1 //===- DynamicTypePropagation.cpp ------------------------------*- C++ -*--===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains two checkers. One helps the static analyzer core to track
10 // types, the other does type inference on Obj-C generics and report type
13 // Dynamic Type Propagation:
14 // This checker defines the rules for dynamic type gathering and propagation.
16 // Generics Checker for Objective-C:
17 // This checker tries to find type errors that the compiler is not able to catch
18 // due to the implicit conversions that were introduced for backward
21 //===----------------------------------------------------------------------===//
23 #include "clang/AST/ParentMap.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
27 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
28 #include "clang/StaticAnalyzer/Core/Checker.h"
29 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
31 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
32 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
33 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
34 #include "llvm/ADT/STLExtras.h"
37 using namespace clang
;
40 // ProgramState trait - The type inflation is tracked by DynamicTypeMap. This is
41 // an auxiliary map that tracks more information about generic types, because in
42 // some cases the most derived type is not the most informative one about the
43 // type parameters. This types that are stored for each symbol in this map must
45 // TODO: In some case the type stored in this map is exactly the same that is
46 // stored in DynamicTypeMap. We should no store duplicated information in those
48 REGISTER_MAP_WITH_PROGRAMSTATE(MostSpecializedTypeArgsMap
, SymbolRef
,
49 const ObjCObjectPointerType
*)
52 class DynamicTypePropagation
:
53 public Checker
< check::PreCall
,
56 check::PostStmt
<CastExpr
>,
57 check::PostStmt
<CXXNewExpr
>,
58 check::PreObjCMessage
,
59 check::PostObjCMessage
> {
61 /// Return a better dynamic type if one can be derived from the cast.
62 const ObjCObjectPointerType
*getBetterObjCType(const Expr
*CastE
,
63 CheckerContext
&C
) const;
65 ExplodedNode
*dynamicTypePropagationOnCasts(const CastExpr
*CE
,
66 ProgramStateRef
&State
,
67 CheckerContext
&C
) const;
69 mutable std::unique_ptr
<BugType
> ObjCGenericsBugType
;
70 void initBugType() const {
71 if (!ObjCGenericsBugType
)
72 ObjCGenericsBugType
.reset(new BugType(
73 GenericCheckName
, "Generics", categories::CoreFoundationObjectiveC
));
76 class GenericsBugVisitor
: public BugReporterVisitor
{
78 GenericsBugVisitor(SymbolRef S
) : Sym(S
) {}
80 void Profile(llvm::FoldingSetNodeID
&ID
) const override
{
86 PathDiagnosticPieceRef
VisitNode(const ExplodedNode
*N
,
87 BugReporterContext
&BRC
,
88 PathSensitiveBugReport
&BR
) override
;
91 // The tracked symbol.
95 void reportGenericsBug(const ObjCObjectPointerType
*From
,
96 const ObjCObjectPointerType
*To
, ExplodedNode
*N
,
97 SymbolRef Sym
, CheckerContext
&C
,
98 const Stmt
*ReportedNode
= nullptr) const;
101 void checkPreCall(const CallEvent
&Call
, CheckerContext
&C
) const;
102 void checkPostCall(const CallEvent
&Call
, CheckerContext
&C
) const;
103 void checkPostStmt(const CastExpr
*CastE
, CheckerContext
&C
) const;
104 void checkPostStmt(const CXXNewExpr
*NewE
, CheckerContext
&C
) const;
105 void checkDeadSymbols(SymbolReaper
&SR
, CheckerContext
&C
) const;
106 void checkPreObjCMessage(const ObjCMethodCall
&M
, CheckerContext
&C
) const;
107 void checkPostObjCMessage(const ObjCMethodCall
&M
, CheckerContext
&C
) const;
109 /// This value is set to true, when the Generics checker is turned on.
110 bool CheckGenerics
= false;
111 CheckerNameRef GenericCheckName
;
114 bool isObjCClassType(QualType Type
) {
115 if (const auto *PointerType
= dyn_cast
<ObjCObjectPointerType
>(Type
)) {
116 return PointerType
->getObjectType()->isObjCClass();
122 const ObjCObjectType
*Type
= nullptr;
123 bool Precise
= false;
125 operator bool() const { return Type
!= nullptr; }
128 RuntimeType
inferReceiverType(const ObjCMethodCall
&Message
,
130 const ObjCMessageExpr
*MessageExpr
= Message
.getOriginExpr();
132 // Check if we can statically infer the actual type precisely.
134 // 1. Class is written directly in the message:
136 // [ActualClass classMethod];
138 if (MessageExpr
->getReceiverKind() == ObjCMessageExpr::Class
) {
139 return {MessageExpr
->getClassReceiver()->getAs
<ObjCObjectType
>(),
143 // 2. Receiver is 'super' from a class method (a.k.a 'super' is a
146 // [super classMethod];
148 if (MessageExpr
->getReceiverKind() == ObjCMessageExpr::SuperClass
) {
149 return {MessageExpr
->getSuperType()->getAs
<ObjCObjectType
>(),
153 // 3. Receiver is 'super' from an instance method (a.k.a 'super' is an
154 // instance of a super class).
156 // [super instanceMethod];
158 if (MessageExpr
->getReceiverKind() == ObjCMessageExpr::SuperInstance
) {
159 if (const auto *ObjTy
=
160 MessageExpr
->getSuperType()->getAs
<ObjCObjectPointerType
>())
161 return {ObjTy
->getObjectType(), /*Precise=*/true};
164 const Expr
*RecE
= MessageExpr
->getInstanceReceiver();
169 // Otherwise, let's try to get type information from our estimations of
171 QualType InferredType
;
172 SVal ReceiverSVal
= C
.getSVal(RecE
);
173 ProgramStateRef State
= C
.getState();
175 if (const MemRegion
*ReceiverRegion
= ReceiverSVal
.getAsRegion()) {
176 if (DynamicTypeInfo DTI
= getDynamicTypeInfo(State
, ReceiverRegion
)) {
177 InferredType
= DTI
.getType().getCanonicalType();
181 if (SymbolRef ReceiverSymbol
= ReceiverSVal
.getAsSymbol()) {
182 if (InferredType
.isNull()) {
183 InferredType
= ReceiverSymbol
->getType();
186 // If receiver is a Class object, we want to figure out the type it
188 if (isObjCClassType(InferredType
)) {
189 // We actually might have some info on what type is contained in there.
190 if (DynamicTypeInfo DTI
=
191 getClassObjectDynamicTypeInfo(State
, ReceiverSymbol
)) {
193 // Types in Class objects can be ONLY Objective-C types
194 return {cast
<ObjCObjectType
>(DTI
.getType()), !DTI
.canBeASubClass()};
197 SVal SelfSVal
= State
->getSelfSVal(C
.getLocationContext());
199 // Another way we can guess what is in Class object, is when it is a
200 // 'self' variable of the current class method.
201 if (ReceiverSVal
== SelfSVal
) {
202 // In this case, we should return the type of the enclosing class
204 if (const ObjCMethodDecl
*MD
=
205 dyn_cast
<ObjCMethodDecl
>(C
.getStackFrame()->getDecl()))
206 if (const ObjCObjectType
*ObjTy
= dyn_cast
<ObjCObjectType
>(
207 MD
->getClassInterface()->getTypeForDecl()))
213 // Unfortunately, it seems like we have no idea what that type is.
214 if (InferredType
.isNull()) {
218 // We can end up here if we got some dynamic type info and the
219 // receiver is not one of the known Class objects.
220 if (const auto *ReceiverInferredType
=
221 dyn_cast
<ObjCObjectPointerType
>(InferredType
)) {
222 return {ReceiverInferredType
->getObjectType()};
225 // Any other type (like 'Class') is not really useful at this point.
228 } // end anonymous namespace
230 void DynamicTypePropagation::checkDeadSymbols(SymbolReaper
&SR
,
231 CheckerContext
&C
) const {
232 ProgramStateRef State
= removeDeadTypes(C
.getState(), SR
);
233 State
= removeDeadClassObjectTypes(State
, SR
);
235 MostSpecializedTypeArgsMapTy TyArgMap
=
236 State
->get
<MostSpecializedTypeArgsMap
>();
237 for (SymbolRef Sym
: llvm::make_first_range(TyArgMap
)) {
238 if (SR
.isDead(Sym
)) {
239 State
= State
->remove
<MostSpecializedTypeArgsMap
>(Sym
);
243 C
.addTransition(State
);
246 static void recordFixedType(const MemRegion
*Region
, const CXXMethodDecl
*MD
,
251 ASTContext
&Ctx
= C
.getASTContext();
252 QualType Ty
= Ctx
.getPointerType(Ctx
.getRecordType(MD
->getParent()));
254 ProgramStateRef State
= C
.getState();
255 State
= setDynamicTypeInfo(State
, Region
, Ty
, /*CanBeSubClassed=*/false);
256 C
.addTransition(State
);
259 void DynamicTypePropagation::checkPreCall(const CallEvent
&Call
,
260 CheckerContext
&C
) const {
261 if (const CXXConstructorCall
*Ctor
= dyn_cast
<CXXConstructorCall
>(&Call
)) {
262 // C++11 [class.cdtor]p4: When a virtual function is called directly or
263 // indirectly from a constructor or from a destructor, including during
264 // the construction or destruction of the class's non-static data members,
265 // and the object to which the call applies is the object under
266 // construction or destruction, the function called is the final overrider
267 // in the constructor's or destructor's class and not one overriding it in
268 // a more-derived class.
270 switch (Ctor
->getOriginExpr()->getConstructionKind()) {
271 case CXXConstructExpr::CK_Complete
:
272 case CXXConstructExpr::CK_Delegating
:
273 // No additional type info necessary.
275 case CXXConstructExpr::CK_NonVirtualBase
:
276 case CXXConstructExpr::CK_VirtualBase
:
277 if (const MemRegion
*Target
= Ctor
->getCXXThisVal().getAsRegion())
278 recordFixedType(Target
, Ctor
->getDecl(), C
);
285 if (const CXXDestructorCall
*Dtor
= dyn_cast
<CXXDestructorCall
>(&Call
)) {
286 // C++11 [class.cdtor]p4 (see above)
287 if (!Dtor
->isBaseDestructor())
290 const MemRegion
*Target
= Dtor
->getCXXThisVal().getAsRegion();
294 const Decl
*D
= Dtor
->getDecl();
298 recordFixedType(Target
, cast
<CXXDestructorDecl
>(D
), C
);
303 void DynamicTypePropagation::checkPostCall(const CallEvent
&Call
,
304 CheckerContext
&C
) const {
305 // We can obtain perfect type info for return values from some calls.
306 if (const ObjCMethodCall
*Msg
= dyn_cast
<ObjCMethodCall
>(&Call
)) {
308 // Get the returned value if it's a region.
309 const MemRegion
*RetReg
= Call
.getReturnValue().getAsRegion();
313 ProgramStateRef State
= C
.getState();
314 const ObjCMethodDecl
*D
= Msg
->getDecl();
316 if (D
&& D
->hasRelatedResultType()) {
317 switch (Msg
->getMethodFamily()) {
321 // We assume that the type of the object returned by alloc and new are the
322 // pointer to the object of the class specified in the receiver of the
326 // Get the type of object that will get created.
327 RuntimeType ObjTy
= inferReceiverType(*Msg
, C
);
333 C
.getASTContext().getObjCObjectPointerType(QualType(ObjTy
.Type
, 0));
334 // We used to assume that whatever type we got from inferring the
335 // type is actually precise (and it is not exactly correct).
336 // A big portion of the existing behavior depends on that assumption
337 // (e.g. certain inlining won't take place). For this reason, we don't
338 // use ObjTy.Precise flag here.
340 // TODO: We should mitigate this problem some time in the future
341 // and replace hardcoded 'false' with '!ObjTy.Precise'.
342 C
.addTransition(setDynamicTypeInfo(State
, RetReg
, DynResTy
, false));
346 // Assume, the result of the init method has the same dynamic type as
347 // the receiver and propagate the dynamic type info.
348 const MemRegion
*RecReg
= Msg
->getReceiverSVal().getAsRegion();
351 DynamicTypeInfo RecDynType
= getDynamicTypeInfo(State
, RecReg
);
352 C
.addTransition(setDynamicTypeInfo(State
, RetReg
, RecDynType
));
360 if (const CXXConstructorCall
*Ctor
= dyn_cast
<CXXConstructorCall
>(&Call
)) {
361 // We may need to undo the effects of our pre-call check.
362 switch (Ctor
->getOriginExpr()->getConstructionKind()) {
363 case CXXConstructExpr::CK_Complete
:
364 case CXXConstructExpr::CK_Delegating
:
365 // No additional work necessary.
366 // Note: This will leave behind the actual type of the object for
367 // complete constructors, but arguably that's a good thing, since it
368 // means the dynamic type info will be correct even for objects
369 // constructed with operator new.
371 case CXXConstructExpr::CK_NonVirtualBase
:
372 case CXXConstructExpr::CK_VirtualBase
:
373 if (const MemRegion
*Target
= Ctor
->getCXXThisVal().getAsRegion()) {
374 // We just finished a base constructor. Now we can use the subclass's
375 // type when resolving virtual calls.
376 const LocationContext
*LCtx
= C
.getLocationContext();
378 // FIXME: In C++17 classes with non-virtual bases may be treated as
379 // aggregates, and in such case no top-frame constructor will be called.
380 // Figure out if we need to do anything in this case.
381 // FIXME: Instead of relying on the ParentMap, we should have the
382 // trigger-statement (InitListExpr in this case) available in this
383 // callback, ideally as part of CallEvent.
384 if (isa_and_nonnull
<InitListExpr
>(
385 LCtx
->getParentMap().getParent(Ctor
->getOriginExpr())))
388 recordFixedType(Target
, cast
<CXXConstructorDecl
>(LCtx
->getDecl()), C
);
395 /// TODO: Handle explicit casts.
396 /// Handle C++ casts.
398 /// Precondition: the cast is between ObjCObjectPointers.
399 ExplodedNode
*DynamicTypePropagation::dynamicTypePropagationOnCasts(
400 const CastExpr
*CE
, ProgramStateRef
&State
, CheckerContext
&C
) const {
401 // We only track type info for regions.
402 const MemRegion
*ToR
= C
.getSVal(CE
).getAsRegion();
404 return C
.getPredecessor();
406 if (isa
<ExplicitCastExpr
>(CE
))
407 return C
.getPredecessor();
409 if (const Type
*NewTy
= getBetterObjCType(CE
, C
)) {
410 State
= setDynamicTypeInfo(State
, ToR
, QualType(NewTy
, 0));
411 return C
.addTransition(State
);
413 return C
.getPredecessor();
416 void DynamicTypePropagation::checkPostStmt(const CXXNewExpr
*NewE
,
417 CheckerContext
&C
) const {
421 // We only track dynamic type info for regions.
422 const MemRegion
*MR
= C
.getSVal(NewE
).getAsRegion();
426 C
.addTransition(setDynamicTypeInfo(C
.getState(), MR
, NewE
->getType(),
427 /*CanBeSubClassed=*/false));
430 // Return a better dynamic type if one can be derived from the cast.
431 // Compare the current dynamic type of the region and the new type to which we
432 // are casting. If the new type is lower in the inheritance hierarchy, pick it.
433 const ObjCObjectPointerType
*
434 DynamicTypePropagation::getBetterObjCType(const Expr
*CastE
,
435 CheckerContext
&C
) const {
436 const MemRegion
*ToR
= C
.getSVal(CastE
).getAsRegion();
439 // Get the old and new types.
440 const ObjCObjectPointerType
*NewTy
=
441 CastE
->getType()->getAs
<ObjCObjectPointerType
>();
444 QualType OldDTy
= getDynamicTypeInfo(C
.getState(), ToR
).getType();
445 if (OldDTy
.isNull()) {
448 const ObjCObjectPointerType
*OldTy
=
449 OldDTy
->getAs
<ObjCObjectPointerType
>();
453 // Id the old type is 'id', the new one is more precise.
454 if (OldTy
->isObjCIdType() && !NewTy
->isObjCIdType())
457 // Return new if it's a subclass of old.
458 const ObjCInterfaceDecl
*ToI
= NewTy
->getInterfaceDecl();
459 const ObjCInterfaceDecl
*FromI
= OldTy
->getInterfaceDecl();
460 if (ToI
&& FromI
&& FromI
->isSuperClassOf(ToI
))
466 static const ObjCObjectPointerType
*getMostInformativeDerivedClassImpl(
467 const ObjCObjectPointerType
*From
, const ObjCObjectPointerType
*To
,
468 const ObjCObjectPointerType
*MostInformativeCandidate
, ASTContext
&C
) {
469 // Checking if from and to are the same classes modulo specialization.
470 if (From
->getInterfaceDecl()->getCanonicalDecl() ==
471 To
->getInterfaceDecl()->getCanonicalDecl()) {
472 if (To
->isSpecialized()) {
473 assert(MostInformativeCandidate
->isSpecialized());
474 return MostInformativeCandidate
;
479 if (To
->getObjectType()->getSuperClassType().isNull()) {
480 // If To has no super class and From and To aren't the same then
481 // To was not actually a descendent of From. In this case the best we can
486 const auto *SuperOfTo
=
487 To
->getObjectType()->getSuperClassType()->castAs
<ObjCObjectType
>();
489 QualType SuperPtrOfToQual
=
490 C
.getObjCObjectPointerType(QualType(SuperOfTo
, 0));
491 const auto *SuperPtrOfTo
= SuperPtrOfToQual
->castAs
<ObjCObjectPointerType
>();
492 if (To
->isUnspecialized())
493 return getMostInformativeDerivedClassImpl(From
, SuperPtrOfTo
, SuperPtrOfTo
,
496 return getMostInformativeDerivedClassImpl(From
, SuperPtrOfTo
,
497 MostInformativeCandidate
, C
);
500 /// A downcast may loose specialization information. E. g.:
501 /// MutableMap<T, U> : Map
502 /// The downcast to MutableMap looses the information about the types of the
503 /// Map (due to the type parameters are not being forwarded to Map), and in
504 /// general there is no way to recover that information from the
505 /// declaration. In order to have to most information, lets find the most
506 /// derived type that has all the type parameters forwarded.
508 /// Get the a subclass of \p From (which has a lower bound \p To) that do not
509 /// loose information about type parameters. \p To has to be a subclass of
510 /// \p From. From has to be specialized.
511 static const ObjCObjectPointerType
*
512 getMostInformativeDerivedClass(const ObjCObjectPointerType
*From
,
513 const ObjCObjectPointerType
*To
, ASTContext
&C
) {
514 return getMostInformativeDerivedClassImpl(From
, To
, To
, C
);
518 /// \param StaticLowerBound Static lower bound for a symbol. The dynamic lower
519 /// bound might be the subclass of this type.
520 /// \param StaticUpperBound A static upper bound for a symbol.
521 /// \p StaticLowerBound expected to be the subclass of \p StaticUpperBound.
522 /// \param Current The type that was inferred for a symbol in a previous
523 /// context. Might be null when this is the first time that inference happens.
525 /// \p StaticLowerBound or \p StaticUpperBound is specialized. If \p Current
526 /// is not null, it is specialized.
528 /// (1) The \p Current is null and \p StaticLowerBound <: \p StaticUpperBound
529 /// (2) \p StaticLowerBound <: \p Current <: \p StaticUpperBound
530 /// (3) \p Current <: \p StaticLowerBound <: \p StaticUpperBound
531 /// (4) \p StaticLowerBound <: \p StaticUpperBound <: \p Current
533 /// Use getMostInformativeDerivedClass with the upper and lower bound of the
534 /// set {\p StaticLowerBound, \p Current, \p StaticUpperBound}. The computed
535 /// lower bound must be specialized. If the result differs from \p Current or
536 /// \p Current is null, store the result.
538 storeWhenMoreInformative(ProgramStateRef
&State
, SymbolRef Sym
,
539 const ObjCObjectPointerType
*const *Current
,
540 const ObjCObjectPointerType
*StaticLowerBound
,
541 const ObjCObjectPointerType
*StaticUpperBound
,
543 // TODO: The above 4 cases are not exhaustive. In particular, it is possible
544 // for Current to be incomparable with StaticLowerBound, StaticUpperBound,
547 // For example, suppose Foo<T> and Bar<T> are unrelated types.
554 // id t2 = f; // StaticLowerBound is Foo<T>, Current is Bar<T>
556 // We should either constrain the callers of this function so that the stated
557 // preconditions hold (and assert it) or rewrite the function to expicitly
558 // handle the additional cases.
561 assert(StaticUpperBound
->isSpecialized() ||
562 StaticLowerBound
->isSpecialized());
563 assert(!Current
|| (*Current
)->isSpecialized());
567 if (StaticUpperBound
->isUnspecialized()) {
568 State
= State
->set
<MostSpecializedTypeArgsMap
>(Sym
, StaticLowerBound
);
571 // Upper bound is specialized.
572 const ObjCObjectPointerType
*WithMostInfo
=
573 getMostInformativeDerivedClass(StaticUpperBound
, StaticLowerBound
, C
);
574 State
= State
->set
<MostSpecializedTypeArgsMap
>(Sym
, WithMostInfo
);
579 if (C
.canAssignObjCInterfaces(StaticLowerBound
, *Current
)) {
584 if (C
.canAssignObjCInterfaces(*Current
, StaticUpperBound
)) {
585 // The type arguments might not be forwarded at any point of inheritance.
586 const ObjCObjectPointerType
*WithMostInfo
=
587 getMostInformativeDerivedClass(*Current
, StaticUpperBound
, C
);
589 getMostInformativeDerivedClass(WithMostInfo
, StaticLowerBound
, C
);
590 if (WithMostInfo
== *Current
)
592 State
= State
->set
<MostSpecializedTypeArgsMap
>(Sym
, WithMostInfo
);
597 const ObjCObjectPointerType
*WithMostInfo
=
598 getMostInformativeDerivedClass(*Current
, StaticLowerBound
, C
);
599 if (WithMostInfo
!= *Current
) {
600 State
= State
->set
<MostSpecializedTypeArgsMap
>(Sym
, WithMostInfo
);
607 /// Type inference based on static type information that is available for the
608 /// cast and the tracked type information for the given symbol. When the tracked
609 /// symbol and the destination type of the cast are unrelated, report an error.
610 void DynamicTypePropagation::checkPostStmt(const CastExpr
*CE
,
611 CheckerContext
&C
) const {
612 if (CE
->getCastKind() != CK_BitCast
)
615 QualType OriginType
= CE
->getSubExpr()->getType();
616 QualType DestType
= CE
->getType();
618 const auto *OrigObjectPtrType
= OriginType
->getAs
<ObjCObjectPointerType
>();
619 const auto *DestObjectPtrType
= DestType
->getAs
<ObjCObjectPointerType
>();
621 if (!OrigObjectPtrType
|| !DestObjectPtrType
)
624 ProgramStateRef State
= C
.getState();
625 ExplodedNode
*AfterTypeProp
= dynamicTypePropagationOnCasts(CE
, State
, C
);
627 ASTContext
&ASTCtxt
= C
.getASTContext();
629 // This checker detects the subtyping relationships using the assignment
630 // rules. In order to be able to do this the kindofness must be stripped
631 // first. The checker treats every type as kindof type anyways: when the
632 // tracked type is the subtype of the static type it tries to look up the
633 // methods in the tracked type first.
634 OrigObjectPtrType
= OrigObjectPtrType
->stripObjCKindOfTypeAndQuals(ASTCtxt
);
635 DestObjectPtrType
= DestObjectPtrType
->stripObjCKindOfTypeAndQuals(ASTCtxt
);
637 if (OrigObjectPtrType
->isUnspecialized() &&
638 DestObjectPtrType
->isUnspecialized())
641 SymbolRef Sym
= C
.getSVal(CE
).getAsSymbol();
645 const ObjCObjectPointerType
*const *TrackedType
=
646 State
->get
<MostSpecializedTypeArgsMap
>(Sym
);
648 if (isa
<ExplicitCastExpr
>(CE
)) {
649 // Treat explicit casts as an indication from the programmer that the
650 // Objective-C type system is not rich enough to express the needed
651 // invariant. In such cases, forget any existing information inferred
652 // about the type arguments. We don't assume the casted-to specialized
653 // type here because the invariant the programmer specifies in the cast
654 // may only hold at this particular program point and not later ones.
655 // We don't want a suppressing cast to require a cascade of casts down the
658 State
= State
->remove
<MostSpecializedTypeArgsMap
>(Sym
);
659 C
.addTransition(State
, AfterTypeProp
);
664 // Check which assignments are legal.
666 ASTCtxt
.canAssignObjCInterfaces(DestObjectPtrType
, OrigObjectPtrType
);
668 ASTCtxt
.canAssignObjCInterfaces(OrigObjectPtrType
, DestObjectPtrType
);
670 // The tracked type should be the sub or super class of the static destination
671 // type. When an (implicit) upcast or a downcast happens according to static
672 // types, and there is no subtyping relationship between the tracked and the
673 // static destination types, it indicates an error.
675 !ASTCtxt
.canAssignObjCInterfaces(DestObjectPtrType
, *TrackedType
) &&
676 !ASTCtxt
.canAssignObjCInterfaces(*TrackedType
, DestObjectPtrType
)) {
677 static CheckerProgramPointTag
IllegalConv(this, "IllegalConversion");
678 ExplodedNode
*N
= C
.addTransition(State
, AfterTypeProp
, &IllegalConv
);
679 reportGenericsBug(*TrackedType
, DestObjectPtrType
, N
, Sym
, C
);
683 // Handle downcasts and upcasts.
685 const ObjCObjectPointerType
*LowerBound
= DestObjectPtrType
;
686 const ObjCObjectPointerType
*UpperBound
= OrigObjectPtrType
;
687 if (OrigToDest
&& !DestToOrig
)
688 std::swap(LowerBound
, UpperBound
);
690 // The id type is not a real bound. Eliminate it.
691 LowerBound
= LowerBound
->isObjCIdType() ? UpperBound
: LowerBound
;
692 UpperBound
= UpperBound
->isObjCIdType() ? LowerBound
: UpperBound
;
694 if (storeWhenMoreInformative(State
, Sym
, TrackedType
, LowerBound
, UpperBound
,
696 C
.addTransition(State
, AfterTypeProp
);
700 static const Expr
*stripCastsAndSugar(const Expr
*E
) {
701 E
= E
->IgnoreParenImpCasts();
702 if (const PseudoObjectExpr
*POE
= dyn_cast
<PseudoObjectExpr
>(E
))
703 E
= POE
->getSyntacticForm()->IgnoreParenImpCasts();
704 if (const OpaqueValueExpr
*OVE
= dyn_cast
<OpaqueValueExpr
>(E
))
705 E
= OVE
->getSourceExpr()->IgnoreParenImpCasts();
709 static bool isObjCTypeParamDependent(QualType Type
) {
710 // It is illegal to typedef parameterized types inside an interface. Therefore
711 // an Objective-C type can only be dependent on a type parameter when the type
712 // parameter structurally present in the type itself.
713 class IsObjCTypeParamDependentTypeVisitor
714 : public RecursiveASTVisitor
<IsObjCTypeParamDependentTypeVisitor
> {
716 IsObjCTypeParamDependentTypeVisitor() = default;
717 bool VisitObjCTypeParamType(const ObjCTypeParamType
*Type
) {
718 if (isa
<ObjCTypeParamDecl
>(Type
->getDecl())) {
728 IsObjCTypeParamDependentTypeVisitor Visitor
;
729 Visitor
.TraverseType(Type
);
730 return Visitor
.Result
;
733 /// A method might not be available in the interface indicated by the static
734 /// type. However it might be available in the tracked type. In order to
735 /// properly substitute the type parameters we need the declaration context of
736 /// the method. The more specialized the enclosing class of the method is, the
737 /// more likely that the parameter substitution will be successful.
738 static const ObjCMethodDecl
*
739 findMethodDecl(const ObjCMessageExpr
*MessageExpr
,
740 const ObjCObjectPointerType
*TrackedType
, ASTContext
&ASTCtxt
) {
741 const ObjCMethodDecl
*Method
= nullptr;
743 QualType ReceiverType
= MessageExpr
->getReceiverType();
745 // Do this "devirtualization" on instance and class methods only. Trust the
746 // static type on super and super class calls.
747 if (MessageExpr
->getReceiverKind() == ObjCMessageExpr::Instance
||
748 MessageExpr
->getReceiverKind() == ObjCMessageExpr::Class
) {
749 // When the receiver type is id, Class, or some super class of the tracked
750 // type, look up the method in the tracked type, not in the receiver type.
751 // This way we preserve more information.
752 if (ReceiverType
->isObjCIdType() || ReceiverType
->isObjCClassType() ||
753 ASTCtxt
.canAssignObjCInterfaces(
754 ReceiverType
->castAs
<ObjCObjectPointerType
>(), TrackedType
)) {
755 const ObjCInterfaceDecl
*InterfaceDecl
= TrackedType
->getInterfaceDecl();
756 // The method might not be found.
757 Selector Sel
= MessageExpr
->getSelector();
758 Method
= InterfaceDecl
->lookupInstanceMethod(Sel
);
760 Method
= InterfaceDecl
->lookupClassMethod(Sel
);
764 // Fallback to statick method lookup when the one based on the tracked type
766 return Method
? Method
: MessageExpr
->getMethodDecl();
769 /// Get the returned ObjCObjectPointerType by a method based on the tracked type
770 /// information, or null pointer when the returned type is not an
771 /// ObjCObjectPointerType.
772 static QualType
getReturnTypeForMethod(
773 const ObjCMethodDecl
*Method
, ArrayRef
<QualType
> TypeArgs
,
774 const ObjCObjectPointerType
*SelfType
, ASTContext
&C
) {
775 QualType StaticResultType
= Method
->getReturnType();
777 // Is the return type declared as instance type?
778 if (StaticResultType
== C
.getObjCInstanceType())
779 return QualType(SelfType
, 0);
781 // Check whether the result type depends on a type parameter.
782 if (!isObjCTypeParamDependent(StaticResultType
))
785 QualType ResultType
= StaticResultType
.substObjCTypeArgs(
786 C
, TypeArgs
, ObjCSubstitutionContext::Result
);
791 /// When the receiver has a tracked type, use that type to validate the
792 /// argumments of the message expression and the return value.
793 void DynamicTypePropagation::checkPreObjCMessage(const ObjCMethodCall
&M
,
794 CheckerContext
&C
) const {
795 ProgramStateRef State
= C
.getState();
796 SymbolRef Sym
= M
.getReceiverSVal().getAsSymbol();
800 const ObjCObjectPointerType
*const *TrackedType
=
801 State
->get
<MostSpecializedTypeArgsMap
>(Sym
);
805 // Get the type arguments from tracked type and substitute type arguments
806 // before do the semantic check.
808 ASTContext
&ASTCtxt
= C
.getASTContext();
809 const ObjCMessageExpr
*MessageExpr
= M
.getOriginExpr();
810 const ObjCMethodDecl
*Method
=
811 findMethodDecl(MessageExpr
, *TrackedType
, ASTCtxt
);
813 // It is possible to call non-existent methods in Obj-C.
817 // If the method is declared on a class that has a non-invariant
818 // type parameter, don't warn about parameter mismatches after performing
819 // substitution. This prevents warning when the programmer has purposely
820 // casted the receiver to a super type or unspecialized type but the analyzer
821 // has a more precise tracked type than the programmer intends at the call
824 // For example, consider NSArray (which has a covariant type parameter)
825 // and NSMutableArray (a subclass of NSArray where the type parameter is
827 // NSMutableArray *a = [[NSMutableArray<NSString *> alloc] init;
829 // [a containsObject:number]; // Safe: -containsObject is defined on NSArray.
830 // NSArray<NSObject *> *other = [a arrayByAddingObject:number] // Safe
832 // [a addObject:number] // Unsafe: -addObject: is defined on NSMutableArray
835 const ObjCInterfaceDecl
*Interface
= Method
->getClassInterface();
839 ObjCTypeParamList
*TypeParams
= Interface
->getTypeParamList();
843 for (ObjCTypeParamDecl
*TypeParam
: *TypeParams
) {
844 if (TypeParam
->getVariance() != ObjCTypeParamVariance::Invariant
)
848 std::optional
<ArrayRef
<QualType
>> TypeArgs
=
849 (*TrackedType
)->getObjCSubstitutions(Method
->getDeclContext());
850 // This case might happen when there is an unspecialized override of a
851 // specialized method.
855 for (unsigned i
= 0; i
< Method
->param_size(); i
++) {
856 const Expr
*Arg
= MessageExpr
->getArg(i
);
857 const ParmVarDecl
*Param
= Method
->parameters()[i
];
859 QualType OrigParamType
= Param
->getType();
860 if (!isObjCTypeParamDependent(OrigParamType
))
863 QualType ParamType
= OrigParamType
.substObjCTypeArgs(
864 ASTCtxt
, *TypeArgs
, ObjCSubstitutionContext::Parameter
);
865 // Check if it can be assigned
866 const auto *ParamObjectPtrType
= ParamType
->getAs
<ObjCObjectPointerType
>();
867 const auto *ArgObjectPtrType
=
868 stripCastsAndSugar(Arg
)->getType()->getAs
<ObjCObjectPointerType
>();
869 if (!ParamObjectPtrType
|| !ArgObjectPtrType
)
872 // Check if we have more concrete tracked type that is not a super type of
873 // the static argument type.
874 SVal ArgSVal
= M
.getArgSVal(i
);
875 SymbolRef ArgSym
= ArgSVal
.getAsSymbol();
877 const ObjCObjectPointerType
*const *TrackedArgType
=
878 State
->get
<MostSpecializedTypeArgsMap
>(ArgSym
);
879 if (TrackedArgType
&&
880 ASTCtxt
.canAssignObjCInterfaces(ArgObjectPtrType
, *TrackedArgType
)) {
881 ArgObjectPtrType
= *TrackedArgType
;
885 // Warn when argument is incompatible with the parameter.
886 if (!ASTCtxt
.canAssignObjCInterfaces(ParamObjectPtrType
,
888 static CheckerProgramPointTag
Tag(this, "ArgTypeMismatch");
889 ExplodedNode
*N
= C
.addTransition(State
, &Tag
);
890 reportGenericsBug(ArgObjectPtrType
, ParamObjectPtrType
, N
, Sym
, C
, Arg
);
896 /// This callback is used to infer the types for Class variables. This info is
897 /// used later to validate messages that sent to classes. Class variables are
898 /// initialized with by invoking the 'class' method on a class.
899 /// This method is also used to infer the type information for the return
901 // TODO: right now it only tracks generic types. Extend this to track every
902 // type in the DynamicTypeMap and diagnose type errors!
903 void DynamicTypePropagation::checkPostObjCMessage(const ObjCMethodCall
&M
,
904 CheckerContext
&C
) const {
905 const ObjCMessageExpr
*MessageExpr
= M
.getOriginExpr();
907 SymbolRef RetSym
= M
.getReturnValue().getAsSymbol();
911 Selector Sel
= MessageExpr
->getSelector();
912 ProgramStateRef State
= C
.getState();
914 // Here we try to propagate information on Class objects.
915 if (Sel
.getAsString() == "class") {
916 // We try to figure out the type from the receiver of the 'class' message.
917 if (RuntimeType ReceiverRuntimeType
= inferReceiverType(M
, C
)) {
919 ReceiverRuntimeType
.Type
->getSuperClassType();
920 QualType
ReceiverClassType(ReceiverRuntimeType
.Type
, 0);
922 // We want to consider only precise information on generics.
923 if (ReceiverRuntimeType
.Type
->isSpecialized() &&
924 ReceiverRuntimeType
.Precise
) {
925 QualType ReceiverClassPointerType
=
926 C
.getASTContext().getObjCObjectPointerType(ReceiverClassType
);
927 const auto *InferredType
=
928 ReceiverClassPointerType
->castAs
<ObjCObjectPointerType
>();
929 State
= State
->set
<MostSpecializedTypeArgsMap
>(RetSym
, InferredType
);
932 // Constrain the resulting class object to the inferred type.
933 State
= setClassObjectDynamicTypeInfo(State
, RetSym
, ReceiverClassType
,
934 !ReceiverRuntimeType
.Precise
);
936 C
.addTransition(State
);
941 if (Sel
.getAsString() == "superclass") {
942 // We try to figure out the type from the receiver of the 'superclass'
944 if (RuntimeType ReceiverRuntimeType
= inferReceiverType(M
, C
)) {
946 // Result type would be a super class of the receiver's type.
947 QualType ReceiversSuperClass
=
948 ReceiverRuntimeType
.Type
->getSuperClassType();
950 // Check if it really had super class.
952 // TODO: we can probably pay closer attention to cases when the class
953 // object can be 'nil' as the result of such message.
954 if (!ReceiversSuperClass
.isNull()) {
955 // Constrain the resulting class object to the inferred type.
956 State
= setClassObjectDynamicTypeInfo(
957 State
, RetSym
, ReceiversSuperClass
, !ReceiverRuntimeType
.Precise
);
959 C
.addTransition(State
);
965 // Tracking for return types.
966 SymbolRef RecSym
= M
.getReceiverSVal().getAsSymbol();
970 const ObjCObjectPointerType
*const *TrackedType
=
971 State
->get
<MostSpecializedTypeArgsMap
>(RecSym
);
975 ASTContext
&ASTCtxt
= C
.getASTContext();
976 const ObjCMethodDecl
*Method
=
977 findMethodDecl(MessageExpr
, *TrackedType
, ASTCtxt
);
981 std::optional
<ArrayRef
<QualType
>> TypeArgs
=
982 (*TrackedType
)->getObjCSubstitutions(Method
->getDeclContext());
986 QualType ResultType
=
987 getReturnTypeForMethod(Method
, *TypeArgs
, *TrackedType
, ASTCtxt
);
988 // The static type is the same as the deduced type.
989 if (ResultType
.isNull())
992 const MemRegion
*RetRegion
= M
.getReturnValue().getAsRegion();
993 ExplodedNode
*Pred
= C
.getPredecessor();
994 // When there is an entry available for the return symbol in DynamicTypeMap,
995 // the call was inlined, and the information in the DynamicTypeMap is should
997 if (RetRegion
&& !getRawDynamicTypeInfo(State
, RetRegion
)) {
998 // TODO: we have duplicated information in DynamicTypeMap and
999 // MostSpecializedTypeArgsMap. We should only store anything in the later if
1000 // the stored data differs from the one stored in the former.
1001 State
= setDynamicTypeInfo(State
, RetRegion
, ResultType
,
1002 /*CanBeSubClassed=*/true);
1003 Pred
= C
.addTransition(State
);
1006 const auto *ResultPtrType
= ResultType
->getAs
<ObjCObjectPointerType
>();
1008 if (!ResultPtrType
|| ResultPtrType
->isUnspecialized())
1011 // When the result is a specialized type and it is not tracked yet, track it
1012 // for the result symbol.
1013 if (!State
->get
<MostSpecializedTypeArgsMap
>(RetSym
)) {
1014 State
= State
->set
<MostSpecializedTypeArgsMap
>(RetSym
, ResultPtrType
);
1015 C
.addTransition(State
, Pred
);
1019 void DynamicTypePropagation::reportGenericsBug(
1020 const ObjCObjectPointerType
*From
, const ObjCObjectPointerType
*To
,
1021 ExplodedNode
*N
, SymbolRef Sym
, CheckerContext
&C
,
1022 const Stmt
*ReportedNode
) const {
1027 SmallString
<192> Buf
;
1028 llvm::raw_svector_ostream
OS(Buf
);
1029 OS
<< "Conversion from value of type '";
1030 QualType::print(From
, Qualifiers(), OS
, C
.getLangOpts(), llvm::Twine());
1031 OS
<< "' to incompatible type '";
1032 QualType::print(To
, Qualifiers(), OS
, C
.getLangOpts(), llvm::Twine());
1034 auto R
= std::make_unique
<PathSensitiveBugReport
>(*ObjCGenericsBugType
,
1036 R
->markInteresting(Sym
);
1037 R
->addVisitor(std::make_unique
<GenericsBugVisitor
>(Sym
));
1039 R
->addRange(ReportedNode
->getSourceRange());
1040 C
.emitReport(std::move(R
));
1043 PathDiagnosticPieceRef
DynamicTypePropagation::GenericsBugVisitor::VisitNode(
1044 const ExplodedNode
*N
, BugReporterContext
&BRC
,
1045 PathSensitiveBugReport
&BR
) {
1046 ProgramStateRef state
= N
->getState();
1047 ProgramStateRef statePrev
= N
->getFirstPred()->getState();
1049 const ObjCObjectPointerType
*const *TrackedType
=
1050 state
->get
<MostSpecializedTypeArgsMap
>(Sym
);
1051 const ObjCObjectPointerType
*const *TrackedTypePrev
=
1052 statePrev
->get
<MostSpecializedTypeArgsMap
>(Sym
);
1056 if (TrackedTypePrev
&& *TrackedTypePrev
== *TrackedType
)
1059 // Retrieve the associated statement.
1060 const Stmt
*S
= N
->getStmtForDiagnostics();
1064 const LangOptions
&LangOpts
= BRC
.getASTContext().getLangOpts();
1066 SmallString
<256> Buf
;
1067 llvm::raw_svector_ostream
OS(Buf
);
1069 QualType::print(*TrackedType
, Qualifiers(), OS
, LangOpts
, llvm::Twine());
1070 OS
<< "' is inferred from ";
1072 if (const auto *ExplicitCast
= dyn_cast
<ExplicitCastExpr
>(S
)) {
1073 OS
<< "explicit cast (from '";
1074 QualType::print(ExplicitCast
->getSubExpr()->getType().getTypePtr(),
1075 Qualifiers(), OS
, LangOpts
, llvm::Twine());
1077 QualType::print(ExplicitCast
->getType().getTypePtr(), Qualifiers(), OS
,
1078 LangOpts
, llvm::Twine());
1080 } else if (const auto *ImplicitCast
= dyn_cast
<ImplicitCastExpr
>(S
)) {
1081 OS
<< "implicit cast (from '";
1082 QualType::print(ImplicitCast
->getSubExpr()->getType().getTypePtr(),
1083 Qualifiers(), OS
, LangOpts
, llvm::Twine());
1085 QualType::print(ImplicitCast
->getType().getTypePtr(), Qualifiers(), OS
,
1086 LangOpts
, llvm::Twine());
1089 OS
<< "this context";
1092 // Generate the extra diagnostic.
1093 PathDiagnosticLocation
Pos(S
, BRC
.getSourceManager(),
1094 N
->getLocationContext());
1095 return std::make_shared
<PathDiagnosticEventPiece
>(Pos
, OS
.str(), true);
1098 /// Register checkers.
1099 void ento::registerObjCGenericsChecker(CheckerManager
&mgr
) {
1100 DynamicTypePropagation
*checker
= mgr
.getChecker
<DynamicTypePropagation
>();
1101 checker
->CheckGenerics
= true;
1102 checker
->GenericCheckName
= mgr
.getCurrentCheckerName();
1105 bool ento::shouldRegisterObjCGenericsChecker(const CheckerManager
&mgr
) {
1109 void ento::registerDynamicTypePropagation(CheckerManager
&mgr
) {
1110 mgr
.registerChecker
<DynamicTypePropagation
>();
1113 bool ento::shouldRegisterDynamicTypePropagation(const CheckerManager
&mgr
) {