1 //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file provides Sema routines for C++ exception specification testing.
11 //===----------------------------------------------------------------------===//
13 #include "clang/Sema/SemaInternal.h"
14 #include "clang/AST/ASTMutationListener.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/StmtObjC.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Basic/Diagnostic.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallString.h"
28 static const FunctionProtoType
*GetUnderlyingFunction(QualType T
)
30 if (const PointerType
*PtrTy
= T
->getAs
<PointerType
>())
31 T
= PtrTy
->getPointeeType();
32 else if (const ReferenceType
*RefTy
= T
->getAs
<ReferenceType
>())
33 T
= RefTy
->getPointeeType();
34 else if (const MemberPointerType
*MPTy
= T
->getAs
<MemberPointerType
>())
35 T
= MPTy
->getPointeeType();
36 return T
->getAs
<FunctionProtoType
>();
39 /// HACK: 2014-11-14 libstdc++ had a bug where it shadows std::swap with a
40 /// member swap function then tries to call std::swap unqualified from the
41 /// exception specification of that function. This function detects whether
42 /// we're in such a case and turns off delay-parsing of exception
43 /// specifications. Libstdc++ 6.1 (released 2016-04-27) appears to have
44 /// resolved it as side-effect of commit ddb63209a8d (2015-06-05).
45 bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator
&D
) {
46 auto *RD
= dyn_cast
<CXXRecordDecl
>(CurContext
);
48 // All the problem cases are member functions named "swap" within class
49 // templates declared directly within namespace std or std::__debug or
51 if (!RD
|| !RD
->getIdentifier() || !RD
->getDescribedClassTemplate() ||
52 !D
.getIdentifier() || !D
.getIdentifier()->isStr("swap"))
55 auto *ND
= dyn_cast
<NamespaceDecl
>(RD
->getDeclContext());
59 bool IsInStd
= ND
->isStdNamespace();
61 // This isn't a direct member of namespace std, but it might still be
62 // libstdc++'s std::__debug::array or std::__profile::array.
63 IdentifierInfo
*II
= ND
->getIdentifier();
64 if (!II
|| !(II
->isStr("__debug") || II
->isStr("__profile")) ||
65 !ND
->isInStdNamespace())
69 // Only apply this hack within a system header.
70 if (!Context
.getSourceManager().isInSystemHeader(D
.getBeginLoc()))
73 return llvm::StringSwitch
<bool>(RD
->getIdentifier()->getName())
75 .Case("pair", IsInStd
)
76 .Case("priority_queue", IsInStd
)
77 .Case("stack", IsInStd
)
78 .Case("queue", IsInStd
)
82 ExprResult
Sema::ActOnNoexceptSpec(Expr
*NoexceptExpr
,
83 ExceptionSpecificationType
&EST
) {
85 if (NoexceptExpr
->isTypeDependent() ||
86 NoexceptExpr
->containsUnexpandedParameterPack()) {
87 EST
= EST_DependentNoexcept
;
92 ExprResult Converted
= CheckConvertedConstantExpression(
93 NoexceptExpr
, Context
.BoolTy
, Result
, CCEK_Noexcept
);
95 if (Converted
.isInvalid()) {
96 EST
= EST_NoexceptFalse
;
97 // Fill in an expression of 'false' as a fixup.
98 auto *BoolExpr
= new (Context
)
99 CXXBoolLiteralExpr(false, Context
.BoolTy
, NoexceptExpr
->getBeginLoc());
100 llvm::APSInt Value
{1};
102 return ConstantExpr::Create(Context
, BoolExpr
, APValue
{Value
});
105 if (Converted
.get()->isValueDependent()) {
106 EST
= EST_DependentNoexcept
;
110 if (!Converted
.isInvalid())
111 EST
= !Result
? EST_NoexceptFalse
: EST_NoexceptTrue
;
115 /// CheckSpecifiedExceptionType - Check if the given type is valid in an
116 /// exception specification. Incomplete types, or pointers to incomplete types
117 /// other than void are not allowed.
119 /// \param[in,out] T The exception type. This will be decayed to a pointer type
120 /// when the input is an array or a function type.
121 bool Sema::CheckSpecifiedExceptionType(QualType
&T
, SourceRange Range
) {
122 // C++11 [except.spec]p2:
123 // A type cv T, "array of T", or "function returning T" denoted
124 // in an exception-specification is adjusted to type T, "pointer to T", or
125 // "pointer to function returning T", respectively.
127 // We also apply this rule in C++98.
128 if (T
->isArrayType())
129 T
= Context
.getArrayDecayedType(T
);
130 else if (T
->isFunctionType())
131 T
= Context
.getPointerType(T
);
134 QualType PointeeT
= T
;
135 if (const PointerType
*PT
= T
->getAs
<PointerType
>()) {
136 PointeeT
= PT
->getPointeeType();
139 // cv void* is explicitly permitted, despite being a pointer to an
141 if (PointeeT
->isVoidType())
143 } else if (const ReferenceType
*RT
= T
->getAs
<ReferenceType
>()) {
144 PointeeT
= RT
->getPointeeType();
147 if (RT
->isRValueReferenceType()) {
148 // C++11 [except.spec]p2:
149 // A type denoted in an exception-specification shall not denote [...]
150 // an rvalue reference type.
151 Diag(Range
.getBegin(), diag::err_rref_in_exception_spec
)
157 // C++11 [except.spec]p2:
158 // A type denoted in an exception-specification shall not denote an
159 // incomplete type other than a class currently being defined [...].
160 // A type denoted in an exception-specification shall not denote a
161 // pointer or reference to an incomplete type, other than (cv) void* or a
162 // pointer or reference to a class currently being defined.
163 // In Microsoft mode, downgrade this to a warning.
164 unsigned DiagID
= diag::err_incomplete_in_exception_spec
;
165 bool ReturnValueOnError
= true;
166 if (getLangOpts().MSVCCompat
) {
167 DiagID
= diag::ext_incomplete_in_exception_spec
;
168 ReturnValueOnError
= false;
170 if (!(PointeeT
->isRecordType() &&
171 PointeeT
->castAs
<RecordType
>()->isBeingDefined()) &&
172 RequireCompleteType(Range
.getBegin(), PointeeT
, DiagID
, Kind
, Range
))
173 return ReturnValueOnError
;
175 // WebAssembly reference types can't be used in exception specifications.
176 if (PointeeT
.isWebAssemblyReferenceType()) {
177 Diag(Range
.getBegin(), diag::err_wasm_reftype_exception_spec
);
181 // The MSVC compatibility mode doesn't extend to sizeless types,
182 // so diagnose them separately.
183 if (PointeeT
->isSizelessType() && Kind
!= 1) {
184 Diag(Range
.getBegin(), diag::err_sizeless_in_exception_spec
)
185 << (Kind
== 2 ? 1 : 0) << PointeeT
<< Range
;
192 /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
193 /// to member to a function with an exception specification. This means that
194 /// it is invalid to add another level of indirection.
195 bool Sema::CheckDistantExceptionSpec(QualType T
) {
196 // C++17 removes this rule in favor of putting exception specifications into
198 if (getLangOpts().CPlusPlus17
)
201 if (const PointerType
*PT
= T
->getAs
<PointerType
>())
202 T
= PT
->getPointeeType();
203 else if (const MemberPointerType
*PT
= T
->getAs
<MemberPointerType
>())
204 T
= PT
->getPointeeType();
208 const FunctionProtoType
*FnT
= T
->getAs
<FunctionProtoType
>();
212 return FnT
->hasExceptionSpec();
215 const FunctionProtoType
*
216 Sema::ResolveExceptionSpec(SourceLocation Loc
, const FunctionProtoType
*FPT
) {
217 if (FPT
->getExceptionSpecType() == EST_Unparsed
) {
218 Diag(Loc
, diag::err_exception_spec_not_parsed
);
222 if (!isUnresolvedExceptionSpec(FPT
->getExceptionSpecType()))
225 FunctionDecl
*SourceDecl
= FPT
->getExceptionSpecDecl();
226 const FunctionProtoType
*SourceFPT
=
227 SourceDecl
->getType()->castAs
<FunctionProtoType
>();
229 // If the exception specification has already been resolved, just return it.
230 if (!isUnresolvedExceptionSpec(SourceFPT
->getExceptionSpecType()))
233 // Compute or instantiate the exception specification now.
234 if (SourceFPT
->getExceptionSpecType() == EST_Unevaluated
)
235 EvaluateImplicitExceptionSpec(Loc
, SourceDecl
);
237 InstantiateExceptionSpec(Loc
, SourceDecl
);
239 const FunctionProtoType
*Proto
=
240 SourceDecl
->getType()->castAs
<FunctionProtoType
>();
241 if (Proto
->getExceptionSpecType() == clang::EST_Unparsed
) {
242 Diag(Loc
, diag::err_exception_spec_not_parsed
);
249 Sema::UpdateExceptionSpec(FunctionDecl
*FD
,
250 const FunctionProtoType::ExceptionSpecInfo
&ESI
) {
251 // If we've fully resolved the exception specification, notify listeners.
252 if (!isUnresolvedExceptionSpec(ESI
.Type
))
253 if (auto *Listener
= getASTMutationListener())
254 Listener
->ResolvedExceptionSpec(FD
);
256 for (FunctionDecl
*Redecl
: FD
->redecls())
257 Context
.adjustExceptionSpec(Redecl
, ESI
);
260 static bool exceptionSpecNotKnownYet(const FunctionDecl
*FD
) {
261 auto *MD
= dyn_cast
<CXXMethodDecl
>(FD
);
265 auto EST
= MD
->getType()->castAs
<FunctionProtoType
>()->getExceptionSpecType();
266 return EST
== EST_Unparsed
||
267 (EST
== EST_Unevaluated
&& MD
->getParent()->isBeingDefined());
270 static bool CheckEquivalentExceptionSpecImpl(
271 Sema
&S
, const PartialDiagnostic
&DiagID
, const PartialDiagnostic
&NoteID
,
272 const FunctionProtoType
*Old
, SourceLocation OldLoc
,
273 const FunctionProtoType
*New
, SourceLocation NewLoc
,
274 bool *MissingExceptionSpecification
= nullptr,
275 bool *MissingEmptyExceptionSpecification
= nullptr,
276 bool AllowNoexceptAllMatchWithNoSpec
= false, bool IsOperatorNew
= false);
278 /// Determine whether a function has an implicitly-generated exception
280 static bool hasImplicitExceptionSpec(FunctionDecl
*Decl
) {
281 if (!isa
<CXXDestructorDecl
>(Decl
) &&
282 Decl
->getDeclName().getCXXOverloadedOperator() != OO_Delete
&&
283 Decl
->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete
)
286 // For a function that the user didn't declare:
287 // - if this is a destructor, its exception specification is implicit.
288 // - if this is 'operator delete' or 'operator delete[]', the exception
289 // specification is as-if an explicit exception specification was given
290 // (per [basic.stc.dynamic]p2).
291 if (!Decl
->getTypeSourceInfo())
292 return isa
<CXXDestructorDecl
>(Decl
);
294 auto *Ty
= Decl
->getTypeSourceInfo()->getType()->castAs
<FunctionProtoType
>();
295 return !Ty
->hasExceptionSpec();
298 bool Sema::CheckEquivalentExceptionSpec(FunctionDecl
*Old
, FunctionDecl
*New
) {
299 // Just completely ignore this under -fno-exceptions prior to C++17.
300 // In C++17 onwards, the exception specification is part of the type and
301 // we will diagnose mismatches anyway, so it's better to check for them here.
302 if (!getLangOpts().CXXExceptions
&& !getLangOpts().CPlusPlus17
)
305 OverloadedOperatorKind OO
= New
->getDeclName().getCXXOverloadedOperator();
306 bool IsOperatorNew
= OO
== OO_New
|| OO
== OO_Array_New
;
307 bool MissingExceptionSpecification
= false;
308 bool MissingEmptyExceptionSpecification
= false;
310 unsigned DiagID
= diag::err_mismatched_exception_spec
;
311 bool ReturnValueOnError
= true;
312 if (getLangOpts().MSVCCompat
) {
313 DiagID
= diag::ext_mismatched_exception_spec
;
314 ReturnValueOnError
= false;
317 // If we're befriending a member function of a class that's currently being
318 // defined, we might not be able to work out its exception specification yet.
319 // If not, defer the check until later.
320 if (exceptionSpecNotKnownYet(Old
) || exceptionSpecNotKnownYet(New
)) {
321 DelayedEquivalentExceptionSpecChecks
.push_back({New
, Old
});
325 // Check the types as written: they must match before any exception
326 // specification adjustment is applied.
327 if (!CheckEquivalentExceptionSpecImpl(
328 *this, PDiag(DiagID
), PDiag(diag::note_previous_declaration
),
329 Old
->getType()->getAs
<FunctionProtoType
>(), Old
->getLocation(),
330 New
->getType()->getAs
<FunctionProtoType
>(), New
->getLocation(),
331 &MissingExceptionSpecification
, &MissingEmptyExceptionSpecification
,
332 /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew
)) {
333 // C++11 [except.spec]p4 [DR1492]:
334 // If a declaration of a function has an implicit
335 // exception-specification, other declarations of the function shall
336 // not specify an exception-specification.
337 if (getLangOpts().CPlusPlus11
&& getLangOpts().CXXExceptions
&&
338 hasImplicitExceptionSpec(Old
) != hasImplicitExceptionSpec(New
)) {
339 Diag(New
->getLocation(), diag::ext_implicit_exception_spec_mismatch
)
340 << hasImplicitExceptionSpec(Old
);
341 if (Old
->getLocation().isValid())
342 Diag(Old
->getLocation(), diag::note_previous_declaration
);
347 // The failure was something other than an missing exception
348 // specification; return an error, except in MS mode where this is a warning.
349 if (!MissingExceptionSpecification
)
350 return ReturnValueOnError
;
352 const auto *NewProto
= New
->getType()->castAs
<FunctionProtoType
>();
354 // The new function declaration is only missing an empty exception
355 // specification "throw()". If the throw() specification came from a
356 // function in a system header that has C linkage, just add an empty
357 // exception specification to the "new" declaration. Note that C library
358 // implementations are permitted to add these nothrow exception
361 // Likewise if the old function is a builtin.
362 if (MissingEmptyExceptionSpecification
&&
363 (Old
->getLocation().isInvalid() ||
364 Context
.getSourceManager().isInSystemHeader(Old
->getLocation()) ||
365 Old
->getBuiltinID()) &&
367 New
->setType(Context
.getFunctionType(
368 NewProto
->getReturnType(), NewProto
->getParamTypes(),
369 NewProto
->getExtProtoInfo().withExceptionSpec(EST_DynamicNone
)));
373 const auto *OldProto
= Old
->getType()->castAs
<FunctionProtoType
>();
375 FunctionProtoType::ExceptionSpecInfo ESI
= OldProto
->getExceptionSpecType();
376 if (ESI
.Type
== EST_Dynamic
) {
377 // FIXME: What if the exceptions are described in terms of the old
378 // prototype's parameters?
379 ESI
.Exceptions
= OldProto
->exceptions();
382 if (ESI
.Type
== EST_NoexceptFalse
)
384 if (ESI
.Type
== EST_NoexceptTrue
)
385 ESI
.Type
= EST_BasicNoexcept
;
387 // For dependent noexcept, we can't just take the expression from the old
388 // prototype. It likely contains references to the old prototype's parameters.
389 if (ESI
.Type
== EST_DependentNoexcept
) {
390 New
->setInvalidDecl();
392 // Update the type of the function with the appropriate exception
394 New
->setType(Context
.getFunctionType(
395 NewProto
->getReturnType(), NewProto
->getParamTypes(),
396 NewProto
->getExtProtoInfo().withExceptionSpec(ESI
)));
399 if (getLangOpts().MSVCCompat
&& isDynamicExceptionSpec(ESI
.Type
)) {
400 DiagID
= diag::ext_missing_exception_specification
;
401 ReturnValueOnError
= false;
402 } else if (New
->isReplaceableGlobalAllocationFunction() &&
403 ESI
.Type
!= EST_DependentNoexcept
) {
404 // Allow missing exception specifications in redeclarations as an extension,
405 // when declaring a replaceable global allocation function.
406 DiagID
= diag::ext_missing_exception_specification
;
407 ReturnValueOnError
= false;
408 } else if (ESI
.Type
== EST_NoThrow
) {
409 // Don't emit any warning for missing 'nothrow' in MSVC.
410 if (getLangOpts().MSVCCompat
) {
413 // Allow missing attribute 'nothrow' in redeclarations, since this is a very
415 DiagID
= diag::ext_missing_exception_specification
;
416 ReturnValueOnError
= false;
418 DiagID
= diag::err_missing_exception_specification
;
419 ReturnValueOnError
= true;
422 // Warn about the lack of exception specification.
423 SmallString
<128> ExceptionSpecString
;
424 llvm::raw_svector_ostream
OS(ExceptionSpecString
);
425 switch (OldProto
->getExceptionSpecType()) {
426 case EST_DynamicNone
:
432 bool OnFirstException
= true;
433 for (const auto &E
: OldProto
->exceptions()) {
434 if (OnFirstException
)
435 OnFirstException
= false;
439 OS
<< E
.getAsString(getPrintingPolicy());
445 case EST_BasicNoexcept
:
449 case EST_DependentNoexcept
:
450 case EST_NoexceptFalse
:
451 case EST_NoexceptTrue
:
453 assert(OldProto
->getNoexceptExpr() != nullptr && "Expected non-null Expr");
454 OldProto
->getNoexceptExpr()->printPretty(OS
, nullptr, getPrintingPolicy());
458 OS
<<"__attribute__((nothrow))";
462 case EST_Unevaluated
:
463 case EST_Uninstantiated
:
465 llvm_unreachable("This spec type is compatible with none.");
468 SourceLocation FixItLoc
;
469 if (TypeSourceInfo
*TSInfo
= New
->getTypeSourceInfo()) {
470 TypeLoc TL
= TSInfo
->getTypeLoc().IgnoreParens();
471 // FIXME: Preserve enough information so that we can produce a correct fixit
472 // location when there is a trailing return type.
473 if (auto FTLoc
= TL
.getAs
<FunctionProtoTypeLoc
>())
474 if (!FTLoc
.getTypePtr()->hasTrailingReturn())
475 FixItLoc
= getLocForEndOfToken(FTLoc
.getLocalRangeEnd());
478 if (FixItLoc
.isInvalid())
479 Diag(New
->getLocation(), DiagID
)
482 Diag(New
->getLocation(), DiagID
)
484 << FixItHint::CreateInsertion(FixItLoc
, " " + OS
.str().str());
487 if (Old
->getLocation().isValid())
488 Diag(Old
->getLocation(), diag::note_previous_declaration
);
490 return ReturnValueOnError
;
493 /// CheckEquivalentExceptionSpec - Check if the two types have equivalent
494 /// exception specifications. Exception specifications are equivalent if
495 /// they allow exactly the same set of exception types. It does not matter how
496 /// that is achieved. See C++ [except.spec]p2.
497 bool Sema::CheckEquivalentExceptionSpec(
498 const FunctionProtoType
*Old
, SourceLocation OldLoc
,
499 const FunctionProtoType
*New
, SourceLocation NewLoc
) {
500 if (!getLangOpts().CXXExceptions
)
503 unsigned DiagID
= diag::err_mismatched_exception_spec
;
504 if (getLangOpts().MSVCCompat
)
505 DiagID
= diag::ext_mismatched_exception_spec
;
506 bool Result
= CheckEquivalentExceptionSpecImpl(
507 *this, PDiag(DiagID
), PDiag(diag::note_previous_declaration
),
508 Old
, OldLoc
, New
, NewLoc
);
510 // In Microsoft mode, mismatching exception specifications just cause a warning.
511 if (getLangOpts().MSVCCompat
)
516 /// CheckEquivalentExceptionSpec - Check if the two types have compatible
517 /// exception specifications. See C++ [except.spec]p3.
519 /// \return \c false if the exception specifications match, \c true if there is
520 /// a problem. If \c true is returned, either a diagnostic has already been
521 /// produced or \c *MissingExceptionSpecification is set to \c true.
522 static bool CheckEquivalentExceptionSpecImpl(
523 Sema
&S
, const PartialDiagnostic
&DiagID
, const PartialDiagnostic
&NoteID
,
524 const FunctionProtoType
*Old
, SourceLocation OldLoc
,
525 const FunctionProtoType
*New
, SourceLocation NewLoc
,
526 bool *MissingExceptionSpecification
,
527 bool *MissingEmptyExceptionSpecification
,
528 bool AllowNoexceptAllMatchWithNoSpec
, bool IsOperatorNew
) {
529 if (MissingExceptionSpecification
)
530 *MissingExceptionSpecification
= false;
532 if (MissingEmptyExceptionSpecification
)
533 *MissingEmptyExceptionSpecification
= false;
535 Old
= S
.ResolveExceptionSpec(NewLoc
, Old
);
538 New
= S
.ResolveExceptionSpec(NewLoc
, New
);
542 // C++0x [except.spec]p3: Two exception-specifications are compatible if:
543 // - both are non-throwing, regardless of their form,
544 // - both have the form noexcept(constant-expression) and the constant-
545 // expressions are equivalent,
546 // - both are dynamic-exception-specifications that have the same set of
549 // C++0x [except.spec]p12: An exception-specification is non-throwing if it is
550 // of the form throw(), noexcept, or noexcept(constant-expression) where the
551 // constant-expression yields true.
553 // C++0x [except.spec]p4: If any declaration of a function has an exception-
554 // specifier that is not a noexcept-specification allowing all exceptions,
555 // all declarations [...] of that function shall have a compatible
556 // exception-specification.
558 // That last point basically means that noexcept(false) matches no spec.
559 // It's considered when AllowNoexceptAllMatchWithNoSpec is true.
561 ExceptionSpecificationType OldEST
= Old
->getExceptionSpecType();
562 ExceptionSpecificationType NewEST
= New
->getExceptionSpecType();
564 assert(!isUnresolvedExceptionSpec(OldEST
) &&
565 !isUnresolvedExceptionSpec(NewEST
) &&
566 "Shouldn't see unknown exception specifications here");
568 CanThrowResult OldCanThrow
= Old
->canThrow();
569 CanThrowResult NewCanThrow
= New
->canThrow();
571 // Any non-throwing specifications are compatible.
572 if (OldCanThrow
== CT_Cannot
&& NewCanThrow
== CT_Cannot
)
575 // Any throws-anything specifications are usually compatible.
576 if (OldCanThrow
== CT_Can
&& OldEST
!= EST_Dynamic
&&
577 NewCanThrow
== CT_Can
&& NewEST
!= EST_Dynamic
) {
578 // The exception is that the absence of an exception specification only
579 // matches noexcept(false) for functions, as described above.
580 if (!AllowNoexceptAllMatchWithNoSpec
&&
581 ((OldEST
== EST_None
&& NewEST
== EST_NoexceptFalse
) ||
582 (OldEST
== EST_NoexceptFalse
&& NewEST
== EST_None
))) {
583 // This is the disallowed case.
589 // C++14 [except.spec]p3:
590 // Two exception-specifications are compatible if [...] both have the form
591 // noexcept(constant-expression) and the constant-expressions are equivalent
592 if (OldEST
== EST_DependentNoexcept
&& NewEST
== EST_DependentNoexcept
) {
593 llvm::FoldingSetNodeID OldFSN
, NewFSN
;
594 Old
->getNoexceptExpr()->Profile(OldFSN
, S
.Context
, true);
595 New
->getNoexceptExpr()->Profile(NewFSN
, S
.Context
, true);
596 if (OldFSN
== NewFSN
)
600 // Dynamic exception specifications with the same set of adjusted types
602 if (OldEST
== EST_Dynamic
&& NewEST
== EST_Dynamic
) {
604 // Both have a dynamic exception spec. Collect the first set, then compare
606 llvm::SmallPtrSet
<CanQualType
, 8> OldTypes
, NewTypes
;
607 for (const auto &I
: Old
->exceptions())
608 OldTypes
.insert(S
.Context
.getCanonicalType(I
).getUnqualifiedType());
610 for (const auto &I
: New
->exceptions()) {
611 CanQualType TypePtr
= S
.Context
.getCanonicalType(I
).getUnqualifiedType();
612 if (OldTypes
.count(TypePtr
))
613 NewTypes
.insert(TypePtr
);
620 if (Success
&& OldTypes
.size() == NewTypes
.size())
624 // As a special compatibility feature, under C++0x we accept no spec and
625 // throw(std::bad_alloc) as equivalent for operator new and operator new[].
626 // This is because the implicit declaration changed, but old code would break.
627 if (S
.getLangOpts().CPlusPlus11
&& IsOperatorNew
) {
628 const FunctionProtoType
*WithExceptions
= nullptr;
629 if (OldEST
== EST_None
&& NewEST
== EST_Dynamic
)
630 WithExceptions
= New
;
631 else if (OldEST
== EST_Dynamic
&& NewEST
== EST_None
)
632 WithExceptions
= Old
;
633 if (WithExceptions
&& WithExceptions
->getNumExceptions() == 1) {
634 // One has no spec, the other throw(something). If that something is
635 // std::bad_alloc, all conditions are met.
636 QualType Exception
= *WithExceptions
->exception_begin();
637 if (CXXRecordDecl
*ExRecord
= Exception
->getAsCXXRecordDecl()) {
638 IdentifierInfo
* Name
= ExRecord
->getIdentifier();
639 if (Name
&& Name
->getName() == "bad_alloc") {
640 // It's called bad_alloc, but is it in std?
641 if (ExRecord
->isInStdNamespace()) {
649 // If the caller wants to handle the case that the new function is
650 // incompatible due to a missing exception specification, let it.
651 if (MissingExceptionSpecification
&& OldEST
!= EST_None
&&
652 NewEST
== EST_None
) {
653 // The old type has an exception specification of some sort, but
654 // the new type does not.
655 *MissingExceptionSpecification
= true;
657 if (MissingEmptyExceptionSpecification
&& OldCanThrow
== CT_Cannot
) {
658 // The old type has a throw() or noexcept(true) exception specification
659 // and the new type has no exception specification, and the caller asked
660 // to handle this itself.
661 *MissingEmptyExceptionSpecification
= true;
667 S
.Diag(NewLoc
, DiagID
);
668 if (NoteID
.getDiagID() != 0 && OldLoc
.isValid())
669 S
.Diag(OldLoc
, NoteID
);
673 bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic
&DiagID
,
674 const PartialDiagnostic
&NoteID
,
675 const FunctionProtoType
*Old
,
676 SourceLocation OldLoc
,
677 const FunctionProtoType
*New
,
678 SourceLocation NewLoc
) {
679 if (!getLangOpts().CXXExceptions
)
681 return CheckEquivalentExceptionSpecImpl(*this, DiagID
, NoteID
, Old
, OldLoc
,
685 bool Sema::handlerCanCatch(QualType HandlerType
, QualType ExceptionType
) {
686 // [except.handle]p3:
687 // A handler is a match for an exception object of type E if:
689 // HandlerType must be ExceptionType or derived from it, or pointer or
690 // reference to such types.
691 const ReferenceType
*RefTy
= HandlerType
->getAs
<ReferenceType
>();
693 HandlerType
= RefTy
->getPointeeType();
695 // -- the handler is of type cv T or cv T& and E and T are the same type
696 if (Context
.hasSameUnqualifiedType(ExceptionType
, HandlerType
))
699 // FIXME: ObjC pointer types?
700 if (HandlerType
->isPointerType() || HandlerType
->isMemberPointerType()) {
701 if (RefTy
&& (!HandlerType
.isConstQualified() ||
702 HandlerType
.isVolatileQualified()))
705 // -- the handler is of type cv T or const T& where T is a pointer or
706 // pointer to member type and E is std::nullptr_t
707 if (ExceptionType
->isNullPtrType())
710 // -- the handler is of type cv T or const T& where T is a pointer or
711 // pointer to member type and E is a pointer or pointer to member type
712 // that can be converted to T by one or more of
713 // -- a qualification conversion
714 // -- a function pointer conversion
717 // FIXME: Should we treat the exception as catchable if a lifetime
718 // conversion is required?
719 if (IsQualificationConversion(ExceptionType
, HandlerType
, false,
721 IsFunctionConversion(ExceptionType
, HandlerType
, Result
))
724 // -- a standard pointer conversion [...]
725 if (!ExceptionType
->isPointerType() || !HandlerType
->isPointerType())
728 // Handle the "qualification conversion" portion.
729 Qualifiers EQuals
, HQuals
;
730 ExceptionType
= Context
.getUnqualifiedArrayType(
731 ExceptionType
->getPointeeType(), EQuals
);
732 HandlerType
= Context
.getUnqualifiedArrayType(
733 HandlerType
->getPointeeType(), HQuals
);
734 if (!HQuals
.compatiblyIncludes(EQuals
))
737 if (HandlerType
->isVoidType() && ExceptionType
->isObjectType())
740 // The only remaining case is a derived-to-base conversion.
743 // -- the handler is of type cg T or cv T& and T is an unambiguous public
745 if (!ExceptionType
->isRecordType() || !HandlerType
->isRecordType())
747 CXXBasePaths
Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
748 /*DetectVirtual=*/false);
749 if (!IsDerivedFrom(SourceLocation(), ExceptionType
, HandlerType
, Paths
) ||
750 Paths
.isAmbiguous(Context
.getCanonicalType(HandlerType
)))
753 // Do this check from a context without privileges.
754 switch (CheckBaseClassAccess(SourceLocation(), HandlerType
, ExceptionType
,
758 /*ForceUnprivileged*/ true)) {
759 case AR_accessible
: return true;
760 case AR_inaccessible
: return false;
762 llvm_unreachable("access check dependent for unprivileged context");
764 llvm_unreachable("access check delayed in non-declaration");
766 llvm_unreachable("unexpected access check result");
769 /// CheckExceptionSpecSubset - Check whether the second function type's
770 /// exception specification is a subset (or equivalent) of the first function
771 /// type. This is used by override and pointer assignment checks.
772 bool Sema::CheckExceptionSpecSubset(
773 const PartialDiagnostic
&DiagID
, const PartialDiagnostic
&NestedDiagID
,
774 const PartialDiagnostic
&NoteID
, const PartialDiagnostic
&NoThrowDiagID
,
775 const FunctionProtoType
*Superset
, bool SkipSupersetFirstParameter
,
776 SourceLocation SuperLoc
, const FunctionProtoType
*Subset
,
777 bool SkipSubsetFirstParameter
, SourceLocation SubLoc
) {
779 // Just auto-succeed under -fno-exceptions.
780 if (!getLangOpts().CXXExceptions
)
783 // FIXME: As usual, we could be more specific in our error messages, but
784 // that better waits until we've got types with source locations.
786 if (!SubLoc
.isValid())
789 // Resolve the exception specifications, if needed.
790 Superset
= ResolveExceptionSpec(SuperLoc
, Superset
);
793 Subset
= ResolveExceptionSpec(SubLoc
, Subset
);
797 ExceptionSpecificationType SuperEST
= Superset
->getExceptionSpecType();
798 ExceptionSpecificationType SubEST
= Subset
->getExceptionSpecType();
799 assert(!isUnresolvedExceptionSpec(SuperEST
) &&
800 !isUnresolvedExceptionSpec(SubEST
) &&
801 "Shouldn't see unknown exception specifications here");
803 // If there are dependent noexcept specs, assume everything is fine. Unlike
804 // with the equivalency check, this is safe in this case, because we don't
805 // want to merge declarations. Checks after instantiation will catch any
806 // omissions we make here.
807 if (SuperEST
== EST_DependentNoexcept
|| SubEST
== EST_DependentNoexcept
)
810 CanThrowResult SuperCanThrow
= Superset
->canThrow();
811 CanThrowResult SubCanThrow
= Subset
->canThrow();
813 // If the superset contains everything or the subset contains nothing, we're
815 if ((SuperCanThrow
== CT_Can
&& SuperEST
!= EST_Dynamic
) ||
816 SubCanThrow
== CT_Cannot
)
817 return CheckParamExceptionSpec(NestedDiagID
, NoteID
, Superset
,
818 SkipSupersetFirstParameter
, SuperLoc
, Subset
,
819 SkipSubsetFirstParameter
, SubLoc
);
821 // Allow __declspec(nothrow) to be missing on redeclaration as an extension in
823 if (NoThrowDiagID
.getDiagID() != 0 && SubCanThrow
== CT_Can
&&
824 SuperCanThrow
== CT_Cannot
&& SuperEST
== EST_NoThrow
) {
825 Diag(SubLoc
, NoThrowDiagID
);
826 if (NoteID
.getDiagID() != 0)
827 Diag(SuperLoc
, NoteID
);
831 // If the subset contains everything or the superset contains nothing, we've
833 if ((SubCanThrow
== CT_Can
&& SubEST
!= EST_Dynamic
) ||
834 SuperCanThrow
== CT_Cannot
) {
835 Diag(SubLoc
, DiagID
);
836 if (NoteID
.getDiagID() != 0)
837 Diag(SuperLoc
, NoteID
);
841 assert(SuperEST
== EST_Dynamic
&& SubEST
== EST_Dynamic
&&
842 "Exception spec subset: non-dynamic case slipped through.");
844 // Neither contains everything or nothing. Do a proper comparison.
845 for (QualType SubI
: Subset
->exceptions()) {
846 if (const ReferenceType
*RefTy
= SubI
->getAs
<ReferenceType
>())
847 SubI
= RefTy
->getPointeeType();
849 // Make sure it's in the superset.
850 bool Contained
= false;
851 for (QualType SuperI
: Superset
->exceptions()) {
853 // the target entity shall allow at least the exceptions allowed by the
856 // We interpret this as meaning that a handler for some target type would
857 // catch an exception of each source type.
858 if (handlerCanCatch(SuperI
, SubI
)) {
864 Diag(SubLoc
, DiagID
);
865 if (NoteID
.getDiagID() != 0)
866 Diag(SuperLoc
, NoteID
);
870 // We've run half the gauntlet.
871 return CheckParamExceptionSpec(NestedDiagID
, NoteID
, Superset
,
872 SkipSupersetFirstParameter
, SuperLoc
, Subset
,
873 SkipSupersetFirstParameter
, SubLoc
);
877 CheckSpecForTypesEquivalent(Sema
&S
, const PartialDiagnostic
&DiagID
,
878 const PartialDiagnostic
&NoteID
, QualType Target
,
879 SourceLocation TargetLoc
, QualType Source
,
880 SourceLocation SourceLoc
) {
881 const FunctionProtoType
*TFunc
= GetUnderlyingFunction(Target
);
884 const FunctionProtoType
*SFunc
= GetUnderlyingFunction(Source
);
888 return S
.CheckEquivalentExceptionSpec(DiagID
, NoteID
, TFunc
, TargetLoc
,
892 /// CheckParamExceptionSpec - Check if the parameter and return types of the
893 /// two functions have equivalent exception specs. This is part of the
894 /// assignment and override compatibility check. We do not check the parameters
895 /// of parameter function pointers recursively, as no sane programmer would
896 /// even be able to write such a function type.
897 bool Sema::CheckParamExceptionSpec(
898 const PartialDiagnostic
&DiagID
, const PartialDiagnostic
&NoteID
,
899 const FunctionProtoType
*Target
, bool SkipTargetFirstParameter
,
900 SourceLocation TargetLoc
, const FunctionProtoType
*Source
,
901 bool SkipSourceFirstParameter
, SourceLocation SourceLoc
) {
902 auto RetDiag
= DiagID
;
904 if (CheckSpecForTypesEquivalent(
905 *this, RetDiag
, PDiag(),
906 Target
->getReturnType(), TargetLoc
, Source
->getReturnType(),
910 // We shouldn't even be testing this unless the arguments are otherwise
912 assert((Target
->getNumParams() - (unsigned)SkipTargetFirstParameter
) ==
913 (Source
->getNumParams() - (unsigned)SkipSourceFirstParameter
) &&
914 "Functions have different argument counts.");
915 for (unsigned i
= 0, E
= Target
->getNumParams(); i
!= E
; ++i
) {
916 auto ParamDiag
= DiagID
;
918 if (CheckSpecForTypesEquivalent(
919 *this, ParamDiag
, PDiag(),
920 Target
->getParamType(i
+ (SkipTargetFirstParameter
? 1 : 0)),
921 TargetLoc
, Source
->getParamType(SkipSourceFirstParameter
? 1 : 0),
928 bool Sema::CheckExceptionSpecCompatibility(Expr
*From
, QualType ToType
) {
929 // First we check for applicability.
930 // Target type must be a function, function pointer or function reference.
931 const FunctionProtoType
*ToFunc
= GetUnderlyingFunction(ToType
);
932 if (!ToFunc
|| ToFunc
->hasDependentExceptionSpec())
935 // SourceType must be a function or function pointer.
936 const FunctionProtoType
*FromFunc
= GetUnderlyingFunction(From
->getType());
937 if (!FromFunc
|| FromFunc
->hasDependentExceptionSpec())
940 unsigned DiagID
= diag::err_incompatible_exception_specs
;
941 unsigned NestedDiagID
= diag::err_deep_exception_specs_differ
;
942 // This is not an error in C++17 onwards, unless the noexceptness doesn't
943 // match, but in that case we have a full-on type mismatch, not just a
944 // type sugar mismatch.
945 if (getLangOpts().CPlusPlus17
) {
946 DiagID
= diag::warn_incompatible_exception_specs
;
947 NestedDiagID
= diag::warn_deep_exception_specs_differ
;
950 // Now we've got the correct types on both sides, check their compatibility.
951 // This means that the source of the conversion can only throw a subset of
952 // the exceptions of the target, and any exception specs on arguments or
953 // return types must be equivalent.
955 // FIXME: If there is a nested dependent exception specification, we should
956 // not be checking it here. This is fine:
957 // template<typename T> void f() {
958 // void (*p)(void (*) throw(T));
959 // void (*q)(void (*) throw(int)) = p;
961 // ... because it might be instantiated with T=int.
962 return CheckExceptionSpecSubset(PDiag(DiagID
), PDiag(NestedDiagID
), PDiag(),
964 From
->getSourceRange().getBegin(), FromFunc
,
965 0, SourceLocation()) &&
966 !getLangOpts().CPlusPlus17
;
969 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl
*New
,
970 const CXXMethodDecl
*Old
) {
971 // If the new exception specification hasn't been parsed yet, skip the check.
972 // We'll get called again once it's been parsed.
973 if (New
->getType()->castAs
<FunctionProtoType
>()->getExceptionSpecType() ==
977 // Don't check uninstantiated template destructors at all. We can only
978 // synthesize correct specs after the template is instantiated.
979 if (isa
<CXXDestructorDecl
>(New
) && New
->getParent()->isDependentType())
982 // If the old exception specification hasn't been parsed yet, or the new
983 // exception specification can't be computed yet, remember that we need to
984 // perform this check when we get to the end of the outermost
985 // lexically-surrounding class.
986 if (exceptionSpecNotKnownYet(Old
) || exceptionSpecNotKnownYet(New
)) {
987 DelayedOverridingExceptionSpecChecks
.push_back({New
, Old
});
991 unsigned DiagID
= diag::err_override_exception_spec
;
992 if (getLangOpts().MSVCCompat
)
993 DiagID
= diag::ext_override_exception_spec
;
994 return CheckExceptionSpecSubset(
995 PDiag(DiagID
), PDiag(diag::err_deep_exception_specs_differ
),
996 PDiag(diag::note_overridden_virtual_function
),
997 PDiag(diag::ext_override_exception_spec
),
998 Old
->getType()->castAs
<FunctionProtoType
>(),
999 Old
->hasCXXExplicitFunctionObjectParameter(), Old
->getLocation(),
1000 New
->getType()->castAs
<FunctionProtoType
>(),
1001 New
->hasCXXExplicitFunctionObjectParameter(), New
->getLocation());
1004 static CanThrowResult
canSubStmtsThrow(Sema
&Self
, const Stmt
*S
) {
1005 CanThrowResult R
= CT_Cannot
;
1006 for (const Stmt
*SubStmt
: S
->children()) {
1009 R
= mergeCanThrow(R
, Self
.canThrow(SubStmt
));
1016 CanThrowResult
Sema::canCalleeThrow(Sema
&S
, const Expr
*E
, const Decl
*D
,
1017 SourceLocation Loc
) {
1018 // As an extension, we assume that __attribute__((nothrow)) functions don't
1020 if (D
&& isa
<FunctionDecl
>(D
) && D
->hasAttr
<NoThrowAttr
>())
1025 // In C++1z, just look at the function type of the callee.
1026 if (S
.getLangOpts().CPlusPlus17
&& E
&& isa
<CallExpr
>(E
)) {
1027 E
= cast
<CallExpr
>(E
)->getCallee();
1029 if (T
->isSpecificPlaceholderType(BuiltinType::BoundMember
)) {
1030 // Sadly we don't preserve the actual type as part of the "bound member"
1031 // placeholder, so we need to reconstruct it.
1032 E
= E
->IgnoreParenImpCasts();
1034 // Could be a call to a pointer-to-member or a plain member access.
1035 if (auto *Op
= dyn_cast
<BinaryOperator
>(E
)) {
1036 assert(Op
->getOpcode() == BO_PtrMemD
|| Op
->getOpcode() == BO_PtrMemI
);
1037 T
= Op
->getRHS()->getType()
1038 ->castAs
<MemberPointerType
>()->getPointeeType();
1040 T
= cast
<MemberExpr
>(E
)->getMemberDecl()->getType();
1043 } else if (const ValueDecl
*VD
= dyn_cast_or_null
<ValueDecl
>(D
))
1046 // If we have no clue what we're calling, assume the worst.
1049 const FunctionProtoType
*FT
;
1050 if ((FT
= T
->getAs
<FunctionProtoType
>())) {
1051 } else if (const PointerType
*PT
= T
->getAs
<PointerType
>())
1052 FT
= PT
->getPointeeType()->getAs
<FunctionProtoType
>();
1053 else if (const ReferenceType
*RT
= T
->getAs
<ReferenceType
>())
1054 FT
= RT
->getPointeeType()->getAs
<FunctionProtoType
>();
1055 else if (const MemberPointerType
*MT
= T
->getAs
<MemberPointerType
>())
1056 FT
= MT
->getPointeeType()->getAs
<FunctionProtoType
>();
1057 else if (const BlockPointerType
*BT
= T
->getAs
<BlockPointerType
>())
1058 FT
= BT
->getPointeeType()->getAs
<FunctionProtoType
>();
1063 if (Loc
.isValid() || (Loc
.isInvalid() && E
))
1064 FT
= S
.ResolveExceptionSpec(Loc
.isInvalid() ? E
->getBeginLoc() : Loc
, FT
);
1068 return FT
->canThrow();
1071 static CanThrowResult
canVarDeclThrow(Sema
&Self
, const VarDecl
*VD
) {
1072 CanThrowResult CT
= CT_Cannot
;
1074 // Initialization might throw.
1075 if (!VD
->isUsableInConstantExpressions(Self
.Context
))
1076 if (const Expr
*Init
= VD
->getInit())
1077 CT
= mergeCanThrow(CT
, Self
.canThrow(Init
));
1079 // Destructor might throw.
1080 if (VD
->needsDestruction(Self
.Context
) == QualType::DK_cxx_destructor
) {
1082 VD
->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
1083 if (auto *Dtor
= RD
->getDestructor()) {
1085 CT
, Sema::canCalleeThrow(Self
, nullptr, Dtor
, VD
->getLocation()));
1090 // If this is a decomposition declaration, bindings might throw.
1091 if (auto *DD
= dyn_cast
<DecompositionDecl
>(VD
))
1092 for (auto *B
: DD
->bindings())
1093 if (auto *HD
= B
->getHoldingVar())
1094 CT
= mergeCanThrow(CT
, canVarDeclThrow(Self
, HD
));
1099 static CanThrowResult
canDynamicCastThrow(const CXXDynamicCastExpr
*DC
) {
1100 if (DC
->isTypeDependent())
1101 return CT_Dependent
;
1103 if (!DC
->getTypeAsWritten()->isReferenceType())
1106 if (DC
->getSubExpr()->isTypeDependent())
1107 return CT_Dependent
;
1109 return DC
->getCastKind() == clang::CK_Dynamic
? CT_Can
: CT_Cannot
;
1112 static CanThrowResult
canTypeidThrow(Sema
&S
, const CXXTypeidExpr
*DC
) {
1113 if (DC
->isTypeOperand())
1116 Expr
*Op
= DC
->getExprOperand();
1117 if (Op
->isTypeDependent())
1118 return CT_Dependent
;
1120 const RecordType
*RT
= Op
->getType()->getAs
<RecordType
>();
1124 if (!cast
<CXXRecordDecl
>(RT
->getDecl())->isPolymorphic())
1127 if (Op
->Classify(S
.Context
).isPRValue())
1133 CanThrowResult
Sema::canThrow(const Stmt
*S
) {
1134 // C++ [expr.unary.noexcept]p3:
1135 // [Can throw] if in a potentially-evaluated context the expression would
1137 switch (S
->getStmtClass()) {
1138 case Expr::ConstantExprClass
:
1139 return canThrow(cast
<ConstantExpr
>(S
)->getSubExpr());
1141 case Expr::CXXThrowExprClass
:
1142 // - a potentially evaluated throw-expression
1145 case Expr::CXXDynamicCastExprClass
: {
1146 // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
1147 // where T is a reference type, that requires a run-time check
1148 auto *CE
= cast
<CXXDynamicCastExpr
>(S
);
1149 // FIXME: Properly determine whether a variably-modified type can throw.
1150 if (CE
->getType()->isVariablyModifiedType())
1152 CanThrowResult CT
= canDynamicCastThrow(CE
);
1155 return mergeCanThrow(CT
, canSubStmtsThrow(*this, CE
));
1158 case Expr::CXXTypeidExprClass
:
1159 // - a potentially evaluated typeid expression applied to a glvalue
1160 // expression whose type is a polymorphic class type
1161 return canTypeidThrow(*this, cast
<CXXTypeidExpr
>(S
));
1163 // - a potentially evaluated call to a function, member function, function
1164 // pointer, or member function pointer that does not have a non-throwing
1165 // exception-specification
1166 case Expr::CallExprClass
:
1167 case Expr::CXXMemberCallExprClass
:
1168 case Expr::CXXOperatorCallExprClass
:
1169 case Expr::UserDefinedLiteralClass
: {
1170 const CallExpr
*CE
= cast
<CallExpr
>(S
);
1172 if (CE
->isTypeDependent())
1174 else if (isa
<CXXPseudoDestructorExpr
>(CE
->getCallee()->IgnoreParens()))
1177 CT
= canCalleeThrow(*this, CE
, CE
->getCalleeDecl());
1180 return mergeCanThrow(CT
, canSubStmtsThrow(*this, CE
));
1183 case Expr::CXXConstructExprClass
:
1184 case Expr::CXXTemporaryObjectExprClass
: {
1185 auto *CE
= cast
<CXXConstructExpr
>(S
);
1186 // FIXME: Properly determine whether a variably-modified type can throw.
1187 if (CE
->getType()->isVariablyModifiedType())
1189 CanThrowResult CT
= canCalleeThrow(*this, CE
, CE
->getConstructor());
1192 return mergeCanThrow(CT
, canSubStmtsThrow(*this, CE
));
1195 case Expr::CXXInheritedCtorInitExprClass
: {
1196 auto *ICIE
= cast
<CXXInheritedCtorInitExpr
>(S
);
1197 return canCalleeThrow(*this, ICIE
, ICIE
->getConstructor());
1200 case Expr::LambdaExprClass
: {
1201 const LambdaExpr
*Lambda
= cast
<LambdaExpr
>(S
);
1202 CanThrowResult CT
= CT_Cannot
;
1203 for (LambdaExpr::const_capture_init_iterator
1204 Cap
= Lambda
->capture_init_begin(),
1205 CapEnd
= Lambda
->capture_init_end();
1206 Cap
!= CapEnd
; ++Cap
)
1207 CT
= mergeCanThrow(CT
, canThrow(*Cap
));
1211 case Expr::CXXNewExprClass
: {
1212 auto *NE
= cast
<CXXNewExpr
>(S
);
1214 if (NE
->isTypeDependent())
1217 CT
= canCalleeThrow(*this, NE
, NE
->getOperatorNew());
1220 return mergeCanThrow(CT
, canSubStmtsThrow(*this, NE
));
1223 case Expr::CXXDeleteExprClass
: {
1224 auto *DE
= cast
<CXXDeleteExpr
>(S
);
1226 QualType DTy
= DE
->getDestroyedType();
1227 if (DTy
.isNull() || DTy
->isDependentType()) {
1230 CT
= canCalleeThrow(*this, DE
, DE
->getOperatorDelete());
1231 if (const RecordType
*RT
= DTy
->getAs
<RecordType
>()) {
1232 const CXXRecordDecl
*RD
= cast
<CXXRecordDecl
>(RT
->getDecl());
1233 const CXXDestructorDecl
*DD
= RD
->getDestructor();
1235 CT
= mergeCanThrow(CT
, canCalleeThrow(*this, DE
, DD
));
1240 return mergeCanThrow(CT
, canSubStmtsThrow(*this, DE
));
1243 case Expr::CXXBindTemporaryExprClass
: {
1244 auto *BTE
= cast
<CXXBindTemporaryExpr
>(S
);
1245 // The bound temporary has to be destroyed again, which might throw.
1247 canCalleeThrow(*this, BTE
, BTE
->getTemporary()->getDestructor());
1250 return mergeCanThrow(CT
, canSubStmtsThrow(*this, BTE
));
1253 case Expr::PseudoObjectExprClass
: {
1254 auto *POE
= cast
<PseudoObjectExpr
>(S
);
1255 CanThrowResult CT
= CT_Cannot
;
1256 for (const Expr
*E
: POE
->semantics()) {
1257 CT
= mergeCanThrow(CT
, canThrow(E
));
1264 // ObjC message sends are like function calls, but never have exception
1266 case Expr::ObjCMessageExprClass
:
1267 case Expr::ObjCPropertyRefExprClass
:
1268 case Expr::ObjCSubscriptRefExprClass
:
1271 // All the ObjC literals that are implemented as calls are
1272 // potentially throwing unless we decide to close off that
1274 case Expr::ObjCArrayLiteralClass
:
1275 case Expr::ObjCDictionaryLiteralClass
:
1276 case Expr::ObjCBoxedExprClass
:
1279 // Many other things have subexpressions, so we have to test those.
1281 case Expr::CoawaitExprClass
:
1282 case Expr::ConditionalOperatorClass
:
1283 case Expr::CoyieldExprClass
:
1284 case Expr::CXXRewrittenBinaryOperatorClass
:
1285 case Expr::CXXStdInitializerListExprClass
:
1286 case Expr::DesignatedInitExprClass
:
1287 case Expr::DesignatedInitUpdateExprClass
:
1288 case Expr::ExprWithCleanupsClass
:
1289 case Expr::ExtVectorElementExprClass
:
1290 case Expr::InitListExprClass
:
1291 case Expr::ArrayInitLoopExprClass
:
1292 case Expr::MemberExprClass
:
1293 case Expr::ObjCIsaExprClass
:
1294 case Expr::ObjCIvarRefExprClass
:
1295 case Expr::ParenExprClass
:
1296 case Expr::ParenListExprClass
:
1297 case Expr::ShuffleVectorExprClass
:
1298 case Expr::StmtExprClass
:
1299 case Expr::ConvertVectorExprClass
:
1300 case Expr::VAArgExprClass
:
1301 case Expr::CXXParenListInitExprClass
:
1302 return canSubStmtsThrow(*this, S
);
1304 case Expr::CompoundLiteralExprClass
:
1305 case Expr::CXXConstCastExprClass
:
1306 case Expr::CXXAddrspaceCastExprClass
:
1307 case Expr::CXXReinterpretCastExprClass
:
1308 case Expr::BuiltinBitCastExprClass
:
1309 // FIXME: Properly determine whether a variably-modified type can throw.
1310 if (cast
<Expr
>(S
)->getType()->isVariablyModifiedType())
1312 return canSubStmtsThrow(*this, S
);
1314 // Some might be dependent for other reasons.
1315 case Expr::ArraySubscriptExprClass
:
1316 case Expr::MatrixSubscriptExprClass
:
1317 case Expr::OMPArraySectionExprClass
:
1318 case Expr::OMPArrayShapingExprClass
:
1319 case Expr::OMPIteratorExprClass
:
1320 case Expr::BinaryOperatorClass
:
1321 case Expr::DependentCoawaitExprClass
:
1322 case Expr::CompoundAssignOperatorClass
:
1323 case Expr::CStyleCastExprClass
:
1324 case Expr::CXXStaticCastExprClass
:
1325 case Expr::CXXFunctionalCastExprClass
:
1326 case Expr::ImplicitCastExprClass
:
1327 case Expr::MaterializeTemporaryExprClass
:
1328 case Expr::UnaryOperatorClass
: {
1329 // FIXME: Properly determine whether a variably-modified type can throw.
1330 if (auto *CE
= dyn_cast
<CastExpr
>(S
))
1331 if (CE
->getType()->isVariablyModifiedType())
1334 cast
<Expr
>(S
)->isTypeDependent() ? CT_Dependent
: CT_Cannot
;
1335 return mergeCanThrow(CT
, canSubStmtsThrow(*this, S
));
1338 case Expr::CXXDefaultArgExprClass
:
1339 return canThrow(cast
<CXXDefaultArgExpr
>(S
)->getExpr());
1341 case Expr::CXXDefaultInitExprClass
:
1342 return canThrow(cast
<CXXDefaultInitExpr
>(S
)->getExpr());
1344 case Expr::ChooseExprClass
: {
1345 auto *CE
= cast
<ChooseExpr
>(S
);
1346 if (CE
->isTypeDependent() || CE
->isValueDependent())
1347 return CT_Dependent
;
1348 return canThrow(CE
->getChosenSubExpr());
1351 case Expr::GenericSelectionExprClass
:
1352 if (cast
<GenericSelectionExpr
>(S
)->isResultDependent())
1353 return CT_Dependent
;
1354 return canThrow(cast
<GenericSelectionExpr
>(S
)->getResultExpr());
1356 // Some expressions are always dependent.
1357 case Expr::CXXDependentScopeMemberExprClass
:
1358 case Expr::CXXUnresolvedConstructExprClass
:
1359 case Expr::DependentScopeDeclRefExprClass
:
1360 case Expr::CXXFoldExprClass
:
1361 case Expr::RecoveryExprClass
:
1362 return CT_Dependent
;
1364 case Expr::AsTypeExprClass
:
1365 case Expr::BinaryConditionalOperatorClass
:
1366 case Expr::BlockExprClass
:
1367 case Expr::CUDAKernelCallExprClass
:
1368 case Expr::DeclRefExprClass
:
1369 case Expr::ObjCBridgedCastExprClass
:
1370 case Expr::ObjCIndirectCopyRestoreExprClass
:
1371 case Expr::ObjCProtocolExprClass
:
1372 case Expr::ObjCSelectorExprClass
:
1373 case Expr::ObjCAvailabilityCheckExprClass
:
1374 case Expr::OffsetOfExprClass
:
1375 case Expr::PackExpansionExprClass
:
1376 case Expr::SubstNonTypeTemplateParmExprClass
:
1377 case Expr::SubstNonTypeTemplateParmPackExprClass
:
1378 case Expr::FunctionParmPackExprClass
:
1379 case Expr::UnaryExprOrTypeTraitExprClass
:
1380 case Expr::UnresolvedLookupExprClass
:
1381 case Expr::UnresolvedMemberExprClass
:
1382 case Expr::TypoExprClass
:
1383 // FIXME: Many of the above can throw.
1386 case Expr::AddrLabelExprClass
:
1387 case Expr::ArrayTypeTraitExprClass
:
1388 case Expr::AtomicExprClass
:
1389 case Expr::TypeTraitExprClass
:
1390 case Expr::CXXBoolLiteralExprClass
:
1391 case Expr::CXXNoexceptExprClass
:
1392 case Expr::CXXNullPtrLiteralExprClass
:
1393 case Expr::CXXPseudoDestructorExprClass
:
1394 case Expr::CXXScalarValueInitExprClass
:
1395 case Expr::CXXThisExprClass
:
1396 case Expr::CXXUuidofExprClass
:
1397 case Expr::CharacterLiteralClass
:
1398 case Expr::ExpressionTraitExprClass
:
1399 case Expr::FloatingLiteralClass
:
1400 case Expr::GNUNullExprClass
:
1401 case Expr::ImaginaryLiteralClass
:
1402 case Expr::ImplicitValueInitExprClass
:
1403 case Expr::IntegerLiteralClass
:
1404 case Expr::FixedPointLiteralClass
:
1405 case Expr::ArrayInitIndexExprClass
:
1406 case Expr::NoInitExprClass
:
1407 case Expr::ObjCEncodeExprClass
:
1408 case Expr::ObjCStringLiteralClass
:
1409 case Expr::ObjCBoolLiteralExprClass
:
1410 case Expr::OpaqueValueExprClass
:
1411 case Expr::PredefinedExprClass
:
1412 case Expr::SizeOfPackExprClass
:
1413 case Expr::StringLiteralClass
:
1414 case Expr::SourceLocExprClass
:
1415 case Expr::ConceptSpecializationExprClass
:
1416 case Expr::RequiresExprClass
:
1417 // These expressions can never throw.
1420 case Expr::MSPropertyRefExprClass
:
1421 case Expr::MSPropertySubscriptExprClass
:
1422 llvm_unreachable("Invalid class for expression");
1424 // Most statements can throw if any substatement can throw.
1425 case Stmt::AttributedStmtClass
:
1426 case Stmt::BreakStmtClass
:
1427 case Stmt::CapturedStmtClass
:
1428 case Stmt::CaseStmtClass
:
1429 case Stmt::CompoundStmtClass
:
1430 case Stmt::ContinueStmtClass
:
1431 case Stmt::CoreturnStmtClass
:
1432 case Stmt::CoroutineBodyStmtClass
:
1433 case Stmt::CXXCatchStmtClass
:
1434 case Stmt::CXXForRangeStmtClass
:
1435 case Stmt::DefaultStmtClass
:
1436 case Stmt::DoStmtClass
:
1437 case Stmt::ForStmtClass
:
1438 case Stmt::GCCAsmStmtClass
:
1439 case Stmt::GotoStmtClass
:
1440 case Stmt::IndirectGotoStmtClass
:
1441 case Stmt::LabelStmtClass
:
1442 case Stmt::MSAsmStmtClass
:
1443 case Stmt::MSDependentExistsStmtClass
:
1444 case Stmt::NullStmtClass
:
1445 case Stmt::ObjCAtCatchStmtClass
:
1446 case Stmt::ObjCAtFinallyStmtClass
:
1447 case Stmt::ObjCAtSynchronizedStmtClass
:
1448 case Stmt::ObjCAutoreleasePoolStmtClass
:
1449 case Stmt::ObjCForCollectionStmtClass
:
1450 case Stmt::OMPAtomicDirectiveClass
:
1451 case Stmt::OMPBarrierDirectiveClass
:
1452 case Stmt::OMPCancelDirectiveClass
:
1453 case Stmt::OMPCancellationPointDirectiveClass
:
1454 case Stmt::OMPCriticalDirectiveClass
:
1455 case Stmt::OMPDistributeDirectiveClass
:
1456 case Stmt::OMPDistributeParallelForDirectiveClass
:
1457 case Stmt::OMPDistributeParallelForSimdDirectiveClass
:
1458 case Stmt::OMPDistributeSimdDirectiveClass
:
1459 case Stmt::OMPFlushDirectiveClass
:
1460 case Stmt::OMPDepobjDirectiveClass
:
1461 case Stmt::OMPScanDirectiveClass
:
1462 case Stmt::OMPForDirectiveClass
:
1463 case Stmt::OMPForSimdDirectiveClass
:
1464 case Stmt::OMPMasterDirectiveClass
:
1465 case Stmt::OMPMasterTaskLoopDirectiveClass
:
1466 case Stmt::OMPMaskedTaskLoopDirectiveClass
:
1467 case Stmt::OMPMasterTaskLoopSimdDirectiveClass
:
1468 case Stmt::OMPMaskedTaskLoopSimdDirectiveClass
:
1469 case Stmt::OMPOrderedDirectiveClass
:
1470 case Stmt::OMPCanonicalLoopClass
:
1471 case Stmt::OMPParallelDirectiveClass
:
1472 case Stmt::OMPParallelForDirectiveClass
:
1473 case Stmt::OMPParallelForSimdDirectiveClass
:
1474 case Stmt::OMPParallelMasterDirectiveClass
:
1475 case Stmt::OMPParallelMaskedDirectiveClass
:
1476 case Stmt::OMPParallelMasterTaskLoopDirectiveClass
:
1477 case Stmt::OMPParallelMaskedTaskLoopDirectiveClass
:
1478 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass
:
1479 case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass
:
1480 case Stmt::OMPParallelSectionsDirectiveClass
:
1481 case Stmt::OMPSectionDirectiveClass
:
1482 case Stmt::OMPSectionsDirectiveClass
:
1483 case Stmt::OMPSimdDirectiveClass
:
1484 case Stmt::OMPTileDirectiveClass
:
1485 case Stmt::OMPUnrollDirectiveClass
:
1486 case Stmt::OMPSingleDirectiveClass
:
1487 case Stmt::OMPTargetDataDirectiveClass
:
1488 case Stmt::OMPTargetDirectiveClass
:
1489 case Stmt::OMPTargetEnterDataDirectiveClass
:
1490 case Stmt::OMPTargetExitDataDirectiveClass
:
1491 case Stmt::OMPTargetParallelDirectiveClass
:
1492 case Stmt::OMPTargetParallelForDirectiveClass
:
1493 case Stmt::OMPTargetParallelForSimdDirectiveClass
:
1494 case Stmt::OMPTargetSimdDirectiveClass
:
1495 case Stmt::OMPTargetTeamsDirectiveClass
:
1496 case Stmt::OMPTargetTeamsDistributeDirectiveClass
:
1497 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass
:
1498 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass
:
1499 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass
:
1500 case Stmt::OMPTargetUpdateDirectiveClass
:
1501 case Stmt::OMPScopeDirectiveClass
:
1502 case Stmt::OMPTaskDirectiveClass
:
1503 case Stmt::OMPTaskgroupDirectiveClass
:
1504 case Stmt::OMPTaskLoopDirectiveClass
:
1505 case Stmt::OMPTaskLoopSimdDirectiveClass
:
1506 case Stmt::OMPTaskwaitDirectiveClass
:
1507 case Stmt::OMPTaskyieldDirectiveClass
:
1508 case Stmt::OMPErrorDirectiveClass
:
1509 case Stmt::OMPTeamsDirectiveClass
:
1510 case Stmt::OMPTeamsDistributeDirectiveClass
:
1511 case Stmt::OMPTeamsDistributeParallelForDirectiveClass
:
1512 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass
:
1513 case Stmt::OMPTeamsDistributeSimdDirectiveClass
:
1514 case Stmt::OMPInteropDirectiveClass
:
1515 case Stmt::OMPDispatchDirectiveClass
:
1516 case Stmt::OMPMaskedDirectiveClass
:
1517 case Stmt::OMPMetaDirectiveClass
:
1518 case Stmt::OMPGenericLoopDirectiveClass
:
1519 case Stmt::OMPTeamsGenericLoopDirectiveClass
:
1520 case Stmt::OMPTargetTeamsGenericLoopDirectiveClass
:
1521 case Stmt::OMPParallelGenericLoopDirectiveClass
:
1522 case Stmt::OMPTargetParallelGenericLoopDirectiveClass
:
1523 case Stmt::ReturnStmtClass
:
1524 case Stmt::SEHExceptStmtClass
:
1525 case Stmt::SEHFinallyStmtClass
:
1526 case Stmt::SEHLeaveStmtClass
:
1527 case Stmt::SEHTryStmtClass
:
1528 case Stmt::SwitchStmtClass
:
1529 case Stmt::WhileStmtClass
:
1530 return canSubStmtsThrow(*this, S
);
1532 case Stmt::DeclStmtClass
: {
1533 CanThrowResult CT
= CT_Cannot
;
1534 for (const Decl
*D
: cast
<DeclStmt
>(S
)->decls()) {
1535 if (auto *VD
= dyn_cast
<VarDecl
>(D
))
1536 CT
= mergeCanThrow(CT
, canVarDeclThrow(*this, VD
));
1538 // FIXME: Properly determine whether a variably-modified type can throw.
1539 if (auto *TND
= dyn_cast
<TypedefNameDecl
>(D
))
1540 if (TND
->getUnderlyingType()->isVariablyModifiedType())
1542 if (auto *VD
= dyn_cast
<ValueDecl
>(D
))
1543 if (VD
->getType()->isVariablyModifiedType())
1549 case Stmt::IfStmtClass
: {
1550 auto *IS
= cast
<IfStmt
>(S
);
1551 CanThrowResult CT
= CT_Cannot
;
1552 if (const Stmt
*Init
= IS
->getInit())
1553 CT
= mergeCanThrow(CT
, canThrow(Init
));
1554 if (const Stmt
*CondDS
= IS
->getConditionVariableDeclStmt())
1555 CT
= mergeCanThrow(CT
, canThrow(CondDS
));
1556 CT
= mergeCanThrow(CT
, canThrow(IS
->getCond()));
1558 // For 'if constexpr', consider only the non-discarded case.
1559 // FIXME: We should add a DiscardedStmt marker to the AST.
1560 if (std::optional
<const Stmt
*> Case
= IS
->getNondiscardedCase(Context
))
1561 return *Case
? mergeCanThrow(CT
, canThrow(*Case
)) : CT
;
1563 CanThrowResult Then
= canThrow(IS
->getThen());
1564 CanThrowResult Else
= IS
->getElse() ? canThrow(IS
->getElse()) : CT_Cannot
;
1566 return mergeCanThrow(CT
, Then
);
1568 // For a dependent 'if constexpr', the result is dependent if it depends on
1569 // the value of the condition.
1570 return mergeCanThrow(CT
, IS
->isConstexpr() ? CT_Dependent
1571 : mergeCanThrow(Then
, Else
));
1574 case Stmt::CXXTryStmtClass
: {
1575 auto *TS
= cast
<CXXTryStmt
>(S
);
1576 // try /*...*/ catch (...) { H } can throw only if H can throw.
1577 // Any other try-catch can throw if any substatement can throw.
1578 const CXXCatchStmt
*FinalHandler
= TS
->getHandler(TS
->getNumHandlers() - 1);
1579 if (!FinalHandler
->getExceptionDecl())
1580 return canThrow(FinalHandler
->getHandlerBlock());
1581 return canSubStmtsThrow(*this, S
);
1584 case Stmt::ObjCAtThrowStmtClass
:
1587 case Stmt::ObjCAtTryStmtClass
: {
1588 auto *TS
= cast
<ObjCAtTryStmt
>(S
);
1590 // @catch(...) need not be last in Objective-C. Walk backwards until we
1591 // see one or hit the @try.
1592 CanThrowResult CT
= CT_Cannot
;
1593 if (const Stmt
*Finally
= TS
->getFinallyStmt())
1594 CT
= mergeCanThrow(CT
, canThrow(Finally
));
1595 for (unsigned I
= TS
->getNumCatchStmts(); I
!= 0; --I
) {
1596 const ObjCAtCatchStmt
*Catch
= TS
->getCatchStmt(I
- 1);
1597 CT
= mergeCanThrow(CT
, canThrow(Catch
));
1598 // If we reach a @catch(...), no earlier exceptions can escape.
1599 if (Catch
->hasEllipsis())
1603 // Didn't find an @catch(...). Exceptions from the @try body can escape.
1604 return mergeCanThrow(CT
, canThrow(TS
->getTryBody()));
1607 case Stmt::SYCLUniqueStableNameExprClass
:
1609 case Stmt::NoStmtClass
:
1610 llvm_unreachable("Invalid class for statement");
1612 llvm_unreachable("Bogus StmtClass");
1615 } // end namespace clang