's an error
15147 if (T
->isArrayType()) {
15148 if (!T
.isConstQualified()) {
15149 if (DelayedDiagnostics
.shouldDelayDiagnostics())
15150 DelayedDiagnostics
.add(
15151 sema::DelayedDiagnostic::makeForbiddenType(
15152 NameLoc
, diag::err_arc_array_param_no_ownership
, T
, false));
15154 Diag(NameLoc
, diag::err_arc_array_param_no_ownership
)
15155 << TSInfo
->getTypeLoc().getSourceRange();
15157 lifetime
= Qualifiers::OCL_ExplicitNone
;
15159 lifetime
= T
->getObjCARCImplicitLifetime();
15161 T
= Context
.getLifetimeQualifiedType(T
, lifetime
);
15164 ParmVarDecl
*New
= ParmVarDecl::Create(Context
, DC
, StartLoc
, NameLoc
, Name
,
15165 Context
.getAdjustedParameterType(T
),
15166 TSInfo
, SC
, nullptr);
15168 // Make a note if we created a new pack in the scope of a lambda, so that
15169 // we know that references to that pack must also be expanded within the
15171 if (New
->isParameterPack())
15172 if (auto *LSI
= getEnclosingLambda())
15173 LSI
->LocalPacks
.push_back(New
);
15175 if (New
->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
15176 New
->getType().hasNonTrivialToPrimitiveCopyCUnion())
15177 checkNonTrivialCUnion(New
->getType(), New
->getLocation(),
15178 NTCUC_FunctionParam
, NTCUK_Destruct
|NTCUK_Copy
);
15180 // Parameter declarators cannot be interface types. All ObjC objects are
15181 // passed by reference.
15182 if (T
->isObjCObjectType()) {
15183 SourceLocation TypeEndLoc
=
15184 getLocForEndOfToken(TSInfo
->getTypeLoc().getEndLoc());
15186 diag::err_object_cannot_be_passed_returned_by_value
) << 1 << T
15187 << FixItHint::CreateInsertion(TypeEndLoc
, "*");
15188 T
= Context
.getObjCObjectPointerType(T
);
15192 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
15193 // duration shall not be qualified by an address-space qualifier."
15194 // Since all parameters have automatic store duration, they can not have
15195 // an address space.
15196 if (T
.getAddressSpace() != LangAS::Default
&&
15197 // OpenCL allows function arguments declared to be an array of a type
15198 // to be qualified with an address space.
15199 !(getLangOpts().OpenCL
&&
15200 (T
->isArrayType() || T
.getAddressSpace() == LangAS::opencl_private
)) &&
15201 // WebAssembly allows reference types as parameters. Funcref in particular
15202 // lives in a different address space.
15203 !(T
->isFunctionPointerType() &&
15204 T
.getAddressSpace() == LangAS::wasm_funcref
)) {
15205 Diag(NameLoc
, diag::err_arg_with_address_space
);
15206 New
->setInvalidDecl();
15209 // PPC MMA non-pointer types are not allowed as function argument types.
15210 if (Context
.getTargetInfo().getTriple().isPPC64() &&
15211 CheckPPCMMAType(New
->getOriginalType(), New
->getLocation())) {
15212 New
->setInvalidDecl();
15218 void Sema::ActOnFinishKNRParamDeclarations(Scope
*S
, Declarator
&D
,
15219 SourceLocation LocAfterDecls
) {
15220 DeclaratorChunk::FunctionTypeInfo
&FTI
= D
.getFunctionTypeInfo();
15222 // C99 6.9.1p6 "If a declarator includes an identifier list, each declaration
15223 // in the declaration list shall have at least one declarator, those
15224 // declarators shall only declare identifiers from the identifier list, and
15225 // every identifier in the identifier list shall be declared.
15227 // C89 3.7.1p5 "If a declarator includes an identifier list, only the
15228 // identifiers it names shall be declared in the declaration list."
15230 // This is why we only diagnose in C99 and later. Note, the other conditions
15231 // listed are checked elsewhere.
15232 if (!FTI
.hasPrototype
) {
15233 for (int i
= FTI
.NumParams
; i
!= 0; /* decrement in loop */) {
15235 if (FTI
.Params
[i
].Param
== nullptr) {
15236 if (getLangOpts().C99
) {
15237 SmallString
<256> Code
;
15238 llvm::raw_svector_ostream(Code
)
15239 << " int " << FTI
.Params
[i
].Ident
->getName() << ";\n";
15240 Diag(FTI
.Params
[i
].IdentLoc
, diag::ext_param_not_declared
)
15241 << FTI
.Params
[i
].Ident
15242 << FixItHint::CreateInsertion(LocAfterDecls
, Code
);
15245 // Implicitly declare the argument as type 'int' for lack of a better
15247 AttributeFactory attrs
;
15248 DeclSpec
DS(attrs
);
15249 const char* PrevSpec
; // unused
15250 unsigned DiagID
; // unused
15251 DS
.SetTypeSpecType(DeclSpec::TST_int
, FTI
.Params
[i
].IdentLoc
, PrevSpec
,
15252 DiagID
, Context
.getPrintingPolicy());
15253 // Use the identifier location for the type source range.
15254 DS
.SetRangeStart(FTI
.Params
[i
].IdentLoc
);
15255 DS
.SetRangeEnd(FTI
.Params
[i
].IdentLoc
);
15256 Declarator
ParamD(DS
, ParsedAttributesView::none(),
15257 DeclaratorContext::KNRTypeList
);
15258 ParamD
.SetIdentifier(FTI
.Params
[i
].Ident
, FTI
.Params
[i
].IdentLoc
);
15259 FTI
.Params
[i
].Param
= ActOnParamDeclarator(S
, ParamD
);
15266 Sema::ActOnStartOfFunctionDef(Scope
*FnBodyScope
, Declarator
&D
,
15267 MultiTemplateParamsArg TemplateParameterLists
,
15268 SkipBodyInfo
*SkipBody
, FnBodyKind BodyKind
) {
15269 assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
15270 assert(D
.isFunctionDeclarator() && "Not a function declarator!");
15271 Scope
*ParentScope
= FnBodyScope
->getParent();
15273 // Check if we are in an `omp begin/end declare variant` scope. If we are, and
15274 // we define a non-templated function definition, we will create a declaration
15275 // instead (=BaseFD), and emit the definition with a mangled name afterwards.
15276 // The base function declaration will have the equivalent of an `omp declare
15277 // variant` annotation which specifies the mangled definition as a
15278 // specialization function under the OpenMP context defined as part of the
15279 // `omp begin declare variant`.
15280 SmallVector
<FunctionDecl
*, 4> Bases
;
15281 if (LangOpts
.OpenMP
&& isInOpenMPDeclareVariantScope())
15282 ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
15283 ParentScope
, D
, TemplateParameterLists
, Bases
);
15285 D
.setFunctionDefinitionKind(FunctionDefinitionKind::Definition
);
15286 Decl
*DP
= HandleDeclarator(ParentScope
, D
, TemplateParameterLists
);
15287 Decl
*Dcl
= ActOnStartOfFunctionDef(FnBodyScope
, DP
, SkipBody
, BodyKind
);
15289 if (!Bases
.empty())
15290 ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl
, Bases
);
15295 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl
*D
) {
15296 Consumer
.HandleInlineFunctionDefinition(D
);
15299 static bool FindPossiblePrototype(const FunctionDecl
*FD
,
15300 const FunctionDecl
*&PossiblePrototype
) {
15301 for (const FunctionDecl
*Prev
= FD
->getPreviousDecl(); Prev
;
15302 Prev
= Prev
->getPreviousDecl()) {
15303 // Ignore any declarations that occur in function or method
15304 // scope, because they aren't visible from the header.
15305 if (Prev
->getLexicalDeclContext()->isFunctionOrMethod())
15308 PossiblePrototype
= Prev
;
15309 return Prev
->getType()->isFunctionProtoType();
15315 ShouldWarnAboutMissingPrototype(const FunctionDecl
*FD
,
15316 const FunctionDecl
*&PossiblePrototype
) {
15317 // Don't warn about invalid declarations.
15318 if (FD
->isInvalidDecl())
15321 // Or declarations that aren't global.
15322 if (!FD
->isGlobal())
15325 // Don't warn about C++ member functions.
15326 if (isa
<CXXMethodDecl
>(FD
))
15329 // Don't warn about 'main'.
15330 if (isa
<TranslationUnitDecl
>(FD
->getDeclContext()->getRedeclContext()))
15331 if (IdentifierInfo
*II
= FD
->getIdentifier())
15332 if (II
->isStr("main") || II
->isStr("efi_main"))
15335 // Don't warn about inline functions.
15336 if (FD
->isInlined())
15339 // Don't warn about function templates.
15340 if (FD
->getDescribedFunctionTemplate())
15343 // Don't warn about function template specializations.
15344 if (FD
->isFunctionTemplateSpecialization())
15347 // Don't warn for OpenCL kernels.
15348 if (FD
->hasAttr
<OpenCLKernelAttr
>())
15351 // Don't warn on explicitly deleted functions.
15352 if (FD
->isDeleted())
15355 // Don't warn on implicitly local functions (such as having local-typed
15357 if (!FD
->isExternallyVisible())
15360 // If we were able to find a potential prototype, don't warn.
15361 if (FindPossiblePrototype(FD
, PossiblePrototype
))
15368 Sema::CheckForFunctionRedefinition(FunctionDecl
*FD
,
15369 const FunctionDecl
*EffectiveDefinition
,
15370 SkipBodyInfo
*SkipBody
) {
15371 const FunctionDecl
*Definition
= EffectiveDefinition
;
15373 !FD
->isDefined(Definition
, /*CheckForPendingFriendDefinition*/ true))
15376 if (Definition
->getFriendObjectKind() != Decl::FOK_None
) {
15377 if (FunctionDecl
*OrigDef
= Definition
->getInstantiatedFromMemberFunction()) {
15378 if (FunctionDecl
*OrigFD
= FD
->getInstantiatedFromMemberFunction()) {
15379 // A merged copy of the same function, instantiated as a member of
15380 // the same class, is OK.
15381 if (declaresSameEntity(OrigFD
, OrigDef
) &&
15382 declaresSameEntity(cast
<Decl
>(Definition
->getLexicalDeclContext()),
15383 cast
<Decl
>(FD
->getLexicalDeclContext())))
15389 if (canRedefineFunction(Definition
, getLangOpts()))
15392 // Don't emit an error when this is redefinition of a typo-corrected
15394 if (TypoCorrectedFunctionDefinitions
.count(Definition
))
15397 // If we don't have a visible definition of the function, and it's inline or
15398 // a template, skip the new definition.
15399 if (SkipBody
&& !hasVisibleDefinition(Definition
) &&
15400 (Definition
->getFormalLinkage() == Linkage::Internal
||
15401 Definition
->isInlined() || Definition
->getDescribedFunctionTemplate() ||
15402 Definition
->getNumTemplateParameterLists())) {
15403 SkipBody
->ShouldSkip
= true;
15404 SkipBody
->Previous
= const_cast<FunctionDecl
*>(Definition
);
15405 if (auto *TD
= Definition
->getDescribedFunctionTemplate())
15406 makeMergedDefinitionVisible(TD
);
15407 makeMergedDefinitionVisible(const_cast<FunctionDecl
*>(Definition
));
15411 if (getLangOpts().GNUMode
&& Definition
->isInlineSpecified() &&
15412 Definition
->getStorageClass() == SC_Extern
)
15413 Diag(FD
->getLocation(), diag::err_redefinition_extern_inline
)
15414 << FD
<< getLangOpts().CPlusPlus
;
15416 Diag(FD
->getLocation(), diag::err_redefinition
) << FD
;
15418 Diag(Definition
->getLocation(), diag::note_previous_definition
);
15419 FD
->setInvalidDecl();
15422 LambdaScopeInfo
*Sema::RebuildLambdaScopeInfo(CXXMethodDecl
*CallOperator
) {
15423 CXXRecordDecl
*LambdaClass
= CallOperator
->getParent();
15425 LambdaScopeInfo
*LSI
= PushLambdaScope();
15426 LSI
->CallOperator
= CallOperator
;
15427 LSI
->Lambda
= LambdaClass
;
15428 LSI
->ReturnType
= CallOperator
->getReturnType();
15429 // This function in calls in situation where the context of the call operator
15430 // is not entered, so we set AfterParameterList to false, so that
15431 // `tryCaptureVariable` finds explicit captures in the appropriate context.
15432 LSI
->AfterParameterList
= false;
15433 const LambdaCaptureDefault LCD
= LambdaClass
->getLambdaCaptureDefault();
15435 if (LCD
== LCD_None
)
15436 LSI
->ImpCaptureStyle
= CapturingScopeInfo::ImpCap_None
;
15437 else if (LCD
== LCD_ByCopy
)
15438 LSI
->ImpCaptureStyle
= CapturingScopeInfo::ImpCap_LambdaByval
;
15439 else if (LCD
== LCD_ByRef
)
15440 LSI
->ImpCaptureStyle
= CapturingScopeInfo::ImpCap_LambdaByref
;
15441 DeclarationNameInfo DNI
= CallOperator
->getNameInfo();
15443 LSI
->IntroducerRange
= DNI
.getCXXOperatorNameRange();
15444 LSI
->Mutable
= !CallOperator
->isConst();
15445 if (CallOperator
->isExplicitObjectMemberFunction())
15446 LSI
->ExplicitObjectParameter
= CallOperator
->getParamDecl(0);
15448 // Add the captures to the LSI so they can be noted as already
15449 // captured within tryCaptureVar.
15450 auto I
= LambdaClass
->field_begin();
15451 for (const auto &C
: LambdaClass
->captures()) {
15452 if (C
.capturesVariable()) {
15453 ValueDecl
*VD
= C
.getCapturedVar();
15454 if (VD
->isInitCapture())
15455 CurrentInstantiationScope
->InstantiatedLocal(VD
, VD
);
15456 const bool ByRef
= C
.getCaptureKind() == LCK_ByRef
;
15457 LSI
->addCapture(VD
, /*IsBlock*/false, ByRef
,
15458 /*RefersToEnclosingVariableOrCapture*/true, C
.getLocation(),
15459 /*EllipsisLoc*/C
.isPackExpansion()
15460 ? C
.getEllipsisLoc() : SourceLocation(),
15461 I
->getType(), /*Invalid*/false);
15463 } else if (C
.capturesThis()) {
15464 LSI
->addThisCapture(/*Nested*/ false, C
.getLocation(), I
->getType(),
15465 C
.getCaptureKind() == LCK_StarThis
);
15467 LSI
->addVLATypeCapture(C
.getLocation(), I
->getCapturedVLAType(),
15475 Decl
*Sema::ActOnStartOfFunctionDef(Scope
*FnBodyScope
, Decl
*D
,
15476 SkipBodyInfo
*SkipBody
,
15477 FnBodyKind BodyKind
) {
15479 // Parsing the function declaration failed in some way. Push on a fake scope
15480 // anyway so we can try to parse the function body.
15481 PushFunctionScope();
15482 PushExpressionEvaluationContext(ExprEvalContexts
.back().Context
);
15486 FunctionDecl
*FD
= nullptr;
15488 if (FunctionTemplateDecl
*FunTmpl
= dyn_cast
<FunctionTemplateDecl
>(D
))
15489 FD
= FunTmpl
->getTemplatedDecl();
15491 FD
= cast
<FunctionDecl
>(D
);
15493 // Do not push if it is a lambda because one is already pushed when building
15494 // the lambda in ActOnStartOfLambdaDefinition().
15495 if (!isLambdaCallOperator(FD
))
15496 // [expr.const]/p14.1
15497 // An expression or conversion is in an immediate function context if it is
15498 // potentially evaluated and either: its innermost enclosing non-block scope
15499 // is a function parameter scope of an immediate function.
15500 PushExpressionEvaluationContext(
15501 FD
->isConsteval() ? ExpressionEvaluationContext::ImmediateFunctionContext
15502 : ExprEvalContexts
.back().Context
);
15504 // Each ExpressionEvaluationContextRecord also keeps track of whether the
15505 // context is nested in an immediate function context, so smaller contexts
15506 // that appear inside immediate functions (like variable initializers) are
15507 // considered to be inside an immediate function context even though by
15508 // themselves they are not immediate function contexts. But when a new
15509 // function is entered, we need to reset this tracking, since the entered
15510 // function might be not an immediate function.
15511 ExprEvalContexts
.back().InImmediateFunctionContext
= FD
->isConsteval();
15512 ExprEvalContexts
.back().InImmediateEscalatingFunctionContext
=
15513 getLangOpts().CPlusPlus20
&& FD
->isImmediateEscalating();
15515 // Check for defining attributes before the check for redefinition.
15516 if (const auto *Attr
= FD
->getAttr
<AliasAttr
>()) {
15517 Diag(Attr
->getLocation(), diag::err_alias_is_definition
) << FD
<< 0;
15518 FD
->dropAttr
<AliasAttr
>();
15519 FD
->setInvalidDecl();
15521 if (const auto *Attr
= FD
->getAttr
<IFuncAttr
>()) {
15522 Diag(Attr
->getLocation(), diag::err_alias_is_definition
) << FD
<< 1;
15523 FD
->dropAttr
<IFuncAttr
>();
15524 FD
->setInvalidDecl();
15526 if (const auto *Attr
= FD
->getAttr
<TargetVersionAttr
>()) {
15527 if (!Context
.getTargetInfo().hasFeature("fmv") &&
15528 !Attr
->isDefaultVersion()) {
15529 // If function multi versioning disabled skip parsing function body
15530 // defined with non-default target_version attribute
15532 SkipBody
->ShouldSkip
= true;
15537 if (auto *Ctor
= dyn_cast
<CXXConstructorDecl
>(FD
)) {
15538 if (Ctor
->getTemplateSpecializationKind() == TSK_ExplicitSpecialization
&&
15539 Ctor
->isDefaultConstructor() &&
15540 Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
15541 // If this is an MS ABI dllexport default constructor, instantiate any
15542 // default arguments.
15543 InstantiateDefaultCtorDefaultArgs(Ctor
);
15547 // See if this is a redefinition. If 'will have body' (or similar) is already
15548 // set, then these checks were already performed when it was set.
15549 if (!FD
->willHaveBody() && !FD
->isLateTemplateParsed() &&
15550 !FD
->isThisDeclarationInstantiatedFromAFriendDefinition()) {
15551 CheckForFunctionRedefinition(FD
, nullptr, SkipBody
);
15553 // If we're skipping the body, we're done. Don't enter the scope.
15554 if (SkipBody
&& SkipBody
->ShouldSkip
)
15558 // Mark this function as "will have a body eventually". This lets users to
15559 // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
15561 FD
->setWillHaveBody();
15563 // If we are instantiating a generic lambda call operator, push
15564 // a LambdaScopeInfo onto the function stack. But use the information
15565 // that's already been calculated (ActOnLambdaExpr) to prime the current
15566 // LambdaScopeInfo.
15567 // When the template operator is being specialized, the LambdaScopeInfo,
15568 // has to be properly restored so that tryCaptureVariable doesn't try
15569 // and capture any new variables. In addition when calculating potential
15570 // captures during transformation of nested lambdas, it is necessary to
15571 // have the LSI properly restored.
15572 if (isGenericLambdaCallOperatorSpecialization(FD
)) {
15573 assert(inTemplateInstantiation() &&
15574 "There should be an active template instantiation on the stack "
15575 "when instantiating a generic lambda!");
15576 RebuildLambdaScopeInfo(cast
<CXXMethodDecl
>(D
));
15578 // Enter a new function scope
15579 PushFunctionScope();
15582 // Builtin functions cannot be defined.
15583 if (unsigned BuiltinID
= FD
->getBuiltinID()) {
15584 if (!Context
.BuiltinInfo
.isPredefinedLibFunction(BuiltinID
) &&
15585 !Context
.BuiltinInfo
.isPredefinedRuntimeFunction(BuiltinID
)) {
15586 Diag(FD
->getLocation(), diag::err_builtin_definition
) << FD
;
15587 FD
->setInvalidDecl();
15591 // The return type of a function definition must be complete (C99 6.9.1p3).
15592 // C++23 [dcl.fct.def.general]/p2
15593 // The type of [...] the return for a function definition
15594 // shall not be a (possibly cv-qualified) class type that is incomplete
15595 // or abstract within the function body unless the function is deleted.
15596 QualType ResultType
= FD
->getReturnType();
15597 if (!ResultType
->isDependentType() && !ResultType
->isVoidType() &&
15598 !FD
->isInvalidDecl() && BodyKind
!= FnBodyKind::Delete
&&
15599 (RequireCompleteType(FD
->getLocation(), ResultType
,
15600 diag::err_func_def_incomplete_result
) ||
15601 RequireNonAbstractType(FD
->getLocation(), FD
->getReturnType(),
15602 diag::err_abstract_type_in_decl
,
15603 AbstractReturnType
)))
15604 FD
->setInvalidDecl();
15607 PushDeclContext(FnBodyScope
, FD
);
15609 // Check the validity of our function parameters
15610 if (BodyKind
!= FnBodyKind::Delete
)
15611 CheckParmsForFunctionDef(FD
->parameters(),
15612 /*CheckParameterNames=*/true);
15614 // Add non-parameter declarations already in the function to the current
15617 for (Decl
*NPD
: FD
->decls()) {
15618 auto *NonParmDecl
= dyn_cast
<NamedDecl
>(NPD
);
15621 assert(!isa
<ParmVarDecl
>(NonParmDecl
) &&
15622 "parameters should not be in newly created FD yet");
15624 // If the decl has a name, make it accessible in the current scope.
15625 if (NonParmDecl
->getDeclName())
15626 PushOnScopeChains(NonParmDecl
, FnBodyScope
, /*AddToContext=*/false);
15628 // Similarly, dive into enums and fish their constants out, making them
15629 // accessible in this scope.
15630 if (auto *ED
= dyn_cast
<EnumDecl
>(NonParmDecl
)) {
15631 for (auto *EI
: ED
->enumerators())
15632 PushOnScopeChains(EI
, FnBodyScope
, /*AddToContext=*/false);
15637 // Introduce our parameters into the function scope
15638 for (auto *Param
: FD
->parameters()) {
15639 Param
->setOwningFunction(FD
);
15641 // If this has an identifier, add it to the scope stack.
15642 if (Param
->getIdentifier() && FnBodyScope
) {
15643 CheckShadow(FnBodyScope
, Param
);
15645 PushOnScopeChains(Param
, FnBodyScope
);
15649 // C++ [module.import/6] external definitions are not permitted in header
15650 // units. Deleted and Defaulted functions are implicitly inline (but the
15651 // inline state is not set at this point, so check the BodyKind explicitly).
15652 // FIXME: Consider an alternate location for the test where the inlined()
15653 // state is complete.
15654 if (getLangOpts().CPlusPlusModules
&& currentModuleIsHeaderUnit() &&
15655 !FD
->isInvalidDecl() && !FD
->isInlined() &&
15656 BodyKind
!= FnBodyKind::Delete
&& BodyKind
!= FnBodyKind::Default
&&
15657 FD
->getFormalLinkage() == Linkage::External
&& !FD
->isTemplated() &&
15658 !FD
->isTemplateInstantiation()) {
15659 assert(FD
->isThisDeclarationADefinition());
15660 Diag(FD
->getLocation(), diag::err_extern_def_in_header_unit
);
15661 FD
->setInvalidDecl();
15664 // Ensure that the function's exception specification is instantiated.
15665 if (const FunctionProtoType
*FPT
= FD
->getType()->getAs
<FunctionProtoType
>())
15666 ResolveExceptionSpec(D
->getLocation(), FPT
);
15668 // dllimport cannot be applied to non-inline function definitions.
15669 if (FD
->hasAttr
<DLLImportAttr
>() && !FD
->isInlined() &&
15670 !FD
->isTemplateInstantiation()) {
15671 assert(!FD
->hasAttr
<DLLExportAttr
>());
15672 Diag(FD
->getLocation(), diag::err_attribute_dllimport_function_definition
);
15673 FD
->setInvalidDecl();
15676 // We want to attach documentation to original Decl (which might be
15677 // a function template).
15678 ActOnDocumentableDecl(D
);
15679 if (getCurLexicalContext()->isObjCContainer() &&
15680 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl
&&
15681 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation
)
15682 Diag(FD
->getLocation(), diag::warn_function_def_in_objc_container
);
15687 /// Given the set of return statements within a function body,
15688 /// compute the variables that are subject to the named return value
15691 /// Each of the variables that is subject to the named return value
15692 /// optimization will be marked as NRVO variables in the AST, and any
15693 /// return statement that has a marked NRVO variable as its NRVO candidate can
15694 /// use the named return value optimization.
15696 /// This function applies a very simplistic algorithm for NRVO: if every return
15697 /// statement in the scope of a variable has the same NRVO candidate, that
15698 /// candidate is an NRVO variable.
15699 void Sema::computeNRVO(Stmt
*Body
, FunctionScopeInfo
*Scope
) {
15700 ReturnStmt
**Returns
= Scope
->Returns
.data();
15702 for (unsigned I
= 0, E
= Scope
->Returns
.size(); I
!= E
; ++I
) {
15703 if (const VarDecl
*NRVOCandidate
= Returns
[I
]->getNRVOCandidate()) {
15704 if (!NRVOCandidate
->isNRVOVariable())
15705 Returns
[I
]->setNRVOCandidate(nullptr);
15710 bool Sema::canDelayFunctionBody(const Declarator
&D
) {
15711 // We can't delay parsing the body of a constexpr function template (yet).
15712 if (D
.getDeclSpec().hasConstexprSpecifier())
15715 // We can't delay parsing the body of a function template with a deduced
15716 // return type (yet).
15717 if (D
.getDeclSpec().hasAutoTypeSpec()) {
15718 // If the placeholder introduces a non-deduced trailing return type,
15719 // we can still delay parsing it.
15720 if (D
.getNumTypeObjects()) {
15721 const auto &Outer
= D
.getTypeObject(D
.getNumTypeObjects() - 1);
15722 if (Outer
.Kind
== DeclaratorChunk::Function
&&
15723 Outer
.Fun
.hasTrailingReturnType()) {
15724 QualType Ty
= GetTypeFromParser(Outer
.Fun
.getTrailingReturnType());
15725 return Ty
.isNull() || !Ty
->isUndeducedType();
15734 bool Sema::canSkipFunctionBody(Decl
*D
) {
15735 // We cannot skip the body of a function (or function template) which is
15736 // constexpr, since we may need to evaluate its body in order to parse the
15737 // rest of the file.
15738 // We cannot skip the body of a function with an undeduced return type,
15739 // because any callers of that function need to know the type.
15740 if (const FunctionDecl
*FD
= D
->getAsFunction()) {
15741 if (FD
->isConstexpr())
15743 // We can't simply call Type::isUndeducedType here, because inside template
15744 // auto can be deduced to a dependent type, which is not considered
15746 if (FD
->getReturnType()->getContainedDeducedType())
15749 return Consumer
.shouldSkipFunctionBody(D
);
15752 Decl
*Sema::ActOnSkippedFunctionBody(Decl
*Decl
) {
15755 if (FunctionDecl
*FD
= Decl
->getAsFunction())
15756 FD
->setHasSkippedBody();
15757 else if (ObjCMethodDecl
*MD
= dyn_cast
<ObjCMethodDecl
>(Decl
))
15758 MD
->setHasSkippedBody();
15762 Decl
*Sema::ActOnFinishFunctionBody(Decl
*D
, Stmt
*BodyArg
) {
15763 return ActOnFinishFunctionBody(D
, BodyArg
, false);
15766 /// RAII object that pops an ExpressionEvaluationContext when exiting a function
15768 class ExitFunctionBodyRAII
{
15770 ExitFunctionBodyRAII(Sema
&S
, bool IsLambda
) : S(S
), IsLambda(IsLambda
) {}
15771 ~ExitFunctionBodyRAII() {
15773 S
.PopExpressionEvaluationContext();
15778 bool IsLambda
= false;
15781 static void diagnoseImplicitlyRetainedSelf(Sema
&S
) {
15782 llvm::DenseMap
<const BlockDecl
*, bool> EscapeInfo
;
15784 auto IsOrNestedInEscapingBlock
= [&](const BlockDecl
*BD
) {
15785 if (EscapeInfo
.count(BD
))
15786 return EscapeInfo
[BD
];
15789 const BlockDecl
*CurBD
= BD
;
15792 R
= !CurBD
->doesNotEscape();
15795 CurBD
= CurBD
->getParent()->getInnermostBlockDecl();
15798 return EscapeInfo
[BD
] = R
;
15801 // If the location where 'self' is implicitly retained is inside a escaping
15802 // block, emit a diagnostic.
15803 for (const std::pair
<SourceLocation
, const BlockDecl
*> &P
:
15804 S
.ImplicitlyRetainedSelfLocs
)
15805 if (IsOrNestedInEscapingBlock(P
.second
))
15806 S
.Diag(P
.first
, diag::warn_implicitly_retains_self
)
15807 << FixItHint::CreateInsertion(P
.first
, "self->");
15810 Decl
*Sema::ActOnFinishFunctionBody(Decl
*dcl
, Stmt
*Body
,
15811 bool IsInstantiation
) {
15812 FunctionScopeInfo
*FSI
= getCurFunction();
15813 FunctionDecl
*FD
= dcl
? dcl
->getAsFunction() : nullptr;
15815 if (FSI
->UsesFPIntrin
&& FD
&& !FD
->hasAttr
<StrictFPAttr
>())
15816 FD
->addAttr(StrictFPAttr::CreateImplicit(Context
));
15818 sema::AnalysisBasedWarnings::Policy WP
= AnalysisWarnings
.getDefaultPolicy();
15819 sema::AnalysisBasedWarnings::Policy
*ActivePolicy
= nullptr;
15821 if (getLangOpts().Coroutines
&& FSI
->isCoroutine())
15822 CheckCompletedCoroutineBody(FD
, Body
);
15825 // Do not call PopExpressionEvaluationContext() if it is a lambda because
15826 // one is already popped when finishing the lambda in BuildLambdaExpr().
15827 // This is meant to pop the context added in ActOnStartOfFunctionDef().
15828 ExitFunctionBodyRAII
ExitRAII(*this, isLambdaCallOperator(FD
));
15831 FD
->setWillHaveBody(false);
15832 CheckImmediateEscalatingFunctionDefinition(FD
, FSI
);
15834 if (getLangOpts().CPlusPlus14
) {
15835 if (!FD
->isInvalidDecl() && Body
&& !FD
->isDependentContext() &&
15836 FD
->getReturnType()->isUndeducedType()) {
15837 // For a function with a deduced result type to return void,
15838 // the result type as written must be 'auto' or 'decltype(auto)',
15839 // possibly cv-qualified or constrained, but not ref-qualified.
15840 if (!FD
->getReturnType()->getAs
<AutoType
>()) {
15841 Diag(dcl
->getLocation(), diag::err_auto_fn_no_return_but_not_auto
)
15842 << FD
->getReturnType();
15843 FD
->setInvalidDecl();
15845 // Falling off the end of the function is the same as 'return;'.
15846 Expr
*Dummy
= nullptr;
15847 if (DeduceFunctionTypeFromReturnExpr(
15848 FD
, dcl
->getLocation(), Dummy
,
15849 FD
->getReturnType()->getAs
<AutoType
>()))
15850 FD
->setInvalidDecl();
15853 } else if (getLangOpts().CPlusPlus11
&& isLambdaCallOperator(FD
)) {
15854 // In C++11, we don't use 'auto' deduction rules for lambda call
15855 // operators because we don't support return type deduction.
15856 auto *LSI
= getCurLambda();
15857 if (LSI
->HasImplicitReturnType
) {
15858 deduceClosureReturnType(*LSI
);
15860 // C++11 [expr.prim.lambda]p4:
15861 // [...] if there are no return statements in the compound-statement
15862 // [the deduced type is] the type void
15864 LSI
->ReturnType
.isNull() ? Context
.VoidTy
: LSI
->ReturnType
;
15866 // Update the return type to the deduced type.
15867 const auto *Proto
= FD
->getType()->castAs
<FunctionProtoType
>();
15868 FD
->setType(Context
.getFunctionType(RetType
, Proto
->getParamTypes(),
15869 Proto
->getExtProtoInfo()));
15873 // If the function implicitly returns zero (like 'main') or is naked,
15874 // don't complain about missing return statements.
15875 if (FD
->hasImplicitReturnZero() || FD
->hasAttr
<NakedAttr
>())
15876 WP
.disableCheckFallThrough();
15878 // MSVC permits the use of pure specifier (=0) on function definition,
15879 // defined at class scope, warn about this non-standard construct.
15880 if (getLangOpts().MicrosoftExt
&& FD
->isPure() && !FD
->isOutOfLine())
15881 Diag(FD
->getLocation(), diag::ext_pure_function_definition
);
15883 if (!FD
->isInvalidDecl()) {
15884 // Don't diagnose unused parameters of defaulted, deleted or naked
15886 if (!FD
->isDeleted() && !FD
->isDefaulted() && !FD
->hasSkippedBody() &&
15887 !FD
->hasAttr
<NakedAttr
>())
15888 DiagnoseUnusedParameters(FD
->parameters());
15889 DiagnoseSizeOfParametersAndReturnValue(FD
->parameters(),
15890 FD
->getReturnType(), FD
);
15892 // If this is a structor, we need a vtable.
15893 if (CXXConstructorDecl
*Constructor
= dyn_cast
<CXXConstructorDecl
>(FD
))
15894 MarkVTableUsed(FD
->getLocation(), Constructor
->getParent());
15895 else if (CXXDestructorDecl
*Destructor
=
15896 dyn_cast
<CXXDestructorDecl
>(FD
))
15897 MarkVTableUsed(FD
->getLocation(), Destructor
->getParent());
15899 // Try to apply the named return value optimization. We have to check
15900 // if we can do this here because lambdas keep return statements around
15901 // to deduce an implicit return type.
15902 if (FD
->getReturnType()->isRecordType() &&
15903 (!getLangOpts().CPlusPlus
|| !FD
->isDependentContext()))
15904 computeNRVO(Body
, FSI
);
15907 // GNU warning -Wmissing-prototypes:
15908 // Warn if a global function is defined without a previous
15909 // prototype declaration. This warning is issued even if the
15910 // definition itself provides a prototype. The aim is to detect
15911 // global functions that fail to be declared in header files.
15912 const FunctionDecl
*PossiblePrototype
= nullptr;
15913 if (ShouldWarnAboutMissingPrototype(FD
, PossiblePrototype
)) {
15914 Diag(FD
->getLocation(), diag::warn_missing_prototype
) << FD
;
15916 if (PossiblePrototype
) {
15917 // We found a declaration that is not a prototype,
15918 // but that could be a zero-parameter prototype
15919 if (TypeSourceInfo
*TI
= PossiblePrototype
->getTypeSourceInfo()) {
15920 TypeLoc TL
= TI
->getTypeLoc();
15921 if (FunctionNoProtoTypeLoc FTL
= TL
.getAs
<FunctionNoProtoTypeLoc
>())
15922 Diag(PossiblePrototype
->getLocation(),
15923 diag::note_declaration_not_a_prototype
)
15924 << (FD
->getNumParams() != 0)
15925 << (FD
->getNumParams() == 0 ? FixItHint::CreateInsertion(
15926 FTL
.getRParenLoc(), "void")
15930 // Returns true if the token beginning at this Loc is `const`.
15931 auto isLocAtConst
= [&](SourceLocation Loc
, const SourceManager
&SM
,
15932 const LangOptions
&LangOpts
) {
15933 std::pair
<FileID
, unsigned> LocInfo
= SM
.getDecomposedLoc(Loc
);
15934 if (LocInfo
.first
.isInvalid())
15937 bool Invalid
= false;
15938 StringRef Buffer
= SM
.getBufferData(LocInfo
.first
, &Invalid
);
15942 if (LocInfo
.second
> Buffer
.size())
15945 const char *LexStart
= Buffer
.data() + LocInfo
.second
;
15946 StringRef
StartTok(LexStart
, Buffer
.size() - LocInfo
.second
);
15948 return StartTok
.consume_front("const") &&
15949 (StartTok
.empty() || isWhitespace(StartTok
[0]) ||
15950 StartTok
.startswith("/*") || StartTok
.startswith("//"));
15953 auto findBeginLoc
= [&]() {
15954 // If the return type has `const` qualifier, we want to insert
15955 // `static` before `const` (and not before the typename).
15956 if ((FD
->getReturnType()->isAnyPointerType() &&
15957 FD
->getReturnType()->getPointeeType().isConstQualified()) ||
15958 FD
->getReturnType().isConstQualified()) {
15959 // But only do this if we can determine where the `const` is.
15961 if (isLocAtConst(FD
->getBeginLoc(), getSourceManager(),
15964 return FD
->getBeginLoc();
15966 return FD
->getTypeSpecStartLoc();
15968 Diag(FD
->getTypeSpecStartLoc(),
15969 diag::note_static_for_internal_linkage
)
15970 << /* function */ 1
15971 << (FD
->getStorageClass() == SC_None
15972 ? FixItHint::CreateInsertion(findBeginLoc(), "static ")
15977 // We might not have found a prototype because we didn't wish to warn on
15978 // the lack of a missing prototype. Try again without the checks for
15979 // whether we want to warn on the missing prototype.
15980 if (!PossiblePrototype
)
15981 (void)FindPossiblePrototype(FD
, PossiblePrototype
);
15983 // If the function being defined does not have a prototype, then we may
15984 // need to diagnose it as changing behavior in C23 because we now know
15985 // whether the function accepts arguments or not. This only handles the
15986 // case where the definition has no prototype but does have parameters
15987 // and either there is no previous potential prototype, or the previous
15988 // potential prototype also has no actual prototype. This handles cases
15990 // void f(); void f(a) int a; {}
15991 // void g(a) int a; {}
15992 // See MergeFunctionDecl() for other cases of the behavior change
15993 // diagnostic. See GetFullTypeForDeclarator() for handling of a function
15994 // type without a prototype.
15995 if (!FD
->hasWrittenPrototype() && FD
->getNumParams() != 0 &&
15996 (!PossiblePrototype
|| (!PossiblePrototype
->hasWrittenPrototype() &&
15997 !PossiblePrototype
->isImplicit()))) {
15998 // The function definition has parameters, so this will change behavior
15999 // in C23. If there is a possible prototype, it comes before the
16000 // function definition.
16001 // FIXME: The declaration may have already been diagnosed as being
16002 // deprecated in GetFullTypeForDeclarator() if it had no arguments, but
16003 // there's no way to test for the "changes behavior" condition in
16004 // SemaType.cpp when forming the declaration's function type. So, we do
16005 // this awkward dance instead.
16007 // If we have a possible prototype and it declares a function with a
16008 // prototype, we don't want to diagnose it; if we have a possible
16009 // prototype and it has no prototype, it may have already been
16010 // diagnosed in SemaType.cpp as deprecated depending on whether
16011 // -Wstrict-prototypes is enabled. If we already warned about it being
16012 // deprecated, add a note that it also changes behavior. If we didn't
16013 // warn about it being deprecated (because the diagnostic is not
16014 // enabled), warn now that it is deprecated and changes behavior.
16016 // This K&R C function definition definitely changes behavior in C23,
16018 Diag(FD
->getLocation(), diag::warn_non_prototype_changes_behavior
)
16019 << /*definition*/ 1 << /* not supported in C23 */ 0;
16021 // If we have a possible prototype for the function which is a user-
16022 // visible declaration, we already tested that it has no prototype.
16023 // This will change behavior in C23. This gets a warning rather than a
16024 // note because it's the same behavior-changing problem as with the
16026 if (PossiblePrototype
)
16027 Diag(PossiblePrototype
->getLocation(),
16028 diag::warn_non_prototype_changes_behavior
)
16029 << /*declaration*/ 0 << /* conflicting */ 1 << /*subsequent*/ 1
16030 << /*definition*/ 1;
16033 // Warn on CPUDispatch with an actual body.
16034 if (FD
->isMultiVersion() && FD
->hasAttr
<CPUDispatchAttr
>() && Body
)
16035 if (const auto *CmpndBody
= dyn_cast
<CompoundStmt
>(Body
))
16036 if (!CmpndBody
->body_empty())
16037 Diag(CmpndBody
->body_front()->getBeginLoc(),
16038 diag::warn_dispatch_body_ignored
);
16040 if (auto *MD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
16041 const CXXMethodDecl
*KeyFunction
;
16042 if (MD
->isOutOfLine() && (MD
= MD
->getCanonicalDecl()) &&
16044 (KeyFunction
= Context
.getCurrentKeyFunction(MD
->getParent())) &&
16045 MD
== KeyFunction
->getCanonicalDecl()) {
16046 // Update the key-function state if necessary for this ABI.
16047 if (FD
->isInlined() &&
16048 !Context
.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
16049 Context
.setNonKeyFunction(MD
);
16051 // If the newly-chosen key function is already defined, then we
16052 // need to mark the vtable as used retroactively.
16053 KeyFunction
= Context
.getCurrentKeyFunction(MD
->getParent());
16054 const FunctionDecl
*Definition
;
16055 if (KeyFunction
&& KeyFunction
->isDefined(Definition
))
16056 MarkVTableUsed(Definition
->getLocation(), MD
->getParent(), true);
16058 // We just defined they key function; mark the vtable as used.
16059 MarkVTableUsed(FD
->getLocation(), MD
->getParent(), true);
16065 (FD
== getCurFunctionDecl() || getCurLambda()->CallOperator
== FD
) &&
16066 "Function parsing confused");
16067 } else if (ObjCMethodDecl
*MD
= dyn_cast_or_null
<ObjCMethodDecl
>(dcl
)) {
16068 assert(MD
== getCurMethodDecl() && "Method parsing confused");
16070 if (!MD
->isInvalidDecl()) {
16071 DiagnoseSizeOfParametersAndReturnValue(MD
->parameters(),
16072 MD
->getReturnType(), MD
);
16075 computeNRVO(Body
, FSI
);
16077 if (FSI
->ObjCShouldCallSuper
) {
16078 Diag(MD
->getEndLoc(), diag::warn_objc_missing_super_call
)
16079 << MD
->getSelector().getAsString();
16080 FSI
->ObjCShouldCallSuper
= false;
16082 if (FSI
->ObjCWarnForNoDesignatedInitChain
) {
16083 const ObjCMethodDecl
*InitMethod
= nullptr;
16084 bool isDesignated
=
16085 MD
->isDesignatedInitializerForTheInterface(&InitMethod
);
16086 assert(isDesignated
&& InitMethod
);
16087 (void)isDesignated
;
16089 auto superIsNSObject
= [&](const ObjCMethodDecl
*MD
) {
16090 auto IFace
= MD
->getClassInterface();
16093 auto SuperD
= IFace
->getSuperClass();
16096 return SuperD
->getIdentifier() ==
16097 NSAPIObj
->getNSClassId(NSAPI::ClassId_NSObject
);
16099 // Don't issue this warning for unavailable inits or direct subclasses
16101 if (!MD
->isUnavailable() && !superIsNSObject(MD
)) {
16102 Diag(MD
->getLocation(),
16103 diag::warn_objc_designated_init_missing_super_call
);
16104 Diag(InitMethod
->getLocation(),
16105 diag::note_objc_designated_init_marked_here
);
16107 FSI
->ObjCWarnForNoDesignatedInitChain
= false;
16109 if (FSI
->ObjCWarnForNoInitDelegation
) {
16110 // Don't issue this warning for unavaialable inits.
16111 if (!MD
->isUnavailable())
16112 Diag(MD
->getLocation(),
16113 diag::warn_objc_secondary_init_missing_init_call
);
16114 FSI
->ObjCWarnForNoInitDelegation
= false;
16117 diagnoseImplicitlyRetainedSelf(*this);
16119 // Parsing the function declaration failed in some way. Pop the fake scope
16121 PopFunctionScopeInfo(ActivePolicy
, dcl
);
16125 if (Body
&& FSI
->HasPotentialAvailabilityViolations
)
16126 DiagnoseUnguardedAvailabilityViolations(dcl
);
16128 assert(!FSI
->ObjCShouldCallSuper
&&
16129 "This should only be set for ObjC methods, which should have been "
16130 "handled in the block above.");
16132 // Verify and clean out per-function state.
16133 if (Body
&& (!FD
|| !FD
->isDefaulted())) {
16134 // C++ constructors that have function-try-blocks can't have return
16135 // statements in the handlers of that block. (C++ [except.handle]p14)
16137 if (FD
&& isa
<CXXConstructorDecl
>(FD
) && isa
<CXXTryStmt
>(Body
))
16138 DiagnoseReturnInConstructorExceptionHandler(cast
<CXXTryStmt
>(Body
));
16140 // Verify that gotos and switch cases don't jump into scopes illegally.
16141 if (FSI
->NeedsScopeChecking() && !PP
.isCodeCompletionEnabled())
16142 DiagnoseInvalidJumps(Body
);
16144 if (CXXDestructorDecl
*Destructor
= dyn_cast
<CXXDestructorDecl
>(dcl
)) {
16145 if (!Destructor
->getParent()->isDependentType())
16146 CheckDestructor(Destructor
);
16148 MarkBaseAndMemberDestructorsReferenced(Destructor
->getLocation(),
16149 Destructor
->getParent());
16152 // If any errors have occurred, clear out any temporaries that may have
16153 // been leftover. This ensures that these temporaries won't be picked up
16154 // for deletion in some later function.
16155 if (hasUncompilableErrorOccurred() ||
16156 hasAnyUnrecoverableErrorsInThisFunction() ||
16157 getDiagnostics().getSuppressAllDiagnostics()) {
16158 DiscardCleanupsInEvaluationContext();
16160 if (!hasUncompilableErrorOccurred() && !isa
<FunctionTemplateDecl
>(dcl
)) {
16161 // Since the body is valid, issue any analysis-based warnings that are
16163 ActivePolicy
= &WP
;
16166 if (!IsInstantiation
&& FD
&& FD
->isConstexpr() && !FD
->isInvalidDecl() &&
16167 !CheckConstexprFunctionDefinition(FD
, CheckConstexprKind::Diagnose
))
16168 FD
->setInvalidDecl();
16170 if (FD
&& FD
->hasAttr
<NakedAttr
>()) {
16171 for (const Stmt
*S
: Body
->children()) {
16172 // Allow local register variables without initializer as they don't
16173 // require prologue.
16174 bool RegisterVariables
= false;
16175 if (auto *DS
= dyn_cast
<DeclStmt
>(S
)) {
16176 for (const auto *Decl
: DS
->decls()) {
16177 if (const auto *Var
= dyn_cast
<VarDecl
>(Decl
)) {
16178 RegisterVariables
=
16179 Var
->hasAttr
<AsmLabelAttr
>() && !Var
->hasInit();
16180 if (!RegisterVariables
)
16185 if (RegisterVariables
)
16187 if (!isa
<AsmStmt
>(S
) && !isa
<NullStmt
>(S
)) {
16188 Diag(S
->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function
);
16189 Diag(FD
->getAttr
<NakedAttr
>()->getLocation(), diag::note_attribute
);
16190 FD
->setInvalidDecl();
16196 assert(ExprCleanupObjects
.size() ==
16197 ExprEvalContexts
.back().NumCleanupObjects
&&
16198 "Leftover temporaries in function");
16199 assert(!Cleanup
.exprNeedsCleanups() &&
16200 "Unaccounted cleanups in function");
16201 assert(MaybeODRUseExprs
.empty() &&
16202 "Leftover expressions for odr-use checking");
16204 } // Pops the ExitFunctionBodyRAII scope, which needs to happen before we pop
16205 // the declaration context below. Otherwise, we're unable to transform
16206 // 'this' expressions when transforming immediate context functions.
16208 if (!IsInstantiation
)
16211 PopFunctionScopeInfo(ActivePolicy
, dcl
);
16212 // If any errors have occurred, clear out any temporaries that may have
16213 // been leftover. This ensures that these temporaries won't be picked up for
16214 // deletion in some later function.
16215 if (hasUncompilableErrorOccurred()) {
16216 DiscardCleanupsInEvaluationContext();
16219 if (FD
&& ((LangOpts
.OpenMP
&& (LangOpts
.OpenMPIsTargetDevice
||
16220 !LangOpts
.OMPTargetTriples
.empty())) ||
16221 LangOpts
.CUDA
|| LangOpts
.SYCLIsDevice
)) {
16222 auto ES
= getEmissionStatus(FD
);
16223 if (ES
== Sema::FunctionEmissionStatus::Emitted
||
16224 ES
== Sema::FunctionEmissionStatus::Unknown
)
16225 DeclsToCheckForDeferredDiags
.insert(FD
);
16228 if (FD
&& !FD
->isDeleted())
16229 checkTypeSupport(FD
->getType(), FD
->getLocation(), FD
);
16234 /// When we finish delayed parsing of an attribute, we must attach it to the
16236 void Sema::ActOnFinishDelayedAttribute(Scope
*S
, Decl
*D
,
16237 ParsedAttributes
&Attrs
) {
16238 // Always attach attributes to the underlying decl.
16239 if (TemplateDecl
*TD
= dyn_cast
<TemplateDecl
>(D
))
16240 D
= TD
->getTemplatedDecl();
16241 ProcessDeclAttributeList(S
, D
, Attrs
);
16243 if (CXXMethodDecl
*Method
= dyn_cast_or_null
<CXXMethodDecl
>(D
))
16244 if (Method
->isStatic())
16245 checkThisInStaticMemberFunctionAttributes(Method
);
16248 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
16249 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
16250 NamedDecl
*Sema::ImplicitlyDefineFunction(SourceLocation Loc
,
16251 IdentifierInfo
&II
, Scope
*S
) {
16252 // It is not valid to implicitly define a function in C23.
16253 assert(LangOpts
.implicitFunctionsAllowed() &&
16254 "Implicit function declarations aren't allowed in this language mode");
16256 // Find the scope in which the identifier is injected and the corresponding
16258 // FIXME: C89 does not say what happens if there is no enclosing block scope.
16259 // In that case, we inject the declaration into the translation unit scope
16261 Scope
*BlockScope
= S
;
16262 while (!BlockScope
->isCompoundStmtScope() && BlockScope
->getParent())
16263 BlockScope
= BlockScope
->getParent();
16265 // Loop until we find a DeclContext that is either a function/method or the
16266 // translation unit, which are the only two valid places to implicitly define
16267 // a function. This avoids accidentally defining the function within a tag
16268 // declaration, for example.
16269 Scope
*ContextScope
= BlockScope
;
16270 while (!ContextScope
->getEntity() ||
16271 (!ContextScope
->getEntity()->isFunctionOrMethod() &&
16272 !ContextScope
->getEntity()->isTranslationUnit()))
16273 ContextScope
= ContextScope
->getParent();
16274 ContextRAII
SavedContext(*this, ContextScope
->getEntity());
16276 // Before we produce a declaration for an implicitly defined
16277 // function, see whether there was a locally-scoped declaration of
16278 // this name as a function or variable. If so, use that
16279 // (non-visible) declaration, and complain about it.
16280 NamedDecl
*ExternCPrev
= findLocallyScopedExternCDecl(&II
);
16282 // We still need to inject the function into the enclosing block scope so
16283 // that later (non-call) uses can see it.
16284 PushOnScopeChains(ExternCPrev
, BlockScope
, /*AddToContext*/false);
16286 // C89 footnote 38:
16287 // If in fact it is not defined as having type "function returning int",
16288 // the behavior is undefined.
16289 if (!isa
<FunctionDecl
>(ExternCPrev
) ||
16290 !Context
.typesAreCompatible(
16291 cast
<FunctionDecl
>(ExternCPrev
)->getType(),
16292 Context
.getFunctionNoProtoType(Context
.IntTy
))) {
16293 Diag(Loc
, diag::ext_use_out_of_scope_declaration
)
16294 << ExternCPrev
<< !getLangOpts().C99
;
16295 Diag(ExternCPrev
->getLocation(), diag::note_previous_declaration
);
16296 return ExternCPrev
;
16300 // Extension in C99 (defaults to error). Legal in C89, but warn about it.
16302 if (II
.getName().startswith("__builtin_"))
16303 diag_id
= diag::warn_builtin_unknown
;
16304 // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
16305 else if (getLangOpts().C99
)
16306 diag_id
= diag::ext_implicit_function_decl_c99
;
16308 diag_id
= diag::warn_implicit_function_decl
;
16310 TypoCorrection Corrected
;
16311 // Because typo correction is expensive, only do it if the implicit
16312 // function declaration is going to be treated as an error.
16314 // Perform the correction before issuing the main diagnostic, as some
16315 // consumers use typo-correction callbacks to enhance the main diagnostic.
16316 if (S
&& !ExternCPrev
&&
16317 (Diags
.getDiagnosticLevel(diag_id
, Loc
) >= DiagnosticsEngine::Error
)) {
16318 DeclFilterCCC
<FunctionDecl
> CCC
{};
16319 Corrected
= CorrectTypo(DeclarationNameInfo(&II
, Loc
), LookupOrdinaryName
,
16320 S
, nullptr, CCC
, CTK_NonError
);
16323 Diag(Loc
, diag_id
) << &II
;
16325 // If the correction is going to suggest an implicitly defined function,
16326 // skip the correction as not being a particularly good idea.
16327 bool Diagnose
= true;
16328 if (const auto *D
= Corrected
.getCorrectionDecl())
16329 Diagnose
= !D
->isImplicit();
16331 diagnoseTypo(Corrected
, PDiag(diag::note_function_suggestion
),
16332 /*ErrorRecovery*/ false);
16335 // If we found a prior declaration of this function, don't bother building
16336 // another one. We've already pushed that one into scope, so there's nothing
16339 return ExternCPrev
;
16341 // Set a Declarator for the implicit definition: int foo();
16343 AttributeFactory attrFactory
;
16344 DeclSpec
DS(attrFactory
);
16346 bool Error
= DS
.SetTypeSpecType(DeclSpec::TST_int
, Loc
, Dummy
, DiagID
,
16347 Context
.getPrintingPolicy());
16348 (void)Error
; // Silence warning.
16349 assert(!Error
&& "Error setting up implicit decl!");
16350 SourceLocation NoLoc
;
16351 Declarator
D(DS
, ParsedAttributesView::none(), DeclaratorContext::Block
);
16352 D
.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
16353 /*IsAmbiguous=*/false,
16354 /*LParenLoc=*/NoLoc
,
16355 /*Params=*/nullptr,
16357 /*EllipsisLoc=*/NoLoc
,
16358 /*RParenLoc=*/NoLoc
,
16359 /*RefQualifierIsLvalueRef=*/true,
16360 /*RefQualifierLoc=*/NoLoc
,
16361 /*MutableLoc=*/NoLoc
, EST_None
,
16362 /*ESpecRange=*/SourceRange(),
16363 /*Exceptions=*/nullptr,
16364 /*ExceptionRanges=*/nullptr,
16365 /*NumExceptions=*/0,
16366 /*NoexceptExpr=*/nullptr,
16367 /*ExceptionSpecTokens=*/nullptr,
16368 /*DeclsInPrototype=*/std::nullopt
,
16370 std::move(DS
.getAttributes()), SourceLocation());
16371 D
.SetIdentifier(&II
, Loc
);
16373 // Insert this function into the enclosing block scope.
16374 FunctionDecl
*FD
= cast
<FunctionDecl
>(ActOnDeclarator(BlockScope
, D
));
16377 AddKnownFunctionAttributes(FD
);
16382 /// If this function is a C++ replaceable global allocation function
16383 /// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]),
16384 /// adds any function attributes that we know a priori based on the standard.
16386 /// We need to check for duplicate attributes both here and where user-written
16387 /// attributes are applied to declarations.
16388 void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
16389 FunctionDecl
*FD
) {
16390 if (FD
->isInvalidDecl())
16393 if (FD
->getDeclName().getCXXOverloadedOperator() != OO_New
&&
16394 FD
->getDeclName().getCXXOverloadedOperator() != OO_Array_New
)
16397 std::optional
<unsigned> AlignmentParam
;
16398 bool IsNothrow
= false;
16399 if (!FD
->isReplaceableGlobalAllocationFunction(&AlignmentParam
, &IsNothrow
))
16402 // C++2a [basic.stc.dynamic.allocation]p4:
16403 // An allocation function that has a non-throwing exception specification
16404 // indicates failure by returning a null pointer value. Any other allocation
16405 // function never returns a null pointer value and indicates failure only by
16406 // throwing an exception [...]
16408 // However, -fcheck-new invalidates this possible assumption, so don't add
16409 // NonNull when that is enabled.
16410 if (!IsNothrow
&& !FD
->hasAttr
<ReturnsNonNullAttr
>() &&
16411 !getLangOpts().CheckNew
)
16412 FD
->addAttr(ReturnsNonNullAttr::CreateImplicit(Context
, FD
->getLocation()));
16414 // C++2a [basic.stc.dynamic.allocation]p2:
16415 // An allocation function attempts to allocate the requested amount of
16416 // storage. [...] If the request succeeds, the value returned by a
16417 // replaceable allocation function is a [...] pointer value p0 different
16418 // from any previously returned value p1 [...]
16420 // However, this particular information is being added in codegen,
16421 // because there is an opt-out switch for it (-fno-assume-sane-operator-new)
16423 // C++2a [basic.stc.dynamic.allocation]p2:
16424 // An allocation function attempts to allocate the requested amount of
16425 // storage. If it is successful, it returns the address of the start of a
16426 // block of storage whose length in bytes is at least as large as the
16428 if (!FD
->hasAttr
<AllocSizeAttr
>()) {
16429 FD
->addAttr(AllocSizeAttr::CreateImplicit(
16430 Context
, /*ElemSizeParam=*/ParamIdx(1, FD
),
16431 /*NumElemsParam=*/ParamIdx(), FD
->getLocation()));
16434 // C++2a [basic.stc.dynamic.allocation]p3:
16435 // For an allocation function [...], the pointer returned on a successful
16436 // call shall represent the address of storage that is aligned as follows:
16437 // (3.1) If the allocation function takes an argument of type
16438 // std​::​align_Âval_Ât, the storage will have the alignment
16439 // specified by the value of this argument.
16440 if (AlignmentParam
&& !FD
->hasAttr
<AllocAlignAttr
>()) {
16441 FD
->addAttr(AllocAlignAttr::CreateImplicit(
16442 Context
, ParamIdx(*AlignmentParam
, FD
), FD
->getLocation()));
16446 // C++2a [basic.stc.dynamic.allocation]p3:
16447 // For an allocation function [...], the pointer returned on a successful
16448 // call shall represent the address of storage that is aligned as follows:
16449 // (3.2) Otherwise, if the allocation function is named operator new[],
16450 // the storage is aligned for any object that does not have
16451 // new-extended alignment ([basic.align]) and is no larger than the
16453 // (3.3) Otherwise, the storage is aligned for any object that does not
16454 // have new-extended alignment and is of the requested size.
16457 /// Adds any function attributes that we know a priori based on
16458 /// the declaration of this function.
16460 /// These attributes can apply both to implicitly-declared builtins
16461 /// (like __builtin___printf_chk) or to library-declared functions
16462 /// like NSLog or printf.
16464 /// We need to check for duplicate attributes both here and where user-written
16465 /// attributes are applied to declarations.
16466 void Sema::AddKnownFunctionAttributes(FunctionDecl
*FD
) {
16467 if (FD
->isInvalidDecl())
16470 // If this is a built-in function, map its builtin attributes to
16471 // actual attributes.
16472 if (unsigned BuiltinID
= FD
->getBuiltinID()) {
16473 // Handle printf-formatting attributes.
16474 unsigned FormatIdx
;
16476 if (Context
.BuiltinInfo
.isPrintfLike(BuiltinID
, FormatIdx
, HasVAListArg
)) {
16477 if (!FD
->hasAttr
<FormatAttr
>()) {
16478 const char *fmt
= "printf";
16479 unsigned int NumParams
= FD
->getNumParams();
16480 if (FormatIdx
< NumParams
&& // NumParams may be 0 (e.g. vfprintf)
16481 FD
->getParamDecl(FormatIdx
)->getType()->isObjCObjectPointerType())
16483 FD
->addAttr(FormatAttr::CreateImplicit(Context
,
16484 &Context
.Idents
.get(fmt
),
16486 HasVAListArg
? 0 : FormatIdx
+2,
16487 FD
->getLocation()));
16490 if (Context
.BuiltinInfo
.isScanfLike(BuiltinID
, FormatIdx
,
16492 if (!FD
->hasAttr
<FormatAttr
>())
16493 FD
->addAttr(FormatAttr::CreateImplicit(Context
,
16494 &Context
.Idents
.get("scanf"),
16496 HasVAListArg
? 0 : FormatIdx
+2,
16497 FD
->getLocation()));
16500 // Handle automatically recognized callbacks.
16501 SmallVector
<int, 4> Encoding
;
16502 if (!FD
->hasAttr
<CallbackAttr
>() &&
16503 Context
.BuiltinInfo
.performsCallback(BuiltinID
, Encoding
))
16504 FD
->addAttr(CallbackAttr::CreateImplicit(
16505 Context
, Encoding
.data(), Encoding
.size(), FD
->getLocation()));
16507 // Mark const if we don't care about errno and/or floating point exceptions
16508 // that are the only thing preventing the function from being const. This
16509 // allows IRgen to use LLVM intrinsics for such functions.
16510 bool NoExceptions
=
16511 getLangOpts().getDefaultExceptionMode() == LangOptions::FPE_Ignore
;
16512 bool ConstWithoutErrnoAndExceptions
=
16513 Context
.BuiltinInfo
.isConstWithoutErrnoAndExceptions(BuiltinID
);
16514 bool ConstWithoutExceptions
=
16515 Context
.BuiltinInfo
.isConstWithoutExceptions(BuiltinID
);
16516 if (!FD
->hasAttr
<ConstAttr
>() &&
16517 (ConstWithoutErrnoAndExceptions
|| ConstWithoutExceptions
) &&
16518 (!ConstWithoutErrnoAndExceptions
||
16519 (!getLangOpts().MathErrno
&& NoExceptions
)) &&
16520 (!ConstWithoutExceptions
|| NoExceptions
))
16521 FD
->addAttr(ConstAttr::CreateImplicit(Context
, FD
->getLocation()));
16523 // We make "fma" on GNU or Windows const because we know it does not set
16524 // errno in those environments even though it could set errno based on the
16526 const llvm::Triple
&Trip
= Context
.getTargetInfo().getTriple();
16527 if ((Trip
.isGNUEnvironment() || Trip
.isOSMSVCRT()) &&
16528 !FD
->hasAttr
<ConstAttr
>()) {
16529 switch (BuiltinID
) {
16530 case Builtin::BI__builtin_fma
:
16531 case Builtin::BI__builtin_fmaf
:
16532 case Builtin::BI__builtin_fmal
:
16533 case Builtin::BIfma
:
16534 case Builtin::BIfmaf
:
16535 case Builtin::BIfmal
:
16536 FD
->addAttr(ConstAttr::CreateImplicit(Context
, FD
->getLocation()));
16543 if (Context
.BuiltinInfo
.isReturnsTwice(BuiltinID
) &&
16544 !FD
->hasAttr
<ReturnsTwiceAttr
>())
16545 FD
->addAttr(ReturnsTwiceAttr::CreateImplicit(Context
,
16546 FD
->getLocation()));
16547 if (Context
.BuiltinInfo
.isNoThrow(BuiltinID
) && !FD
->hasAttr
<NoThrowAttr
>())
16548 FD
->addAttr(NoThrowAttr::CreateImplicit(Context
, FD
->getLocation()));
16549 if (Context
.BuiltinInfo
.isPure(BuiltinID
) && !FD
->hasAttr
<PureAttr
>())
16550 FD
->addAttr(PureAttr::CreateImplicit(Context
, FD
->getLocation()));
16551 if (Context
.BuiltinInfo
.isConst(BuiltinID
) && !FD
->hasAttr
<ConstAttr
>())
16552 FD
->addAttr(ConstAttr::CreateImplicit(Context
, FD
->getLocation()));
16553 if (getLangOpts().CUDA
&& Context
.BuiltinInfo
.isTSBuiltin(BuiltinID
) &&
16554 !FD
->hasAttr
<CUDADeviceAttr
>() && !FD
->hasAttr
<CUDAHostAttr
>()) {
16555 // Add the appropriate attribute, depending on the CUDA compilation mode
16556 // and which target the builtin belongs to. For example, during host
16557 // compilation, aux builtins are __device__, while the rest are __host__.
16558 if (getLangOpts().CUDAIsDevice
!=
16559 Context
.BuiltinInfo
.isAuxBuiltinID(BuiltinID
))
16560 FD
->addAttr(CUDADeviceAttr::CreateImplicit(Context
, FD
->getLocation()));
16562 FD
->addAttr(CUDAHostAttr::CreateImplicit(Context
, FD
->getLocation()));
16565 // Add known guaranteed alignment for allocation functions.
16566 switch (BuiltinID
) {
16567 case Builtin::BImemalign
:
16568 case Builtin::BIaligned_alloc
:
16569 if (!FD
->hasAttr
<AllocAlignAttr
>())
16570 FD
->addAttr(AllocAlignAttr::CreateImplicit(Context
, ParamIdx(1, FD
),
16571 FD
->getLocation()));
16577 // Add allocsize attribute for allocation functions.
16578 switch (BuiltinID
) {
16579 case Builtin::BIcalloc
:
16580 FD
->addAttr(AllocSizeAttr::CreateImplicit(
16581 Context
, ParamIdx(1, FD
), ParamIdx(2, FD
), FD
->getLocation()));
16583 case Builtin::BImemalign
:
16584 case Builtin::BIaligned_alloc
:
16585 case Builtin::BIrealloc
:
16586 FD
->addAttr(AllocSizeAttr::CreateImplicit(Context
, ParamIdx(2, FD
),
16587 ParamIdx(), FD
->getLocation()));
16589 case Builtin::BImalloc
:
16590 FD
->addAttr(AllocSizeAttr::CreateImplicit(Context
, ParamIdx(1, FD
),
16591 ParamIdx(), FD
->getLocation()));
16597 // Add lifetime attribute to std::move, std::fowrard et al.
16598 switch (BuiltinID
) {
16599 case Builtin::BIaddressof
:
16600 case Builtin::BI__addressof
:
16601 case Builtin::BI__builtin_addressof
:
16602 case Builtin::BIas_const
:
16603 case Builtin::BIforward
:
16604 case Builtin::BIforward_like
:
16605 case Builtin::BImove
:
16606 case Builtin::BImove_if_noexcept
:
16607 if (ParmVarDecl
*P
= FD
->getParamDecl(0u);
16608 !P
->hasAttr
<LifetimeBoundAttr
>())
16610 LifetimeBoundAttr::CreateImplicit(Context
, FD
->getLocation()));
16617 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD
);
16619 // If C++ exceptions are enabled but we are told extern "C" functions cannot
16620 // throw, add an implicit nothrow attribute to any extern "C" function we come
16622 if (getLangOpts().CXXExceptions
&& getLangOpts().ExternCNoUnwind
&&
16623 FD
->isExternC() && !FD
->hasAttr
<NoThrowAttr
>()) {
16624 const auto *FPT
= FD
->getType()->getAs
<FunctionProtoType
>();
16625 if (!FPT
|| FPT
->getExceptionSpecType() == EST_None
)
16626 FD
->addAttr(NoThrowAttr::CreateImplicit(Context
, FD
->getLocation()));
16629 IdentifierInfo
*Name
= FD
->getIdentifier();
16632 if ((!getLangOpts().CPlusPlus
&& FD
->getDeclContext()->isTranslationUnit()) ||
16633 (isa
<LinkageSpecDecl
>(FD
->getDeclContext()) &&
16634 cast
<LinkageSpecDecl
>(FD
->getDeclContext())->getLanguage() ==
16635 LinkageSpecLanguageIDs::C
)) {
16636 // Okay: this could be a libc/libm/Objective-C function we know
16641 if (Name
->isStr("asprintf") || Name
->isStr("vasprintf")) {
16642 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
16643 // target-specific builtins, perhaps?
16644 if (!FD
->hasAttr
<FormatAttr
>())
16645 FD
->addAttr(FormatAttr::CreateImplicit(Context
,
16646 &Context
.Idents
.get("printf"), 2,
16647 Name
->isStr("vasprintf") ? 0 : 3,
16648 FD
->getLocation()));
16651 if (Name
->isStr("__CFStringMakeConstantString")) {
16652 // We already have a __builtin___CFStringMakeConstantString,
16653 // but builds that use -fno-constant-cfstrings don't go through that.
16654 if (!FD
->hasAttr
<FormatArgAttr
>())
16655 FD
->addAttr(FormatArgAttr::CreateImplicit(Context
, ParamIdx(1, FD
),
16656 FD
->getLocation()));
16660 TypedefDecl
*Sema::ParseTypedefDecl(Scope
*S
, Declarator
&D
, QualType T
,
16661 TypeSourceInfo
*TInfo
) {
16662 assert(D
.getIdentifier() && "Wrong callback for declspec without declarator");
16663 assert(!T
.isNull() && "GetTypeForDeclarator() returned null type");
16666 assert(D
.isInvalidType() && "no declarator info for valid type");
16667 TInfo
= Context
.getTrivialTypeSourceInfo(T
);
16670 // Scope manipulation handled by caller.
16671 TypedefDecl
*NewTD
=
16672 TypedefDecl::Create(Context
, CurContext
, D
.getBeginLoc(),
16673 D
.getIdentifierLoc(), D
.getIdentifier(), TInfo
);
16675 // Bail out immediately if we have an invalid declaration.
16676 if (D
.isInvalidType()) {
16677 NewTD
->setInvalidDecl();
16681 if (D
.getDeclSpec().isModulePrivateSpecified()) {
16682 if (CurContext
->isFunctionOrMethod())
16683 Diag(NewTD
->getLocation(), diag::err_module_private_local
)
16685 << SourceRange(D
.getDeclSpec().getModulePrivateSpecLoc())
16686 << FixItHint::CreateRemoval(
16687 D
.getDeclSpec().getModulePrivateSpecLoc());
16689 NewTD
->setModulePrivate();
16692 // C++ [dcl.typedef]p8:
16693 // If the typedef declaration defines an unnamed class (or
16694 // enum), the first typedef-name declared by the declaration
16695 // to be that class type (or enum type) is used to denote the
16696 // class type (or enum type) for linkage purposes only.
16697 // We need to check whether the type was declared in the declaration.
16698 switch (D
.getDeclSpec().getTypeSpecType()) {
16701 case TST_interface
:
16704 TagDecl
*tagFromDeclSpec
= cast
<TagDecl
>(D
.getDeclSpec().getRepAsDecl());
16705 setTagNameForLinkagePurposes(tagFromDeclSpec
, NewTD
);
16716 /// Check that this is a valid underlying type for an enum declaration.
16717 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo
*TI
) {
16718 SourceLocation UnderlyingLoc
= TI
->getTypeLoc().getBeginLoc();
16719 QualType T
= TI
->getType();
16721 if (T
->isDependentType())
16724 // This doesn't use 'isIntegralType' despite the error message mentioning
16725 // integral type because isIntegralType would also allow enum types in C.
16726 if (const BuiltinType
*BT
= T
->getAs
<BuiltinType
>())
16727 if (BT
->isInteger())
16730 return Diag(UnderlyingLoc
, diag::err_enum_invalid_underlying
)
16731 << T
<< T
->isBitIntType();
16734 /// Check whether this is a valid redeclaration of a previous enumeration.
16735 /// \return true if the redeclaration was invalid.
16736 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc
, bool IsScoped
,
16737 QualType EnumUnderlyingTy
, bool IsFixed
,
16738 const EnumDecl
*Prev
) {
16739 if (IsScoped
!= Prev
->isScoped()) {
16740 Diag(EnumLoc
, diag::err_enum_redeclare_scoped_mismatch
)
16741 << Prev
->isScoped();
16742 Diag(Prev
->getLocation(), diag::note_previous_declaration
);
16746 if (IsFixed
&& Prev
->isFixed()) {
16747 if (!EnumUnderlyingTy
->isDependentType() &&
16748 !Prev
->getIntegerType()->isDependentType() &&
16749 !Context
.hasSameUnqualifiedType(EnumUnderlyingTy
,
16750 Prev
->getIntegerType())) {
16751 // TODO: Highlight the underlying type of the redeclaration.
16752 Diag(EnumLoc
, diag::err_enum_redeclare_type_mismatch
)
16753 << EnumUnderlyingTy
<< Prev
->getIntegerType();
16754 Diag(Prev
->getLocation(), diag::note_previous_declaration
)
16755 << Prev
->getIntegerTypeRange();
16758 } else if (IsFixed
!= Prev
->isFixed()) {
16759 Diag(EnumLoc
, diag::err_enum_redeclare_fixed_mismatch
)
16760 << Prev
->isFixed();
16761 Diag(Prev
->getLocation(), diag::note_previous_declaration
);
16768 /// Get diagnostic %select index for tag kind for
16769 /// redeclaration diagnostic message.
16770 /// WARNING: Indexes apply to particular diagnostics only!
16772 /// \returns diagnostic %select index.
16773 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag
) {
16775 case TagTypeKind::Struct
:
16777 case TagTypeKind::Interface
:
16779 case TagTypeKind::Class
:
16781 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
16785 /// Determine if tag kind is a class-key compatible with
16786 /// class for redeclaration (class, struct, or __interface).
16788 /// \returns true iff the tag kind is compatible.
16789 static bool isClassCompatTagKind(TagTypeKind Tag
)
16791 return Tag
== TagTypeKind::Struct
|| Tag
== TagTypeKind::Class
||
16792 Tag
== TagTypeKind::Interface
;
16795 Sema::NonTagKind
Sema::getNonTagTypeDeclKind(const Decl
*PrevDecl
,
16797 if (isa
<TypedefDecl
>(PrevDecl
))
16798 return NTK_Typedef
;
16799 else if (isa
<TypeAliasDecl
>(PrevDecl
))
16800 return NTK_TypeAlias
;
16801 else if (isa
<ClassTemplateDecl
>(PrevDecl
))
16802 return NTK_Template
;
16803 else if (isa
<TypeAliasTemplateDecl
>(PrevDecl
))
16804 return NTK_TypeAliasTemplate
;
16805 else if (isa
<TemplateTemplateParmDecl
>(PrevDecl
))
16806 return NTK_TemplateTemplateArgument
;
16808 case TagTypeKind::Struct
:
16809 case TagTypeKind::Interface
:
16810 case TagTypeKind::Class
:
16811 return getLangOpts().CPlusPlus
? NTK_NonClass
: NTK_NonStruct
;
16812 case TagTypeKind::Union
:
16813 return NTK_NonUnion
;
16814 case TagTypeKind::Enum
:
16815 return NTK_NonEnum
;
16817 llvm_unreachable("invalid TTK");
16820 /// Determine whether a tag with a given kind is acceptable
16821 /// as a redeclaration of the given tag declaration.
16823 /// \returns true if the new tag kind is acceptable, false otherwise.
16824 bool Sema::isAcceptableTagRedeclaration(const TagDecl
*Previous
,
16825 TagTypeKind NewTag
, bool isDefinition
,
16826 SourceLocation NewTagLoc
,
16827 const IdentifierInfo
*Name
) {
16828 // C++ [dcl.type.elab]p3:
16829 // The class-key or enum keyword present in the
16830 // elaborated-type-specifier shall agree in kind with the
16831 // declaration to which the name in the elaborated-type-specifier
16832 // refers. This rule also applies to the form of
16833 // elaborated-type-specifier that declares a class-name or
16834 // friend class since it can be construed as referring to the
16835 // definition of the class. Thus, in any
16836 // elaborated-type-specifier, the enum keyword shall be used to
16837 // refer to an enumeration (7.2), the union class-key shall be
16838 // used to refer to a union (clause 9), and either the class or
16839 // struct class-key shall be used to refer to a class (clause 9)
16840 // declared using the class or struct class-key.
16841 TagTypeKind OldTag
= Previous
->getTagKind();
16842 if (OldTag
!= NewTag
&&
16843 !(isClassCompatTagKind(OldTag
) && isClassCompatTagKind(NewTag
)))
16846 // Tags are compatible, but we might still want to warn on mismatched tags.
16847 // Non-class tags can't be mismatched at this point.
16848 if (!isClassCompatTagKind(NewTag
))
16851 // Declarations for which -Wmismatched-tags is disabled are entirely ignored
16852 // by our warning analysis. We don't want to warn about mismatches with (eg)
16853 // declarations in system headers that are designed to be specialized, but if
16854 // a user asks us to warn, we should warn if their code contains mismatched
16856 auto IsIgnoredLoc
= [&](SourceLocation Loc
) {
16857 return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch
,
16860 if (IsIgnoredLoc(NewTagLoc
))
16863 auto IsIgnored
= [&](const TagDecl
*Tag
) {
16864 return IsIgnoredLoc(Tag
->getLocation());
16866 while (IsIgnored(Previous
)) {
16867 Previous
= Previous
->getPreviousDecl();
16870 OldTag
= Previous
->getTagKind();
16873 bool isTemplate
= false;
16874 if (const CXXRecordDecl
*Record
= dyn_cast
<CXXRecordDecl
>(Previous
))
16875 isTemplate
= Record
->getDescribedClassTemplate();
16877 if (inTemplateInstantiation()) {
16878 if (OldTag
!= NewTag
) {
16879 // In a template instantiation, do not offer fix-its for tag mismatches
16880 // since they usually mess up the template instead of fixing the problem.
16881 Diag(NewTagLoc
, diag::warn_struct_class_tag_mismatch
)
16882 << getRedeclDiagFromTagKind(NewTag
) << isTemplate
<< Name
16883 << getRedeclDiagFromTagKind(OldTag
);
16884 // FIXME: Note previous location?
16889 if (isDefinition
) {
16890 // On definitions, check all previous tags and issue a fix-it for each
16891 // one that doesn't match the current tag.
16892 if (Previous
->getDefinition()) {
16893 // Don't suggest fix-its for redefinitions.
16897 bool previousMismatch
= false;
16898 for (const TagDecl
*I
: Previous
->redecls()) {
16899 if (I
->getTagKind() != NewTag
) {
16900 // Ignore previous declarations for which the warning was disabled.
16904 if (!previousMismatch
) {
16905 previousMismatch
= true;
16906 Diag(NewTagLoc
, diag::warn_struct_class_previous_tag_mismatch
)
16907 << getRedeclDiagFromTagKind(NewTag
) << isTemplate
<< Name
16908 << getRedeclDiagFromTagKind(I
->getTagKind());
16910 Diag(I
->getInnerLocStart(), diag::note_struct_class_suggestion
)
16911 << getRedeclDiagFromTagKind(NewTag
)
16912 << FixItHint::CreateReplacement(I
->getInnerLocStart(),
16913 TypeWithKeyword::getTagTypeKindName(NewTag
));
16919 // Identify the prevailing tag kind: this is the kind of the definition (if
16920 // there is a non-ignored definition), or otherwise the kind of the prior
16921 // (non-ignored) declaration.
16922 const TagDecl
*PrevDef
= Previous
->getDefinition();
16923 if (PrevDef
&& IsIgnored(PrevDef
))
16925 const TagDecl
*Redecl
= PrevDef
? PrevDef
: Previous
;
16926 if (Redecl
->getTagKind() != NewTag
) {
16927 Diag(NewTagLoc
, diag::warn_struct_class_tag_mismatch
)
16928 << getRedeclDiagFromTagKind(NewTag
) << isTemplate
<< Name
16929 << getRedeclDiagFromTagKind(OldTag
);
16930 Diag(Redecl
->getLocation(), diag::note_previous_use
);
16932 // If there is a previous definition, suggest a fix-it.
16934 Diag(NewTagLoc
, diag::note_struct_class_suggestion
)
16935 << getRedeclDiagFromTagKind(Redecl
->getTagKind())
16936 << FixItHint::CreateReplacement(SourceRange(NewTagLoc
),
16937 TypeWithKeyword::getTagTypeKindName(Redecl
->getTagKind()));
16944 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
16945 /// from an outer enclosing namespace or file scope inside a friend declaration.
16946 /// This should provide the commented out code in the following snippet:
16950 /// struct Y { friend struct /*N::*/ X; };
16953 static FixItHint
createFriendTagNNSFixIt(Sema
&SemaRef
, NamedDecl
*ND
, Scope
*S
,
16954 SourceLocation NameLoc
) {
16955 // While the decl is in a namespace, do repeated lookup of that name and see
16956 // if we get the same namespace back. If we do not, continue until
16957 // translation unit scope, at which point we have a fully qualified NNS.
16958 SmallVector
<IdentifierInfo
*, 4> Namespaces
;
16959 DeclContext
*DC
= ND
->getDeclContext()->getRedeclContext();
16960 for (; !DC
->isTranslationUnit(); DC
= DC
->getParent()) {
16961 // This tag should be declared in a namespace, which can only be enclosed by
16962 // other namespaces. Bail if there's an anonymous namespace in the chain.
16963 NamespaceDecl
*Namespace
= dyn_cast
<NamespaceDecl
>(DC
);
16964 if (!Namespace
|| Namespace
->isAnonymousNamespace())
16965 return FixItHint();
16966 IdentifierInfo
*II
= Namespace
->getIdentifier();
16967 Namespaces
.push_back(II
);
16968 NamedDecl
*Lookup
= SemaRef
.LookupSingleName(
16969 S
, II
, NameLoc
, Sema::LookupNestedNameSpecifierName
);
16970 if (Lookup
== Namespace
)
16974 // Once we have all the namespaces, reverse them to go outermost first, and
16976 SmallString
<64> Insertion
;
16977 llvm::raw_svector_ostream
OS(Insertion
);
16978 if (DC
->isTranslationUnit())
16980 std::reverse(Namespaces
.begin(), Namespaces
.end());
16981 for (auto *II
: Namespaces
)
16982 OS
<< II
->getName() << "::";
16983 return FixItHint::CreateInsertion(NameLoc
, Insertion
);
16986 /// Determine whether a tag originally declared in context \p OldDC can
16987 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
16988 /// found a declaration in \p OldDC as a previous decl, perhaps through a
16989 /// using-declaration).
16990 static bool isAcceptableTagRedeclContext(Sema
&S
, DeclContext
*OldDC
,
16991 DeclContext
*NewDC
) {
16992 OldDC
= OldDC
->getRedeclContext();
16993 NewDC
= NewDC
->getRedeclContext();
16995 if (OldDC
->Equals(NewDC
))
16998 // In MSVC mode, we allow a redeclaration if the contexts are related (either
16999 // encloses the other).
17000 if (S
.getLangOpts().MSVCCompat
&&
17001 (OldDC
->Encloses(NewDC
) || NewDC
->Encloses(OldDC
)))
17007 /// This is invoked when we see 'struct foo' or 'struct {'. In the
17008 /// former case, Name will be non-null. In the later case, Name will be null.
17009 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
17010 /// reference/declaration/definition of a tag.
17012 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
17013 /// trailing-type-specifier) other than one in an alias-declaration.
17015 /// \param SkipBody If non-null, will be set to indicate if the caller should
17016 /// skip the definition of this tag and treat it as if it were a declaration.
17018 Sema::ActOnTag(Scope
*S
, unsigned TagSpec
, TagUseKind TUK
, SourceLocation KWLoc
,
17019 CXXScopeSpec
&SS
, IdentifierInfo
*Name
, SourceLocation NameLoc
,
17020 const ParsedAttributesView
&Attrs
, AccessSpecifier AS
,
17021 SourceLocation ModulePrivateLoc
,
17022 MultiTemplateParamsArg TemplateParameterLists
, bool &OwnedDecl
,
17023 bool &IsDependent
, SourceLocation ScopedEnumKWLoc
,
17024 bool ScopedEnumUsesClassTag
, TypeResult UnderlyingType
,
17025 bool IsTypeSpecifier
, bool IsTemplateParamOrArg
,
17026 OffsetOfKind OOK
, SkipBodyInfo
*SkipBody
) {
17027 // If this is not a definition, it must have a name.
17028 IdentifierInfo
*OrigName
= Name
;
17029 assert((Name
!= nullptr || TUK
== TUK_Definition
) &&
17030 "Nameless record must be a definition!");
17031 assert(TemplateParameterLists
.size() == 0 || TUK
!= TUK_Reference
);
17034 TagTypeKind Kind
= TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec
);
17035 bool ScopedEnum
= ScopedEnumKWLoc
.isValid();
17037 // FIXME: Check member specializations more carefully.
17038 bool isMemberSpecialization
= false;
17039 bool Invalid
= false;
17041 // We only need to do this matching if we have template parameters
17042 // or a scope specifier, which also conveniently avoids this work
17043 // for non-C++ cases.
17044 if (TemplateParameterLists
.size() > 0 ||
17045 (SS
.isNotEmpty() && TUK
!= TUK_Reference
)) {
17046 if (TemplateParameterList
*TemplateParams
=
17047 MatchTemplateParametersToScopeSpecifier(
17048 KWLoc
, NameLoc
, SS
, nullptr, TemplateParameterLists
,
17049 TUK
== TUK_Friend
, isMemberSpecialization
, Invalid
)) {
17050 if (Kind
== TagTypeKind::Enum
) {
17051 Diag(KWLoc
, diag::err_enum_template
);
17055 if (TemplateParams
->size() > 0) {
17056 // This is a declaration or definition of a class template (which may
17057 // be a member of another template).
17063 DeclResult Result
= CheckClassTemplate(
17064 S
, TagSpec
, TUK
, KWLoc
, SS
, Name
, NameLoc
, Attrs
, TemplateParams
,
17065 AS
, ModulePrivateLoc
,
17066 /*FriendLoc*/ SourceLocation(), TemplateParameterLists
.size() - 1,
17067 TemplateParameterLists
.data(), SkipBody
);
17068 return Result
.get();
17070 // The "template<>" header is extraneous.
17071 Diag(TemplateParams
->getTemplateLoc(), diag::err_template_tag_noparams
)
17072 << TypeWithKeyword::getTagTypeKindName(Kind
) << Name
;
17073 isMemberSpecialization
= true;
17077 if (!TemplateParameterLists
.empty() && isMemberSpecialization
&&
17078 CheckTemplateDeclScope(S
, TemplateParameterLists
.back()))
17082 // Figure out the underlying type if this a enum declaration. We need to do
17083 // this early, because it's needed to detect if this is an incompatible
17085 llvm::PointerUnion
<const Type
*, TypeSourceInfo
*> EnumUnderlying
;
17086 bool IsFixed
= !UnderlyingType
.isUnset() || ScopedEnum
;
17088 if (Kind
== TagTypeKind::Enum
) {
17089 if (UnderlyingType
.isInvalid() || (!UnderlyingType
.get() && ScopedEnum
)) {
17090 // No underlying type explicitly specified, or we failed to parse the
17091 // type, default to int.
17092 EnumUnderlying
= Context
.IntTy
.getTypePtr();
17093 } else if (UnderlyingType
.get()) {
17094 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
17095 // integral type; any cv-qualification is ignored.
17096 TypeSourceInfo
*TI
= nullptr;
17097 GetTypeFromParser(UnderlyingType
.get(), &TI
);
17098 EnumUnderlying
= TI
;
17100 if (CheckEnumUnderlyingType(TI
))
17101 // Recover by falling back to int.
17102 EnumUnderlying
= Context
.IntTy
.getTypePtr();
17104 if (DiagnoseUnexpandedParameterPack(TI
->getTypeLoc().getBeginLoc(), TI
,
17105 UPPC_FixedUnderlyingType
))
17106 EnumUnderlying
= Context
.IntTy
.getTypePtr();
17108 } else if (Context
.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
17109 // For MSVC ABI compatibility, unfixed enums must use an underlying type
17110 // of 'int'. However, if this is an unfixed forward declaration, don't set
17111 // the underlying type unless the user enables -fms-compatibility. This
17112 // makes unfixed forward declared enums incomplete and is more conforming.
17113 if (TUK
== TUK_Definition
|| getLangOpts().MSVCCompat
)
17114 EnumUnderlying
= Context
.IntTy
.getTypePtr();
17118 DeclContext
*SearchDC
= CurContext
;
17119 DeclContext
*DC
= CurContext
;
17120 bool isStdBadAlloc
= false;
17121 bool isStdAlignValT
= false;
17123 RedeclarationKind Redecl
= forRedeclarationInCurContext();
17124 if (TUK
== TUK_Friend
|| TUK
== TUK_Reference
)
17125 Redecl
= NotForRedeclaration
;
17127 /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
17128 /// implemented asks for structural equivalence checking, the returned decl
17129 /// here is passed back to the parser, allowing the tag body to be parsed.
17130 auto createTagFromNewDecl
= [&]() -> TagDecl
* {
17131 assert(!getLangOpts().CPlusPlus
&& "not meant for C++ usage");
17132 // If there is an identifier, use the location of the identifier as the
17133 // location of the decl, otherwise use the location of the struct/union
17135 SourceLocation Loc
= NameLoc
.isValid() ? NameLoc
: KWLoc
;
17136 TagDecl
*New
= nullptr;
17138 if (Kind
== TagTypeKind::Enum
) {
17139 New
= EnumDecl::Create(Context
, SearchDC
, KWLoc
, Loc
, Name
, nullptr,
17140 ScopedEnum
, ScopedEnumUsesClassTag
, IsFixed
);
17141 // If this is an undefined enum, bail.
17142 if (TUK
!= TUK_Definition
&& !Invalid
)
17144 if (EnumUnderlying
) {
17145 EnumDecl
*ED
= cast
<EnumDecl
>(New
);
17146 if (TypeSourceInfo
*TI
= EnumUnderlying
.dyn_cast
<TypeSourceInfo
*>())
17147 ED
->setIntegerTypeSourceInfo(TI
);
17149 ED
->setIntegerType(QualType(EnumUnderlying
.get
<const Type
*>(), 0));
17150 QualType EnumTy
= ED
->getIntegerType();
17151 ED
->setPromotionType(Context
.isPromotableIntegerType(EnumTy
)
17152 ? Context
.getPromotedIntegerType(EnumTy
)
17155 } else { // struct/union
17156 New
= RecordDecl::Create(Context
, Kind
, SearchDC
, KWLoc
, Loc
, Name
,
17160 if (RecordDecl
*RD
= dyn_cast
<RecordDecl
>(New
)) {
17161 // Add alignment attributes if necessary; these attributes are checked
17162 // when the ASTContext lays out the structure.
17164 // It is important for implementing the correct semantics that this
17165 // happen here (in ActOnTag). The #pragma pack stack is
17166 // maintained as a result of parser callbacks which can occur at
17167 // many points during the parsing of a struct declaration (because
17168 // the #pragma tokens are effectively skipped over during the
17169 // parsing of the struct).
17170 if (TUK
== TUK_Definition
&& (!SkipBody
|| !SkipBody
->ShouldSkip
)) {
17171 AddAlignmentAttributesForRecord(RD
);
17172 AddMsStructLayoutForRecord(RD
);
17175 New
->setLexicalDeclContext(CurContext
);
17179 LookupResult
Previous(*this, Name
, NameLoc
, LookupTagName
, Redecl
);
17180 if (Name
&& SS
.isNotEmpty()) {
17181 // We have a nested-name tag ('struct foo::bar').
17183 // Check for invalid 'foo::'.
17184 if (SS
.isInvalid()) {
17186 goto CreateNewDecl
;
17189 // If this is a friend or a reference to a class in a dependent
17190 // context, don't try to make a decl for it.
17191 if (TUK
== TUK_Friend
|| TUK
== TUK_Reference
) {
17192 DC
= computeDeclContext(SS
, false);
17194 IsDependent
= true;
17198 DC
= computeDeclContext(SS
, true);
17200 Diag(SS
.getRange().getBegin(), diag::err_dependent_nested_name_spec
)
17206 if (RequireCompleteDeclContext(SS
, DC
))
17210 // Look-up name inside 'foo::'.
17211 LookupQualifiedName(Previous
, DC
);
17213 if (Previous
.isAmbiguous())
17216 if (Previous
.empty()) {
17217 // Name lookup did not find anything. However, if the
17218 // nested-name-specifier refers to the current instantiation,
17219 // and that current instantiation has any dependent base
17220 // classes, we might find something at instantiation time: treat
17221 // this as a dependent elaborated-type-specifier.
17222 // But this only makes any sense for reference-like lookups.
17223 if (Previous
.wasNotFoundInCurrentInstantiation() &&
17224 (TUK
== TUK_Reference
|| TUK
== TUK_Friend
)) {
17225 IsDependent
= true;
17229 // A tag 'foo::bar' must already exist.
17230 Diag(NameLoc
, diag::err_not_tag_in_scope
)
17231 << llvm::to_underlying(Kind
) << Name
<< DC
<< SS
.getRange();
17234 goto CreateNewDecl
;
17237 // C++14 [class.mem]p14:
17238 // If T is the name of a class, then each of the following shall have a
17239 // name different from T:
17240 // -- every member of class T that is itself a type
17241 if (TUK
!= TUK_Reference
&& TUK
!= TUK_Friend
&&
17242 DiagnoseClassNameShadow(SearchDC
, DeclarationNameInfo(Name
, NameLoc
)))
17245 // If this is a named struct, check to see if there was a previous forward
17246 // declaration or definition.
17247 // FIXME: We're looking into outer scopes here, even when we
17248 // shouldn't be. Doing so can result in ambiguities that we
17249 // shouldn't be diagnosing.
17250 LookupName(Previous
, S
);
17252 // When declaring or defining a tag, ignore ambiguities introduced
17253 // by types using'ed into this scope.
17254 if (Previous
.isAmbiguous() &&
17255 (TUK
== TUK_Definition
|| TUK
== TUK_Declaration
)) {
17256 LookupResult::Filter F
= Previous
.makeFilter();
17257 while (F
.hasNext()) {
17258 NamedDecl
*ND
= F
.next();
17259 if (!ND
->getDeclContext()->getRedeclContext()->Equals(
17260 SearchDC
->getRedeclContext()))
17266 // C++11 [namespace.memdef]p3:
17267 // If the name in a friend declaration is neither qualified nor
17268 // a template-id and the declaration is a function or an
17269 // elaborated-type-specifier, the lookup to determine whether
17270 // the entity has been previously declared shall not consider
17271 // any scopes outside the innermost enclosing namespace.
17273 // MSVC doesn't implement the above rule for types, so a friend tag
17274 // declaration may be a redeclaration of a type declared in an enclosing
17275 // scope. They do implement this rule for friend functions.
17277 // Does it matter that this should be by scope instead of by
17278 // semantic context?
17279 if (!Previous
.empty() && TUK
== TUK_Friend
) {
17280 DeclContext
*EnclosingNS
= SearchDC
->getEnclosingNamespaceContext();
17281 LookupResult::Filter F
= Previous
.makeFilter();
17282 bool FriendSawTagOutsideEnclosingNamespace
= false;
17283 while (F
.hasNext()) {
17284 NamedDecl
*ND
= F
.next();
17285 DeclContext
*DC
= ND
->getDeclContext()->getRedeclContext();
17286 if (DC
->isFileContext() &&
17287 !EnclosingNS
->Encloses(ND
->getDeclContext())) {
17288 if (getLangOpts().MSVCCompat
)
17289 FriendSawTagOutsideEnclosingNamespace
= true;
17296 // Diagnose this MSVC extension in the easy case where lookup would have
17297 // unambiguously found something outside the enclosing namespace.
17298 if (Previous
.isSingleResult() && FriendSawTagOutsideEnclosingNamespace
) {
17299 NamedDecl
*ND
= Previous
.getFoundDecl();
17300 Diag(NameLoc
, diag::ext_friend_tag_redecl_outside_namespace
)
17301 << createFriendTagNNSFixIt(*this, ND
, S
, NameLoc
);
17305 // Note: there used to be some attempt at recovery here.
17306 if (Previous
.isAmbiguous())
17309 if (!getLangOpts().CPlusPlus
&& TUK
!= TUK_Reference
) {
17310 // FIXME: This makes sure that we ignore the contexts associated
17311 // with C structs, unions, and enums when looking for a matching
17312 // tag declaration or definition. See the similar lookup tweak
17313 // in Sema::LookupName; is there a better way to deal with this?
17314 while (isa
<RecordDecl
, EnumDecl
, ObjCContainerDecl
>(SearchDC
))
17315 SearchDC
= SearchDC
->getParent();
17316 } else if (getLangOpts().CPlusPlus
) {
17317 // Inside ObjCContainer want to keep it as a lexical decl context but go
17318 // past it (most often to TranslationUnit) to find the semantic decl
17320 while (isa
<ObjCContainerDecl
>(SearchDC
))
17321 SearchDC
= SearchDC
->getParent();
17323 } else if (getLangOpts().CPlusPlus
) {
17324 // Don't use ObjCContainerDecl as the semantic decl context for anonymous
17325 // TagDecl the same way as we skip it for named TagDecl.
17326 while (isa
<ObjCContainerDecl
>(SearchDC
))
17327 SearchDC
= SearchDC
->getParent();
17330 if (Previous
.isSingleResult() &&
17331 Previous
.getFoundDecl()->isTemplateParameter()) {
17332 // Maybe we will complain about the shadowed template parameter.
17333 DiagnoseTemplateParameterShadow(NameLoc
, Previous
.getFoundDecl());
17334 // Just pretend that we didn't see the previous declaration.
17338 if (getLangOpts().CPlusPlus
&& Name
&& DC
&& StdNamespace
&&
17339 DC
->Equals(getStdNamespace())) {
17340 if (Name
->isStr("bad_alloc")) {
17341 // This is a declaration of or a reference to "std::bad_alloc".
17342 isStdBadAlloc
= true;
17344 // If std::bad_alloc has been implicitly declared (but made invisible to
17345 // name lookup), fill in this implicit declaration as the previous
17346 // declaration, so that the declarations get chained appropriately.
17347 if (Previous
.empty() && StdBadAlloc
)
17348 Previous
.addDecl(getStdBadAlloc());
17349 } else if (Name
->isStr("align_val_t")) {
17350 isStdAlignValT
= true;
17351 if (Previous
.empty() && StdAlignValT
)
17352 Previous
.addDecl(getStdAlignValT());
17356 // If we didn't find a previous declaration, and this is a reference
17357 // (or friend reference), move to the correct scope. In C++, we
17358 // also need to do a redeclaration lookup there, just in case
17359 // there's a shadow friend decl.
17360 if (Name
&& Previous
.empty() &&
17361 (TUK
== TUK_Reference
|| TUK
== TUK_Friend
|| IsTemplateParamOrArg
)) {
17362 if (Invalid
) goto CreateNewDecl
;
17363 assert(SS
.isEmpty());
17365 if (TUK
== TUK_Reference
|| IsTemplateParamOrArg
) {
17366 // C++ [basic.scope.pdecl]p5:
17367 // -- for an elaborated-type-specifier of the form
17369 // class-key identifier
17371 // if the elaborated-type-specifier is used in the
17372 // decl-specifier-seq or parameter-declaration-clause of a
17373 // function defined in namespace scope, the identifier is
17374 // declared as a class-name in the namespace that contains
17375 // the declaration; otherwise, except as a friend
17376 // declaration, the identifier is declared in the smallest
17377 // non-class, non-function-prototype scope that contains the
17380 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
17381 // C structs and unions.
17383 // It is an error in C++ to declare (rather than define) an enum
17384 // type, including via an elaborated type specifier. We'll
17385 // diagnose that later; for now, declare the enum in the same
17386 // scope as we would have picked for any other tag type.
17388 // GNU C also supports this behavior as part of its incomplete
17389 // enum types extension, while GNU C++ does not.
17391 // Find the context where we'll be declaring the tag.
17392 // FIXME: We would like to maintain the current DeclContext as the
17393 // lexical context,
17394 SearchDC
= getTagInjectionContext(SearchDC
);
17396 // Find the scope where we'll be declaring the tag.
17397 S
= getTagInjectionScope(S
, getLangOpts());
17399 assert(TUK
== TUK_Friend
);
17400 CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(SearchDC
);
17402 // C++ [namespace.memdef]p3:
17403 // If a friend declaration in a non-local class first declares a
17404 // class or function, the friend class or function is a member of
17405 // the innermost enclosing namespace.
17406 SearchDC
= RD
->isLocalClass() ? RD
->isLocalClass()
17407 : SearchDC
->getEnclosingNamespaceContext();
17410 // In C++, we need to do a redeclaration lookup to properly
17411 // diagnose some problems.
17412 // FIXME: redeclaration lookup is also used (with and without C++) to find a
17413 // hidden declaration so that we don't get ambiguity errors when using a
17414 // type declared by an elaborated-type-specifier. In C that is not correct
17415 // and we should instead merge compatible types found by lookup.
17416 if (getLangOpts().CPlusPlus
) {
17417 // FIXME: This can perform qualified lookups into function contexts,
17418 // which are meaningless.
17419 Previous
.setRedeclarationKind(forRedeclarationInCurContext());
17420 LookupQualifiedName(Previous
, SearchDC
);
17422 Previous
.setRedeclarationKind(forRedeclarationInCurContext());
17423 LookupName(Previous
, S
);
17427 // If we have a known previous declaration to use, then use it.
17428 if (Previous
.empty() && SkipBody
&& SkipBody
->Previous
)
17429 Previous
.addDecl(SkipBody
->Previous
);
17431 if (!Previous
.empty()) {
17432 NamedDecl
*PrevDecl
= Previous
.getFoundDecl();
17433 NamedDecl
*DirectPrevDecl
= Previous
.getRepresentativeDecl();
17435 // It's okay to have a tag decl in the same scope as a typedef
17436 // which hides a tag decl in the same scope. Finding this
17437 // with a redeclaration lookup can only actually happen in C++.
17439 // This is also okay for elaborated-type-specifiers, which is
17440 // technically forbidden by the current standard but which is
17441 // okay according to the likely resolution of an open issue;
17442 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
17443 if (getLangOpts().CPlusPlus
) {
17444 if (TypedefNameDecl
*TD
= dyn_cast
<TypedefNameDecl
>(PrevDecl
)) {
17445 if (const TagType
*TT
= TD
->getUnderlyingType()->getAs
<TagType
>()) {
17446 TagDecl
*Tag
= TT
->getDecl();
17447 if (Tag
->getDeclName() == Name
&&
17448 Tag
->getDeclContext()->getRedeclContext()
17449 ->Equals(TD
->getDeclContext()->getRedeclContext())) {
17452 Previous
.addDecl(Tag
);
17453 Previous
.resolveKind();
17459 // If this is a redeclaration of a using shadow declaration, it must
17460 // declare a tag in the same context. In MSVC mode, we allow a
17461 // redefinition if either context is within the other.
17462 if (auto *Shadow
= dyn_cast
<UsingShadowDecl
>(DirectPrevDecl
)) {
17463 auto *OldTag
= dyn_cast
<TagDecl
>(PrevDecl
);
17464 if (SS
.isEmpty() && TUK
!= TUK_Reference
&& TUK
!= TUK_Friend
&&
17465 isDeclInScope(Shadow
, SearchDC
, S
, isMemberSpecialization
) &&
17466 !(OldTag
&& isAcceptableTagRedeclContext(
17467 *this, OldTag
->getDeclContext(), SearchDC
))) {
17468 Diag(KWLoc
, diag::err_using_decl_conflict_reverse
);
17469 Diag(Shadow
->getTargetDecl()->getLocation(),
17470 diag::note_using_decl_target
);
17471 Diag(Shadow
->getIntroducer()->getLocation(), diag::note_using_decl
)
17473 // Recover by ignoring the old declaration.
17475 goto CreateNewDecl
;
17479 if (TagDecl
*PrevTagDecl
= dyn_cast
<TagDecl
>(PrevDecl
)) {
17480 // If this is a use of a previous tag, or if the tag is already declared
17481 // in the same scope (so that the definition/declaration completes or
17482 // rementions the tag), reuse the decl.
17483 if (TUK
== TUK_Reference
|| TUK
== TUK_Friend
||
17484 isDeclInScope(DirectPrevDecl
, SearchDC
, S
,
17485 SS
.isNotEmpty() || isMemberSpecialization
)) {
17486 // Make sure that this wasn't declared as an enum and now used as a
17487 // struct or something similar.
17488 if (!isAcceptableTagRedeclaration(PrevTagDecl
, Kind
,
17489 TUK
== TUK_Definition
, KWLoc
,
17491 bool SafeToContinue
=
17492 (PrevTagDecl
->getTagKind() != TagTypeKind::Enum
&&
17493 Kind
!= TagTypeKind::Enum
);
17494 if (SafeToContinue
)
17495 Diag(KWLoc
, diag::err_use_with_wrong_tag
)
17497 << FixItHint::CreateReplacement(SourceRange(KWLoc
),
17498 PrevTagDecl
->getKindName());
17500 Diag(KWLoc
, diag::err_use_with_wrong_tag
) << Name
;
17501 Diag(PrevTagDecl
->getLocation(), diag::note_previous_use
);
17503 if (SafeToContinue
)
17504 Kind
= PrevTagDecl
->getTagKind();
17506 // Recover by making this an anonymous redefinition.
17513 if (Kind
== TagTypeKind::Enum
&&
17514 PrevTagDecl
->getTagKind() == TagTypeKind::Enum
) {
17515 const EnumDecl
*PrevEnum
= cast
<EnumDecl
>(PrevTagDecl
);
17516 if (TUK
== TUK_Reference
|| TUK
== TUK_Friend
)
17517 return PrevTagDecl
;
17519 QualType EnumUnderlyingTy
;
17520 if (TypeSourceInfo
*TI
= EnumUnderlying
.dyn_cast
<TypeSourceInfo
*>())
17521 EnumUnderlyingTy
= TI
->getType().getUnqualifiedType();
17522 else if (const Type
*T
= EnumUnderlying
.dyn_cast
<const Type
*>())
17523 EnumUnderlyingTy
= QualType(T
, 0);
17525 // All conflicts with previous declarations are recovered by
17526 // returning the previous declaration, unless this is a definition,
17527 // in which case we want the caller to bail out.
17528 if (CheckEnumRedeclaration(NameLoc
.isValid() ? NameLoc
: KWLoc
,
17529 ScopedEnum
, EnumUnderlyingTy
,
17530 IsFixed
, PrevEnum
))
17531 return TUK
== TUK_Declaration
? PrevTagDecl
: nullptr;
17534 // C++11 [class.mem]p1:
17535 // A member shall not be declared twice in the member-specification,
17536 // except that a nested class or member class template can be declared
17537 // and then later defined.
17538 if (TUK
== TUK_Declaration
&& PrevDecl
->isCXXClassMember() &&
17539 S
->isDeclScope(PrevDecl
)) {
17540 Diag(NameLoc
, diag::ext_member_redeclared
);
17541 Diag(PrevTagDecl
->getLocation(), diag::note_previous_declaration
);
17545 // If this is a use, just return the declaration we found, unless
17546 // we have attributes.
17547 if (TUK
== TUK_Reference
|| TUK
== TUK_Friend
) {
17548 if (!Attrs
.empty()) {
17549 // FIXME: Diagnose these attributes. For now, we create a new
17550 // declaration to hold them.
17551 } else if (TUK
== TUK_Reference
&&
17552 (PrevTagDecl
->getFriendObjectKind() ==
17553 Decl::FOK_Undeclared
||
17554 PrevDecl
->getOwningModule() != getCurrentModule()) &&
17556 // This declaration is a reference to an existing entity, but
17557 // has different visibility from that entity: it either makes
17558 // a friend visible or it makes a type visible in a new module.
17559 // In either case, create a new declaration. We only do this if
17560 // the declaration would have meant the same thing if no prior
17561 // declaration were found, that is, if it was found in the same
17562 // scope where we would have injected a declaration.
17563 if (!getTagInjectionContext(CurContext
)->getRedeclContext()
17564 ->Equals(PrevDecl
->getDeclContext()->getRedeclContext()))
17565 return PrevTagDecl
;
17566 // This is in the injected scope, create a new declaration in
17568 S
= getTagInjectionScope(S
, getLangOpts());
17570 return PrevTagDecl
;
17574 // Diagnose attempts to redefine a tag.
17575 if (TUK
== TUK_Definition
) {
17576 if (NamedDecl
*Def
= PrevTagDecl
->getDefinition()) {
17577 // If we're defining a specialization and the previous definition
17578 // is from an implicit instantiation, don't emit an error
17579 // here; we'll catch this in the general case below.
17580 bool IsExplicitSpecializationAfterInstantiation
= false;
17581 if (isMemberSpecialization
) {
17582 if (CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(Def
))
17583 IsExplicitSpecializationAfterInstantiation
=
17584 RD
->getTemplateSpecializationKind() !=
17585 TSK_ExplicitSpecialization
;
17586 else if (EnumDecl
*ED
= dyn_cast
<EnumDecl
>(Def
))
17587 IsExplicitSpecializationAfterInstantiation
=
17588 ED
->getTemplateSpecializationKind() !=
17589 TSK_ExplicitSpecialization
;
17592 // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
17593 // not keep more that one definition around (merge them). However,
17594 // ensure the decl passes the structural compatibility check in
17595 // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
17596 NamedDecl
*Hidden
= nullptr;
17597 if (SkipBody
&& !hasVisibleDefinition(Def
, &Hidden
)) {
17598 // There is a definition of this tag, but it is not visible. We
17599 // explicitly make use of C++'s one definition rule here, and
17600 // assume that this definition is identical to the hidden one
17601 // we already have. Make the existing definition visible and
17602 // use it in place of this one.
17603 if (!getLangOpts().CPlusPlus
) {
17604 // Postpone making the old definition visible until after we
17605 // complete parsing the new one and do the structural
17607 SkipBody
->CheckSameAsPrevious
= true;
17608 SkipBody
->New
= createTagFromNewDecl();
17609 SkipBody
->Previous
= Def
;
17612 SkipBody
->ShouldSkip
= true;
17613 SkipBody
->Previous
= Def
;
17614 makeMergedDefinitionVisible(Hidden
);
17615 // Carry on and handle it like a normal definition. We'll
17616 // skip starting the definitiion later.
17618 } else if (!IsExplicitSpecializationAfterInstantiation
) {
17619 // A redeclaration in function prototype scope in C isn't
17620 // visible elsewhere, so merely issue a warning.
17621 if (!getLangOpts().CPlusPlus
&& S
->containedInPrototypeScope())
17622 Diag(NameLoc
, diag::warn_redefinition_in_param_list
) << Name
;
17624 Diag(NameLoc
, diag::err_redefinition
) << Name
;
17625 notePreviousDefinition(Def
,
17626 NameLoc
.isValid() ? NameLoc
: KWLoc
);
17627 // If this is a redefinition, recover by making this
17628 // struct be anonymous, which will make any later
17629 // references get the previous definition.
17635 // If the type is currently being defined, complain
17636 // about a nested redefinition.
17637 auto *TD
= Context
.getTagDeclType(PrevTagDecl
)->getAsTagDecl();
17638 if (TD
->isBeingDefined()) {
17639 Diag(NameLoc
, diag::err_nested_redefinition
) << Name
;
17640 Diag(PrevTagDecl
->getLocation(),
17641 diag::note_previous_definition
);
17648 // Okay, this is definition of a previously declared or referenced
17649 // tag. We're going to create a new Decl for it.
17652 // Okay, we're going to make a redeclaration. If this is some kind
17653 // of reference, make sure we build the redeclaration in the same DC
17654 // as the original, and ignore the current access specifier.
17655 if (TUK
== TUK_Friend
|| TUK
== TUK_Reference
) {
17656 SearchDC
= PrevTagDecl
->getDeclContext();
17660 // If we get here we have (another) forward declaration or we
17661 // have a definition. Just create a new decl.
17664 // If we get here, this is a definition of a new tag type in a nested
17665 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
17666 // new decl/type. We set PrevDecl to NULL so that the entities
17667 // have distinct types.
17670 // If we get here, we're going to create a new Decl. If PrevDecl
17671 // is non-NULL, it's a definition of the tag declared by
17672 // PrevDecl. If it's NULL, we have a new definition.
17674 // Otherwise, PrevDecl is not a tag, but was found with tag
17675 // lookup. This is only actually possible in C++, where a few
17676 // things like templates still live in the tag namespace.
17678 // Use a better diagnostic if an elaborated-type-specifier
17679 // found the wrong kind of type on the first
17680 // (non-redeclaration) lookup.
17681 if ((TUK
== TUK_Reference
|| TUK
== TUK_Friend
) &&
17682 !Previous
.isForRedeclaration()) {
17683 NonTagKind NTK
= getNonTagTypeDeclKind(PrevDecl
, Kind
);
17684 Diag(NameLoc
, diag::err_tag_reference_non_tag
)
17685 << PrevDecl
<< NTK
<< llvm::to_underlying(Kind
);
17686 Diag(PrevDecl
->getLocation(), diag::note_declared_at
);
17689 // Otherwise, only diagnose if the declaration is in scope.
17690 } else if (!isDeclInScope(DirectPrevDecl
, SearchDC
, S
,
17691 SS
.isNotEmpty() || isMemberSpecialization
)) {
17694 // Diagnose implicit declarations introduced by elaborated types.
17695 } else if (TUK
== TUK_Reference
|| TUK
== TUK_Friend
) {
17696 NonTagKind NTK
= getNonTagTypeDeclKind(PrevDecl
, Kind
);
17697 Diag(NameLoc
, diag::err_tag_reference_conflict
) << NTK
;
17698 Diag(PrevDecl
->getLocation(), diag::note_previous_decl
) << PrevDecl
;
17701 // Otherwise it's a declaration. Call out a particularly common
17703 } else if (TypedefNameDecl
*TND
= dyn_cast
<TypedefNameDecl
>(PrevDecl
)) {
17705 if (isa
<TypeAliasDecl
>(PrevDecl
)) Kind
= 1;
17706 Diag(NameLoc
, diag::err_tag_definition_of_typedef
)
17707 << Name
<< Kind
<< TND
->getUnderlyingType();
17708 Diag(PrevDecl
->getLocation(), diag::note_previous_decl
) << PrevDecl
;
17711 // Otherwise, diagnose.
17713 // The tag name clashes with something else in the target scope,
17714 // issue an error and recover by making this tag be anonymous.
17715 Diag(NameLoc
, diag::err_redefinition_different_kind
) << Name
;
17716 notePreviousDefinition(PrevDecl
, NameLoc
);
17721 // The existing declaration isn't relevant to us; we're in a
17722 // new scope, so clear out the previous declaration.
17729 TagDecl
*PrevDecl
= nullptr;
17730 if (Previous
.isSingleResult())
17731 PrevDecl
= cast
<TagDecl
>(Previous
.getFoundDecl());
17733 // If there is an identifier, use the location of the identifier as the
17734 // location of the decl, otherwise use the location of the struct/union
17736 SourceLocation Loc
= NameLoc
.isValid() ? NameLoc
: KWLoc
;
17738 // Otherwise, create a new declaration. If there is a previous
17739 // declaration of the same entity, the two will be linked via
17743 if (Kind
== TagTypeKind::Enum
) {
17744 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
17745 // enum X { A, B, C } D; D should chain to X.
17746 New
= EnumDecl::Create(Context
, SearchDC
, KWLoc
, Loc
, Name
,
17747 cast_or_null
<EnumDecl
>(PrevDecl
), ScopedEnum
,
17748 ScopedEnumUsesClassTag
, IsFixed
);
17750 if (isStdAlignValT
&& (!StdAlignValT
|| getStdAlignValT()->isImplicit()))
17751 StdAlignValT
= cast
<EnumDecl
>(New
);
17753 // If this is an undefined enum, warn.
17754 if (TUK
!= TUK_Definition
&& !Invalid
) {
17756 if (IsFixed
&& cast
<EnumDecl
>(New
)->isFixed()) {
17757 // C++0x: 7.2p2: opaque-enum-declaration.
17758 // Conflicts are diagnosed above. Do nothing.
17760 else if (PrevDecl
&& (Def
= cast
<EnumDecl
>(PrevDecl
)->getDefinition())) {
17761 Diag(Loc
, diag::ext_forward_ref_enum_def
)
17763 Diag(Def
->getLocation(), diag::note_previous_definition
);
17765 unsigned DiagID
= diag::ext_forward_ref_enum
;
17766 if (getLangOpts().MSVCCompat
)
17767 DiagID
= diag::ext_ms_forward_ref_enum
;
17768 else if (getLangOpts().CPlusPlus
)
17769 DiagID
= diag::err_forward_ref_enum
;
17774 if (EnumUnderlying
) {
17775 EnumDecl
*ED
= cast
<EnumDecl
>(New
);
17776 if (TypeSourceInfo
*TI
= EnumUnderlying
.dyn_cast
<TypeSourceInfo
*>())
17777 ED
->setIntegerTypeSourceInfo(TI
);
17779 ED
->setIntegerType(QualType(EnumUnderlying
.get
<const Type
*>(), 0));
17780 QualType EnumTy
= ED
->getIntegerType();
17781 ED
->setPromotionType(Context
.isPromotableIntegerType(EnumTy
)
17782 ? Context
.getPromotedIntegerType(EnumTy
)
17784 assert(ED
->isComplete() && "enum with type should be complete");
17787 // struct/union/class
17789 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
17790 // struct X { int A; } D; D should chain to X.
17791 if (getLangOpts().CPlusPlus
) {
17792 // FIXME: Look for a way to use RecordDecl for simple structs.
17793 New
= CXXRecordDecl::Create(Context
, Kind
, SearchDC
, KWLoc
, Loc
, Name
,
17794 cast_or_null
<CXXRecordDecl
>(PrevDecl
));
17796 if (isStdBadAlloc
&& (!StdBadAlloc
|| getStdBadAlloc()->isImplicit()))
17797 StdBadAlloc
= cast
<CXXRecordDecl
>(New
);
17799 New
= RecordDecl::Create(Context
, Kind
, SearchDC
, KWLoc
, Loc
, Name
,
17800 cast_or_null
<RecordDecl
>(PrevDecl
));
17803 if (OOK
!= OOK_Outside
&& TUK
== TUK_Definition
&& !getLangOpts().CPlusPlus
)
17804 Diag(New
->getLocation(), diag::ext_type_defined_in_offsetof
)
17805 << (OOK
== OOK_Macro
) << New
->getSourceRange();
17807 // C++11 [dcl.type]p3:
17808 // A type-specifier-seq shall not define a class or enumeration [...].
17809 if (!Invalid
&& getLangOpts().CPlusPlus
&&
17810 (IsTypeSpecifier
|| IsTemplateParamOrArg
) && TUK
== TUK_Definition
) {
17811 Diag(New
->getLocation(), diag::err_type_defined_in_type_specifier
)
17812 << Context
.getTagDeclType(New
);
17816 if (!Invalid
&& getLangOpts().CPlusPlus
&& TUK
== TUK_Definition
&&
17817 DC
->getDeclKind() == Decl::Enum
) {
17818 Diag(New
->getLocation(), diag::err_type_defined_in_enum
)
17819 << Context
.getTagDeclType(New
);
17823 // Maybe add qualifier info.
17824 if (SS
.isNotEmpty()) {
17826 // If this is either a declaration or a definition, check the
17827 // nested-name-specifier against the current context.
17828 if ((TUK
== TUK_Definition
|| TUK
== TUK_Declaration
) &&
17829 diagnoseQualifiedDeclaration(SS
, DC
, OrigName
, Loc
,
17830 isMemberSpecialization
))
17833 New
->setQualifierInfo(SS
.getWithLocInContext(Context
));
17834 if (TemplateParameterLists
.size() > 0) {
17835 New
->setTemplateParameterListsInfo(Context
, TemplateParameterLists
);
17842 if (RecordDecl
*RD
= dyn_cast
<RecordDecl
>(New
)) {
17843 // Add alignment attributes if necessary; these attributes are checked when
17844 // the ASTContext lays out the structure.
17846 // It is important for implementing the correct semantics that this
17847 // happen here (in ActOnTag). The #pragma pack stack is
17848 // maintained as a result of parser callbacks which can occur at
17849 // many points during the parsing of a struct declaration (because
17850 // the #pragma tokens are effectively skipped over during the
17851 // parsing of the struct).
17852 if (TUK
== TUK_Definition
&& (!SkipBody
|| !SkipBody
->ShouldSkip
)) {
17853 AddAlignmentAttributesForRecord(RD
);
17854 AddMsStructLayoutForRecord(RD
);
17858 if (ModulePrivateLoc
.isValid()) {
17859 if (isMemberSpecialization
)
17860 Diag(New
->getLocation(), diag::err_module_private_specialization
)
17862 << FixItHint::CreateRemoval(ModulePrivateLoc
);
17863 // __module_private__ does not apply to local classes. However, we only
17864 // diagnose this as an error when the declaration specifiers are
17865 // freestanding. Here, we just ignore the __module_private__.
17866 else if (!SearchDC
->isFunctionOrMethod())
17867 New
->setModulePrivate();
17870 // If this is a specialization of a member class (of a class template),
17871 // check the specialization.
17872 if (isMemberSpecialization
&& CheckMemberSpecialization(New
, Previous
))
17875 // If we're declaring or defining a tag in function prototype scope in C,
17876 // note that this type can only be used within the function and add it to
17877 // the list of decls to inject into the function definition scope.
17878 if ((Name
|| Kind
== TagTypeKind::Enum
) &&
17879 getNonFieldDeclScope(S
)->isFunctionPrototypeScope()) {
17880 if (getLangOpts().CPlusPlus
) {
17881 // C++ [dcl.fct]p6:
17882 // Types shall not be defined in return or parameter types.
17883 if (TUK
== TUK_Definition
&& !IsTypeSpecifier
) {
17884 Diag(Loc
, diag::err_type_defined_in_param_type
)
17888 } else if (!PrevDecl
) {
17889 Diag(Loc
, diag::warn_decl_in_param_list
) << Context
.getTagDeclType(New
);
17894 New
->setInvalidDecl();
17896 // Set the lexical context. If the tag has a C++ scope specifier, the
17897 // lexical context will be different from the semantic context.
17898 New
->setLexicalDeclContext(CurContext
);
17900 // Mark this as a friend decl if applicable.
17901 // In Microsoft mode, a friend declaration also acts as a forward
17902 // declaration so we always pass true to setObjectOfFriendDecl to make
17903 // the tag name visible.
17904 if (TUK
== TUK_Friend
)
17905 New
->setObjectOfFriendDecl(getLangOpts().MSVCCompat
);
17907 // Set the access specifier.
17908 if (!Invalid
&& SearchDC
->isRecord())
17909 SetMemberAccessSpecifier(New
, PrevDecl
, AS
);
17912 CheckRedeclarationInModule(New
, PrevDecl
);
17914 if (TUK
== TUK_Definition
&& (!SkipBody
|| !SkipBody
->ShouldSkip
))
17915 New
->startDefinition();
17917 ProcessDeclAttributeList(S
, New
, Attrs
);
17918 AddPragmaAttributes(S
, New
);
17920 // If this has an identifier, add it to the scope stack.
17921 if (TUK
== TUK_Friend
) {
17922 // We might be replacing an existing declaration in the lookup tables;
17923 // if so, borrow its access specifier.
17925 New
->setAccess(PrevDecl
->getAccess());
17927 DeclContext
*DC
= New
->getDeclContext()->getRedeclContext();
17928 DC
->makeDeclVisibleInContext(New
);
17929 if (Name
) // can be null along some error paths
17930 if (Scope
*EnclosingScope
= getScopeForDeclContext(S
, DC
))
17931 PushOnScopeChains(New
, EnclosingScope
, /* AddToContext = */ false);
17933 S
= getNonFieldDeclScope(S
);
17934 PushOnScopeChains(New
, S
, true);
17936 CurContext
->addDecl(New
);
17939 // If this is the C FILE type, notify the AST context.
17940 if (IdentifierInfo
*II
= New
->getIdentifier())
17941 if (!New
->isInvalidDecl() &&
17942 New
->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
17944 Context
.setFILEDecl(New
);
17947 mergeDeclAttributes(New
, PrevDecl
);
17949 if (auto *CXXRD
= dyn_cast
<CXXRecordDecl
>(New
))
17950 inferGslOwnerPointerAttribute(CXXRD
);
17952 // If there's a #pragma GCC visibility in scope, set the visibility of this
17954 AddPushedVisibilityAttribute(New
);
17956 if (isMemberSpecialization
&& !New
->isInvalidDecl())
17957 CompleteMemberSpecialization(New
, Previous
);
17960 // In C++, don't return an invalid declaration. We can't recover well from
17961 // the cases where we make the type anonymous.
17962 if (Invalid
&& getLangOpts().CPlusPlus
) {
17963 if (New
->isBeingDefined())
17964 if (auto RD
= dyn_cast
<RecordDecl
>(New
))
17965 RD
->completeDefinition();
17967 } else if (SkipBody
&& SkipBody
->ShouldSkip
) {
17968 return SkipBody
->Previous
;
17974 void Sema::ActOnTagStartDefinition(Scope
*S
, Decl
*TagD
) {
17975 AdjustDeclIfTemplate(TagD
);
17976 TagDecl
*Tag
= cast
<TagDecl
>(TagD
);
17978 // Enter the tag context.
17979 PushDeclContext(S
, Tag
);
17981 ActOnDocumentableDecl(TagD
);
17983 // If there's a #pragma GCC visibility in scope, set the visibility of this
17985 AddPushedVisibilityAttribute(Tag
);
17988 bool Sema::ActOnDuplicateDefinition(Decl
*Prev
, SkipBodyInfo
&SkipBody
) {
17989 if (!hasStructuralCompatLayout(Prev
, SkipBody
.New
))
17992 // Make the previous decl visible.
17993 makeMergedDefinitionVisible(SkipBody
.Previous
);
17997 void Sema::ActOnObjCContainerStartDefinition(ObjCContainerDecl
*IDecl
) {
17998 assert(IDecl
->getLexicalParent() == CurContext
&&
17999 "The next DeclContext should be lexically contained in the current one.");
18000 CurContext
= IDecl
;
18003 void Sema::ActOnStartCXXMemberDeclarations(Scope
*S
, Decl
*TagD
,
18004 SourceLocation FinalLoc
,
18005 bool IsFinalSpelledSealed
,
18007 SourceLocation LBraceLoc
) {
18008 AdjustDeclIfTemplate(TagD
);
18009 CXXRecordDecl
*Record
= cast
<CXXRecordDecl
>(TagD
);
18011 FieldCollector
->StartClass();
18013 if (!Record
->getIdentifier())
18017 Record
->markAbstract();
18019 if (FinalLoc
.isValid()) {
18020 Record
->addAttr(FinalAttr::Create(Context
, FinalLoc
,
18021 IsFinalSpelledSealed
18022 ? FinalAttr::Keyword_sealed
18023 : FinalAttr::Keyword_final
));
18026 // [...] The class-name is also inserted into the scope of the
18027 // class itself; this is known as the injected-class-name. For
18028 // purposes of access checking, the injected-class-name is treated
18029 // as if it were a public member name.
18030 CXXRecordDecl
*InjectedClassName
= CXXRecordDecl::Create(
18031 Context
, Record
->getTagKind(), CurContext
, Record
->getBeginLoc(),
18032 Record
->getLocation(), Record
->getIdentifier(),
18033 /*PrevDecl=*/nullptr,
18034 /*DelayTypeCreation=*/true);
18035 Context
.getTypeDeclType(InjectedClassName
, Record
);
18036 InjectedClassName
->setImplicit();
18037 InjectedClassName
->setAccess(AS_public
);
18038 if (ClassTemplateDecl
*Template
= Record
->getDescribedClassTemplate())
18039 InjectedClassName
->setDescribedClassTemplate(Template
);
18040 PushOnScopeChains(InjectedClassName
, S
);
18041 assert(InjectedClassName
->isInjectedClassName() &&
18042 "Broken injected-class-name");
18045 void Sema::ActOnTagFinishDefinition(Scope
*S
, Decl
*TagD
,
18046 SourceRange BraceRange
) {
18047 AdjustDeclIfTemplate(TagD
);
18048 TagDecl
*Tag
= cast
<TagDecl
>(TagD
);
18049 Tag
->setBraceRange(BraceRange
);
18051 // Make sure we "complete" the definition even it is invalid.
18052 if (Tag
->isBeingDefined()) {
18053 assert(Tag
->isInvalidDecl() && "We should already have completed it");
18054 if (RecordDecl
*RD
= dyn_cast
<RecordDecl
>(Tag
))
18055 RD
->completeDefinition();
18058 if (auto *RD
= dyn_cast
<CXXRecordDecl
>(Tag
)) {
18059 FieldCollector
->FinishClass();
18060 if (RD
->hasAttr
<SYCLSpecialClassAttr
>()) {
18061 auto *Def
= RD
->getDefinition();
18062 assert(Def
&& "The record is expected to have a completed definition");
18063 unsigned NumInitMethods
= 0;
18064 for (auto *Method
: Def
->methods()) {
18065 if (!Method
->getIdentifier())
18067 if (Method
->getName() == "__init")
18070 if (NumInitMethods
> 1 || !Def
->hasInitMethod())
18071 Diag(RD
->getLocation(), diag::err_sycl_special_type_num_init_method
);
18075 // Exit this scope of this tag's definition.
18078 if (getCurLexicalContext()->isObjCContainer() &&
18079 Tag
->getDeclContext()->isFileContext())
18080 Tag
->setTopLevelDeclInObjCContainer();
18082 // Notify the consumer that we've defined a tag.
18083 if (!Tag
->isInvalidDecl())
18084 Consumer
.HandleTagDeclDefinition(Tag
);
18086 // Clangs implementation of #pragma align(packed) differs in bitfield layout
18087 // from XLs and instead matches the XL #pragma pack(1) behavior.
18088 if (Context
.getTargetInfo().getTriple().isOSAIX() &&
18089 AlignPackStack
.hasValue()) {
18090 AlignPackInfo APInfo
= AlignPackStack
.CurrentValue
;
18091 // Only diagnose #pragma align(packed).
18092 if (!APInfo
.IsAlignAttr() || APInfo
.getAlignMode() != AlignPackInfo::Packed
)
18094 const RecordDecl
*RD
= dyn_cast
<RecordDecl
>(Tag
);
18097 // Only warn if there is at least 1 bitfield member.
18098 if (llvm::any_of(RD
->fields(),
18099 [](const FieldDecl
*FD
) { return FD
->isBitField(); }))
18100 Diag(BraceRange
.getBegin(), diag::warn_pragma_align_not_xl_compatible
);
18104 void Sema::ActOnObjCContainerFinishDefinition() {
18105 // Exit this scope of this interface definition.
18109 void Sema::ActOnObjCTemporaryExitContainerContext(ObjCContainerDecl
*ObjCCtx
) {
18110 assert(ObjCCtx
== CurContext
&& "Mismatch of container contexts");
18111 OriginalLexicalContext
= ObjCCtx
;
18112 ActOnObjCContainerFinishDefinition();
18115 void Sema::ActOnObjCReenterContainerContext(ObjCContainerDecl
*ObjCCtx
) {
18116 ActOnObjCContainerStartDefinition(ObjCCtx
);
18117 OriginalLexicalContext
= nullptr;
18120 void Sema::ActOnTagDefinitionError(Scope
*S
, Decl
*TagD
) {
18121 AdjustDeclIfTemplate(TagD
);
18122 TagDecl
*Tag
= cast
<TagDecl
>(TagD
);
18123 Tag
->setInvalidDecl();
18125 // Make sure we "complete" the definition even it is invalid.
18126 if (Tag
->isBeingDefined()) {
18127 if (RecordDecl
*RD
= dyn_cast
<RecordDecl
>(Tag
))
18128 RD
->completeDefinition();
18131 // We're undoing ActOnTagStartDefinition here, not
18132 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
18133 // the FieldCollector.
18138 // Note that FieldName may be null for anonymous bitfields.
18139 ExprResult
Sema::VerifyBitField(SourceLocation FieldLoc
,
18140 IdentifierInfo
*FieldName
, QualType FieldTy
,
18141 bool IsMsStruct
, Expr
*BitWidth
) {
18143 if (BitWidth
->containsErrors())
18144 return ExprError();
18146 // C99 6.7.2.1p4 - verify the field type.
18147 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
18148 if (!FieldTy
->isDependentType() && !FieldTy
->isIntegralOrEnumerationType()) {
18149 // Handle incomplete and sizeless types with a specific error.
18150 if (RequireCompleteSizedType(FieldLoc
, FieldTy
,
18151 diag::err_field_incomplete_or_sizeless
))
18152 return ExprError();
18154 return Diag(FieldLoc
, diag::err_not_integral_type_bitfield
)
18155 << FieldName
<< FieldTy
<< BitWidth
->getSourceRange();
18156 return Diag(FieldLoc
, diag::err_not_integral_type_anon_bitfield
)
18157 << FieldTy
<< BitWidth
->getSourceRange();
18158 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr
*>(BitWidth
),
18159 UPPC_BitFieldWidth
))
18160 return ExprError();
18162 // If the bit-width is type- or value-dependent, don't try to check
18164 if (BitWidth
->isValueDependent() || BitWidth
->isTypeDependent())
18167 llvm::APSInt Value
;
18168 ExprResult ICE
= VerifyIntegerConstantExpression(BitWidth
, &Value
, AllowFold
);
18169 if (ICE
.isInvalid())
18171 BitWidth
= ICE
.get();
18173 // Zero-width bitfield is ok for anonymous field.
18174 if (Value
== 0 && FieldName
)
18175 return Diag(FieldLoc
, diag::err_bitfield_has_zero_width
)
18176 << FieldName
<< BitWidth
->getSourceRange();
18178 if (Value
.isSigned() && Value
.isNegative()) {
18180 return Diag(FieldLoc
, diag::err_bitfield_has_negative_width
)
18181 << FieldName
<< toString(Value
, 10);
18182 return Diag(FieldLoc
, diag::err_anon_bitfield_has_negative_width
)
18183 << toString(Value
, 10);
18186 // The size of the bit-field must not exceed our maximum permitted object
18188 if (Value
.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context
)) {
18189 return Diag(FieldLoc
, diag::err_bitfield_too_wide
)
18190 << !FieldName
<< FieldName
<< toString(Value
, 10);
18193 if (!FieldTy
->isDependentType()) {
18194 uint64_t TypeStorageSize
= Context
.getTypeSize(FieldTy
);
18195 uint64_t TypeWidth
= Context
.getIntWidth(FieldTy
);
18196 bool BitfieldIsOverwide
= Value
.ugt(TypeWidth
);
18198 // Over-wide bitfields are an error in C or when using the MSVC bitfield
18200 bool CStdConstraintViolation
=
18201 BitfieldIsOverwide
&& !getLangOpts().CPlusPlus
;
18202 bool MSBitfieldViolation
=
18203 Value
.ugt(TypeStorageSize
) &&
18204 (IsMsStruct
|| Context
.getTargetInfo().getCXXABI().isMicrosoft());
18205 if (CStdConstraintViolation
|| MSBitfieldViolation
) {
18206 unsigned DiagWidth
=
18207 CStdConstraintViolation
? TypeWidth
: TypeStorageSize
;
18208 return Diag(FieldLoc
, diag::err_bitfield_width_exceeds_type_width
)
18209 << (bool)FieldName
<< FieldName
<< toString(Value
, 10)
18210 << !CStdConstraintViolation
<< DiagWidth
;
18213 // Warn on types where the user might conceivably expect to get all
18214 // specified bits as value bits: that's all integral types other than
18216 if (BitfieldIsOverwide
&& !FieldTy
->isBooleanType() && FieldName
) {
18217 Diag(FieldLoc
, diag::warn_bitfield_width_exceeds_type_width
)
18218 << FieldName
<< toString(Value
, 10)
18219 << (unsigned)TypeWidth
;
18226 /// ActOnField - Each field of a C struct/union is passed into this in order
18227 /// to create a FieldDecl object for it.
18228 Decl
*Sema::ActOnField(Scope
*S
, Decl
*TagD
, SourceLocation DeclStart
,
18229 Declarator
&D
, Expr
*BitfieldWidth
) {
18230 FieldDecl
*Res
= HandleField(S
, cast_if_present
<RecordDecl
>(TagD
), DeclStart
,
18232 /*InitStyle=*/ICIS_NoInit
, AS_public
);
18236 /// HandleField - Analyze a field of a C struct or a C++ data member.
18238 FieldDecl
*Sema::HandleField(Scope
*S
, RecordDecl
*Record
,
18239 SourceLocation DeclStart
,
18240 Declarator
&D
, Expr
*BitWidth
,
18241 InClassInitStyle InitStyle
,
18242 AccessSpecifier AS
) {
18243 if (D
.isDecompositionDeclarator()) {
18244 const DecompositionDeclarator
&Decomp
= D
.getDecompositionDeclarator();
18245 Diag(Decomp
.getLSquareLoc(), diag::err_decomp_decl_context
)
18246 << Decomp
.getSourceRange();
18250 IdentifierInfo
*II
= D
.getIdentifier();
18251 SourceLocation Loc
= DeclStart
;
18252 if (II
) Loc
= D
.getIdentifierLoc();
18254 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(D
, S
);
18255 QualType T
= TInfo
->getType();
18256 if (getLangOpts().CPlusPlus
) {
18257 CheckExtraCXXDefaultArguments(D
);
18259 if (DiagnoseUnexpandedParameterPack(D
.getIdentifierLoc(), TInfo
,
18260 UPPC_DataMemberType
)) {
18261 D
.setInvalidType();
18263 TInfo
= Context
.getTrivialTypeSourceInfo(T
, Loc
);
18267 DiagnoseFunctionSpecifiers(D
.getDeclSpec());
18269 if (D
.getDeclSpec().isInlineSpecified())
18270 Diag(D
.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function
)
18271 << getLangOpts().CPlusPlus17
;
18272 if (DeclSpec::TSCS TSCS
= D
.getDeclSpec().getThreadStorageClassSpec())
18273 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
18274 diag::err_invalid_thread
)
18275 << DeclSpec::getSpecifierName(TSCS
);
18277 // Check to see if this name was declared as a member previously
18278 NamedDecl
*PrevDecl
= nullptr;
18279 LookupResult
Previous(*this, II
, Loc
, LookupMemberName
,
18280 ForVisibleRedeclaration
);
18281 LookupName(Previous
, S
);
18282 switch (Previous
.getResultKind()) {
18283 case LookupResult::Found
:
18284 case LookupResult::FoundUnresolvedValue
:
18285 PrevDecl
= Previous
.getAsSingle
<NamedDecl
>();
18288 case LookupResult::FoundOverloaded
:
18289 PrevDecl
= Previous
.getRepresentativeDecl();
18292 case LookupResult::NotFound
:
18293 case LookupResult::NotFoundInCurrentInstantiation
:
18294 case LookupResult::Ambiguous
:
18297 Previous
.suppressDiagnostics();
18299 if (PrevDecl
&& PrevDecl
->isTemplateParameter()) {
18300 // Maybe we will complain about the shadowed template parameter.
18301 DiagnoseTemplateParameterShadow(D
.getIdentifierLoc(), PrevDecl
);
18302 // Just pretend that we didn't see the previous declaration.
18303 PrevDecl
= nullptr;
18306 if (PrevDecl
&& !isDeclInScope(PrevDecl
, Record
, S
))
18307 PrevDecl
= nullptr;
18310 = (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable
);
18311 SourceLocation TSSL
= D
.getBeginLoc();
18313 = CheckFieldDecl(II
, T
, TInfo
, Record
, Loc
, Mutable
, BitWidth
, InitStyle
,
18314 TSSL
, AS
, PrevDecl
, &D
);
18316 if (NewFD
->isInvalidDecl())
18317 Record
->setInvalidDecl();
18319 if (D
.getDeclSpec().isModulePrivateSpecified())
18320 NewFD
->setModulePrivate();
18322 if (NewFD
->isInvalidDecl() && PrevDecl
) {
18323 // Don't introduce NewFD into scope; there's already something
18324 // with the same name in the same scope.
18326 PushOnScopeChains(NewFD
, S
);
18328 Record
->addDecl(NewFD
);
18333 /// Build a new FieldDecl and check its well-formedness.
18335 /// This routine builds a new FieldDecl given the fields name, type,
18336 /// record, etc. \p PrevDecl should refer to any previous declaration
18337 /// with the same name and in the same scope as the field to be
18340 /// \returns a new FieldDecl.
18342 /// \todo The Declarator argument is a hack. It will be removed once
18343 FieldDecl
*Sema::CheckFieldDecl(DeclarationName Name
, QualType T
,
18344 TypeSourceInfo
*TInfo
,
18345 RecordDecl
*Record
, SourceLocation Loc
,
18346 bool Mutable
, Expr
*BitWidth
,
18347 InClassInitStyle InitStyle
,
18348 SourceLocation TSSL
,
18349 AccessSpecifier AS
, NamedDecl
*PrevDecl
,
18351 IdentifierInfo
*II
= Name
.getAsIdentifierInfo();
18352 bool InvalidDecl
= false;
18353 if (D
) InvalidDecl
= D
->isInvalidType();
18355 // If we receive a broken type, recover by assuming 'int' and
18356 // marking this declaration as invalid.
18357 if (T
.isNull() || T
->containsErrors()) {
18358 InvalidDecl
= true;
18362 QualType EltTy
= Context
.getBaseElementType(T
);
18363 if (!EltTy
->isDependentType() && !EltTy
->containsErrors()) {
18364 if (RequireCompleteSizedType(Loc
, EltTy
,
18365 diag::err_field_incomplete_or_sizeless
)) {
18366 // Fields of incomplete type force their record to be invalid.
18367 Record
->setInvalidDecl();
18368 InvalidDecl
= true;
18371 EltTy
->isIncompleteType(&Def
);
18372 if (Def
&& Def
->isInvalidDecl()) {
18373 Record
->setInvalidDecl();
18374 InvalidDecl
= true;
18379 // TR 18037 does not allow fields to be declared with address space
18380 if (T
.hasAddressSpace() || T
->isDependentAddressSpaceType() ||
18381 T
->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
18382 Diag(Loc
, diag::err_field_with_address_space
);
18383 Record
->setInvalidDecl();
18384 InvalidDecl
= true;
18387 if (LangOpts
.OpenCL
) {
18388 // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
18389 // used as structure or union field: image, sampler, event or block types.
18390 if (T
->isEventT() || T
->isImageType() || T
->isSamplerT() ||
18391 T
->isBlockPointerType()) {
18392 Diag(Loc
, diag::err_opencl_type_struct_or_union_field
) << T
;
18393 Record
->setInvalidDecl();
18394 InvalidDecl
= true;
18396 // OpenCL v1.2 s6.9.c: bitfields are not supported, unless Clang extension
18398 if (BitWidth
&& !getOpenCLOptions().isAvailableOption(
18399 "__cl_clang_bitfields", LangOpts
)) {
18400 Diag(Loc
, diag::err_opencl_bitfields
);
18401 InvalidDecl
= true;
18405 // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
18406 if (!InvalidDecl
&& getLangOpts().CPlusPlus
&& !II
&& BitWidth
&&
18407 T
.hasQualifiers()) {
18408 InvalidDecl
= true;
18409 Diag(Loc
, diag::err_anon_bitfield_qualifiers
);
18412 // C99 6.7.2.1p8: A member of a structure or union may have any type other
18413 // than a variably modified type.
18414 if (!InvalidDecl
&& T
->isVariablyModifiedType()) {
18415 if (!tryToFixVariablyModifiedVarType(
18416 TInfo
, T
, Loc
, diag::err_typecheck_field_variable_size
))
18417 InvalidDecl
= true;
18420 // Fields can not have abstract class types
18421 if (!InvalidDecl
&& RequireNonAbstractType(Loc
, T
,
18422 diag::err_abstract_type_in_decl
,
18423 AbstractFieldType
))
18424 InvalidDecl
= true;
18427 BitWidth
= nullptr;
18428 // If this is declared as a bit-field, check the bit-field.
18431 VerifyBitField(Loc
, II
, T
, Record
->isMsStruct(Context
), BitWidth
).get();
18433 InvalidDecl
= true;
18434 BitWidth
= nullptr;
18438 // Check that 'mutable' is consistent with the type of the declaration.
18439 if (!InvalidDecl
&& Mutable
) {
18440 unsigned DiagID
= 0;
18441 if (T
->isReferenceType())
18442 DiagID
= getLangOpts().MSVCCompat
? diag::ext_mutable_reference
18443 : diag::err_mutable_reference
;
18444 else if (T
.isConstQualified())
18445 DiagID
= diag::err_mutable_const
;
18448 SourceLocation ErrLoc
= Loc
;
18449 if (D
&& D
->getDeclSpec().getStorageClassSpecLoc().isValid())
18450 ErrLoc
= D
->getDeclSpec().getStorageClassSpecLoc();
18451 Diag(ErrLoc
, DiagID
);
18452 if (DiagID
!= diag::ext_mutable_reference
) {
18454 InvalidDecl
= true;
18459 // C++11 [class.union]p8 (DR1460):
18460 // At most one variant member of a union may have a
18461 // brace-or-equal-initializer.
18462 if (InitStyle
!= ICIS_NoInit
)
18463 checkDuplicateDefaultInit(*this, cast
<CXXRecordDecl
>(Record
), Loc
);
18465 FieldDecl
*NewFD
= FieldDecl::Create(Context
, Record
, TSSL
, Loc
, II
, T
, TInfo
,
18466 BitWidth
, Mutable
, InitStyle
);
18468 NewFD
->setInvalidDecl();
18470 if (PrevDecl
&& !isa
<TagDecl
>(PrevDecl
) &&
18471 !PrevDecl
->isPlaceholderVar(getLangOpts())) {
18472 Diag(Loc
, diag::err_duplicate_member
) << II
;
18473 Diag(PrevDecl
->getLocation(), diag::note_previous_declaration
);
18474 NewFD
->setInvalidDecl();
18477 if (!InvalidDecl
&& getLangOpts().CPlusPlus
) {
18478 if (Record
->isUnion()) {
18479 if (const RecordType
*RT
= EltTy
->getAs
<RecordType
>()) {
18480 CXXRecordDecl
* RDecl
= cast
<CXXRecordDecl
>(RT
->getDecl());
18481 if (RDecl
->getDefinition()) {
18482 // C++ [class.union]p1: An object of a class with a non-trivial
18483 // constructor, a non-trivial copy constructor, a non-trivial
18484 // destructor, or a non-trivial copy assignment operator
18485 // cannot be a member of a union, nor can an array of such
18487 if (CheckNontrivialField(NewFD
))
18488 NewFD
->setInvalidDecl();
18492 // C++ [class.union]p1: If a union contains a member of reference type,
18493 // the program is ill-formed, except when compiling with MSVC extensions
18495 if (EltTy
->isReferenceType()) {
18496 Diag(NewFD
->getLocation(), getLangOpts().MicrosoftExt
?
18497 diag::ext_union_member_of_reference_type
:
18498 diag::err_union_member_of_reference_type
)
18499 << NewFD
->getDeclName() << EltTy
;
18500 if (!getLangOpts().MicrosoftExt
)
18501 NewFD
->setInvalidDecl();
18506 // FIXME: We need to pass in the attributes given an AST
18507 // representation, not a parser representation.
18509 // FIXME: The current scope is almost... but not entirely... correct here.
18510 ProcessDeclAttributes(getCurScope(), NewFD
, *D
);
18512 if (NewFD
->hasAttrs())
18513 CheckAlignasUnderalignment(NewFD
);
18516 // In auto-retain/release, infer strong retension for fields of
18517 // retainable type.
18518 if (getLangOpts().ObjCAutoRefCount
&& inferObjCARCLifetime(NewFD
))
18519 NewFD
->setInvalidDecl();
18521 if (T
.isObjCGCWeak())
18522 Diag(Loc
, diag::warn_attribute_weak_on_field
);
18524 // PPC MMA non-pointer types are not allowed as field types.
18525 if (Context
.getTargetInfo().getTriple().isPPC64() &&
18526 CheckPPCMMAType(T
, NewFD
->getLocation()))
18527 NewFD
->setInvalidDecl();
18529 NewFD
->setAccess(AS
);
18533 bool Sema::CheckNontrivialField(FieldDecl
*FD
) {
18535 assert(getLangOpts().CPlusPlus
&& "valid check only for C++");
18537 if (FD
->isInvalidDecl() || FD
->getType()->isDependentType())
18540 QualType EltTy
= Context
.getBaseElementType(FD
->getType());
18541 if (const RecordType
*RT
= EltTy
->getAs
<RecordType
>()) {
18542 CXXRecordDecl
*RDecl
= cast
<CXXRecordDecl
>(RT
->getDecl());
18543 if (RDecl
->getDefinition()) {
18544 // We check for copy constructors before constructors
18545 // because otherwise we'll never get complaints about
18546 // copy constructors.
18548 CXXSpecialMember member
= CXXInvalid
;
18549 // We're required to check for any non-trivial constructors. Since the
18550 // implicit default constructor is suppressed if there are any
18551 // user-declared constructors, we just need to check that there is a
18552 // trivial default constructor and a trivial copy constructor. (We don't
18553 // worry about move constructors here, since this is a C++98 check.)
18554 if (RDecl
->hasNonTrivialCopyConstructor())
18555 member
= CXXCopyConstructor
;
18556 else if (!RDecl
->hasTrivialDefaultConstructor())
18557 member
= CXXDefaultConstructor
;
18558 else if (RDecl
->hasNonTrivialCopyAssignment())
18559 member
= CXXCopyAssignment
;
18560 else if (RDecl
->hasNonTrivialDestructor())
18561 member
= CXXDestructor
;
18563 if (member
!= CXXInvalid
) {
18564 if (!getLangOpts().CPlusPlus11
&&
18565 getLangOpts().ObjCAutoRefCount
&& RDecl
->hasObjectMember()) {
18566 // Objective-C++ ARC: it is an error to have a non-trivial field of
18567 // a union. However, system headers in Objective-C programs
18568 // occasionally have Objective-C lifetime objects within unions,
18569 // and rather than cause the program to fail, we make those
18570 // members unavailable.
18571 SourceLocation Loc
= FD
->getLocation();
18572 if (getSourceManager().isInSystemHeader(Loc
)) {
18573 if (!FD
->hasAttr
<UnavailableAttr
>())
18574 FD
->addAttr(UnavailableAttr::CreateImplicit(Context
, "",
18575 UnavailableAttr::IR_ARCFieldWithOwnership
, Loc
));
18580 Diag(FD
->getLocation(), getLangOpts().CPlusPlus11
?
18581 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member
:
18582 diag::err_illegal_union_or_anon_struct_member
)
18583 << FD
->getParent()->isUnion() << FD
->getDeclName() << member
;
18584 DiagnoseNontrivial(RDecl
, member
);
18585 return !getLangOpts().CPlusPlus11
;
18593 /// TranslateIvarVisibility - Translate visibility from a token ID to an
18594 /// AST enum value.
18595 static ObjCIvarDecl::AccessControl
18596 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility
) {
18597 switch (ivarVisibility
) {
18598 default: llvm_unreachable("Unknown visitibility kind");
18599 case tok::objc_private
: return ObjCIvarDecl::Private
;
18600 case tok::objc_public
: return ObjCIvarDecl::Public
;
18601 case tok::objc_protected
: return ObjCIvarDecl::Protected
;
18602 case tok::objc_package
: return ObjCIvarDecl::Package
;
18606 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
18607 /// in order to create an IvarDecl object for it.
18608 Decl
*Sema::ActOnIvar(Scope
*S
, SourceLocation DeclStart
, Declarator
&D
,
18609 Expr
*BitWidth
, tok::ObjCKeywordKind Visibility
) {
18611 IdentifierInfo
*II
= D
.getIdentifier();
18612 SourceLocation Loc
= DeclStart
;
18613 if (II
) Loc
= D
.getIdentifierLoc();
18615 // FIXME: Unnamed fields can be handled in various different ways, for
18616 // example, unnamed unions inject all members into the struct namespace!
18618 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(D
, S
);
18619 QualType T
= TInfo
->getType();
18622 // 6.7.2.1p3, 6.7.2.1p4
18623 BitWidth
= VerifyBitField(Loc
, II
, T
, /*IsMsStruct*/false, BitWidth
).get();
18625 D
.setInvalidType();
18632 if (T
->isReferenceType()) {
18633 Diag(Loc
, diag::err_ivar_reference_type
);
18634 D
.setInvalidType();
18636 // C99 6.7.2.1p8: A member of a structure or union may have any type other
18637 // than a variably modified type.
18638 else if (T
->isVariablyModifiedType()) {
18639 if (!tryToFixVariablyModifiedVarType(
18640 TInfo
, T
, Loc
, diag::err_typecheck_ivar_variable_size
))
18641 D
.setInvalidType();
18644 // Get the visibility (access control) for this ivar.
18645 ObjCIvarDecl::AccessControl ac
=
18646 Visibility
!= tok::objc_not_keyword
? TranslateIvarVisibility(Visibility
)
18647 : ObjCIvarDecl::None
;
18648 // Must set ivar's DeclContext to its enclosing interface.
18649 ObjCContainerDecl
*EnclosingDecl
= cast
<ObjCContainerDecl
>(CurContext
);
18650 if (!EnclosingDecl
|| EnclosingDecl
->isInvalidDecl())
18652 ObjCContainerDecl
*EnclosingContext
;
18653 if (ObjCImplementationDecl
*IMPDecl
=
18654 dyn_cast
<ObjCImplementationDecl
>(EnclosingDecl
)) {
18655 if (LangOpts
.ObjCRuntime
.isFragile()) {
18656 // Case of ivar declared in an implementation. Context is that of its class.
18657 EnclosingContext
= IMPDecl
->getClassInterface();
18658 assert(EnclosingContext
&& "Implementation has no class interface!");
18661 EnclosingContext
= EnclosingDecl
;
18663 if (ObjCCategoryDecl
*CDecl
=
18664 dyn_cast
<ObjCCategoryDecl
>(EnclosingDecl
)) {
18665 if (LangOpts
.ObjCRuntime
.isFragile() || !CDecl
->IsClassExtension()) {
18666 Diag(Loc
, diag::err_misplaced_ivar
) << CDecl
->IsClassExtension();
18670 EnclosingContext
= EnclosingDecl
;
18673 // Construct the decl.
18674 ObjCIvarDecl
*NewID
= ObjCIvarDecl::Create(
18675 Context
, EnclosingContext
, DeclStart
, Loc
, II
, T
, TInfo
, ac
, BitWidth
);
18677 if (T
->containsErrors())
18678 NewID
->setInvalidDecl();
18681 NamedDecl
*PrevDecl
= LookupSingleName(S
, II
, Loc
, LookupMemberName
,
18682 ForVisibleRedeclaration
);
18683 if (PrevDecl
&& isDeclInScope(PrevDecl
, EnclosingContext
, S
)
18684 && !isa
<TagDecl
>(PrevDecl
)) {
18685 Diag(Loc
, diag::err_duplicate_member
) << II
;
18686 Diag(PrevDecl
->getLocation(), diag::note_previous_declaration
);
18687 NewID
->setInvalidDecl();
18691 // Process attributes attached to the ivar.
18692 ProcessDeclAttributes(S
, NewID
, D
);
18694 if (D
.isInvalidType())
18695 NewID
->setInvalidDecl();
18697 // In ARC, infer 'retaining' for ivars of retainable type.
18698 if (getLangOpts().ObjCAutoRefCount
&& inferObjCARCLifetime(NewID
))
18699 NewID
->setInvalidDecl();
18701 if (D
.getDeclSpec().isModulePrivateSpecified())
18702 NewID
->setModulePrivate();
18705 // FIXME: When interfaces are DeclContexts, we'll need to add
18706 // these to the interface.
18708 IdResolver
.AddDecl(NewID
);
18711 if (LangOpts
.ObjCRuntime
.isNonFragile() &&
18712 !NewID
->isInvalidDecl() && isa
<ObjCInterfaceDecl
>(EnclosingDecl
))
18713 Diag(Loc
, diag::warn_ivars_in_interface
);
18718 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
18719 /// class and class extensions. For every class \@interface and class
18720 /// extension \@interface, if the last ivar is a bitfield of any type,
18721 /// then add an implicit `char :0` ivar to the end of that interface.
18722 void Sema::ActOnLastBitfield(SourceLocation DeclLoc
,
18723 SmallVectorImpl
<Decl
*> &AllIvarDecls
) {
18724 if (LangOpts
.ObjCRuntime
.isFragile() || AllIvarDecls
.empty())
18727 Decl
*ivarDecl
= AllIvarDecls
[AllIvarDecls
.size()-1];
18728 ObjCIvarDecl
*Ivar
= cast
<ObjCIvarDecl
>(ivarDecl
);
18730 if (!Ivar
->isBitField() || Ivar
->isZeroLengthBitField(Context
))
18732 ObjCInterfaceDecl
*ID
= dyn_cast
<ObjCInterfaceDecl
>(CurContext
);
18734 if (ObjCCategoryDecl
*CD
= dyn_cast
<ObjCCategoryDecl
>(CurContext
)) {
18735 if (!CD
->IsClassExtension())
18738 // No need to add this to end of @implementation.
18742 // All conditions are met. Add a new bitfield to the tail end of ivars.
18743 llvm::APInt
Zero(Context
.getTypeSize(Context
.IntTy
), 0);
18744 Expr
* BW
= IntegerLiteral::Create(Context
, Zero
, Context
.IntTy
, DeclLoc
);
18746 Ivar
= ObjCIvarDecl::Create(Context
, cast
<ObjCContainerDecl
>(CurContext
),
18747 DeclLoc
, DeclLoc
, nullptr,
18749 Context
.getTrivialTypeSourceInfo(Context
.CharTy
,
18751 ObjCIvarDecl::Private
, BW
,
18753 AllIvarDecls
.push_back(Ivar
);
18756 /// [class.dtor]p4:
18757 /// At the end of the definition of a class, overload resolution is
18758 /// performed among the prospective destructors declared in that class with
18759 /// an empty argument list to select the destructor for the class, also
18760 /// known as the selected destructor.
18762 /// We do the overload resolution here, then mark the selected constructor in the AST.
18763 /// Later CXXRecordDecl::getDestructor() will return the selected constructor.
18764 static void ComputeSelectedDestructor(Sema
&S
, CXXRecordDecl
*Record
) {
18765 if (!Record
->hasUserDeclaredDestructor()) {
18769 SourceLocation Loc
= Record
->getLocation();
18770 OverloadCandidateSet
OCS(Loc
, OverloadCandidateSet::CSK_Normal
);
18772 for (auto *Decl
: Record
->decls()) {
18773 if (auto *DD
= dyn_cast
<CXXDestructorDecl
>(Decl
)) {
18774 if (DD
->isInvalidDecl())
18776 S
.AddOverloadCandidate(DD
, DeclAccessPair::make(DD
, DD
->getAccess()), {},
18778 assert(DD
->isIneligibleOrNotSelected() && "Selecting a destructor but a destructor was already selected.");
18785 OverloadCandidateSet::iterator Best
;
18787 OverloadCandidateDisplayKind DisplayKind
;
18789 switch (OCS
.BestViableFunction(S
, Loc
, Best
)) {
18792 Record
->addedSelectedDestructor(dyn_cast
<CXXDestructorDecl
>(Best
->Function
));
18796 Msg
= diag::err_ambiguous_destructor
;
18797 DisplayKind
= OCD_AmbiguousCandidates
;
18800 case OR_No_Viable_Function
:
18801 Msg
= diag::err_no_viable_destructor
;
18802 DisplayKind
= OCD_AllCandidates
;
18807 // OpenCL have got their own thing going with destructors. It's slightly broken,
18808 // but we allow it.
18809 if (!S
.LangOpts
.OpenCL
) {
18810 PartialDiagnostic Diag
= S
.PDiag(Msg
) << Record
;
18811 OCS
.NoteCandidates(PartialDiagnosticAt(Loc
, Diag
), S
, DisplayKind
, {});
18812 Record
->setInvalidDecl();
18814 // It's a bit hacky: At this point we've raised an error but we want the
18815 // rest of the compiler to continue somehow working. However almost
18816 // everything we'll try to do with the class will depend on there being a
18817 // destructor. So let's pretend the first one is selected and hope for the
18819 Record
->addedSelectedDestructor(dyn_cast
<CXXDestructorDecl
>(OCS
.begin()->Function
));
18823 /// [class.mem.special]p5
18824 /// Two special member functions are of the same kind if:
18825 /// - they are both default constructors,
18826 /// - they are both copy or move constructors with the same first parameter
18828 /// - they are both copy or move assignment operators with the same first
18829 /// parameter type and the same cv-qualifiers and ref-qualifier, if any.
18830 static bool AreSpecialMemberFunctionsSameKind(ASTContext
&Context
,
18833 Sema::CXXSpecialMember CSM
) {
18834 // We don't want to compare templates to non-templates: See
18835 // https://github.com/llvm/llvm-project/issues/59206
18836 if (CSM
== Sema::CXXDefaultConstructor
)
18837 return bool(M1
->getDescribedFunctionTemplate()) ==
18838 bool(M2
->getDescribedFunctionTemplate());
18839 // FIXME: better resolve CWG
18840 // https://cplusplus.github.io/CWG/issues/2787.html
18841 if (!Context
.hasSameType(M1
->getNonObjectParameter(0)->getType(),
18842 M2
->getNonObjectParameter(0)->getType()))
18844 if (!Context
.hasSameType(M1
->getFunctionObjectParameterReferenceType(),
18845 M2
->getFunctionObjectParameterReferenceType()))
18851 /// [class.mem.special]p6:
18852 /// An eligible special member function is a special member function for which:
18853 /// - the function is not deleted,
18854 /// - the associated constraints, if any, are satisfied, and
18855 /// - no special member function of the same kind whose associated constraints
18856 /// [CWG2595], if any, are satisfied is more constrained.
18857 static void SetEligibleMethods(Sema
&S
, CXXRecordDecl
*Record
,
18858 ArrayRef
<CXXMethodDecl
*> Methods
,
18859 Sema::CXXSpecialMember CSM
) {
18860 SmallVector
<bool, 4> SatisfactionStatus
;
18862 for (CXXMethodDecl
*Method
: Methods
) {
18863 const Expr
*Constraints
= Method
->getTrailingRequiresClause();
18865 SatisfactionStatus
.push_back(true);
18867 ConstraintSatisfaction Satisfaction
;
18868 if (S
.CheckFunctionConstraints(Method
, Satisfaction
))
18869 SatisfactionStatus
.push_back(false);
18871 SatisfactionStatus
.push_back(Satisfaction
.IsSatisfied
);
18875 for (size_t i
= 0; i
< Methods
.size(); i
++) {
18876 if (!SatisfactionStatus
[i
])
18878 CXXMethodDecl
*Method
= Methods
[i
];
18879 CXXMethodDecl
*OrigMethod
= Method
;
18880 if (FunctionDecl
*MF
= OrigMethod
->getInstantiatedFromMemberFunction())
18881 OrigMethod
= cast
<CXXMethodDecl
>(MF
);
18883 const Expr
*Constraints
= OrigMethod
->getTrailingRequiresClause();
18884 bool AnotherMethodIsMoreConstrained
= false;
18885 for (size_t j
= 0; j
< Methods
.size(); j
++) {
18886 if (i
== j
|| !SatisfactionStatus
[j
])
18888 CXXMethodDecl
*OtherMethod
= Methods
[j
];
18889 if (FunctionDecl
*MF
= OtherMethod
->getInstantiatedFromMemberFunction())
18890 OtherMethod
= cast
<CXXMethodDecl
>(MF
);
18892 if (!AreSpecialMemberFunctionsSameKind(S
.Context
, OrigMethod
, OtherMethod
,
18896 const Expr
*OtherConstraints
= OtherMethod
->getTrailingRequiresClause();
18897 if (!OtherConstraints
)
18899 if (!Constraints
) {
18900 AnotherMethodIsMoreConstrained
= true;
18903 if (S
.IsAtLeastAsConstrained(OtherMethod
, {OtherConstraints
}, OrigMethod
,
18905 AnotherMethodIsMoreConstrained
)) {
18906 // There was an error with the constraints comparison. Exit the loop
18907 // and don't consider this function eligible.
18908 AnotherMethodIsMoreConstrained
= true;
18910 if (AnotherMethodIsMoreConstrained
)
18913 // FIXME: Do not consider deleted methods as eligible after implementing
18914 // DR1734 and DR1496.
18915 if (!AnotherMethodIsMoreConstrained
) {
18916 Method
->setIneligibleOrNotSelected(false);
18917 Record
->addedEligibleSpecialMemberFunction(Method
, 1 << CSM
);
18922 static void ComputeSpecialMemberFunctionsEligiblity(Sema
&S
,
18923 CXXRecordDecl
*Record
) {
18924 SmallVector
<CXXMethodDecl
*, 4> DefaultConstructors
;
18925 SmallVector
<CXXMethodDecl
*, 4> CopyConstructors
;
18926 SmallVector
<CXXMethodDecl
*, 4> MoveConstructors
;
18927 SmallVector
<CXXMethodDecl
*, 4> CopyAssignmentOperators
;
18928 SmallVector
<CXXMethodDecl
*, 4> MoveAssignmentOperators
;
18930 for (auto *Decl
: Record
->decls()) {
18931 auto *MD
= dyn_cast
<CXXMethodDecl
>(Decl
);
18933 auto *FTD
= dyn_cast
<FunctionTemplateDecl
>(Decl
);
18935 MD
= dyn_cast
<CXXMethodDecl
>(FTD
->getTemplatedDecl());
18939 if (auto *CD
= dyn_cast
<CXXConstructorDecl
>(MD
)) {
18940 if (CD
->isInvalidDecl())
18942 if (CD
->isDefaultConstructor())
18943 DefaultConstructors
.push_back(MD
);
18944 else if (CD
->isCopyConstructor())
18945 CopyConstructors
.push_back(MD
);
18946 else if (CD
->isMoveConstructor())
18947 MoveConstructors
.push_back(MD
);
18948 } else if (MD
->isCopyAssignmentOperator()) {
18949 CopyAssignmentOperators
.push_back(MD
);
18950 } else if (MD
->isMoveAssignmentOperator()) {
18951 MoveAssignmentOperators
.push_back(MD
);
18955 SetEligibleMethods(S
, Record
, DefaultConstructors
,
18956 Sema::CXXDefaultConstructor
);
18957 SetEligibleMethods(S
, Record
, CopyConstructors
, Sema::CXXCopyConstructor
);
18958 SetEligibleMethods(S
, Record
, MoveConstructors
, Sema::CXXMoveConstructor
);
18959 SetEligibleMethods(S
, Record
, CopyAssignmentOperators
,
18960 Sema::CXXCopyAssignment
);
18961 SetEligibleMethods(S
, Record
, MoveAssignmentOperators
,
18962 Sema::CXXMoveAssignment
);
18965 void Sema::ActOnFields(Scope
*S
, SourceLocation RecLoc
, Decl
*EnclosingDecl
,
18966 ArrayRef
<Decl
*> Fields
, SourceLocation LBrac
,
18967 SourceLocation RBrac
,
18968 const ParsedAttributesView
&Attrs
) {
18969 assert(EnclosingDecl
&& "missing record or interface decl");
18971 // If this is an Objective-C @implementation or category and we have
18972 // new fields here we should reset the layout of the interface since
18973 // it will now change.
18974 if (!Fields
.empty() && isa
<ObjCContainerDecl
>(EnclosingDecl
)) {
18975 ObjCContainerDecl
*DC
= cast
<ObjCContainerDecl
>(EnclosingDecl
);
18976 switch (DC
->getKind()) {
18978 case Decl::ObjCCategory
:
18979 Context
.ResetObjCLayout(cast
<ObjCCategoryDecl
>(DC
)->getClassInterface());
18981 case Decl::ObjCImplementation
:
18983 ResetObjCLayout(cast
<ObjCImplementationDecl
>(DC
)->getClassInterface());
18988 RecordDecl
*Record
= dyn_cast
<RecordDecl
>(EnclosingDecl
);
18989 CXXRecordDecl
*CXXRecord
= dyn_cast
<CXXRecordDecl
>(EnclosingDecl
);
18991 // Start counting up the number of named members; make sure to include
18992 // members of anonymous structs and unions in the total.
18993 unsigned NumNamedMembers
= 0;
18995 for (const auto *I
: Record
->decls()) {
18996 if (const auto *IFD
= dyn_cast
<IndirectFieldDecl
>(I
))
18997 if (IFD
->getDeclName())
19002 // Verify that all the fields are okay.
19003 SmallVector
<FieldDecl
*, 32> RecFields
;
19005 for (ArrayRef
<Decl
*>::iterator i
= Fields
.begin(), end
= Fields
.end();
19007 FieldDecl
*FD
= cast
<FieldDecl
>(*i
);
19009 // Get the type for the field.
19010 const Type
*FDTy
= FD
->getType().getTypePtr();
19012 if (!FD
->isAnonymousStructOrUnion()) {
19013 // Remember all fields written by the user.
19014 RecFields
.push_back(FD
);
19017 // If the field is already invalid for some reason, don't emit more
19018 // diagnostics about it.
19019 if (FD
->isInvalidDecl()) {
19020 EnclosingDecl
->setInvalidDecl();
19025 // A structure or union shall not contain a member with
19026 // incomplete or function type (hence, a structure shall not
19027 // contain an instance of itself, but may contain a pointer to
19028 // an instance of itself), except that the last member of a
19029 // structure with more than one named member may have incomplete
19030 // array type; such a structure (and any union containing,
19031 // possibly recursively, a member that is such a structure)
19032 // shall not be a member of a structure or an element of an
19034 bool IsLastField
= (i
+ 1 == Fields
.end());
19035 if (FDTy
->isFunctionType()) {
19036 // Field declared as a function.
19037 Diag(FD
->getLocation(), diag::err_field_declared_as_function
)
19038 << FD
->getDeclName();
19039 FD
->setInvalidDecl();
19040 EnclosingDecl
->setInvalidDecl();
19042 } else if (FDTy
->isIncompleteArrayType() &&
19043 (Record
|| isa
<ObjCContainerDecl
>(EnclosingDecl
))) {
19045 // Flexible array member.
19046 // Microsoft and g++ is more permissive regarding flexible array.
19047 // It will accept flexible array in union and also
19048 // as the sole element of a struct/class.
19049 unsigned DiagID
= 0;
19050 if (!Record
->isUnion() && !IsLastField
) {
19051 Diag(FD
->getLocation(), diag::err_flexible_array_not_at_end
)
19052 << FD
->getDeclName() << FD
->getType()
19053 << llvm::to_underlying(Record
->getTagKind());
19054 Diag((*(i
+ 1))->getLocation(), diag::note_next_field_declaration
);
19055 FD
->setInvalidDecl();
19056 EnclosingDecl
->setInvalidDecl();
19058 } else if (Record
->isUnion())
19059 DiagID
= getLangOpts().MicrosoftExt
19060 ? diag::ext_flexible_array_union_ms
19061 : getLangOpts().CPlusPlus
19062 ? diag::ext_flexible_array_union_gnu
19063 : diag::err_flexible_array_union
;
19064 else if (NumNamedMembers
< 1)
19065 DiagID
= getLangOpts().MicrosoftExt
19066 ? diag::ext_flexible_array_empty_aggregate_ms
19067 : getLangOpts().CPlusPlus
19068 ? diag::ext_flexible_array_empty_aggregate_gnu
19069 : diag::err_flexible_array_empty_aggregate
;
19072 Diag(FD
->getLocation(), DiagID
)
19073 << FD
->getDeclName() << llvm::to_underlying(Record
->getTagKind());
19074 // While the layout of types that contain virtual bases is not specified
19075 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
19076 // virtual bases after the derived members. This would make a flexible
19077 // array member declared at the end of an object not adjacent to the end
19079 if (CXXRecord
&& CXXRecord
->getNumVBases() != 0)
19080 Diag(FD
->getLocation(), diag::err_flexible_array_virtual_base
)
19081 << FD
->getDeclName() << llvm::to_underlying(Record
->getTagKind());
19082 if (!getLangOpts().C99
)
19083 Diag(FD
->getLocation(), diag::ext_c99_flexible_array_member
)
19084 << FD
->getDeclName() << llvm::to_underlying(Record
->getTagKind());
19086 // If the element type has a non-trivial destructor, we would not
19087 // implicitly destroy the elements, so disallow it for now.
19089 // FIXME: GCC allows this. We should probably either implicitly delete
19090 // the destructor of the containing class, or just allow this.
19091 QualType BaseElem
= Context
.getBaseElementType(FD
->getType());
19092 if (!BaseElem
->isDependentType() && BaseElem
.isDestructedType()) {
19093 Diag(FD
->getLocation(), diag::err_flexible_array_has_nontrivial_dtor
)
19094 << FD
->getDeclName() << FD
->getType();
19095 FD
->setInvalidDecl();
19096 EnclosingDecl
->setInvalidDecl();
19099 // Okay, we have a legal flexible array member at the end of the struct.
19100 Record
->setHasFlexibleArrayMember(true);
19102 // In ObjCContainerDecl ivars with incomplete array type are accepted,
19103 // unless they are followed by another ivar. That check is done
19104 // elsewhere, after synthesized ivars are known.
19106 } else if (!FDTy
->isDependentType() &&
19107 RequireCompleteSizedType(
19108 FD
->getLocation(), FD
->getType(),
19109 diag::err_field_incomplete_or_sizeless
)) {
19111 FD
->setInvalidDecl();
19112 EnclosingDecl
->setInvalidDecl();
19114 } else if (const RecordType
*FDTTy
= FDTy
->getAs
<RecordType
>()) {
19115 if (Record
&& FDTTy
->getDecl()->hasFlexibleArrayMember()) {
19116 // A type which contains a flexible array member is considered to be a
19117 // flexible array member.
19118 Record
->setHasFlexibleArrayMember(true);
19119 if (!Record
->isUnion()) {
19120 // If this is a struct/class and this is not the last element, reject
19121 // it. Note that GCC supports variable sized arrays in the middle of
19124 Diag(FD
->getLocation(), diag::ext_variable_sized_type_in_struct
)
19125 << FD
->getDeclName() << FD
->getType();
19127 // We support flexible arrays at the end of structs in
19128 // other structs as an extension.
19129 Diag(FD
->getLocation(), diag::ext_flexible_array_in_struct
)
19130 << FD
->getDeclName();
19134 if (isa
<ObjCContainerDecl
>(EnclosingDecl
) &&
19135 RequireNonAbstractType(FD
->getLocation(), FD
->getType(),
19136 diag::err_abstract_type_in_decl
,
19137 AbstractIvarType
)) {
19138 // Ivars can not have abstract class types
19139 FD
->setInvalidDecl();
19141 if (Record
&& FDTTy
->getDecl()->hasObjectMember())
19142 Record
->setHasObjectMember(true);
19143 if (Record
&& FDTTy
->getDecl()->hasVolatileMember())
19144 Record
->setHasVolatileMember(true);
19145 } else if (FDTy
->isObjCObjectType()) {
19146 /// A field cannot be an Objective-c object
19147 Diag(FD
->getLocation(), diag::err_statically_allocated_object
)
19148 << FixItHint::CreateInsertion(FD
->getLocation(), "*");
19149 QualType T
= Context
.getObjCObjectPointerType(FD
->getType());
19151 } else if (Record
&& Record
->isUnion() &&
19152 FD
->getType().hasNonTrivialObjCLifetime() &&
19153 getSourceManager().isInSystemHeader(FD
->getLocation()) &&
19154 !getLangOpts().CPlusPlus
&& !FD
->hasAttr
<UnavailableAttr
>() &&
19155 (FD
->getType().getObjCLifetime() != Qualifiers::OCL_Strong
||
19156 !Context
.hasDirectOwnershipQualifier(FD
->getType()))) {
19157 // For backward compatibility, fields of C unions declared in system
19158 // headers that have non-trivial ObjC ownership qualifications are marked
19159 // as unavailable unless the qualifier is explicit and __strong. This can
19160 // break ABI compatibility between programs compiled with ARC and MRR, but
19161 // is a better option than rejecting programs using those unions under
19163 FD
->addAttr(UnavailableAttr::CreateImplicit(
19164 Context
, "", UnavailableAttr::IR_ARCFieldWithOwnership
,
19165 FD
->getLocation()));
19166 } else if (getLangOpts().ObjC
&&
19167 getLangOpts().getGC() != LangOptions::NonGC
&& Record
&&
19168 !Record
->hasObjectMember()) {
19169 if (FD
->getType()->isObjCObjectPointerType() ||
19170 FD
->getType().isObjCGCStrong())
19171 Record
->setHasObjectMember(true);
19172 else if (Context
.getAsArrayType(FD
->getType())) {
19173 QualType BaseType
= Context
.getBaseElementType(FD
->getType());
19174 if (BaseType
->isRecordType() &&
19175 BaseType
->castAs
<RecordType
>()->getDecl()->hasObjectMember())
19176 Record
->setHasObjectMember(true);
19177 else if (BaseType
->isObjCObjectPointerType() ||
19178 BaseType
.isObjCGCStrong())
19179 Record
->setHasObjectMember(true);
19183 if (Record
&& !getLangOpts().CPlusPlus
&&
19184 !shouldIgnoreForRecordTriviality(FD
)) {
19185 QualType FT
= FD
->getType();
19186 if (FT
.isNonTrivialToPrimitiveDefaultInitialize()) {
19187 Record
->setNonTrivialToPrimitiveDefaultInitialize(true);
19188 if (FT
.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
19190 Record
->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
19192 QualType::PrimitiveCopyKind PCK
= FT
.isNonTrivialToPrimitiveCopy();
19193 if (PCK
!= QualType::PCK_Trivial
&& PCK
!= QualType::PCK_VolatileTrivial
) {
19194 Record
->setNonTrivialToPrimitiveCopy(true);
19195 if (FT
.hasNonTrivialToPrimitiveCopyCUnion() || Record
->isUnion())
19196 Record
->setHasNonTrivialToPrimitiveCopyCUnion(true);
19198 if (FT
.isDestructedType()) {
19199 Record
->setNonTrivialToPrimitiveDestroy(true);
19200 Record
->setParamDestroyedInCallee(true);
19201 if (FT
.hasNonTrivialToPrimitiveDestructCUnion() || Record
->isUnion())
19202 Record
->setHasNonTrivialToPrimitiveDestructCUnion(true);
19205 if (const auto *RT
= FT
->getAs
<RecordType
>()) {
19206 if (RT
->getDecl()->getArgPassingRestrictions() ==
19207 RecordArgPassingKind::CanNeverPassInRegs
)
19208 Record
->setArgPassingRestrictions(
19209 RecordArgPassingKind::CanNeverPassInRegs
);
19210 } else if (FT
.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak
)
19211 Record
->setArgPassingRestrictions(
19212 RecordArgPassingKind::CanNeverPassInRegs
);
19215 if (Record
&& FD
->getType().isVolatileQualified())
19216 Record
->setHasVolatileMember(true);
19217 // Keep track of the number of named members.
19218 if (FD
->getIdentifier())
19222 // Okay, we successfully defined 'Record'.
19224 bool Completed
= false;
19226 if (!CXXRecord
->isInvalidDecl()) {
19227 // Set access bits correctly on the directly-declared conversions.
19228 for (CXXRecordDecl::conversion_iterator
19229 I
= CXXRecord
->conversion_begin(),
19230 E
= CXXRecord
->conversion_end(); I
!= E
; ++I
)
19231 I
.setAccess((*I
)->getAccess());
19234 // Add any implicitly-declared members to this class.
19235 AddImplicitlyDeclaredMembersToClass(CXXRecord
);
19237 if (!CXXRecord
->isDependentType()) {
19238 if (!CXXRecord
->isInvalidDecl()) {
19239 // If we have virtual base classes, we may end up finding multiple
19240 // final overriders for a given virtual function. Check for this
19242 if (CXXRecord
->getNumVBases()) {
19243 CXXFinalOverriderMap FinalOverriders
;
19244 CXXRecord
->getFinalOverriders(FinalOverriders
);
19246 for (CXXFinalOverriderMap::iterator M
= FinalOverriders
.begin(),
19247 MEnd
= FinalOverriders
.end();
19249 for (OverridingMethods::iterator SO
= M
->second
.begin(),
19250 SOEnd
= M
->second
.end();
19251 SO
!= SOEnd
; ++SO
) {
19252 assert(SO
->second
.size() > 0 &&
19253 "Virtual function without overriding functions?");
19254 if (SO
->second
.size() == 1)
19257 // C++ [class.virtual]p2:
19258 // In a derived class, if a virtual member function of a base
19259 // class subobject has more than one final overrider the
19260 // program is ill-formed.
19261 Diag(Record
->getLocation(), diag::err_multiple_final_overriders
)
19262 << (const NamedDecl
*)M
->first
<< Record
;
19263 Diag(M
->first
->getLocation(),
19264 diag::note_overridden_virtual_function
);
19265 for (OverridingMethods::overriding_iterator
19266 OM
= SO
->second
.begin(),
19267 OMEnd
= SO
->second
.end();
19269 Diag(OM
->Method
->getLocation(), diag::note_final_overrider
)
19270 << (const NamedDecl
*)M
->first
<< OM
->Method
->getParent();
19272 Record
->setInvalidDecl();
19275 CXXRecord
->completeDefinition(&FinalOverriders
);
19279 ComputeSelectedDestructor(*this, CXXRecord
);
19280 ComputeSpecialMemberFunctionsEligiblity(*this, CXXRecord
);
19285 Record
->completeDefinition();
19287 // Handle attributes before checking the layout.
19288 ProcessDeclAttributeList(S
, Record
, Attrs
);
19290 // Check to see if a FieldDecl is a pointer to a function.
19291 auto IsFunctionPointerOrForwardDecl
= [&](const Decl
*D
) {
19292 const FieldDecl
*FD
= dyn_cast
<FieldDecl
>(D
);
19294 // Check whether this is a forward declaration that was inserted by
19295 // Clang. This happens when a non-forward declared / defined type is
19299 // struct bar *(*f)();
19300 // struct bar *(*g)();
19303 // "struct bar" shows up in the decl AST as a "RecordDecl" with an
19304 // incomplete definition.
19305 if (const auto *TD
= dyn_cast
<TagDecl
>(D
))
19306 return !TD
->isCompleteDefinition();
19309 QualType FieldType
= FD
->getType().getDesugaredType(Context
);
19310 if (isa
<PointerType
>(FieldType
)) {
19311 QualType PointeeType
= cast
<PointerType
>(FieldType
)->getPointeeType();
19312 return PointeeType
.getDesugaredType(Context
)->isFunctionType();
19317 // Maybe randomize the record's decls. We automatically randomize a record
19318 // of function pointers, unless it has the "no_randomize_layout" attribute.
19319 if (!getLangOpts().CPlusPlus
&&
19320 (Record
->hasAttr
<RandomizeLayoutAttr
>() ||
19321 (!Record
->hasAttr
<NoRandomizeLayoutAttr
>() &&
19322 llvm::all_of(Record
->decls(), IsFunctionPointerOrForwardDecl
))) &&
19323 !Record
->isUnion() && !getLangOpts().RandstructSeed
.empty() &&
19324 !Record
->isRandomized()) {
19325 SmallVector
<Decl
*, 32> NewDeclOrdering
;
19326 if (randstruct::randomizeStructureLayout(Context
, Record
,
19328 Record
->reorderDecls(NewDeclOrdering
);
19331 // We may have deferred checking for a deleted destructor. Check now.
19333 auto *Dtor
= CXXRecord
->getDestructor();
19334 if (Dtor
&& Dtor
->isImplicit() &&
19335 ShouldDeleteSpecialMember(Dtor
, CXXDestructor
)) {
19336 CXXRecord
->setImplicitDestructorIsDeleted();
19337 SetDeclDeleted(Dtor
, CXXRecord
->getLocation());
19341 if (Record
->hasAttrs()) {
19342 CheckAlignasUnderalignment(Record
);
19344 if (const MSInheritanceAttr
*IA
= Record
->getAttr
<MSInheritanceAttr
>())
19345 checkMSInheritanceAttrOnDefinition(cast
<CXXRecordDecl
>(Record
),
19346 IA
->getRange(), IA
->getBestCase(),
19347 IA
->getInheritanceModel());
19350 // Check if the structure/union declaration is a type that can have zero
19351 // size in C. For C this is a language extension, for C++ it may cause
19352 // compatibility problems.
19353 bool CheckForZeroSize
;
19354 if (!getLangOpts().CPlusPlus
) {
19355 CheckForZeroSize
= true;
19357 // For C++ filter out types that cannot be referenced in C code.
19358 CXXRecordDecl
*CXXRecord
= cast
<CXXRecordDecl
>(Record
);
19360 CXXRecord
->getLexicalDeclContext()->isExternCContext() &&
19361 !CXXRecord
->isDependentType() && !inTemplateInstantiation() &&
19362 CXXRecord
->isCLike();
19364 if (CheckForZeroSize
) {
19365 bool ZeroSize
= true;
19366 bool IsEmpty
= true;
19367 unsigned NonBitFields
= 0;
19368 for (RecordDecl::field_iterator I
= Record
->field_begin(),
19369 E
= Record
->field_end();
19370 (NonBitFields
== 0 || ZeroSize
) && I
!= E
; ++I
) {
19372 if (I
->isUnnamedBitfield()) {
19373 if (!I
->isZeroLengthBitField(Context
))
19377 QualType FieldType
= I
->getType();
19378 if (FieldType
->isIncompleteType() ||
19379 !Context
.getTypeSizeInChars(FieldType
).isZero())
19384 // Empty structs are an extension in C (C99 6.7.2.1p7). They are
19385 // allowed in C++, but warn if its declaration is inside
19386 // extern "C" block.
19388 Diag(RecLoc
, getLangOpts().CPlusPlus
?
19389 diag::warn_zero_size_struct_union_in_extern_c
:
19390 diag::warn_zero_size_struct_union_compat
)
19391 << IsEmpty
<< Record
->isUnion() << (NonBitFields
> 1);
19394 // Structs without named members are extension in C (C99 6.7.2.1p7),
19395 // but are accepted by GCC.
19396 if (NonBitFields
== 0 && !getLangOpts().CPlusPlus
) {
19397 Diag(RecLoc
, IsEmpty
? diag::ext_empty_struct_union
:
19398 diag::ext_no_named_members_in_struct_union
)
19399 << Record
->isUnion();
19403 ObjCIvarDecl
**ClsFields
=
19404 reinterpret_cast<ObjCIvarDecl
**>(RecFields
.data());
19405 if (ObjCInterfaceDecl
*ID
= dyn_cast
<ObjCInterfaceDecl
>(EnclosingDecl
)) {
19406 ID
->setEndOfDefinitionLoc(RBrac
);
19407 // Add ivar's to class's DeclContext.
19408 for (unsigned i
= 0, e
= RecFields
.size(); i
!= e
; ++i
) {
19409 ClsFields
[i
]->setLexicalDeclContext(ID
);
19410 ID
->addDecl(ClsFields
[i
]);
19412 // Must enforce the rule that ivars in the base classes may not be
19414 if (ID
->getSuperClass())
19415 DiagnoseDuplicateIvars(ID
, ID
->getSuperClass());
19416 } else if (ObjCImplementationDecl
*IMPDecl
=
19417 dyn_cast
<ObjCImplementationDecl
>(EnclosingDecl
)) {
19418 assert(IMPDecl
&& "ActOnFields - missing ObjCImplementationDecl");
19419 for (unsigned I
= 0, N
= RecFields
.size(); I
!= N
; ++I
)
19420 // Ivar declared in @implementation never belongs to the implementation.
19421 // Only it is in implementation's lexical context.
19422 ClsFields
[I
]->setLexicalDeclContext(IMPDecl
);
19423 CheckImplementationIvars(IMPDecl
, ClsFields
, RecFields
.size(), RBrac
);
19424 IMPDecl
->setIvarLBraceLoc(LBrac
);
19425 IMPDecl
->setIvarRBraceLoc(RBrac
);
19426 } else if (ObjCCategoryDecl
*CDecl
=
19427 dyn_cast
<ObjCCategoryDecl
>(EnclosingDecl
)) {
19428 // case of ivars in class extension; all other cases have been
19429 // reported as errors elsewhere.
19430 // FIXME. Class extension does not have a LocEnd field.
19431 // CDecl->setLocEnd(RBrac);
19432 // Add ivar's to class extension's DeclContext.
19433 // Diagnose redeclaration of private ivars.
19434 ObjCInterfaceDecl
*IDecl
= CDecl
->getClassInterface();
19435 for (unsigned i
= 0, e
= RecFields
.size(); i
!= e
; ++i
) {
19437 if (const ObjCIvarDecl
*ClsIvar
=
19438 IDecl
->getIvarDecl(ClsFields
[i
]->getIdentifier())) {
19439 Diag(ClsFields
[i
]->getLocation(),
19440 diag::err_duplicate_ivar_declaration
);
19441 Diag(ClsIvar
->getLocation(), diag::note_previous_definition
);
19444 for (const auto *Ext
: IDecl
->known_extensions()) {
19445 if (const ObjCIvarDecl
*ClsExtIvar
19446 = Ext
->getIvarDecl(ClsFields
[i
]->getIdentifier())) {
19447 Diag(ClsFields
[i
]->getLocation(),
19448 diag::err_duplicate_ivar_declaration
);
19449 Diag(ClsExtIvar
->getLocation(), diag::note_previous_definition
);
19454 ClsFields
[i
]->setLexicalDeclContext(CDecl
);
19455 CDecl
->addDecl(ClsFields
[i
]);
19457 CDecl
->setIvarLBraceLoc(LBrac
);
19458 CDecl
->setIvarRBraceLoc(RBrac
);
19462 // Check the "counted_by" attribute to ensure that the count field exists in
19463 // the struct. Make sure we're performing this check on the outer-most
19464 // record. This is a C-only feature.
19465 if (!getLangOpts().CPlusPlus
&& Record
&&
19466 !isa
<RecordDecl
>(Record
->getParent())) {
19467 auto Pred
= [](const Decl
*D
) {
19468 if (const auto *FD
= dyn_cast_if_present
<FieldDecl
>(D
))
19469 return FD
->hasAttr
<CountedByAttr
>();
19472 if (const FieldDecl
*FD
= Record
->findFieldIf(Pred
))
19473 CheckCountedByAttr(S
, FD
);
19477 /// Determine whether the given integral value is representable within
19478 /// the given type T.
19479 static bool isRepresentableIntegerValue(ASTContext
&Context
,
19480 llvm::APSInt
&Value
,
19482 assert((T
->isIntegralType(Context
) || T
->isEnumeralType()) &&
19483 "Integral type required!");
19484 unsigned BitWidth
= Context
.getIntWidth(T
);
19486 if (Value
.isUnsigned() || Value
.isNonNegative()) {
19487 if (T
->isSignedIntegerOrEnumerationType())
19489 return Value
.getActiveBits() <= BitWidth
;
19491 return Value
.getSignificantBits() <= BitWidth
;
19494 // Given an integral type, return the next larger integral type
19495 // (or a NULL type of no such type exists).
19496 static QualType
getNextLargerIntegralType(ASTContext
&Context
, QualType T
) {
19497 // FIXME: Int128/UInt128 support, which also needs to be introduced into
19498 // enum checking below.
19499 assert((T
->isIntegralType(Context
) ||
19500 T
->isEnumeralType()) && "Integral type required!");
19501 const unsigned NumTypes
= 4;
19502 QualType SignedIntegralTypes
[NumTypes
] = {
19503 Context
.ShortTy
, Context
.IntTy
, Context
.LongTy
, Context
.LongLongTy
19505 QualType UnsignedIntegralTypes
[NumTypes
] = {
19506 Context
.UnsignedShortTy
, Context
.UnsignedIntTy
, Context
.UnsignedLongTy
,
19507 Context
.UnsignedLongLongTy
19510 unsigned BitWidth
= Context
.getTypeSize(T
);
19511 QualType
*Types
= T
->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
19512 : UnsignedIntegralTypes
;
19513 for (unsigned I
= 0; I
!= NumTypes
; ++I
)
19514 if (Context
.getTypeSize(Types
[I
]) > BitWidth
)
19520 EnumConstantDecl
*Sema::CheckEnumConstant(EnumDecl
*Enum
,
19521 EnumConstantDecl
*LastEnumConst
,
19522 SourceLocation IdLoc
,
19523 IdentifierInfo
*Id
,
19525 unsigned IntWidth
= Context
.getTargetInfo().getIntWidth();
19526 llvm::APSInt
EnumVal(IntWidth
);
19529 if (Val
&& DiagnoseUnexpandedParameterPack(Val
, UPPC_EnumeratorValue
))
19533 Val
= DefaultLvalueConversion(Val
).get();
19536 if (Enum
->isDependentType() || Val
->isTypeDependent() ||
19537 Val
->containsErrors())
19538 EltTy
= Context
.DependentTy
;
19540 // FIXME: We don't allow folding in C++11 mode for an enum with a fixed
19541 // underlying type, but do allow it in all other contexts.
19542 if (getLangOpts().CPlusPlus11
&& Enum
->isFixed()) {
19543 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
19544 // constant-expression in the enumerator-definition shall be a converted
19545 // constant expression of the underlying type.
19546 EltTy
= Enum
->getIntegerType();
19547 ExprResult Converted
=
19548 CheckConvertedConstantExpression(Val
, EltTy
, EnumVal
,
19550 if (Converted
.isInvalid())
19553 Val
= Converted
.get();
19554 } else if (!Val
->isValueDependent() &&
19556 VerifyIntegerConstantExpression(Val
, &EnumVal
, AllowFold
)
19558 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
19560 if (Enum
->isComplete()) {
19561 EltTy
= Enum
->getIntegerType();
19563 // In Obj-C and Microsoft mode, require the enumeration value to be
19564 // representable in the underlying type of the enumeration. In C++11,
19565 // we perform a non-narrowing conversion as part of converted constant
19566 // expression checking.
19567 if (!isRepresentableIntegerValue(Context
, EnumVal
, EltTy
)) {
19568 if (Context
.getTargetInfo()
19570 .isWindowsMSVCEnvironment()) {
19571 Diag(IdLoc
, diag::ext_enumerator_too_large
) << EltTy
;
19573 Diag(IdLoc
, diag::err_enumerator_too_large
) << EltTy
;
19577 // Cast to the underlying type.
19578 Val
= ImpCastExprToType(Val
, EltTy
,
19579 EltTy
->isBooleanType() ? CK_IntegralToBoolean
19582 } else if (getLangOpts().CPlusPlus
) {
19583 // C++11 [dcl.enum]p5:
19584 // If the underlying type is not fixed, the type of each enumerator
19585 // is the type of its initializing value:
19586 // - If an initializer is specified for an enumerator, the
19587 // initializing value has the same type as the expression.
19588 EltTy
= Val
->getType();
19591 // The expression that defines the value of an enumeration constant
19592 // shall be an integer constant expression that has a value
19593 // representable as an int.
19595 // Complain if the value is not representable in an int.
19596 if (!isRepresentableIntegerValue(Context
, EnumVal
, Context
.IntTy
))
19597 Diag(IdLoc
, diag::ext_enum_value_not_int
)
19598 << toString(EnumVal
, 10) << Val
->getSourceRange()
19599 << (EnumVal
.isUnsigned() || EnumVal
.isNonNegative());
19600 else if (!Context
.hasSameType(Val
->getType(), Context
.IntTy
)) {
19601 // Force the type of the expression to 'int'.
19602 Val
= ImpCastExprToType(Val
, Context
.IntTy
, CK_IntegralCast
).get();
19604 EltTy
= Val
->getType();
19611 if (Enum
->isDependentType())
19612 EltTy
= Context
.DependentTy
;
19613 else if (!LastEnumConst
) {
19614 // C++0x [dcl.enum]p5:
19615 // If the underlying type is not fixed, the type of each enumerator
19616 // is the type of its initializing value:
19617 // - If no initializer is specified for the first enumerator, the
19618 // initializing value has an unspecified integral type.
19620 // GCC uses 'int' for its unspecified integral type, as does
19622 if (Enum
->isFixed()) {
19623 EltTy
= Enum
->getIntegerType();
19626 EltTy
= Context
.IntTy
;
19629 // Assign the last value + 1.
19630 EnumVal
= LastEnumConst
->getInitVal();
19632 EltTy
= LastEnumConst
->getType();
19634 // Check for overflow on increment.
19635 if (EnumVal
< LastEnumConst
->getInitVal()) {
19636 // C++0x [dcl.enum]p5:
19637 // If the underlying type is not fixed, the type of each enumerator
19638 // is the type of its initializing value:
19640 // - Otherwise the type of the initializing value is the same as
19641 // the type of the initializing value of the preceding enumerator
19642 // unless the incremented value is not representable in that type,
19643 // in which case the type is an unspecified integral type
19644 // sufficient to contain the incremented value. If no such type
19645 // exists, the program is ill-formed.
19646 QualType T
= getNextLargerIntegralType(Context
, EltTy
);
19647 if (T
.isNull() || Enum
->isFixed()) {
19648 // There is no integral type larger enough to represent this
19649 // value. Complain, then allow the value to wrap around.
19650 EnumVal
= LastEnumConst
->getInitVal();
19651 EnumVal
= EnumVal
.zext(EnumVal
.getBitWidth() * 2);
19653 if (Enum
->isFixed())
19654 // When the underlying type is fixed, this is ill-formed.
19655 Diag(IdLoc
, diag::err_enumerator_wrapped
)
19656 << toString(EnumVal
, 10)
19659 Diag(IdLoc
, diag::ext_enumerator_increment_too_large
)
19660 << toString(EnumVal
, 10);
19665 // Retrieve the last enumerator's value, extent that type to the
19666 // type that is supposed to be large enough to represent the incremented
19667 // value, then increment.
19668 EnumVal
= LastEnumConst
->getInitVal();
19669 EnumVal
.setIsSigned(EltTy
->isSignedIntegerOrEnumerationType());
19670 EnumVal
= EnumVal
.zextOrTrunc(Context
.getIntWidth(EltTy
));
19673 // If we're not in C++, diagnose the overflow of enumerator values,
19674 // which in C99 means that the enumerator value is not representable in
19675 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
19676 // permits enumerator values that are representable in some larger
19678 if (!getLangOpts().CPlusPlus
&& !T
.isNull())
19679 Diag(IdLoc
, diag::warn_enum_value_overflow
);
19680 } else if (!getLangOpts().CPlusPlus
&&
19681 !EltTy
->isDependentType() &&
19682 !isRepresentableIntegerValue(Context
, EnumVal
, EltTy
)) {
19683 // Enforce C99 6.7.2.2p2 even when we compute the next value.
19684 Diag(IdLoc
, diag::ext_enum_value_not_int
)
19685 << toString(EnumVal
, 10) << 1;
19690 if (!EltTy
->isDependentType()) {
19691 // Make the enumerator value match the signedness and size of the
19692 // enumerator's type.
19693 EnumVal
= EnumVal
.extOrTrunc(Context
.getIntWidth(EltTy
));
19694 EnumVal
.setIsSigned(EltTy
->isSignedIntegerOrEnumerationType());
19697 return EnumConstantDecl::Create(Context
, Enum
, IdLoc
, Id
, EltTy
,
19701 Sema::SkipBodyInfo
Sema::shouldSkipAnonEnumBody(Scope
*S
, IdentifierInfo
*II
,
19702 SourceLocation IILoc
) {
19703 if (!(getLangOpts().Modules
|| getLangOpts().ModulesLocalVisibility
) ||
19704 !getLangOpts().CPlusPlus
)
19705 return SkipBodyInfo();
19707 // We have an anonymous enum definition. Look up the first enumerator to
19708 // determine if we should merge the definition with an existing one and
19710 NamedDecl
*PrevDecl
= LookupSingleName(S
, II
, IILoc
, LookupOrdinaryName
,
19711 forRedeclarationInCurContext());
19712 auto *PrevECD
= dyn_cast_or_null
<EnumConstantDecl
>(PrevDecl
);
19714 return SkipBodyInfo();
19716 EnumDecl
*PrevED
= cast
<EnumDecl
>(PrevECD
->getDeclContext());
19718 if (!PrevED
->getDeclName() && !hasVisibleDefinition(PrevED
, &Hidden
)) {
19720 Skip
.Previous
= Hidden
;
19724 return SkipBodyInfo();
19727 Decl
*Sema::ActOnEnumConstant(Scope
*S
, Decl
*theEnumDecl
, Decl
*lastEnumConst
,
19728 SourceLocation IdLoc
, IdentifierInfo
*Id
,
19729 const ParsedAttributesView
&Attrs
,
19730 SourceLocation EqualLoc
, Expr
*Val
) {
19731 EnumDecl
*TheEnumDecl
= cast
<EnumDecl
>(theEnumDecl
);
19732 EnumConstantDecl
*LastEnumConst
=
19733 cast_or_null
<EnumConstantDecl
>(lastEnumConst
);
19735 // The scope passed in may not be a decl scope. Zip up the scope tree until
19736 // we find one that is.
19737 S
= getNonFieldDeclScope(S
);
19739 // Verify that there isn't already something declared with this name in this
19741 LookupResult
R(*this, Id
, IdLoc
, LookupOrdinaryName
, ForVisibleRedeclaration
);
19743 NamedDecl
*PrevDecl
= R
.getAsSingle
<NamedDecl
>();
19745 if (PrevDecl
&& PrevDecl
->isTemplateParameter()) {
19746 // Maybe we will complain about the shadowed template parameter.
19747 DiagnoseTemplateParameterShadow(IdLoc
, PrevDecl
);
19748 // Just pretend that we didn't see the previous declaration.
19749 PrevDecl
= nullptr;
19752 // C++ [class.mem]p15:
19753 // If T is the name of a class, then each of the following shall have a name
19754 // different from T:
19755 // - every enumerator of every member of class T that is an unscoped
19757 if (getLangOpts().CPlusPlus
&& !TheEnumDecl
->isScoped())
19758 DiagnoseClassNameShadow(TheEnumDecl
->getDeclContext(),
19759 DeclarationNameInfo(Id
, IdLoc
));
19761 EnumConstantDecl
*New
=
19762 CheckEnumConstant(TheEnumDecl
, LastEnumConst
, IdLoc
, Id
, Val
);
19767 if (!TheEnumDecl
->isScoped() && isa
<ValueDecl
>(PrevDecl
)) {
19768 // Check for other kinds of shadowing not already handled.
19769 CheckShadow(New
, PrevDecl
, R
);
19772 // When in C++, we may get a TagDecl with the same name; in this case the
19773 // enum constant will 'hide' the tag.
19774 assert((getLangOpts().CPlusPlus
|| !isa
<TagDecl
>(PrevDecl
)) &&
19775 "Received TagDecl when not in C++!");
19776 if (!isa
<TagDecl
>(PrevDecl
) && isDeclInScope(PrevDecl
, CurContext
, S
)) {
19777 if (isa
<EnumConstantDecl
>(PrevDecl
))
19778 Diag(IdLoc
, diag::err_redefinition_of_enumerator
) << Id
;
19780 Diag(IdLoc
, diag::err_redefinition
) << Id
;
19781 notePreviousDefinition(PrevDecl
, IdLoc
);
19786 // Process attributes.
19787 ProcessDeclAttributeList(S
, New
, Attrs
);
19788 AddPragmaAttributes(S
, New
);
19790 // Register this decl in the current scope stack.
19791 New
->setAccess(TheEnumDecl
->getAccess());
19792 PushOnScopeChains(New
, S
);
19794 ActOnDocumentableDecl(New
);
19799 // Returns true when the enum initial expression does not trigger the
19800 // duplicate enum warning. A few common cases are exempted as follows:
19801 // Element2 = Element1
19802 // Element2 = Element1 + 1
19803 // Element2 = Element1 - 1
19804 // Where Element2 and Element1 are from the same enum.
19805 static bool ValidDuplicateEnum(EnumConstantDecl
*ECD
, EnumDecl
*Enum
) {
19806 Expr
*InitExpr
= ECD
->getInitExpr();
19809 InitExpr
= InitExpr
->IgnoreImpCasts();
19811 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(InitExpr
)) {
19812 if (!BO
->isAdditiveOp())
19814 IntegerLiteral
*IL
= dyn_cast
<IntegerLiteral
>(BO
->getRHS());
19817 if (IL
->getValue() != 1)
19820 InitExpr
= BO
->getLHS();
19823 // This checks if the elements are from the same enum.
19824 DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(InitExpr
);
19828 EnumConstantDecl
*EnumConstant
= dyn_cast
<EnumConstantDecl
>(DRE
->getDecl());
19832 if (cast
<EnumDecl
>(TagDecl::castFromDeclContext(ECD
->getDeclContext())) !=
19839 // Emits a warning when an element is implicitly set a value that
19840 // a previous element has already been set to.
19841 static void CheckForDuplicateEnumValues(Sema
&S
, ArrayRef
<Decl
*> Elements
,
19842 EnumDecl
*Enum
, QualType EnumType
) {
19843 // Avoid anonymous enums
19844 if (!Enum
->getIdentifier())
19847 // Only check for small enums.
19848 if (Enum
->getNumPositiveBits() > 63 || Enum
->getNumNegativeBits() > 64)
19851 if (S
.Diags
.isIgnored(diag::warn_duplicate_enum_values
, Enum
->getLocation()))
19854 typedef SmallVector
<EnumConstantDecl
*, 3> ECDVector
;
19855 typedef SmallVector
<std::unique_ptr
<ECDVector
>, 3> DuplicatesVector
;
19857 typedef llvm::PointerUnion
<EnumConstantDecl
*, ECDVector
*> DeclOrVector
;
19859 // DenseMaps cannot contain the all ones int64_t value, so use unordered_map.
19860 typedef std::unordered_map
<int64_t, DeclOrVector
> ValueToVectorMap
;
19862 // Use int64_t as a key to avoid needing special handling for map keys.
19863 auto EnumConstantToKey
= [](const EnumConstantDecl
*D
) {
19864 llvm::APSInt Val
= D
->getInitVal();
19865 return Val
.isSigned() ? Val
.getSExtValue() : Val
.getZExtValue();
19868 DuplicatesVector DupVector
;
19869 ValueToVectorMap EnumMap
;
19871 // Populate the EnumMap with all values represented by enum constants without
19873 for (auto *Element
: Elements
) {
19874 EnumConstantDecl
*ECD
= cast_or_null
<EnumConstantDecl
>(Element
);
19876 // Null EnumConstantDecl means a previous diagnostic has been emitted for
19877 // this constant. Skip this enum since it may be ill-formed.
19882 // Constants with initializers are handled in the next loop.
19883 if (ECD
->getInitExpr())
19886 // Duplicate values are handled in the next loop.
19887 EnumMap
.insert({EnumConstantToKey(ECD
), ECD
});
19890 if (EnumMap
.size() == 0)
19893 // Create vectors for any values that has duplicates.
19894 for (auto *Element
: Elements
) {
19895 // The last loop returned if any constant was null.
19896 EnumConstantDecl
*ECD
= cast
<EnumConstantDecl
>(Element
);
19897 if (!ValidDuplicateEnum(ECD
, Enum
))
19900 auto Iter
= EnumMap
.find(EnumConstantToKey(ECD
));
19901 if (Iter
== EnumMap
.end())
19904 DeclOrVector
& Entry
= Iter
->second
;
19905 if (EnumConstantDecl
*D
= Entry
.dyn_cast
<EnumConstantDecl
*>()) {
19906 // Ensure constants are different.
19910 // Create new vector and push values onto it.
19911 auto Vec
= std::make_unique
<ECDVector
>();
19913 Vec
->push_back(ECD
);
19915 // Update entry to point to the duplicates vector.
19918 // Store the vector somewhere we can consult later for quick emission of
19920 DupVector
.emplace_back(std::move(Vec
));
19924 ECDVector
*Vec
= Entry
.get
<ECDVector
*>();
19925 // Make sure constants are not added more than once.
19926 if (*Vec
->begin() == ECD
)
19929 Vec
->push_back(ECD
);
19932 // Emit diagnostics.
19933 for (const auto &Vec
: DupVector
) {
19934 assert(Vec
->size() > 1 && "ECDVector should have at least 2 elements.");
19936 // Emit warning for one enum constant.
19937 auto *FirstECD
= Vec
->front();
19938 S
.Diag(FirstECD
->getLocation(), diag::warn_duplicate_enum_values
)
19939 << FirstECD
<< toString(FirstECD
->getInitVal(), 10)
19940 << FirstECD
->getSourceRange();
19942 // Emit one note for each of the remaining enum constants with
19944 for (auto *ECD
: llvm::drop_begin(*Vec
))
19945 S
.Diag(ECD
->getLocation(), diag::note_duplicate_element
)
19946 << ECD
<< toString(ECD
->getInitVal(), 10)
19947 << ECD
->getSourceRange();
19951 bool Sema::IsValueInFlagEnum(const EnumDecl
*ED
, const llvm::APInt
&Val
,
19952 bool AllowMask
) const {
19953 assert(ED
->isClosedFlag() && "looking for value in non-flag or open enum");
19954 assert(ED
->isCompleteDefinition() && "expected enum definition");
19956 auto R
= FlagBitsCache
.insert(std::make_pair(ED
, llvm::APInt()));
19957 llvm::APInt
&FlagBits
= R
.first
->second
;
19960 for (auto *E
: ED
->enumerators()) {
19961 const auto &EVal
= E
->getInitVal();
19962 // Only single-bit enumerators introduce new flag values.
19963 if (EVal
.isPowerOf2())
19964 FlagBits
= FlagBits
.zext(EVal
.getBitWidth()) | EVal
;
19968 // A value is in a flag enum if either its bits are a subset of the enum's
19969 // flag bits (the first condition) or we are allowing masks and the same is
19970 // true of its complement (the second condition). When masks are allowed, we
19971 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
19973 // While it's true that any value could be used as a mask, the assumption is
19974 // that a mask will have all of the insignificant bits set. Anything else is
19975 // likely a logic error.
19976 llvm::APInt FlagMask
= ~FlagBits
.zextOrTrunc(Val
.getBitWidth());
19977 return !(FlagMask
& Val
) || (AllowMask
&& !(FlagMask
& ~Val
));
19980 void Sema::ActOnEnumBody(SourceLocation EnumLoc
, SourceRange BraceRange
,
19981 Decl
*EnumDeclX
, ArrayRef
<Decl
*> Elements
, Scope
*S
,
19982 const ParsedAttributesView
&Attrs
) {
19983 EnumDecl
*Enum
= cast
<EnumDecl
>(EnumDeclX
);
19984 QualType EnumType
= Context
.getTypeDeclType(Enum
);
19986 ProcessDeclAttributeList(S
, Enum
, Attrs
);
19988 if (Enum
->isDependentType()) {
19989 for (unsigned i
= 0, e
= Elements
.size(); i
!= e
; ++i
) {
19990 EnumConstantDecl
*ECD
=
19991 cast_or_null
<EnumConstantDecl
>(Elements
[i
]);
19992 if (!ECD
) continue;
19994 ECD
->setType(EnumType
);
19997 Enum
->completeDefinition(Context
.DependentTy
, Context
.DependentTy
, 0, 0);
20001 // TODO: If the result value doesn't fit in an int, it must be a long or long
20002 // long value. ISO C does not support this, but GCC does as an extension,
20004 unsigned IntWidth
= Context
.getTargetInfo().getIntWidth();
20005 unsigned CharWidth
= Context
.getTargetInfo().getCharWidth();
20006 unsigned ShortWidth
= Context
.getTargetInfo().getShortWidth();
20008 // Verify that all the values are okay, compute the size of the values, and
20009 // reverse the list.
20010 unsigned NumNegativeBits
= 0;
20011 unsigned NumPositiveBits
= 0;
20013 for (unsigned i
= 0, e
= Elements
.size(); i
!= e
; ++i
) {
20014 EnumConstantDecl
*ECD
=
20015 cast_or_null
<EnumConstantDecl
>(Elements
[i
]);
20016 if (!ECD
) continue; // Already issued a diagnostic.
20018 const llvm::APSInt
&InitVal
= ECD
->getInitVal();
20020 // Keep track of the size of positive and negative values.
20021 if (InitVal
.isUnsigned() || InitVal
.isNonNegative()) {
20022 // If the enumerator is zero that should still be counted as a positive
20023 // bit since we need a bit to store the value zero.
20024 unsigned ActiveBits
= InitVal
.getActiveBits();
20025 NumPositiveBits
= std::max({NumPositiveBits
, ActiveBits
, 1u});
20028 std::max(NumNegativeBits
, (unsigned)InitVal
.getSignificantBits());
20032 // If we have an empty set of enumerators we still need one bit.
20033 // From [dcl.enum]p8
20034 // If the enumerator-list is empty, the values of the enumeration are as if
20035 // the enumeration had a single enumerator with value 0
20036 if (!NumPositiveBits
&& !NumNegativeBits
)
20037 NumPositiveBits
= 1;
20039 // Figure out the type that should be used for this enum.
20041 unsigned BestWidth
;
20043 // C++0x N3000 [conv.prom]p3:
20044 // An rvalue of an unscoped enumeration type whose underlying
20045 // type is not fixed can be converted to an rvalue of the first
20046 // of the following types that can represent all the values of
20047 // the enumeration: int, unsigned int, long int, unsigned long
20048 // int, long long int, or unsigned long long int.
20050 // An identifier declared as an enumeration constant has type int.
20051 // The C99 rule is modified by a gcc extension
20052 QualType BestPromotionType
;
20054 bool Packed
= Enum
->hasAttr
<PackedAttr
>();
20055 // -fshort-enums is the equivalent to specifying the packed attribute on all
20056 // enum definitions.
20057 if (LangOpts
.ShortEnums
)
20060 // If the enum already has a type because it is fixed or dictated by the
20061 // target, promote that type instead of analyzing the enumerators.
20062 if (Enum
->isComplete()) {
20063 BestType
= Enum
->getIntegerType();
20064 if (Context
.isPromotableIntegerType(BestType
))
20065 BestPromotionType
= Context
.getPromotedIntegerType(BestType
);
20067 BestPromotionType
= BestType
;
20069 BestWidth
= Context
.getIntWidth(BestType
);
20071 else if (NumNegativeBits
) {
20072 // If there is a negative value, figure out the smallest integer type (of
20073 // int/long/longlong) that fits.
20074 // If it's packed, check also if it fits a char or a short.
20075 if (Packed
&& NumNegativeBits
<= CharWidth
&& NumPositiveBits
< CharWidth
) {
20076 BestType
= Context
.SignedCharTy
;
20077 BestWidth
= CharWidth
;
20078 } else if (Packed
&& NumNegativeBits
<= ShortWidth
&&
20079 NumPositiveBits
< ShortWidth
) {
20080 BestType
= Context
.ShortTy
;
20081 BestWidth
= ShortWidth
;
20082 } else if (NumNegativeBits
<= IntWidth
&& NumPositiveBits
< IntWidth
) {
20083 BestType
= Context
.IntTy
;
20084 BestWidth
= IntWidth
;
20086 BestWidth
= Context
.getTargetInfo().getLongWidth();
20088 if (NumNegativeBits
<= BestWidth
&& NumPositiveBits
< BestWidth
) {
20089 BestType
= Context
.LongTy
;
20091 BestWidth
= Context
.getTargetInfo().getLongLongWidth();
20093 if (NumNegativeBits
> BestWidth
|| NumPositiveBits
>= BestWidth
)
20094 Diag(Enum
->getLocation(), diag::ext_enum_too_large
);
20095 BestType
= Context
.LongLongTy
;
20098 BestPromotionType
= (BestWidth
<= IntWidth
? Context
.IntTy
: BestType
);
20100 // If there is no negative value, figure out the smallest type that fits
20101 // all of the enumerator values.
20102 // If it's packed, check also if it fits a char or a short.
20103 if (Packed
&& NumPositiveBits
<= CharWidth
) {
20104 BestType
= Context
.UnsignedCharTy
;
20105 BestPromotionType
= Context
.IntTy
;
20106 BestWidth
= CharWidth
;
20107 } else if (Packed
&& NumPositiveBits
<= ShortWidth
) {
20108 BestType
= Context
.UnsignedShortTy
;
20109 BestPromotionType
= Context
.IntTy
;
20110 BestWidth
= ShortWidth
;
20111 } else if (NumPositiveBits
<= IntWidth
) {
20112 BestType
= Context
.UnsignedIntTy
;
20113 BestWidth
= IntWidth
;
20115 = (NumPositiveBits
== BestWidth
|| !getLangOpts().CPlusPlus
)
20116 ? Context
.UnsignedIntTy
: Context
.IntTy
;
20117 } else if (NumPositiveBits
<=
20118 (BestWidth
= Context
.getTargetInfo().getLongWidth())) {
20119 BestType
= Context
.UnsignedLongTy
;
20121 = (NumPositiveBits
== BestWidth
|| !getLangOpts().CPlusPlus
)
20122 ? Context
.UnsignedLongTy
: Context
.LongTy
;
20124 BestWidth
= Context
.getTargetInfo().getLongLongWidth();
20125 assert(NumPositiveBits
<= BestWidth
&&
20126 "How could an initializer get larger than ULL?");
20127 BestType
= Context
.UnsignedLongLongTy
;
20129 = (NumPositiveBits
== BestWidth
|| !getLangOpts().CPlusPlus
)
20130 ? Context
.UnsignedLongLongTy
: Context
.LongLongTy
;
20134 // Loop over all of the enumerator constants, changing their types to match
20135 // the type of the enum if needed.
20136 for (auto *D
: Elements
) {
20137 auto *ECD
= cast_or_null
<EnumConstantDecl
>(D
);
20138 if (!ECD
) continue; // Already issued a diagnostic.
20140 // Standard C says the enumerators have int type, but we allow, as an
20141 // extension, the enumerators to be larger than int size. If each
20142 // enumerator value fits in an int, type it as an int, otherwise type it the
20143 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
20144 // that X has type 'int', not 'unsigned'.
20146 // Determine whether the value fits into an int.
20147 llvm::APSInt InitVal
= ECD
->getInitVal();
20149 // If it fits into an integer type, force it. Otherwise force it to match
20150 // the enum decl type.
20154 if (!getLangOpts().CPlusPlus
&&
20155 !Enum
->isFixed() &&
20156 isRepresentableIntegerValue(Context
, InitVal
, Context
.IntTy
)) {
20157 NewTy
= Context
.IntTy
;
20158 NewWidth
= IntWidth
;
20160 } else if (ECD
->getType() == BestType
) {
20161 // Already the right type!
20162 if (getLangOpts().CPlusPlus
)
20163 // C++ [dcl.enum]p4: Following the closing brace of an
20164 // enum-specifier, each enumerator has the type of its
20166 ECD
->setType(EnumType
);
20170 NewWidth
= BestWidth
;
20171 NewSign
= BestType
->isSignedIntegerOrEnumerationType();
20174 // Adjust the APSInt value.
20175 InitVal
= InitVal
.extOrTrunc(NewWidth
);
20176 InitVal
.setIsSigned(NewSign
);
20177 ECD
->setInitVal(InitVal
);
20179 // Adjust the Expr initializer and type.
20180 if (ECD
->getInitExpr() &&
20181 !Context
.hasSameType(NewTy
, ECD
->getInitExpr()->getType()))
20182 ECD
->setInitExpr(ImplicitCastExpr::Create(
20183 Context
, NewTy
, CK_IntegralCast
, ECD
->getInitExpr(),
20184 /*base paths*/ nullptr, VK_PRValue
, FPOptionsOverride()));
20185 if (getLangOpts().CPlusPlus
)
20186 // C++ [dcl.enum]p4: Following the closing brace of an
20187 // enum-specifier, each enumerator has the type of its
20189 ECD
->setType(EnumType
);
20191 ECD
->setType(NewTy
);
20194 Enum
->completeDefinition(BestType
, BestPromotionType
,
20195 NumPositiveBits
, NumNegativeBits
);
20197 CheckForDuplicateEnumValues(*this, Elements
, Enum
, EnumType
);
20199 if (Enum
->isClosedFlag()) {
20200 for (Decl
*D
: Elements
) {
20201 EnumConstantDecl
*ECD
= cast_or_null
<EnumConstantDecl
>(D
);
20202 if (!ECD
) continue; // Already issued a diagnostic.
20204 llvm::APSInt InitVal
= ECD
->getInitVal();
20205 if (InitVal
!= 0 && !InitVal
.isPowerOf2() &&
20206 !IsValueInFlagEnum(Enum
, InitVal
, true))
20207 Diag(ECD
->getLocation(), diag::warn_flag_enum_constant_out_of_range
)
20212 // Now that the enum type is defined, ensure it's not been underaligned.
20213 if (Enum
->hasAttrs())
20214 CheckAlignasUnderalignment(Enum
);
20217 Decl
*Sema::ActOnFileScopeAsmDecl(Expr
*expr
,
20218 SourceLocation StartLoc
,
20219 SourceLocation EndLoc
) {
20220 StringLiteral
*AsmString
= cast
<StringLiteral
>(expr
);
20222 FileScopeAsmDecl
*New
= FileScopeAsmDecl::Create(Context
, CurContext
,
20223 AsmString
, StartLoc
,
20225 CurContext
->addDecl(New
);
20229 Decl
*Sema::ActOnTopLevelStmtDecl(Stmt
*Statement
) {
20230 auto *New
= TopLevelStmtDecl::Create(Context
, Statement
);
20231 Context
.getTranslationUnitDecl()->addDecl(New
);
20235 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo
* Name
,
20236 IdentifierInfo
* AliasName
,
20237 SourceLocation PragmaLoc
,
20238 SourceLocation NameLoc
,
20239 SourceLocation AliasNameLoc
) {
20240 NamedDecl
*PrevDecl
= LookupSingleName(TUScope
, Name
, NameLoc
,
20241 LookupOrdinaryName
);
20242 AttributeCommonInfo
Info(AliasName
, SourceRange(AliasNameLoc
),
20243 AttributeCommonInfo::Form::Pragma());
20244 AsmLabelAttr
*Attr
= AsmLabelAttr::CreateImplicit(
20245 Context
, AliasName
->getName(), /*IsLiteralLabel=*/true, Info
);
20247 // If a declaration that:
20248 // 1) declares a function or a variable
20249 // 2) has external linkage
20250 // already exists, add a label attribute to it.
20251 if (PrevDecl
&& (isa
<FunctionDecl
>(PrevDecl
) || isa
<VarDecl
>(PrevDecl
))) {
20252 if (isDeclExternC(PrevDecl
))
20253 PrevDecl
->addAttr(Attr
);
20255 Diag(PrevDecl
->getLocation(), diag::warn_redefine_extname_not_applied
)
20256 << /*Variable*/(isa
<FunctionDecl
>(PrevDecl
) ? 0 : 1) << PrevDecl
;
20257 // Otherwise, add a label attribute to ExtnameUndeclaredIdentifiers.
20259 (void)ExtnameUndeclaredIdentifiers
.insert(std::make_pair(Name
, Attr
));
20262 void Sema::ActOnPragmaWeakID(IdentifierInfo
* Name
,
20263 SourceLocation PragmaLoc
,
20264 SourceLocation NameLoc
) {
20265 Decl
*PrevDecl
= LookupSingleName(TUScope
, Name
, NameLoc
, LookupOrdinaryName
);
20268 PrevDecl
->addAttr(WeakAttr::CreateImplicit(Context
, PragmaLoc
));
20270 (void)WeakUndeclaredIdentifiers
[Name
].insert(WeakInfo(nullptr, NameLoc
));
20274 void Sema::ActOnPragmaWeakAlias(IdentifierInfo
* Name
,
20275 IdentifierInfo
* AliasName
,
20276 SourceLocation PragmaLoc
,
20277 SourceLocation NameLoc
,
20278 SourceLocation AliasNameLoc
) {
20279 Decl
*PrevDecl
= LookupSingleName(TUScope
, AliasName
, AliasNameLoc
,
20280 LookupOrdinaryName
);
20281 WeakInfo W
= WeakInfo(Name
, NameLoc
);
20283 if (PrevDecl
&& (isa
<FunctionDecl
>(PrevDecl
) || isa
<VarDecl
>(PrevDecl
))) {
20284 if (!PrevDecl
->hasAttr
<AliasAttr
>())
20285 if (NamedDecl
*ND
= dyn_cast
<NamedDecl
>(PrevDecl
))
20286 DeclApplyPragmaWeak(TUScope
, ND
, W
);
20288 (void)WeakUndeclaredIdentifiers
[AliasName
].insert(W
);
20292 ObjCContainerDecl
*Sema::getObjCDeclContext() const {
20293 return (dyn_cast_or_null
<ObjCContainerDecl
>(CurContext
));
20296 Sema::FunctionEmissionStatus
Sema::getEmissionStatus(const FunctionDecl
*FD
,
20298 assert(FD
&& "Expected non-null FunctionDecl");
20300 // SYCL functions can be template, so we check if they have appropriate
20301 // attribute prior to checking if it is a template.
20302 if (LangOpts
.SYCLIsDevice
&& FD
->hasAttr
<SYCLKernelAttr
>())
20303 return FunctionEmissionStatus::Emitted
;
20305 // Templates are emitted when they're instantiated.
20306 if (FD
->isDependentContext())
20307 return FunctionEmissionStatus::TemplateDiscarded
;
20309 // Check whether this function is an externally visible definition.
20310 auto IsEmittedForExternalSymbol
= [this, FD
]() {
20311 // We have to check the GVA linkage of the function's *definition* -- if we
20312 // only have a declaration, we don't know whether or not the function will
20313 // be emitted, because (say) the definition could include "inline".
20314 const FunctionDecl
*Def
= FD
->getDefinition();
20316 return Def
&& !isDiscardableGVALinkage(
20317 getASTContext().GetGVALinkageForFunction(Def
));
20320 if (LangOpts
.OpenMPIsTargetDevice
) {
20321 // In OpenMP device mode we will not emit host only functions, or functions
20322 // we don't need due to their linkage.
20323 std::optional
<OMPDeclareTargetDeclAttr::DevTypeTy
> DevTy
=
20324 OMPDeclareTargetDeclAttr::getDeviceType(FD
->getCanonicalDecl());
20325 // DevTy may be changed later by
20326 // #pragma omp declare target to(*) device_type(*).
20327 // Therefore DevTy having no value does not imply host. The emission status
20328 // will be checked again at the end of compilation unit with Final = true.
20330 if (*DevTy
== OMPDeclareTargetDeclAttr::DT_Host
)
20331 return FunctionEmissionStatus::OMPDiscarded
;
20332 // If we have an explicit value for the device type, or we are in a target
20333 // declare context, we need to emit all extern and used symbols.
20334 if (isInOpenMPDeclareTargetContext() || DevTy
)
20335 if (IsEmittedForExternalSymbol())
20336 return FunctionEmissionStatus::Emitted
;
20337 // Device mode only emits what it must, if it wasn't tagged yet and needed,
20340 return FunctionEmissionStatus::OMPDiscarded
;
20341 } else if (LangOpts
.OpenMP
> 45) {
20342 // In OpenMP host compilation prior to 5.0 everything was an emitted host
20343 // function. In 5.0, no_host was introduced which might cause a function to
20345 std::optional
<OMPDeclareTargetDeclAttr::DevTypeTy
> DevTy
=
20346 OMPDeclareTargetDeclAttr::getDeviceType(FD
->getCanonicalDecl());
20348 if (*DevTy
== OMPDeclareTargetDeclAttr::DT_NoHost
)
20349 return FunctionEmissionStatus::OMPDiscarded
;
20352 if (Final
&& LangOpts
.OpenMP
&& !LangOpts
.CUDA
)
20353 return FunctionEmissionStatus::Emitted
;
20355 if (LangOpts
.CUDA
) {
20356 // When compiling for device, host functions are never emitted. Similarly,
20357 // when compiling for host, device and global functions are never emitted.
20358 // (Technically, we do emit a host-side stub for global functions, but this
20359 // doesn't count for our purposes here.)
20360 Sema::CUDAFunctionTarget T
= IdentifyCUDATarget(FD
);
20361 if (LangOpts
.CUDAIsDevice
&& T
== Sema::CFT_Host
)
20362 return FunctionEmissionStatus::CUDADiscarded
;
20363 if (!LangOpts
.CUDAIsDevice
&&
20364 (T
== Sema::CFT_Device
|| T
== Sema::CFT_Global
))
20365 return FunctionEmissionStatus::CUDADiscarded
;
20367 if (IsEmittedForExternalSymbol())
20368 return FunctionEmissionStatus::Emitted
;
20371 // Otherwise, the function is known-emitted if it's in our set of
20372 // known-emitted functions.
20373 return FunctionEmissionStatus::Unknown
;
20376 bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl
*Callee
) {
20377 // Host-side references to a __global__ function refer to the stub, so the
20378 // function itself is never emitted and therefore should not be marked.
20379 // If we have host fn calls kernel fn calls host+device, the HD function
20380 // does not get instantiated on the host. We model this by omitting at the
20381 // call to the kernel from the callgraph. This ensures that, when compiling
20382 // for host, only HD functions actually called from the host get marked as
20384 return LangOpts
.CUDA
&& !LangOpts
.CUDAIsDevice
&&
20385 IdentifyCUDATarget(Callee
) == CFT_Global
;