[DFAJumpThreading] Remove incoming StartBlock from all phis when unfolding select...
[llvm-project.git] / clang / lib / Sema / SemaDeclAttr.cpp
blobcdb769a883550d0f4beb0eed0b9149ef33b5145b
1 //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements decl-related attribute processing.
11 //===----------------------------------------------------------------------===//
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/ASTMutationListener.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/Mangle.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/Type.h"
25 #include "clang/Basic/CharInfo.h"
26 #include "clang/Basic/Cuda.h"
27 #include "clang/Basic/DarwinSDKInfo.h"
28 #include "clang/Basic/HLSLRuntime.h"
29 #include "clang/Basic/LangOptions.h"
30 #include "clang/Basic/SourceLocation.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/Basic/TargetBuiltins.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Lex/Preprocessor.h"
35 #include "clang/Sema/DeclSpec.h"
36 #include "clang/Sema/DelayedDiagnostic.h"
37 #include "clang/Sema/Initialization.h"
38 #include "clang/Sema/Lookup.h"
39 #include "clang/Sema/ParsedAttr.h"
40 #include "clang/Sema/Scope.h"
41 #include "clang/Sema/ScopeInfo.h"
42 #include "clang/Sema/SemaInternal.h"
43 #include "llvm/ADT/STLExtras.h"
44 #include "llvm/ADT/StringExtras.h"
45 #include "llvm/IR/Assumptions.h"
46 #include "llvm/MC/MCSectionMachO.h"
47 #include "llvm/Support/Error.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <optional>
52 using namespace clang;
53 using namespace sema;
55 namespace AttributeLangSupport {
56 enum LANG {
58 Cpp,
59 ObjC
61 } // end namespace AttributeLangSupport
63 //===----------------------------------------------------------------------===//
64 // Helper functions
65 //===----------------------------------------------------------------------===//
67 /// isFunctionOrMethod - Return true if the given decl has function
68 /// type (function or function-typed variable) or an Objective-C
69 /// method.
70 static bool isFunctionOrMethod(const Decl *D) {
71 return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
74 /// Return true if the given decl has function type (function or
75 /// function-typed variable) or an Objective-C method or a block.
76 static bool isFunctionOrMethodOrBlock(const Decl *D) {
77 return isFunctionOrMethod(D) || isa<BlockDecl>(D);
80 /// Return true if the given decl has a declarator that should have
81 /// been processed by Sema::GetTypeForDeclarator.
82 static bool hasDeclarator(const Decl *D) {
83 // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
84 return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
85 isa<ObjCPropertyDecl>(D);
88 /// hasFunctionProto - Return true if the given decl has a argument
89 /// information. This decl should have already passed
90 /// isFunctionOrMethod or isFunctionOrMethodOrBlock.
91 static bool hasFunctionProto(const Decl *D) {
92 if (const FunctionType *FnTy = D->getFunctionType())
93 return isa<FunctionProtoType>(FnTy);
94 return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
97 /// getFunctionOrMethodNumParams - Return number of function or method
98 /// parameters. It is an error to call this on a K&R function (use
99 /// hasFunctionProto first).
100 static unsigned getFunctionOrMethodNumParams(const Decl *D) {
101 if (const FunctionType *FnTy = D->getFunctionType())
102 return cast<FunctionProtoType>(FnTy)->getNumParams();
103 if (const auto *BD = dyn_cast<BlockDecl>(D))
104 return BD->getNumParams();
105 return cast<ObjCMethodDecl>(D)->param_size();
108 static const ParmVarDecl *getFunctionOrMethodParam(const Decl *D,
109 unsigned Idx) {
110 if (const auto *FD = dyn_cast<FunctionDecl>(D))
111 return FD->getParamDecl(Idx);
112 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
113 return MD->getParamDecl(Idx);
114 if (const auto *BD = dyn_cast<BlockDecl>(D))
115 return BD->getParamDecl(Idx);
116 return nullptr;
119 static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
120 if (const FunctionType *FnTy = D->getFunctionType())
121 return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
122 if (const auto *BD = dyn_cast<BlockDecl>(D))
123 return BD->getParamDecl(Idx)->getType();
125 return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
128 static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
129 if (auto *PVD = getFunctionOrMethodParam(D, Idx))
130 return PVD->getSourceRange();
131 return SourceRange();
134 static QualType getFunctionOrMethodResultType(const Decl *D) {
135 if (const FunctionType *FnTy = D->getFunctionType())
136 return FnTy->getReturnType();
137 return cast<ObjCMethodDecl>(D)->getReturnType();
140 static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
141 if (const auto *FD = dyn_cast<FunctionDecl>(D))
142 return FD->getReturnTypeSourceRange();
143 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
144 return MD->getReturnTypeSourceRange();
145 return SourceRange();
148 static bool isFunctionOrMethodVariadic(const Decl *D) {
149 if (const FunctionType *FnTy = D->getFunctionType())
150 return cast<FunctionProtoType>(FnTy)->isVariadic();
151 if (const auto *BD = dyn_cast<BlockDecl>(D))
152 return BD->isVariadic();
153 return cast<ObjCMethodDecl>(D)->isVariadic();
156 static bool isInstanceMethod(const Decl *D) {
157 if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(D))
158 return MethodDecl->isInstance();
159 return false;
162 static inline bool isNSStringType(QualType T, ASTContext &Ctx,
163 bool AllowNSAttributedString = false) {
164 const auto *PT = T->getAs<ObjCObjectPointerType>();
165 if (!PT)
166 return false;
168 ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
169 if (!Cls)
170 return false;
172 IdentifierInfo* ClsName = Cls->getIdentifier();
174 if (AllowNSAttributedString &&
175 ClsName == &Ctx.Idents.get("NSAttributedString"))
176 return true;
177 // FIXME: Should we walk the chain of classes?
178 return ClsName == &Ctx.Idents.get("NSString") ||
179 ClsName == &Ctx.Idents.get("NSMutableString");
182 static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
183 const auto *PT = T->getAs<PointerType>();
184 if (!PT)
185 return false;
187 const auto *RT = PT->getPointeeType()->getAs<RecordType>();
188 if (!RT)
189 return false;
191 const RecordDecl *RD = RT->getDecl();
192 if (RD->getTagKind() != TagTypeKind::Struct)
193 return false;
195 return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
198 static unsigned getNumAttributeArgs(const ParsedAttr &AL) {
199 // FIXME: Include the type in the argument list.
200 return AL.getNumArgs() + AL.hasParsedType();
203 /// A helper function to provide Attribute Location for the Attr types
204 /// AND the ParsedAttr.
205 template <typename AttrInfo>
206 static std::enable_if_t<std::is_base_of_v<Attr, AttrInfo>, SourceLocation>
207 getAttrLoc(const AttrInfo &AL) {
208 return AL.getLocation();
210 static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); }
212 /// If Expr is a valid integer constant, get the value of the integer
213 /// expression and return success or failure. May output an error.
215 /// Negative argument is implicitly converted to unsigned, unless
216 /// \p StrictlyUnsigned is true.
217 template <typename AttrInfo>
218 static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr,
219 uint32_t &Val, unsigned Idx = UINT_MAX,
220 bool StrictlyUnsigned = false) {
221 std::optional<llvm::APSInt> I = llvm::APSInt(32);
222 if (Expr->isTypeDependent() ||
223 !(I = Expr->getIntegerConstantExpr(S.Context))) {
224 if (Idx != UINT_MAX)
225 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
226 << &AI << Idx << AANT_ArgumentIntegerConstant
227 << Expr->getSourceRange();
228 else
229 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type)
230 << &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange();
231 return false;
234 if (!I->isIntN(32)) {
235 S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
236 << toString(*I, 10, false) << 32 << /* Unsigned */ 1;
237 return false;
240 if (StrictlyUnsigned && I->isSigned() && I->isNegative()) {
241 S.Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer)
242 << &AI << /*non-negative*/ 1;
243 return false;
246 Val = (uint32_t)I->getZExtValue();
247 return true;
250 /// Wrapper around checkUInt32Argument, with an extra check to be sure
251 /// that the result will fit into a regular (signed) int. All args have the same
252 /// purpose as they do in checkUInt32Argument.
253 template <typename AttrInfo>
254 static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr,
255 int &Val, unsigned Idx = UINT_MAX) {
256 uint32_t UVal;
257 if (!checkUInt32Argument(S, AI, Expr, UVal, Idx))
258 return false;
260 if (UVal > (uint32_t)std::numeric_limits<int>::max()) {
261 llvm::APSInt I(32); // for toString
262 I = UVal;
263 S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
264 << toString(I, 10, false) << 32 << /* Unsigned */ 0;
265 return false;
268 Val = UVal;
269 return true;
272 /// Diagnose mutually exclusive attributes when present on a given
273 /// declaration. Returns true if diagnosed.
274 template <typename AttrTy>
275 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const ParsedAttr &AL) {
276 if (const auto *A = D->getAttr<AttrTy>()) {
277 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
278 << AL << A
279 << (AL.isRegularKeywordAttribute() || A->isRegularKeywordAttribute());
280 S.Diag(A->getLocation(), diag::note_conflicting_attribute);
281 return true;
283 return false;
286 template <typename AttrTy>
287 static bool checkAttrMutualExclusion(Sema &S, Decl *D, const Attr &AL) {
288 if (const auto *A = D->getAttr<AttrTy>()) {
289 S.Diag(AL.getLocation(), diag::err_attributes_are_not_compatible)
290 << &AL << A
291 << (AL.isRegularKeywordAttribute() || A->isRegularKeywordAttribute());
292 S.Diag(A->getLocation(), diag::note_conflicting_attribute);
293 return true;
295 return false;
298 /// Check if IdxExpr is a valid parameter index for a function or
299 /// instance method D. May output an error.
301 /// \returns true if IdxExpr is a valid index.
302 template <typename AttrInfo>
303 static bool checkFunctionOrMethodParameterIndex(
304 Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum,
305 const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) {
306 assert(isFunctionOrMethodOrBlock(D));
308 // In C++ the implicit 'this' function parameter also counts.
309 // Parameters are counted from one.
310 bool HP = hasFunctionProto(D);
311 bool HasImplicitThisParam = isInstanceMethod(D);
312 bool IV = HP && isFunctionOrMethodVariadic(D);
313 unsigned NumParams =
314 (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
316 std::optional<llvm::APSInt> IdxInt;
317 if (IdxExpr->isTypeDependent() ||
318 !(IdxInt = IdxExpr->getIntegerConstantExpr(S.Context))) {
319 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
320 << &AI << AttrArgNum << AANT_ArgumentIntegerConstant
321 << IdxExpr->getSourceRange();
322 return false;
325 unsigned IdxSource = IdxInt->getLimitedValue(UINT_MAX);
326 if (IdxSource < 1 || (!IV && IdxSource > NumParams)) {
327 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds)
328 << &AI << AttrArgNum << IdxExpr->getSourceRange();
329 return false;
331 if (HasImplicitThisParam && !CanIndexImplicitThis) {
332 if (IdxSource == 1) {
333 S.Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument)
334 << &AI << IdxExpr->getSourceRange();
335 return false;
339 Idx = ParamIdx(IdxSource, D);
340 return true;
343 /// Check if the argument \p E is a ASCII string literal. If not emit an error
344 /// and return false, otherwise set \p Str to the value of the string literal
345 /// and return true.
346 bool Sema::checkStringLiteralArgumentAttr(const AttributeCommonInfo &CI,
347 const Expr *E, StringRef &Str,
348 SourceLocation *ArgLocation) {
349 const auto *Literal = dyn_cast<StringLiteral>(E->IgnoreParenCasts());
350 if (ArgLocation)
351 *ArgLocation = E->getBeginLoc();
353 if (!Literal || (!Literal->isUnevaluated() && !Literal->isOrdinary())) {
354 Diag(E->getBeginLoc(), diag::err_attribute_argument_type)
355 << CI << AANT_ArgumentString;
356 return false;
359 Str = Literal->getString();
360 return true;
363 /// Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
364 /// If not emit an error and return false. If the argument is an identifier it
365 /// will emit an error with a fixit hint and treat it as if it was a string
366 /// literal.
367 bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum,
368 StringRef &Str,
369 SourceLocation *ArgLocation) {
370 // Look for identifiers. If we have one emit a hint to fix it to a literal.
371 if (AL.isArgIdent(ArgNum)) {
372 IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum);
373 Diag(Loc->Loc, diag::err_attribute_argument_type)
374 << AL << AANT_ArgumentString
375 << FixItHint::CreateInsertion(Loc->Loc, "\"")
376 << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\"");
377 Str = Loc->Ident->getName();
378 if (ArgLocation)
379 *ArgLocation = Loc->Loc;
380 return true;
383 // Now check for an actual string literal.
384 Expr *ArgExpr = AL.getArgAsExpr(ArgNum);
385 const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
386 if (ArgLocation)
387 *ArgLocation = ArgExpr->getBeginLoc();
389 if (!Literal || (!Literal->isUnevaluated() && !Literal->isOrdinary())) {
390 Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type)
391 << AL << AANT_ArgumentString;
392 return false;
394 Str = Literal->getString();
395 return checkStringLiteralArgumentAttr(AL, ArgExpr, Str, ArgLocation);
398 /// Applies the given attribute to the Decl without performing any
399 /// additional semantic checking.
400 template <typename AttrType>
401 static void handleSimpleAttribute(Sema &S, Decl *D,
402 const AttributeCommonInfo &CI) {
403 D->addAttr(::new (S.Context) AttrType(S.Context, CI));
406 template <typename... DiagnosticArgs>
407 static const Sema::SemaDiagnosticBuilder&
408 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr) {
409 return Bldr;
412 template <typename T, typename... DiagnosticArgs>
413 static const Sema::SemaDiagnosticBuilder&
414 appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr, T &&ExtraArg,
415 DiagnosticArgs &&... ExtraArgs) {
416 return appendDiagnostics(Bldr << std::forward<T>(ExtraArg),
417 std::forward<DiagnosticArgs>(ExtraArgs)...);
420 /// Add an attribute @c AttrType to declaration @c D, provided that
421 /// @c PassesCheck is true.
422 /// Otherwise, emit diagnostic @c DiagID, passing in all parameters
423 /// specified in @c ExtraArgs.
424 template <typename AttrType, typename... DiagnosticArgs>
425 static void handleSimpleAttributeOrDiagnose(Sema &S, Decl *D,
426 const AttributeCommonInfo &CI,
427 bool PassesCheck, unsigned DiagID,
428 DiagnosticArgs &&... ExtraArgs) {
429 if (!PassesCheck) {
430 Sema::SemaDiagnosticBuilder DB = S.Diag(D->getBeginLoc(), DiagID);
431 appendDiagnostics(DB, std::forward<DiagnosticArgs>(ExtraArgs)...);
432 return;
434 handleSimpleAttribute<AttrType>(S, D, CI);
437 /// Check if the passed-in expression is of type int or bool.
438 static bool isIntOrBool(Expr *Exp) {
439 QualType QT = Exp->getType();
440 return QT->isBooleanType() || QT->isIntegerType();
444 // Check to see if the type is a smart pointer of some kind. We assume
445 // it's a smart pointer if it defines both operator-> and operator*.
446 static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
447 auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record,
448 OverloadedOperatorKind Op) {
449 DeclContextLookupResult Result =
450 Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op));
451 return !Result.empty();
454 const RecordDecl *Record = RT->getDecl();
455 bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star);
456 bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow);
457 if (foundStarOperator && foundArrowOperator)
458 return true;
460 const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record);
461 if (!CXXRecord)
462 return false;
464 for (const auto &BaseSpecifier : CXXRecord->bases()) {
465 if (!foundStarOperator)
466 foundStarOperator = IsOverloadedOperatorPresent(
467 BaseSpecifier.getType()->getAsRecordDecl(), OO_Star);
468 if (!foundArrowOperator)
469 foundArrowOperator = IsOverloadedOperatorPresent(
470 BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow);
473 if (foundStarOperator && foundArrowOperator)
474 return true;
476 return false;
479 /// Check if passed in Decl is a pointer type.
480 /// Note that this function may produce an error message.
481 /// \return true if the Decl is a pointer type; false otherwise
482 static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
483 const ParsedAttr &AL) {
484 const auto *VD = cast<ValueDecl>(D);
485 QualType QT = VD->getType();
486 if (QT->isAnyPointerType())
487 return true;
489 if (const auto *RT = QT->getAs<RecordType>()) {
490 // If it's an incomplete type, it could be a smart pointer; skip it.
491 // (We don't want to force template instantiation if we can avoid it,
492 // since that would alter the order in which templates are instantiated.)
493 if (RT->isIncompleteType())
494 return true;
496 if (threadSafetyCheckIsSmartPointer(S, RT))
497 return true;
500 S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT;
501 return false;
504 /// Checks that the passed in QualType either is of RecordType or points
505 /// to RecordType. Returns the relevant RecordType, null if it does not exit.
506 static const RecordType *getRecordType(QualType QT) {
507 if (const auto *RT = QT->getAs<RecordType>())
508 return RT;
510 // Now check if we point to record type.
511 if (const auto *PT = QT->getAs<PointerType>())
512 return PT->getPointeeType()->getAs<RecordType>();
514 return nullptr;
517 template <typename AttrType>
518 static bool checkRecordDeclForAttr(const RecordDecl *RD) {
519 // Check if the record itself has the attribute.
520 if (RD->hasAttr<AttrType>())
521 return true;
523 // Else check if any base classes have the attribute.
524 if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
525 if (!CRD->forallBases([](const CXXRecordDecl *Base) {
526 return !Base->hasAttr<AttrType>();
528 return true;
530 return false;
533 static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
534 const RecordType *RT = getRecordType(Ty);
536 if (!RT)
537 return false;
539 // Don't check for the capability if the class hasn't been defined yet.
540 if (RT->isIncompleteType())
541 return true;
543 // Allow smart pointers to be used as capability objects.
544 // FIXME -- Check the type that the smart pointer points to.
545 if (threadSafetyCheckIsSmartPointer(S, RT))
546 return true;
548 return checkRecordDeclForAttr<CapabilityAttr>(RT->getDecl());
551 static bool checkTypedefTypeForCapability(QualType Ty) {
552 const auto *TD = Ty->getAs<TypedefType>();
553 if (!TD)
554 return false;
556 TypedefNameDecl *TN = TD->getDecl();
557 if (!TN)
558 return false;
560 return TN->hasAttr<CapabilityAttr>();
563 static bool typeHasCapability(Sema &S, QualType Ty) {
564 if (checkTypedefTypeForCapability(Ty))
565 return true;
567 if (checkRecordTypeForCapability(S, Ty))
568 return true;
570 return false;
573 static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
574 // Capability expressions are simple expressions involving the boolean logic
575 // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
576 // a DeclRefExpr is found, its type should be checked to determine whether it
577 // is a capability or not.
579 if (const auto *E = dyn_cast<CastExpr>(Ex))
580 return isCapabilityExpr(S, E->getSubExpr());
581 else if (const auto *E = dyn_cast<ParenExpr>(Ex))
582 return isCapabilityExpr(S, E->getSubExpr());
583 else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
584 if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf ||
585 E->getOpcode() == UO_Deref)
586 return isCapabilityExpr(S, E->getSubExpr());
587 return false;
588 } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
589 if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
590 return isCapabilityExpr(S, E->getLHS()) &&
591 isCapabilityExpr(S, E->getRHS());
592 return false;
595 return typeHasCapability(S, Ex->getType());
598 /// Checks that all attribute arguments, starting from Sidx, resolve to
599 /// a capability object.
600 /// \param Sidx The attribute argument index to start checking with.
601 /// \param ParamIdxOk Whether an argument can be indexing into a function
602 /// parameter list.
603 static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
604 const ParsedAttr &AL,
605 SmallVectorImpl<Expr *> &Args,
606 unsigned Sidx = 0,
607 bool ParamIdxOk = false) {
608 if (Sidx == AL.getNumArgs()) {
609 // If we don't have any capability arguments, the attribute implicitly
610 // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're
611 // a non-static method, and that the class is a (scoped) capability.
612 const auto *MD = dyn_cast<const CXXMethodDecl>(D);
613 if (MD && !MD->isStatic()) {
614 const CXXRecordDecl *RD = MD->getParent();
615 // FIXME -- need to check this again on template instantiation
616 if (!checkRecordDeclForAttr<CapabilityAttr>(RD) &&
617 !checkRecordDeclForAttr<ScopedLockableAttr>(RD))
618 S.Diag(AL.getLoc(),
619 diag::warn_thread_attribute_not_on_capability_member)
620 << AL << MD->getParent();
621 } else {
622 S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member)
623 << AL;
627 for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) {
628 Expr *ArgExp = AL.getArgAsExpr(Idx);
630 if (ArgExp->isTypeDependent()) {
631 // FIXME -- need to check this again on template instantiation
632 Args.push_back(ArgExp);
633 continue;
636 if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
637 if (StrLit->getLength() == 0 ||
638 (StrLit->isOrdinary() && StrLit->getString() == StringRef("*"))) {
639 // Pass empty strings to the analyzer without warnings.
640 // Treat "*" as the universal lock.
641 Args.push_back(ArgExp);
642 continue;
645 // We allow constant strings to be used as a placeholder for expressions
646 // that are not valid C++ syntax, but warn that they are ignored.
647 S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL;
648 Args.push_back(ArgExp);
649 continue;
652 QualType ArgTy = ArgExp->getType();
654 // A pointer to member expression of the form &MyClass::mu is treated
655 // specially -- we need to look at the type of the member.
656 if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp))
657 if (UOp->getOpcode() == UO_AddrOf)
658 if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
659 if (DRE->getDecl()->isCXXInstanceMember())
660 ArgTy = DRE->getDecl()->getType();
662 // First see if we can just cast to record type, or pointer to record type.
663 const RecordType *RT = getRecordType(ArgTy);
665 // Now check if we index into a record type function param.
666 if(!RT && ParamIdxOk) {
667 const auto *FD = dyn_cast<FunctionDecl>(D);
668 const auto *IL = dyn_cast<IntegerLiteral>(ArgExp);
669 if(FD && IL) {
670 unsigned int NumParams = FD->getNumParams();
671 llvm::APInt ArgValue = IL->getValue();
672 uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
673 uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
674 if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
675 S.Diag(AL.getLoc(),
676 diag::err_attribute_argument_out_of_bounds_extra_info)
677 << AL << Idx + 1 << NumParams;
678 continue;
680 ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
684 // If the type does not have a capability, see if the components of the
685 // expression have capabilities. This allows for writing C code where the
686 // capability may be on the type, and the expression is a capability
687 // boolean logic expression. Eg) requires_capability(A || B && !C)
688 if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
689 S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
690 << AL << ArgTy;
692 Args.push_back(ArgExp);
696 //===----------------------------------------------------------------------===//
697 // Attribute Implementations
698 //===----------------------------------------------------------------------===//
700 static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
701 if (!threadSafetyCheckIsPointer(S, D, AL))
702 return;
704 D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL));
707 static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
708 Expr *&Arg) {
709 SmallVector<Expr *, 1> Args;
710 // check that all arguments are lockable objects
711 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
712 unsigned Size = Args.size();
713 if (Size != 1)
714 return false;
716 Arg = Args[0];
718 return true;
721 static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
722 Expr *Arg = nullptr;
723 if (!checkGuardedByAttrCommon(S, D, AL, Arg))
724 return;
726 D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg));
729 static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
730 Expr *Arg = nullptr;
731 if (!checkGuardedByAttrCommon(S, D, AL, Arg))
732 return;
734 if (!threadSafetyCheckIsPointer(S, D, AL))
735 return;
737 D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg));
740 static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
741 SmallVectorImpl<Expr *> &Args) {
742 if (!AL.checkAtLeastNumArgs(S, 1))
743 return false;
745 // Check that this attribute only applies to lockable types.
746 QualType QT = cast<ValueDecl>(D)->getType();
747 if (!QT->isDependentType() && !typeHasCapability(S, QT)) {
748 S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL;
749 return false;
752 // Check that all arguments are lockable objects.
753 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
754 if (Args.empty())
755 return false;
757 return true;
760 static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
761 SmallVector<Expr *, 1> Args;
762 if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
763 return;
765 Expr **StartArg = &Args[0];
766 D->addAttr(::new (S.Context)
767 AcquiredAfterAttr(S.Context, AL, StartArg, Args.size()));
770 static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
771 SmallVector<Expr *, 1> Args;
772 if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
773 return;
775 Expr **StartArg = &Args[0];
776 D->addAttr(::new (S.Context)
777 AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size()));
780 static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
781 SmallVectorImpl<Expr *> &Args) {
782 // zero or more arguments ok
783 // check that all arguments are lockable objects
784 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true);
786 return true;
789 static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
790 SmallVector<Expr *, 1> Args;
791 if (!checkLockFunAttrCommon(S, D, AL, Args))
792 return;
794 unsigned Size = Args.size();
795 Expr **StartArg = Size == 0 ? nullptr : &Args[0];
796 D->addAttr(::new (S.Context)
797 AssertSharedLockAttr(S.Context, AL, StartArg, Size));
800 static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
801 const ParsedAttr &AL) {
802 SmallVector<Expr *, 1> Args;
803 if (!checkLockFunAttrCommon(S, D, AL, Args))
804 return;
806 unsigned Size = Args.size();
807 Expr **StartArg = Size == 0 ? nullptr : &Args[0];
808 D->addAttr(::new (S.Context)
809 AssertExclusiveLockAttr(S.Context, AL, StartArg, Size));
812 /// Checks to be sure that the given parameter number is in bounds, and
813 /// is an integral type. Will emit appropriate diagnostics if this returns
814 /// false.
816 /// AttrArgNo is used to actually retrieve the argument, so it's base-0.
817 template <typename AttrInfo>
818 static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI,
819 unsigned AttrArgNo) {
820 assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument");
821 Expr *AttrArg = AI.getArgAsExpr(AttrArgNo);
822 ParamIdx Idx;
823 if (!checkFunctionOrMethodParameterIndex(S, D, AI, AttrArgNo + 1, AttrArg,
824 Idx))
825 return false;
827 QualType ParamTy = getFunctionOrMethodParamType(D, Idx.getASTIndex());
828 if (!ParamTy->isIntegerType() && !ParamTy->isCharType()) {
829 SourceLocation SrcLoc = AttrArg->getBeginLoc();
830 S.Diag(SrcLoc, diag::err_attribute_integers_only)
831 << AI << getFunctionOrMethodParamRange(D, Idx.getASTIndex());
832 return false;
834 return true;
837 static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
838 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
839 return;
841 assert(isFunctionOrMethod(D) && hasFunctionProto(D));
843 QualType RetTy = getFunctionOrMethodResultType(D);
844 if (!RetTy->isPointerType()) {
845 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL;
846 return;
849 const Expr *SizeExpr = AL.getArgAsExpr(0);
850 int SizeArgNoVal;
851 // Parameter indices are 1-indexed, hence Index=1
852 if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1))
853 return;
854 if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/0))
855 return;
856 ParamIdx SizeArgNo(SizeArgNoVal, D);
858 ParamIdx NumberArgNo;
859 if (AL.getNumArgs() == 2) {
860 const Expr *NumberExpr = AL.getArgAsExpr(1);
861 int Val;
862 // Parameter indices are 1-based, hence Index=2
863 if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2))
864 return;
865 if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/1))
866 return;
867 NumberArgNo = ParamIdx(Val, D);
870 D->addAttr(::new (S.Context)
871 AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo));
874 static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
875 SmallVectorImpl<Expr *> &Args) {
876 if (!AL.checkAtLeastNumArgs(S, 1))
877 return false;
879 if (!isIntOrBool(AL.getArgAsExpr(0))) {
880 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
881 << AL << 1 << AANT_ArgumentIntOrBool;
882 return false;
885 // check that all arguments are lockable objects
886 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1);
888 return true;
891 static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
892 const ParsedAttr &AL) {
893 SmallVector<Expr*, 2> Args;
894 if (!checkTryLockFunAttrCommon(S, D, AL, Args))
895 return;
897 D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(
898 S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
901 static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
902 const ParsedAttr &AL) {
903 SmallVector<Expr*, 2> Args;
904 if (!checkTryLockFunAttrCommon(S, D, AL, Args))
905 return;
907 D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
908 S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
911 static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
912 // check that the argument is lockable object
913 SmallVector<Expr*, 1> Args;
914 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
915 unsigned Size = Args.size();
916 if (Size == 0)
917 return;
919 D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0]));
922 static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
923 if (!AL.checkAtLeastNumArgs(S, 1))
924 return;
926 // check that all arguments are lockable objects
927 SmallVector<Expr*, 1> Args;
928 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
929 unsigned Size = Args.size();
930 if (Size == 0)
931 return;
932 Expr **StartArg = &Args[0];
934 D->addAttr(::new (S.Context)
935 LocksExcludedAttr(S.Context, AL, StartArg, Size));
938 static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL,
939 Expr *&Cond, StringRef &Msg) {
940 Cond = AL.getArgAsExpr(0);
941 if (!Cond->isTypeDependent()) {
942 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
943 if (Converted.isInvalid())
944 return false;
945 Cond = Converted.get();
948 if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg))
949 return false;
951 if (Msg.empty())
952 Msg = "<no message provided>";
954 SmallVector<PartialDiagnosticAt, 8> Diags;
955 if (isa<FunctionDecl>(D) && !Cond->isValueDependent() &&
956 !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
957 Diags)) {
958 S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL;
959 for (const PartialDiagnosticAt &PDiag : Diags)
960 S.Diag(PDiag.first, PDiag.second);
961 return false;
963 return true;
966 static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
967 S.Diag(AL.getLoc(), diag::ext_clang_enable_if);
969 Expr *Cond;
970 StringRef Msg;
971 if (checkFunctionConditionAttr(S, D, AL, Cond, Msg))
972 D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg));
975 static void handleErrorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
976 StringRef NewUserDiagnostic;
977 if (!S.checkStringLiteralArgumentAttr(AL, 0, NewUserDiagnostic))
978 return;
979 if (ErrorAttr *EA = S.mergeErrorAttr(D, AL, NewUserDiagnostic))
980 D->addAttr(EA);
983 namespace {
984 /// Determines if a given Expr references any of the given function's
985 /// ParmVarDecls, or the function's implicit `this` parameter (if applicable).
986 class ArgumentDependenceChecker
987 : public RecursiveASTVisitor<ArgumentDependenceChecker> {
988 #ifndef NDEBUG
989 const CXXRecordDecl *ClassType;
990 #endif
991 llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms;
992 bool Result;
994 public:
995 ArgumentDependenceChecker(const FunctionDecl *FD) {
996 #ifndef NDEBUG
997 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
998 ClassType = MD->getParent();
999 else
1000 ClassType = nullptr;
1001 #endif
1002 Parms.insert(FD->param_begin(), FD->param_end());
1005 bool referencesArgs(Expr *E) {
1006 Result = false;
1007 TraverseStmt(E);
1008 return Result;
1011 bool VisitCXXThisExpr(CXXThisExpr *E) {
1012 assert(E->getType()->getPointeeCXXRecordDecl() == ClassType &&
1013 "`this` doesn't refer to the enclosing class?");
1014 Result = true;
1015 return false;
1018 bool VisitDeclRefExpr(DeclRefExpr *DRE) {
1019 if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
1020 if (Parms.count(PVD)) {
1021 Result = true;
1022 return false;
1024 return true;
1029 static void handleDiagnoseAsBuiltinAttr(Sema &S, Decl *D,
1030 const ParsedAttr &AL) {
1031 const auto *DeclFD = cast<FunctionDecl>(D);
1033 if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(DeclFD))
1034 if (!MethodDecl->isStatic()) {
1035 S.Diag(AL.getLoc(), diag::err_attribute_no_member_function) << AL;
1036 return;
1039 auto DiagnoseType = [&](unsigned Index, AttributeArgumentNType T) {
1040 SourceLocation Loc = [&]() {
1041 auto Union = AL.getArg(Index - 1);
1042 if (Union.is<Expr *>())
1043 return Union.get<Expr *>()->getBeginLoc();
1044 return Union.get<IdentifierLoc *>()->Loc;
1045 }();
1047 S.Diag(Loc, diag::err_attribute_argument_n_type) << AL << Index << T;
1050 FunctionDecl *AttrFD = [&]() -> FunctionDecl * {
1051 if (!AL.isArgExpr(0))
1052 return nullptr;
1053 auto *F = dyn_cast_if_present<DeclRefExpr>(AL.getArgAsExpr(0));
1054 if (!F)
1055 return nullptr;
1056 return dyn_cast_if_present<FunctionDecl>(F->getFoundDecl());
1057 }();
1059 if (!AttrFD || !AttrFD->getBuiltinID(true)) {
1060 DiagnoseType(1, AANT_ArgumentBuiltinFunction);
1061 return;
1064 if (AttrFD->getNumParams() != AL.getNumArgs() - 1) {
1065 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments_for)
1066 << AL << AttrFD << AttrFD->getNumParams();
1067 return;
1070 SmallVector<unsigned, 8> Indices;
1072 for (unsigned I = 1; I < AL.getNumArgs(); ++I) {
1073 if (!AL.isArgExpr(I)) {
1074 DiagnoseType(I + 1, AANT_ArgumentIntegerConstant);
1075 return;
1078 const Expr *IndexExpr = AL.getArgAsExpr(I);
1079 uint32_t Index;
1081 if (!checkUInt32Argument(S, AL, IndexExpr, Index, I + 1, false))
1082 return;
1084 if (Index > DeclFD->getNumParams()) {
1085 S.Diag(AL.getLoc(), diag::err_attribute_bounds_for_function)
1086 << AL << Index << DeclFD << DeclFD->getNumParams();
1087 return;
1090 QualType T1 = AttrFD->getParamDecl(I - 1)->getType();
1091 QualType T2 = DeclFD->getParamDecl(Index - 1)->getType();
1093 if (T1.getCanonicalType().getUnqualifiedType() !=
1094 T2.getCanonicalType().getUnqualifiedType()) {
1095 S.Diag(IndexExpr->getBeginLoc(), diag::err_attribute_parameter_types)
1096 << AL << Index << DeclFD << T2 << I << AttrFD << T1;
1097 return;
1100 Indices.push_back(Index - 1);
1103 D->addAttr(::new (S.Context) DiagnoseAsBuiltinAttr(
1104 S.Context, AL, AttrFD, Indices.data(), Indices.size()));
1107 static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1108 S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if);
1110 Expr *Cond;
1111 StringRef Msg;
1112 if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg))
1113 return;
1115 StringRef DiagTypeStr;
1116 if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr))
1117 return;
1119 DiagnoseIfAttr::DiagnosticType DiagType;
1120 if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) {
1121 S.Diag(AL.getArgAsExpr(2)->getBeginLoc(),
1122 diag::err_diagnose_if_invalid_diagnostic_type);
1123 return;
1126 bool ArgDependent = false;
1127 if (const auto *FD = dyn_cast<FunctionDecl>(D))
1128 ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond);
1129 D->addAttr(::new (S.Context) DiagnoseIfAttr(
1130 S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast<NamedDecl>(D)));
1133 static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1134 static constexpr const StringRef kWildcard = "*";
1136 llvm::SmallVector<StringRef, 16> Names;
1137 bool HasWildcard = false;
1139 const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) {
1140 if (Name == kWildcard)
1141 HasWildcard = true;
1142 Names.push_back(Name);
1145 // Add previously defined attributes.
1146 if (const auto *NBA = D->getAttr<NoBuiltinAttr>())
1147 for (StringRef BuiltinName : NBA->builtinNames())
1148 AddBuiltinName(BuiltinName);
1150 // Add current attributes.
1151 if (AL.getNumArgs() == 0)
1152 AddBuiltinName(kWildcard);
1153 else
1154 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
1155 StringRef BuiltinName;
1156 SourceLocation LiteralLoc;
1157 if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc))
1158 return;
1160 if (Builtin::Context::isBuiltinFunc(BuiltinName))
1161 AddBuiltinName(BuiltinName);
1162 else
1163 S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name)
1164 << BuiltinName << AL;
1167 // Repeating the same attribute is fine.
1168 llvm::sort(Names);
1169 Names.erase(std::unique(Names.begin(), Names.end()), Names.end());
1171 // Empty no_builtin must be on its own.
1172 if (HasWildcard && Names.size() > 1)
1173 S.Diag(D->getLocation(),
1174 diag::err_attribute_no_builtin_wildcard_or_builtin_name)
1175 << AL;
1177 if (D->hasAttr<NoBuiltinAttr>())
1178 D->dropAttr<NoBuiltinAttr>();
1179 D->addAttr(::new (S.Context)
1180 NoBuiltinAttr(S.Context, AL, Names.data(), Names.size()));
1183 static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1184 if (D->hasAttr<PassObjectSizeAttr>()) {
1185 S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL;
1186 return;
1189 Expr *E = AL.getArgAsExpr(0);
1190 uint32_t Type;
1191 if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1))
1192 return;
1194 // pass_object_size's argument is passed in as the second argument of
1195 // __builtin_object_size. So, it has the same constraints as that second
1196 // argument; namely, it must be in the range [0, 3].
1197 if (Type > 3) {
1198 S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range)
1199 << AL << 0 << 3 << E->getSourceRange();
1200 return;
1203 // pass_object_size is only supported on constant pointer parameters; as a
1204 // kindness to users, we allow the parameter to be non-const for declarations.
1205 // At this point, we have no clue if `D` belongs to a function declaration or
1206 // definition, so we defer the constness check until later.
1207 if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) {
1208 S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1;
1209 return;
1212 D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type));
1215 static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1216 ConsumableAttr::ConsumedState DefaultState;
1218 if (AL.isArgIdent(0)) {
1219 IdentifierLoc *IL = AL.getArgAsIdent(0);
1220 if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1221 DefaultState)) {
1222 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
1223 << IL->Ident;
1224 return;
1226 } else {
1227 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1228 << AL << AANT_ArgumentIdentifier;
1229 return;
1232 D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState));
1235 static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
1236 const ParsedAttr &AL) {
1237 QualType ThisType = MD->getFunctionObjectParameterType();
1239 if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
1240 if (!RD->hasAttr<ConsumableAttr>()) {
1241 S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << RD;
1243 return false;
1247 return true;
1250 static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1251 if (!AL.checkAtLeastNumArgs(S, 1))
1252 return;
1254 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1255 return;
1257 SmallVector<CallableWhenAttr::ConsumedState, 3> States;
1258 for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) {
1259 CallableWhenAttr::ConsumedState CallableState;
1261 StringRef StateString;
1262 SourceLocation Loc;
1263 if (AL.isArgIdent(ArgIndex)) {
1264 IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex);
1265 StateString = Ident->Ident->getName();
1266 Loc = Ident->Loc;
1267 } else {
1268 if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc))
1269 return;
1272 if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
1273 CallableState)) {
1274 S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString;
1275 return;
1278 States.push_back(CallableState);
1281 D->addAttr(::new (S.Context)
1282 CallableWhenAttr(S.Context, AL, States.data(), States.size()));
1285 static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1286 ParamTypestateAttr::ConsumedState ParamState;
1288 if (AL.isArgIdent(0)) {
1289 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1290 StringRef StateString = Ident->Ident->getName();
1292 if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
1293 ParamState)) {
1294 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
1295 << AL << StateString;
1296 return;
1298 } else {
1299 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1300 << AL << AANT_ArgumentIdentifier;
1301 return;
1304 // FIXME: This check is currently being done in the analysis. It can be
1305 // enabled here only after the parser propagates attributes at
1306 // template specialization definition, not declaration.
1307 //QualType ReturnType = cast<ParmVarDecl>(D)->getType();
1308 //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1310 //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1311 // S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1312 // ReturnType.getAsString();
1313 // return;
1316 D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState));
1319 static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1320 ReturnTypestateAttr::ConsumedState ReturnState;
1322 if (AL.isArgIdent(0)) {
1323 IdentifierLoc *IL = AL.getArgAsIdent(0);
1324 if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1325 ReturnState)) {
1326 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL
1327 << IL->Ident;
1328 return;
1330 } else {
1331 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1332 << AL << AANT_ArgumentIdentifier;
1333 return;
1336 // FIXME: This check is currently being done in the analysis. It can be
1337 // enabled here only after the parser propagates attributes at
1338 // template specialization definition, not declaration.
1339 // QualType ReturnType;
1341 // if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
1342 // ReturnType = Param->getType();
1344 //} else if (const CXXConstructorDecl *Constructor =
1345 // dyn_cast<CXXConstructorDecl>(D)) {
1346 // ReturnType = Constructor->getFunctionObjectParameterType();
1348 //} else {
1350 // ReturnType = cast<FunctionDecl>(D)->getCallResultType();
1353 // const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1355 // if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1356 // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1357 // ReturnType.getAsString();
1358 // return;
1361 D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState));
1364 static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1365 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1366 return;
1368 SetTypestateAttr::ConsumedState NewState;
1369 if (AL.isArgIdent(0)) {
1370 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1371 StringRef Param = Ident->Ident->getName();
1372 if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
1373 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
1374 << Param;
1375 return;
1377 } else {
1378 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1379 << AL << AANT_ArgumentIdentifier;
1380 return;
1383 D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState));
1386 static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1387 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1388 return;
1390 TestTypestateAttr::ConsumedState TestState;
1391 if (AL.isArgIdent(0)) {
1392 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1393 StringRef Param = Ident->Ident->getName();
1394 if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
1395 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL
1396 << Param;
1397 return;
1399 } else {
1400 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1401 << AL << AANT_ArgumentIdentifier;
1402 return;
1405 D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState));
1408 static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1409 // Remember this typedef decl, we will need it later for diagnostics.
1410 S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
1413 static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1414 if (auto *TD = dyn_cast<TagDecl>(D))
1415 TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1416 else if (auto *FD = dyn_cast<FieldDecl>(D)) {
1417 bool BitfieldByteAligned = (!FD->getType()->isDependentType() &&
1418 !FD->getType()->isIncompleteType() &&
1419 FD->isBitField() &&
1420 S.Context.getTypeAlign(FD->getType()) <= 8);
1422 if (S.getASTContext().getTargetInfo().getTriple().isPS()) {
1423 if (BitfieldByteAligned)
1424 // The PS4/PS5 targets need to maintain ABI backwards compatibility.
1425 S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
1426 << AL << FD->getType();
1427 else
1428 FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1429 } else {
1430 // Report warning about changed offset in the newer compiler versions.
1431 if (BitfieldByteAligned)
1432 S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield);
1434 FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL));
1437 } else
1438 S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
1441 static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL) {
1442 auto *RD = cast<CXXRecordDecl>(D);
1443 ClassTemplateDecl *CTD = RD->getDescribedClassTemplate();
1444 assert(CTD && "attribute does not appertain to this declaration");
1446 ParsedType PT = AL.getTypeArg();
1447 TypeSourceInfo *TSI = nullptr;
1448 QualType T = S.GetTypeFromParser(PT, &TSI);
1449 if (!TSI)
1450 TSI = S.Context.getTrivialTypeSourceInfo(T, AL.getLoc());
1452 if (!T.hasQualifiers() && T->isTypedefNameType()) {
1453 // Find the template name, if this type names a template specialization.
1454 const TemplateDecl *Template = nullptr;
1455 if (const auto *CTSD = dyn_cast_if_present<ClassTemplateSpecializationDecl>(
1456 T->getAsCXXRecordDecl())) {
1457 Template = CTSD->getSpecializedTemplate();
1458 } else if (const auto *TST = T->getAs<TemplateSpecializationType>()) {
1459 while (TST && TST->isTypeAlias())
1460 TST = TST->getAliasedType()->getAs<TemplateSpecializationType>();
1461 if (TST)
1462 Template = TST->getTemplateName().getAsTemplateDecl();
1465 if (Template && declaresSameEntity(Template, CTD)) {
1466 D->addAttr(::new (S.Context) PreferredNameAttr(S.Context, AL, TSI));
1467 return;
1471 S.Diag(AL.getLoc(), diag::err_attribute_preferred_name_arg_invalid)
1472 << T << CTD;
1473 if (const auto *TT = T->getAs<TypedefType>())
1474 S.Diag(TT->getDecl()->getLocation(), diag::note_entity_declared_at)
1475 << TT->getDecl();
1478 static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) {
1479 // The IBOutlet/IBOutletCollection attributes only apply to instance
1480 // variables or properties of Objective-C classes. The outlet must also
1481 // have an object reference type.
1482 if (const auto *VD = dyn_cast<ObjCIvarDecl>(D)) {
1483 if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
1484 S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1485 << AL << VD->getType() << 0;
1486 return false;
1489 else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
1490 if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
1491 S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1492 << AL << PD->getType() << 1;
1493 return false;
1496 else {
1497 S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL;
1498 return false;
1501 return true;
1504 static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) {
1505 if (!checkIBOutletCommon(S, D, AL))
1506 return;
1508 D->addAttr(::new (S.Context) IBOutletAttr(S.Context, AL));
1511 static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) {
1513 // The iboutletcollection attribute can have zero or one arguments.
1514 if (AL.getNumArgs() > 1) {
1515 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1516 return;
1519 if (!checkIBOutletCommon(S, D, AL))
1520 return;
1522 ParsedType PT;
1524 if (AL.hasParsedType())
1525 PT = AL.getTypeArg();
1526 else {
1527 PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(),
1528 S.getScopeForContext(D->getDeclContext()->getParent()));
1529 if (!PT) {
1530 S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
1531 return;
1535 TypeSourceInfo *QTLoc = nullptr;
1536 QualType QT = S.GetTypeFromParser(PT, &QTLoc);
1537 if (!QTLoc)
1538 QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc());
1540 // Diagnose use of non-object type in iboutletcollection attribute.
1541 // FIXME. Gnu attribute extension ignores use of builtin types in
1542 // attributes. So, __attribute__((iboutletcollection(char))) will be
1543 // treated as __attribute__((iboutletcollection())).
1544 if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
1545 S.Diag(AL.getLoc(),
1546 QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
1547 : diag::err_iboutletcollection_type) << QT;
1548 return;
1551 D->addAttr(::new (S.Context) IBOutletCollectionAttr(S.Context, AL, QTLoc));
1554 bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
1555 if (RefOkay) {
1556 if (T->isReferenceType())
1557 return true;
1558 } else {
1559 T = T.getNonReferenceType();
1562 // The nonnull attribute, and other similar attributes, can be applied to a
1563 // transparent union that contains a pointer type.
1564 if (const RecordType *UT = T->getAsUnionType()) {
1565 if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
1566 RecordDecl *UD = UT->getDecl();
1567 for (const auto *I : UD->fields()) {
1568 QualType QT = I->getType();
1569 if (QT->isAnyPointerType() || QT->isBlockPointerType())
1570 return true;
1575 return T->isAnyPointerType() || T->isBlockPointerType();
1578 static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL,
1579 SourceRange AttrParmRange,
1580 SourceRange TypeRange,
1581 bool isReturnValue = false) {
1582 if (!S.isValidPointerAttrType(T)) {
1583 if (isReturnValue)
1584 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1585 << AL << AttrParmRange << TypeRange;
1586 else
1587 S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1588 << AL << AttrParmRange << TypeRange << 0;
1589 return false;
1591 return true;
1594 static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1595 SmallVector<ParamIdx, 8> NonNullArgs;
1596 for (unsigned I = 0; I < AL.getNumArgs(); ++I) {
1597 Expr *Ex = AL.getArgAsExpr(I);
1598 ParamIdx Idx;
1599 if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx))
1600 return;
1602 // Is the function argument a pointer type?
1603 if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) &&
1604 !attrNonNullArgCheck(
1605 S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL,
1606 Ex->getSourceRange(),
1607 getFunctionOrMethodParamRange(D, Idx.getASTIndex())))
1608 continue;
1610 NonNullArgs.push_back(Idx);
1613 // If no arguments were specified to __attribute__((nonnull)) then all pointer
1614 // arguments have a nonnull attribute; warn if there aren't any. Skip this
1615 // check if the attribute came from a macro expansion or a template
1616 // instantiation.
1617 if (NonNullArgs.empty() && AL.getLoc().isFileID() &&
1618 !S.inTemplateInstantiation()) {
1619 bool AnyPointers = isFunctionOrMethodVariadic(D);
1620 for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
1621 I != E && !AnyPointers; ++I) {
1622 QualType T = getFunctionOrMethodParamType(D, I);
1623 if (T->isDependentType() || S.isValidPointerAttrType(T))
1624 AnyPointers = true;
1627 if (!AnyPointers)
1628 S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1631 ParamIdx *Start = NonNullArgs.data();
1632 unsigned Size = NonNullArgs.size();
1633 llvm::array_pod_sort(Start, Start + Size);
1634 D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size));
1637 static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
1638 const ParsedAttr &AL) {
1639 if (AL.getNumArgs() > 0) {
1640 if (D->getFunctionType()) {
1641 handleNonNullAttr(S, D, AL);
1642 } else {
1643 S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
1644 << D->getSourceRange();
1646 return;
1649 // Is the argument a pointer type?
1650 if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(),
1651 D->getSourceRange()))
1652 return;
1654 D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0));
1657 static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1658 QualType ResultType = getFunctionOrMethodResultType(D);
1659 SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1660 if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR,
1661 /* isReturnValue */ true))
1662 return;
1664 D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL));
1667 static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1668 if (D->isInvalidDecl())
1669 return;
1671 // noescape only applies to pointer types.
1672 QualType T = cast<ParmVarDecl>(D)->getType();
1673 if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) {
1674 S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1675 << AL << AL.getRange() << 0;
1676 return;
1679 D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL));
1682 static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1683 Expr *E = AL.getArgAsExpr(0),
1684 *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr;
1685 S.AddAssumeAlignedAttr(D, AL, E, OE);
1688 static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1689 S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0));
1692 void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
1693 Expr *OE) {
1694 QualType ResultType = getFunctionOrMethodResultType(D);
1695 SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1697 AssumeAlignedAttr TmpAttr(Context, CI, E, OE);
1698 SourceLocation AttrLoc = TmpAttr.getLocation();
1700 if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1701 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1702 << &TmpAttr << TmpAttr.getRange() << SR;
1703 return;
1706 if (!E->isValueDependent()) {
1707 std::optional<llvm::APSInt> I = llvm::APSInt(64);
1708 if (!(I = E->getIntegerConstantExpr(Context))) {
1709 if (OE)
1710 Diag(AttrLoc, diag::err_attribute_argument_n_type)
1711 << &TmpAttr << 1 << AANT_ArgumentIntegerConstant
1712 << E->getSourceRange();
1713 else
1714 Diag(AttrLoc, diag::err_attribute_argument_type)
1715 << &TmpAttr << AANT_ArgumentIntegerConstant
1716 << E->getSourceRange();
1717 return;
1720 if (!I->isPowerOf2()) {
1721 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
1722 << E->getSourceRange();
1723 return;
1726 if (*I > Sema::MaximumAlignment)
1727 Diag(CI.getLoc(), diag::warn_assume_aligned_too_great)
1728 << CI.getRange() << Sema::MaximumAlignment;
1731 if (OE && !OE->isValueDependent() && !OE->isIntegerConstantExpr(Context)) {
1732 Diag(AttrLoc, diag::err_attribute_argument_n_type)
1733 << &TmpAttr << 2 << AANT_ArgumentIntegerConstant
1734 << OE->getSourceRange();
1735 return;
1738 D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE));
1741 void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
1742 Expr *ParamExpr) {
1743 QualType ResultType = getFunctionOrMethodResultType(D);
1745 AllocAlignAttr TmpAttr(Context, CI, ParamIdx());
1746 SourceLocation AttrLoc = CI.getLoc();
1748 if (!ResultType->isDependentType() &&
1749 !isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1750 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1751 << &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D);
1752 return;
1755 ParamIdx Idx;
1756 const auto *FuncDecl = cast<FunctionDecl>(D);
1757 if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr,
1758 /*AttrArgNum=*/1, ParamExpr, Idx))
1759 return;
1761 QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1762 if (!Ty->isDependentType() && !Ty->isIntegralType(Context) &&
1763 !Ty->isAlignValT()) {
1764 Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only)
1765 << &TmpAttr
1766 << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange();
1767 return;
1770 D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx));
1773 /// Check if \p AssumptionStr is a known assumption and warn if not.
1774 static void checkAssumptionAttr(Sema &S, SourceLocation Loc,
1775 StringRef AssumptionStr) {
1776 if (llvm::KnownAssumptionStrings.count(AssumptionStr))
1777 return;
1779 unsigned BestEditDistance = 3;
1780 StringRef Suggestion;
1781 for (const auto &KnownAssumptionIt : llvm::KnownAssumptionStrings) {
1782 unsigned EditDistance =
1783 AssumptionStr.edit_distance(KnownAssumptionIt.getKey());
1784 if (EditDistance < BestEditDistance) {
1785 Suggestion = KnownAssumptionIt.getKey();
1786 BestEditDistance = EditDistance;
1790 if (!Suggestion.empty())
1791 S.Diag(Loc, diag::warn_assume_attribute_string_unknown_suggested)
1792 << AssumptionStr << Suggestion;
1793 else
1794 S.Diag(Loc, diag::warn_assume_attribute_string_unknown) << AssumptionStr;
1797 static void handleAssumumptionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1798 // Handle the case where the attribute has a text message.
1799 StringRef Str;
1800 SourceLocation AttrStrLoc;
1801 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &AttrStrLoc))
1802 return;
1804 checkAssumptionAttr(S, AttrStrLoc, Str);
1806 D->addAttr(::new (S.Context) AssumptionAttr(S.Context, AL, Str));
1809 /// Normalize the attribute, __foo__ becomes foo.
1810 /// Returns true if normalization was applied.
1811 static bool normalizeName(StringRef &AttrName) {
1812 if (AttrName.size() > 4 && AttrName.startswith("__") &&
1813 AttrName.endswith("__")) {
1814 AttrName = AttrName.drop_front(2).drop_back(2);
1815 return true;
1817 return false;
1820 static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1821 // This attribute must be applied to a function declaration. The first
1822 // argument to the attribute must be an identifier, the name of the resource,
1823 // for example: malloc. The following arguments must be argument indexes, the
1824 // arguments must be of integer type for Returns, otherwise of pointer type.
1825 // The difference between Holds and Takes is that a pointer may still be used
1826 // after being held. free() should be __attribute((ownership_takes)), whereas
1827 // a list append function may well be __attribute((ownership_holds)).
1829 if (!AL.isArgIdent(0)) {
1830 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1831 << AL << 1 << AANT_ArgumentIdentifier;
1832 return;
1835 // Figure out our Kind.
1836 OwnershipAttr::OwnershipKind K =
1837 OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind();
1839 // Check arguments.
1840 switch (K) {
1841 case OwnershipAttr::Takes:
1842 case OwnershipAttr::Holds:
1843 if (AL.getNumArgs() < 2) {
1844 S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2;
1845 return;
1847 break;
1848 case OwnershipAttr::Returns:
1849 if (AL.getNumArgs() > 2) {
1850 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
1851 return;
1853 break;
1856 IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
1858 StringRef ModuleName = Module->getName();
1859 if (normalizeName(ModuleName)) {
1860 Module = &S.PP.getIdentifierTable().get(ModuleName);
1863 SmallVector<ParamIdx, 8> OwnershipArgs;
1864 for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
1865 Expr *Ex = AL.getArgAsExpr(i);
1866 ParamIdx Idx;
1867 if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
1868 return;
1870 // Is the function argument a pointer type?
1871 QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1872 int Err = -1; // No error
1873 switch (K) {
1874 case OwnershipAttr::Takes:
1875 case OwnershipAttr::Holds:
1876 if (!T->isAnyPointerType() && !T->isBlockPointerType())
1877 Err = 0;
1878 break;
1879 case OwnershipAttr::Returns:
1880 if (!T->isIntegerType())
1881 Err = 1;
1882 break;
1884 if (-1 != Err) {
1885 S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err
1886 << Ex->getSourceRange();
1887 return;
1890 // Check we don't have a conflict with another ownership attribute.
1891 for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
1892 // Cannot have two ownership attributes of different kinds for the same
1893 // index.
1894 if (I->getOwnKind() != K && llvm::is_contained(I->args(), Idx)) {
1895 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
1896 << AL << I
1897 << (AL.isRegularKeywordAttribute() ||
1898 I->isRegularKeywordAttribute());
1899 return;
1900 } else if (K == OwnershipAttr::Returns &&
1901 I->getOwnKind() == OwnershipAttr::Returns) {
1902 // A returns attribute conflicts with any other returns attribute using
1903 // a different index.
1904 if (!llvm::is_contained(I->args(), Idx)) {
1905 S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
1906 << I->args_begin()->getSourceIndex();
1907 if (I->args_size())
1908 S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
1909 << Idx.getSourceIndex() << Ex->getSourceRange();
1910 return;
1914 OwnershipArgs.push_back(Idx);
1917 ParamIdx *Start = OwnershipArgs.data();
1918 unsigned Size = OwnershipArgs.size();
1919 llvm::array_pod_sort(Start, Start + Size);
1920 D->addAttr(::new (S.Context)
1921 OwnershipAttr(S.Context, AL, Module, Start, Size));
1924 static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1925 // Check the attribute arguments.
1926 if (AL.getNumArgs() > 1) {
1927 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
1928 return;
1931 // gcc rejects
1932 // class c {
1933 // static int a __attribute__((weakref ("v2")));
1934 // static int b() __attribute__((weakref ("f3")));
1935 // };
1936 // and ignores the attributes of
1937 // void f(void) {
1938 // static int a __attribute__((weakref ("v2")));
1939 // }
1940 // we reject them
1941 const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1942 if (!Ctx->isFileContext()) {
1943 S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context)
1944 << cast<NamedDecl>(D);
1945 return;
1948 // The GCC manual says
1950 // At present, a declaration to which `weakref' is attached can only
1951 // be `static'.
1953 // It also says
1955 // Without a TARGET,
1956 // given as an argument to `weakref' or to `alias', `weakref' is
1957 // equivalent to `weak'.
1959 // gcc 4.4.1 will accept
1960 // int a7 __attribute__((weakref));
1961 // as
1962 // int a7 __attribute__((weak));
1963 // This looks like a bug in gcc. We reject that for now. We should revisit
1964 // it if this behaviour is actually used.
1966 // GCC rejects
1967 // static ((alias ("y"), weakref)).
1968 // Should we? How to check that weakref is before or after alias?
1970 // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
1971 // of transforming it into an AliasAttr. The WeakRefAttr never uses the
1972 // StringRef parameter it was given anyway.
1973 StringRef Str;
1974 if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str))
1975 // GCC will accept anything as the argument of weakref. Should we
1976 // check for an existing decl?
1977 D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
1979 D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL));
1982 static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1983 StringRef Str;
1984 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1985 return;
1987 // Aliases should be on declarations, not definitions.
1988 const auto *FD = cast<FunctionDecl>(D);
1989 if (FD->isThisDeclarationADefinition()) {
1990 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1;
1991 return;
1994 D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str));
1997 static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1998 StringRef Str;
1999 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
2000 return;
2002 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
2003 S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin);
2004 return;
2007 if (S.Context.getTargetInfo().getTriple().isNVPTX()) {
2008 CudaVersion Version =
2009 ToCudaVersion(S.Context.getTargetInfo().getSDKVersion());
2010 if (Version != CudaVersion::UNKNOWN && Version < CudaVersion::CUDA_100)
2011 S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx);
2014 // Aliases should be on declarations, not definitions.
2015 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2016 if (FD->isThisDeclarationADefinition()) {
2017 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0;
2018 return;
2020 } else {
2021 const auto *VD = cast<VarDecl>(D);
2022 if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
2023 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0;
2024 return;
2028 // Mark target used to prevent unneeded-internal-declaration warnings.
2029 if (!S.LangOpts.CPlusPlus) {
2030 // FIXME: demangle Str for C++, as the attribute refers to the mangled
2031 // linkage name, not the pre-mangled identifier.
2032 const DeclarationNameInfo target(&S.Context.Idents.get(Str), AL.getLoc());
2033 LookupResult LR(S, target, Sema::LookupOrdinaryName);
2034 if (S.LookupQualifiedName(LR, S.getCurLexicalContext()))
2035 for (NamedDecl *ND : LR)
2036 ND->markUsed(S.Context);
2039 D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str));
2042 static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2043 StringRef Model;
2044 SourceLocation LiteralLoc;
2045 // Check that it is a string.
2046 if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc))
2047 return;
2049 // Check that the value.
2050 if (Model != "global-dynamic" && Model != "local-dynamic"
2051 && Model != "initial-exec" && Model != "local-exec") {
2052 S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
2053 return;
2056 if (S.Context.getTargetInfo().getTriple().isOSAIX() &&
2057 Model == "local-dynamic") {
2058 S.Diag(LiteralLoc, diag::err_aix_attr_unsupported_tls_model) << Model;
2059 return;
2062 D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model));
2065 static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2066 QualType ResultType = getFunctionOrMethodResultType(D);
2067 if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) {
2068 D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL));
2069 return;
2072 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
2073 << AL << getFunctionOrMethodResultSourceRange(D);
2076 static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2077 // Ensure we don't combine these with themselves, since that causes some
2078 // confusing behavior.
2079 if (AL.getParsedKind() == ParsedAttr::AT_CPUDispatch) {
2080 if (checkAttrMutualExclusion<CPUSpecificAttr>(S, D, AL))
2081 return;
2083 if (const auto *Other = D->getAttr<CPUDispatchAttr>()) {
2084 S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
2085 S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
2086 return;
2088 } else if (AL.getParsedKind() == ParsedAttr::AT_CPUSpecific) {
2089 if (checkAttrMutualExclusion<CPUDispatchAttr>(S, D, AL))
2090 return;
2092 if (const auto *Other = D->getAttr<CPUSpecificAttr>()) {
2093 S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
2094 S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
2095 return;
2099 FunctionDecl *FD = cast<FunctionDecl>(D);
2101 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
2102 if (MD->getParent()->isLambda()) {
2103 S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL;
2104 return;
2108 if (!AL.checkAtLeastNumArgs(S, 1))
2109 return;
2111 SmallVector<IdentifierInfo *, 8> CPUs;
2112 for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) {
2113 if (!AL.isArgIdent(ArgNo)) {
2114 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
2115 << AL << AANT_ArgumentIdentifier;
2116 return;
2119 IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo);
2120 StringRef CPUName = CPUArg->Ident->getName().trim();
2122 if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) {
2123 S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value)
2124 << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch);
2125 return;
2128 const TargetInfo &Target = S.Context.getTargetInfo();
2129 if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) {
2130 return Target.CPUSpecificManglingCharacter(CPUName) ==
2131 Target.CPUSpecificManglingCharacter(Cur->getName());
2132 })) {
2133 S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries);
2134 return;
2136 CPUs.push_back(CPUArg->Ident);
2139 FD->setIsMultiVersion(true);
2140 if (AL.getKind() == ParsedAttr::AT_CPUSpecific)
2141 D->addAttr(::new (S.Context)
2142 CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size()));
2143 else
2144 D->addAttr(::new (S.Context)
2145 CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size()));
2148 static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2149 if (S.LangOpts.CPlusPlus) {
2150 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
2151 << AL << AttributeLangSupport::Cpp;
2152 return;
2155 D->addAttr(::new (S.Context) CommonAttr(S.Context, AL));
2158 static void handleCmseNSEntryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2159 if (S.LangOpts.CPlusPlus && !D->getDeclContext()->isExternCContext()) {
2160 S.Diag(AL.getLoc(), diag::err_attribute_not_clinkage) << AL;
2161 return;
2164 const auto *FD = cast<FunctionDecl>(D);
2165 if (!FD->isExternallyVisible()) {
2166 S.Diag(AL.getLoc(), diag::warn_attribute_cmse_entry_static);
2167 return;
2170 D->addAttr(::new (S.Context) CmseNSEntryAttr(S.Context, AL));
2173 static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2174 if (AL.isDeclspecAttribute()) {
2175 const auto &Triple = S.getASTContext().getTargetInfo().getTriple();
2176 const auto &Arch = Triple.getArch();
2177 if (Arch != llvm::Triple::x86 &&
2178 (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) {
2179 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch)
2180 << AL << Triple.getArchName();
2181 return;
2184 // This form is not allowed to be written on a member function (static or
2185 // nonstatic) when in Microsoft compatibility mode.
2186 if (S.getLangOpts().MSVCCompat && isa<CXXMethodDecl>(D)) {
2187 S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type_str)
2188 << AL << AL.isRegularKeywordAttribute() << "non-member functions";
2189 return;
2193 D->addAttr(::new (S.Context) NakedAttr(S.Context, AL));
2196 static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2197 if (hasDeclarator(D)) return;
2199 if (!isa<ObjCMethodDecl>(D)) {
2200 S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
2201 << Attrs << Attrs.isRegularKeywordAttribute()
2202 << ExpectedFunctionOrMethod;
2203 return;
2206 D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs));
2209 static void handleStandardNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &A) {
2210 // The [[_Noreturn]] spelling is deprecated in C23, so if that was used,
2211 // issue an appropriate diagnostic. However, don't issue a diagnostic if the
2212 // attribute name comes from a macro expansion. We don't want to punish users
2213 // who write [[noreturn]] after including <stdnoreturn.h> (where 'noreturn'
2214 // is defined as a macro which expands to '_Noreturn').
2215 if (!S.getLangOpts().CPlusPlus &&
2216 A.getSemanticSpelling() == CXX11NoReturnAttr::C23_Noreturn &&
2217 !(A.getLoc().isMacroID() &&
2218 S.getSourceManager().isInSystemMacro(A.getLoc())))
2219 S.Diag(A.getLoc(), diag::warn_deprecated_noreturn_spelling) << A.getRange();
2221 D->addAttr(::new (S.Context) CXX11NoReturnAttr(S.Context, A));
2224 static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
2225 if (!S.getLangOpts().CFProtectionBranch)
2226 S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored);
2227 else
2228 handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs);
2231 bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) {
2232 if (!Attrs.checkExactlyNumArgs(*this, 0)) {
2233 Attrs.setInvalid();
2234 return true;
2237 return false;
2240 bool Sema::CheckAttrTarget(const ParsedAttr &AL) {
2241 // Check whether the attribute is valid on the current target.
2242 if (!AL.existsInTarget(Context.getTargetInfo())) {
2243 Diag(AL.getLoc(), AL.isRegularKeywordAttribute()
2244 ? diag::err_keyword_not_supported_on_target
2245 : diag::warn_unknown_attribute_ignored)
2246 << AL << AL.getRange();
2247 AL.setInvalid();
2248 return true;
2251 return false;
2254 static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2256 // The checking path for 'noreturn' and 'analyzer_noreturn' are different
2257 // because 'analyzer_noreturn' does not impact the type.
2258 if (!isFunctionOrMethodOrBlock(D)) {
2259 ValueDecl *VD = dyn_cast<ValueDecl>(D);
2260 if (!VD || (!VD->getType()->isBlockPointerType() &&
2261 !VD->getType()->isFunctionPointerType())) {
2262 S.Diag(AL.getLoc(), AL.isStandardAttributeSyntax()
2263 ? diag::err_attribute_wrong_decl_type
2264 : diag::warn_attribute_wrong_decl_type)
2265 << AL << AL.isRegularKeywordAttribute()
2266 << ExpectedFunctionMethodOrBlock;
2267 return;
2271 D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL));
2274 // PS3 PPU-specific.
2275 static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2277 Returning a Vector Class in Registers
2279 According to the PPU ABI specifications, a class with a single member of
2280 vector type is returned in memory when used as the return value of a
2281 function.
2282 This results in inefficient code when implementing vector classes. To return
2283 the value in a single vector register, add the vecreturn attribute to the
2284 class definition. This attribute is also applicable to struct types.
2286 Example:
2288 struct Vector
2290 __vector float xyzw;
2291 } __attribute__((vecreturn));
2293 Vector Add(Vector lhs, Vector rhs)
2295 Vector result;
2296 result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
2297 return result; // This will be returned in a register
2300 if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
2301 S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A;
2302 return;
2305 const auto *R = cast<RecordDecl>(D);
2306 int count = 0;
2308 if (!isa<CXXRecordDecl>(R)) {
2309 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2310 return;
2313 if (!cast<CXXRecordDecl>(R)->isPOD()) {
2314 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
2315 return;
2318 for (const auto *I : R->fields()) {
2319 if ((count == 1) || !I->getType()->isVectorType()) {
2320 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2321 return;
2323 count++;
2326 D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL));
2329 static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
2330 const ParsedAttr &AL) {
2331 if (isa<ParmVarDecl>(D)) {
2332 // [[carries_dependency]] can only be applied to a parameter if it is a
2333 // parameter of a function declaration or lambda.
2334 if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
2335 S.Diag(AL.getLoc(),
2336 diag::err_carries_dependency_param_not_function_decl);
2337 return;
2341 D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL));
2344 static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2345 bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName();
2347 // If this is spelled as the standard C++17 attribute, but not in C++17, warn
2348 // about using it as an extension.
2349 if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr)
2350 S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
2352 D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL));
2355 static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2356 uint32_t priority = ConstructorAttr::DefaultPriority;
2357 if (S.getLangOpts().HLSL && AL.getNumArgs()) {
2358 S.Diag(AL.getLoc(), diag::err_hlsl_init_priority_unsupported);
2359 return;
2361 if (AL.getNumArgs() &&
2362 !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2363 return;
2365 D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority));
2368 static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2369 uint32_t priority = DestructorAttr::DefaultPriority;
2370 if (AL.getNumArgs() &&
2371 !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2372 return;
2374 D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority));
2377 template <typename AttrTy>
2378 static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) {
2379 // Handle the case where the attribute has a text message.
2380 StringRef Str;
2381 if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str))
2382 return;
2384 D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str));
2387 static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
2388 const ParsedAttr &AL) {
2389 if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
2390 S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition)
2391 << AL << AL.getRange();
2392 return;
2395 D->addAttr(::new (S.Context) ObjCExplicitProtocolImplAttr(S.Context, AL));
2398 static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
2399 IdentifierInfo *Platform,
2400 VersionTuple Introduced,
2401 VersionTuple Deprecated,
2402 VersionTuple Obsoleted) {
2403 StringRef PlatformName
2404 = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
2405 if (PlatformName.empty())
2406 PlatformName = Platform->getName();
2408 // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
2409 // of these steps are needed).
2410 if (!Introduced.empty() && !Deprecated.empty() &&
2411 !(Introduced <= Deprecated)) {
2412 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2413 << 1 << PlatformName << Deprecated.getAsString()
2414 << 0 << Introduced.getAsString();
2415 return true;
2418 if (!Introduced.empty() && !Obsoleted.empty() &&
2419 !(Introduced <= Obsoleted)) {
2420 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2421 << 2 << PlatformName << Obsoleted.getAsString()
2422 << 0 << Introduced.getAsString();
2423 return true;
2426 if (!Deprecated.empty() && !Obsoleted.empty() &&
2427 !(Deprecated <= Obsoleted)) {
2428 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2429 << 2 << PlatformName << Obsoleted.getAsString()
2430 << 1 << Deprecated.getAsString();
2431 return true;
2434 return false;
2437 /// Check whether the two versions match.
2439 /// If either version tuple is empty, then they are assumed to match. If
2440 /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
2441 static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
2442 bool BeforeIsOkay) {
2443 if (X.empty() || Y.empty())
2444 return true;
2446 if (X == Y)
2447 return true;
2449 if (BeforeIsOkay && X < Y)
2450 return true;
2452 return false;
2455 AvailabilityAttr *Sema::mergeAvailabilityAttr(
2456 NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform,
2457 bool Implicit, VersionTuple Introduced, VersionTuple Deprecated,
2458 VersionTuple Obsoleted, bool IsUnavailable, StringRef Message,
2459 bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK,
2460 int Priority) {
2461 VersionTuple MergedIntroduced = Introduced;
2462 VersionTuple MergedDeprecated = Deprecated;
2463 VersionTuple MergedObsoleted = Obsoleted;
2464 bool FoundAny = false;
2465 bool OverrideOrImpl = false;
2466 switch (AMK) {
2467 case AMK_None:
2468 case AMK_Redeclaration:
2469 OverrideOrImpl = false;
2470 break;
2472 case AMK_Override:
2473 case AMK_ProtocolImplementation:
2474 case AMK_OptionalProtocolImplementation:
2475 OverrideOrImpl = true;
2476 break;
2479 if (D->hasAttrs()) {
2480 AttrVec &Attrs = D->getAttrs();
2481 for (unsigned i = 0, e = Attrs.size(); i != e;) {
2482 const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
2483 if (!OldAA) {
2484 ++i;
2485 continue;
2488 IdentifierInfo *OldPlatform = OldAA->getPlatform();
2489 if (OldPlatform != Platform) {
2490 ++i;
2491 continue;
2494 // If there is an existing availability attribute for this platform that
2495 // has a lower priority use the existing one and discard the new
2496 // attribute.
2497 if (OldAA->getPriority() < Priority)
2498 return nullptr;
2500 // If there is an existing attribute for this platform that has a higher
2501 // priority than the new attribute then erase the old one and continue
2502 // processing the attributes.
2503 if (OldAA->getPriority() > Priority) {
2504 Attrs.erase(Attrs.begin() + i);
2505 --e;
2506 continue;
2509 FoundAny = true;
2510 VersionTuple OldIntroduced = OldAA->getIntroduced();
2511 VersionTuple OldDeprecated = OldAA->getDeprecated();
2512 VersionTuple OldObsoleted = OldAA->getObsoleted();
2513 bool OldIsUnavailable = OldAA->getUnavailable();
2515 if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) ||
2516 !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) ||
2517 !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) ||
2518 !(OldIsUnavailable == IsUnavailable ||
2519 (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) {
2520 if (OverrideOrImpl) {
2521 int Which = -1;
2522 VersionTuple FirstVersion;
2523 VersionTuple SecondVersion;
2524 if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) {
2525 Which = 0;
2526 FirstVersion = OldIntroduced;
2527 SecondVersion = Introduced;
2528 } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) {
2529 Which = 1;
2530 FirstVersion = Deprecated;
2531 SecondVersion = OldDeprecated;
2532 } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) {
2533 Which = 2;
2534 FirstVersion = Obsoleted;
2535 SecondVersion = OldObsoleted;
2538 if (Which == -1) {
2539 Diag(OldAA->getLocation(),
2540 diag::warn_mismatched_availability_override_unavail)
2541 << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2542 << (AMK == AMK_Override);
2543 } else if (Which != 1 && AMK == AMK_OptionalProtocolImplementation) {
2544 // Allow different 'introduced' / 'obsoleted' availability versions
2545 // on a method that implements an optional protocol requirement. It
2546 // makes less sense to allow this for 'deprecated' as the user can't
2547 // see if the method is 'deprecated' as 'respondsToSelector' will
2548 // still return true when the method is deprecated.
2549 ++i;
2550 continue;
2551 } else {
2552 Diag(OldAA->getLocation(),
2553 diag::warn_mismatched_availability_override)
2554 << Which
2555 << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2556 << FirstVersion.getAsString() << SecondVersion.getAsString()
2557 << (AMK == AMK_Override);
2559 if (AMK == AMK_Override)
2560 Diag(CI.getLoc(), diag::note_overridden_method);
2561 else
2562 Diag(CI.getLoc(), diag::note_protocol_method);
2563 } else {
2564 Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
2565 Diag(CI.getLoc(), diag::note_previous_attribute);
2568 Attrs.erase(Attrs.begin() + i);
2569 --e;
2570 continue;
2573 VersionTuple MergedIntroduced2 = MergedIntroduced;
2574 VersionTuple MergedDeprecated2 = MergedDeprecated;
2575 VersionTuple MergedObsoleted2 = MergedObsoleted;
2577 if (MergedIntroduced2.empty())
2578 MergedIntroduced2 = OldIntroduced;
2579 if (MergedDeprecated2.empty())
2580 MergedDeprecated2 = OldDeprecated;
2581 if (MergedObsoleted2.empty())
2582 MergedObsoleted2 = OldObsoleted;
2584 if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
2585 MergedIntroduced2, MergedDeprecated2,
2586 MergedObsoleted2)) {
2587 Attrs.erase(Attrs.begin() + i);
2588 --e;
2589 continue;
2592 MergedIntroduced = MergedIntroduced2;
2593 MergedDeprecated = MergedDeprecated2;
2594 MergedObsoleted = MergedObsoleted2;
2595 ++i;
2599 if (FoundAny &&
2600 MergedIntroduced == Introduced &&
2601 MergedDeprecated == Deprecated &&
2602 MergedObsoleted == Obsoleted)
2603 return nullptr;
2605 // Only create a new attribute if !OverrideOrImpl, but we want to do
2606 // the checking.
2607 if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced,
2608 MergedDeprecated, MergedObsoleted) &&
2609 !OverrideOrImpl) {
2610 auto *Avail = ::new (Context) AvailabilityAttr(
2611 Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable,
2612 Message, IsStrict, Replacement, Priority);
2613 Avail->setImplicit(Implicit);
2614 return Avail;
2616 return nullptr;
2619 static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2620 if (isa<UsingDecl, UnresolvedUsingTypenameDecl, UnresolvedUsingValueDecl>(
2621 D)) {
2622 S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using)
2623 << AL;
2624 return;
2627 if (!AL.checkExactlyNumArgs(S, 1))
2628 return;
2629 IdentifierLoc *Platform = AL.getArgAsIdent(0);
2631 IdentifierInfo *II = Platform->Ident;
2632 if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
2633 S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
2634 << Platform->Ident;
2636 auto *ND = dyn_cast<NamedDecl>(D);
2637 if (!ND) // We warned about this already, so just return.
2638 return;
2640 AvailabilityChange Introduced = AL.getAvailabilityIntroduced();
2641 AvailabilityChange Deprecated = AL.getAvailabilityDeprecated();
2642 AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted();
2643 bool IsUnavailable = AL.getUnavailableLoc().isValid();
2644 bool IsStrict = AL.getStrictLoc().isValid();
2645 StringRef Str;
2646 if (const auto *SE = dyn_cast_if_present<StringLiteral>(AL.getMessageExpr()))
2647 Str = SE->getString();
2648 StringRef Replacement;
2649 if (const auto *SE =
2650 dyn_cast_if_present<StringLiteral>(AL.getReplacementExpr()))
2651 Replacement = SE->getString();
2653 if (II->isStr("swift")) {
2654 if (Introduced.isValid() || Obsoleted.isValid() ||
2655 (!IsUnavailable && !Deprecated.isValid())) {
2656 S.Diag(AL.getLoc(),
2657 diag::warn_availability_swift_unavailable_deprecated_only);
2658 return;
2662 if (II->isStr("fuchsia")) {
2663 std::optional<unsigned> Min, Sub;
2664 if ((Min = Introduced.Version.getMinor()) ||
2665 (Sub = Introduced.Version.getSubminor())) {
2666 S.Diag(AL.getLoc(), diag::warn_availability_fuchsia_unavailable_minor);
2667 return;
2671 int PriorityModifier = AL.isPragmaClangAttribute()
2672 ? Sema::AP_PragmaClangAttribute
2673 : Sema::AP_Explicit;
2674 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2675 ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version,
2676 Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement,
2677 Sema::AMK_None, PriorityModifier);
2678 if (NewAttr)
2679 D->addAttr(NewAttr);
2681 // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning
2682 // matches before the start of the watchOS platform.
2683 if (S.Context.getTargetInfo().getTriple().isWatchOS()) {
2684 IdentifierInfo *NewII = nullptr;
2685 if (II->getName() == "ios")
2686 NewII = &S.Context.Idents.get("watchos");
2687 else if (II->getName() == "ios_app_extension")
2688 NewII = &S.Context.Idents.get("watchos_app_extension");
2690 if (NewII) {
2691 const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking();
2692 const auto *IOSToWatchOSMapping =
2693 SDKInfo ? SDKInfo->getVersionMapping(
2694 DarwinSDKInfo::OSEnvPair::iOStoWatchOSPair())
2695 : nullptr;
2697 auto adjustWatchOSVersion =
2698 [IOSToWatchOSMapping](VersionTuple Version) -> VersionTuple {
2699 if (Version.empty())
2700 return Version;
2701 auto MinimumWatchOSVersion = VersionTuple(2, 0);
2703 if (IOSToWatchOSMapping) {
2704 if (auto MappedVersion = IOSToWatchOSMapping->map(
2705 Version, MinimumWatchOSVersion, std::nullopt)) {
2706 return *MappedVersion;
2710 auto Major = Version.getMajor();
2711 auto NewMajor = Major >= 9 ? Major - 7 : 0;
2712 if (NewMajor >= 2) {
2713 if (Version.getMinor()) {
2714 if (Version.getSubminor())
2715 return VersionTuple(NewMajor, *Version.getMinor(),
2716 *Version.getSubminor());
2717 else
2718 return VersionTuple(NewMajor, *Version.getMinor());
2720 return VersionTuple(NewMajor);
2723 return MinimumWatchOSVersion;
2726 auto NewIntroduced = adjustWatchOSVersion(Introduced.Version);
2727 auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version);
2728 auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version);
2730 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2731 ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
2732 NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
2733 Sema::AMK_None,
2734 PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2735 if (NewAttr)
2736 D->addAttr(NewAttr);
2738 } else if (S.Context.getTargetInfo().getTriple().isTvOS()) {
2739 // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning
2740 // matches before the start of the tvOS platform.
2741 IdentifierInfo *NewII = nullptr;
2742 if (II->getName() == "ios")
2743 NewII = &S.Context.Idents.get("tvos");
2744 else if (II->getName() == "ios_app_extension")
2745 NewII = &S.Context.Idents.get("tvos_app_extension");
2747 if (NewII) {
2748 const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking();
2749 const auto *IOSToTvOSMapping =
2750 SDKInfo ? SDKInfo->getVersionMapping(
2751 DarwinSDKInfo::OSEnvPair::iOStoTvOSPair())
2752 : nullptr;
2754 auto AdjustTvOSVersion =
2755 [IOSToTvOSMapping](VersionTuple Version) -> VersionTuple {
2756 if (Version.empty())
2757 return Version;
2759 if (IOSToTvOSMapping) {
2760 if (auto MappedVersion = IOSToTvOSMapping->map(
2761 Version, VersionTuple(0, 0), std::nullopt)) {
2762 return *MappedVersion;
2765 return Version;
2768 auto NewIntroduced = AdjustTvOSVersion(Introduced.Version);
2769 auto NewDeprecated = AdjustTvOSVersion(Deprecated.Version);
2770 auto NewObsoleted = AdjustTvOSVersion(Obsoleted.Version);
2772 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2773 ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated,
2774 NewObsoleted, IsUnavailable, Str, IsStrict, Replacement,
2775 Sema::AMK_None,
2776 PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2777 if (NewAttr)
2778 D->addAttr(NewAttr);
2780 } else if (S.Context.getTargetInfo().getTriple().getOS() ==
2781 llvm::Triple::IOS &&
2782 S.Context.getTargetInfo().getTriple().isMacCatalystEnvironment()) {
2783 auto GetSDKInfo = [&]() {
2784 return S.getDarwinSDKInfoForAvailabilityChecking(AL.getRange().getBegin(),
2785 "macOS");
2788 // Transcribe "ios" to "maccatalyst" (and add a new attribute).
2789 IdentifierInfo *NewII = nullptr;
2790 if (II->getName() == "ios")
2791 NewII = &S.Context.Idents.get("maccatalyst");
2792 else if (II->getName() == "ios_app_extension")
2793 NewII = &S.Context.Idents.get("maccatalyst_app_extension");
2794 if (NewII) {
2795 auto MinMacCatalystVersion = [](const VersionTuple &V) {
2796 if (V.empty())
2797 return V;
2798 if (V.getMajor() < 13 ||
2799 (V.getMajor() == 13 && V.getMinor() && *V.getMinor() < 1))
2800 return VersionTuple(13, 1); // The min Mac Catalyst version is 13.1.
2801 return V;
2803 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2804 ND, AL, NewII, true /*Implicit*/,
2805 MinMacCatalystVersion(Introduced.Version),
2806 MinMacCatalystVersion(Deprecated.Version),
2807 MinMacCatalystVersion(Obsoleted.Version), IsUnavailable, Str,
2808 IsStrict, Replacement, Sema::AMK_None,
2809 PriorityModifier + Sema::AP_InferredFromOtherPlatform);
2810 if (NewAttr)
2811 D->addAttr(NewAttr);
2812 } else if (II->getName() == "macos" && GetSDKInfo() &&
2813 (!Introduced.Version.empty() || !Deprecated.Version.empty() ||
2814 !Obsoleted.Version.empty())) {
2815 if (const auto *MacOStoMacCatalystMapping =
2816 GetSDKInfo()->getVersionMapping(
2817 DarwinSDKInfo::OSEnvPair::macOStoMacCatalystPair())) {
2818 // Infer Mac Catalyst availability from the macOS availability attribute
2819 // if it has versioned availability. Don't infer 'unavailable'. This
2820 // inferred availability has lower priority than the other availability
2821 // attributes that are inferred from 'ios'.
2822 NewII = &S.Context.Idents.get("maccatalyst");
2823 auto RemapMacOSVersion =
2824 [&](const VersionTuple &V) -> std::optional<VersionTuple> {
2825 if (V.empty())
2826 return std::nullopt;
2827 // API_TO_BE_DEPRECATED is 100000.
2828 if (V.getMajor() == 100000)
2829 return VersionTuple(100000);
2830 // The minimum iosmac version is 13.1
2831 return MacOStoMacCatalystMapping->map(V, VersionTuple(13, 1),
2832 std::nullopt);
2834 std::optional<VersionTuple> NewIntroduced =
2835 RemapMacOSVersion(Introduced.Version),
2836 NewDeprecated =
2837 RemapMacOSVersion(Deprecated.Version),
2838 NewObsoleted =
2839 RemapMacOSVersion(Obsoleted.Version);
2840 if (NewIntroduced || NewDeprecated || NewObsoleted) {
2841 auto VersionOrEmptyVersion =
2842 [](const std::optional<VersionTuple> &V) -> VersionTuple {
2843 return V ? *V : VersionTuple();
2845 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(
2846 ND, AL, NewII, true /*Implicit*/,
2847 VersionOrEmptyVersion(NewIntroduced),
2848 VersionOrEmptyVersion(NewDeprecated),
2849 VersionOrEmptyVersion(NewObsoleted), /*IsUnavailable=*/false, Str,
2850 IsStrict, Replacement, Sema::AMK_None,
2851 PriorityModifier + Sema::AP_InferredFromOtherPlatform +
2852 Sema::AP_InferredFromOtherPlatform);
2853 if (NewAttr)
2854 D->addAttr(NewAttr);
2861 static void handleExternalSourceSymbolAttr(Sema &S, Decl *D,
2862 const ParsedAttr &AL) {
2863 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 4))
2864 return;
2866 StringRef Language;
2867 if (const auto *SE = dyn_cast_if_present<StringLiteral>(AL.getArgAsExpr(0)))
2868 Language = SE->getString();
2869 StringRef DefinedIn;
2870 if (const auto *SE = dyn_cast_if_present<StringLiteral>(AL.getArgAsExpr(1)))
2871 DefinedIn = SE->getString();
2872 bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr;
2873 StringRef USR;
2874 if (const auto *SE = dyn_cast_if_present<StringLiteral>(AL.getArgAsExpr(3)))
2875 USR = SE->getString();
2877 D->addAttr(::new (S.Context) ExternalSourceSymbolAttr(
2878 S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration, USR));
2881 template <class T>
2882 static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI,
2883 typename T::VisibilityType value) {
2884 T *existingAttr = D->getAttr<T>();
2885 if (existingAttr) {
2886 typename T::VisibilityType existingValue = existingAttr->getVisibility();
2887 if (existingValue == value)
2888 return nullptr;
2889 S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
2890 S.Diag(CI.getLoc(), diag::note_previous_attribute);
2891 D->dropAttr<T>();
2893 return ::new (S.Context) T(S.Context, CI, value);
2896 VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D,
2897 const AttributeCommonInfo &CI,
2898 VisibilityAttr::VisibilityType Vis) {
2899 return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis);
2902 TypeVisibilityAttr *
2903 Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
2904 TypeVisibilityAttr::VisibilityType Vis) {
2905 return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis);
2908 static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL,
2909 bool isTypeVisibility) {
2910 // Visibility attributes don't mean anything on a typedef.
2911 if (isa<TypedefNameDecl>(D)) {
2912 S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL;
2913 return;
2916 // 'type_visibility' can only go on a type or namespace.
2917 if (isTypeVisibility && !(isa<TagDecl>(D) || isa<ObjCInterfaceDecl>(D) ||
2918 isa<NamespaceDecl>(D))) {
2919 S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
2920 << AL << AL.isRegularKeywordAttribute() << ExpectedTypeOrNamespace;
2921 return;
2924 // Check that the argument is a string literal.
2925 StringRef TypeStr;
2926 SourceLocation LiteralLoc;
2927 if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc))
2928 return;
2930 VisibilityAttr::VisibilityType type;
2931 if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
2932 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL
2933 << TypeStr;
2934 return;
2937 // Complain about attempts to use protected visibility on targets
2938 // (like Darwin) that don't support it.
2939 if (type == VisibilityAttr::Protected &&
2940 !S.Context.getTargetInfo().hasProtectedVisibility()) {
2941 S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility);
2942 type = VisibilityAttr::Default;
2945 Attr *newAttr;
2946 if (isTypeVisibility) {
2947 newAttr = S.mergeTypeVisibilityAttr(
2948 D, AL, (TypeVisibilityAttr::VisibilityType)type);
2949 } else {
2950 newAttr = S.mergeVisibilityAttr(D, AL, type);
2952 if (newAttr)
2953 D->addAttr(newAttr);
2956 static void handleObjCDirectAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2957 // objc_direct cannot be set on methods declared in the context of a protocol
2958 if (isa<ObjCProtocolDecl>(D->getDeclContext())) {
2959 S.Diag(AL.getLoc(), diag::err_objc_direct_on_protocol) << false;
2960 return;
2963 if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
2964 handleSimpleAttribute<ObjCDirectAttr>(S, D, AL);
2965 } else {
2966 S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
2970 static void handleObjCDirectMembersAttr(Sema &S, Decl *D,
2971 const ParsedAttr &AL) {
2972 if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
2973 handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
2974 } else {
2975 S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL;
2979 static void handleObjCMethodFamilyAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2980 const auto *M = cast<ObjCMethodDecl>(D);
2981 if (!AL.isArgIdent(0)) {
2982 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2983 << AL << 1 << AANT_ArgumentIdentifier;
2984 return;
2987 IdentifierLoc *IL = AL.getArgAsIdent(0);
2988 ObjCMethodFamilyAttr::FamilyKind F;
2989 if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
2990 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident;
2991 return;
2994 if (F == ObjCMethodFamilyAttr::OMF_init &&
2995 !M->getReturnType()->isObjCObjectPointerType()) {
2996 S.Diag(M->getLocation(), diag::err_init_method_bad_return_type)
2997 << M->getReturnType();
2998 // Ignore the attribute.
2999 return;
3002 D->addAttr(new (S.Context) ObjCMethodFamilyAttr(S.Context, AL, F));
3005 static void handleObjCNSObject(Sema &S, Decl *D, const ParsedAttr &AL) {
3006 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
3007 QualType T = TD->getUnderlyingType();
3008 if (!T->isCARCBridgableType()) {
3009 S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
3010 return;
3013 else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
3014 QualType T = PD->getType();
3015 if (!T->isCARCBridgableType()) {
3016 S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
3017 return;
3020 else {
3021 // It is okay to include this attribute on properties, e.g.:
3023 // @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
3025 // In this case it follows tradition and suppresses an error in the above
3026 // case.
3027 S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
3029 D->addAttr(::new (S.Context) ObjCNSObjectAttr(S.Context, AL));
3032 static void handleObjCIndependentClass(Sema &S, Decl *D, const ParsedAttr &AL) {
3033 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
3034 QualType T = TD->getUnderlyingType();
3035 if (!T->isObjCObjectPointerType()) {
3036 S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute);
3037 return;
3039 } else {
3040 S.Diag(D->getLocation(), diag::warn_independentclass_attribute);
3041 return;
3043 D->addAttr(::new (S.Context) ObjCIndependentClassAttr(S.Context, AL));
3046 static void handleBlocksAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3047 if (!AL.isArgIdent(0)) {
3048 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3049 << AL << 1 << AANT_ArgumentIdentifier;
3050 return;
3053 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3054 BlocksAttr::BlockType type;
3055 if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
3056 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
3057 return;
3060 D->addAttr(::new (S.Context) BlocksAttr(S.Context, AL, type));
3063 static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3064 unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
3065 if (AL.getNumArgs() > 0) {
3066 Expr *E = AL.getArgAsExpr(0);
3067 std::optional<llvm::APSInt> Idx = llvm::APSInt(32);
3068 if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) {
3069 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3070 << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange();
3071 return;
3074 if (Idx->isSigned() && Idx->isNegative()) {
3075 S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero)
3076 << E->getSourceRange();
3077 return;
3080 sentinel = Idx->getZExtValue();
3083 unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
3084 if (AL.getNumArgs() > 1) {
3085 Expr *E = AL.getArgAsExpr(1);
3086 std::optional<llvm::APSInt> Idx = llvm::APSInt(32);
3087 if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) {
3088 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3089 << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange();
3090 return;
3092 nullPos = Idx->getZExtValue();
3094 if ((Idx->isSigned() && Idx->isNegative()) || nullPos > 1) {
3095 // FIXME: This error message could be improved, it would be nice
3096 // to say what the bounds actually are.
3097 S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
3098 << E->getSourceRange();
3099 return;
3103 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3104 const FunctionType *FT = FD->getType()->castAs<FunctionType>();
3105 if (isa<FunctionNoProtoType>(FT)) {
3106 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments);
3107 return;
3110 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
3111 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
3112 return;
3114 } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
3115 if (!MD->isVariadic()) {
3116 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
3117 return;
3119 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
3120 if (!BD->isVariadic()) {
3121 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
3122 return;
3124 } else if (const auto *V = dyn_cast<VarDecl>(D)) {
3125 QualType Ty = V->getType();
3126 if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
3127 const FunctionType *FT = Ty->isFunctionPointerType()
3128 ? D->getFunctionType()
3129 : Ty->castAs<BlockPointerType>()
3130 ->getPointeeType()
3131 ->castAs<FunctionType>();
3132 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
3133 int m = Ty->isFunctionPointerType() ? 0 : 1;
3134 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
3135 return;
3137 } else {
3138 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3139 << AL << AL.isRegularKeywordAttribute()
3140 << ExpectedFunctionMethodOrBlock;
3141 return;
3143 } else {
3144 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3145 << AL << AL.isRegularKeywordAttribute()
3146 << ExpectedFunctionMethodOrBlock;
3147 return;
3149 D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos));
3152 static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) {
3153 if (D->getFunctionType() &&
3154 D->getFunctionType()->getReturnType()->isVoidType() &&
3155 !isa<CXXConstructorDecl>(D)) {
3156 S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0;
3157 return;
3159 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
3160 if (MD->getReturnType()->isVoidType()) {
3161 S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1;
3162 return;
3165 StringRef Str;
3166 if (AL.isStandardAttributeSyntax() && !AL.getScopeName()) {
3167 // The standard attribute cannot be applied to variable declarations such
3168 // as a function pointer.
3169 if (isa<VarDecl>(D))
3170 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str)
3171 << AL << AL.isRegularKeywordAttribute()
3172 << "functions, classes, or enumerations";
3174 // If this is spelled as the standard C++17 attribute, but not in C++17,
3175 // warn about using it as an extension. If there are attribute arguments,
3176 // then claim it's a C++20 extension instead.
3177 // FIXME: If WG14 does not seem likely to adopt the same feature, add an
3178 // extension warning for C23 mode.
3179 const LangOptions &LO = S.getLangOpts();
3180 if (AL.getNumArgs() == 1) {
3181 if (LO.CPlusPlus && !LO.CPlusPlus20)
3182 S.Diag(AL.getLoc(), diag::ext_cxx20_attr) << AL;
3184 // Since this is spelled [[nodiscard]], get the optional string
3185 // literal. If in C++ mode, but not in C++20 mode, diagnose as an
3186 // extension.
3187 // FIXME: C23 should support this feature as well, even as an extension.
3188 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr))
3189 return;
3190 } else if (LO.CPlusPlus && !LO.CPlusPlus17)
3191 S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL;
3194 if ((!AL.isGNUAttribute() &&
3195 !(AL.isStandardAttributeSyntax() && AL.isClangScope())) &&
3196 isa<TypedefNameDecl>(D)) {
3197 S.Diag(AL.getLoc(), diag::warn_unused_result_typedef_unsupported_spelling)
3198 << AL.isGNUScope();
3199 return;
3202 D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str));
3205 static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3206 // weak_import only applies to variable & function declarations.
3207 bool isDef = false;
3208 if (!D->canBeWeakImported(isDef)) {
3209 if (isDef)
3210 S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition)
3211 << "weak_import";
3212 else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
3213 (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
3214 (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
3215 // Nothing to warn about here.
3216 } else
3217 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3218 << AL << AL.isRegularKeywordAttribute() << ExpectedVariableOrFunction;
3220 return;
3223 D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL));
3226 // Handles reqd_work_group_size and work_group_size_hint.
3227 template <typename WorkGroupAttr>
3228 static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
3229 uint32_t WGSize[3];
3230 for (unsigned i = 0; i < 3; ++i) {
3231 const Expr *E = AL.getArgAsExpr(i);
3232 if (!checkUInt32Argument(S, AL, E, WGSize[i], i,
3233 /*StrictlyUnsigned=*/true))
3234 return;
3235 if (WGSize[i] == 0) {
3236 S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
3237 << AL << E->getSourceRange();
3238 return;
3242 WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
3243 if (Existing && !(Existing->getXDim() == WGSize[0] &&
3244 Existing->getYDim() == WGSize[1] &&
3245 Existing->getZDim() == WGSize[2]))
3246 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3248 D->addAttr(::new (S.Context)
3249 WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2]));
3252 // Handles intel_reqd_sub_group_size.
3253 static void handleSubGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
3254 uint32_t SGSize;
3255 const Expr *E = AL.getArgAsExpr(0);
3256 if (!checkUInt32Argument(S, AL, E, SGSize))
3257 return;
3258 if (SGSize == 0) {
3259 S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
3260 << AL << E->getSourceRange();
3261 return;
3264 OpenCLIntelReqdSubGroupSizeAttr *Existing =
3265 D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>();
3266 if (Existing && Existing->getSubGroupSize() != SGSize)
3267 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3269 D->addAttr(::new (S.Context)
3270 OpenCLIntelReqdSubGroupSizeAttr(S.Context, AL, SGSize));
3273 static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) {
3274 if (!AL.hasParsedType()) {
3275 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
3276 return;
3279 TypeSourceInfo *ParmTSI = nullptr;
3280 QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
3281 assert(ParmTSI && "no type source info for attribute argument");
3283 if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
3284 (ParmType->isBooleanType() ||
3285 !ParmType->isIntegralType(S.getASTContext()))) {
3286 S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL;
3287 return;
3290 if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
3291 if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
3292 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3293 return;
3297 D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI));
3300 SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
3301 StringRef Name) {
3302 // Explicit or partial specializations do not inherit
3303 // the section attribute from the primary template.
3304 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3305 if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate &&
3306 FD->isFunctionTemplateSpecialization())
3307 return nullptr;
3309 if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
3310 if (ExistingAttr->getName() == Name)
3311 return nullptr;
3312 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3313 << 1 /*section*/;
3314 Diag(CI.getLoc(), diag::note_previous_attribute);
3315 return nullptr;
3317 return ::new (Context) SectionAttr(Context, CI, Name);
3320 /// Used to implement to perform semantic checking on
3321 /// attribute((section("foo"))) specifiers.
3323 /// In this case, "foo" is passed in to be checked. If the section
3324 /// specifier is invalid, return an Error that indicates the problem.
3326 /// This is a simple quality of implementation feature to catch errors
3327 /// and give good diagnostics in cases when the assembler or code generator
3328 /// would otherwise reject the section specifier.
3329 llvm::Error Sema::isValidSectionSpecifier(StringRef SecName) {
3330 if (!Context.getTargetInfo().getTriple().isOSDarwin())
3331 return llvm::Error::success();
3333 // Let MCSectionMachO validate this.
3334 StringRef Segment, Section;
3335 unsigned TAA, StubSize;
3336 bool HasTAA;
3337 return llvm::MCSectionMachO::ParseSectionSpecifier(SecName, Segment, Section,
3338 TAA, HasTAA, StubSize);
3341 bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
3342 if (llvm::Error E = isValidSectionSpecifier(SecName)) {
3343 Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3344 << toString(std::move(E)) << 1 /*'section'*/;
3345 return false;
3347 return true;
3350 static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3351 // Make sure that there is a string literal as the sections's single
3352 // argument.
3353 StringRef Str;
3354 SourceLocation LiteralLoc;
3355 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3356 return;
3358 if (!S.checkSectionName(LiteralLoc, Str))
3359 return;
3361 SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str);
3362 if (NewAttr) {
3363 D->addAttr(NewAttr);
3364 if (isa<FunctionDecl, FunctionTemplateDecl, ObjCMethodDecl,
3365 ObjCPropertyDecl>(D))
3366 S.UnifySection(NewAttr->getName(),
3367 ASTContext::PSF_Execute | ASTContext::PSF_Read,
3368 cast<NamedDecl>(D));
3372 // This is used for `__declspec(code_seg("segname"))` on a decl.
3373 // `#pragma code_seg("segname")` uses checkSectionName() instead.
3374 static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc,
3375 StringRef CodeSegName) {
3376 if (llvm::Error E = S.isValidSectionSpecifier(CodeSegName)) {
3377 S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
3378 << toString(std::move(E)) << 0 /*'code-seg'*/;
3379 return false;
3382 return true;
3385 CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
3386 StringRef Name) {
3387 // Explicit or partial specializations do not inherit
3388 // the code_seg attribute from the primary template.
3389 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3390 if (FD->isFunctionTemplateSpecialization())
3391 return nullptr;
3393 if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3394 if (ExistingAttr->getName() == Name)
3395 return nullptr;
3396 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
3397 << 0 /*codeseg*/;
3398 Diag(CI.getLoc(), diag::note_previous_attribute);
3399 return nullptr;
3401 return ::new (Context) CodeSegAttr(Context, CI, Name);
3404 static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3405 StringRef Str;
3406 SourceLocation LiteralLoc;
3407 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
3408 return;
3409 if (!checkCodeSegName(S, LiteralLoc, Str))
3410 return;
3411 if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
3412 if (!ExistingAttr->isImplicit()) {
3413 S.Diag(AL.getLoc(),
3414 ExistingAttr->getName() == Str
3415 ? diag::warn_duplicate_codeseg_attribute
3416 : diag::err_conflicting_codeseg_attribute);
3417 return;
3419 D->dropAttr<CodeSegAttr>();
3421 if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str))
3422 D->addAttr(CSA);
3425 // Check for things we'd like to warn about. Multiversioning issues are
3426 // handled later in the process, once we know how many exist.
3427 bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) {
3428 enum FirstParam { Unsupported, Duplicate, Unknown };
3429 enum SecondParam { None, CPU, Tune };
3430 enum ThirdParam { Target, TargetClones };
3431 if (AttrStr.contains("fpmath="))
3432 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3433 << Unsupported << None << "fpmath=" << Target;
3435 // Diagnose use of tune if target doesn't support it.
3436 if (!Context.getTargetInfo().supportsTargetAttributeTune() &&
3437 AttrStr.contains("tune="))
3438 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3439 << Unsupported << None << "tune=" << Target;
3441 ParsedTargetAttr ParsedAttrs =
3442 Context.getTargetInfo().parseTargetAttr(AttrStr);
3444 if (!ParsedAttrs.CPU.empty() &&
3445 !Context.getTargetInfo().isValidCPUName(ParsedAttrs.CPU))
3446 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3447 << Unknown << CPU << ParsedAttrs.CPU << Target;
3449 if (!ParsedAttrs.Tune.empty() &&
3450 !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Tune))
3451 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3452 << Unknown << Tune << ParsedAttrs.Tune << Target;
3454 if (ParsedAttrs.Duplicate != "")
3455 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3456 << Duplicate << None << ParsedAttrs.Duplicate << Target;
3458 for (const auto &Feature : ParsedAttrs.Features) {
3459 auto CurFeature = StringRef(Feature).drop_front(); // remove + or -.
3460 if (!Context.getTargetInfo().isValidFeatureName(CurFeature))
3461 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3462 << Unsupported << None << CurFeature << Target;
3465 TargetInfo::BranchProtectionInfo BPI;
3466 StringRef DiagMsg;
3467 if (ParsedAttrs.BranchProtection.empty())
3468 return false;
3469 if (!Context.getTargetInfo().validateBranchProtection(
3470 ParsedAttrs.BranchProtection, ParsedAttrs.CPU, BPI, DiagMsg)) {
3471 if (DiagMsg.empty())
3472 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3473 << Unsupported << None << "branch-protection" << Target;
3474 return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec)
3475 << DiagMsg;
3477 if (!DiagMsg.empty())
3478 Diag(LiteralLoc, diag::warn_unsupported_branch_protection_spec) << DiagMsg;
3480 return false;
3483 // Check Target Version attrs
3484 bool Sema::checkTargetVersionAttr(SourceLocation LiteralLoc, StringRef &AttrStr,
3485 bool &isDefault) {
3486 enum FirstParam { Unsupported };
3487 enum SecondParam { None };
3488 enum ThirdParam { Target, TargetClones, TargetVersion };
3489 if (AttrStr.trim() == "default")
3490 isDefault = true;
3491 llvm::SmallVector<StringRef, 8> Features;
3492 AttrStr.split(Features, "+");
3493 for (auto &CurFeature : Features) {
3494 CurFeature = CurFeature.trim();
3495 if (CurFeature == "default")
3496 continue;
3497 if (!Context.getTargetInfo().validateCpuSupports(CurFeature))
3498 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3499 << Unsupported << None << CurFeature << TargetVersion;
3501 return false;
3504 static void handleTargetVersionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3505 StringRef Str;
3506 SourceLocation LiteralLoc;
3507 bool isDefault = false;
3508 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) ||
3509 S.checkTargetVersionAttr(LiteralLoc, Str, isDefault))
3510 return;
3511 // Do not create default only target_version attribute
3512 if (!isDefault) {
3513 TargetVersionAttr *NewAttr =
3514 ::new (S.Context) TargetVersionAttr(S.Context, AL, Str);
3515 D->addAttr(NewAttr);
3519 static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3520 StringRef Str;
3521 SourceLocation LiteralLoc;
3522 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) ||
3523 S.checkTargetAttr(LiteralLoc, Str))
3524 return;
3526 TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str);
3527 D->addAttr(NewAttr);
3530 bool Sema::checkTargetClonesAttrString(
3531 SourceLocation LiteralLoc, StringRef Str, const StringLiteral *Literal,
3532 bool &HasDefault, bool &HasCommas, bool &HasNotDefault,
3533 SmallVectorImpl<SmallString<64>> &StringsBuffer) {
3534 enum FirstParam { Unsupported, Duplicate, Unknown };
3535 enum SecondParam { None, CPU, Tune };
3536 enum ThirdParam { Target, TargetClones };
3537 HasCommas = HasCommas || Str.contains(',');
3538 const TargetInfo &TInfo = Context.getTargetInfo();
3539 // Warn on empty at the beginning of a string.
3540 if (Str.size() == 0)
3541 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3542 << Unsupported << None << "" << TargetClones;
3544 std::pair<StringRef, StringRef> Parts = {{}, Str};
3545 while (!Parts.second.empty()) {
3546 Parts = Parts.second.split(',');
3547 StringRef Cur = Parts.first.trim();
3548 SourceLocation CurLoc =
3549 Literal->getLocationOfByte(Cur.data() - Literal->getString().data(),
3550 getSourceManager(), getLangOpts(), TInfo);
3552 bool DefaultIsDupe = false;
3553 bool HasCodeGenImpact = false;
3554 if (Cur.empty())
3555 return Diag(CurLoc, diag::warn_unsupported_target_attribute)
3556 << Unsupported << None << "" << TargetClones;
3558 if (TInfo.getTriple().isAArch64()) {
3559 // AArch64 target clones specific
3560 if (Cur == "default") {
3561 DefaultIsDupe = HasDefault;
3562 HasDefault = true;
3563 if (llvm::is_contained(StringsBuffer, Cur) || DefaultIsDupe)
3564 Diag(CurLoc, diag::warn_target_clone_duplicate_options);
3565 else
3566 StringsBuffer.push_back(Cur);
3567 } else {
3568 std::pair<StringRef, StringRef> CurParts = {{}, Cur};
3569 llvm::SmallVector<StringRef, 8> CurFeatures;
3570 while (!CurParts.second.empty()) {
3571 CurParts = CurParts.second.split('+');
3572 StringRef CurFeature = CurParts.first.trim();
3573 if (!TInfo.validateCpuSupports(CurFeature)) {
3574 Diag(CurLoc, diag::warn_unsupported_target_attribute)
3575 << Unsupported << None << CurFeature << TargetClones;
3576 continue;
3578 if (TInfo.doesFeatureAffectCodeGen(CurFeature))
3579 HasCodeGenImpact = true;
3580 CurFeatures.push_back(CurFeature);
3582 // Canonize TargetClones Attributes
3583 llvm::sort(CurFeatures);
3584 SmallString<64> Res;
3585 for (auto &CurFeat : CurFeatures) {
3586 if (!Res.equals(""))
3587 Res.append("+");
3588 Res.append(CurFeat);
3590 if (llvm::is_contained(StringsBuffer, Res) || DefaultIsDupe)
3591 Diag(CurLoc, diag::warn_target_clone_duplicate_options);
3592 else if (!HasCodeGenImpact)
3593 // Ignore features in target_clone attribute that don't impact
3594 // code generation
3595 Diag(CurLoc, diag::warn_target_clone_no_impact_options);
3596 else if (!Res.empty()) {
3597 StringsBuffer.push_back(Res);
3598 HasNotDefault = true;
3601 } else {
3602 // Other targets ( currently X86 )
3603 if (Cur.startswith("arch=")) {
3604 if (!Context.getTargetInfo().isValidCPUName(
3605 Cur.drop_front(sizeof("arch=") - 1)))
3606 return Diag(CurLoc, diag::warn_unsupported_target_attribute)
3607 << Unsupported << CPU << Cur.drop_front(sizeof("arch=") - 1)
3608 << TargetClones;
3609 } else if (Cur == "default") {
3610 DefaultIsDupe = HasDefault;
3611 HasDefault = true;
3612 } else if (!Context.getTargetInfo().isValidFeatureName(Cur))
3613 return Diag(CurLoc, diag::warn_unsupported_target_attribute)
3614 << Unsupported << None << Cur << TargetClones;
3615 if (llvm::is_contained(StringsBuffer, Cur) || DefaultIsDupe)
3616 Diag(CurLoc, diag::warn_target_clone_duplicate_options);
3617 // Note: Add even if there are duplicates, since it changes name mangling.
3618 StringsBuffer.push_back(Cur);
3621 if (Str.rtrim().endswith(","))
3622 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3623 << Unsupported << None << "" << TargetClones;
3624 return false;
3627 static void handleTargetClonesAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3628 if (S.Context.getTargetInfo().getTriple().isAArch64() &&
3629 !S.Context.getTargetInfo().hasFeature("fmv"))
3630 return;
3632 // Ensure we don't combine these with themselves, since that causes some
3633 // confusing behavior.
3634 if (const auto *Other = D->getAttr<TargetClonesAttr>()) {
3635 S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL;
3636 S.Diag(Other->getLocation(), diag::note_conflicting_attribute);
3637 return;
3639 if (checkAttrMutualExclusion<TargetClonesAttr>(S, D, AL))
3640 return;
3642 SmallVector<StringRef, 2> Strings;
3643 SmallVector<SmallString<64>, 2> StringsBuffer;
3644 bool HasCommas = false, HasDefault = false, HasNotDefault = false;
3646 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
3647 StringRef CurStr;
3648 SourceLocation LiteralLoc;
3649 if (!S.checkStringLiteralArgumentAttr(AL, I, CurStr, &LiteralLoc) ||
3650 S.checkTargetClonesAttrString(
3651 LiteralLoc, CurStr,
3652 cast<StringLiteral>(AL.getArgAsExpr(I)->IgnoreParenCasts()),
3653 HasDefault, HasCommas, HasNotDefault, StringsBuffer))
3654 return;
3656 for (auto &SmallStr : StringsBuffer)
3657 Strings.push_back(SmallStr.str());
3659 if (HasCommas && AL.getNumArgs() > 1)
3660 S.Diag(AL.getLoc(), diag::warn_target_clone_mixed_values);
3662 if (S.Context.getTargetInfo().getTriple().isAArch64() && !HasDefault) {
3663 // Add default attribute if there is no one
3664 HasDefault = true;
3665 Strings.push_back("default");
3668 if (!HasDefault) {
3669 S.Diag(AL.getLoc(), diag::err_target_clone_must_have_default);
3670 return;
3673 // FIXME: We could probably figure out how to get this to work for lambdas
3674 // someday.
3675 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
3676 if (MD->getParent()->isLambda()) {
3677 S.Diag(D->getLocation(), diag::err_multiversion_doesnt_support)
3678 << static_cast<unsigned>(MultiVersionKind::TargetClones)
3679 << /*Lambda*/ 9;
3680 return;
3684 // No multiversion if we have default version only.
3685 if (S.Context.getTargetInfo().getTriple().isAArch64() && !HasNotDefault)
3686 return;
3688 cast<FunctionDecl>(D)->setIsMultiVersion();
3689 TargetClonesAttr *NewAttr = ::new (S.Context)
3690 TargetClonesAttr(S.Context, AL, Strings.data(), Strings.size());
3691 D->addAttr(NewAttr);
3694 static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3695 Expr *E = AL.getArgAsExpr(0);
3696 uint32_t VecWidth;
3697 if (!checkUInt32Argument(S, AL, E, VecWidth)) {
3698 AL.setInvalid();
3699 return;
3702 MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>();
3703 if (Existing && Existing->getVectorWidth() != VecWidth) {
3704 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
3705 return;
3708 D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth));
3711 static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3712 Expr *E = AL.getArgAsExpr(0);
3713 SourceLocation Loc = E->getExprLoc();
3714 FunctionDecl *FD = nullptr;
3715 DeclarationNameInfo NI;
3717 // gcc only allows for simple identifiers. Since we support more than gcc, we
3718 // will warn the user.
3719 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3720 if (DRE->hasQualifier())
3721 S.Diag(Loc, diag::warn_cleanup_ext);
3722 FD = dyn_cast<FunctionDecl>(DRE->getDecl());
3723 NI = DRE->getNameInfo();
3724 if (!FD) {
3725 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
3726 << NI.getName();
3727 return;
3729 } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
3730 if (ULE->hasExplicitTemplateArgs())
3731 S.Diag(Loc, diag::warn_cleanup_ext);
3732 FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
3733 NI = ULE->getNameInfo();
3734 if (!FD) {
3735 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
3736 << NI.getName();
3737 if (ULE->getType() == S.Context.OverloadTy)
3738 S.NoteAllOverloadCandidates(ULE);
3739 return;
3741 } else {
3742 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
3743 return;
3746 if (FD->getNumParams() != 1) {
3747 S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
3748 << NI.getName();
3749 return;
3752 // We're currently more strict than GCC about what function types we accept.
3753 // If this ever proves to be a problem it should be easy to fix.
3754 QualType Ty = S.Context.getPointerType(cast<VarDecl>(D)->getType());
3755 QualType ParamTy = FD->getParamDecl(0)->getType();
3756 if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
3757 ParamTy, Ty) != Sema::Compatible) {
3758 S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
3759 << NI.getName() << ParamTy << Ty;
3760 return;
3763 D->addAttr(::new (S.Context) CleanupAttr(S.Context, AL, FD));
3766 static void handleEnumExtensibilityAttr(Sema &S, Decl *D,
3767 const ParsedAttr &AL) {
3768 if (!AL.isArgIdent(0)) {
3769 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3770 << AL << 0 << AANT_ArgumentIdentifier;
3771 return;
3774 EnumExtensibilityAttr::Kind ExtensibilityKind;
3775 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3776 if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(),
3777 ExtensibilityKind)) {
3778 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
3779 return;
3782 D->addAttr(::new (S.Context)
3783 EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind));
3786 /// Handle __attribute__((format_arg((idx)))) attribute based on
3787 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3788 static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3789 const Expr *IdxExpr = AL.getArgAsExpr(0);
3790 ParamIdx Idx;
3791 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, IdxExpr, Idx))
3792 return;
3794 // Make sure the format string is really a string.
3795 QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
3797 bool NotNSStringTy = !isNSStringType(Ty, S.Context);
3798 if (NotNSStringTy &&
3799 !isCFStringType(Ty, S.Context) &&
3800 (!Ty->isPointerType() ||
3801 !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3802 S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3803 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
3804 return;
3806 Ty = getFunctionOrMethodResultType(D);
3807 // replace instancetype with the class type
3808 auto Instancetype = S.Context.getObjCInstanceTypeDecl()->getTypeForDecl();
3809 if (Ty->getAs<TypedefType>() == Instancetype)
3810 if (auto *OMD = dyn_cast<ObjCMethodDecl>(D))
3811 if (auto *Interface = OMD->getClassInterface())
3812 Ty = S.Context.getObjCObjectPointerType(
3813 QualType(Interface->getTypeForDecl(), 0));
3814 if (!isNSStringType(Ty, S.Context, /*AllowNSAttributedString=*/true) &&
3815 !isCFStringType(Ty, S.Context) &&
3816 (!Ty->isPointerType() ||
3817 !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
3818 S.Diag(AL.getLoc(), diag::err_format_attribute_result_not)
3819 << (NotNSStringTy ? "string type" : "NSString")
3820 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
3821 return;
3824 D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx));
3827 enum FormatAttrKind {
3828 CFStringFormat,
3829 NSStringFormat,
3830 StrftimeFormat,
3831 SupportedFormat,
3832 IgnoredFormat,
3833 InvalidFormat
3836 /// getFormatAttrKind - Map from format attribute names to supported format
3837 /// types.
3838 static FormatAttrKind getFormatAttrKind(StringRef Format) {
3839 return llvm::StringSwitch<FormatAttrKind>(Format)
3840 // Check for formats that get handled specially.
3841 .Case("NSString", NSStringFormat)
3842 .Case("CFString", CFStringFormat)
3843 .Case("strftime", StrftimeFormat)
3845 // Otherwise, check for supported formats.
3846 .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
3847 .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
3848 .Case("kprintf", SupportedFormat) // OpenBSD.
3849 .Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
3850 .Case("os_trace", SupportedFormat)
3851 .Case("os_log", SupportedFormat)
3853 .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
3854 .Default(InvalidFormat);
3857 /// Handle __attribute__((init_priority(priority))) attributes based on
3858 /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
3859 static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3860 if (!S.getLangOpts().CPlusPlus) {
3861 S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL;
3862 return;
3865 if (S.getLangOpts().HLSL) {
3866 S.Diag(AL.getLoc(), diag::err_hlsl_init_priority_unsupported);
3867 return;
3870 if (S.getCurFunctionOrMethodDecl()) {
3871 S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3872 AL.setInvalid();
3873 return;
3875 QualType T = cast<VarDecl>(D)->getType();
3876 if (S.Context.getAsArrayType(T))
3877 T = S.Context.getBaseElementType(T);
3878 if (!T->getAs<RecordType>()) {
3879 S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3880 AL.setInvalid();
3881 return;
3884 Expr *E = AL.getArgAsExpr(0);
3885 uint32_t prioritynum;
3886 if (!checkUInt32Argument(S, AL, E, prioritynum)) {
3887 AL.setInvalid();
3888 return;
3891 // Only perform the priority check if the attribute is outside of a system
3892 // header. Values <= 100 are reserved for the implementation, and libc++
3893 // benefits from being able to specify values in that range.
3894 if ((prioritynum < 101 || prioritynum > 65535) &&
3895 !S.getSourceManager().isInSystemHeader(AL.getLoc())) {
3896 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range)
3897 << E->getSourceRange() << AL << 101 << 65535;
3898 AL.setInvalid();
3899 return;
3901 D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum));
3904 ErrorAttr *Sema::mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI,
3905 StringRef NewUserDiagnostic) {
3906 if (const auto *EA = D->getAttr<ErrorAttr>()) {
3907 std::string NewAttr = CI.getNormalizedFullName();
3908 assert((NewAttr == "error" || NewAttr == "warning") &&
3909 "unexpected normalized full name");
3910 bool Match = (EA->isError() && NewAttr == "error") ||
3911 (EA->isWarning() && NewAttr == "warning");
3912 if (!Match) {
3913 Diag(EA->getLocation(), diag::err_attributes_are_not_compatible)
3914 << CI << EA
3915 << (CI.isRegularKeywordAttribute() ||
3916 EA->isRegularKeywordAttribute());
3917 Diag(CI.getLoc(), diag::note_conflicting_attribute);
3918 return nullptr;
3920 if (EA->getUserDiagnostic() != NewUserDiagnostic) {
3921 Diag(CI.getLoc(), diag::warn_duplicate_attribute) << EA;
3922 Diag(EA->getLoc(), diag::note_previous_attribute);
3924 D->dropAttr<ErrorAttr>();
3926 return ::new (Context) ErrorAttr(Context, CI, NewUserDiagnostic);
3929 FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
3930 IdentifierInfo *Format, int FormatIdx,
3931 int FirstArg) {
3932 // Check whether we already have an equivalent format attribute.
3933 for (auto *F : D->specific_attrs<FormatAttr>()) {
3934 if (F->getType() == Format &&
3935 F->getFormatIdx() == FormatIdx &&
3936 F->getFirstArg() == FirstArg) {
3937 // If we don't have a valid location for this attribute, adopt the
3938 // location.
3939 if (F->getLocation().isInvalid())
3940 F->setRange(CI.getRange());
3941 return nullptr;
3945 return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg);
3948 /// Handle __attribute__((format(type,idx,firstarg))) attributes based on
3949 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3950 static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3951 if (!AL.isArgIdent(0)) {
3952 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3953 << AL << 1 << AANT_ArgumentIdentifier;
3954 return;
3957 // In C++ the implicit 'this' function parameter also counts, and they are
3958 // counted from one.
3959 bool HasImplicitThisParam = isInstanceMethod(D);
3960 unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
3962 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3963 StringRef Format = II->getName();
3965 if (normalizeName(Format)) {
3966 // If we've modified the string name, we need a new identifier for it.
3967 II = &S.Context.Idents.get(Format);
3970 // Check for supported formats.
3971 FormatAttrKind Kind = getFormatAttrKind(Format);
3973 if (Kind == IgnoredFormat)
3974 return;
3976 if (Kind == InvalidFormat) {
3977 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
3978 << AL << II->getName();
3979 return;
3982 // checks for the 2nd argument
3983 Expr *IdxExpr = AL.getArgAsExpr(1);
3984 uint32_t Idx;
3985 if (!checkUInt32Argument(S, AL, IdxExpr, Idx, 2))
3986 return;
3988 if (Idx < 1 || Idx > NumArgs) {
3989 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3990 << AL << 2 << IdxExpr->getSourceRange();
3991 return;
3994 // FIXME: Do we need to bounds check?
3995 unsigned ArgIdx = Idx - 1;
3997 if (HasImplicitThisParam) {
3998 if (ArgIdx == 0) {
3999 S.Diag(AL.getLoc(),
4000 diag::err_format_attribute_implicit_this_format_string)
4001 << IdxExpr->getSourceRange();
4002 return;
4004 ArgIdx--;
4007 // make sure the format string is really a string
4008 QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
4010 if (!isNSStringType(Ty, S.Context, true) &&
4011 !isCFStringType(Ty, S.Context) &&
4012 (!Ty->isPointerType() ||
4013 !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) {
4014 S.Diag(AL.getLoc(), diag::err_format_attribute_not)
4015 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, ArgIdx);
4016 return;
4019 // check the 3rd argument
4020 Expr *FirstArgExpr = AL.getArgAsExpr(2);
4021 uint32_t FirstArg;
4022 if (!checkUInt32Argument(S, AL, FirstArgExpr, FirstArg, 3))
4023 return;
4025 // FirstArg == 0 is is always valid.
4026 if (FirstArg != 0) {
4027 if (Kind == StrftimeFormat) {
4028 // If the kind is strftime, FirstArg must be 0 because strftime does not
4029 // use any variadic arguments.
4030 S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter)
4031 << FirstArgExpr->getSourceRange()
4032 << FixItHint::CreateReplacement(FirstArgExpr->getSourceRange(), "0");
4033 return;
4034 } else if (isFunctionOrMethodVariadic(D)) {
4035 // Else, if the function is variadic, then FirstArg must be 0 or the
4036 // "position" of the ... parameter. It's unusual to use 0 with variadic
4037 // functions, so the fixit proposes the latter.
4038 if (FirstArg != NumArgs + 1) {
4039 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
4040 << AL << 3 << FirstArgExpr->getSourceRange()
4041 << FixItHint::CreateReplacement(FirstArgExpr->getSourceRange(),
4042 std::to_string(NumArgs + 1));
4043 return;
4045 } else {
4046 // Inescapable GCC compatibility diagnostic.
4047 S.Diag(D->getLocation(), diag::warn_gcc_requires_variadic_function) << AL;
4048 if (FirstArg <= Idx) {
4049 // Else, the function is not variadic, and FirstArg must be 0 or any
4050 // parameter after the format parameter. We don't offer a fixit because
4051 // there are too many possible good values.
4052 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
4053 << AL << 3 << FirstArgExpr->getSourceRange();
4054 return;
4059 FormatAttr *NewAttr = S.mergeFormatAttr(D, AL, II, Idx, FirstArg);
4060 if (NewAttr)
4061 D->addAttr(NewAttr);
4064 /// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes.
4065 static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4066 // The index that identifies the callback callee is mandatory.
4067 if (AL.getNumArgs() == 0) {
4068 S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee)
4069 << AL.getRange();
4070 return;
4073 bool HasImplicitThisParam = isInstanceMethod(D);
4074 int32_t NumArgs = getFunctionOrMethodNumParams(D);
4076 FunctionDecl *FD = D->getAsFunction();
4077 assert(FD && "Expected a function declaration!");
4079 llvm::StringMap<int> NameIdxMapping;
4080 NameIdxMapping["__"] = -1;
4082 NameIdxMapping["this"] = 0;
4084 int Idx = 1;
4085 for (const ParmVarDecl *PVD : FD->parameters())
4086 NameIdxMapping[PVD->getName()] = Idx++;
4088 auto UnknownName = NameIdxMapping.end();
4090 SmallVector<int, 8> EncodingIndices;
4091 for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) {
4092 SourceRange SR;
4093 int32_t ArgIdx;
4095 if (AL.isArgIdent(I)) {
4096 IdentifierLoc *IdLoc = AL.getArgAsIdent(I);
4097 auto It = NameIdxMapping.find(IdLoc->Ident->getName());
4098 if (It == UnknownName) {
4099 S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown)
4100 << IdLoc->Ident << IdLoc->Loc;
4101 return;
4104 SR = SourceRange(IdLoc->Loc);
4105 ArgIdx = It->second;
4106 } else if (AL.isArgExpr(I)) {
4107 Expr *IdxExpr = AL.getArgAsExpr(I);
4109 // If the expression is not parseable as an int32_t we have a problem.
4110 if (!checkUInt32Argument(S, AL, IdxExpr, (uint32_t &)ArgIdx, I + 1,
4111 false)) {
4112 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
4113 << AL << (I + 1) << IdxExpr->getSourceRange();
4114 return;
4117 // Check oob, excluding the special values, 0 and -1.
4118 if (ArgIdx < -1 || ArgIdx > NumArgs) {
4119 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
4120 << AL << (I + 1) << IdxExpr->getSourceRange();
4121 return;
4124 SR = IdxExpr->getSourceRange();
4125 } else {
4126 llvm_unreachable("Unexpected ParsedAttr argument type!");
4129 if (ArgIdx == 0 && !HasImplicitThisParam) {
4130 S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available)
4131 << (I + 1) << SR;
4132 return;
4135 // Adjust for the case we do not have an implicit "this" parameter. In this
4136 // case we decrease all positive values by 1 to get LLVM argument indices.
4137 if (!HasImplicitThisParam && ArgIdx > 0)
4138 ArgIdx -= 1;
4140 EncodingIndices.push_back(ArgIdx);
4143 int CalleeIdx = EncodingIndices.front();
4144 // Check if the callee index is proper, thus not "this" and not "unknown".
4145 // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam"
4146 // is false and positive if "HasImplicitThisParam" is true.
4147 if (CalleeIdx < (int)HasImplicitThisParam) {
4148 S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee)
4149 << AL.getRange();
4150 return;
4153 // Get the callee type, note the index adjustment as the AST doesn't contain
4154 // the this type (which the callee cannot reference anyway!).
4155 const Type *CalleeType =
4156 getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam)
4157 .getTypePtr();
4158 if (!CalleeType || !CalleeType->isFunctionPointerType()) {
4159 S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
4160 << AL.getRange();
4161 return;
4164 const Type *CalleeFnType =
4165 CalleeType->getPointeeType()->getUnqualifiedDesugaredType();
4167 // TODO: Check the type of the callee arguments.
4169 const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(CalleeFnType);
4170 if (!CalleeFnProtoType) {
4171 S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type)
4172 << AL.getRange();
4173 return;
4176 if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) {
4177 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
4178 << AL << (unsigned)(EncodingIndices.size() - 1);
4179 return;
4182 if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) {
4183 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
4184 << AL << (unsigned)(EncodingIndices.size() - 1);
4185 return;
4188 if (CalleeFnProtoType->isVariadic()) {
4189 S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange();
4190 return;
4193 // Do not allow multiple callback attributes.
4194 if (D->hasAttr<CallbackAttr>()) {
4195 S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange();
4196 return;
4199 D->addAttr(::new (S.Context) CallbackAttr(
4200 S.Context, AL, EncodingIndices.data(), EncodingIndices.size()));
4203 static bool isFunctionLike(const Type &T) {
4204 // Check for explicit function types.
4205 // 'called_once' is only supported in Objective-C and it has
4206 // function pointers and block pointers.
4207 return T.isFunctionPointerType() || T.isBlockPointerType();
4210 /// Handle 'called_once' attribute.
4211 static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4212 // 'called_once' only applies to parameters representing functions.
4213 QualType T = cast<ParmVarDecl>(D)->getType();
4215 if (!isFunctionLike(*T)) {
4216 S.Diag(AL.getLoc(), diag::err_called_once_attribute_wrong_type);
4217 return;
4220 D->addAttr(::new (S.Context) CalledOnceAttr(S.Context, AL));
4223 static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4224 // Try to find the underlying union declaration.
4225 RecordDecl *RD = nullptr;
4226 const auto *TD = dyn_cast<TypedefNameDecl>(D);
4227 if (TD && TD->getUnderlyingType()->isUnionType())
4228 RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
4229 else
4230 RD = dyn_cast<RecordDecl>(D);
4232 if (!RD || !RD->isUnion()) {
4233 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4234 << AL << AL.isRegularKeywordAttribute() << ExpectedUnion;
4235 return;
4238 if (!RD->isCompleteDefinition()) {
4239 if (!RD->isBeingDefined())
4240 S.Diag(AL.getLoc(),
4241 diag::warn_transparent_union_attribute_not_definition);
4242 return;
4245 RecordDecl::field_iterator Field = RD->field_begin(),
4246 FieldEnd = RD->field_end();
4247 if (Field == FieldEnd) {
4248 S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
4249 return;
4252 FieldDecl *FirstField = *Field;
4253 QualType FirstType = FirstField->getType();
4254 if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
4255 S.Diag(FirstField->getLocation(),
4256 diag::warn_transparent_union_attribute_floating)
4257 << FirstType->isVectorType() << FirstType;
4258 return;
4261 if (FirstType->isIncompleteType())
4262 return;
4263 uint64_t FirstSize = S.Context.getTypeSize(FirstType);
4264 uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
4265 for (; Field != FieldEnd; ++Field) {
4266 QualType FieldType = Field->getType();
4267 if (FieldType->isIncompleteType())
4268 return;
4269 // FIXME: this isn't fully correct; we also need to test whether the
4270 // members of the union would all have the same calling convention as the
4271 // first member of the union. Checking just the size and alignment isn't
4272 // sufficient (consider structs passed on the stack instead of in registers
4273 // as an example).
4274 if (S.Context.getTypeSize(FieldType) != FirstSize ||
4275 S.Context.getTypeAlign(FieldType) > FirstAlign) {
4276 // Warn if we drop the attribute.
4277 bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
4278 unsigned FieldBits = isSize ? S.Context.getTypeSize(FieldType)
4279 : S.Context.getTypeAlign(FieldType);
4280 S.Diag(Field->getLocation(),
4281 diag::warn_transparent_union_attribute_field_size_align)
4282 << isSize << *Field << FieldBits;
4283 unsigned FirstBits = isSize ? FirstSize : FirstAlign;
4284 S.Diag(FirstField->getLocation(),
4285 diag::note_transparent_union_first_field_size_align)
4286 << isSize << FirstBits;
4287 return;
4291 RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL));
4294 void Sema::AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI,
4295 StringRef Str, MutableArrayRef<Expr *> Args) {
4296 auto *Attr = AnnotateAttr::Create(Context, Str, Args.data(), Args.size(), CI);
4297 if (ConstantFoldAttrArgs(
4298 CI, MutableArrayRef<Expr *>(Attr->args_begin(), Attr->args_end()))) {
4299 D->addAttr(Attr);
4303 static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4304 // Make sure that there is a string literal as the annotation's first
4305 // argument.
4306 StringRef Str;
4307 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
4308 return;
4310 llvm::SmallVector<Expr *, 4> Args;
4311 Args.reserve(AL.getNumArgs() - 1);
4312 for (unsigned Idx = 1; Idx < AL.getNumArgs(); Idx++) {
4313 assert(!AL.isArgIdent(Idx));
4314 Args.push_back(AL.getArgAsExpr(Idx));
4317 S.AddAnnotationAttr(D, AL, Str, Args);
4320 static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4321 S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0));
4324 void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) {
4325 AlignValueAttr TmpAttr(Context, CI, E);
4326 SourceLocation AttrLoc = CI.getLoc();
4328 QualType T;
4329 if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4330 T = TD->getUnderlyingType();
4331 else if (const auto *VD = dyn_cast<ValueDecl>(D))
4332 T = VD->getType();
4333 else
4334 llvm_unreachable("Unknown decl type for align_value");
4336 if (!T->isDependentType() && !T->isAnyPointerType() &&
4337 !T->isReferenceType() && !T->isMemberPointerType()) {
4338 Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
4339 << &TmpAttr << T << D->getSourceRange();
4340 return;
4343 if (!E->isValueDependent()) {
4344 llvm::APSInt Alignment;
4345 ExprResult ICE = VerifyIntegerConstantExpression(
4346 E, &Alignment, diag::err_align_value_attribute_argument_not_int);
4347 if (ICE.isInvalid())
4348 return;
4350 if (!Alignment.isPowerOf2()) {
4351 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
4352 << E->getSourceRange();
4353 return;
4356 D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get()));
4357 return;
4360 // Save dependent expressions in the AST to be instantiated.
4361 D->addAttr(::new (Context) AlignValueAttr(Context, CI, E));
4364 static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4365 if (AL.hasParsedType()) {
4366 const ParsedType &TypeArg = AL.getTypeArg();
4367 TypeSourceInfo *TInfo;
4368 (void)S.GetTypeFromParser(
4369 ParsedType::getFromOpaquePtr(TypeArg.getAsOpaquePtr()), &TInfo);
4370 if (AL.isPackExpansion() &&
4371 !TInfo->getType()->containsUnexpandedParameterPack()) {
4372 S.Diag(AL.getEllipsisLoc(),
4373 diag::err_pack_expansion_without_parameter_packs);
4374 return;
4377 if (!AL.isPackExpansion() &&
4378 S.DiagnoseUnexpandedParameterPack(TInfo->getTypeLoc().getBeginLoc(),
4379 TInfo, Sema::UPPC_Expression))
4380 return;
4382 S.AddAlignedAttr(D, AL, TInfo, AL.isPackExpansion());
4383 return;
4386 // check the attribute arguments.
4387 if (AL.getNumArgs() > 1) {
4388 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
4389 return;
4392 if (AL.getNumArgs() == 0) {
4393 D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr));
4394 return;
4397 Expr *E = AL.getArgAsExpr(0);
4398 if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
4399 S.Diag(AL.getEllipsisLoc(),
4400 diag::err_pack_expansion_without_parameter_packs);
4401 return;
4404 if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
4405 return;
4407 S.AddAlignedAttr(D, AL, E, AL.isPackExpansion());
4410 /// Perform checking of type validity
4412 /// C++11 [dcl.align]p1:
4413 /// An alignment-specifier may be applied to a variable or to a class
4414 /// data member, but it shall not be applied to a bit-field, a function
4415 /// parameter, the formal parameter of a catch clause, or a variable
4416 /// declared with the register storage class specifier. An
4417 /// alignment-specifier may also be applied to the declaration of a class
4418 /// or enumeration type.
4419 /// CWG 2354:
4420 /// CWG agreed to remove permission for alignas to be applied to
4421 /// enumerations.
4422 /// C11 6.7.5/2:
4423 /// An alignment attribute shall not be specified in a declaration of
4424 /// a typedef, or a bit-field, or a function, or a parameter, or an
4425 /// object declared with the register storage-class specifier.
4426 static bool validateAlignasAppliedType(Sema &S, Decl *D,
4427 const AlignedAttr &Attr,
4428 SourceLocation AttrLoc) {
4429 int DiagKind = -1;
4430 if (isa<ParmVarDecl>(D)) {
4431 DiagKind = 0;
4432 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
4433 if (VD->getStorageClass() == SC_Register)
4434 DiagKind = 1;
4435 if (VD->isExceptionVariable())
4436 DiagKind = 2;
4437 } else if (const auto *FD = dyn_cast<FieldDecl>(D)) {
4438 if (FD->isBitField())
4439 DiagKind = 3;
4440 } else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
4441 if (ED->getLangOpts().CPlusPlus)
4442 DiagKind = 4;
4443 } else if (!isa<TagDecl>(D)) {
4444 return S.Diag(AttrLoc, diag::err_attribute_wrong_decl_type)
4445 << &Attr << Attr.isRegularKeywordAttribute()
4446 << (Attr.isC11() ? ExpectedVariableOrField
4447 : ExpectedVariableFieldOrTag);
4449 if (DiagKind != -1) {
4450 return S.Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
4451 << &Attr << DiagKind;
4453 return false;
4456 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
4457 bool IsPackExpansion) {
4458 AlignedAttr TmpAttr(Context, CI, true, E);
4459 SourceLocation AttrLoc = CI.getLoc();
4461 // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
4462 if (TmpAttr.isAlignas() &&
4463 validateAlignasAppliedType(*this, D, TmpAttr, AttrLoc))
4464 return;
4466 if (E->isValueDependent()) {
4467 // We can't support a dependent alignment on a non-dependent type,
4468 // because we have no way to model that a type is "alignment-dependent"
4469 // but not dependent in any other way.
4470 if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
4471 if (!TND->getUnderlyingType()->isDependentType()) {
4472 Diag(AttrLoc, diag::err_alignment_dependent_typedef_name)
4473 << E->getSourceRange();
4474 return;
4478 // Save dependent expressions in the AST to be instantiated.
4479 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E);
4480 AA->setPackExpansion(IsPackExpansion);
4481 D->addAttr(AA);
4482 return;
4485 // FIXME: Cache the number on the AL object?
4486 llvm::APSInt Alignment;
4487 ExprResult ICE = VerifyIntegerConstantExpression(
4488 E, &Alignment, diag::err_aligned_attribute_argument_not_int);
4489 if (ICE.isInvalid())
4490 return;
4492 uint64_t MaximumAlignment = Sema::MaximumAlignment;
4493 if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF())
4494 MaximumAlignment = std::min(MaximumAlignment, uint64_t(8192));
4495 if (Alignment > MaximumAlignment) {
4496 Diag(AttrLoc, diag::err_attribute_aligned_too_great)
4497 << MaximumAlignment << E->getSourceRange();
4498 return;
4501 uint64_t AlignVal = Alignment.getZExtValue();
4502 // C++11 [dcl.align]p2:
4503 // -- if the constant expression evaluates to zero, the alignment
4504 // specifier shall have no effect
4505 // C11 6.7.5p6:
4506 // An alignment specification of zero has no effect.
4507 if (!(TmpAttr.isAlignas() && !Alignment)) {
4508 if (!llvm::isPowerOf2_64(AlignVal)) {
4509 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
4510 << E->getSourceRange();
4511 return;
4515 const auto *VD = dyn_cast<VarDecl>(D);
4516 if (VD) {
4517 unsigned MaxTLSAlign =
4518 Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign())
4519 .getQuantity();
4520 if (MaxTLSAlign && AlignVal > MaxTLSAlign &&
4521 VD->getTLSKind() != VarDecl::TLS_None) {
4522 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
4523 << (unsigned)AlignVal << VD << MaxTLSAlign;
4524 return;
4528 // On AIX, an aligned attribute can not decrease the alignment when applied
4529 // to a variable declaration with vector type.
4530 if (VD && Context.getTargetInfo().getTriple().isOSAIX()) {
4531 const Type *Ty = VD->getType().getTypePtr();
4532 if (Ty->isVectorType() && AlignVal < 16) {
4533 Diag(VD->getLocation(), diag::warn_aligned_attr_underaligned)
4534 << VD->getType() << 16;
4535 return;
4539 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get());
4540 AA->setPackExpansion(IsPackExpansion);
4541 AA->setCachedAlignmentValue(
4542 static_cast<unsigned>(AlignVal * Context.getCharWidth()));
4543 D->addAttr(AA);
4546 void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI,
4547 TypeSourceInfo *TS, bool IsPackExpansion) {
4548 AlignedAttr TmpAttr(Context, CI, false, TS);
4549 SourceLocation AttrLoc = CI.getLoc();
4551 // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
4552 if (TmpAttr.isAlignas() &&
4553 validateAlignasAppliedType(*this, D, TmpAttr, AttrLoc))
4554 return;
4556 if (TS->getType()->isDependentType()) {
4557 // We can't support a dependent alignment on a non-dependent type,
4558 // because we have no way to model that a type is "type-dependent"
4559 // but not dependent in any other way.
4560 if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
4561 if (!TND->getUnderlyingType()->isDependentType()) {
4562 Diag(AttrLoc, diag::err_alignment_dependent_typedef_name)
4563 << TS->getTypeLoc().getSourceRange();
4564 return;
4568 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS);
4569 AA->setPackExpansion(IsPackExpansion);
4570 D->addAttr(AA);
4571 return;
4574 const auto *VD = dyn_cast<VarDecl>(D);
4575 unsigned AlignVal = TmpAttr.getAlignment(Context);
4576 // On AIX, an aligned attribute can not decrease the alignment when applied
4577 // to a variable declaration with vector type.
4578 if (VD && Context.getTargetInfo().getTriple().isOSAIX()) {
4579 const Type *Ty = VD->getType().getTypePtr();
4580 if (Ty->isVectorType() &&
4581 Context.toCharUnitsFromBits(AlignVal).getQuantity() < 16) {
4582 Diag(VD->getLocation(), diag::warn_aligned_attr_underaligned)
4583 << VD->getType() << 16;
4584 return;
4588 AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS);
4589 AA->setPackExpansion(IsPackExpansion);
4590 AA->setCachedAlignmentValue(AlignVal);
4591 D->addAttr(AA);
4594 void Sema::CheckAlignasUnderalignment(Decl *D) {
4595 assert(D->hasAttrs() && "no attributes on decl");
4597 QualType UnderlyingTy, DiagTy;
4598 if (const auto *VD = dyn_cast<ValueDecl>(D)) {
4599 UnderlyingTy = DiagTy = VD->getType();
4600 } else {
4601 UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D));
4602 if (const auto *ED = dyn_cast<EnumDecl>(D))
4603 UnderlyingTy = ED->getIntegerType();
4605 if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
4606 return;
4608 // C++11 [dcl.align]p5, C11 6.7.5/4:
4609 // The combined effect of all alignment attributes in a declaration shall
4610 // not specify an alignment that is less strict than the alignment that
4611 // would otherwise be required for the entity being declared.
4612 AlignedAttr *AlignasAttr = nullptr;
4613 AlignedAttr *LastAlignedAttr = nullptr;
4614 unsigned Align = 0;
4615 for (auto *I : D->specific_attrs<AlignedAttr>()) {
4616 if (I->isAlignmentDependent())
4617 return;
4618 if (I->isAlignas())
4619 AlignasAttr = I;
4620 Align = std::max(Align, I->getAlignment(Context));
4621 LastAlignedAttr = I;
4624 if (Align && DiagTy->isSizelessType()) {
4625 Diag(LastAlignedAttr->getLocation(), diag::err_attribute_sizeless_type)
4626 << LastAlignedAttr << DiagTy;
4627 } else if (AlignasAttr && Align) {
4628 CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
4629 CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
4630 if (NaturalAlign > RequestedAlign)
4631 Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
4632 << DiagTy << (unsigned)NaturalAlign.getQuantity();
4636 bool Sema::checkMSInheritanceAttrOnDefinition(
4637 CXXRecordDecl *RD, SourceRange Range, bool BestCase,
4638 MSInheritanceModel ExplicitModel) {
4639 assert(RD->hasDefinition() && "RD has no definition!");
4641 // We may not have seen base specifiers or any virtual methods yet. We will
4642 // have to wait until the record is defined to catch any mismatches.
4643 if (!RD->getDefinition()->isCompleteDefinition())
4644 return false;
4646 // The unspecified model never matches what a definition could need.
4647 if (ExplicitModel == MSInheritanceModel::Unspecified)
4648 return false;
4650 if (BestCase) {
4651 if (RD->calculateInheritanceModel() == ExplicitModel)
4652 return false;
4653 } else {
4654 if (RD->calculateInheritanceModel() <= ExplicitModel)
4655 return false;
4658 Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
4659 << 0 /*definition*/;
4660 Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) << RD;
4661 return true;
4664 /// parseModeAttrArg - Parses attribute mode string and returns parsed type
4665 /// attribute.
4666 static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth,
4667 bool &IntegerMode, bool &ComplexMode,
4668 FloatModeKind &ExplicitType) {
4669 IntegerMode = true;
4670 ComplexMode = false;
4671 ExplicitType = FloatModeKind::NoFloat;
4672 switch (Str.size()) {
4673 case 2:
4674 switch (Str[0]) {
4675 case 'Q':
4676 DestWidth = 8;
4677 break;
4678 case 'H':
4679 DestWidth = 16;
4680 break;
4681 case 'S':
4682 DestWidth = 32;
4683 break;
4684 case 'D':
4685 DestWidth = 64;
4686 break;
4687 case 'X':
4688 DestWidth = 96;
4689 break;
4690 case 'K': // KFmode - IEEE quad precision (__float128)
4691 ExplicitType = FloatModeKind::Float128;
4692 DestWidth = Str[1] == 'I' ? 0 : 128;
4693 break;
4694 case 'T':
4695 ExplicitType = FloatModeKind::LongDouble;
4696 DestWidth = 128;
4697 break;
4698 case 'I':
4699 ExplicitType = FloatModeKind::Ibm128;
4700 DestWidth = Str[1] == 'I' ? 0 : 128;
4701 break;
4703 if (Str[1] == 'F') {
4704 IntegerMode = false;
4705 } else if (Str[1] == 'C') {
4706 IntegerMode = false;
4707 ComplexMode = true;
4708 } else if (Str[1] != 'I') {
4709 DestWidth = 0;
4711 break;
4712 case 4:
4713 // FIXME: glibc uses 'word' to define register_t; this is narrower than a
4714 // pointer on PIC16 and other embedded platforms.
4715 if (Str == "word")
4716 DestWidth = S.Context.getTargetInfo().getRegisterWidth();
4717 else if (Str == "byte")
4718 DestWidth = S.Context.getTargetInfo().getCharWidth();
4719 break;
4720 case 7:
4721 if (Str == "pointer")
4722 DestWidth = S.Context.getTargetInfo().getPointerWidth(LangAS::Default);
4723 break;
4724 case 11:
4725 if (Str == "unwind_word")
4726 DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
4727 break;
4731 /// handleModeAttr - This attribute modifies the width of a decl with primitive
4732 /// type.
4734 /// Despite what would be logical, the mode attribute is a decl attribute, not a
4735 /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
4736 /// HImode, not an intermediate pointer.
4737 static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4738 // This attribute isn't documented, but glibc uses it. It changes
4739 // the width of an int or unsigned int to the specified size.
4740 if (!AL.isArgIdent(0)) {
4741 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
4742 << AL << AANT_ArgumentIdentifier;
4743 return;
4746 IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident;
4748 S.AddModeAttr(D, AL, Name);
4751 void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI,
4752 IdentifierInfo *Name, bool InInstantiation) {
4753 StringRef Str = Name->getName();
4754 normalizeName(Str);
4755 SourceLocation AttrLoc = CI.getLoc();
4757 unsigned DestWidth = 0;
4758 bool IntegerMode = true;
4759 bool ComplexMode = false;
4760 FloatModeKind ExplicitType = FloatModeKind::NoFloat;
4761 llvm::APInt VectorSize(64, 0);
4762 if (Str.size() >= 4 && Str[0] == 'V') {
4763 // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2).
4764 size_t StrSize = Str.size();
4765 size_t VectorStringLength = 0;
4766 while ((VectorStringLength + 1) < StrSize &&
4767 isdigit(Str[VectorStringLength + 1]))
4768 ++VectorStringLength;
4769 if (VectorStringLength &&
4770 !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) &&
4771 VectorSize.isPowerOf2()) {
4772 parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth,
4773 IntegerMode, ComplexMode, ExplicitType);
4774 // Avoid duplicate warning from template instantiation.
4775 if (!InInstantiation)
4776 Diag(AttrLoc, diag::warn_vector_mode_deprecated);
4777 } else {
4778 VectorSize = 0;
4782 if (!VectorSize)
4783 parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode,
4784 ExplicitType);
4786 // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
4787 // and friends, at least with glibc.
4788 // FIXME: Make sure floating-point mappings are accurate
4789 // FIXME: Support XF and TF types
4790 if (!DestWidth) {
4791 Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name;
4792 return;
4795 QualType OldTy;
4796 if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
4797 OldTy = TD->getUnderlyingType();
4798 else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
4799 // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'.
4800 // Try to get type from enum declaration, default to int.
4801 OldTy = ED->getIntegerType();
4802 if (OldTy.isNull())
4803 OldTy = Context.IntTy;
4804 } else
4805 OldTy = cast<ValueDecl>(D)->getType();
4807 if (OldTy->isDependentType()) {
4808 D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4809 return;
4812 // Base type can also be a vector type (see PR17453).
4813 // Distinguish between base type and base element type.
4814 QualType OldElemTy = OldTy;
4815 if (const auto *VT = OldTy->getAs<VectorType>())
4816 OldElemTy = VT->getElementType();
4818 // GCC allows 'mode' attribute on enumeration types (even incomplete), except
4819 // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete
4820 // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected.
4821 if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) &&
4822 VectorSize.getBoolValue()) {
4823 Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange();
4824 return;
4826 bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() &&
4827 !OldElemTy->isBitIntType()) ||
4828 OldElemTy->getAs<EnumType>();
4830 if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() &&
4831 !IntegralOrAnyEnumType)
4832 Diag(AttrLoc, diag::err_mode_not_primitive);
4833 else if (IntegerMode) {
4834 if (!IntegralOrAnyEnumType)
4835 Diag(AttrLoc, diag::err_mode_wrong_type);
4836 } else if (ComplexMode) {
4837 if (!OldElemTy->isComplexType())
4838 Diag(AttrLoc, diag::err_mode_wrong_type);
4839 } else {
4840 if (!OldElemTy->isFloatingType())
4841 Diag(AttrLoc, diag::err_mode_wrong_type);
4844 QualType NewElemTy;
4846 if (IntegerMode)
4847 NewElemTy = Context.getIntTypeForBitwidth(DestWidth,
4848 OldElemTy->isSignedIntegerType());
4849 else
4850 NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitType);
4852 if (NewElemTy.isNull()) {
4853 Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
4854 return;
4857 if (ComplexMode) {
4858 NewElemTy = Context.getComplexType(NewElemTy);
4861 QualType NewTy = NewElemTy;
4862 if (VectorSize.getBoolValue()) {
4863 NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(),
4864 VectorKind::Generic);
4865 } else if (const auto *OldVT = OldTy->getAs<VectorType>()) {
4866 // Complex machine mode does not support base vector types.
4867 if (ComplexMode) {
4868 Diag(AttrLoc, diag::err_complex_mode_vector_type);
4869 return;
4871 unsigned NumElements = Context.getTypeSize(OldElemTy) *
4872 OldVT->getNumElements() /
4873 Context.getTypeSize(NewElemTy);
4874 NewTy =
4875 Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind());
4878 if (NewTy.isNull()) {
4879 Diag(AttrLoc, diag::err_mode_wrong_type);
4880 return;
4883 // Install the new type.
4884 if (auto *TD = dyn_cast<TypedefNameDecl>(D))
4885 TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
4886 else if (auto *ED = dyn_cast<EnumDecl>(D))
4887 ED->setIntegerType(NewTy);
4888 else
4889 cast<ValueDecl>(D)->setType(NewTy);
4891 D->addAttr(::new (Context) ModeAttr(Context, CI, Name));
4894 static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4895 D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL));
4898 AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D,
4899 const AttributeCommonInfo &CI,
4900 const IdentifierInfo *Ident) {
4901 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4902 Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident;
4903 Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4904 return nullptr;
4907 if (D->hasAttr<AlwaysInlineAttr>())
4908 return nullptr;
4910 return ::new (Context) AlwaysInlineAttr(Context, CI);
4913 InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D,
4914 const ParsedAttr &AL) {
4915 if (const auto *VD = dyn_cast<VarDecl>(D)) {
4916 // Attribute applies to Var but not any subclass of it (like ParmVar,
4917 // ImplicitParm or VarTemplateSpecialization).
4918 if (VD->getKind() != Decl::Var) {
4919 Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4920 << AL << AL.isRegularKeywordAttribute()
4921 << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
4922 : ExpectedVariableOrFunction);
4923 return nullptr;
4925 // Attribute does not apply to non-static local variables.
4926 if (VD->hasLocalStorage()) {
4927 Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4928 return nullptr;
4932 return ::new (Context) InternalLinkageAttr(Context, AL);
4934 InternalLinkageAttr *
4935 Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) {
4936 if (const auto *VD = dyn_cast<VarDecl>(D)) {
4937 // Attribute applies to Var but not any subclass of it (like ParmVar,
4938 // ImplicitParm or VarTemplateSpecialization).
4939 if (VD->getKind() != Decl::Var) {
4940 Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type)
4941 << &AL << AL.isRegularKeywordAttribute()
4942 << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
4943 : ExpectedVariableOrFunction);
4944 return nullptr;
4946 // Attribute does not apply to non-static local variables.
4947 if (VD->hasLocalStorage()) {
4948 Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
4949 return nullptr;
4953 return ::new (Context) InternalLinkageAttr(Context, AL);
4956 MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) {
4957 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4958 Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'";
4959 Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4960 return nullptr;
4963 if (D->hasAttr<MinSizeAttr>())
4964 return nullptr;
4966 return ::new (Context) MinSizeAttr(Context, CI);
4969 SwiftNameAttr *Sema::mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA,
4970 StringRef Name) {
4971 if (const auto *PrevSNA = D->getAttr<SwiftNameAttr>()) {
4972 if (PrevSNA->getName() != Name && !PrevSNA->isImplicit()) {
4973 Diag(PrevSNA->getLocation(), diag::err_attributes_are_not_compatible)
4974 << PrevSNA << &SNA
4975 << (PrevSNA->isRegularKeywordAttribute() ||
4976 SNA.isRegularKeywordAttribute());
4977 Diag(SNA.getLoc(), diag::note_conflicting_attribute);
4980 D->dropAttr<SwiftNameAttr>();
4982 return ::new (Context) SwiftNameAttr(Context, SNA, Name);
4985 OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D,
4986 const AttributeCommonInfo &CI) {
4987 if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
4988 Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
4989 Diag(CI.getLoc(), diag::note_conflicting_attribute);
4990 D->dropAttr<AlwaysInlineAttr>();
4992 if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
4993 Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
4994 Diag(CI.getLoc(), diag::note_conflicting_attribute);
4995 D->dropAttr<MinSizeAttr>();
4998 if (D->hasAttr<OptimizeNoneAttr>())
4999 return nullptr;
5001 return ::new (Context) OptimizeNoneAttr(Context, CI);
5004 static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5005 if (AlwaysInlineAttr *Inline =
5006 S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName()))
5007 D->addAttr(Inline);
5010 static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5011 if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL))
5012 D->addAttr(MinSize);
5015 static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5016 if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL))
5017 D->addAttr(Optnone);
5020 static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5021 const auto *VD = cast<VarDecl>(D);
5022 if (VD->hasLocalStorage()) {
5023 S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
5024 return;
5026 // constexpr variable may already get an implicit constant attr, which should
5027 // be replaced by the explicit constant attr.
5028 if (auto *A = D->getAttr<CUDAConstantAttr>()) {
5029 if (!A->isImplicit())
5030 return;
5031 D->dropAttr<CUDAConstantAttr>();
5033 D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL));
5036 static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5037 const auto *VD = cast<VarDecl>(D);
5038 // extern __shared__ is only allowed on arrays with no length (e.g.
5039 // "int x[]").
5040 if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() &&
5041 !isa<IncompleteArrayType>(VD->getType())) {
5042 S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD;
5043 return;
5045 if (S.getLangOpts().CUDA && VD->hasLocalStorage() &&
5046 S.CUDADiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared)
5047 << S.CurrentCUDATarget())
5048 return;
5049 D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL));
5052 static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5053 const auto *FD = cast<FunctionDecl>(D);
5054 if (!FD->getReturnType()->isVoidType() &&
5055 !FD->getReturnType()->getAs<AutoType>() &&
5056 !FD->getReturnType()->isInstantiationDependentType()) {
5057 SourceRange RTRange = FD->getReturnTypeSourceRange();
5058 S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
5059 << FD->getType()
5060 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
5061 : FixItHint());
5062 return;
5064 if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
5065 if (Method->isInstance()) {
5066 S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method)
5067 << Method;
5068 return;
5070 S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method;
5072 // Only warn for "inline" when compiling for host, to cut down on noise.
5073 if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice)
5074 S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD;
5076 if (AL.getKind() == ParsedAttr::AT_NVPTXKernel)
5077 D->addAttr(::new (S.Context) NVPTXKernelAttr(S.Context, AL));
5078 else
5079 D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL));
5080 // In host compilation the kernel is emitted as a stub function, which is
5081 // a helper function for launching the kernel. The instructions in the helper
5082 // function has nothing to do with the source code of the kernel. Do not emit
5083 // debug info for the stub function to avoid confusing the debugger.
5084 if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice)
5085 D->addAttr(NoDebugAttr::CreateImplicit(S.Context));
5088 static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5089 if (const auto *VD = dyn_cast<VarDecl>(D)) {
5090 if (VD->hasLocalStorage()) {
5091 S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
5092 return;
5096 if (auto *A = D->getAttr<CUDADeviceAttr>()) {
5097 if (!A->isImplicit())
5098 return;
5099 D->dropAttr<CUDADeviceAttr>();
5101 D->addAttr(::new (S.Context) CUDADeviceAttr(S.Context, AL));
5104 static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5105 if (const auto *VD = dyn_cast<VarDecl>(D)) {
5106 if (VD->hasLocalStorage()) {
5107 S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev);
5108 return;
5111 if (!D->hasAttr<HIPManagedAttr>())
5112 D->addAttr(::new (S.Context) HIPManagedAttr(S.Context, AL));
5113 if (!D->hasAttr<CUDADeviceAttr>())
5114 D->addAttr(CUDADeviceAttr::CreateImplicit(S.Context));
5117 static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5118 const auto *Fn = cast<FunctionDecl>(D);
5119 if (!Fn->isInlineSpecified()) {
5120 S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
5121 return;
5124 if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern)
5125 S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern);
5127 D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL));
5130 static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5131 if (hasDeclarator(D)) return;
5133 // Diagnostic is emitted elsewhere: here we store the (valid) AL
5134 // in the Decl node for syntactic reasoning, e.g., pretty-printing.
5135 CallingConv CC;
5136 if (S.CheckCallingConvAttr(AL, CC, /*FD*/ nullptr,
5137 S.IdentifyCUDATarget(dyn_cast<FunctionDecl>(D))))
5138 return;
5140 if (!isa<ObjCMethodDecl>(D)) {
5141 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
5142 << AL << AL.isRegularKeywordAttribute() << ExpectedFunctionOrMethod;
5143 return;
5146 switch (AL.getKind()) {
5147 case ParsedAttr::AT_FastCall:
5148 D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL));
5149 return;
5150 case ParsedAttr::AT_StdCall:
5151 D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL));
5152 return;
5153 case ParsedAttr::AT_ThisCall:
5154 D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL));
5155 return;
5156 case ParsedAttr::AT_CDecl:
5157 D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL));
5158 return;
5159 case ParsedAttr::AT_Pascal:
5160 D->addAttr(::new (S.Context) PascalAttr(S.Context, AL));
5161 return;
5162 case ParsedAttr::AT_SwiftCall:
5163 D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL));
5164 return;
5165 case ParsedAttr::AT_SwiftAsyncCall:
5166 D->addAttr(::new (S.Context) SwiftAsyncCallAttr(S.Context, AL));
5167 return;
5168 case ParsedAttr::AT_VectorCall:
5169 D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL));
5170 return;
5171 case ParsedAttr::AT_MSABI:
5172 D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL));
5173 return;
5174 case ParsedAttr::AT_SysVABI:
5175 D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL));
5176 return;
5177 case ParsedAttr::AT_RegCall:
5178 D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL));
5179 return;
5180 case ParsedAttr::AT_Pcs: {
5181 PcsAttr::PCSType PCS;
5182 switch (CC) {
5183 case CC_AAPCS:
5184 PCS = PcsAttr::AAPCS;
5185 break;
5186 case CC_AAPCS_VFP:
5187 PCS = PcsAttr::AAPCS_VFP;
5188 break;
5189 default:
5190 llvm_unreachable("unexpected calling convention in pcs attribute");
5193 D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS));
5194 return;
5196 case ParsedAttr::AT_AArch64VectorPcs:
5197 D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL));
5198 return;
5199 case ParsedAttr::AT_AArch64SVEPcs:
5200 D->addAttr(::new (S.Context) AArch64SVEPcsAttr(S.Context, AL));
5201 return;
5202 case ParsedAttr::AT_AMDGPUKernelCall:
5203 D->addAttr(::new (S.Context) AMDGPUKernelCallAttr(S.Context, AL));
5204 return;
5205 case ParsedAttr::AT_IntelOclBicc:
5206 D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL));
5207 return;
5208 case ParsedAttr::AT_PreserveMost:
5209 D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL));
5210 return;
5211 case ParsedAttr::AT_PreserveAll:
5212 D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL));
5213 return;
5214 case ParsedAttr::AT_M68kRTD:
5215 D->addAttr(::new (S.Context) M68kRTDAttr(S.Context, AL));
5216 return;
5217 default:
5218 llvm_unreachable("unexpected attribute kind");
5222 static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5223 if (!AL.checkAtLeastNumArgs(S, 1))
5224 return;
5226 std::vector<StringRef> DiagnosticIdentifiers;
5227 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
5228 StringRef RuleName;
5230 if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr))
5231 return;
5233 // FIXME: Warn if the rule name is unknown. This is tricky because only
5234 // clang-tidy knows about available rules.
5235 DiagnosticIdentifiers.push_back(RuleName);
5237 D->addAttr(::new (S.Context)
5238 SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(),
5239 DiagnosticIdentifiers.size()));
5242 static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5243 TypeSourceInfo *DerefTypeLoc = nullptr;
5244 QualType ParmType;
5245 if (AL.hasParsedType()) {
5246 ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc);
5248 unsigned SelectIdx = ~0U;
5249 if (ParmType->isReferenceType())
5250 SelectIdx = 0;
5251 else if (ParmType->isArrayType())
5252 SelectIdx = 1;
5254 if (SelectIdx != ~0U) {
5255 S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument)
5256 << SelectIdx << AL;
5257 return;
5261 // To check if earlier decl attributes do not conflict the newly parsed ones
5262 // we always add (and check) the attribute to the canonical decl. We need
5263 // to repeat the check for attribute mutual exclusion because we're attaching
5264 // all of the attributes to the canonical declaration rather than the current
5265 // declaration.
5266 D = D->getCanonicalDecl();
5267 if (AL.getKind() == ParsedAttr::AT_Owner) {
5268 if (checkAttrMutualExclusion<PointerAttr>(S, D, AL))
5269 return;
5270 if (const auto *OAttr = D->getAttr<OwnerAttr>()) {
5271 const Type *ExistingDerefType = OAttr->getDerefTypeLoc()
5272 ? OAttr->getDerefType().getTypePtr()
5273 : nullptr;
5274 if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
5275 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
5276 << AL << OAttr
5277 << (AL.isRegularKeywordAttribute() ||
5278 OAttr->isRegularKeywordAttribute());
5279 S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute);
5281 return;
5283 for (Decl *Redecl : D->redecls()) {
5284 Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc));
5286 } else {
5287 if (checkAttrMutualExclusion<OwnerAttr>(S, D, AL))
5288 return;
5289 if (const auto *PAttr = D->getAttr<PointerAttr>()) {
5290 const Type *ExistingDerefType = PAttr->getDerefTypeLoc()
5291 ? PAttr->getDerefType().getTypePtr()
5292 : nullptr;
5293 if (ExistingDerefType != ParmType.getTypePtrOrNull()) {
5294 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
5295 << AL << PAttr
5296 << (AL.isRegularKeywordAttribute() ||
5297 PAttr->isRegularKeywordAttribute());
5298 S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute);
5300 return;
5302 for (Decl *Redecl : D->redecls()) {
5303 Redecl->addAttr(::new (S.Context)
5304 PointerAttr(S.Context, AL, DerefTypeLoc));
5309 static void handleRandomizeLayoutAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5310 if (checkAttrMutualExclusion<NoRandomizeLayoutAttr>(S, D, AL))
5311 return;
5312 if (!D->hasAttr<RandomizeLayoutAttr>())
5313 D->addAttr(::new (S.Context) RandomizeLayoutAttr(S.Context, AL));
5316 static void handleNoRandomizeLayoutAttr(Sema &S, Decl *D,
5317 const ParsedAttr &AL) {
5318 if (checkAttrMutualExclusion<RandomizeLayoutAttr>(S, D, AL))
5319 return;
5320 if (!D->hasAttr<NoRandomizeLayoutAttr>())
5321 D->addAttr(::new (S.Context) NoRandomizeLayoutAttr(S.Context, AL));
5324 bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC,
5325 const FunctionDecl *FD,
5326 CUDAFunctionTarget CFT) {
5327 if (Attrs.isInvalid())
5328 return true;
5330 if (Attrs.hasProcessingCache()) {
5331 CC = (CallingConv) Attrs.getProcessingCache();
5332 return false;
5335 unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0;
5336 if (!Attrs.checkExactlyNumArgs(*this, ReqArgs)) {
5337 Attrs.setInvalid();
5338 return true;
5341 // TODO: diagnose uses of these conventions on the wrong target.
5342 switch (Attrs.getKind()) {
5343 case ParsedAttr::AT_CDecl:
5344 CC = CC_C;
5345 break;
5346 case ParsedAttr::AT_FastCall:
5347 CC = CC_X86FastCall;
5348 break;
5349 case ParsedAttr::AT_StdCall:
5350 CC = CC_X86StdCall;
5351 break;
5352 case ParsedAttr::AT_ThisCall:
5353 CC = CC_X86ThisCall;
5354 break;
5355 case ParsedAttr::AT_Pascal:
5356 CC = CC_X86Pascal;
5357 break;
5358 case ParsedAttr::AT_SwiftCall:
5359 CC = CC_Swift;
5360 break;
5361 case ParsedAttr::AT_SwiftAsyncCall:
5362 CC = CC_SwiftAsync;
5363 break;
5364 case ParsedAttr::AT_VectorCall:
5365 CC = CC_X86VectorCall;
5366 break;
5367 case ParsedAttr::AT_AArch64VectorPcs:
5368 CC = CC_AArch64VectorCall;
5369 break;
5370 case ParsedAttr::AT_AArch64SVEPcs:
5371 CC = CC_AArch64SVEPCS;
5372 break;
5373 case ParsedAttr::AT_AMDGPUKernelCall:
5374 CC = CC_AMDGPUKernelCall;
5375 break;
5376 case ParsedAttr::AT_RegCall:
5377 CC = CC_X86RegCall;
5378 break;
5379 case ParsedAttr::AT_MSABI:
5380 CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
5381 CC_Win64;
5382 break;
5383 case ParsedAttr::AT_SysVABI:
5384 CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
5385 CC_C;
5386 break;
5387 case ParsedAttr::AT_Pcs: {
5388 StringRef StrRef;
5389 if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) {
5390 Attrs.setInvalid();
5391 return true;
5393 if (StrRef == "aapcs") {
5394 CC = CC_AAPCS;
5395 break;
5396 } else if (StrRef == "aapcs-vfp") {
5397 CC = CC_AAPCS_VFP;
5398 break;
5401 Attrs.setInvalid();
5402 Diag(Attrs.getLoc(), diag::err_invalid_pcs);
5403 return true;
5405 case ParsedAttr::AT_IntelOclBicc:
5406 CC = CC_IntelOclBicc;
5407 break;
5408 case ParsedAttr::AT_PreserveMost:
5409 CC = CC_PreserveMost;
5410 break;
5411 case ParsedAttr::AT_PreserveAll:
5412 CC = CC_PreserveAll;
5413 break;
5414 case ParsedAttr::AT_M68kRTD:
5415 CC = CC_M68kRTD;
5416 break;
5417 default: llvm_unreachable("unexpected attribute kind");
5420 TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK;
5421 const TargetInfo &TI = Context.getTargetInfo();
5422 // CUDA functions may have host and/or device attributes which indicate
5423 // their targeted execution environment, therefore the calling convention
5424 // of functions in CUDA should be checked against the target deduced based
5425 // on their host/device attributes.
5426 if (LangOpts.CUDA) {
5427 auto *Aux = Context.getAuxTargetInfo();
5428 assert(FD || CFT != CFT_InvalidTarget);
5429 auto CudaTarget = FD ? IdentifyCUDATarget(FD) : CFT;
5430 bool CheckHost = false, CheckDevice = false;
5431 switch (CudaTarget) {
5432 case CFT_HostDevice:
5433 CheckHost = true;
5434 CheckDevice = true;
5435 break;
5436 case CFT_Host:
5437 CheckHost = true;
5438 break;
5439 case CFT_Device:
5440 case CFT_Global:
5441 CheckDevice = true;
5442 break;
5443 case CFT_InvalidTarget:
5444 llvm_unreachable("unexpected cuda target");
5446 auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI;
5447 auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux;
5448 if (CheckHost && HostTI)
5449 A = HostTI->checkCallingConvention(CC);
5450 if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI)
5451 A = DeviceTI->checkCallingConvention(CC);
5452 } else {
5453 A = TI.checkCallingConvention(CC);
5456 switch (A) {
5457 case TargetInfo::CCCR_OK:
5458 break;
5460 case TargetInfo::CCCR_Ignore:
5461 // Treat an ignored convention as if it was an explicit C calling convention
5462 // attribute. For example, __stdcall on Win x64 functions as __cdecl, so
5463 // that command line flags that change the default convention to
5464 // __vectorcall don't affect declarations marked __stdcall.
5465 CC = CC_C;
5466 break;
5468 case TargetInfo::CCCR_Error:
5469 Diag(Attrs.getLoc(), diag::error_cconv_unsupported)
5470 << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
5471 break;
5473 case TargetInfo::CCCR_Warning: {
5474 Diag(Attrs.getLoc(), diag::warn_cconv_unsupported)
5475 << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget;
5477 // This convention is not valid for the target. Use the default function or
5478 // method calling convention.
5479 bool IsCXXMethod = false, IsVariadic = false;
5480 if (FD) {
5481 IsCXXMethod = FD->isCXXInstanceMember();
5482 IsVariadic = FD->isVariadic();
5484 CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod);
5485 break;
5489 Attrs.setProcessingCache((unsigned) CC);
5490 return false;
5493 /// Pointer-like types in the default address space.
5494 static bool isValidSwiftContextType(QualType Ty) {
5495 if (!Ty->hasPointerRepresentation())
5496 return Ty->isDependentType();
5497 return Ty->getPointeeType().getAddressSpace() == LangAS::Default;
5500 /// Pointers and references in the default address space.
5501 static bool isValidSwiftIndirectResultType(QualType Ty) {
5502 if (const auto *PtrType = Ty->getAs<PointerType>()) {
5503 Ty = PtrType->getPointeeType();
5504 } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
5505 Ty = RefType->getPointeeType();
5506 } else {
5507 return Ty->isDependentType();
5509 return Ty.getAddressSpace() == LangAS::Default;
5512 /// Pointers and references to pointers in the default address space.
5513 static bool isValidSwiftErrorResultType(QualType Ty) {
5514 if (const auto *PtrType = Ty->getAs<PointerType>()) {
5515 Ty = PtrType->getPointeeType();
5516 } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
5517 Ty = RefType->getPointeeType();
5518 } else {
5519 return Ty->isDependentType();
5521 if (!Ty.getQualifiers().empty())
5522 return false;
5523 return isValidSwiftContextType(Ty);
5526 void Sema::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
5527 ParameterABI abi) {
5529 QualType type = cast<ParmVarDecl>(D)->getType();
5531 if (auto existingAttr = D->getAttr<ParameterABIAttr>()) {
5532 if (existingAttr->getABI() != abi) {
5533 Diag(CI.getLoc(), diag::err_attributes_are_not_compatible)
5534 << getParameterABISpelling(abi) << existingAttr
5535 << (CI.isRegularKeywordAttribute() ||
5536 existingAttr->isRegularKeywordAttribute());
5537 Diag(existingAttr->getLocation(), diag::note_conflicting_attribute);
5538 return;
5542 switch (abi) {
5543 case ParameterABI::Ordinary:
5544 llvm_unreachable("explicit attribute for ordinary parameter ABI?");
5546 case ParameterABI::SwiftContext:
5547 if (!isValidSwiftContextType(type)) {
5548 Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5549 << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
5551 D->addAttr(::new (Context) SwiftContextAttr(Context, CI));
5552 return;
5554 case ParameterABI::SwiftAsyncContext:
5555 if (!isValidSwiftContextType(type)) {
5556 Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5557 << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
5559 D->addAttr(::new (Context) SwiftAsyncContextAttr(Context, CI));
5560 return;
5562 case ParameterABI::SwiftErrorResult:
5563 if (!isValidSwiftErrorResultType(type)) {
5564 Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5565 << getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type;
5567 D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI));
5568 return;
5570 case ParameterABI::SwiftIndirectResult:
5571 if (!isValidSwiftIndirectResultType(type)) {
5572 Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
5573 << getParameterABISpelling(abi) << /*pointer*/ 0 << type;
5575 D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI));
5576 return;
5578 llvm_unreachable("bad parameter ABI attribute");
5581 /// Checks a regparm attribute, returning true if it is ill-formed and
5582 /// otherwise setting numParams to the appropriate value.
5583 bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) {
5584 if (AL.isInvalid())
5585 return true;
5587 if (!AL.checkExactlyNumArgs(*this, 1)) {
5588 AL.setInvalid();
5589 return true;
5592 uint32_t NP;
5593 Expr *NumParamsExpr = AL.getArgAsExpr(0);
5594 if (!checkUInt32Argument(*this, AL, NumParamsExpr, NP)) {
5595 AL.setInvalid();
5596 return true;
5599 if (Context.getTargetInfo().getRegParmMax() == 0) {
5600 Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform)
5601 << NumParamsExpr->getSourceRange();
5602 AL.setInvalid();
5603 return true;
5606 numParams = NP;
5607 if (numParams > Context.getTargetInfo().getRegParmMax()) {
5608 Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number)
5609 << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
5610 AL.setInvalid();
5611 return true;
5614 return false;
5617 // Helper to get CudaArch.
5618 static CudaArch getCudaArch(const TargetInfo &TI) {
5619 if (!TI.getTriple().isNVPTX())
5620 llvm_unreachable("getCudaArch is only valid for NVPTX triple");
5621 auto &TO = TI.getTargetOpts();
5622 return StringToCudaArch(TO.CPU);
5625 // Checks whether an argument of launch_bounds attribute is
5626 // acceptable, performs implicit conversion to Rvalue, and returns
5627 // non-nullptr Expr result on success. Otherwise, it returns nullptr
5628 // and may output an error.
5629 static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E,
5630 const CUDALaunchBoundsAttr &AL,
5631 const unsigned Idx) {
5632 if (S.DiagnoseUnexpandedParameterPack(E))
5633 return nullptr;
5635 // Accept template arguments for now as they depend on something else.
5636 // We'll get to check them when they eventually get instantiated.
5637 if (E->isValueDependent())
5638 return E;
5640 std::optional<llvm::APSInt> I = llvm::APSInt(64);
5641 if (!(I = E->getIntegerConstantExpr(S.Context))) {
5642 S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
5643 << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
5644 return nullptr;
5646 // Make sure we can fit it in 32 bits.
5647 if (!I->isIntN(32)) {
5648 S.Diag(E->getExprLoc(), diag::err_ice_too_large)
5649 << toString(*I, 10, false) << 32 << /* Unsigned */ 1;
5650 return nullptr;
5652 if (*I < 0)
5653 S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
5654 << &AL << Idx << E->getSourceRange();
5656 // We may need to perform implicit conversion of the argument.
5657 InitializedEntity Entity = InitializedEntity::InitializeParameter(
5658 S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
5659 ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
5660 assert(!ValArg.isInvalid() &&
5661 "Unexpected PerformCopyInitialization() failure.");
5663 return ValArg.getAs<Expr>();
5666 CUDALaunchBoundsAttr *
5667 Sema::CreateLaunchBoundsAttr(const AttributeCommonInfo &CI, Expr *MaxThreads,
5668 Expr *MinBlocks, Expr *MaxBlocks) {
5669 CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks, MaxBlocks);
5670 MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0);
5671 if (!MaxThreads)
5672 return nullptr;
5674 if (MinBlocks) {
5675 MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1);
5676 if (!MinBlocks)
5677 return nullptr;
5680 if (MaxBlocks) {
5681 // '.maxclusterrank' ptx directive requires .target sm_90 or higher.
5682 auto SM = getCudaArch(Context.getTargetInfo());
5683 if (SM == CudaArch::UNKNOWN || SM < CudaArch::SM_90) {
5684 Diag(MaxBlocks->getBeginLoc(), diag::warn_cuda_maxclusterrank_sm_90)
5685 << CudaArchToString(SM) << CI << MaxBlocks->getSourceRange();
5686 // Ignore it by setting MaxBlocks to null;
5687 MaxBlocks = nullptr;
5688 } else {
5689 MaxBlocks = makeLaunchBoundsArgExpr(*this, MaxBlocks, TmpAttr, 2);
5690 if (!MaxBlocks)
5691 return nullptr;
5695 return ::new (Context)
5696 CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks, MaxBlocks);
5699 void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
5700 Expr *MaxThreads, Expr *MinBlocks,
5701 Expr *MaxBlocks) {
5702 if (auto *Attr = CreateLaunchBoundsAttr(CI, MaxThreads, MinBlocks, MaxBlocks))
5703 D->addAttr(Attr);
5706 static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5707 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 3))
5708 return;
5710 S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0),
5711 AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr,
5712 AL.getNumArgs() > 2 ? AL.getArgAsExpr(2) : nullptr);
5715 static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
5716 const ParsedAttr &AL) {
5717 if (!AL.isArgIdent(0)) {
5718 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5719 << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier;
5720 return;
5723 ParamIdx ArgumentIdx;
5724 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, AL.getArgAsExpr(1),
5725 ArgumentIdx))
5726 return;
5728 ParamIdx TypeTagIdx;
5729 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 3, AL.getArgAsExpr(2),
5730 TypeTagIdx))
5731 return;
5733 bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag";
5734 if (IsPointer) {
5735 // Ensure that buffer has a pointer type.
5736 unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex();
5737 if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) ||
5738 !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType())
5739 S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0;
5742 D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr(
5743 S.Context, AL, AL.getArgAsIdent(0)->Ident, ArgumentIdx, TypeTagIdx,
5744 IsPointer));
5747 static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
5748 const ParsedAttr &AL) {
5749 if (!AL.isArgIdent(0)) {
5750 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5751 << AL << 1 << AANT_ArgumentIdentifier;
5752 return;
5755 if (!AL.checkExactlyNumArgs(S, 1))
5756 return;
5758 if (!isa<VarDecl>(D)) {
5759 S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type)
5760 << AL << AL.isRegularKeywordAttribute() << ExpectedVariable;
5761 return;
5764 IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident;
5765 TypeSourceInfo *MatchingCTypeLoc = nullptr;
5766 S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc);
5767 assert(MatchingCTypeLoc && "no type source info for attribute argument");
5769 D->addAttr(::new (S.Context) TypeTagForDatatypeAttr(
5770 S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(),
5771 AL.getMustBeNull()));
5774 static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5775 ParamIdx ArgCount;
5777 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, AL.getArgAsExpr(0),
5778 ArgCount,
5779 true /* CanIndexImplicitThis */))
5780 return;
5782 // ArgCount isn't a parameter index [0;n), it's a count [1;n]
5783 D->addAttr(::new (S.Context)
5784 XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex()));
5787 static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D,
5788 const ParsedAttr &AL) {
5789 uint32_t Count = 0, Offset = 0;
5790 if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Count, 0, true))
5791 return;
5792 if (AL.getNumArgs() == 2) {
5793 Expr *Arg = AL.getArgAsExpr(1);
5794 if (!checkUInt32Argument(S, AL, Arg, Offset, 1, true))
5795 return;
5796 if (Count < Offset) {
5797 S.Diag(getAttrLoc(AL), diag::err_attribute_argument_out_of_range)
5798 << &AL << 0 << Count << Arg->getBeginLoc();
5799 return;
5802 D->addAttr(::new (S.Context)
5803 PatchableFunctionEntryAttr(S.Context, AL, Count, Offset));
5806 namespace {
5807 struct IntrinToName {
5808 uint32_t Id;
5809 int32_t FullName;
5810 int32_t ShortName;
5812 } // unnamed namespace
5814 static bool ArmBuiltinAliasValid(unsigned BuiltinID, StringRef AliasName,
5815 ArrayRef<IntrinToName> Map,
5816 const char *IntrinNames) {
5817 if (AliasName.startswith("__arm_"))
5818 AliasName = AliasName.substr(6);
5819 const IntrinToName *It =
5820 llvm::lower_bound(Map, BuiltinID, [](const IntrinToName &L, unsigned Id) {
5821 return L.Id < Id;
5823 if (It == Map.end() || It->Id != BuiltinID)
5824 return false;
5825 StringRef FullName(&IntrinNames[It->FullName]);
5826 if (AliasName == FullName)
5827 return true;
5828 if (It->ShortName == -1)
5829 return false;
5830 StringRef ShortName(&IntrinNames[It->ShortName]);
5831 return AliasName == ShortName;
5834 static bool ArmMveAliasValid(unsigned BuiltinID, StringRef AliasName) {
5835 #include "clang/Basic/arm_mve_builtin_aliases.inc"
5836 // The included file defines:
5837 // - ArrayRef<IntrinToName> Map
5838 // - const char IntrinNames[]
5839 return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
5842 static bool ArmCdeAliasValid(unsigned BuiltinID, StringRef AliasName) {
5843 #include "clang/Basic/arm_cde_builtin_aliases.inc"
5844 return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames);
5847 static bool ArmSveAliasValid(ASTContext &Context, unsigned BuiltinID,
5848 StringRef AliasName) {
5849 if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
5850 BuiltinID = Context.BuiltinInfo.getAuxBuiltinID(BuiltinID);
5851 return BuiltinID >= AArch64::FirstSVEBuiltin &&
5852 BuiltinID <= AArch64::LastSVEBuiltin;
5855 static bool ArmSmeAliasValid(ASTContext &Context, unsigned BuiltinID,
5856 StringRef AliasName) {
5857 if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
5858 BuiltinID = Context.BuiltinInfo.getAuxBuiltinID(BuiltinID);
5859 return BuiltinID >= AArch64::FirstSMEBuiltin &&
5860 BuiltinID <= AArch64::LastSMEBuiltin;
5863 static void handleArmBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5864 if (!AL.isArgIdent(0)) {
5865 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5866 << AL << 1 << AANT_ArgumentIdentifier;
5867 return;
5870 IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
5871 unsigned BuiltinID = Ident->getBuiltinID();
5872 StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
5874 bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
5875 if ((IsAArch64 && !ArmSveAliasValid(S.Context, BuiltinID, AliasName) &&
5876 !ArmSmeAliasValid(S.Context, BuiltinID, AliasName)) ||
5877 (!IsAArch64 && !ArmMveAliasValid(BuiltinID, AliasName) &&
5878 !ArmCdeAliasValid(BuiltinID, AliasName))) {
5879 S.Diag(AL.getLoc(), diag::err_attribute_arm_builtin_alias);
5880 return;
5883 D->addAttr(::new (S.Context) ArmBuiltinAliasAttr(S.Context, AL, Ident));
5886 static bool RISCVAliasValid(unsigned BuiltinID, StringRef AliasName) {
5887 return BuiltinID >= RISCV::FirstRVVBuiltin &&
5888 BuiltinID <= RISCV::LastRVVBuiltin;
5891 static void handleBuiltinAliasAttr(Sema &S, Decl *D,
5892 const ParsedAttr &AL) {
5893 if (!AL.isArgIdent(0)) {
5894 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
5895 << AL << 1 << AANT_ArgumentIdentifier;
5896 return;
5899 IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident;
5900 unsigned BuiltinID = Ident->getBuiltinID();
5901 StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName();
5903 bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
5904 bool IsARM = S.Context.getTargetInfo().getTriple().isARM();
5905 bool IsRISCV = S.Context.getTargetInfo().getTriple().isRISCV();
5906 bool IsHLSL = S.Context.getLangOpts().HLSL;
5907 if ((IsAArch64 && !ArmSveAliasValid(S.Context, BuiltinID, AliasName)) ||
5908 (IsARM && !ArmMveAliasValid(BuiltinID, AliasName) &&
5909 !ArmCdeAliasValid(BuiltinID, AliasName)) ||
5910 (IsRISCV && !RISCVAliasValid(BuiltinID, AliasName)) ||
5911 (!IsAArch64 && !IsARM && !IsRISCV && !IsHLSL)) {
5912 S.Diag(AL.getLoc(), diag::err_attribute_builtin_alias) << AL;
5913 return;
5916 D->addAttr(::new (S.Context) BuiltinAliasAttr(S.Context, AL, Ident));
5919 static void handlePreferredTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5920 if (!AL.hasParsedType()) {
5921 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
5922 return;
5925 TypeSourceInfo *ParmTSI = nullptr;
5926 QualType QT = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
5927 assert(ParmTSI && "no type source info for attribute argument");
5928 S.RequireCompleteType(ParmTSI->getTypeLoc().getBeginLoc(), QT,
5929 diag::err_incomplete_type);
5931 D->addAttr(::new (S.Context) PreferredTypeAttr(S.Context, AL, ParmTSI));
5934 //===----------------------------------------------------------------------===//
5935 // Checker-specific attribute handlers.
5936 //===----------------------------------------------------------------------===//
5937 static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) {
5938 return QT->isDependentType() || QT->isObjCRetainableType();
5941 static bool isValidSubjectOfNSAttribute(QualType QT) {
5942 return QT->isDependentType() || QT->isObjCObjectPointerType() ||
5943 QT->isObjCNSObjectType();
5946 static bool isValidSubjectOfCFAttribute(QualType QT) {
5947 return QT->isDependentType() || QT->isPointerType() ||
5948 isValidSubjectOfNSAttribute(QT);
5951 static bool isValidSubjectOfOSAttribute(QualType QT) {
5952 if (QT->isDependentType())
5953 return true;
5954 QualType PT = QT->getPointeeType();
5955 return !PT.isNull() && PT->getAsCXXRecordDecl() != nullptr;
5958 void Sema::AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
5959 RetainOwnershipKind K,
5960 bool IsTemplateInstantiation) {
5961 ValueDecl *VD = cast<ValueDecl>(D);
5962 switch (K) {
5963 case RetainOwnershipKind::OS:
5964 handleSimpleAttributeOrDiagnose<OSConsumedAttr>(
5965 *this, VD, CI, isValidSubjectOfOSAttribute(VD->getType()),
5966 diag::warn_ns_attribute_wrong_parameter_type,
5967 /*ExtraArgs=*/CI.getRange(), "os_consumed", /*pointers*/ 1);
5968 return;
5969 case RetainOwnershipKind::NS:
5970 handleSimpleAttributeOrDiagnose<NSConsumedAttr>(
5971 *this, VD, CI, isValidSubjectOfNSAttribute(VD->getType()),
5973 // These attributes are normally just advisory, but in ARC, ns_consumed
5974 // is significant. Allow non-dependent code to contain inappropriate
5975 // attributes even in ARC, but require template instantiations to be
5976 // set up correctly.
5977 ((IsTemplateInstantiation && getLangOpts().ObjCAutoRefCount)
5978 ? diag::err_ns_attribute_wrong_parameter_type
5979 : diag::warn_ns_attribute_wrong_parameter_type),
5980 /*ExtraArgs=*/CI.getRange(), "ns_consumed", /*objc pointers*/ 0);
5981 return;
5982 case RetainOwnershipKind::CF:
5983 handleSimpleAttributeOrDiagnose<CFConsumedAttr>(
5984 *this, VD, CI, isValidSubjectOfCFAttribute(VD->getType()),
5985 diag::warn_ns_attribute_wrong_parameter_type,
5986 /*ExtraArgs=*/CI.getRange(), "cf_consumed", /*pointers*/ 1);
5987 return;
5991 static Sema::RetainOwnershipKind
5992 parsedAttrToRetainOwnershipKind(const ParsedAttr &AL) {
5993 switch (AL.getKind()) {
5994 case ParsedAttr::AT_CFConsumed:
5995 case ParsedAttr::AT_CFReturnsRetained:
5996 case ParsedAttr::AT_CFReturnsNotRetained:
5997 return Sema::RetainOwnershipKind::CF;
5998 case ParsedAttr::AT_OSConsumesThis:
5999 case ParsedAttr::AT_OSConsumed:
6000 case ParsedAttr::AT_OSReturnsRetained:
6001 case ParsedAttr::AT_OSReturnsNotRetained:
6002 case ParsedAttr::AT_OSReturnsRetainedOnZero:
6003 case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
6004 return Sema::RetainOwnershipKind::OS;
6005 case ParsedAttr::AT_NSConsumesSelf:
6006 case ParsedAttr::AT_NSConsumed:
6007 case ParsedAttr::AT_NSReturnsRetained:
6008 case ParsedAttr::AT_NSReturnsNotRetained:
6009 case ParsedAttr::AT_NSReturnsAutoreleased:
6010 return Sema::RetainOwnershipKind::NS;
6011 default:
6012 llvm_unreachable("Wrong argument supplied");
6016 bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) {
6017 if (isValidSubjectOfNSReturnsRetainedAttribute(QT))
6018 return false;
6020 Diag(Loc, diag::warn_ns_attribute_wrong_return_type)
6021 << "'ns_returns_retained'" << 0 << 0;
6022 return true;
6025 /// \return whether the parameter is a pointer to OSObject pointer.
6026 static bool isValidOSObjectOutParameter(const Decl *D) {
6027 const auto *PVD = dyn_cast<ParmVarDecl>(D);
6028 if (!PVD)
6029 return false;
6030 QualType QT = PVD->getType();
6031 QualType PT = QT->getPointeeType();
6032 return !PT.isNull() && isValidSubjectOfOSAttribute(PT);
6035 static void handleXReturnsXRetainedAttr(Sema &S, Decl *D,
6036 const ParsedAttr &AL) {
6037 QualType ReturnType;
6038 Sema::RetainOwnershipKind K = parsedAttrToRetainOwnershipKind(AL);
6040 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
6041 ReturnType = MD->getReturnType();
6042 } else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
6043 (AL.getKind() == ParsedAttr::AT_NSReturnsRetained)) {
6044 return; // ignore: was handled as a type attribute
6045 } else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
6046 ReturnType = PD->getType();
6047 } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
6048 ReturnType = FD->getReturnType();
6049 } else if (const auto *Param = dyn_cast<ParmVarDecl>(D)) {
6050 // Attributes on parameters are used for out-parameters,
6051 // passed as pointers-to-pointers.
6052 unsigned DiagID = K == Sema::RetainOwnershipKind::CF
6053 ? /*pointer-to-CF-pointer*/2
6054 : /*pointer-to-OSObject-pointer*/3;
6055 ReturnType = Param->getType()->getPointeeType();
6056 if (ReturnType.isNull()) {
6057 S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
6058 << AL << DiagID << AL.getRange();
6059 return;
6061 } else if (AL.isUsedAsTypeAttr()) {
6062 return;
6063 } else {
6064 AttributeDeclKind ExpectedDeclKind;
6065 switch (AL.getKind()) {
6066 default: llvm_unreachable("invalid ownership attribute");
6067 case ParsedAttr::AT_NSReturnsRetained:
6068 case ParsedAttr::AT_NSReturnsAutoreleased:
6069 case ParsedAttr::AT_NSReturnsNotRetained:
6070 ExpectedDeclKind = ExpectedFunctionOrMethod;
6071 break;
6073 case ParsedAttr::AT_OSReturnsRetained:
6074 case ParsedAttr::AT_OSReturnsNotRetained:
6075 case ParsedAttr::AT_CFReturnsRetained:
6076 case ParsedAttr::AT_CFReturnsNotRetained:
6077 ExpectedDeclKind = ExpectedFunctionMethodOrParameter;
6078 break;
6080 S.Diag(D->getBeginLoc(), diag::warn_attribute_wrong_decl_type)
6081 << AL.getRange() << AL << AL.isRegularKeywordAttribute()
6082 << ExpectedDeclKind;
6083 return;
6086 bool TypeOK;
6087 bool Cf;
6088 unsigned ParmDiagID = 2; // Pointer-to-CF-pointer
6089 switch (AL.getKind()) {
6090 default: llvm_unreachable("invalid ownership attribute");
6091 case ParsedAttr::AT_NSReturnsRetained:
6092 TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(ReturnType);
6093 Cf = false;
6094 break;
6096 case ParsedAttr::AT_NSReturnsAutoreleased:
6097 case ParsedAttr::AT_NSReturnsNotRetained:
6098 TypeOK = isValidSubjectOfNSAttribute(ReturnType);
6099 Cf = false;
6100 break;
6102 case ParsedAttr::AT_CFReturnsRetained:
6103 case ParsedAttr::AT_CFReturnsNotRetained:
6104 TypeOK = isValidSubjectOfCFAttribute(ReturnType);
6105 Cf = true;
6106 break;
6108 case ParsedAttr::AT_OSReturnsRetained:
6109 case ParsedAttr::AT_OSReturnsNotRetained:
6110 TypeOK = isValidSubjectOfOSAttribute(ReturnType);
6111 Cf = true;
6112 ParmDiagID = 3; // Pointer-to-OSObject-pointer
6113 break;
6116 if (!TypeOK) {
6117 if (AL.isUsedAsTypeAttr())
6118 return;
6120 if (isa<ParmVarDecl>(D)) {
6121 S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type)
6122 << AL << ParmDiagID << AL.getRange();
6123 } else {
6124 // Needs to be kept in sync with warn_ns_attribute_wrong_return_type.
6125 enum : unsigned {
6126 Function,
6127 Method,
6128 Property
6129 } SubjectKind = Function;
6130 if (isa<ObjCMethodDecl>(D))
6131 SubjectKind = Method;
6132 else if (isa<ObjCPropertyDecl>(D))
6133 SubjectKind = Property;
6134 S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
6135 << AL << SubjectKind << Cf << AL.getRange();
6137 return;
6140 switch (AL.getKind()) {
6141 default:
6142 llvm_unreachable("invalid ownership attribute");
6143 case ParsedAttr::AT_NSReturnsAutoreleased:
6144 handleSimpleAttribute<NSReturnsAutoreleasedAttr>(S, D, AL);
6145 return;
6146 case ParsedAttr::AT_CFReturnsNotRetained:
6147 handleSimpleAttribute<CFReturnsNotRetainedAttr>(S, D, AL);
6148 return;
6149 case ParsedAttr::AT_NSReturnsNotRetained:
6150 handleSimpleAttribute<NSReturnsNotRetainedAttr>(S, D, AL);
6151 return;
6152 case ParsedAttr::AT_CFReturnsRetained:
6153 handleSimpleAttribute<CFReturnsRetainedAttr>(S, D, AL);
6154 return;
6155 case ParsedAttr::AT_NSReturnsRetained:
6156 handleSimpleAttribute<NSReturnsRetainedAttr>(S, D, AL);
6157 return;
6158 case ParsedAttr::AT_OSReturnsRetained:
6159 handleSimpleAttribute<OSReturnsRetainedAttr>(S, D, AL);
6160 return;
6161 case ParsedAttr::AT_OSReturnsNotRetained:
6162 handleSimpleAttribute<OSReturnsNotRetainedAttr>(S, D, AL);
6163 return;
6167 static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
6168 const ParsedAttr &Attrs) {
6169 const int EP_ObjCMethod = 1;
6170 const int EP_ObjCProperty = 2;
6172 SourceLocation loc = Attrs.getLoc();
6173 QualType resultType;
6174 if (isa<ObjCMethodDecl>(D))
6175 resultType = cast<ObjCMethodDecl>(D)->getReturnType();
6176 else
6177 resultType = cast<ObjCPropertyDecl>(D)->getType();
6179 if (!resultType->isReferenceType() &&
6180 (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
6181 S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type)
6182 << SourceRange(loc) << Attrs
6183 << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
6184 << /*non-retainable pointer*/ 2;
6186 // Drop the attribute.
6187 return;
6190 D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(S.Context, Attrs));
6193 static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
6194 const ParsedAttr &Attrs) {
6195 const auto *Method = cast<ObjCMethodDecl>(D);
6197 const DeclContext *DC = Method->getDeclContext();
6198 if (const auto *PDecl = dyn_cast_if_present<ObjCProtocolDecl>(DC)) {
6199 S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
6200 << 0;
6201 S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
6202 return;
6204 if (Method->getMethodFamily() == OMF_dealloc) {
6205 S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs
6206 << 1;
6207 return;
6210 D->addAttr(::new (S.Context) ObjCRequiresSuperAttr(S.Context, Attrs));
6213 static void handleNSErrorDomain(Sema &S, Decl *D, const ParsedAttr &AL) {
6214 auto *E = AL.getArgAsExpr(0);
6215 auto Loc = E ? E->getBeginLoc() : AL.getLoc();
6217 auto *DRE = dyn_cast<DeclRefExpr>(AL.getArgAsExpr(0));
6218 if (!DRE) {
6219 S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 0;
6220 return;
6223 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6224 if (!VD) {
6225 S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 1 << DRE->getDecl();
6226 return;
6229 if (!isNSStringType(VD->getType(), S.Context) &&
6230 !isCFStringType(VD->getType(), S.Context)) {
6231 S.Diag(Loc, diag::err_nserrordomain_wrong_type) << VD;
6232 return;
6235 D->addAttr(::new (S.Context) NSErrorDomainAttr(S.Context, AL, VD));
6238 static void handleObjCBridgeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6239 IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
6241 if (!Parm) {
6242 S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
6243 return;
6246 // Typedefs only allow objc_bridge(id) and have some additional checking.
6247 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
6248 if (!Parm->Ident->isStr("id")) {
6249 S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id) << AL;
6250 return;
6253 // Only allow 'cv void *'.
6254 QualType T = TD->getUnderlyingType();
6255 if (!T->isVoidPointerType()) {
6256 S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer);
6257 return;
6261 D->addAttr(::new (S.Context) ObjCBridgeAttr(S.Context, AL, Parm->Ident));
6264 static void handleObjCBridgeMutableAttr(Sema &S, Decl *D,
6265 const ParsedAttr &AL) {
6266 IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
6268 if (!Parm) {
6269 S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
6270 return;
6273 D->addAttr(::new (S.Context)
6274 ObjCBridgeMutableAttr(S.Context, AL, Parm->Ident));
6277 static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D,
6278 const ParsedAttr &AL) {
6279 IdentifierInfo *RelatedClass =
6280 AL.isArgIdent(0) ? AL.getArgAsIdent(0)->Ident : nullptr;
6281 if (!RelatedClass) {
6282 S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0;
6283 return;
6285 IdentifierInfo *ClassMethod =
6286 AL.getArgAsIdent(1) ? AL.getArgAsIdent(1)->Ident : nullptr;
6287 IdentifierInfo *InstanceMethod =
6288 AL.getArgAsIdent(2) ? AL.getArgAsIdent(2)->Ident : nullptr;
6289 D->addAttr(::new (S.Context) ObjCBridgeRelatedAttr(
6290 S.Context, AL, RelatedClass, ClassMethod, InstanceMethod));
6293 static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
6294 const ParsedAttr &AL) {
6295 DeclContext *Ctx = D->getDeclContext();
6297 // This attribute can only be applied to methods in interfaces or class
6298 // extensions.
6299 if (!isa<ObjCInterfaceDecl>(Ctx) &&
6300 !(isa<ObjCCategoryDecl>(Ctx) &&
6301 cast<ObjCCategoryDecl>(Ctx)->IsClassExtension())) {
6302 S.Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
6303 return;
6306 ObjCInterfaceDecl *IFace;
6307 if (auto *CatDecl = dyn_cast<ObjCCategoryDecl>(Ctx))
6308 IFace = CatDecl->getClassInterface();
6309 else
6310 IFace = cast<ObjCInterfaceDecl>(Ctx);
6312 if (!IFace)
6313 return;
6315 IFace->setHasDesignatedInitializers();
6316 D->addAttr(::new (S.Context) ObjCDesignatedInitializerAttr(S.Context, AL));
6319 static void handleObjCRuntimeName(Sema &S, Decl *D, const ParsedAttr &AL) {
6320 StringRef MetaDataName;
6321 if (!S.checkStringLiteralArgumentAttr(AL, 0, MetaDataName))
6322 return;
6323 D->addAttr(::new (S.Context)
6324 ObjCRuntimeNameAttr(S.Context, AL, MetaDataName));
6327 // When a user wants to use objc_boxable with a union or struct
6328 // but they don't have access to the declaration (legacy/third-party code)
6329 // then they can 'enable' this feature with a typedef:
6330 // typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct;
6331 static void handleObjCBoxable(Sema &S, Decl *D, const ParsedAttr &AL) {
6332 bool notify = false;
6334 auto *RD = dyn_cast<RecordDecl>(D);
6335 if (RD && RD->getDefinition()) {
6336 RD = RD->getDefinition();
6337 notify = true;
6340 if (RD) {
6341 ObjCBoxableAttr *BoxableAttr =
6342 ::new (S.Context) ObjCBoxableAttr(S.Context, AL);
6343 RD->addAttr(BoxableAttr);
6344 if (notify) {
6345 // we need to notify ASTReader/ASTWriter about
6346 // modification of existing declaration
6347 if (ASTMutationListener *L = S.getASTMutationListener())
6348 L->AddedAttributeToRecord(BoxableAttr, RD);
6353 static void handleObjCOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6354 if (hasDeclarator(D))
6355 return;
6357 S.Diag(D->getBeginLoc(), diag::err_attribute_wrong_decl_type)
6358 << AL.getRange() << AL << AL.isRegularKeywordAttribute()
6359 << ExpectedVariable;
6362 static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
6363 const ParsedAttr &AL) {
6364 const auto *VD = cast<ValueDecl>(D);
6365 QualType QT = VD->getType();
6367 if (!QT->isDependentType() &&
6368 !QT->isObjCLifetimeType()) {
6369 S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type)
6370 << QT;
6371 return;
6374 Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime();
6376 // If we have no lifetime yet, check the lifetime we're presumably
6377 // going to infer.
6378 if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType())
6379 Lifetime = QT->getObjCARCImplicitLifetime();
6381 switch (Lifetime) {
6382 case Qualifiers::OCL_None:
6383 assert(QT->isDependentType() &&
6384 "didn't infer lifetime for non-dependent type?");
6385 break;
6387 case Qualifiers::OCL_Weak: // meaningful
6388 case Qualifiers::OCL_Strong: // meaningful
6389 break;
6391 case Qualifiers::OCL_ExplicitNone:
6392 case Qualifiers::OCL_Autoreleasing:
6393 S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
6394 << (Lifetime == Qualifiers::OCL_Autoreleasing);
6395 break;
6398 D->addAttr(::new (S.Context) ObjCPreciseLifetimeAttr(S.Context, AL));
6401 static void handleSwiftAttrAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6402 // Make sure that there is a string literal as the annotation's single
6403 // argument.
6404 StringRef Str;
6405 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
6406 return;
6408 D->addAttr(::new (S.Context) SwiftAttrAttr(S.Context, AL, Str));
6411 static void handleSwiftBridge(Sema &S, Decl *D, const ParsedAttr &AL) {
6412 // Make sure that there is a string literal as the annotation's single
6413 // argument.
6414 StringRef BT;
6415 if (!S.checkStringLiteralArgumentAttr(AL, 0, BT))
6416 return;
6418 // Warn about duplicate attributes if they have different arguments, but drop
6419 // any duplicate attributes regardless.
6420 if (const auto *Other = D->getAttr<SwiftBridgeAttr>()) {
6421 if (Other->getSwiftType() != BT)
6422 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
6423 return;
6426 D->addAttr(::new (S.Context) SwiftBridgeAttr(S.Context, AL, BT));
6429 static bool isErrorParameter(Sema &S, QualType QT) {
6430 const auto *PT = QT->getAs<PointerType>();
6431 if (!PT)
6432 return false;
6434 QualType Pointee = PT->getPointeeType();
6436 // Check for NSError**.
6437 if (const auto *OPT = Pointee->getAs<ObjCObjectPointerType>())
6438 if (const auto *ID = OPT->getInterfaceDecl())
6439 if (ID->getIdentifier() == S.getNSErrorIdent())
6440 return true;
6442 // Check for CFError**.
6443 if (const auto *PT = Pointee->getAs<PointerType>())
6444 if (const auto *RT = PT->getPointeeType()->getAs<RecordType>())
6445 if (S.isCFError(RT->getDecl()))
6446 return true;
6448 return false;
6451 static void handleSwiftError(Sema &S, Decl *D, const ParsedAttr &AL) {
6452 auto hasErrorParameter = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
6453 for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); I != E; ++I) {
6454 if (isErrorParameter(S, getFunctionOrMethodParamType(D, I)))
6455 return true;
6458 S.Diag(AL.getLoc(), diag::err_attr_swift_error_no_error_parameter)
6459 << AL << isa<ObjCMethodDecl>(D);
6460 return false;
6463 auto hasPointerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
6464 // - C, ObjC, and block pointers are definitely okay.
6465 // - References are definitely not okay.
6466 // - nullptr_t is weird, but acceptable.
6467 QualType RT = getFunctionOrMethodResultType(D);
6468 if (RT->hasPointerRepresentation() && !RT->isReferenceType())
6469 return true;
6471 S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
6472 << AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D)
6473 << /*pointer*/ 1;
6474 return false;
6477 auto hasIntegerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
6478 QualType RT = getFunctionOrMethodResultType(D);
6479 if (RT->isIntegralType(S.Context))
6480 return true;
6482 S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
6483 << AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D)
6484 << /*integral*/ 0;
6485 return false;
6488 if (D->isInvalidDecl())
6489 return;
6491 IdentifierLoc *Loc = AL.getArgAsIdent(0);
6492 SwiftErrorAttr::ConventionKind Convention;
6493 if (!SwiftErrorAttr::ConvertStrToConventionKind(Loc->Ident->getName(),
6494 Convention)) {
6495 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
6496 << AL << Loc->Ident;
6497 return;
6500 switch (Convention) {
6501 case SwiftErrorAttr::None:
6502 // No additional validation required.
6503 break;
6505 case SwiftErrorAttr::NonNullError:
6506 if (!hasErrorParameter(S, D, AL))
6507 return;
6508 break;
6510 case SwiftErrorAttr::NullResult:
6511 if (!hasErrorParameter(S, D, AL) || !hasPointerResult(S, D, AL))
6512 return;
6513 break;
6515 case SwiftErrorAttr::NonZeroResult:
6516 case SwiftErrorAttr::ZeroResult:
6517 if (!hasErrorParameter(S, D, AL) || !hasIntegerResult(S, D, AL))
6518 return;
6519 break;
6522 D->addAttr(::new (S.Context) SwiftErrorAttr(S.Context, AL, Convention));
6525 static void checkSwiftAsyncErrorBlock(Sema &S, Decl *D,
6526 const SwiftAsyncErrorAttr *ErrorAttr,
6527 const SwiftAsyncAttr *AsyncAttr) {
6528 if (AsyncAttr->getKind() == SwiftAsyncAttr::None) {
6529 if (ErrorAttr->getConvention() != SwiftAsyncErrorAttr::None) {
6530 S.Diag(AsyncAttr->getLocation(),
6531 diag::err_swift_async_error_without_swift_async)
6532 << AsyncAttr << isa<ObjCMethodDecl>(D);
6534 return;
6537 const ParmVarDecl *HandlerParam = getFunctionOrMethodParam(
6538 D, AsyncAttr->getCompletionHandlerIndex().getASTIndex());
6539 // handleSwiftAsyncAttr already verified the type is correct, so no need to
6540 // double-check it here.
6541 const auto *FuncTy = HandlerParam->getType()
6542 ->castAs<BlockPointerType>()
6543 ->getPointeeType()
6544 ->getAs<FunctionProtoType>();
6545 ArrayRef<QualType> BlockParams;
6546 if (FuncTy)
6547 BlockParams = FuncTy->getParamTypes();
6549 switch (ErrorAttr->getConvention()) {
6550 case SwiftAsyncErrorAttr::ZeroArgument:
6551 case SwiftAsyncErrorAttr::NonZeroArgument: {
6552 uint32_t ParamIdx = ErrorAttr->getHandlerParamIdx();
6553 if (ParamIdx == 0 || ParamIdx > BlockParams.size()) {
6554 S.Diag(ErrorAttr->getLocation(),
6555 diag::err_attribute_argument_out_of_bounds) << ErrorAttr << 2;
6556 return;
6558 QualType ErrorParam = BlockParams[ParamIdx - 1];
6559 if (!ErrorParam->isIntegralType(S.Context)) {
6560 StringRef ConvStr =
6561 ErrorAttr->getConvention() == SwiftAsyncErrorAttr::ZeroArgument
6562 ? "zero_argument"
6563 : "nonzero_argument";
6564 S.Diag(ErrorAttr->getLocation(), diag::err_swift_async_error_non_integral)
6565 << ErrorAttr << ConvStr << ParamIdx << ErrorParam;
6566 return;
6568 break;
6570 case SwiftAsyncErrorAttr::NonNullError: {
6571 bool AnyErrorParams = false;
6572 for (QualType Param : BlockParams) {
6573 // Check for NSError *.
6574 if (const auto *ObjCPtrTy = Param->getAs<ObjCObjectPointerType>()) {
6575 if (const auto *ID = ObjCPtrTy->getInterfaceDecl()) {
6576 if (ID->getIdentifier() == S.getNSErrorIdent()) {
6577 AnyErrorParams = true;
6578 break;
6582 // Check for CFError *.
6583 if (const auto *PtrTy = Param->getAs<PointerType>()) {
6584 if (const auto *RT = PtrTy->getPointeeType()->getAs<RecordType>()) {
6585 if (S.isCFError(RT->getDecl())) {
6586 AnyErrorParams = true;
6587 break;
6593 if (!AnyErrorParams) {
6594 S.Diag(ErrorAttr->getLocation(),
6595 diag::err_swift_async_error_no_error_parameter)
6596 << ErrorAttr << isa<ObjCMethodDecl>(D);
6597 return;
6599 break;
6601 case SwiftAsyncErrorAttr::None:
6602 break;
6606 static void handleSwiftAsyncError(Sema &S, Decl *D, const ParsedAttr &AL) {
6607 IdentifierLoc *IDLoc = AL.getArgAsIdent(0);
6608 SwiftAsyncErrorAttr::ConventionKind ConvKind;
6609 if (!SwiftAsyncErrorAttr::ConvertStrToConventionKind(IDLoc->Ident->getName(),
6610 ConvKind)) {
6611 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
6612 << AL << IDLoc->Ident;
6613 return;
6616 uint32_t ParamIdx = 0;
6617 switch (ConvKind) {
6618 case SwiftAsyncErrorAttr::ZeroArgument:
6619 case SwiftAsyncErrorAttr::NonZeroArgument: {
6620 if (!AL.checkExactlyNumArgs(S, 2))
6621 return;
6623 Expr *IdxExpr = AL.getArgAsExpr(1);
6624 if (!checkUInt32Argument(S, AL, IdxExpr, ParamIdx))
6625 return;
6626 break;
6628 case SwiftAsyncErrorAttr::NonNullError:
6629 case SwiftAsyncErrorAttr::None: {
6630 if (!AL.checkExactlyNumArgs(S, 1))
6631 return;
6632 break;
6636 auto *ErrorAttr =
6637 ::new (S.Context) SwiftAsyncErrorAttr(S.Context, AL, ConvKind, ParamIdx);
6638 D->addAttr(ErrorAttr);
6640 if (auto *AsyncAttr = D->getAttr<SwiftAsyncAttr>())
6641 checkSwiftAsyncErrorBlock(S, D, ErrorAttr, AsyncAttr);
6644 // For a function, this will validate a compound Swift name, e.g.
6645 // <code>init(foo:bar:baz:)</code> or <code>controllerForName(_:)</code>, and
6646 // the function will output the number of parameter names, and whether this is a
6647 // single-arg initializer.
6649 // For a type, enum constant, property, or variable declaration, this will
6650 // validate either a simple identifier, or a qualified
6651 // <code>context.identifier</code> name.
6652 static bool
6653 validateSwiftFunctionName(Sema &S, const ParsedAttr &AL, SourceLocation Loc,
6654 StringRef Name, unsigned &SwiftParamCount,
6655 bool &IsSingleParamInit) {
6656 SwiftParamCount = 0;
6657 IsSingleParamInit = false;
6659 // Check whether this will be mapped to a getter or setter of a property.
6660 bool IsGetter = false, IsSetter = false;
6661 if (Name.startswith("getter:")) {
6662 IsGetter = true;
6663 Name = Name.substr(7);
6664 } else if (Name.startswith("setter:")) {
6665 IsSetter = true;
6666 Name = Name.substr(7);
6669 if (Name.back() != ')') {
6670 S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
6671 return false;
6674 bool IsMember = false;
6675 StringRef ContextName, BaseName, Parameters;
6677 std::tie(BaseName, Parameters) = Name.split('(');
6679 // Split at the first '.', if it exists, which separates the context name
6680 // from the base name.
6681 std::tie(ContextName, BaseName) = BaseName.split('.');
6682 if (BaseName.empty()) {
6683 BaseName = ContextName;
6684 ContextName = StringRef();
6685 } else if (ContextName.empty() || !isValidAsciiIdentifier(ContextName)) {
6686 S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6687 << AL << /*context*/ 1;
6688 return false;
6689 } else {
6690 IsMember = true;
6693 if (!isValidAsciiIdentifier(BaseName) || BaseName == "_") {
6694 S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6695 << AL << /*basename*/ 0;
6696 return false;
6699 bool IsSubscript = BaseName == "subscript";
6700 // A subscript accessor must be a getter or setter.
6701 if (IsSubscript && !IsGetter && !IsSetter) {
6702 S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6703 << AL << /* getter or setter */ 0;
6704 return false;
6707 if (Parameters.empty()) {
6708 S.Diag(Loc, diag::warn_attr_swift_name_missing_parameters) << AL;
6709 return false;
6712 assert(Parameters.back() == ')' && "expected ')'");
6713 Parameters = Parameters.drop_back(); // ')'
6715 if (Parameters.empty()) {
6716 // Setters and subscripts must have at least one parameter.
6717 if (IsSubscript) {
6718 S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6719 << AL << /* have at least one parameter */1;
6720 return false;
6723 if (IsSetter) {
6724 S.Diag(Loc, diag::warn_attr_swift_name_setter_parameters) << AL;
6725 return false;
6728 return true;
6731 if (Parameters.back() != ':') {
6732 S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
6733 return false;
6736 StringRef CurrentParam;
6737 std::optional<unsigned> SelfLocation;
6738 unsigned NewValueCount = 0;
6739 std::optional<unsigned> NewValueLocation;
6740 do {
6741 std::tie(CurrentParam, Parameters) = Parameters.split(':');
6743 if (!isValidAsciiIdentifier(CurrentParam)) {
6744 S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
6745 << AL << /*parameter*/2;
6746 return false;
6749 if (IsMember && CurrentParam == "self") {
6750 // "self" indicates the "self" argument for a member.
6752 // More than one "self"?
6753 if (SelfLocation) {
6754 S.Diag(Loc, diag::warn_attr_swift_name_multiple_selfs) << AL;
6755 return false;
6758 // The "self" location is the current parameter.
6759 SelfLocation = SwiftParamCount;
6760 } else if (CurrentParam == "newValue") {
6761 // "newValue" indicates the "newValue" argument for a setter.
6763 // There should only be one 'newValue', but it's only significant for
6764 // subscript accessors, so don't error right away.
6765 ++NewValueCount;
6767 NewValueLocation = SwiftParamCount;
6770 ++SwiftParamCount;
6771 } while (!Parameters.empty());
6773 // Only instance subscripts are currently supported.
6774 if (IsSubscript && !SelfLocation) {
6775 S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
6776 << AL << /*have a 'self:' parameter*/2;
6777 return false;
6780 IsSingleParamInit =
6781 SwiftParamCount == 1 && BaseName == "init" && CurrentParam != "_";
6783 // Check the number of parameters for a getter/setter.
6784 if (IsGetter || IsSetter) {
6785 // Setters have one parameter for the new value.
6786 unsigned NumExpectedParams = IsGetter ? 0 : 1;
6787 unsigned ParamDiag =
6788 IsGetter ? diag::warn_attr_swift_name_getter_parameters
6789 : diag::warn_attr_swift_name_setter_parameters;
6791 // Instance methods have one parameter for "self".
6792 if (SelfLocation)
6793 ++NumExpectedParams;
6795 // Subscripts may have additional parameters beyond the expected params for
6796 // the index.
6797 if (IsSubscript) {
6798 if (SwiftParamCount < NumExpectedParams) {
6799 S.Diag(Loc, ParamDiag) << AL;
6800 return false;
6803 // A subscript setter must explicitly label its newValue parameter to
6804 // distinguish it from index parameters.
6805 if (IsSetter) {
6806 if (!NewValueLocation) {
6807 S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_no_newValue)
6808 << AL;
6809 return false;
6811 if (NewValueCount > 1) {
6812 S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_multiple_newValues)
6813 << AL;
6814 return false;
6816 } else {
6817 // Subscript getters should have no 'newValue:' parameter.
6818 if (NewValueLocation) {
6819 S.Diag(Loc, diag::warn_attr_swift_name_subscript_getter_newValue)
6820 << AL;
6821 return false;
6824 } else {
6825 // Property accessors must have exactly the number of expected params.
6826 if (SwiftParamCount != NumExpectedParams) {
6827 S.Diag(Loc, ParamDiag) << AL;
6828 return false;
6833 return true;
6836 bool Sema::DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc,
6837 const ParsedAttr &AL, bool IsAsync) {
6838 if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
6839 ArrayRef<ParmVarDecl*> Params;
6840 unsigned ParamCount;
6842 if (const auto *Method = dyn_cast<ObjCMethodDecl>(D)) {
6843 ParamCount = Method->getSelector().getNumArgs();
6844 Params = Method->parameters().slice(0, ParamCount);
6845 } else {
6846 const auto *F = cast<FunctionDecl>(D);
6848 ParamCount = F->getNumParams();
6849 Params = F->parameters();
6851 if (!F->hasWrittenPrototype()) {
6852 Diag(Loc, diag::warn_attribute_wrong_decl_type)
6853 << AL << AL.isRegularKeywordAttribute()
6854 << ExpectedFunctionWithProtoType;
6855 return false;
6859 // The async name drops the last callback parameter.
6860 if (IsAsync) {
6861 if (ParamCount == 0) {
6862 Diag(Loc, diag::warn_attr_swift_name_decl_missing_params)
6863 << AL << isa<ObjCMethodDecl>(D);
6864 return false;
6866 ParamCount -= 1;
6869 unsigned SwiftParamCount;
6870 bool IsSingleParamInit;
6871 if (!validateSwiftFunctionName(*this, AL, Loc, Name,
6872 SwiftParamCount, IsSingleParamInit))
6873 return false;
6875 bool ParamCountValid;
6876 if (SwiftParamCount == ParamCount) {
6877 ParamCountValid = true;
6878 } else if (SwiftParamCount > ParamCount) {
6879 ParamCountValid = IsSingleParamInit && ParamCount == 0;
6880 } else {
6881 // We have fewer Swift parameters than Objective-C parameters, but that
6882 // might be because we've transformed some of them. Check for potential
6883 // "out" parameters and err on the side of not warning.
6884 unsigned MaybeOutParamCount =
6885 llvm::count_if(Params, [](const ParmVarDecl *Param) -> bool {
6886 QualType ParamTy = Param->getType();
6887 if (ParamTy->isReferenceType() || ParamTy->isPointerType())
6888 return !ParamTy->getPointeeType().isConstQualified();
6889 return false;
6892 ParamCountValid = SwiftParamCount + MaybeOutParamCount >= ParamCount;
6895 if (!ParamCountValid) {
6896 Diag(Loc, diag::warn_attr_swift_name_num_params)
6897 << (SwiftParamCount > ParamCount) << AL << ParamCount
6898 << SwiftParamCount;
6899 return false;
6901 } else if ((isa<EnumConstantDecl>(D) || isa<ObjCProtocolDecl>(D) ||
6902 isa<ObjCInterfaceDecl>(D) || isa<ObjCPropertyDecl>(D) ||
6903 isa<VarDecl>(D) || isa<TypedefNameDecl>(D) || isa<TagDecl>(D) ||
6904 isa<IndirectFieldDecl>(D) || isa<FieldDecl>(D)) &&
6905 !IsAsync) {
6906 StringRef ContextName, BaseName;
6908 std::tie(ContextName, BaseName) = Name.split('.');
6909 if (BaseName.empty()) {
6910 BaseName = ContextName;
6911 ContextName = StringRef();
6912 } else if (!isValidAsciiIdentifier(ContextName)) {
6913 Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL
6914 << /*context*/1;
6915 return false;
6918 if (!isValidAsciiIdentifier(BaseName)) {
6919 Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL
6920 << /*basename*/0;
6921 return false;
6923 } else {
6924 Diag(Loc, diag::warn_attr_swift_name_decl_kind) << AL;
6925 return false;
6927 return true;
6930 static void handleSwiftName(Sema &S, Decl *D, const ParsedAttr &AL) {
6931 StringRef Name;
6932 SourceLocation Loc;
6933 if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
6934 return;
6936 if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/false))
6937 return;
6939 D->addAttr(::new (S.Context) SwiftNameAttr(S.Context, AL, Name));
6942 static void handleSwiftAsyncName(Sema &S, Decl *D, const ParsedAttr &AL) {
6943 StringRef Name;
6944 SourceLocation Loc;
6945 if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
6946 return;
6948 if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/true))
6949 return;
6951 D->addAttr(::new (S.Context) SwiftAsyncNameAttr(S.Context, AL, Name));
6954 static void handleSwiftNewType(Sema &S, Decl *D, const ParsedAttr &AL) {
6955 // Make sure that there is an identifier as the annotation's single argument.
6956 if (!AL.checkExactlyNumArgs(S, 1))
6957 return;
6959 if (!AL.isArgIdent(0)) {
6960 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
6961 << AL << AANT_ArgumentIdentifier;
6962 return;
6965 SwiftNewTypeAttr::NewtypeKind Kind;
6966 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
6967 if (!SwiftNewTypeAttr::ConvertStrToNewtypeKind(II->getName(), Kind)) {
6968 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
6969 return;
6972 if (!isa<TypedefNameDecl>(D)) {
6973 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str)
6974 << AL << AL.isRegularKeywordAttribute() << "typedefs";
6975 return;
6978 D->addAttr(::new (S.Context) SwiftNewTypeAttr(S.Context, AL, Kind));
6981 static void handleSwiftAsyncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
6982 if (!AL.isArgIdent(0)) {
6983 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
6984 << AL << 1 << AANT_ArgumentIdentifier;
6985 return;
6988 SwiftAsyncAttr::Kind Kind;
6989 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
6990 if (!SwiftAsyncAttr::ConvertStrToKind(II->getName(), Kind)) {
6991 S.Diag(AL.getLoc(), diag::err_swift_async_no_access) << AL << II;
6992 return;
6995 ParamIdx Idx;
6996 if (Kind == SwiftAsyncAttr::None) {
6997 // If this is 'none', then there shouldn't be any additional arguments.
6998 if (!AL.checkExactlyNumArgs(S, 1))
6999 return;
7000 } else {
7001 // Non-none swift_async requires a completion handler index argument.
7002 if (!AL.checkExactlyNumArgs(S, 2))
7003 return;
7005 Expr *HandlerIdx = AL.getArgAsExpr(1);
7006 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, HandlerIdx, Idx))
7007 return;
7009 const ParmVarDecl *CompletionBlock =
7010 getFunctionOrMethodParam(D, Idx.getASTIndex());
7011 QualType CompletionBlockType = CompletionBlock->getType();
7012 if (!CompletionBlockType->isBlockPointerType()) {
7013 S.Diag(CompletionBlock->getLocation(),
7014 diag::err_swift_async_bad_block_type)
7015 << CompletionBlock->getType();
7016 return;
7018 QualType BlockTy =
7019 CompletionBlockType->castAs<BlockPointerType>()->getPointeeType();
7020 if (!BlockTy->castAs<FunctionType>()->getReturnType()->isVoidType()) {
7021 S.Diag(CompletionBlock->getLocation(),
7022 diag::err_swift_async_bad_block_type)
7023 << CompletionBlock->getType();
7024 return;
7028 auto *AsyncAttr =
7029 ::new (S.Context) SwiftAsyncAttr(S.Context, AL, Kind, Idx);
7030 D->addAttr(AsyncAttr);
7032 if (auto *ErrorAttr = D->getAttr<SwiftAsyncErrorAttr>())
7033 checkSwiftAsyncErrorBlock(S, D, ErrorAttr, AsyncAttr);
7036 //===----------------------------------------------------------------------===//
7037 // Microsoft specific attribute handlers.
7038 //===----------------------------------------------------------------------===//
7040 UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
7041 StringRef UuidAsWritten, MSGuidDecl *GuidDecl) {
7042 if (const auto *UA = D->getAttr<UuidAttr>()) {
7043 if (declaresSameEntity(UA->getGuidDecl(), GuidDecl))
7044 return nullptr;
7045 if (!UA->getGuid().empty()) {
7046 Diag(UA->getLocation(), diag::err_mismatched_uuid);
7047 Diag(CI.getLoc(), diag::note_previous_uuid);
7048 D->dropAttr<UuidAttr>();
7052 return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl);
7055 static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7056 if (!S.LangOpts.CPlusPlus) {
7057 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
7058 << AL << AttributeLangSupport::C;
7059 return;
7062 StringRef OrigStrRef;
7063 SourceLocation LiteralLoc;
7064 if (!S.checkStringLiteralArgumentAttr(AL, 0, OrigStrRef, &LiteralLoc))
7065 return;
7067 // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
7068 // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
7069 StringRef StrRef = OrigStrRef;
7070 if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
7071 StrRef = StrRef.drop_front().drop_back();
7073 // Validate GUID length.
7074 if (StrRef.size() != 36) {
7075 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
7076 return;
7079 for (unsigned i = 0; i < 36; ++i) {
7080 if (i == 8 || i == 13 || i == 18 || i == 23) {
7081 if (StrRef[i] != '-') {
7082 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
7083 return;
7085 } else if (!isHexDigit(StrRef[i])) {
7086 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
7087 return;
7091 // Convert to our parsed format and canonicalize.
7092 MSGuidDecl::Parts Parsed;
7093 StrRef.substr(0, 8).getAsInteger(16, Parsed.Part1);
7094 StrRef.substr(9, 4).getAsInteger(16, Parsed.Part2);
7095 StrRef.substr(14, 4).getAsInteger(16, Parsed.Part3);
7096 for (unsigned i = 0; i != 8; ++i)
7097 StrRef.substr(19 + 2 * i + (i >= 2 ? 1 : 0), 2)
7098 .getAsInteger(16, Parsed.Part4And5[i]);
7099 MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parsed);
7101 // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's
7102 // the only thing in the [] list, the [] too), and add an insertion of
7103 // __declspec(uuid(...)). But sadly, neither the SourceLocs of the commas
7104 // separating attributes nor of the [ and the ] are in the AST.
7105 // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc"
7106 // on cfe-dev.
7107 if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling.
7108 S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated);
7110 UuidAttr *UA = S.mergeUuidAttr(D, AL, OrigStrRef, Guid);
7111 if (UA)
7112 D->addAttr(UA);
7115 static void handleHLSLNumThreadsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7116 llvm::VersionTuple SMVersion =
7117 S.Context.getTargetInfo().getTriple().getOSVersion();
7118 uint32_t ZMax = 1024;
7119 uint32_t ThreadMax = 1024;
7120 if (SMVersion.getMajor() <= 4) {
7121 ZMax = 1;
7122 ThreadMax = 768;
7123 } else if (SMVersion.getMajor() == 5) {
7124 ZMax = 64;
7125 ThreadMax = 1024;
7128 uint32_t X;
7129 if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), X))
7130 return;
7131 if (X > 1024) {
7132 S.Diag(AL.getArgAsExpr(0)->getExprLoc(),
7133 diag::err_hlsl_numthreads_argument_oor) << 0 << 1024;
7134 return;
7136 uint32_t Y;
7137 if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(1), Y))
7138 return;
7139 if (Y > 1024) {
7140 S.Diag(AL.getArgAsExpr(1)->getExprLoc(),
7141 diag::err_hlsl_numthreads_argument_oor) << 1 << 1024;
7142 return;
7144 uint32_t Z;
7145 if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(2), Z))
7146 return;
7147 if (Z > ZMax) {
7148 S.Diag(AL.getArgAsExpr(2)->getExprLoc(),
7149 diag::err_hlsl_numthreads_argument_oor) << 2 << ZMax;
7150 return;
7153 if (X * Y * Z > ThreadMax) {
7154 S.Diag(AL.getLoc(), diag::err_hlsl_numthreads_invalid) << ThreadMax;
7155 return;
7158 HLSLNumThreadsAttr *NewAttr = S.mergeHLSLNumThreadsAttr(D, AL, X, Y, Z);
7159 if (NewAttr)
7160 D->addAttr(NewAttr);
7163 HLSLNumThreadsAttr *Sema::mergeHLSLNumThreadsAttr(Decl *D,
7164 const AttributeCommonInfo &AL,
7165 int X, int Y, int Z) {
7166 if (HLSLNumThreadsAttr *NT = D->getAttr<HLSLNumThreadsAttr>()) {
7167 if (NT->getX() != X || NT->getY() != Y || NT->getZ() != Z) {
7168 Diag(NT->getLocation(), diag::err_hlsl_attribute_param_mismatch) << AL;
7169 Diag(AL.getLoc(), diag::note_conflicting_attribute);
7171 return nullptr;
7173 return ::new (Context) HLSLNumThreadsAttr(Context, AL, X, Y, Z);
7176 static bool isLegalTypeForHLSLSV_DispatchThreadID(QualType T) {
7177 if (!T->hasUnsignedIntegerRepresentation())
7178 return false;
7179 if (const auto *VT = T->getAs<VectorType>())
7180 return VT->getNumElements() <= 3;
7181 return true;
7184 static void handleHLSLSV_DispatchThreadIDAttr(Sema &S, Decl *D,
7185 const ParsedAttr &AL) {
7186 // FIXME: support semantic on field.
7187 // See https://github.com/llvm/llvm-project/issues/57889.
7188 if (isa<FieldDecl>(D)) {
7189 S.Diag(AL.getLoc(), diag::err_hlsl_attr_invalid_ast_node)
7190 << AL << "parameter";
7191 return;
7194 auto *VD = cast<ValueDecl>(D);
7195 if (!isLegalTypeForHLSLSV_DispatchThreadID(VD->getType())) {
7196 S.Diag(AL.getLoc(), diag::err_hlsl_attr_invalid_type)
7197 << AL << "uint/uint2/uint3";
7198 return;
7201 D->addAttr(::new (S.Context) HLSLSV_DispatchThreadIDAttr(S.Context, AL));
7204 static void handleHLSLShaderAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7205 StringRef Str;
7206 SourceLocation ArgLoc;
7207 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7208 return;
7210 HLSLShaderAttr::ShaderType ShaderType;
7211 if (!HLSLShaderAttr::ConvertStrToShaderType(Str, ShaderType)) {
7212 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
7213 << AL << Str << ArgLoc;
7214 return;
7217 // FIXME: check function match the shader stage.
7219 HLSLShaderAttr *NewAttr = S.mergeHLSLShaderAttr(D, AL, ShaderType);
7220 if (NewAttr)
7221 D->addAttr(NewAttr);
7224 HLSLShaderAttr *
7225 Sema::mergeHLSLShaderAttr(Decl *D, const AttributeCommonInfo &AL,
7226 HLSLShaderAttr::ShaderType ShaderType) {
7227 if (HLSLShaderAttr *NT = D->getAttr<HLSLShaderAttr>()) {
7228 if (NT->getType() != ShaderType) {
7229 Diag(NT->getLocation(), diag::err_hlsl_attribute_param_mismatch) << AL;
7230 Diag(AL.getLoc(), diag::note_conflicting_attribute);
7232 return nullptr;
7234 return HLSLShaderAttr::Create(Context, ShaderType, AL);
7237 static void handleHLSLResourceBindingAttr(Sema &S, Decl *D,
7238 const ParsedAttr &AL) {
7239 StringRef Space = "space0";
7240 StringRef Slot = "";
7242 if (!AL.isArgIdent(0)) {
7243 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7244 << AL << AANT_ArgumentIdentifier;
7245 return;
7248 IdentifierLoc *Loc = AL.getArgAsIdent(0);
7249 StringRef Str = Loc->Ident->getName();
7250 SourceLocation ArgLoc = Loc->Loc;
7252 SourceLocation SpaceArgLoc;
7253 if (AL.getNumArgs() == 2) {
7254 Slot = Str;
7255 if (!AL.isArgIdent(1)) {
7256 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7257 << AL << AANT_ArgumentIdentifier;
7258 return;
7261 IdentifierLoc *Loc = AL.getArgAsIdent(1);
7262 Space = Loc->Ident->getName();
7263 SpaceArgLoc = Loc->Loc;
7264 } else {
7265 Slot = Str;
7268 // Validate.
7269 if (!Slot.empty()) {
7270 switch (Slot[0]) {
7271 case 'u':
7272 case 'b':
7273 case 's':
7274 case 't':
7275 break;
7276 default:
7277 S.Diag(ArgLoc, diag::err_hlsl_unsupported_register_type)
7278 << Slot.substr(0, 1);
7279 return;
7282 StringRef SlotNum = Slot.substr(1);
7283 unsigned Num = 0;
7284 if (SlotNum.getAsInteger(10, Num)) {
7285 S.Diag(ArgLoc, diag::err_hlsl_unsupported_register_number);
7286 return;
7290 if (!Space.startswith("space")) {
7291 S.Diag(SpaceArgLoc, diag::err_hlsl_expected_space) << Space;
7292 return;
7294 StringRef SpaceNum = Space.substr(5);
7295 unsigned Num = 0;
7296 if (SpaceNum.getAsInteger(10, Num)) {
7297 S.Diag(SpaceArgLoc, diag::err_hlsl_expected_space) << Space;
7298 return;
7301 // FIXME: check reg type match decl. Issue
7302 // https://github.com/llvm/llvm-project/issues/57886.
7303 HLSLResourceBindingAttr *NewAttr =
7304 HLSLResourceBindingAttr::Create(S.getASTContext(), Slot, Space, AL);
7305 if (NewAttr)
7306 D->addAttr(NewAttr);
7309 static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7310 if (!S.LangOpts.CPlusPlus) {
7311 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
7312 << AL << AttributeLangSupport::C;
7313 return;
7315 MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
7316 D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling());
7317 if (IA) {
7318 D->addAttr(IA);
7319 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
7323 static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7324 const auto *VD = cast<VarDecl>(D);
7325 if (!S.Context.getTargetInfo().isTLSSupported()) {
7326 S.Diag(AL.getLoc(), diag::err_thread_unsupported);
7327 return;
7329 if (VD->getTSCSpec() != TSCS_unspecified) {
7330 S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable);
7331 return;
7333 if (VD->hasLocalStorage()) {
7334 S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
7335 return;
7337 D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL));
7340 static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7341 SmallVector<StringRef, 4> Tags;
7342 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
7343 StringRef Tag;
7344 if (!S.checkStringLiteralArgumentAttr(AL, I, Tag))
7345 return;
7346 Tags.push_back(Tag);
7349 if (const auto *NS = dyn_cast<NamespaceDecl>(D)) {
7350 if (!NS->isInline()) {
7351 S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0;
7352 return;
7354 if (NS->isAnonymousNamespace()) {
7355 S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1;
7356 return;
7358 if (AL.getNumArgs() == 0)
7359 Tags.push_back(NS->getName());
7360 } else if (!AL.checkAtLeastNumArgs(S, 1))
7361 return;
7363 // Store tags sorted and without duplicates.
7364 llvm::sort(Tags);
7365 Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end());
7367 D->addAttr(::new (S.Context)
7368 AbiTagAttr(S.Context, AL, Tags.data(), Tags.size()));
7371 static void handleARMInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7372 // Check the attribute arguments.
7373 if (AL.getNumArgs() > 1) {
7374 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
7375 return;
7378 StringRef Str;
7379 SourceLocation ArgLoc;
7381 if (AL.getNumArgs() == 0)
7382 Str = "";
7383 else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7384 return;
7386 ARMInterruptAttr::InterruptType Kind;
7387 if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
7388 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
7389 << ArgLoc;
7390 return;
7393 D->addAttr(::new (S.Context) ARMInterruptAttr(S.Context, AL, Kind));
7396 static void handleMSP430InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7397 // MSP430 'interrupt' attribute is applied to
7398 // a function with no parameters and void return type.
7399 if (!isFunctionOrMethod(D)) {
7400 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7401 << AL << AL.isRegularKeywordAttribute() << ExpectedFunctionOrMethod;
7402 return;
7405 if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
7406 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7407 << /*MSP430*/ 1 << 0;
7408 return;
7411 if (!getFunctionOrMethodResultType(D)->isVoidType()) {
7412 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7413 << /*MSP430*/ 1 << 1;
7414 return;
7417 // The attribute takes one integer argument.
7418 if (!AL.checkExactlyNumArgs(S, 1))
7419 return;
7421 if (!AL.isArgExpr(0)) {
7422 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7423 << AL << AANT_ArgumentIntegerConstant;
7424 return;
7427 Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
7428 std::optional<llvm::APSInt> NumParams = llvm::APSInt(32);
7429 if (!(NumParams = NumParamsExpr->getIntegerConstantExpr(S.Context))) {
7430 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7431 << AL << AANT_ArgumentIntegerConstant
7432 << NumParamsExpr->getSourceRange();
7433 return;
7435 // The argument should be in range 0..63.
7436 unsigned Num = NumParams->getLimitedValue(255);
7437 if (Num > 63) {
7438 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
7439 << AL << (int)NumParams->getSExtValue()
7440 << NumParamsExpr->getSourceRange();
7441 return;
7444 D->addAttr(::new (S.Context) MSP430InterruptAttr(S.Context, AL, Num));
7445 D->addAttr(UsedAttr::CreateImplicit(S.Context));
7448 static void handleMipsInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7449 // Only one optional argument permitted.
7450 if (AL.getNumArgs() > 1) {
7451 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1;
7452 return;
7455 StringRef Str;
7456 SourceLocation ArgLoc;
7458 if (AL.getNumArgs() == 0)
7459 Str = "";
7460 else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7461 return;
7463 // Semantic checks for a function with the 'interrupt' attribute for MIPS:
7464 // a) Must be a function.
7465 // b) Must have no parameters.
7466 // c) Must have the 'void' return type.
7467 // d) Cannot have the 'mips16' attribute, as that instruction set
7468 // lacks the 'eret' instruction.
7469 // e) The attribute itself must either have no argument or one of the
7470 // valid interrupt types, see [MipsInterruptDocs].
7472 if (!isFunctionOrMethod(D)) {
7473 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7474 << AL << AL.isRegularKeywordAttribute() << ExpectedFunctionOrMethod;
7475 return;
7478 if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
7479 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7480 << /*MIPS*/ 0 << 0;
7481 return;
7484 if (!getFunctionOrMethodResultType(D)->isVoidType()) {
7485 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7486 << /*MIPS*/ 0 << 1;
7487 return;
7490 // We still have to do this manually because the Interrupt attributes are
7491 // a bit special due to sharing their spellings across targets.
7492 if (checkAttrMutualExclusion<Mips16Attr>(S, D, AL))
7493 return;
7495 MipsInterruptAttr::InterruptType Kind;
7496 if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
7497 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
7498 << AL << "'" + std::string(Str) + "'";
7499 return;
7502 D->addAttr(::new (S.Context) MipsInterruptAttr(S.Context, AL, Kind));
7505 static void handleM68kInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7506 if (!AL.checkExactlyNumArgs(S, 1))
7507 return;
7509 if (!AL.isArgExpr(0)) {
7510 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7511 << AL << AANT_ArgumentIntegerConstant;
7512 return;
7515 // FIXME: Check for decl - it should be void ()(void).
7517 Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
7518 auto MaybeNumParams = NumParamsExpr->getIntegerConstantExpr(S.Context);
7519 if (!MaybeNumParams) {
7520 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
7521 << AL << AANT_ArgumentIntegerConstant
7522 << NumParamsExpr->getSourceRange();
7523 return;
7526 unsigned Num = MaybeNumParams->getLimitedValue(255);
7527 if ((Num & 1) || Num > 30) {
7528 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
7529 << AL << (int)MaybeNumParams->getSExtValue()
7530 << NumParamsExpr->getSourceRange();
7531 return;
7534 D->addAttr(::new (S.Context) M68kInterruptAttr(S.Context, AL, Num));
7535 D->addAttr(UsedAttr::CreateImplicit(S.Context));
7538 static void handleAnyX86InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7539 // Semantic checks for a function with the 'interrupt' attribute.
7540 // a) Must be a function.
7541 // b) Must have the 'void' return type.
7542 // c) Must take 1 or 2 arguments.
7543 // d) The 1st argument must be a pointer.
7544 // e) The 2nd argument (if any) must be an unsigned integer.
7545 if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) ||
7546 CXXMethodDecl::isStaticOverloadedOperator(
7547 cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) {
7548 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
7549 << AL << AL.isRegularKeywordAttribute()
7550 << ExpectedFunctionWithProtoType;
7551 return;
7553 // Interrupt handler must have void return type.
7554 if (!getFunctionOrMethodResultType(D)->isVoidType()) {
7555 S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(),
7556 diag::err_anyx86_interrupt_attribute)
7557 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
7559 : 1)
7560 << 0;
7561 return;
7563 // Interrupt handler must have 1 or 2 parameters.
7564 unsigned NumParams = getFunctionOrMethodNumParams(D);
7565 if (NumParams < 1 || NumParams > 2) {
7566 S.Diag(D->getBeginLoc(), diag::err_anyx86_interrupt_attribute)
7567 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
7569 : 1)
7570 << 1;
7571 return;
7573 // The first argument must be a pointer.
7574 if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) {
7575 S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(),
7576 diag::err_anyx86_interrupt_attribute)
7577 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
7579 : 1)
7580 << 2;
7581 return;
7583 // The second argument, if present, must be an unsigned integer.
7584 unsigned TypeSize =
7585 S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64
7586 ? 64
7587 : 32;
7588 if (NumParams == 2 &&
7589 (!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() ||
7590 S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) {
7591 S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(),
7592 diag::err_anyx86_interrupt_attribute)
7593 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
7595 : 1)
7596 << 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false);
7597 return;
7599 D->addAttr(::new (S.Context) AnyX86InterruptAttr(S.Context, AL));
7600 D->addAttr(UsedAttr::CreateImplicit(S.Context));
7603 static void handleAVRInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7604 if (!isFunctionOrMethod(D)) {
7605 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7606 << AL << AL.isRegularKeywordAttribute() << ExpectedFunction;
7607 return;
7610 if (!AL.checkExactlyNumArgs(S, 0))
7611 return;
7613 handleSimpleAttribute<AVRInterruptAttr>(S, D, AL);
7616 static void handleAVRSignalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7617 if (!isFunctionOrMethod(D)) {
7618 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7619 << AL << AL.isRegularKeywordAttribute() << ExpectedFunction;
7620 return;
7623 if (!AL.checkExactlyNumArgs(S, 0))
7624 return;
7626 handleSimpleAttribute<AVRSignalAttr>(S, D, AL);
7629 static void handleBPFPreserveAIRecord(Sema &S, RecordDecl *RD) {
7630 // Add preserve_access_index attribute to all fields and inner records.
7631 for (auto *D : RD->decls()) {
7632 if (D->hasAttr<BPFPreserveAccessIndexAttr>())
7633 continue;
7635 D->addAttr(BPFPreserveAccessIndexAttr::CreateImplicit(S.Context));
7636 if (auto *Rec = dyn_cast<RecordDecl>(D))
7637 handleBPFPreserveAIRecord(S, Rec);
7641 static void handleBPFPreserveAccessIndexAttr(Sema &S, Decl *D,
7642 const ParsedAttr &AL) {
7643 auto *Rec = cast<RecordDecl>(D);
7644 handleBPFPreserveAIRecord(S, Rec);
7645 Rec->addAttr(::new (S.Context) BPFPreserveAccessIndexAttr(S.Context, AL));
7648 static bool hasBTFDeclTagAttr(Decl *D, StringRef Tag) {
7649 for (const auto *I : D->specific_attrs<BTFDeclTagAttr>()) {
7650 if (I->getBTFDeclTag() == Tag)
7651 return true;
7653 return false;
7656 static void handleBTFDeclTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7657 StringRef Str;
7658 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
7659 return;
7660 if (hasBTFDeclTagAttr(D, Str))
7661 return;
7663 D->addAttr(::new (S.Context) BTFDeclTagAttr(S.Context, AL, Str));
7666 BTFDeclTagAttr *Sema::mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL) {
7667 if (hasBTFDeclTagAttr(D, AL.getBTFDeclTag()))
7668 return nullptr;
7669 return ::new (Context) BTFDeclTagAttr(Context, AL, AL.getBTFDeclTag());
7672 static void handleWebAssemblyExportNameAttr(Sema &S, Decl *D,
7673 const ParsedAttr &AL) {
7674 if (!isFunctionOrMethod(D)) {
7675 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7676 << AL << AL.isRegularKeywordAttribute() << ExpectedFunction;
7677 return;
7680 auto *FD = cast<FunctionDecl>(D);
7681 if (FD->isThisDeclarationADefinition()) {
7682 S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0;
7683 return;
7686 StringRef Str;
7687 SourceLocation ArgLoc;
7688 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7689 return;
7691 D->addAttr(::new (S.Context) WebAssemblyExportNameAttr(S.Context, AL, Str));
7692 D->addAttr(UsedAttr::CreateImplicit(S.Context));
7695 WebAssemblyImportModuleAttr *
7696 Sema::mergeImportModuleAttr(Decl *D, const WebAssemblyImportModuleAttr &AL) {
7697 auto *FD = cast<FunctionDecl>(D);
7699 if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
7700 if (ExistingAttr->getImportModule() == AL.getImportModule())
7701 return nullptr;
7702 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 0
7703 << ExistingAttr->getImportModule() << AL.getImportModule();
7704 Diag(AL.getLoc(), diag::note_previous_attribute);
7705 return nullptr;
7707 if (FD->hasBody()) {
7708 Diag(AL.getLoc(), diag::warn_import_on_definition) << 0;
7709 return nullptr;
7711 return ::new (Context) WebAssemblyImportModuleAttr(Context, AL,
7712 AL.getImportModule());
7715 WebAssemblyImportNameAttr *
7716 Sema::mergeImportNameAttr(Decl *D, const WebAssemblyImportNameAttr &AL) {
7717 auto *FD = cast<FunctionDecl>(D);
7719 if (const auto *ExistingAttr = FD->getAttr<WebAssemblyImportNameAttr>()) {
7720 if (ExistingAttr->getImportName() == AL.getImportName())
7721 return nullptr;
7722 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 1
7723 << ExistingAttr->getImportName() << AL.getImportName();
7724 Diag(AL.getLoc(), diag::note_previous_attribute);
7725 return nullptr;
7727 if (FD->hasBody()) {
7728 Diag(AL.getLoc(), diag::warn_import_on_definition) << 1;
7729 return nullptr;
7731 return ::new (Context) WebAssemblyImportNameAttr(Context, AL,
7732 AL.getImportName());
7735 static void
7736 handleWebAssemblyImportModuleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7737 auto *FD = cast<FunctionDecl>(D);
7739 StringRef Str;
7740 SourceLocation ArgLoc;
7741 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7742 return;
7743 if (FD->hasBody()) {
7744 S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 0;
7745 return;
7748 FD->addAttr(::new (S.Context)
7749 WebAssemblyImportModuleAttr(S.Context, AL, Str));
7752 static void
7753 handleWebAssemblyImportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7754 auto *FD = cast<FunctionDecl>(D);
7756 StringRef Str;
7757 SourceLocation ArgLoc;
7758 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7759 return;
7760 if (FD->hasBody()) {
7761 S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 1;
7762 return;
7765 FD->addAttr(::new (S.Context) WebAssemblyImportNameAttr(S.Context, AL, Str));
7768 static void handleRISCVInterruptAttr(Sema &S, Decl *D,
7769 const ParsedAttr &AL) {
7770 // Warn about repeated attributes.
7771 if (const auto *A = D->getAttr<RISCVInterruptAttr>()) {
7772 S.Diag(AL.getRange().getBegin(),
7773 diag::warn_riscv_repeated_interrupt_attribute);
7774 S.Diag(A->getLocation(), diag::note_riscv_repeated_interrupt_attribute);
7775 return;
7778 // Check the attribute argument. Argument is optional.
7779 if (!AL.checkAtMostNumArgs(S, 1))
7780 return;
7782 StringRef Str;
7783 SourceLocation ArgLoc;
7785 // 'machine'is the default interrupt mode.
7786 if (AL.getNumArgs() == 0)
7787 Str = "machine";
7788 else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
7789 return;
7791 // Semantic checks for a function with the 'interrupt' attribute:
7792 // - Must be a function.
7793 // - Must have no parameters.
7794 // - Must have the 'void' return type.
7795 // - The attribute itself must either have no argument or one of the
7796 // valid interrupt types, see [RISCVInterruptDocs].
7798 if (D->getFunctionType() == nullptr) {
7799 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
7800 << AL << AL.isRegularKeywordAttribute() << ExpectedFunction;
7801 return;
7804 if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
7805 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7806 << /*RISC-V*/ 2 << 0;
7807 return;
7810 if (!getFunctionOrMethodResultType(D)->isVoidType()) {
7811 S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid)
7812 << /*RISC-V*/ 2 << 1;
7813 return;
7816 RISCVInterruptAttr::InterruptType Kind;
7817 if (!RISCVInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
7818 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str
7819 << ArgLoc;
7820 return;
7823 D->addAttr(::new (S.Context) RISCVInterruptAttr(S.Context, AL, Kind));
7826 static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7827 // Dispatch the interrupt attribute based on the current target.
7828 switch (S.Context.getTargetInfo().getTriple().getArch()) {
7829 case llvm::Triple::msp430:
7830 handleMSP430InterruptAttr(S, D, AL);
7831 break;
7832 case llvm::Triple::mipsel:
7833 case llvm::Triple::mips:
7834 handleMipsInterruptAttr(S, D, AL);
7835 break;
7836 case llvm::Triple::m68k:
7837 handleM68kInterruptAttr(S, D, AL);
7838 break;
7839 case llvm::Triple::x86:
7840 case llvm::Triple::x86_64:
7841 handleAnyX86InterruptAttr(S, D, AL);
7842 break;
7843 case llvm::Triple::avr:
7844 handleAVRInterruptAttr(S, D, AL);
7845 break;
7846 case llvm::Triple::riscv32:
7847 case llvm::Triple::riscv64:
7848 handleRISCVInterruptAttr(S, D, AL);
7849 break;
7850 default:
7851 handleARMInterruptAttr(S, D, AL);
7852 break;
7856 static bool
7857 checkAMDGPUFlatWorkGroupSizeArguments(Sema &S, Expr *MinExpr, Expr *MaxExpr,
7858 const AMDGPUFlatWorkGroupSizeAttr &Attr) {
7859 // Accept template arguments for now as they depend on something else.
7860 // We'll get to check them when they eventually get instantiated.
7861 if (MinExpr->isValueDependent() || MaxExpr->isValueDependent())
7862 return false;
7864 uint32_t Min = 0;
7865 if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
7866 return true;
7868 uint32_t Max = 0;
7869 if (!checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
7870 return true;
7872 if (Min == 0 && Max != 0) {
7873 S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7874 << &Attr << 0;
7875 return true;
7877 if (Min > Max) {
7878 S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7879 << &Attr << 1;
7880 return true;
7883 return false;
7886 AMDGPUFlatWorkGroupSizeAttr *
7887 Sema::CreateAMDGPUFlatWorkGroupSizeAttr(const AttributeCommonInfo &CI,
7888 Expr *MinExpr, Expr *MaxExpr) {
7889 AMDGPUFlatWorkGroupSizeAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
7891 if (checkAMDGPUFlatWorkGroupSizeArguments(*this, MinExpr, MaxExpr, TmpAttr))
7892 return nullptr;
7893 return ::new (Context)
7894 AMDGPUFlatWorkGroupSizeAttr(Context, CI, MinExpr, MaxExpr);
7897 void Sema::addAMDGPUFlatWorkGroupSizeAttr(Decl *D,
7898 const AttributeCommonInfo &CI,
7899 Expr *MinExpr, Expr *MaxExpr) {
7900 if (auto *Attr = CreateAMDGPUFlatWorkGroupSizeAttr(CI, MinExpr, MaxExpr))
7901 D->addAttr(Attr);
7904 static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D,
7905 const ParsedAttr &AL) {
7906 Expr *MinExpr = AL.getArgAsExpr(0);
7907 Expr *MaxExpr = AL.getArgAsExpr(1);
7909 S.addAMDGPUFlatWorkGroupSizeAttr(D, AL, MinExpr, MaxExpr);
7912 static bool checkAMDGPUWavesPerEUArguments(Sema &S, Expr *MinExpr,
7913 Expr *MaxExpr,
7914 const AMDGPUWavesPerEUAttr &Attr) {
7915 if (S.DiagnoseUnexpandedParameterPack(MinExpr) ||
7916 (MaxExpr && S.DiagnoseUnexpandedParameterPack(MaxExpr)))
7917 return true;
7919 // Accept template arguments for now as they depend on something else.
7920 // We'll get to check them when they eventually get instantiated.
7921 if (MinExpr->isValueDependent() || (MaxExpr && MaxExpr->isValueDependent()))
7922 return false;
7924 uint32_t Min = 0;
7925 if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0))
7926 return true;
7928 uint32_t Max = 0;
7929 if (MaxExpr && !checkUInt32Argument(S, Attr, MaxExpr, Max, 1))
7930 return true;
7932 if (Min == 0 && Max != 0) {
7933 S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7934 << &Attr << 0;
7935 return true;
7937 if (Max != 0 && Min > Max) {
7938 S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid)
7939 << &Attr << 1;
7940 return true;
7943 return false;
7946 AMDGPUWavesPerEUAttr *
7947 Sema::CreateAMDGPUWavesPerEUAttr(const AttributeCommonInfo &CI, Expr *MinExpr,
7948 Expr *MaxExpr) {
7949 AMDGPUWavesPerEUAttr TmpAttr(Context, CI, MinExpr, MaxExpr);
7951 if (checkAMDGPUWavesPerEUArguments(*this, MinExpr, MaxExpr, TmpAttr))
7952 return nullptr;
7954 return ::new (Context) AMDGPUWavesPerEUAttr(Context, CI, MinExpr, MaxExpr);
7957 void Sema::addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
7958 Expr *MinExpr, Expr *MaxExpr) {
7959 if (auto *Attr = CreateAMDGPUWavesPerEUAttr(CI, MinExpr, MaxExpr))
7960 D->addAttr(Attr);
7963 static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7964 if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2))
7965 return;
7967 Expr *MinExpr = AL.getArgAsExpr(0);
7968 Expr *MaxExpr = (AL.getNumArgs() > 1) ? AL.getArgAsExpr(1) : nullptr;
7970 S.addAMDGPUWavesPerEUAttr(D, AL, MinExpr, MaxExpr);
7973 static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7974 uint32_t NumSGPR = 0;
7975 Expr *NumSGPRExpr = AL.getArgAsExpr(0);
7976 if (!checkUInt32Argument(S, AL, NumSGPRExpr, NumSGPR))
7977 return;
7979 D->addAttr(::new (S.Context) AMDGPUNumSGPRAttr(S.Context, AL, NumSGPR));
7982 static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
7983 uint32_t NumVGPR = 0;
7984 Expr *NumVGPRExpr = AL.getArgAsExpr(0);
7985 if (!checkUInt32Argument(S, AL, NumVGPRExpr, NumVGPR))
7986 return;
7988 D->addAttr(::new (S.Context) AMDGPUNumVGPRAttr(S.Context, AL, NumVGPR));
7991 static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
7992 const ParsedAttr &AL) {
7993 // If we try to apply it to a function pointer, don't warn, but don't
7994 // do anything, either. It doesn't matter anyway, because there's nothing
7995 // special about calling a force_align_arg_pointer function.
7996 const auto *VD = dyn_cast<ValueDecl>(D);
7997 if (VD && VD->getType()->isFunctionPointerType())
7998 return;
7999 // Also don't warn on function pointer typedefs.
8000 const auto *TD = dyn_cast<TypedefNameDecl>(D);
8001 if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
8002 TD->getUnderlyingType()->isFunctionType()))
8003 return;
8004 // Attribute can only be applied to function types.
8005 if (!isa<FunctionDecl>(D)) {
8006 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
8007 << AL << AL.isRegularKeywordAttribute() << ExpectedFunction;
8008 return;
8011 D->addAttr(::new (S.Context) X86ForceAlignArgPointerAttr(S.Context, AL));
8014 static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) {
8015 uint32_t Version;
8016 Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
8017 if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Version))
8018 return;
8020 // TODO: Investigate what happens with the next major version of MSVC.
8021 if (Version != LangOptions::MSVC2015 / 100) {
8022 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
8023 << AL << Version << VersionExpr->getSourceRange();
8024 return;
8027 // The attribute expects a "major" version number like 19, but new versions of
8028 // MSVC have moved to updating the "minor", or less significant numbers, so we
8029 // have to multiply by 100 now.
8030 Version *= 100;
8032 D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version));
8035 DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D,
8036 const AttributeCommonInfo &CI) {
8037 if (D->hasAttr<DLLExportAttr>()) {
8038 Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'";
8039 return nullptr;
8042 if (D->hasAttr<DLLImportAttr>())
8043 return nullptr;
8045 return ::new (Context) DLLImportAttr(Context, CI);
8048 DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D,
8049 const AttributeCommonInfo &CI) {
8050 if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
8051 Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
8052 D->dropAttr<DLLImportAttr>();
8055 if (D->hasAttr<DLLExportAttr>())
8056 return nullptr;
8058 return ::new (Context) DLLExportAttr(Context, CI);
8061 static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) {
8062 if (isa<ClassTemplatePartialSpecializationDecl>(D) &&
8063 (S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) {
8064 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A;
8065 return;
8068 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
8069 if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport &&
8070 !(S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) {
8071 // MinGW doesn't allow dllimport on inline functions.
8072 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
8073 << A;
8074 return;
8078 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
8079 if ((S.Context.getTargetInfo().shouldDLLImportComdatSymbols()) &&
8080 MD->getParent()->isLambda()) {
8081 S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A;
8082 return;
8086 Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport
8087 ? (Attr *)S.mergeDLLExportAttr(D, A)
8088 : (Attr *)S.mergeDLLImportAttr(D, A);
8089 if (NewAttr)
8090 D->addAttr(NewAttr);
8093 MSInheritanceAttr *
8094 Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI,
8095 bool BestCase,
8096 MSInheritanceModel Model) {
8097 if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
8098 if (IA->getInheritanceModel() == Model)
8099 return nullptr;
8100 Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
8101 << 1 /*previous declaration*/;
8102 Diag(CI.getLoc(), diag::note_previous_ms_inheritance);
8103 D->dropAttr<MSInheritanceAttr>();
8106 auto *RD = cast<CXXRecordDecl>(D);
8107 if (RD->hasDefinition()) {
8108 if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase,
8109 Model)) {
8110 return nullptr;
8112 } else {
8113 if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
8114 Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
8115 << 1 /*partial specialization*/;
8116 return nullptr;
8118 if (RD->getDescribedClassTemplate()) {
8119 Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance)
8120 << 0 /*primary template*/;
8121 return nullptr;
8125 return ::new (Context) MSInheritanceAttr(Context, CI, BestCase);
8128 static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8129 // The capability attributes take a single string parameter for the name of
8130 // the capability they represent. The lockable attribute does not take any
8131 // parameters. However, semantically, both attributes represent the same
8132 // concept, and so they use the same semantic attribute. Eventually, the
8133 // lockable attribute will be removed.
8135 // For backward compatibility, any capability which has no specified string
8136 // literal will be considered a "mutex."
8137 StringRef N("mutex");
8138 SourceLocation LiteralLoc;
8139 if (AL.getKind() == ParsedAttr::AT_Capability &&
8140 !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc))
8141 return;
8143 D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N));
8146 static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8147 SmallVector<Expr*, 1> Args;
8148 if (!checkLockFunAttrCommon(S, D, AL, Args))
8149 return;
8151 D->addAttr(::new (S.Context)
8152 AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size()));
8155 static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
8156 const ParsedAttr &AL) {
8157 SmallVector<Expr*, 1> Args;
8158 if (!checkLockFunAttrCommon(S, D, AL, Args))
8159 return;
8161 D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(),
8162 Args.size()));
8165 static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
8166 const ParsedAttr &AL) {
8167 SmallVector<Expr*, 2> Args;
8168 if (!checkTryLockFunAttrCommon(S, D, AL, Args))
8169 return;
8171 D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(
8172 S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size()));
8175 static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
8176 const ParsedAttr &AL) {
8177 // Check that all arguments are lockable objects.
8178 SmallVector<Expr *, 1> Args;
8179 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true);
8181 D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(),
8182 Args.size()));
8185 static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
8186 const ParsedAttr &AL) {
8187 if (!AL.checkAtLeastNumArgs(S, 1))
8188 return;
8190 // check that all arguments are lockable objects
8191 SmallVector<Expr*, 1> Args;
8192 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
8193 if (Args.empty())
8194 return;
8196 RequiresCapabilityAttr *RCA = ::new (S.Context)
8197 RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size());
8199 D->addAttr(RCA);
8202 static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8203 if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) {
8204 if (NSD->isAnonymousNamespace()) {
8205 S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace);
8206 // Do not want to attach the attribute to the namespace because that will
8207 // cause confusing diagnostic reports for uses of declarations within the
8208 // namespace.
8209 return;
8211 } else if (isa<UsingDecl, UnresolvedUsingTypenameDecl,
8212 UnresolvedUsingValueDecl>(D)) {
8213 S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using)
8214 << AL;
8215 return;
8218 // Handle the cases where the attribute has a text message.
8219 StringRef Str, Replacement;
8220 if (AL.isArgExpr(0) && AL.getArgAsExpr(0) &&
8221 !S.checkStringLiteralArgumentAttr(AL, 0, Str))
8222 return;
8224 // Support a single optional message only for Declspec and [[]] spellings.
8225 if (AL.isDeclspecAttribute() || AL.isStandardAttributeSyntax())
8226 AL.checkAtMostNumArgs(S, 1);
8227 else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) &&
8228 !S.checkStringLiteralArgumentAttr(AL, 1, Replacement))
8229 return;
8231 if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope())
8232 S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL;
8234 D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement));
8237 static bool isGlobalVar(const Decl *D) {
8238 if (const auto *S = dyn_cast<VarDecl>(D))
8239 return S->hasGlobalStorage();
8240 return false;
8243 static bool isSanitizerAttributeAllowedOnGlobals(StringRef Sanitizer) {
8244 return Sanitizer == "address" || Sanitizer == "hwaddress" ||
8245 Sanitizer == "memtag";
8248 static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8249 if (!AL.checkAtLeastNumArgs(S, 1))
8250 return;
8252 std::vector<StringRef> Sanitizers;
8254 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
8255 StringRef SanitizerName;
8256 SourceLocation LiteralLoc;
8258 if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc))
8259 return;
8261 if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) ==
8262 SanitizerMask() &&
8263 SanitizerName != "coverage")
8264 S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName;
8265 else if (isGlobalVar(D) && !isSanitizerAttributeAllowedOnGlobals(SanitizerName))
8266 S.Diag(D->getLocation(), diag::warn_attribute_type_not_supported_global)
8267 << AL << SanitizerName;
8268 Sanitizers.push_back(SanitizerName);
8271 D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(),
8272 Sanitizers.size()));
8275 static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D,
8276 const ParsedAttr &AL) {
8277 StringRef AttrName = AL.getAttrName()->getName();
8278 normalizeName(AttrName);
8279 StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName)
8280 .Case("no_address_safety_analysis", "address")
8281 .Case("no_sanitize_address", "address")
8282 .Case("no_sanitize_thread", "thread")
8283 .Case("no_sanitize_memory", "memory");
8284 if (isGlobalVar(D) && SanitizerName != "address")
8285 S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
8286 << AL << AL.isRegularKeywordAttribute() << ExpectedFunction;
8288 // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a
8289 // NoSanitizeAttr object; but we need to calculate the correct spelling list
8290 // index rather than incorrectly assume the index for NoSanitizeSpecificAttr
8291 // has the same spellings as the index for NoSanitizeAttr. We don't have a
8292 // general way to "translate" between the two, so this hack attempts to work
8293 // around the issue with hard-coded indices. This is critical for calling
8294 // getSpelling() or prettyPrint() on the resulting semantic attribute object
8295 // without failing assertions.
8296 unsigned TranslatedSpellingIndex = 0;
8297 if (AL.isStandardAttributeSyntax())
8298 TranslatedSpellingIndex = 1;
8300 AttributeCommonInfo Info = AL;
8301 Info.setAttributeSpellingListIndex(TranslatedSpellingIndex);
8302 D->addAttr(::new (S.Context)
8303 NoSanitizeAttr(S.Context, Info, &SanitizerName, 1));
8306 static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8307 if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL))
8308 D->addAttr(Internal);
8311 static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8312 if (S.LangOpts.getOpenCLCompatibleVersion() < 200)
8313 S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version)
8314 << AL << "2.0" << 1;
8315 else
8316 S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored)
8317 << AL << S.LangOpts.getOpenCLVersionString();
8320 static void handleOpenCLAccessAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8321 if (D->isInvalidDecl())
8322 return;
8324 // Check if there is only one access qualifier.
8325 if (D->hasAttr<OpenCLAccessAttr>()) {
8326 if (D->getAttr<OpenCLAccessAttr>()->getSemanticSpelling() ==
8327 AL.getSemanticSpelling()) {
8328 S.Diag(AL.getLoc(), diag::warn_duplicate_declspec)
8329 << AL.getAttrName()->getName() << AL.getRange();
8330 } else {
8331 S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers)
8332 << D->getSourceRange();
8333 D->setInvalidDecl(true);
8334 return;
8338 // OpenCL v2.0 s6.6 - read_write can be used for image types to specify that
8339 // an image object can be read and written. OpenCL v2.0 s6.13.6 - A kernel
8340 // cannot read from and write to the same pipe object. Using the read_write
8341 // (or __read_write) qualifier with the pipe qualifier is a compilation error.
8342 // OpenCL v3.0 s6.8 - For OpenCL C 2.0, or with the
8343 // __opencl_c_read_write_images feature, image objects specified as arguments
8344 // to a kernel can additionally be declared to be read-write.
8345 // C++ for OpenCL 1.0 inherits rule from OpenCL C v2.0.
8346 // C++ for OpenCL 2021 inherits rule from OpenCL C v3.0.
8347 if (const auto *PDecl = dyn_cast<ParmVarDecl>(D)) {
8348 const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr();
8349 if (AL.getAttrName()->getName().contains("read_write")) {
8350 bool ReadWriteImagesUnsupported =
8351 (S.getLangOpts().getOpenCLCompatibleVersion() < 200) ||
8352 (S.getLangOpts().getOpenCLCompatibleVersion() == 300 &&
8353 !S.getOpenCLOptions().isSupported("__opencl_c_read_write_images",
8354 S.getLangOpts()));
8355 if (ReadWriteImagesUnsupported || DeclTy->isPipeType()) {
8356 S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write)
8357 << AL << PDecl->getType() << DeclTy->isImageType();
8358 D->setInvalidDecl(true);
8359 return;
8364 D->addAttr(::new (S.Context) OpenCLAccessAttr(S.Context, AL));
8367 static void handleZeroCallUsedRegsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8368 // Check that the argument is a string literal.
8369 StringRef KindStr;
8370 SourceLocation LiteralLoc;
8371 if (!S.checkStringLiteralArgumentAttr(AL, 0, KindStr, &LiteralLoc))
8372 return;
8374 ZeroCallUsedRegsAttr::ZeroCallUsedRegsKind Kind;
8375 if (!ZeroCallUsedRegsAttr::ConvertStrToZeroCallUsedRegsKind(KindStr, Kind)) {
8376 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
8377 << AL << KindStr;
8378 return;
8381 D->dropAttr<ZeroCallUsedRegsAttr>();
8382 D->addAttr(ZeroCallUsedRegsAttr::Create(S.Context, Kind, AL));
8385 static void handleCountedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8386 if (!AL.isArgIdent(0)) {
8387 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
8388 << AL << AANT_ArgumentIdentifier;
8389 return;
8392 IdentifierLoc *IL = AL.getArgAsIdent(0);
8393 CountedByAttr *CBA =
8394 ::new (S.Context) CountedByAttr(S.Context, AL, IL->Ident);
8395 CBA->setCountedByFieldLoc(IL->Loc);
8396 D->addAttr(CBA);
8399 bool Sema::CheckCountedByAttr(Scope *S, const FieldDecl *FD) {
8400 const auto *CBA = FD->getAttr<CountedByAttr>();
8401 const IdentifierInfo *FieldName = CBA->getCountedByField();
8402 DeclarationNameInfo NameInfo(FieldName,
8403 CBA->getCountedByFieldLoc().getBegin());
8405 LookupResult MemResult(*this, NameInfo, Sema::LookupMemberName);
8406 LookupName(MemResult, S);
8408 if (MemResult.empty()) {
8409 // The "counted_by" field needs to exist within the struct.
8410 LookupResult OrdResult(*this, NameInfo, Sema::LookupOrdinaryName);
8411 LookupName(OrdResult, S);
8413 if (!OrdResult.empty()) {
8414 SourceRange SR = FD->getLocation();
8415 Diag(SR.getBegin(), diag::err_counted_by_must_be_in_structure)
8416 << FieldName << SR;
8418 if (auto *ND = OrdResult.getAsSingle<NamedDecl>()) {
8419 SR = ND->getLocation();
8420 Diag(SR.getBegin(), diag::note_flexible_array_counted_by_attr_field)
8421 << ND << SR;
8423 return true;
8426 CXXScopeSpec SS;
8427 DeclFilterCCC<FieldDecl> Filter(FieldName);
8428 return DiagnoseEmptyLookup(S, SS, MemResult, Filter, nullptr, std::nullopt,
8429 const_cast<DeclContext *>(FD->getDeclContext()));
8432 LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel =
8433 Context.getLangOpts().getStrictFlexArraysLevel();
8435 if (!Decl::isFlexibleArrayMemberLike(Context, FD, FD->getType(),
8436 StrictFlexArraysLevel, true)) {
8437 // The "counted_by" attribute must be on a flexible array member.
8438 SourceRange SR = FD->getLocation();
8439 Diag(SR.getBegin(), diag::err_counted_by_attr_not_on_flexible_array_member)
8440 << SR;
8441 return true;
8444 if (const FieldDecl *Field = MemResult.getAsSingle<FieldDecl>()) {
8445 if (Field->hasAttr<CountedByAttr>()) {
8446 // The "counted_by" field can't point to the flexible array member.
8447 SourceRange SR = CBA->getCountedByFieldLoc();
8448 Diag(SR.getBegin(), diag::err_counted_by_attr_refers_to_flexible_array)
8449 << CBA->getCountedByField() << SR;
8450 return true;
8453 if (!Field->getType()->isIntegerType() ||
8454 Field->getType()->isBooleanType()) {
8455 // The "counted_by" field must have an integer type.
8456 SourceRange SR = CBA->getCountedByFieldLoc();
8457 Diag(SR.getBegin(),
8458 diag::err_flexible_array_counted_by_attr_field_not_integer)
8459 << CBA->getCountedByField() << SR;
8461 SR = Field->getLocation();
8462 Diag(SR.getBegin(), diag::note_flexible_array_counted_by_attr_field)
8463 << Field << SR;
8464 return true;
8468 return false;
8471 static void handleFunctionReturnThunksAttr(Sema &S, Decl *D,
8472 const ParsedAttr &AL) {
8473 StringRef KindStr;
8474 SourceLocation LiteralLoc;
8475 if (!S.checkStringLiteralArgumentAttr(AL, 0, KindStr, &LiteralLoc))
8476 return;
8478 FunctionReturnThunksAttr::Kind Kind;
8479 if (!FunctionReturnThunksAttr::ConvertStrToKind(KindStr, Kind)) {
8480 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
8481 << AL << KindStr;
8482 return;
8484 // FIXME: it would be good to better handle attribute merging rather than
8485 // silently replacing the existing attribute, so long as it does not break
8486 // the expected codegen tests.
8487 D->dropAttr<FunctionReturnThunksAttr>();
8488 D->addAttr(FunctionReturnThunksAttr::Create(S.Context, Kind, AL));
8491 static void handleAvailableOnlyInDefaultEvalMethod(Sema &S, Decl *D,
8492 const ParsedAttr &AL) {
8493 assert(isa<TypedefNameDecl>(D) && "This attribute only applies to a typedef");
8494 handleSimpleAttribute<AvailableOnlyInDefaultEvalMethodAttr>(S, D, AL);
8497 static void handleNoMergeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8498 auto *VDecl = dyn_cast<VarDecl>(D);
8499 if (VDecl && !VDecl->isFunctionPointerType()) {
8500 S.Diag(AL.getLoc(), diag::warn_attribute_ignored_non_function_pointer)
8501 << AL << VDecl;
8502 return;
8504 D->addAttr(NoMergeAttr::Create(S.Context, AL));
8507 static void handleNoUniqueAddressAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8508 D->addAttr(NoUniqueAddressAttr::Create(S.Context, AL));
8511 static void handleSYCLKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8512 // The 'sycl_kernel' attribute applies only to function templates.
8513 const auto *FD = cast<FunctionDecl>(D);
8514 const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate();
8515 assert(FT && "Function template is expected");
8517 // Function template must have at least two template parameters.
8518 const TemplateParameterList *TL = FT->getTemplateParameters();
8519 if (TL->size() < 2) {
8520 S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params);
8521 return;
8524 // Template parameters must be typenames.
8525 for (unsigned I = 0; I < 2; ++I) {
8526 const NamedDecl *TParam = TL->getParam(I);
8527 if (isa<NonTypeTemplateParmDecl>(TParam)) {
8528 S.Diag(FT->getLocation(),
8529 diag::warn_sycl_kernel_invalid_template_param_type);
8530 return;
8534 // Function must have at least one argument.
8535 if (getFunctionOrMethodNumParams(D) != 1) {
8536 S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params);
8537 return;
8540 // Function must return void.
8541 QualType RetTy = getFunctionOrMethodResultType(D);
8542 if (!RetTy->isVoidType()) {
8543 S.Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type);
8544 return;
8547 handleSimpleAttribute<SYCLKernelAttr>(S, D, AL);
8550 static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) {
8551 if (!cast<VarDecl>(D)->hasGlobalStorage()) {
8552 S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var)
8553 << (A.getKind() == ParsedAttr::AT_AlwaysDestroy);
8554 return;
8557 if (A.getKind() == ParsedAttr::AT_AlwaysDestroy)
8558 handleSimpleAttribute<AlwaysDestroyAttr>(S, D, A);
8559 else
8560 handleSimpleAttribute<NoDestroyAttr>(S, D, A);
8563 static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8564 assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic &&
8565 "uninitialized is only valid on automatic duration variables");
8566 D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL));
8569 static bool tryMakeVariablePseudoStrong(Sema &S, VarDecl *VD,
8570 bool DiagnoseFailure) {
8571 QualType Ty = VD->getType();
8572 if (!Ty->isObjCRetainableType()) {
8573 if (DiagnoseFailure) {
8574 S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
8575 << 0;
8577 return false;
8580 Qualifiers::ObjCLifetime LifetimeQual = Ty.getQualifiers().getObjCLifetime();
8582 // Sema::inferObjCARCLifetime must run after processing decl attributes
8583 // (because __block lowers to an attribute), so if the lifetime hasn't been
8584 // explicitly specified, infer it locally now.
8585 if (LifetimeQual == Qualifiers::OCL_None)
8586 LifetimeQual = Ty->getObjCARCImplicitLifetime();
8588 // The attributes only really makes sense for __strong variables; ignore any
8589 // attempts to annotate a parameter with any other lifetime qualifier.
8590 if (LifetimeQual != Qualifiers::OCL_Strong) {
8591 if (DiagnoseFailure) {
8592 S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
8593 << 1;
8595 return false;
8598 // Tampering with the type of a VarDecl here is a bit of a hack, but we need
8599 // to ensure that the variable is 'const' so that we can error on
8600 // modification, which can otherwise over-release.
8601 VD->setType(Ty.withConst());
8602 VD->setARCPseudoStrong(true);
8603 return true;
8606 static void handleObjCExternallyRetainedAttr(Sema &S, Decl *D,
8607 const ParsedAttr &AL) {
8608 if (auto *VD = dyn_cast<VarDecl>(D)) {
8609 assert(!isa<ParmVarDecl>(VD) && "should be diagnosed automatically");
8610 if (!VD->hasLocalStorage()) {
8611 S.Diag(D->getBeginLoc(), diag::warn_ignored_objc_externally_retained)
8612 << 0;
8613 return;
8616 if (!tryMakeVariablePseudoStrong(S, VD, /*DiagnoseFailure=*/true))
8617 return;
8619 handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
8620 return;
8623 // If D is a function-like declaration (method, block, or function), then we
8624 // make every parameter psuedo-strong.
8625 unsigned NumParams =
8626 hasFunctionProto(D) ? getFunctionOrMethodNumParams(D) : 0;
8627 for (unsigned I = 0; I != NumParams; ++I) {
8628 auto *PVD = const_cast<ParmVarDecl *>(getFunctionOrMethodParam(D, I));
8629 QualType Ty = PVD->getType();
8631 // If a user wrote a parameter with __strong explicitly, then assume they
8632 // want "real" strong semantics for that parameter. This works because if
8633 // the parameter was written with __strong, then the strong qualifier will
8634 // be non-local.
8635 if (Ty.getLocalUnqualifiedType().getQualifiers().getObjCLifetime() ==
8636 Qualifiers::OCL_Strong)
8637 continue;
8639 tryMakeVariablePseudoStrong(S, PVD, /*DiagnoseFailure=*/false);
8641 handleSimpleAttribute<ObjCExternallyRetainedAttr>(S, D, AL);
8644 static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8645 // Check that the return type is a `typedef int kern_return_t` or a typedef
8646 // around it, because otherwise MIG convention checks make no sense.
8647 // BlockDecl doesn't store a return type, so it's annoying to check,
8648 // so let's skip it for now.
8649 if (!isa<BlockDecl>(D)) {
8650 QualType T = getFunctionOrMethodResultType(D);
8651 bool IsKernReturnT = false;
8652 while (const auto *TT = T->getAs<TypedefType>()) {
8653 IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t");
8654 T = TT->desugar();
8656 if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) {
8657 S.Diag(D->getBeginLoc(),
8658 diag::warn_mig_server_routine_does_not_return_kern_return_t);
8659 return;
8663 handleSimpleAttribute<MIGServerRoutineAttr>(S, D, AL);
8666 static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8667 // Warn if the return type is not a pointer or reference type.
8668 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
8669 QualType RetTy = FD->getReturnType();
8670 if (!RetTy->isPointerType() && !RetTy->isReferenceType()) {
8671 S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer)
8672 << AL.getRange() << RetTy;
8673 return;
8677 handleSimpleAttribute<MSAllocatorAttr>(S, D, AL);
8680 static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8681 if (AL.isUsedAsTypeAttr())
8682 return;
8683 // Warn if the parameter is definitely not an output parameter.
8684 if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
8685 if (PVD->getType()->isIntegerType()) {
8686 S.Diag(AL.getLoc(), diag::err_attribute_output_parameter)
8687 << AL.getRange();
8688 return;
8691 StringRef Argument;
8692 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
8693 return;
8694 D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL));
8697 template<typename Attr>
8698 static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8699 StringRef Argument;
8700 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
8701 return;
8702 D->addAttr(Attr::Create(S.Context, Argument, AL));
8705 template<typename Attr>
8706 static void handleUnsafeBufferUsage(Sema &S, Decl *D, const ParsedAttr &AL) {
8707 D->addAttr(Attr::Create(S.Context, AL));
8710 static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8711 // The guard attribute takes a single identifier argument.
8713 if (!AL.isArgIdent(0)) {
8714 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
8715 << AL << AANT_ArgumentIdentifier;
8716 return;
8719 CFGuardAttr::GuardArg Arg;
8720 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
8721 if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) {
8722 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
8723 return;
8726 D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg));
8730 template <typename AttrTy>
8731 static const AttrTy *findEnforceTCBAttrByName(Decl *D, StringRef Name) {
8732 auto Attrs = D->specific_attrs<AttrTy>();
8733 auto I = llvm::find_if(Attrs,
8734 [Name](const AttrTy *A) {
8735 return A->getTCBName() == Name;
8737 return I == Attrs.end() ? nullptr : *I;
8740 template <typename AttrTy, typename ConflictingAttrTy>
8741 static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8742 StringRef Argument;
8743 if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument))
8744 return;
8746 // A function cannot be have both regular and leaf membership in the same TCB.
8747 if (const ConflictingAttrTy *ConflictingAttr =
8748 findEnforceTCBAttrByName<ConflictingAttrTy>(D, Argument)) {
8749 // We could attach a note to the other attribute but in this case
8750 // there's no need given how the two are very close to each other.
8751 S.Diag(AL.getLoc(), diag::err_tcb_conflicting_attributes)
8752 << AL.getAttrName()->getName() << ConflictingAttr->getAttrName()->getName()
8753 << Argument;
8755 // Error recovery: drop the non-leaf attribute so that to suppress
8756 // all future warnings caused by erroneous attributes. The leaf attribute
8757 // needs to be kept because it can only suppresses warnings, not cause them.
8758 D->dropAttr<EnforceTCBAttr>();
8759 return;
8762 D->addAttr(AttrTy::Create(S.Context, Argument, AL));
8765 template <typename AttrTy, typename ConflictingAttrTy>
8766 static AttrTy *mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL) {
8767 // Check if the new redeclaration has different leaf-ness in the same TCB.
8768 StringRef TCBName = AL.getTCBName();
8769 if (const ConflictingAttrTy *ConflictingAttr =
8770 findEnforceTCBAttrByName<ConflictingAttrTy>(D, TCBName)) {
8771 S.Diag(ConflictingAttr->getLoc(), diag::err_tcb_conflicting_attributes)
8772 << ConflictingAttr->getAttrName()->getName()
8773 << AL.getAttrName()->getName() << TCBName;
8775 // Add a note so that the user could easily find the conflicting attribute.
8776 S.Diag(AL.getLoc(), diag::note_conflicting_attribute);
8778 // More error recovery.
8779 D->dropAttr<EnforceTCBAttr>();
8780 return nullptr;
8783 ASTContext &Context = S.getASTContext();
8784 return ::new(Context) AttrTy(Context, AL, AL.getTCBName());
8787 EnforceTCBAttr *Sema::mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL) {
8788 return mergeEnforceTCBAttrImpl<EnforceTCBAttr, EnforceTCBLeafAttr>(
8789 *this, D, AL);
8792 EnforceTCBLeafAttr *Sema::mergeEnforceTCBLeafAttr(
8793 Decl *D, const EnforceTCBLeafAttr &AL) {
8794 return mergeEnforceTCBAttrImpl<EnforceTCBLeafAttr, EnforceTCBAttr>(
8795 *this, D, AL);
8798 //===----------------------------------------------------------------------===//
8799 // Top Level Sema Entry Points
8800 //===----------------------------------------------------------------------===//
8802 // Returns true if the attribute must delay setting its arguments until after
8803 // template instantiation, and false otherwise.
8804 static bool MustDelayAttributeArguments(const ParsedAttr &AL) {
8805 // Only attributes that accept expression parameter packs can delay arguments.
8806 if (!AL.acceptsExprPack())
8807 return false;
8809 bool AttrHasVariadicArg = AL.hasVariadicArg();
8810 unsigned AttrNumArgs = AL.getNumArgMembers();
8811 for (size_t I = 0; I < std::min(AL.getNumArgs(), AttrNumArgs); ++I) {
8812 bool IsLastAttrArg = I == (AttrNumArgs - 1);
8813 // If the argument is the last argument and it is variadic it can contain
8814 // any expression.
8815 if (IsLastAttrArg && AttrHasVariadicArg)
8816 return false;
8817 Expr *E = AL.getArgAsExpr(I);
8818 bool ArgMemberCanHoldExpr = AL.isParamExpr(I);
8819 // If the expression is a pack expansion then arguments must be delayed
8820 // unless the argument is an expression and it is the last argument of the
8821 // attribute.
8822 if (isa<PackExpansionExpr>(E))
8823 return !(IsLastAttrArg && ArgMemberCanHoldExpr);
8824 // Last case is if the expression is value dependent then it must delay
8825 // arguments unless the corresponding argument is able to hold the
8826 // expression.
8827 if (E->isValueDependent() && !ArgMemberCanHoldExpr)
8828 return true;
8830 return false;
8834 static void handleArmNewZaAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
8835 if (auto *FPT = dyn_cast<FunctionProtoType>(D->getFunctionType())) {
8836 if (FPT->getAArch64SMEAttributes() &
8837 FunctionType::SME_PStateZASharedMask) {
8838 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
8839 << AL << "'__arm_shared_za'" << true;
8840 AL.setInvalid();
8842 if (FPT->getAArch64SMEAttributes() &
8843 FunctionType::SME_PStateZAPreservedMask) {
8844 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
8845 << AL << "'__arm_preserves_za'" << true;
8846 AL.setInvalid();
8848 if (AL.isInvalid())
8849 return;
8852 handleSimpleAttribute<ArmNewZAAttr>(S, D, AL);
8855 /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
8856 /// the attribute applies to decls. If the attribute is a type attribute, just
8857 /// silently ignore it if a GNU attribute.
8858 static void
8859 ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, const ParsedAttr &AL,
8860 const Sema::ProcessDeclAttributeOptions &Options) {
8861 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
8862 return;
8864 // Ignore C++11 attributes on declarator chunks: they appertain to the type
8865 // instead.
8866 if (AL.isCXX11Attribute() && !Options.IncludeCXX11Attributes)
8867 return;
8869 // Unknown attributes are automatically warned on. Target-specific attributes
8870 // which do not apply to the current target architecture are treated as
8871 // though they were unknown attributes.
8872 if (AL.getKind() == ParsedAttr::UnknownAttribute ||
8873 !AL.existsInTarget(S.Context.getTargetInfo())) {
8874 S.Diag(AL.getLoc(),
8875 AL.isRegularKeywordAttribute()
8876 ? (unsigned)diag::err_keyword_not_supported_on_target
8877 : AL.isDeclspecAttribute()
8878 ? (unsigned)diag::warn_unhandled_ms_attribute_ignored
8879 : (unsigned)diag::warn_unknown_attribute_ignored)
8880 << AL << AL.getRange();
8881 return;
8884 // Check if argument population must delayed to after template instantiation.
8885 bool MustDelayArgs = MustDelayAttributeArguments(AL);
8887 // Argument number check must be skipped if arguments are delayed.
8888 if (S.checkCommonAttributeFeatures(D, AL, MustDelayArgs))
8889 return;
8891 if (MustDelayArgs) {
8892 AL.handleAttrWithDelayedArgs(S, D);
8893 return;
8896 switch (AL.getKind()) {
8897 default:
8898 if (AL.getInfo().handleDeclAttribute(S, D, AL) != ParsedAttrInfo::NotHandled)
8899 break;
8900 if (!AL.isStmtAttr()) {
8901 assert(AL.isTypeAttr() && "Non-type attribute not handled");
8903 if (AL.isTypeAttr()) {
8904 if (Options.IgnoreTypeAttributes)
8905 break;
8906 if (!AL.isStandardAttributeSyntax() && !AL.isRegularKeywordAttribute()) {
8907 // Non-[[]] type attributes are handled in processTypeAttrs(); silently
8908 // move on.
8909 break;
8912 // According to the C and C++ standards, we should never see a
8913 // [[]] type attribute on a declaration. However, we have in the past
8914 // allowed some type attributes to "slide" to the `DeclSpec`, so we need
8915 // to continue to support this legacy behavior. We only do this, however,
8916 // if
8917 // - we actually have a `DeclSpec`, i.e. if we're looking at a
8918 // `DeclaratorDecl`, or
8919 // - we are looking at an alias-declaration, where historically we have
8920 // allowed type attributes after the identifier to slide to the type.
8921 if (AL.slidesFromDeclToDeclSpecLegacyBehavior() &&
8922 isa<DeclaratorDecl, TypeAliasDecl>(D)) {
8923 // Suggest moving the attribute to the type instead, but only for our
8924 // own vendor attributes; moving other vendors' attributes might hurt
8925 // portability.
8926 if (AL.isClangScope()) {
8927 S.Diag(AL.getLoc(), diag::warn_type_attribute_deprecated_on_decl)
8928 << AL << D->getLocation();
8931 // Allow this type attribute to be handled in processTypeAttrs();
8932 // silently move on.
8933 break;
8936 if (AL.getKind() == ParsedAttr::AT_Regparm) {
8937 // `regparm` is a special case: It's a type attribute but we still want
8938 // to treat it as if it had been written on the declaration because that
8939 // way we'll be able to handle it directly in `processTypeAttr()`.
8940 // If we treated `regparm` it as if it had been written on the
8941 // `DeclSpec`, the logic in `distributeFunctionTypeAttrFromDeclSepc()`
8942 // would try to move it to the declarator, but that doesn't work: We
8943 // can't remove the attribute from the list of declaration attributes
8944 // because it might be needed by other declarators in the same
8945 // declaration.
8946 break;
8949 if (AL.getKind() == ParsedAttr::AT_VectorSize) {
8950 // `vector_size` is a special case: It's a type attribute semantically,
8951 // but GCC expects the [[]] syntax to be written on the declaration (and
8952 // warns that the attribute has no effect if it is placed on the
8953 // decl-specifier-seq).
8954 // Silently move on and allow the attribute to be handled in
8955 // processTypeAttr().
8956 break;
8959 if (AL.getKind() == ParsedAttr::AT_NoDeref) {
8960 // FIXME: `noderef` currently doesn't work correctly in [[]] syntax.
8961 // See https://github.com/llvm/llvm-project/issues/55790 for details.
8962 // We allow processTypeAttrs() to emit a warning and silently move on.
8963 break;
8966 // N.B., ClangAttrEmitter.cpp emits a diagnostic helper that ensures a
8967 // statement attribute is not written on a declaration, but this code is
8968 // needed for type attributes as well as statement attributes in Attr.td
8969 // that do not list any subjects.
8970 S.Diag(AL.getLoc(), diag::err_attribute_invalid_on_decl)
8971 << AL << AL.isRegularKeywordAttribute() << D->getLocation();
8972 break;
8973 case ParsedAttr::AT_Interrupt:
8974 handleInterruptAttr(S, D, AL);
8975 break;
8976 case ParsedAttr::AT_X86ForceAlignArgPointer:
8977 handleX86ForceAlignArgPointerAttr(S, D, AL);
8978 break;
8979 case ParsedAttr::AT_ReadOnlyPlacement:
8980 handleSimpleAttribute<ReadOnlyPlacementAttr>(S, D, AL);
8981 break;
8982 case ParsedAttr::AT_DLLExport:
8983 case ParsedAttr::AT_DLLImport:
8984 handleDLLAttr(S, D, AL);
8985 break;
8986 case ParsedAttr::AT_AMDGPUFlatWorkGroupSize:
8987 handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL);
8988 break;
8989 case ParsedAttr::AT_AMDGPUWavesPerEU:
8990 handleAMDGPUWavesPerEUAttr(S, D, AL);
8991 break;
8992 case ParsedAttr::AT_AMDGPUNumSGPR:
8993 handleAMDGPUNumSGPRAttr(S, D, AL);
8994 break;
8995 case ParsedAttr::AT_AMDGPUNumVGPR:
8996 handleAMDGPUNumVGPRAttr(S, D, AL);
8997 break;
8998 case ParsedAttr::AT_AVRSignal:
8999 handleAVRSignalAttr(S, D, AL);
9000 break;
9001 case ParsedAttr::AT_BPFPreserveAccessIndex:
9002 handleBPFPreserveAccessIndexAttr(S, D, AL);
9003 break;
9004 case ParsedAttr::AT_BTFDeclTag:
9005 handleBTFDeclTagAttr(S, D, AL);
9006 break;
9007 case ParsedAttr::AT_WebAssemblyExportName:
9008 handleWebAssemblyExportNameAttr(S, D, AL);
9009 break;
9010 case ParsedAttr::AT_WebAssemblyImportModule:
9011 handleWebAssemblyImportModuleAttr(S, D, AL);
9012 break;
9013 case ParsedAttr::AT_WebAssemblyImportName:
9014 handleWebAssemblyImportNameAttr(S, D, AL);
9015 break;
9016 case ParsedAttr::AT_IBOutlet:
9017 handleIBOutlet(S, D, AL);
9018 break;
9019 case ParsedAttr::AT_IBOutletCollection:
9020 handleIBOutletCollection(S, D, AL);
9021 break;
9022 case ParsedAttr::AT_IFunc:
9023 handleIFuncAttr(S, D, AL);
9024 break;
9025 case ParsedAttr::AT_Alias:
9026 handleAliasAttr(S, D, AL);
9027 break;
9028 case ParsedAttr::AT_Aligned:
9029 handleAlignedAttr(S, D, AL);
9030 break;
9031 case ParsedAttr::AT_AlignValue:
9032 handleAlignValueAttr(S, D, AL);
9033 break;
9034 case ParsedAttr::AT_AllocSize:
9035 handleAllocSizeAttr(S, D, AL);
9036 break;
9037 case ParsedAttr::AT_AlwaysInline:
9038 handleAlwaysInlineAttr(S, D, AL);
9039 break;
9040 case ParsedAttr::AT_AnalyzerNoReturn:
9041 handleAnalyzerNoReturnAttr(S, D, AL);
9042 break;
9043 case ParsedAttr::AT_TLSModel:
9044 handleTLSModelAttr(S, D, AL);
9045 break;
9046 case ParsedAttr::AT_Annotate:
9047 handleAnnotateAttr(S, D, AL);
9048 break;
9049 case ParsedAttr::AT_Availability:
9050 handleAvailabilityAttr(S, D, AL);
9051 break;
9052 case ParsedAttr::AT_CarriesDependency:
9053 handleDependencyAttr(S, scope, D, AL);
9054 break;
9055 case ParsedAttr::AT_CPUDispatch:
9056 case ParsedAttr::AT_CPUSpecific:
9057 handleCPUSpecificAttr(S, D, AL);
9058 break;
9059 case ParsedAttr::AT_Common:
9060 handleCommonAttr(S, D, AL);
9061 break;
9062 case ParsedAttr::AT_CUDAConstant:
9063 handleConstantAttr(S, D, AL);
9064 break;
9065 case ParsedAttr::AT_PassObjectSize:
9066 handlePassObjectSizeAttr(S, D, AL);
9067 break;
9068 case ParsedAttr::AT_Constructor:
9069 handleConstructorAttr(S, D, AL);
9070 break;
9071 case ParsedAttr::AT_Deprecated:
9072 handleDeprecatedAttr(S, D, AL);
9073 break;
9074 case ParsedAttr::AT_Destructor:
9075 handleDestructorAttr(S, D, AL);
9076 break;
9077 case ParsedAttr::AT_EnableIf:
9078 handleEnableIfAttr(S, D, AL);
9079 break;
9080 case ParsedAttr::AT_Error:
9081 handleErrorAttr(S, D, AL);
9082 break;
9083 case ParsedAttr::AT_DiagnoseIf:
9084 handleDiagnoseIfAttr(S, D, AL);
9085 break;
9086 case ParsedAttr::AT_DiagnoseAsBuiltin:
9087 handleDiagnoseAsBuiltinAttr(S, D, AL);
9088 break;
9089 case ParsedAttr::AT_NoBuiltin:
9090 handleNoBuiltinAttr(S, D, AL);
9091 break;
9092 case ParsedAttr::AT_ExtVectorType:
9093 handleExtVectorTypeAttr(S, D, AL);
9094 break;
9095 case ParsedAttr::AT_ExternalSourceSymbol:
9096 handleExternalSourceSymbolAttr(S, D, AL);
9097 break;
9098 case ParsedAttr::AT_MinSize:
9099 handleMinSizeAttr(S, D, AL);
9100 break;
9101 case ParsedAttr::AT_OptimizeNone:
9102 handleOptimizeNoneAttr(S, D, AL);
9103 break;
9104 case ParsedAttr::AT_EnumExtensibility:
9105 handleEnumExtensibilityAttr(S, D, AL);
9106 break;
9107 case ParsedAttr::AT_SYCLKernel:
9108 handleSYCLKernelAttr(S, D, AL);
9109 break;
9110 case ParsedAttr::AT_SYCLSpecialClass:
9111 handleSimpleAttribute<SYCLSpecialClassAttr>(S, D, AL);
9112 break;
9113 case ParsedAttr::AT_Format:
9114 handleFormatAttr(S, D, AL);
9115 break;
9116 case ParsedAttr::AT_FormatArg:
9117 handleFormatArgAttr(S, D, AL);
9118 break;
9119 case ParsedAttr::AT_Callback:
9120 handleCallbackAttr(S, D, AL);
9121 break;
9122 case ParsedAttr::AT_CalledOnce:
9123 handleCalledOnceAttr(S, D, AL);
9124 break;
9125 case ParsedAttr::AT_NVPTXKernel:
9126 case ParsedAttr::AT_CUDAGlobal:
9127 handleGlobalAttr(S, D, AL);
9128 break;
9129 case ParsedAttr::AT_CUDADevice:
9130 handleDeviceAttr(S, D, AL);
9131 break;
9132 case ParsedAttr::AT_HIPManaged:
9133 handleManagedAttr(S, D, AL);
9134 break;
9135 case ParsedAttr::AT_GNUInline:
9136 handleGNUInlineAttr(S, D, AL);
9137 break;
9138 case ParsedAttr::AT_CUDALaunchBounds:
9139 handleLaunchBoundsAttr(S, D, AL);
9140 break;
9141 case ParsedAttr::AT_Restrict:
9142 handleRestrictAttr(S, D, AL);
9143 break;
9144 case ParsedAttr::AT_Mode:
9145 handleModeAttr(S, D, AL);
9146 break;
9147 case ParsedAttr::AT_NonNull:
9148 if (auto *PVD = dyn_cast<ParmVarDecl>(D))
9149 handleNonNullAttrParameter(S, PVD, AL);
9150 else
9151 handleNonNullAttr(S, D, AL);
9152 break;
9153 case ParsedAttr::AT_ReturnsNonNull:
9154 handleReturnsNonNullAttr(S, D, AL);
9155 break;
9156 case ParsedAttr::AT_NoEscape:
9157 handleNoEscapeAttr(S, D, AL);
9158 break;
9159 case ParsedAttr::AT_MaybeUndef:
9160 handleSimpleAttribute<MaybeUndefAttr>(S, D, AL);
9161 break;
9162 case ParsedAttr::AT_AssumeAligned:
9163 handleAssumeAlignedAttr(S, D, AL);
9164 break;
9165 case ParsedAttr::AT_AllocAlign:
9166 handleAllocAlignAttr(S, D, AL);
9167 break;
9168 case ParsedAttr::AT_Ownership:
9169 handleOwnershipAttr(S, D, AL);
9170 break;
9171 case ParsedAttr::AT_Naked:
9172 handleNakedAttr(S, D, AL);
9173 break;
9174 case ParsedAttr::AT_NoReturn:
9175 handleNoReturnAttr(S, D, AL);
9176 break;
9177 case ParsedAttr::AT_CXX11NoReturn:
9178 handleStandardNoReturnAttr(S, D, AL);
9179 break;
9180 case ParsedAttr::AT_AnyX86NoCfCheck:
9181 handleNoCfCheckAttr(S, D, AL);
9182 break;
9183 case ParsedAttr::AT_NoThrow:
9184 if (!AL.isUsedAsTypeAttr())
9185 handleSimpleAttribute<NoThrowAttr>(S, D, AL);
9186 break;
9187 case ParsedAttr::AT_CUDAShared:
9188 handleSharedAttr(S, D, AL);
9189 break;
9190 case ParsedAttr::AT_VecReturn:
9191 handleVecReturnAttr(S, D, AL);
9192 break;
9193 case ParsedAttr::AT_ObjCOwnership:
9194 handleObjCOwnershipAttr(S, D, AL);
9195 break;
9196 case ParsedAttr::AT_ObjCPreciseLifetime:
9197 handleObjCPreciseLifetimeAttr(S, D, AL);
9198 break;
9199 case ParsedAttr::AT_ObjCReturnsInnerPointer:
9200 handleObjCReturnsInnerPointerAttr(S, D, AL);
9201 break;
9202 case ParsedAttr::AT_ObjCRequiresSuper:
9203 handleObjCRequiresSuperAttr(S, D, AL);
9204 break;
9205 case ParsedAttr::AT_ObjCBridge:
9206 handleObjCBridgeAttr(S, D, AL);
9207 break;
9208 case ParsedAttr::AT_ObjCBridgeMutable:
9209 handleObjCBridgeMutableAttr(S, D, AL);
9210 break;
9211 case ParsedAttr::AT_ObjCBridgeRelated:
9212 handleObjCBridgeRelatedAttr(S, D, AL);
9213 break;
9214 case ParsedAttr::AT_ObjCDesignatedInitializer:
9215 handleObjCDesignatedInitializer(S, D, AL);
9216 break;
9217 case ParsedAttr::AT_ObjCRuntimeName:
9218 handleObjCRuntimeName(S, D, AL);
9219 break;
9220 case ParsedAttr::AT_ObjCBoxable:
9221 handleObjCBoxable(S, D, AL);
9222 break;
9223 case ParsedAttr::AT_NSErrorDomain:
9224 handleNSErrorDomain(S, D, AL);
9225 break;
9226 case ParsedAttr::AT_CFConsumed:
9227 case ParsedAttr::AT_NSConsumed:
9228 case ParsedAttr::AT_OSConsumed:
9229 S.AddXConsumedAttr(D, AL, parsedAttrToRetainOwnershipKind(AL),
9230 /*IsTemplateInstantiation=*/false);
9231 break;
9232 case ParsedAttr::AT_OSReturnsRetainedOnZero:
9233 handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnZeroAttr>(
9234 S, D, AL, isValidOSObjectOutParameter(D),
9235 diag::warn_ns_attribute_wrong_parameter_type,
9236 /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange());
9237 break;
9238 case ParsedAttr::AT_OSReturnsRetainedOnNonZero:
9239 handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnNonZeroAttr>(
9240 S, D, AL, isValidOSObjectOutParameter(D),
9241 diag::warn_ns_attribute_wrong_parameter_type,
9242 /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange());
9243 break;
9244 case ParsedAttr::AT_NSReturnsAutoreleased:
9245 case ParsedAttr::AT_NSReturnsNotRetained:
9246 case ParsedAttr::AT_NSReturnsRetained:
9247 case ParsedAttr::AT_CFReturnsNotRetained:
9248 case ParsedAttr::AT_CFReturnsRetained:
9249 case ParsedAttr::AT_OSReturnsNotRetained:
9250 case ParsedAttr::AT_OSReturnsRetained:
9251 handleXReturnsXRetainedAttr(S, D, AL);
9252 break;
9253 case ParsedAttr::AT_WorkGroupSizeHint:
9254 handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL);
9255 break;
9256 case ParsedAttr::AT_ReqdWorkGroupSize:
9257 handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL);
9258 break;
9259 case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize:
9260 handleSubGroupSize(S, D, AL);
9261 break;
9262 case ParsedAttr::AT_VecTypeHint:
9263 handleVecTypeHint(S, D, AL);
9264 break;
9265 case ParsedAttr::AT_InitPriority:
9266 handleInitPriorityAttr(S, D, AL);
9267 break;
9268 case ParsedAttr::AT_Packed:
9269 handlePackedAttr(S, D, AL);
9270 break;
9271 case ParsedAttr::AT_PreferredName:
9272 handlePreferredName(S, D, AL);
9273 break;
9274 case ParsedAttr::AT_Section:
9275 handleSectionAttr(S, D, AL);
9276 break;
9277 case ParsedAttr::AT_RandomizeLayout:
9278 handleRandomizeLayoutAttr(S, D, AL);
9279 break;
9280 case ParsedAttr::AT_NoRandomizeLayout:
9281 handleNoRandomizeLayoutAttr(S, D, AL);
9282 break;
9283 case ParsedAttr::AT_CodeSeg:
9284 handleCodeSegAttr(S, D, AL);
9285 break;
9286 case ParsedAttr::AT_Target:
9287 handleTargetAttr(S, D, AL);
9288 break;
9289 case ParsedAttr::AT_TargetVersion:
9290 handleTargetVersionAttr(S, D, AL);
9291 break;
9292 case ParsedAttr::AT_TargetClones:
9293 handleTargetClonesAttr(S, D, AL);
9294 break;
9295 case ParsedAttr::AT_MinVectorWidth:
9296 handleMinVectorWidthAttr(S, D, AL);
9297 break;
9298 case ParsedAttr::AT_Unavailable:
9299 handleAttrWithMessage<UnavailableAttr>(S, D, AL);
9300 break;
9301 case ParsedAttr::AT_Assumption:
9302 handleAssumumptionAttr(S, D, AL);
9303 break;
9304 case ParsedAttr::AT_ObjCDirect:
9305 handleObjCDirectAttr(S, D, AL);
9306 break;
9307 case ParsedAttr::AT_ObjCDirectMembers:
9308 handleObjCDirectMembersAttr(S, D, AL);
9309 handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL);
9310 break;
9311 case ParsedAttr::AT_ObjCExplicitProtocolImpl:
9312 handleObjCSuppresProtocolAttr(S, D, AL);
9313 break;
9314 case ParsedAttr::AT_Unused:
9315 handleUnusedAttr(S, D, AL);
9316 break;
9317 case ParsedAttr::AT_Visibility:
9318 handleVisibilityAttr(S, D, AL, false);
9319 break;
9320 case ParsedAttr::AT_TypeVisibility:
9321 handleVisibilityAttr(S, D, AL, true);
9322 break;
9323 case ParsedAttr::AT_WarnUnusedResult:
9324 handleWarnUnusedResult(S, D, AL);
9325 break;
9326 case ParsedAttr::AT_WeakRef:
9327 handleWeakRefAttr(S, D, AL);
9328 break;
9329 case ParsedAttr::AT_WeakImport:
9330 handleWeakImportAttr(S, D, AL);
9331 break;
9332 case ParsedAttr::AT_TransparentUnion:
9333 handleTransparentUnionAttr(S, D, AL);
9334 break;
9335 case ParsedAttr::AT_ObjCMethodFamily:
9336 handleObjCMethodFamilyAttr(S, D, AL);
9337 break;
9338 case ParsedAttr::AT_ObjCNSObject:
9339 handleObjCNSObject(S, D, AL);
9340 break;
9341 case ParsedAttr::AT_ObjCIndependentClass:
9342 handleObjCIndependentClass(S, D, AL);
9343 break;
9344 case ParsedAttr::AT_Blocks:
9345 handleBlocksAttr(S, D, AL);
9346 break;
9347 case ParsedAttr::AT_Sentinel:
9348 handleSentinelAttr(S, D, AL);
9349 break;
9350 case ParsedAttr::AT_Cleanup:
9351 handleCleanupAttr(S, D, AL);
9352 break;
9353 case ParsedAttr::AT_NoDebug:
9354 handleNoDebugAttr(S, D, AL);
9355 break;
9356 case ParsedAttr::AT_CmseNSEntry:
9357 handleCmseNSEntryAttr(S, D, AL);
9358 break;
9359 case ParsedAttr::AT_StdCall:
9360 case ParsedAttr::AT_CDecl:
9361 case ParsedAttr::AT_FastCall:
9362 case ParsedAttr::AT_ThisCall:
9363 case ParsedAttr::AT_Pascal:
9364 case ParsedAttr::AT_RegCall:
9365 case ParsedAttr::AT_SwiftCall:
9366 case ParsedAttr::AT_SwiftAsyncCall:
9367 case ParsedAttr::AT_VectorCall:
9368 case ParsedAttr::AT_MSABI:
9369 case ParsedAttr::AT_SysVABI:
9370 case ParsedAttr::AT_Pcs:
9371 case ParsedAttr::AT_IntelOclBicc:
9372 case ParsedAttr::AT_PreserveMost:
9373 case ParsedAttr::AT_PreserveAll:
9374 case ParsedAttr::AT_AArch64VectorPcs:
9375 case ParsedAttr::AT_AArch64SVEPcs:
9376 case ParsedAttr::AT_AMDGPUKernelCall:
9377 case ParsedAttr::AT_M68kRTD:
9378 handleCallConvAttr(S, D, AL);
9379 break;
9380 case ParsedAttr::AT_Suppress:
9381 handleSuppressAttr(S, D, AL);
9382 break;
9383 case ParsedAttr::AT_Owner:
9384 case ParsedAttr::AT_Pointer:
9385 handleLifetimeCategoryAttr(S, D, AL);
9386 break;
9387 case ParsedAttr::AT_OpenCLAccess:
9388 handleOpenCLAccessAttr(S, D, AL);
9389 break;
9390 case ParsedAttr::AT_OpenCLNoSVM:
9391 handleOpenCLNoSVMAttr(S, D, AL);
9392 break;
9393 case ParsedAttr::AT_SwiftContext:
9394 S.AddParameterABIAttr(D, AL, ParameterABI::SwiftContext);
9395 break;
9396 case ParsedAttr::AT_SwiftAsyncContext:
9397 S.AddParameterABIAttr(D, AL, ParameterABI::SwiftAsyncContext);
9398 break;
9399 case ParsedAttr::AT_SwiftErrorResult:
9400 S.AddParameterABIAttr(D, AL, ParameterABI::SwiftErrorResult);
9401 break;
9402 case ParsedAttr::AT_SwiftIndirectResult:
9403 S.AddParameterABIAttr(D, AL, ParameterABI::SwiftIndirectResult);
9404 break;
9405 case ParsedAttr::AT_InternalLinkage:
9406 handleInternalLinkageAttr(S, D, AL);
9407 break;
9408 case ParsedAttr::AT_ZeroCallUsedRegs:
9409 handleZeroCallUsedRegsAttr(S, D, AL);
9410 break;
9411 case ParsedAttr::AT_FunctionReturnThunks:
9412 handleFunctionReturnThunksAttr(S, D, AL);
9413 break;
9414 case ParsedAttr::AT_NoMerge:
9415 handleNoMergeAttr(S, D, AL);
9416 break;
9417 case ParsedAttr::AT_NoUniqueAddress:
9418 handleNoUniqueAddressAttr(S, D, AL);
9419 break;
9421 case ParsedAttr::AT_AvailableOnlyInDefaultEvalMethod:
9422 handleAvailableOnlyInDefaultEvalMethod(S, D, AL);
9423 break;
9425 case ParsedAttr::AT_CountedBy:
9426 handleCountedByAttr(S, D, AL);
9427 break;
9429 // Microsoft attributes:
9430 case ParsedAttr::AT_LayoutVersion:
9431 handleLayoutVersion(S, D, AL);
9432 break;
9433 case ParsedAttr::AT_Uuid:
9434 handleUuidAttr(S, D, AL);
9435 break;
9436 case ParsedAttr::AT_MSInheritance:
9437 handleMSInheritanceAttr(S, D, AL);
9438 break;
9439 case ParsedAttr::AT_Thread:
9440 handleDeclspecThreadAttr(S, D, AL);
9441 break;
9443 // HLSL attributes:
9444 case ParsedAttr::AT_HLSLNumThreads:
9445 handleHLSLNumThreadsAttr(S, D, AL);
9446 break;
9447 case ParsedAttr::AT_HLSLSV_GroupIndex:
9448 handleSimpleAttribute<HLSLSV_GroupIndexAttr>(S, D, AL);
9449 break;
9450 case ParsedAttr::AT_HLSLSV_DispatchThreadID:
9451 handleHLSLSV_DispatchThreadIDAttr(S, D, AL);
9452 break;
9453 case ParsedAttr::AT_HLSLShader:
9454 handleHLSLShaderAttr(S, D, AL);
9455 break;
9456 case ParsedAttr::AT_HLSLResourceBinding:
9457 handleHLSLResourceBindingAttr(S, D, AL);
9458 break;
9460 case ParsedAttr::AT_AbiTag:
9461 handleAbiTagAttr(S, D, AL);
9462 break;
9463 case ParsedAttr::AT_CFGuard:
9464 handleCFGuardAttr(S, D, AL);
9465 break;
9467 // Thread safety attributes:
9468 case ParsedAttr::AT_AssertExclusiveLock:
9469 handleAssertExclusiveLockAttr(S, D, AL);
9470 break;
9471 case ParsedAttr::AT_AssertSharedLock:
9472 handleAssertSharedLockAttr(S, D, AL);
9473 break;
9474 case ParsedAttr::AT_PtGuardedVar:
9475 handlePtGuardedVarAttr(S, D, AL);
9476 break;
9477 case ParsedAttr::AT_NoSanitize:
9478 handleNoSanitizeAttr(S, D, AL);
9479 break;
9480 case ParsedAttr::AT_NoSanitizeSpecific:
9481 handleNoSanitizeSpecificAttr(S, D, AL);
9482 break;
9483 case ParsedAttr::AT_GuardedBy:
9484 handleGuardedByAttr(S, D, AL);
9485 break;
9486 case ParsedAttr::AT_PtGuardedBy:
9487 handlePtGuardedByAttr(S, D, AL);
9488 break;
9489 case ParsedAttr::AT_ExclusiveTrylockFunction:
9490 handleExclusiveTrylockFunctionAttr(S, D, AL);
9491 break;
9492 case ParsedAttr::AT_LockReturned:
9493 handleLockReturnedAttr(S, D, AL);
9494 break;
9495 case ParsedAttr::AT_LocksExcluded:
9496 handleLocksExcludedAttr(S, D, AL);
9497 break;
9498 case ParsedAttr::AT_SharedTrylockFunction:
9499 handleSharedTrylockFunctionAttr(S, D, AL);
9500 break;
9501 case ParsedAttr::AT_AcquiredBefore:
9502 handleAcquiredBeforeAttr(S, D, AL);
9503 break;
9504 case ParsedAttr::AT_AcquiredAfter:
9505 handleAcquiredAfterAttr(S, D, AL);
9506 break;
9508 // Capability analysis attributes.
9509 case ParsedAttr::AT_Capability:
9510 case ParsedAttr::AT_Lockable:
9511 handleCapabilityAttr(S, D, AL);
9512 break;
9513 case ParsedAttr::AT_RequiresCapability:
9514 handleRequiresCapabilityAttr(S, D, AL);
9515 break;
9517 case ParsedAttr::AT_AssertCapability:
9518 handleAssertCapabilityAttr(S, D, AL);
9519 break;
9520 case ParsedAttr::AT_AcquireCapability:
9521 handleAcquireCapabilityAttr(S, D, AL);
9522 break;
9523 case ParsedAttr::AT_ReleaseCapability:
9524 handleReleaseCapabilityAttr(S, D, AL);
9525 break;
9526 case ParsedAttr::AT_TryAcquireCapability:
9527 handleTryAcquireCapabilityAttr(S, D, AL);
9528 break;
9530 // Consumed analysis attributes.
9531 case ParsedAttr::AT_Consumable:
9532 handleConsumableAttr(S, D, AL);
9533 break;
9534 case ParsedAttr::AT_CallableWhen:
9535 handleCallableWhenAttr(S, D, AL);
9536 break;
9537 case ParsedAttr::AT_ParamTypestate:
9538 handleParamTypestateAttr(S, D, AL);
9539 break;
9540 case ParsedAttr::AT_ReturnTypestate:
9541 handleReturnTypestateAttr(S, D, AL);
9542 break;
9543 case ParsedAttr::AT_SetTypestate:
9544 handleSetTypestateAttr(S, D, AL);
9545 break;
9546 case ParsedAttr::AT_TestTypestate:
9547 handleTestTypestateAttr(S, D, AL);
9548 break;
9550 // Type safety attributes.
9551 case ParsedAttr::AT_ArgumentWithTypeTag:
9552 handleArgumentWithTypeTagAttr(S, D, AL);
9553 break;
9554 case ParsedAttr::AT_TypeTagForDatatype:
9555 handleTypeTagForDatatypeAttr(S, D, AL);
9556 break;
9558 // Swift attributes.
9559 case ParsedAttr::AT_SwiftAsyncName:
9560 handleSwiftAsyncName(S, D, AL);
9561 break;
9562 case ParsedAttr::AT_SwiftAttr:
9563 handleSwiftAttrAttr(S, D, AL);
9564 break;
9565 case ParsedAttr::AT_SwiftBridge:
9566 handleSwiftBridge(S, D, AL);
9567 break;
9568 case ParsedAttr::AT_SwiftError:
9569 handleSwiftError(S, D, AL);
9570 break;
9571 case ParsedAttr::AT_SwiftName:
9572 handleSwiftName(S, D, AL);
9573 break;
9574 case ParsedAttr::AT_SwiftNewType:
9575 handleSwiftNewType(S, D, AL);
9576 break;
9577 case ParsedAttr::AT_SwiftAsync:
9578 handleSwiftAsyncAttr(S, D, AL);
9579 break;
9580 case ParsedAttr::AT_SwiftAsyncError:
9581 handleSwiftAsyncError(S, D, AL);
9582 break;
9584 // XRay attributes.
9585 case ParsedAttr::AT_XRayLogArgs:
9586 handleXRayLogArgsAttr(S, D, AL);
9587 break;
9589 case ParsedAttr::AT_PatchableFunctionEntry:
9590 handlePatchableFunctionEntryAttr(S, D, AL);
9591 break;
9593 case ParsedAttr::AT_AlwaysDestroy:
9594 case ParsedAttr::AT_NoDestroy:
9595 handleDestroyAttr(S, D, AL);
9596 break;
9598 case ParsedAttr::AT_Uninitialized:
9599 handleUninitializedAttr(S, D, AL);
9600 break;
9602 case ParsedAttr::AT_ObjCExternallyRetained:
9603 handleObjCExternallyRetainedAttr(S, D, AL);
9604 break;
9606 case ParsedAttr::AT_MIGServerRoutine:
9607 handleMIGServerRoutineAttr(S, D, AL);
9608 break;
9610 case ParsedAttr::AT_MSAllocator:
9611 handleMSAllocatorAttr(S, D, AL);
9612 break;
9614 case ParsedAttr::AT_ArmBuiltinAlias:
9615 handleArmBuiltinAliasAttr(S, D, AL);
9616 break;
9618 case ParsedAttr::AT_ArmLocallyStreaming:
9619 handleSimpleAttribute<ArmLocallyStreamingAttr>(S, D, AL);
9620 break;
9622 case ParsedAttr::AT_ArmNewZA:
9623 handleArmNewZaAttr(S, D, AL);
9624 break;
9626 case ParsedAttr::AT_AcquireHandle:
9627 handleAcquireHandleAttr(S, D, AL);
9628 break;
9630 case ParsedAttr::AT_ReleaseHandle:
9631 handleHandleAttr<ReleaseHandleAttr>(S, D, AL);
9632 break;
9634 case ParsedAttr::AT_UnsafeBufferUsage:
9635 handleUnsafeBufferUsage<UnsafeBufferUsageAttr>(S, D, AL);
9636 break;
9638 case ParsedAttr::AT_UseHandle:
9639 handleHandleAttr<UseHandleAttr>(S, D, AL);
9640 break;
9642 case ParsedAttr::AT_EnforceTCB:
9643 handleEnforceTCBAttr<EnforceTCBAttr, EnforceTCBLeafAttr>(S, D, AL);
9644 break;
9646 case ParsedAttr::AT_EnforceTCBLeaf:
9647 handleEnforceTCBAttr<EnforceTCBLeafAttr, EnforceTCBAttr>(S, D, AL);
9648 break;
9650 case ParsedAttr::AT_BuiltinAlias:
9651 handleBuiltinAliasAttr(S, D, AL);
9652 break;
9654 case ParsedAttr::AT_PreferredType:
9655 handlePreferredTypeAttr(S, D, AL);
9656 break;
9658 case ParsedAttr::AT_UsingIfExists:
9659 handleSimpleAttribute<UsingIfExistsAttr>(S, D, AL);
9660 break;
9664 /// ProcessDeclAttributeList - Apply all the decl attributes in the specified
9665 /// attribute list to the specified decl, ignoring any type attributes.
9666 void Sema::ProcessDeclAttributeList(
9667 Scope *S, Decl *D, const ParsedAttributesView &AttrList,
9668 const ProcessDeclAttributeOptions &Options) {
9669 if (AttrList.empty())
9670 return;
9672 for (const ParsedAttr &AL : AttrList)
9673 ProcessDeclAttribute(*this, S, D, AL, Options);
9675 // FIXME: We should be able to handle these cases in TableGen.
9676 // GCC accepts
9677 // static int a9 __attribute__((weakref));
9678 // but that looks really pointless. We reject it.
9679 if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
9680 Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias)
9681 << cast<NamedDecl>(D);
9682 D->dropAttr<WeakRefAttr>();
9683 return;
9686 // FIXME: We should be able to handle this in TableGen as well. It would be
9687 // good to have a way to specify "these attributes must appear as a group",
9688 // for these. Additionally, it would be good to have a way to specify "these
9689 // attribute must never appear as a group" for attributes like cold and hot.
9690 if (!D->hasAttr<OpenCLKernelAttr>()) {
9691 // These attributes cannot be applied to a non-kernel function.
9692 if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
9693 // FIXME: This emits a different error message than
9694 // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
9695 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
9696 D->setInvalidDecl();
9697 } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) {
9698 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
9699 D->setInvalidDecl();
9700 } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) {
9701 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
9702 D->setInvalidDecl();
9703 } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) {
9704 Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
9705 D->setInvalidDecl();
9706 } else if (!D->hasAttr<CUDAGlobalAttr>()) {
9707 if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) {
9708 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
9709 << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction;
9710 D->setInvalidDecl();
9711 } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) {
9712 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
9713 << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction;
9714 D->setInvalidDecl();
9715 } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
9716 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
9717 << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction;
9718 D->setInvalidDecl();
9719 } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
9720 Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
9721 << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction;
9722 D->setInvalidDecl();
9727 // Do this check after processing D's attributes because the attribute
9728 // objc_method_family can change whether the given method is in the init
9729 // family, and it can be applied after objc_designated_initializer. This is a
9730 // bit of a hack, but we need it to be compatible with versions of clang that
9731 // processed the attribute list in the wrong order.
9732 if (D->hasAttr<ObjCDesignatedInitializerAttr>() &&
9733 cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) {
9734 Diag(D->getLocation(), diag::err_designated_init_attr_non_init);
9735 D->dropAttr<ObjCDesignatedInitializerAttr>();
9739 // Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr
9740 // attribute.
9741 void Sema::ProcessDeclAttributeDelayed(Decl *D,
9742 const ParsedAttributesView &AttrList) {
9743 for (const ParsedAttr &AL : AttrList)
9744 if (AL.getKind() == ParsedAttr::AT_TransparentUnion) {
9745 handleTransparentUnionAttr(*this, D, AL);
9746 break;
9749 // For BPFPreserveAccessIndexAttr, we want to populate the attributes
9750 // to fields and inner records as well.
9751 if (D && D->hasAttr<BPFPreserveAccessIndexAttr>())
9752 handleBPFPreserveAIRecord(*this, cast<RecordDecl>(D));
9755 // Annotation attributes are the only attributes allowed after an access
9756 // specifier.
9757 bool Sema::ProcessAccessDeclAttributeList(
9758 AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) {
9759 for (const ParsedAttr &AL : AttrList) {
9760 if (AL.getKind() == ParsedAttr::AT_Annotate) {
9761 ProcessDeclAttribute(*this, nullptr, ASDecl, AL,
9762 ProcessDeclAttributeOptions());
9763 } else {
9764 Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec);
9765 return true;
9768 return false;
9771 /// checkUnusedDeclAttributes - Check a list of attributes to see if it
9772 /// contains any decl attributes that we should warn about.
9773 static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) {
9774 for (const ParsedAttr &AL : A) {
9775 // Only warn if the attribute is an unignored, non-type attribute.
9776 if (AL.isUsedAsTypeAttr() || AL.isInvalid())
9777 continue;
9778 if (AL.getKind() == ParsedAttr::IgnoredAttribute)
9779 continue;
9781 if (AL.getKind() == ParsedAttr::UnknownAttribute) {
9782 S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
9783 << AL << AL.getRange();
9784 } else {
9785 S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL
9786 << AL.getRange();
9791 /// checkUnusedDeclAttributes - Given a declarator which is not being
9792 /// used to build a declaration, complain about any decl attributes
9793 /// which might be lying around on it.
9794 void Sema::checkUnusedDeclAttributes(Declarator &D) {
9795 ::checkUnusedDeclAttributes(*this, D.getDeclarationAttributes());
9796 ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes());
9797 ::checkUnusedDeclAttributes(*this, D.getAttributes());
9798 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
9799 ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
9802 /// DeclClonePragmaWeak - clone existing decl (maybe definition),
9803 /// \#pragma weak needs a non-definition decl and source may not have one.
9804 NamedDecl *Sema::DeclClonePragmaWeak(NamedDecl *ND, const IdentifierInfo *II,
9805 SourceLocation Loc) {
9806 assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
9807 NamedDecl *NewD = nullptr;
9808 if (auto *FD = dyn_cast<FunctionDecl>(ND)) {
9809 FunctionDecl *NewFD;
9810 // FIXME: Missing call to CheckFunctionDeclaration().
9811 // FIXME: Mangling?
9812 // FIXME: Is the qualifier info correct?
9813 // FIXME: Is the DeclContext correct?
9814 NewFD = FunctionDecl::Create(
9815 FD->getASTContext(), FD->getDeclContext(), Loc, Loc,
9816 DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None,
9817 getCurFPFeatures().isFPConstrained(), false /*isInlineSpecified*/,
9818 FD->hasPrototype(), ConstexprSpecKind::Unspecified,
9819 FD->getTrailingRequiresClause());
9820 NewD = NewFD;
9822 if (FD->getQualifier())
9823 NewFD->setQualifierInfo(FD->getQualifierLoc());
9825 // Fake up parameter variables; they are declared as if this were
9826 // a typedef.
9827 QualType FDTy = FD->getType();
9828 if (const auto *FT = FDTy->getAs<FunctionProtoType>()) {
9829 SmallVector<ParmVarDecl*, 16> Params;
9830 for (const auto &AI : FT->param_types()) {
9831 ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
9832 Param->setScopeInfo(0, Params.size());
9833 Params.push_back(Param);
9835 NewFD->setParams(Params);
9837 } else if (auto *VD = dyn_cast<VarDecl>(ND)) {
9838 NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
9839 VD->getInnerLocStart(), VD->getLocation(), II,
9840 VD->getType(), VD->getTypeSourceInfo(),
9841 VD->getStorageClass());
9842 if (VD->getQualifier())
9843 cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc());
9845 return NewD;
9848 /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
9849 /// applied to it, possibly with an alias.
9850 void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, const WeakInfo &W) {
9851 if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
9852 IdentifierInfo *NDId = ND->getIdentifier();
9853 NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
9854 NewD->addAttr(
9855 AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation()));
9856 NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
9857 WeakTopLevelDecl.push_back(NewD);
9858 // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
9859 // to insert Decl at TU scope, sorry.
9860 DeclContext *SavedContext = CurContext;
9861 CurContext = Context.getTranslationUnitDecl();
9862 NewD->setDeclContext(CurContext);
9863 NewD->setLexicalDeclContext(CurContext);
9864 PushOnScopeChains(NewD, S);
9865 CurContext = SavedContext;
9866 } else { // just add weak to existing
9867 ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
9871 void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
9872 // It's valid to "forward-declare" #pragma weak, in which case we
9873 // have to do this.
9874 LoadExternalWeakUndeclaredIdentifiers();
9875 if (WeakUndeclaredIdentifiers.empty())
9876 return;
9877 NamedDecl *ND = nullptr;
9878 if (auto *VD = dyn_cast<VarDecl>(D))
9879 if (VD->isExternC())
9880 ND = VD;
9881 if (auto *FD = dyn_cast<FunctionDecl>(D))
9882 if (FD->isExternC())
9883 ND = FD;
9884 if (!ND)
9885 return;
9886 if (IdentifierInfo *Id = ND->getIdentifier()) {
9887 auto I = WeakUndeclaredIdentifiers.find(Id);
9888 if (I != WeakUndeclaredIdentifiers.end()) {
9889 auto &WeakInfos = I->second;
9890 for (const auto &W : WeakInfos)
9891 DeclApplyPragmaWeak(S, ND, W);
9892 std::remove_reference_t<decltype(WeakInfos)> EmptyWeakInfos;
9893 WeakInfos.swap(EmptyWeakInfos);
9898 /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
9899 /// it, apply them to D. This is a bit tricky because PD can have attributes
9900 /// specified in many different places, and we need to find and apply them all.
9901 void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
9902 // Ordering of attributes can be important, so we take care to process
9903 // attributes in the order in which they appeared in the source code.
9905 // First, process attributes that appeared on the declaration itself (but
9906 // only if they don't have the legacy behavior of "sliding" to the DeclSepc).
9907 ParsedAttributesView NonSlidingAttrs;
9908 for (ParsedAttr &AL : PD.getDeclarationAttributes()) {
9909 if (AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
9910 // Skip processing the attribute, but do check if it appertains to the
9911 // declaration. This is needed for the `MatrixType` attribute, which,
9912 // despite being a type attribute, defines a `SubjectList` that only
9913 // allows it to be used on typedef declarations.
9914 AL.diagnoseAppertainsTo(*this, D);
9915 } else {
9916 NonSlidingAttrs.addAtEnd(&AL);
9919 ProcessDeclAttributeList(S, D, NonSlidingAttrs);
9921 // Apply decl attributes from the DeclSpec if present.
9922 if (!PD.getDeclSpec().getAttributes().empty()) {
9923 ProcessDeclAttributeList(S, D, PD.getDeclSpec().getAttributes(),
9924 ProcessDeclAttributeOptions()
9925 .WithIncludeCXX11Attributes(false)
9926 .WithIgnoreTypeAttributes(true));
9929 // Walk the declarator structure, applying decl attributes that were in a type
9930 // position to the decl itself. This handles cases like:
9931 // int *__attr__(x)** D;
9932 // when X is a decl attribute.
9933 for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) {
9934 ProcessDeclAttributeList(S, D, PD.getTypeObject(i).getAttrs(),
9935 ProcessDeclAttributeOptions()
9936 .WithIncludeCXX11Attributes(false)
9937 .WithIgnoreTypeAttributes(true));
9940 // Finally, apply any attributes on the decl itself.
9941 ProcessDeclAttributeList(S, D, PD.getAttributes());
9943 // Apply additional attributes specified by '#pragma clang attribute'.
9944 AddPragmaAttributes(S, D);
9947 /// Is the given declaration allowed to use a forbidden type?
9948 /// If so, it'll still be annotated with an attribute that makes it
9949 /// illegal to actually use.
9950 static bool isForbiddenTypeAllowed(Sema &S, Decl *D,
9951 const DelayedDiagnostic &diag,
9952 UnavailableAttr::ImplicitReason &reason) {
9953 // Private ivars are always okay. Unfortunately, people don't
9954 // always properly make their ivars private, even in system headers.
9955 // Plus we need to make fields okay, too.
9956 if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) &&
9957 !isa<FunctionDecl>(D))
9958 return false;
9960 // Silently accept unsupported uses of __weak in both user and system
9961 // declarations when it's been disabled, for ease of integration with
9962 // -fno-objc-arc files. We do have to take some care against attempts
9963 // to define such things; for now, we've only done that for ivars
9964 // and properties.
9965 if ((isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) {
9966 if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled ||
9967 diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) {
9968 reason = UnavailableAttr::IR_ForbiddenWeak;
9969 return true;
9973 // Allow all sorts of things in system headers.
9974 if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) {
9975 // Currently, all the failures dealt with this way are due to ARC
9976 // restrictions.
9977 reason = UnavailableAttr::IR_ARCForbiddenType;
9978 return true;
9981 return false;
9984 /// Handle a delayed forbidden-type diagnostic.
9985 static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD,
9986 Decl *D) {
9987 auto Reason = UnavailableAttr::IR_None;
9988 if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) {
9989 assert(Reason && "didn't set reason?");
9990 D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc));
9991 return;
9993 if (S.getLangOpts().ObjCAutoRefCount)
9994 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
9995 // FIXME: we may want to suppress diagnostics for all
9996 // kind of forbidden type messages on unavailable functions.
9997 if (FD->hasAttr<UnavailableAttr>() &&
9998 DD.getForbiddenTypeDiagnostic() ==
9999 diag::err_arc_array_param_no_ownership) {
10000 DD.Triggered = true;
10001 return;
10005 S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic())
10006 << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument();
10007 DD.Triggered = true;
10011 void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
10012 assert(DelayedDiagnostics.getCurrentPool());
10013 DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
10014 DelayedDiagnostics.popWithoutEmitting(state);
10016 // When delaying diagnostics to run in the context of a parsed
10017 // declaration, we only want to actually emit anything if parsing
10018 // succeeds.
10019 if (!decl) return;
10021 // We emit all the active diagnostics in this pool or any of its
10022 // parents. In general, we'll get one pool for the decl spec
10023 // and a child pool for each declarator; in a decl group like:
10024 // deprecated_typedef foo, *bar, baz();
10025 // only the declarator pops will be passed decls. This is correct;
10026 // we really do need to consider delayed diagnostics from the decl spec
10027 // for each of the different declarations.
10028 const DelayedDiagnosticPool *pool = &poppedPool;
10029 do {
10030 bool AnyAccessFailures = false;
10031 for (DelayedDiagnosticPool::pool_iterator
10032 i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
10033 // This const_cast is a bit lame. Really, Triggered should be mutable.
10034 DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
10035 if (diag.Triggered)
10036 continue;
10038 switch (diag.Kind) {
10039 case DelayedDiagnostic::Availability:
10040 // Don't bother giving deprecation/unavailable diagnostics if
10041 // the decl is invalid.
10042 if (!decl->isInvalidDecl())
10043 handleDelayedAvailabilityCheck(diag, decl);
10044 break;
10046 case DelayedDiagnostic::Access:
10047 // Only produce one access control diagnostic for a structured binding
10048 // declaration: we don't need to tell the user that all the fields are
10049 // inaccessible one at a time.
10050 if (AnyAccessFailures && isa<DecompositionDecl>(decl))
10051 continue;
10052 HandleDelayedAccessCheck(diag, decl);
10053 if (diag.Triggered)
10054 AnyAccessFailures = true;
10055 break;
10057 case DelayedDiagnostic::ForbiddenType:
10058 handleDelayedForbiddenType(*this, diag, decl);
10059 break;
10062 } while ((pool = pool->getParent()));
10065 /// Given a set of delayed diagnostics, re-emit them as if they had
10066 /// been delayed in the current context instead of in the given pool.
10067 /// Essentially, this just moves them to the current pool.
10068 void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
10069 DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
10070 assert(curPool && "re-emitting in undelayed context not supported");
10071 curPool->steal(pool);