[DFAJumpThreading] Remove incoming StartBlock from all phis when unfolding select...
[llvm-project.git] / clang / lib / Sema / SemaModule.cpp
blob8a296837e2a192cf5ec23c666beeec67f8d30739
1 //===--- SemaModule.cpp - Semantic Analysis for Modules -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for modules (C++ modules syntax,
10 // Objective-C modules syntax, and Clang header modules).
12 //===----------------------------------------------------------------------===//
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/Lex/HeaderSearch.h"
16 #include "clang/Lex/Preprocessor.h"
17 #include "clang/Sema/SemaInternal.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include <optional>
21 using namespace clang;
22 using namespace sema;
24 static void checkModuleImportContext(Sema &S, Module *M,
25 SourceLocation ImportLoc, DeclContext *DC,
26 bool FromInclude = false) {
27 SourceLocation ExternCLoc;
29 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
30 switch (LSD->getLanguage()) {
31 case LinkageSpecLanguageIDs::C:
32 if (ExternCLoc.isInvalid())
33 ExternCLoc = LSD->getBeginLoc();
34 break;
35 case LinkageSpecLanguageIDs::CXX:
36 break;
38 DC = LSD->getParent();
41 while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC))
42 DC = DC->getParent();
44 if (!isa<TranslationUnitDecl>(DC)) {
45 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M))
46 ? diag::ext_module_import_not_at_top_level_noop
47 : diag::err_module_import_not_at_top_level_fatal)
48 << M->getFullModuleName() << DC;
49 S.Diag(cast<Decl>(DC)->getBeginLoc(),
50 diag::note_module_import_not_at_top_level)
51 << DC;
52 } else if (!M->IsExternC && ExternCLoc.isValid()) {
53 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c)
54 << M->getFullModuleName();
55 S.Diag(ExternCLoc, diag::note_extern_c_begins_here);
59 // We represent the primary and partition names as 'Paths' which are sections
60 // of the hierarchical access path for a clang module. However for C++20
61 // the periods in a name are just another character, and we will need to
62 // flatten them into a string.
63 static std::string stringFromPath(ModuleIdPath Path) {
64 std::string Name;
65 if (Path.empty())
66 return Name;
68 for (auto &Piece : Path) {
69 if (!Name.empty())
70 Name += ".";
71 Name += Piece.first->getName();
73 return Name;
76 Sema::DeclGroupPtrTy
77 Sema::ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc) {
78 // We start in the global module;
79 Module *GlobalModule =
80 PushGlobalModuleFragment(ModuleLoc);
82 // All declarations created from now on are owned by the global module.
83 auto *TU = Context.getTranslationUnitDecl();
84 // [module.global.frag]p2
85 // A global-module-fragment specifies the contents of the global module
86 // fragment for a module unit. The global module fragment can be used to
87 // provide declarations that are attached to the global module and usable
88 // within the module unit.
90 // So the declations in the global module shouldn't be visible by default.
91 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported);
92 TU->setLocalOwningModule(GlobalModule);
94 // FIXME: Consider creating an explicit representation of this declaration.
95 return nullptr;
98 void Sema::HandleStartOfHeaderUnit() {
99 assert(getLangOpts().CPlusPlusModules &&
100 "Header units are only valid for C++20 modules");
101 SourceLocation StartOfTU =
102 SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID());
104 StringRef HUName = getLangOpts().CurrentModule;
105 if (HUName.empty()) {
106 HUName =
107 SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID())->getName();
108 const_cast<LangOptions &>(getLangOpts()).CurrentModule = HUName.str();
111 // TODO: Make the C++20 header lookup independent.
112 // When the input is pre-processed source, we need a file ref to the original
113 // file for the header map.
114 auto F = SourceMgr.getFileManager().getOptionalFileRef(HUName);
115 // For the sake of error recovery (if someone has moved the original header
116 // after creating the pre-processed output) fall back to obtaining the file
117 // ref for the input file, which must be present.
118 if (!F)
119 F = SourceMgr.getFileEntryRefForID(SourceMgr.getMainFileID());
120 assert(F && "failed to find the header unit source?");
121 Module::Header H{HUName.str(), HUName.str(), *F};
122 auto &Map = PP.getHeaderSearchInfo().getModuleMap();
123 Module *Mod = Map.createHeaderUnit(StartOfTU, HUName, H);
124 assert(Mod && "module creation should not fail");
125 ModuleScopes.push_back({}); // No GMF
126 ModuleScopes.back().BeginLoc = StartOfTU;
127 ModuleScopes.back().Module = Mod;
128 ModuleScopes.back().ModuleInterface = true;
129 VisibleModules.setVisible(Mod, StartOfTU);
131 // From now on, we have an owning module for all declarations we see.
132 // All of these are implicitly exported.
133 auto *TU = Context.getTranslationUnitDecl();
134 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::Visible);
135 TU->setLocalOwningModule(Mod);
138 /// Tests whether the given identifier is reserved as a module name and
139 /// diagnoses if it is. Returns true if a diagnostic is emitted and false
140 /// otherwise.
141 static bool DiagReservedModuleName(Sema &S, const IdentifierInfo *II,
142 SourceLocation Loc) {
143 enum {
144 Valid = -1,
145 Invalid = 0,
146 Reserved = 1,
147 } Reason = Valid;
149 if (II->isStr("module") || II->isStr("import"))
150 Reason = Invalid;
151 else if (II->isReserved(S.getLangOpts()) !=
152 ReservedIdentifierStatus::NotReserved)
153 Reason = Reserved;
155 // If the identifier is reserved (not invalid) but is in a system header,
156 // we do not diagnose (because we expect system headers to use reserved
157 // identifiers).
158 if (Reason == Reserved && S.getSourceManager().isInSystemHeader(Loc))
159 Reason = Valid;
161 switch (Reason) {
162 case Valid:
163 return false;
164 case Invalid:
165 return S.Diag(Loc, diag::err_invalid_module_name) << II;
166 case Reserved:
167 S.Diag(Loc, diag::warn_reserved_module_name) << II;
168 return false;
170 llvm_unreachable("fell off a fully covered switch");
173 Sema::DeclGroupPtrTy
174 Sema::ActOnModuleDecl(SourceLocation StartLoc, SourceLocation ModuleLoc,
175 ModuleDeclKind MDK, ModuleIdPath Path,
176 ModuleIdPath Partition, ModuleImportState &ImportState) {
177 assert(getLangOpts().CPlusPlusModules &&
178 "should only have module decl in standard C++ modules");
180 bool IsFirstDecl = ImportState == ModuleImportState::FirstDecl;
181 bool SeenGMF = ImportState == ModuleImportState::GlobalFragment;
182 // If any of the steps here fail, we count that as invalidating C++20
183 // module state;
184 ImportState = ModuleImportState::NotACXX20Module;
186 bool IsPartition = !Partition.empty();
187 if (IsPartition)
188 switch (MDK) {
189 case ModuleDeclKind::Implementation:
190 MDK = ModuleDeclKind::PartitionImplementation;
191 break;
192 case ModuleDeclKind::Interface:
193 MDK = ModuleDeclKind::PartitionInterface;
194 break;
195 default:
196 llvm_unreachable("how did we get a partition type set?");
199 // A (non-partition) module implementation unit requires that we are not
200 // compiling a module of any kind. A partition implementation emits an
201 // interface (and the AST for the implementation), which will subsequently
202 // be consumed to emit a binary.
203 // A module interface unit requires that we are not compiling a module map.
204 switch (getLangOpts().getCompilingModule()) {
205 case LangOptions::CMK_None:
206 // It's OK to compile a module interface as a normal translation unit.
207 break;
209 case LangOptions::CMK_ModuleInterface:
210 if (MDK != ModuleDeclKind::Implementation)
211 break;
213 // We were asked to compile a module interface unit but this is a module
214 // implementation unit.
215 Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch)
216 << FixItHint::CreateInsertion(ModuleLoc, "export ");
217 MDK = ModuleDeclKind::Interface;
218 break;
220 case LangOptions::CMK_ModuleMap:
221 Diag(ModuleLoc, diag::err_module_decl_in_module_map_module);
222 return nullptr;
224 case LangOptions::CMK_HeaderUnit:
225 Diag(ModuleLoc, diag::err_module_decl_in_header_unit);
226 return nullptr;
229 assert(ModuleScopes.size() <= 1 && "expected to be at global module scope");
231 // FIXME: Most of this work should be done by the preprocessor rather than
232 // here, in order to support macro import.
234 // Only one module-declaration is permitted per source file.
235 if (isCurrentModulePurview()) {
236 Diag(ModuleLoc, diag::err_module_redeclaration);
237 Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module),
238 diag::note_prev_module_declaration);
239 return nullptr;
242 assert((!getLangOpts().CPlusPlusModules ||
243 SeenGMF == (bool)this->TheGlobalModuleFragment) &&
244 "mismatched global module state");
246 // In C++20, the module-declaration must be the first declaration if there
247 // is no global module fragment.
248 if (getLangOpts().CPlusPlusModules && !IsFirstDecl && !SeenGMF) {
249 Diag(ModuleLoc, diag::err_module_decl_not_at_start);
250 SourceLocation BeginLoc =
251 ModuleScopes.empty()
252 ? SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID())
253 : ModuleScopes.back().BeginLoc;
254 if (BeginLoc.isValid()) {
255 Diag(BeginLoc, diag::note_global_module_introducer_missing)
256 << FixItHint::CreateInsertion(BeginLoc, "module;\n");
260 // C++23 [module.unit]p1: ... The identifiers module and import shall not
261 // appear as identifiers in a module-name or module-partition. All
262 // module-names either beginning with an identifier consisting of std
263 // followed by zero or more digits or containing a reserved identifier
264 // ([lex.name]) are reserved and shall not be specified in a
265 // module-declaration; no diagnostic is required.
267 // Test the first part of the path to see if it's std[0-9]+ but allow the
268 // name in a system header.
269 StringRef FirstComponentName = Path[0].first->getName();
270 if (!getSourceManager().isInSystemHeader(Path[0].second) &&
271 (FirstComponentName == "std" ||
272 (FirstComponentName.startswith("std") &&
273 llvm::all_of(FirstComponentName.drop_front(3), &llvm::isDigit))))
274 Diag(Path[0].second, diag::warn_reserved_module_name) << Path[0].first;
276 // Then test all of the components in the path to see if any of them are
277 // using another kind of reserved or invalid identifier.
278 for (auto Part : Path) {
279 if (DiagReservedModuleName(*this, Part.first, Part.second))
280 return nullptr;
283 // Flatten the dots in a module name. Unlike Clang's hierarchical module map
284 // modules, the dots here are just another character that can appear in a
285 // module name.
286 std::string ModuleName = stringFromPath(Path);
287 if (IsPartition) {
288 ModuleName += ":";
289 ModuleName += stringFromPath(Partition);
291 // If a module name was explicitly specified on the command line, it must be
292 // correct.
293 if (!getLangOpts().CurrentModule.empty() &&
294 getLangOpts().CurrentModule != ModuleName) {
295 Diag(Path.front().second, diag::err_current_module_name_mismatch)
296 << SourceRange(Path.front().second, IsPartition
297 ? Partition.back().second
298 : Path.back().second)
299 << getLangOpts().CurrentModule;
300 return nullptr;
302 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName;
304 auto &Map = PP.getHeaderSearchInfo().getModuleMap();
305 Module *Mod; // The module we are creating.
306 Module *Interface = nullptr; // The interface for an implementation.
307 switch (MDK) {
308 case ModuleDeclKind::Interface:
309 case ModuleDeclKind::PartitionInterface: {
310 // We can't have parsed or imported a definition of this module or parsed a
311 // module map defining it already.
312 if (auto *M = Map.findModule(ModuleName)) {
313 Diag(Path[0].second, diag::err_module_redefinition) << ModuleName;
314 if (M->DefinitionLoc.isValid())
315 Diag(M->DefinitionLoc, diag::note_prev_module_definition);
316 else if (OptionalFileEntryRef FE = M->getASTFile())
317 Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file)
318 << FE->getName();
319 Mod = M;
320 break;
323 // Create a Module for the module that we're defining.
324 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName);
325 if (MDK == ModuleDeclKind::PartitionInterface)
326 Mod->Kind = Module::ModulePartitionInterface;
327 assert(Mod && "module creation should not fail");
328 break;
331 case ModuleDeclKind::Implementation: {
332 // C++20 A module-declaration that contains neither an export-
333 // keyword nor a module-partition implicitly imports the primary
334 // module interface unit of the module as if by a module-import-
335 // declaration.
336 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc(
337 PP.getIdentifierInfo(ModuleName), Path[0].second);
339 // The module loader will assume we're trying to import the module that
340 // we're building if `LangOpts.CurrentModule` equals to 'ModuleName'.
341 // Change the value for `LangOpts.CurrentModule` temporarily to make the
342 // module loader work properly.
343 const_cast<LangOptions &>(getLangOpts()).CurrentModule = "";
344 Interface = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc},
345 Module::AllVisible,
346 /*IsInclusionDirective=*/false);
347 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName;
349 if (!Interface) {
350 Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName;
351 // Create an empty module interface unit for error recovery.
352 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName);
353 } else {
354 Mod = Map.createModuleForImplementationUnit(ModuleLoc, ModuleName);
356 } break;
358 case ModuleDeclKind::PartitionImplementation:
359 // Create an interface, but note that it is an implementation
360 // unit.
361 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName);
362 Mod->Kind = Module::ModulePartitionImplementation;
363 break;
366 if (!this->TheGlobalModuleFragment) {
367 ModuleScopes.push_back({});
368 if (getLangOpts().ModulesLocalVisibility)
369 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
370 } else {
371 // We're done with the global module fragment now.
372 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Global);
375 // Switch from the global module fragment (if any) to the named module.
376 ModuleScopes.back().BeginLoc = StartLoc;
377 ModuleScopes.back().Module = Mod;
378 ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation;
379 VisibleModules.setVisible(Mod, ModuleLoc);
381 // From now on, we have an owning module for all declarations we see.
382 // In C++20 modules, those declaration would be reachable when imported
383 // unless explicitily exported.
384 // Otherwise, those declarations are module-private unless explicitly
385 // exported.
386 auto *TU = Context.getTranslationUnitDecl();
387 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ReachableWhenImported);
388 TU->setLocalOwningModule(Mod);
390 // We are in the module purview, but before any other (non import)
391 // statements, so imports are allowed.
392 ImportState = ModuleImportState::ImportAllowed;
394 getASTContext().setCurrentNamedModule(Mod);
396 // We already potentially made an implicit import (in the case of a module
397 // implementation unit importing its interface). Make this module visible
398 // and return the import decl to be added to the current TU.
399 if (Interface) {
401 VisibleModules.setVisible(Interface, ModuleLoc);
402 VisibleModules.makeTransitiveImportsVisible(Interface, ModuleLoc);
404 // Make the import decl for the interface in the impl module.
405 ImportDecl *Import = ImportDecl::Create(Context, CurContext, ModuleLoc,
406 Interface, Path[0].second);
407 CurContext->addDecl(Import);
409 // Sequence initialization of the imported module before that of the current
410 // module, if any.
411 Context.addModuleInitializer(ModuleScopes.back().Module, Import);
412 Mod->Imports.insert(Interface); // As if we imported it.
413 // Also save this as a shortcut to checking for decls in the interface
414 ThePrimaryInterface = Interface;
415 // If we made an implicit import of the module interface, then return the
416 // imported module decl.
417 return ConvertDeclToDeclGroup(Import);
420 return nullptr;
423 Sema::DeclGroupPtrTy
424 Sema::ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc,
425 SourceLocation PrivateLoc) {
426 // C++20 [basic.link]/2:
427 // A private-module-fragment shall appear only in a primary module
428 // interface unit.
429 switch (ModuleScopes.empty() ? Module::ExplicitGlobalModuleFragment
430 : ModuleScopes.back().Module->Kind) {
431 case Module::ModuleMapModule:
432 case Module::ExplicitGlobalModuleFragment:
433 case Module::ImplicitGlobalModuleFragment:
434 case Module::ModulePartitionImplementation:
435 case Module::ModulePartitionInterface:
436 case Module::ModuleHeaderUnit:
437 Diag(PrivateLoc, diag::err_private_module_fragment_not_module);
438 return nullptr;
440 case Module::PrivateModuleFragment:
441 Diag(PrivateLoc, diag::err_private_module_fragment_redefined);
442 Diag(ModuleScopes.back().BeginLoc, diag::note_previous_definition);
443 return nullptr;
445 case Module::ModuleImplementationUnit:
446 Diag(PrivateLoc, diag::err_private_module_fragment_not_module_interface);
447 Diag(ModuleScopes.back().BeginLoc,
448 diag::note_not_module_interface_add_export)
449 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export ");
450 return nullptr;
452 case Module::ModuleInterfaceUnit:
453 break;
456 // FIXME: Check that this translation unit does not import any partitions;
457 // such imports would violate [basic.link]/2's "shall be the only module unit"
458 // restriction.
460 // We've finished the public fragment of the translation unit.
461 ActOnEndOfTranslationUnitFragment(TUFragmentKind::Normal);
463 auto &Map = PP.getHeaderSearchInfo().getModuleMap();
464 Module *PrivateModuleFragment =
465 Map.createPrivateModuleFragmentForInterfaceUnit(
466 ModuleScopes.back().Module, PrivateLoc);
467 assert(PrivateModuleFragment && "module creation should not fail");
469 // Enter the scope of the private module fragment.
470 ModuleScopes.push_back({});
471 ModuleScopes.back().BeginLoc = ModuleLoc;
472 ModuleScopes.back().Module = PrivateModuleFragment;
473 ModuleScopes.back().ModuleInterface = true;
474 VisibleModules.setVisible(PrivateModuleFragment, ModuleLoc);
476 // All declarations created from now on are scoped to the private module
477 // fragment (and are neither visible nor reachable in importers of the module
478 // interface).
479 auto *TU = Context.getTranslationUnitDecl();
480 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate);
481 TU->setLocalOwningModule(PrivateModuleFragment);
483 // FIXME: Consider creating an explicit representation of this declaration.
484 return nullptr;
487 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc,
488 SourceLocation ExportLoc,
489 SourceLocation ImportLoc, ModuleIdPath Path,
490 bool IsPartition) {
491 assert((!IsPartition || getLangOpts().CPlusPlusModules) &&
492 "partition seen in non-C++20 code?");
494 // For a C++20 module name, flatten into a single identifier with the source
495 // location of the first component.
496 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc;
498 std::string ModuleName;
499 if (IsPartition) {
500 // We already checked that we are in a module purview in the parser.
501 assert(!ModuleScopes.empty() && "in a module purview, but no module?");
502 Module *NamedMod = ModuleScopes.back().Module;
503 // If we are importing into a partition, find the owning named module,
504 // otherwise, the name of the importing named module.
505 ModuleName = NamedMod->getPrimaryModuleInterfaceName().str();
506 ModuleName += ":";
507 ModuleName += stringFromPath(Path);
508 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second};
509 Path = ModuleIdPath(ModuleNameLoc);
510 } else if (getLangOpts().CPlusPlusModules) {
511 ModuleName = stringFromPath(Path);
512 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second};
513 Path = ModuleIdPath(ModuleNameLoc);
516 // Diagnose self-import before attempting a load.
517 // [module.import]/9
518 // A module implementation unit of a module M that is not a module partition
519 // shall not contain a module-import-declaration nominating M.
520 // (for an implementation, the module interface is imported implicitly,
521 // but that's handled in the module decl code).
523 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview() &&
524 getCurrentModule()->Name == ModuleName) {
525 Diag(ImportLoc, diag::err_module_self_import_cxx20)
526 << ModuleName << !ModuleScopes.back().ModuleInterface;
527 return true;
530 Module *Mod = getModuleLoader().loadModule(
531 ImportLoc, Path, Module::AllVisible, /*IsInclusionDirective=*/false);
532 if (!Mod)
533 return true;
535 if (!Mod->isInterfaceOrPartition() && !ModuleName.empty()) {
536 Diag(ImportLoc, diag::err_module_import_non_interface_nor_parition)
537 << ModuleName;
538 return true;
541 return ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Mod, Path);
544 /// Determine whether \p D is lexically within an export-declaration.
545 static const ExportDecl *getEnclosingExportDecl(const Decl *D) {
546 for (auto *DC = D->getLexicalDeclContext(); DC; DC = DC->getLexicalParent())
547 if (auto *ED = dyn_cast<ExportDecl>(DC))
548 return ED;
549 return nullptr;
552 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc,
553 SourceLocation ExportLoc,
554 SourceLocation ImportLoc, Module *Mod,
555 ModuleIdPath Path) {
556 if (Mod->isHeaderUnit())
557 Diag(ImportLoc, diag::warn_experimental_header_unit);
559 VisibleModules.setVisible(Mod, ImportLoc);
561 checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
563 // FIXME: we should support importing a submodule within a different submodule
564 // of the same top-level module. Until we do, make it an error rather than
565 // silently ignoring the import.
566 // FIXME: Should we warn on a redundant import of the current module?
567 if (Mod->isForBuilding(getLangOpts())) {
568 Diag(ImportLoc, getLangOpts().isCompilingModule()
569 ? diag::err_module_self_import
570 : diag::err_module_import_in_implementation)
571 << Mod->getFullModuleName() << getLangOpts().CurrentModule;
574 SmallVector<SourceLocation, 2> IdentifierLocs;
576 if (Path.empty()) {
577 // If this was a header import, pad out with dummy locations.
578 // FIXME: Pass in and use the location of the header-name token in this
579 // case.
580 for (Module *ModCheck = Mod; ModCheck; ModCheck = ModCheck->Parent)
581 IdentifierLocs.push_back(SourceLocation());
582 } else if (getLangOpts().CPlusPlusModules && !Mod->Parent) {
583 // A single identifier for the whole name.
584 IdentifierLocs.push_back(Path[0].second);
585 } else {
586 Module *ModCheck = Mod;
587 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
588 // If we've run out of module parents, just drop the remaining
589 // identifiers. We need the length to be consistent.
590 if (!ModCheck)
591 break;
592 ModCheck = ModCheck->Parent;
594 IdentifierLocs.push_back(Path[I].second);
598 ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc,
599 Mod, IdentifierLocs);
600 CurContext->addDecl(Import);
602 // Sequence initialization of the imported module before that of the current
603 // module, if any.
604 if (!ModuleScopes.empty())
605 Context.addModuleInitializer(ModuleScopes.back().Module, Import);
607 // A module (partition) implementation unit shall not be exported.
608 if (getLangOpts().CPlusPlusModules && ExportLoc.isValid() &&
609 Mod->Kind == Module::ModuleKind::ModulePartitionImplementation) {
610 Diag(ExportLoc, diag::err_export_partition_impl)
611 << SourceRange(ExportLoc, Path.back().second);
612 } else if (!ModuleScopes.empty() &&
613 (ModuleScopes.back().ModuleInterface ||
614 (getLangOpts().CPlusPlusModules &&
615 ModuleScopes.back().Module->isGlobalModule()))) {
616 // Re-export the module if the imported module is exported.
617 // Note that we don't need to add re-exported module to Imports field
618 // since `Exports` implies the module is imported already.
619 if (ExportLoc.isValid() || getEnclosingExportDecl(Import))
620 getCurrentModule()->Exports.emplace_back(Mod, false);
621 else
622 getCurrentModule()->Imports.insert(Mod);
623 } else if (ExportLoc.isValid()) {
624 // [module.interface]p1:
625 // An export-declaration shall inhabit a namespace scope and appear in the
626 // purview of a module interface unit.
627 Diag(ExportLoc, diag::err_export_not_in_module_interface);
630 return Import;
633 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
634 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
635 BuildModuleInclude(DirectiveLoc, Mod);
638 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
639 // Determine whether we're in the #include buffer for a module. The #includes
640 // in that buffer do not qualify as module imports; they're just an
641 // implementation detail of us building the module.
643 // FIXME: Should we even get ActOnModuleInclude calls for those?
644 bool IsInModuleIncludes =
645 TUKind == TU_Module &&
646 getSourceManager().isWrittenInMainFile(DirectiveLoc);
648 // If we are really importing a module (not just checking layering) due to an
649 // #include in the main file, synthesize an ImportDecl.
650 if (getLangOpts().Modules && !IsInModuleIncludes) {
651 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
652 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
653 DirectiveLoc, Mod,
654 DirectiveLoc);
655 if (!ModuleScopes.empty())
656 Context.addModuleInitializer(ModuleScopes.back().Module, ImportD);
657 TU->addDecl(ImportD);
658 Consumer.HandleImplicitImportDecl(ImportD);
661 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc);
662 VisibleModules.setVisible(Mod, DirectiveLoc);
664 if (getLangOpts().isCompilingModule()) {
665 Module *ThisModule = PP.getHeaderSearchInfo().lookupModule(
666 getLangOpts().CurrentModule, DirectiveLoc, false, false);
667 (void)ThisModule;
668 assert(ThisModule && "was expecting a module if building one");
672 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) {
673 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
675 ModuleScopes.push_back({});
676 ModuleScopes.back().Module = Mod;
677 if (getLangOpts().ModulesLocalVisibility)
678 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
680 VisibleModules.setVisible(Mod, DirectiveLoc);
682 // The enclosing context is now part of this module.
683 // FIXME: Consider creating a child DeclContext to hold the entities
684 // lexically within the module.
685 if (getLangOpts().trackLocalOwningModule()) {
686 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
687 cast<Decl>(DC)->setModuleOwnershipKind(
688 getLangOpts().ModulesLocalVisibility
689 ? Decl::ModuleOwnershipKind::VisibleWhenImported
690 : Decl::ModuleOwnershipKind::Visible);
691 cast<Decl>(DC)->setLocalOwningModule(Mod);
696 void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) {
697 if (getLangOpts().ModulesLocalVisibility) {
698 VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules);
699 // Leaving a module hides namespace names, so our visible namespace cache
700 // is now out of date.
701 VisibleNamespaceCache.clear();
704 assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod &&
705 "left the wrong module scope");
706 ModuleScopes.pop_back();
708 // We got to the end of processing a local module. Create an
709 // ImportDecl as we would for an imported module.
710 FileID File = getSourceManager().getFileID(EomLoc);
711 SourceLocation DirectiveLoc;
712 if (EomLoc == getSourceManager().getLocForEndOfFile(File)) {
713 // We reached the end of a #included module header. Use the #include loc.
714 assert(File != getSourceManager().getMainFileID() &&
715 "end of submodule in main source file");
716 DirectiveLoc = getSourceManager().getIncludeLoc(File);
717 } else {
718 // We reached an EOM pragma. Use the pragma location.
719 DirectiveLoc = EomLoc;
721 BuildModuleInclude(DirectiveLoc, Mod);
723 // Any further declarations are in whatever module we returned to.
724 if (getLangOpts().trackLocalOwningModule()) {
725 // The parser guarantees that this is the same context that we entered
726 // the module within.
727 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
728 cast<Decl>(DC)->setLocalOwningModule(getCurrentModule());
729 if (!getCurrentModule())
730 cast<Decl>(DC)->setModuleOwnershipKind(
731 Decl::ModuleOwnershipKind::Unowned);
736 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
737 Module *Mod) {
738 // Bail if we're not allowed to implicitly import a module here.
739 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery ||
740 VisibleModules.isVisible(Mod))
741 return;
743 // Create the implicit import declaration.
744 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
745 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
746 Loc, Mod, Loc);
747 TU->addDecl(ImportD);
748 Consumer.HandleImplicitImportDecl(ImportD);
750 // Make the module visible.
751 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
752 VisibleModules.setVisible(Mod, Loc);
755 /// We have parsed the start of an export declaration, including the '{'
756 /// (if present).
757 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
758 SourceLocation LBraceLoc) {
759 ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc);
761 // Set this temporarily so we know the export-declaration was braced.
762 D->setRBraceLoc(LBraceLoc);
764 CurContext->addDecl(D);
765 PushDeclContext(S, D);
767 // C++2a [module.interface]p1:
768 // An export-declaration shall appear only [...] in the purview of a module
769 // interface unit. An export-declaration shall not appear directly or
770 // indirectly within [...] a private-module-fragment.
771 if (!isCurrentModulePurview()) {
772 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 0;
773 D->setInvalidDecl();
774 return D;
775 } else if (!ModuleScopes.back().ModuleInterface) {
776 Diag(ExportLoc, diag::err_export_not_in_module_interface) << 1;
777 Diag(ModuleScopes.back().BeginLoc,
778 diag::note_not_module_interface_add_export)
779 << FixItHint::CreateInsertion(ModuleScopes.back().BeginLoc, "export ");
780 D->setInvalidDecl();
781 return D;
782 } else if (ModuleScopes.back().Module->Kind ==
783 Module::PrivateModuleFragment) {
784 Diag(ExportLoc, diag::err_export_in_private_module_fragment);
785 Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment);
786 D->setInvalidDecl();
787 return D;
790 for (const DeclContext *DC = CurContext; DC; DC = DC->getLexicalParent()) {
791 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
792 // An export-declaration shall not appear directly or indirectly within
793 // an unnamed namespace [...]
794 if (ND->isAnonymousNamespace()) {
795 Diag(ExportLoc, diag::err_export_within_anonymous_namespace);
796 Diag(ND->getLocation(), diag::note_anonymous_namespace);
797 // Don't diagnose internal-linkage declarations in this region.
798 D->setInvalidDecl();
799 return D;
802 // A declaration is exported if it is [...] a namespace-definition
803 // that contains an exported declaration.
805 // Defer exporting the namespace until after we leave it, in order to
806 // avoid marking all subsequent declarations in the namespace as exported.
807 if (!DeferredExportedNamespaces.insert(ND).second)
808 break;
812 // [...] its declaration or declaration-seq shall not contain an
813 // export-declaration.
814 if (auto *ED = getEnclosingExportDecl(D)) {
815 Diag(ExportLoc, diag::err_export_within_export);
816 if (ED->hasBraces())
817 Diag(ED->getLocation(), diag::note_export);
818 D->setInvalidDecl();
819 return D;
822 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
823 return D;
826 static bool checkExportedDecl(Sema &, Decl *, SourceLocation);
828 /// Check that it's valid to export all the declarations in \p DC.
829 static bool checkExportedDeclContext(Sema &S, DeclContext *DC,
830 SourceLocation BlockStart) {
831 bool AllUnnamed = true;
832 for (auto *D : DC->decls())
833 AllUnnamed &= checkExportedDecl(S, D, BlockStart);
834 return AllUnnamed;
837 /// Check that it's valid to export \p D.
838 static bool checkExportedDecl(Sema &S, Decl *D, SourceLocation BlockStart) {
840 // C++20 [module.interface]p3:
841 // [...] it shall not declare a name with internal linkage.
842 bool HasName = false;
843 if (auto *ND = dyn_cast<NamedDecl>(D)) {
844 // Don't diagnose anonymous union objects; we'll diagnose their members
845 // instead.
846 HasName = (bool)ND->getDeclName();
847 if (HasName && ND->getFormalLinkage() == Linkage::Internal) {
848 S.Diag(ND->getLocation(), diag::err_export_internal) << ND;
849 if (BlockStart.isValid())
850 S.Diag(BlockStart, diag::note_export);
851 return false;
855 // C++2a [module.interface]p5:
856 // all entities to which all of the using-declarators ultimately refer
857 // shall have been introduced with a name having external linkage
858 if (auto *USD = dyn_cast<UsingShadowDecl>(D)) {
859 NamedDecl *Target = USD->getUnderlyingDecl();
860 Linkage Lk = Target->getFormalLinkage();
861 if (Lk == Linkage::Internal || Lk == Linkage::Module) {
862 S.Diag(USD->getLocation(), diag::err_export_using_internal)
863 << (Lk == Linkage::Internal ? 0 : 1) << Target;
864 S.Diag(Target->getLocation(), diag::note_using_decl_target);
865 if (BlockStart.isValid())
866 S.Diag(BlockStart, diag::note_export);
867 return false;
871 // Recurse into namespace-scope DeclContexts. (Only namespace-scope
872 // declarations are exported).
873 if (auto *DC = dyn_cast<DeclContext>(D)) {
874 if (!isa<NamespaceDecl>(D))
875 return true;
877 if (auto *ND = dyn_cast<NamedDecl>(D)) {
878 if (!ND->getDeclName()) {
879 S.Diag(ND->getLocation(), diag::err_export_anon_ns_internal);
880 if (BlockStart.isValid())
881 S.Diag(BlockStart, diag::note_export);
882 return false;
883 } else if (!DC->decls().empty() &&
884 DC->getRedeclContext()->isFileContext()) {
885 return checkExportedDeclContext(S, DC, BlockStart);
889 return true;
892 /// Complete the definition of an export declaration.
893 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) {
894 auto *ED = cast<ExportDecl>(D);
895 if (RBraceLoc.isValid())
896 ED->setRBraceLoc(RBraceLoc);
898 PopDeclContext();
900 if (!D->isInvalidDecl()) {
901 SourceLocation BlockStart =
902 ED->hasBraces() ? ED->getBeginLoc() : SourceLocation();
903 for (auto *Child : ED->decls()) {
904 checkExportedDecl(*this, Child, BlockStart);
905 if (auto *FD = dyn_cast<FunctionDecl>(Child)) {
906 // [dcl.inline]/7
907 // If an inline function or variable that is attached to a named module
908 // is declared in a definition domain, it shall be defined in that
909 // domain.
910 // So, if the current declaration does not have a definition, we must
911 // check at the end of the TU (or when the PMF starts) to see that we
912 // have a definition at that point.
913 if (FD->isInlineSpecified() && !FD->isDefined())
914 PendingInlineFuncDecls.insert(FD);
919 return D;
922 Module *Sema::PushGlobalModuleFragment(SourceLocation BeginLoc) {
923 // We shouldn't create new global module fragment if there is already
924 // one.
925 if (!TheGlobalModuleFragment) {
926 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap();
927 TheGlobalModuleFragment = Map.createGlobalModuleFragmentForModuleUnit(
928 BeginLoc, getCurrentModule());
931 assert(TheGlobalModuleFragment && "module creation should not fail");
933 // Enter the scope of the global module.
934 ModuleScopes.push_back({BeginLoc, TheGlobalModuleFragment,
935 /*ModuleInterface=*/false,
936 /*OuterVisibleModules=*/{}});
937 VisibleModules.setVisible(TheGlobalModuleFragment, BeginLoc);
939 return TheGlobalModuleFragment;
942 void Sema::PopGlobalModuleFragment() {
943 assert(!ModuleScopes.empty() &&
944 getCurrentModule()->isExplicitGlobalModule() &&
945 "left the wrong module scope, which is not global module fragment");
946 ModuleScopes.pop_back();
949 Module *Sema::PushImplicitGlobalModuleFragment(SourceLocation BeginLoc,
950 bool IsExported) {
951 Module **M = IsExported ? &TheExportedImplicitGlobalModuleFragment
952 : &TheImplicitGlobalModuleFragment;
953 if (!*M) {
954 ModuleMap &Map = PP.getHeaderSearchInfo().getModuleMap();
955 *M = Map.createImplicitGlobalModuleFragmentForModuleUnit(
956 BeginLoc, IsExported, getCurrentModule());
958 assert(*M && "module creation should not fail");
960 // Enter the scope of the global module.
961 ModuleScopes.push_back({BeginLoc, *M,
962 /*ModuleInterface=*/false,
963 /*OuterVisibleModules=*/{}});
964 VisibleModules.setVisible(*M, BeginLoc);
965 return *M;
968 void Sema::PopImplicitGlobalModuleFragment() {
969 assert(!ModuleScopes.empty() &&
970 getCurrentModule()->isImplicitGlobalModule() &&
971 "left the wrong module scope, which is not global module fragment");
972 ModuleScopes.pop_back();