1 //===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines BugReporter, a utility class for generating
12 //===----------------------------------------------------------------------===//
14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclBase.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ParentMap.h"
21 #include "clang/AST/Stmt.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/AST/StmtObjC.h"
24 #include "clang/Analysis/AnalysisDeclContext.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Analysis/CFGStmtMap.h"
27 #include "clang/Analysis/PathDiagnostic.h"
28 #include "clang/Analysis/ProgramPoint.h"
29 #include "clang/Basic/LLVM.h"
30 #include "clang/Basic/SourceLocation.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
33 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
34 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
35 #include "clang/StaticAnalyzer/Core/Checker.h"
36 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
37 #include "clang/StaticAnalyzer/Core/CheckerRegistryData.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/DenseSet.h"
48 #include "llvm/ADT/FoldingSet.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/ADT/SmallPtrSet.h"
51 #include "llvm/ADT/SmallString.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/Statistic.h"
54 #include "llvm/ADT/StringExtras.h"
55 #include "llvm/ADT/StringRef.h"
56 #include "llvm/ADT/iterator_range.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MemoryBuffer.h"
61 #include "llvm/Support/raw_ostream.h"
74 using namespace clang
;
78 #define DEBUG_TYPE "BugReporter"
80 STATISTIC(MaxBugClassSize
,
81 "The maximum number of bug reports in the same equivalence class");
82 STATISTIC(MaxValidBugClassSize
,
83 "The maximum number of bug reports in the same equivalence class "
84 "where at least one report is valid (not suppressed)");
86 BugReporterVisitor::~BugReporterVisitor() = default;
88 void BugReporterContext::anchor() {}
90 //===----------------------------------------------------------------------===//
91 // PathDiagnosticBuilder and its associated routines and helper objects.
92 //===----------------------------------------------------------------------===//
96 /// A (CallPiece, node assiciated with its CallEnter) pair.
98 std::pair
<PathDiagnosticCallPiece
*, const ExplodedNode
*>;
99 using CallWithEntryStack
= SmallVector
<CallWithEntry
, 6>;
101 /// Map from each node to the diagnostic pieces visitors emit for them.
102 using VisitorsDiagnosticsTy
=
103 llvm::DenseMap
<const ExplodedNode
*, std::vector
<PathDiagnosticPieceRef
>>;
105 /// A map from PathDiagnosticPiece to the LocationContext of the inlined
106 /// function call it represents.
107 using LocationContextMap
=
108 llvm::DenseMap
<const PathPieces
*, const LocationContext
*>;
110 /// A helper class that contains everything needed to construct a
111 /// PathDiagnostic object. It does no much more then providing convenient
112 /// getters and some well placed asserts for extra security.
113 class PathDiagnosticConstruct
{
114 /// The consumer we're constructing the bug report for.
115 const PathDiagnosticConsumer
*Consumer
;
116 /// Our current position in the bug path, which is owned by
117 /// PathDiagnosticBuilder.
118 const ExplodedNode
*CurrentNode
;
119 /// A mapping from parts of the bug path (for example, a function call, which
120 /// would span backwards from a CallExit to a CallEnter with the nodes in
121 /// between them) with the location contexts it is associated with.
122 LocationContextMap LCM
;
123 const SourceManager
&SM
;
126 /// We keep stack of calls to functions as we're ascending the bug path.
127 /// TODO: PathDiagnostic has a stack doing the same thing, shouldn't we use
129 CallWithEntryStack CallStack
;
130 /// The bug report we're constructing. For ease of use, this field is kept
131 /// public, though some "shortcut" getters are provided for commonly used
132 /// methods of PathDiagnostic.
133 std::unique_ptr
<PathDiagnostic
> PD
;
136 PathDiagnosticConstruct(const PathDiagnosticConsumer
*PDC
,
137 const ExplodedNode
*ErrorNode
,
138 const PathSensitiveBugReport
*R
);
140 /// \returns the location context associated with the current position in the
142 const LocationContext
*getCurrLocationContext() const {
143 assert(CurrentNode
&& "Already reached the root!");
144 return CurrentNode
->getLocationContext();
147 /// Same as getCurrLocationContext (they should always return the same
148 /// location context), but works after reaching the root of the bug path as
150 const LocationContext
*getLocationContextForActivePath() const {
151 return LCM
.find(&PD
->getActivePath())->getSecond();
154 const ExplodedNode
*getCurrentNode() const { return CurrentNode
; }
156 /// Steps the current node to its predecessor.
157 /// \returns whether we reached the root of the bug path.
158 bool ascendToPrevNode() {
159 CurrentNode
= CurrentNode
->getFirstPred();
160 return static_cast<bool>(CurrentNode
);
163 const ParentMap
&getParentMap() const {
164 return getCurrLocationContext()->getParentMap();
167 const SourceManager
&getSourceManager() const { return SM
; }
169 const Stmt
*getParent(const Stmt
*S
) const {
170 return getParentMap().getParent(S
);
173 void updateLocCtxMap(const PathPieces
*Path
, const LocationContext
*LC
) {
178 const LocationContext
*getLocationContextFor(const PathPieces
*Path
) const {
179 assert(LCM
.count(Path
) &&
180 "Failed to find the context associated with these pieces!");
181 return LCM
.find(Path
)->getSecond();
184 bool isInLocCtxMap(const PathPieces
*Path
) const { return LCM
.count(Path
); }
186 PathPieces
&getActivePath() { return PD
->getActivePath(); }
187 PathPieces
&getMutablePieces() { return PD
->getMutablePieces(); }
189 bool shouldAddPathEdges() const { return Consumer
->shouldAddPathEdges(); }
190 bool shouldAddControlNotes() const {
191 return Consumer
->shouldAddControlNotes();
193 bool shouldGenerateDiagnostics() const {
194 return Consumer
->shouldGenerateDiagnostics();
196 bool supportsLogicalOpControlFlow() const {
197 return Consumer
->supportsLogicalOpControlFlow();
201 /// Contains every contextual information needed for constructing a
202 /// PathDiagnostic object for a given bug report. This class and its fields are
203 /// immutable, and passes a BugReportConstruct object around during the
205 class PathDiagnosticBuilder
: public BugReporterContext
{
206 /// A linear path from the error node to the root.
207 std::unique_ptr
<const ExplodedGraph
> BugPath
;
208 /// The bug report we're describing. Visitors create their diagnostics with
209 /// them being the last entities being able to modify it (for example,
210 /// changing interestingness here would cause inconsistencies as to how this
211 /// file and visitors construct diagnostics), hence its const.
212 const PathSensitiveBugReport
*R
;
213 /// The leaf of the bug path. This isn't the same as the bug reports error
214 /// node, which refers to the *original* graph, not the bug path.
215 const ExplodedNode
*const ErrorNode
;
216 /// The diagnostic pieces visitors emitted, which is expected to be collected
217 /// by the time this builder is constructed.
218 std::unique_ptr
<const VisitorsDiagnosticsTy
> VisitorsDiagnostics
;
221 /// Find a non-invalidated report for a given equivalence class, and returns
222 /// a PathDiagnosticBuilder able to construct bug reports for different
223 /// consumers. Returns std::nullopt if no valid report is found.
224 static std::optional
<PathDiagnosticBuilder
>
225 findValidReport(ArrayRef
<PathSensitiveBugReport
*> &bugReports
,
226 PathSensitiveBugReporter
&Reporter
);
228 PathDiagnosticBuilder(
229 BugReporterContext BRC
, std::unique_ptr
<ExplodedGraph
> BugPath
,
230 PathSensitiveBugReport
*r
, const ExplodedNode
*ErrorNode
,
231 std::unique_ptr
<VisitorsDiagnosticsTy
> VisitorsDiagnostics
);
233 /// This function is responsible for generating diagnostic pieces that are
234 /// *not* provided by bug report visitors.
235 /// These diagnostics may differ depending on the consumer's settings,
236 /// and are therefore constructed separately for each consumer.
238 /// There are two path diagnostics generation modes: with adding edges (used
239 /// for plists) and without (used for HTML and text). When edges are added,
240 /// the path is modified to insert artificially generated edges.
241 /// Otherwise, more detailed diagnostics is emitted for block edges,
242 /// explaining the transitions in words.
243 std::unique_ptr
<PathDiagnostic
>
244 generate(const PathDiagnosticConsumer
*PDC
) const;
247 void updateStackPiecesWithMessage(PathDiagnosticPieceRef P
,
248 const CallWithEntryStack
&CallStack
) const;
249 void generatePathDiagnosticsForNode(PathDiagnosticConstruct
&C
,
250 PathDiagnosticLocation
&PrevLoc
) const;
252 void generateMinimalDiagForBlockEdge(PathDiagnosticConstruct
&C
,
255 PathDiagnosticPieceRef
256 generateDiagForGotoOP(const PathDiagnosticConstruct
&C
, const Stmt
*S
,
257 PathDiagnosticLocation
&Start
) const;
259 PathDiagnosticPieceRef
260 generateDiagForSwitchOP(const PathDiagnosticConstruct
&C
, const CFGBlock
*Dst
,
261 PathDiagnosticLocation
&Start
) const;
263 PathDiagnosticPieceRef
264 generateDiagForBinaryOP(const PathDiagnosticConstruct
&C
, const Stmt
*T
,
265 const CFGBlock
*Src
, const CFGBlock
*DstC
) const;
267 PathDiagnosticLocation
268 ExecutionContinues(const PathDiagnosticConstruct
&C
) const;
270 PathDiagnosticLocation
271 ExecutionContinues(llvm::raw_string_ostream
&os
,
272 const PathDiagnosticConstruct
&C
) const;
274 const PathSensitiveBugReport
*getBugReport() const { return R
; }
279 //===----------------------------------------------------------------------===//
280 // Base implementation of stack hint generators.
281 //===----------------------------------------------------------------------===//
283 StackHintGenerator::~StackHintGenerator() = default;
285 std::string
StackHintGeneratorForSymbol::getMessage(const ExplodedNode
*N
){
287 return getMessageForSymbolNotFound();
289 ProgramPoint P
= N
->getLocation();
290 CallExitEnd CExit
= P
.castAs
<CallExitEnd
>();
292 // FIXME: Use CallEvent to abstract this over all calls.
293 const Stmt
*CallSite
= CExit
.getCalleeContext()->getCallSite();
294 const auto *CE
= dyn_cast_or_null
<CallExpr
>(CallSite
);
298 // Check if one of the parameters are set to the interesting symbol.
299 for (auto [Idx
, ArgExpr
] : llvm::enumerate(CE
->arguments())) {
300 SVal SV
= N
->getSVal(ArgExpr
);
302 // Check if the variable corresponding to the symbol is passed by value.
303 SymbolRef AS
= SV
.getAsLocSymbol();
305 return getMessageForArg(ArgExpr
, Idx
);
308 // Check if the parameter is a pointer to the symbol.
309 if (std::optional
<loc::MemRegionVal
> Reg
= SV
.getAs
<loc::MemRegionVal
>()) {
310 // Do not attempt to dereference void*.
311 if (ArgExpr
->getType()->isVoidPointerType())
313 SVal PSV
= N
->getState()->getSVal(Reg
->getRegion());
314 SymbolRef AS
= PSV
.getAsLocSymbol();
316 return getMessageForArg(ArgExpr
, Idx
);
321 // Check if we are returning the interesting symbol.
322 SVal SV
= N
->getSVal(CE
);
323 SymbolRef RetSym
= SV
.getAsLocSymbol();
325 return getMessageForReturn(CE
);
328 return getMessageForSymbolNotFound();
331 std::string
StackHintGeneratorForSymbol::getMessageForArg(const Expr
*ArgE
,
333 // Printed parameters start at 1, not 0.
336 return (llvm::Twine(Msg
) + " via " + std::to_string(ArgIndex
) +
337 llvm::getOrdinalSuffix(ArgIndex
) + " parameter").str();
340 //===----------------------------------------------------------------------===//
341 // Diagnostic cleanup.
342 //===----------------------------------------------------------------------===//
344 static PathDiagnosticEventPiece
*
345 eventsDescribeSameCondition(PathDiagnosticEventPiece
*X
,
346 PathDiagnosticEventPiece
*Y
) {
347 // Prefer diagnostics that come from ConditionBRVisitor over
348 // those that came from TrackConstraintBRVisitor,
349 // unless the one from ConditionBRVisitor is
350 // its generic fallback diagnostic.
351 const void *tagPreferred
= ConditionBRVisitor::getTag();
352 const void *tagLesser
= TrackConstraintBRVisitor::getTag();
354 if (X
->getLocation() != Y
->getLocation())
357 if (X
->getTag() == tagPreferred
&& Y
->getTag() == tagLesser
)
358 return ConditionBRVisitor::isPieceMessageGeneric(X
) ? Y
: X
;
360 if (Y
->getTag() == tagPreferred
&& X
->getTag() == tagLesser
)
361 return ConditionBRVisitor::isPieceMessageGeneric(Y
) ? X
: Y
;
366 /// An optimization pass over PathPieces that removes redundant diagnostics
367 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both
368 /// BugReporterVisitors use different methods to generate diagnostics, with
369 /// one capable of emitting diagnostics in some cases but not in others. This
370 /// can lead to redundant diagnostic pieces at the same point in a path.
371 static void removeRedundantMsgs(PathPieces
&path
) {
372 unsigned N
= path
.size();
375 // NOTE: this loop intentionally is not using an iterator. Instead, we
376 // are streaming the path and modifying it in place. This is done by
377 // grabbing the front, processing it, and if we decide to keep it append
378 // it to the end of the path. The entire path is processed in this way.
379 for (unsigned i
= 0; i
< N
; ++i
) {
380 auto piece
= std::move(path
.front());
383 switch (piece
->getKind()) {
384 case PathDiagnosticPiece::Call
:
385 removeRedundantMsgs(cast
<PathDiagnosticCallPiece
>(*piece
).path
);
387 case PathDiagnosticPiece::Macro
:
388 removeRedundantMsgs(cast
<PathDiagnosticMacroPiece
>(*piece
).subPieces
);
390 case PathDiagnosticPiece::Event
: {
394 if (auto *nextEvent
=
395 dyn_cast
<PathDiagnosticEventPiece
>(path
.front().get())) {
396 auto *event
= cast
<PathDiagnosticEventPiece
>(piece
.get());
397 // Check to see if we should keep one of the two pieces. If we
398 // come up with a preference, record which piece to keep, and consume
399 // another piece from the path.
400 if (auto *pieceToKeep
=
401 eventsDescribeSameCondition(event
, nextEvent
)) {
402 piece
= std::move(pieceToKeep
== event
? piece
: path
.front());
409 case PathDiagnosticPiece::ControlFlow
:
410 case PathDiagnosticPiece::Note
:
411 case PathDiagnosticPiece::PopUp
:
414 path
.push_back(std::move(piece
));
418 /// Recursively scan through a path and prune out calls and macros pieces
419 /// that aren't needed. Return true if afterwards the path contains
420 /// "interesting stuff" which means it shouldn't be pruned from the parent path.
421 static bool removeUnneededCalls(const PathDiagnosticConstruct
&C
,
423 const PathSensitiveBugReport
*R
,
424 bool IsInteresting
= false) {
425 bool containsSomethingInteresting
= IsInteresting
;
426 const unsigned N
= pieces
.size();
428 for (unsigned i
= 0 ; i
< N
; ++i
) {
429 // Remove the front piece from the path. If it is still something we
430 // want to keep once we are done, we will push it back on the end.
431 auto piece
= std::move(pieces
.front());
434 switch (piece
->getKind()) {
435 case PathDiagnosticPiece::Call
: {
436 auto &call
= cast
<PathDiagnosticCallPiece
>(*piece
);
437 // Check if the location context is interesting.
438 if (!removeUnneededCalls(
440 R
->isInteresting(C
.getLocationContextFor(&call
.path
))))
443 containsSomethingInteresting
= true;
446 case PathDiagnosticPiece::Macro
: {
447 auto ¯o
= cast
<PathDiagnosticMacroPiece
>(*piece
);
448 if (!removeUnneededCalls(C
, macro
.subPieces
, R
, IsInteresting
))
450 containsSomethingInteresting
= true;
453 case PathDiagnosticPiece::Event
: {
454 auto &event
= cast
<PathDiagnosticEventPiece
>(*piece
);
456 // We never throw away an event, but we do throw it away wholesale
457 // as part of a path if we throw the entire path away.
458 containsSomethingInteresting
|= !event
.isPrunable();
461 case PathDiagnosticPiece::ControlFlow
:
462 case PathDiagnosticPiece::Note
:
463 case PathDiagnosticPiece::PopUp
:
467 pieces
.push_back(std::move(piece
));
470 return containsSomethingInteresting
;
473 /// Same logic as above to remove extra pieces.
474 static void removePopUpNotes(PathPieces
&Path
) {
475 for (unsigned int i
= 0; i
< Path
.size(); ++i
) {
476 auto Piece
= std::move(Path
.front());
478 if (!isa
<PathDiagnosticPopUpPiece
>(*Piece
))
479 Path
.push_back(std::move(Piece
));
483 /// Returns true if the given decl has been implicitly given a body, either by
484 /// the analyzer or by the compiler proper.
485 static bool hasImplicitBody(const Decl
*D
) {
487 return D
->isImplicit() || !D
->hasBody();
490 /// Recursively scan through a path and make sure that all call pieces have
493 adjustCallLocations(PathPieces
&Pieces
,
494 PathDiagnosticLocation
*LastCallLocation
= nullptr) {
495 for (const auto &I
: Pieces
) {
496 auto *Call
= dyn_cast
<PathDiagnosticCallPiece
>(I
.get());
501 if (LastCallLocation
) {
502 bool CallerIsImplicit
= hasImplicitBody(Call
->getCaller());
503 if (CallerIsImplicit
|| !Call
->callEnter
.asLocation().isValid())
504 Call
->callEnter
= *LastCallLocation
;
505 if (CallerIsImplicit
|| !Call
->callReturn
.asLocation().isValid())
506 Call
->callReturn
= *LastCallLocation
;
509 // Recursively clean out the subclass. Keep this call around if
510 // it contains any informative diagnostics.
511 PathDiagnosticLocation
*ThisCallLocation
;
512 if (Call
->callEnterWithin
.asLocation().isValid() &&
513 !hasImplicitBody(Call
->getCallee()))
514 ThisCallLocation
= &Call
->callEnterWithin
;
516 ThisCallLocation
= &Call
->callEnter
;
518 assert(ThisCallLocation
&& "Outermost call has an invalid location");
519 adjustCallLocations(Call
->path
, ThisCallLocation
);
523 /// Remove edges in and out of C++ default initializer expressions. These are
524 /// for fields that have in-class initializers, as opposed to being initialized
525 /// explicitly in a constructor or braced list.
526 static void removeEdgesToDefaultInitializers(PathPieces
&Pieces
) {
527 for (PathPieces::iterator I
= Pieces
.begin(), E
= Pieces
.end(); I
!= E
;) {
528 if (auto *C
= dyn_cast
<PathDiagnosticCallPiece
>(I
->get()))
529 removeEdgesToDefaultInitializers(C
->path
);
531 if (auto *M
= dyn_cast
<PathDiagnosticMacroPiece
>(I
->get()))
532 removeEdgesToDefaultInitializers(M
->subPieces
);
534 if (auto *CF
= dyn_cast
<PathDiagnosticControlFlowPiece
>(I
->get())) {
535 const Stmt
*Start
= CF
->getStartLocation().asStmt();
536 const Stmt
*End
= CF
->getEndLocation().asStmt();
537 if (isa_and_nonnull
<CXXDefaultInitExpr
>(Start
)) {
540 } else if (isa_and_nonnull
<CXXDefaultInitExpr
>(End
)) {
541 PathPieces::iterator Next
= std::next(I
);
544 dyn_cast
<PathDiagnosticControlFlowPiece
>(Next
->get())) {
545 NextCF
->setStartLocation(CF
->getStartLocation());
557 /// Remove all pieces with invalid locations as these cannot be serialized.
558 /// We might have pieces with invalid locations as a result of inlining Body
559 /// Farm generated functions.
560 static void removePiecesWithInvalidLocations(PathPieces
&Pieces
) {
561 for (PathPieces::iterator I
= Pieces
.begin(), E
= Pieces
.end(); I
!= E
;) {
562 if (auto *C
= dyn_cast
<PathDiagnosticCallPiece
>(I
->get()))
563 removePiecesWithInvalidLocations(C
->path
);
565 if (auto *M
= dyn_cast
<PathDiagnosticMacroPiece
>(I
->get()))
566 removePiecesWithInvalidLocations(M
->subPieces
);
568 if (!(*I
)->getLocation().isValid() ||
569 !(*I
)->getLocation().asLocation().isValid()) {
577 PathDiagnosticLocation
PathDiagnosticBuilder::ExecutionContinues(
578 const PathDiagnosticConstruct
&C
) const {
579 if (const Stmt
*S
= C
.getCurrentNode()->getNextStmtForDiagnostics())
580 return PathDiagnosticLocation(S
, getSourceManager(),
581 C
.getCurrLocationContext());
583 return PathDiagnosticLocation::createDeclEnd(C
.getCurrLocationContext(),
587 PathDiagnosticLocation
PathDiagnosticBuilder::ExecutionContinues(
588 llvm::raw_string_ostream
&os
, const PathDiagnosticConstruct
&C
) const {
589 // Slow, but probably doesn't matter.
590 if (os
.str().empty())
593 const PathDiagnosticLocation
&Loc
= ExecutionContinues(C
);
596 os
<< "Execution continues on line "
597 << getSourceManager().getExpansionLineNumber(Loc
.asLocation())
600 os
<< "Execution jumps to the end of the ";
601 const Decl
*D
= C
.getCurrLocationContext()->getDecl();
602 if (isa
<ObjCMethodDecl
>(D
))
604 else if (isa
<FunctionDecl
>(D
))
607 assert(isa
<BlockDecl
>(D
));
608 os
<< "anonymous block";
616 static const Stmt
*getEnclosingParent(const Stmt
*S
, const ParentMap
&PM
) {
617 if (isa
<Expr
>(S
) && PM
.isConsumedExpr(cast
<Expr
>(S
)))
618 return PM
.getParentIgnoreParens(S
);
620 const Stmt
*Parent
= PM
.getParentIgnoreParens(S
);
624 switch (Parent
->getStmtClass()) {
625 case Stmt::ForStmtClass
:
626 case Stmt::DoStmtClass
:
627 case Stmt::WhileStmtClass
:
628 case Stmt::ObjCForCollectionStmtClass
:
629 case Stmt::CXXForRangeStmtClass
:
638 static PathDiagnosticLocation
639 getEnclosingStmtLocation(const Stmt
*S
, const LocationContext
*LC
,
640 bool allowNestedContexts
= false) {
644 const SourceManager
&SMgr
= LC
->getDecl()->getASTContext().getSourceManager();
646 while (const Stmt
*Parent
= getEnclosingParent(S
, LC
->getParentMap())) {
647 switch (Parent
->getStmtClass()) {
648 case Stmt::BinaryOperatorClass
: {
649 const auto *B
= cast
<BinaryOperator
>(Parent
);
650 if (B
->isLogicalOp())
651 return PathDiagnosticLocation(allowNestedContexts
? B
: S
, SMgr
, LC
);
654 case Stmt::CompoundStmtClass
:
655 case Stmt::StmtExprClass
:
656 return PathDiagnosticLocation(S
, SMgr
, LC
);
657 case Stmt::ChooseExprClass
:
658 // Similar to '?' if we are referring to condition, just have the edge
659 // point to the entire choose expression.
660 if (allowNestedContexts
|| cast
<ChooseExpr
>(Parent
)->getCond() == S
)
661 return PathDiagnosticLocation(Parent
, SMgr
, LC
);
663 return PathDiagnosticLocation(S
, SMgr
, LC
);
664 case Stmt::BinaryConditionalOperatorClass
:
665 case Stmt::ConditionalOperatorClass
:
666 // For '?', if we are referring to condition, just have the edge point
667 // to the entire '?' expression.
668 if (allowNestedContexts
||
669 cast
<AbstractConditionalOperator
>(Parent
)->getCond() == S
)
670 return PathDiagnosticLocation(Parent
, SMgr
, LC
);
672 return PathDiagnosticLocation(S
, SMgr
, LC
);
673 case Stmt::CXXForRangeStmtClass
:
674 if (cast
<CXXForRangeStmt
>(Parent
)->getBody() == S
)
675 return PathDiagnosticLocation(S
, SMgr
, LC
);
677 case Stmt::DoStmtClass
:
678 return PathDiagnosticLocation(S
, SMgr
, LC
);
679 case Stmt::ForStmtClass
:
680 if (cast
<ForStmt
>(Parent
)->getBody() == S
)
681 return PathDiagnosticLocation(S
, SMgr
, LC
);
683 case Stmt::IfStmtClass
:
684 if (cast
<IfStmt
>(Parent
)->getCond() != S
)
685 return PathDiagnosticLocation(S
, SMgr
, LC
);
687 case Stmt::ObjCForCollectionStmtClass
:
688 if (cast
<ObjCForCollectionStmt
>(Parent
)->getBody() == S
)
689 return PathDiagnosticLocation(S
, SMgr
, LC
);
691 case Stmt::WhileStmtClass
:
692 if (cast
<WhileStmt
>(Parent
)->getCond() != S
)
693 return PathDiagnosticLocation(S
, SMgr
, LC
);
702 assert(S
&& "Cannot have null Stmt for PathDiagnosticLocation");
704 return PathDiagnosticLocation(S
, SMgr
, LC
);
707 //===----------------------------------------------------------------------===//
708 // "Minimal" path diagnostic generation algorithm.
709 //===----------------------------------------------------------------------===//
711 /// If the piece contains a special message, add it to all the call pieces on
712 /// the active stack. For example, my_malloc allocated memory, so MallocChecker
713 /// will construct an event at the call to malloc(), and add a stack hint that
714 /// an allocated memory was returned. We'll use this hint to construct a message
715 /// when returning from the call to my_malloc
717 /// void *my_malloc() { return malloc(sizeof(int)); }
719 /// void *ptr = my_malloc(); // returned allocated memory
721 void PathDiagnosticBuilder::updateStackPiecesWithMessage(
722 PathDiagnosticPieceRef P
, const CallWithEntryStack
&CallStack
) const {
723 if (R
->hasCallStackHint(P
))
724 for (const auto &I
: CallStack
) {
725 PathDiagnosticCallPiece
*CP
= I
.first
;
726 const ExplodedNode
*N
= I
.second
;
727 std::string stackMsg
= R
->getCallStackMessage(P
, N
);
729 // The last message on the path to final bug is the most important
730 // one. Since we traverse the path backwards, do not add the message
731 // if one has been previously added.
732 if (!CP
->hasCallStackMessage())
733 CP
->setCallStackMessage(stackMsg
);
737 static void CompactMacroExpandedPieces(PathPieces
&path
,
738 const SourceManager
& SM
);
740 PathDiagnosticPieceRef
PathDiagnosticBuilder::generateDiagForSwitchOP(
741 const PathDiagnosticConstruct
&C
, const CFGBlock
*Dst
,
742 PathDiagnosticLocation
&Start
) const {
744 const SourceManager
&SM
= getSourceManager();
745 // Figure out what case arm we took.
747 llvm::raw_string_ostream
os(sbuf
);
748 PathDiagnosticLocation End
;
750 if (const Stmt
*S
= Dst
->getLabel()) {
751 End
= PathDiagnosticLocation(S
, SM
, C
.getCurrLocationContext());
753 switch (S
->getStmtClass()) {
755 os
<< "No cases match in the switch statement. "
756 "Control jumps to line "
757 << End
.asLocation().getExpansionLineNumber();
759 case Stmt::DefaultStmtClass
:
760 os
<< "Control jumps to the 'default' case at line "
761 << End
.asLocation().getExpansionLineNumber();
764 case Stmt::CaseStmtClass
: {
765 os
<< "Control jumps to 'case ";
766 const auto *Case
= cast
<CaseStmt
>(S
);
767 const Expr
*LHS
= Case
->getLHS()->IgnoreParenImpCasts();
769 // Determine if it is an enum.
770 bool GetRawInt
= true;
772 if (const auto *DR
= dyn_cast
<DeclRefExpr
>(LHS
)) {
773 // FIXME: Maybe this should be an assertion. Are there cases
774 // were it is not an EnumConstantDecl?
775 const auto *D
= dyn_cast
<EnumConstantDecl
>(DR
->getDecl());
784 os
<< LHS
->EvaluateKnownConstInt(getASTContext());
786 os
<< ":' at line " << End
.asLocation().getExpansionLineNumber();
791 os
<< "'Default' branch taken. ";
792 End
= ExecutionContinues(os
, C
);
794 return std::make_shared
<PathDiagnosticControlFlowPiece
>(Start
, End
,
798 PathDiagnosticPieceRef
PathDiagnosticBuilder::generateDiagForGotoOP(
799 const PathDiagnosticConstruct
&C
, const Stmt
*S
,
800 PathDiagnosticLocation
&Start
) const {
802 llvm::raw_string_ostream
os(sbuf
);
803 const PathDiagnosticLocation
&End
=
804 getEnclosingStmtLocation(S
, C
.getCurrLocationContext());
805 os
<< "Control jumps to line " << End
.asLocation().getExpansionLineNumber();
806 return std::make_shared
<PathDiagnosticControlFlowPiece
>(Start
, End
, os
.str());
809 PathDiagnosticPieceRef
PathDiagnosticBuilder::generateDiagForBinaryOP(
810 const PathDiagnosticConstruct
&C
, const Stmt
*T
, const CFGBlock
*Src
,
811 const CFGBlock
*Dst
) const {
813 const SourceManager
&SM
= getSourceManager();
815 const auto *B
= cast
<BinaryOperator
>(T
);
817 llvm::raw_string_ostream
os(sbuf
);
818 os
<< "Left side of '";
819 PathDiagnosticLocation Start
, End
;
821 if (B
->getOpcode() == BO_LAnd
) {
825 if (*(Src
->succ_begin() + 1) == Dst
) {
827 End
= PathDiagnosticLocation(B
->getLHS(), SM
, C
.getCurrLocationContext());
829 PathDiagnosticLocation::createOperatorLoc(B
, SM
);
833 PathDiagnosticLocation(B
->getLHS(), SM
, C
.getCurrLocationContext());
834 End
= ExecutionContinues(C
);
837 assert(B
->getOpcode() == BO_LOr
);
841 if (*(Src
->succ_begin() + 1) == Dst
) {
844 PathDiagnosticLocation(B
->getLHS(), SM
, C
.getCurrLocationContext());
845 End
= ExecutionContinues(C
);
848 End
= PathDiagnosticLocation(B
->getLHS(), SM
, C
.getCurrLocationContext());
850 PathDiagnosticLocation::createOperatorLoc(B
, SM
);
853 return std::make_shared
<PathDiagnosticControlFlowPiece
>(Start
, End
,
857 void PathDiagnosticBuilder::generateMinimalDiagForBlockEdge(
858 PathDiagnosticConstruct
&C
, BlockEdge BE
) const {
859 const SourceManager
&SM
= getSourceManager();
860 const LocationContext
*LC
= C
.getCurrLocationContext();
861 const CFGBlock
*Src
= BE
.getSrc();
862 const CFGBlock
*Dst
= BE
.getDst();
863 const Stmt
*T
= Src
->getTerminatorStmt();
867 auto Start
= PathDiagnosticLocation::createBegin(T
, SM
, LC
);
868 switch (T
->getStmtClass()) {
872 case Stmt::GotoStmtClass
:
873 case Stmt::IndirectGotoStmtClass
: {
874 if (const Stmt
*S
= C
.getCurrentNode()->getNextStmtForDiagnostics())
875 C
.getActivePath().push_front(generateDiagForGotoOP(C
, S
, Start
));
879 case Stmt::SwitchStmtClass
: {
880 C
.getActivePath().push_front(generateDiagForSwitchOP(C
, Dst
, Start
));
884 case Stmt::BreakStmtClass
:
885 case Stmt::ContinueStmtClass
: {
887 llvm::raw_string_ostream
os(sbuf
);
888 PathDiagnosticLocation End
= ExecutionContinues(os
, C
);
889 C
.getActivePath().push_front(
890 std::make_shared
<PathDiagnosticControlFlowPiece
>(Start
, End
, os
.str()));
894 // Determine control-flow for ternary '?'.
895 case Stmt::BinaryConditionalOperatorClass
:
896 case Stmt::ConditionalOperatorClass
: {
898 llvm::raw_string_ostream
os(sbuf
);
899 os
<< "'?' condition is ";
901 if (*(Src
->succ_begin() + 1) == Dst
)
906 PathDiagnosticLocation End
= ExecutionContinues(C
);
908 if (const Stmt
*S
= End
.asStmt())
909 End
= getEnclosingStmtLocation(S
, C
.getCurrLocationContext());
911 C
.getActivePath().push_front(
912 std::make_shared
<PathDiagnosticControlFlowPiece
>(Start
, End
, os
.str()));
916 // Determine control-flow for short-circuited '&&' and '||'.
917 case Stmt::BinaryOperatorClass
: {
918 if (!C
.supportsLogicalOpControlFlow())
921 C
.getActivePath().push_front(generateDiagForBinaryOP(C
, T
, Src
, Dst
));
925 case Stmt::DoStmtClass
:
926 if (*(Src
->succ_begin()) == Dst
) {
928 llvm::raw_string_ostream
os(sbuf
);
930 os
<< "Loop condition is true. ";
931 PathDiagnosticLocation End
= ExecutionContinues(os
, C
);
933 if (const Stmt
*S
= End
.asStmt())
934 End
= getEnclosingStmtLocation(S
, C
.getCurrLocationContext());
936 C
.getActivePath().push_front(
937 std::make_shared
<PathDiagnosticControlFlowPiece
>(Start
, End
,
940 PathDiagnosticLocation End
= ExecutionContinues(C
);
942 if (const Stmt
*S
= End
.asStmt())
943 End
= getEnclosingStmtLocation(S
, C
.getCurrLocationContext());
945 C
.getActivePath().push_front(
946 std::make_shared
<PathDiagnosticControlFlowPiece
>(
947 Start
, End
, "Loop condition is false. Exiting loop"));
951 case Stmt::WhileStmtClass
:
952 case Stmt::ForStmtClass
:
953 if (*(Src
->succ_begin() + 1) == Dst
) {
955 llvm::raw_string_ostream
os(sbuf
);
957 os
<< "Loop condition is false. ";
958 PathDiagnosticLocation End
= ExecutionContinues(os
, C
);
959 if (const Stmt
*S
= End
.asStmt())
960 End
= getEnclosingStmtLocation(S
, C
.getCurrLocationContext());
962 C
.getActivePath().push_front(
963 std::make_shared
<PathDiagnosticControlFlowPiece
>(Start
, End
,
966 PathDiagnosticLocation End
= ExecutionContinues(C
);
967 if (const Stmt
*S
= End
.asStmt())
968 End
= getEnclosingStmtLocation(S
, C
.getCurrLocationContext());
970 C
.getActivePath().push_front(
971 std::make_shared
<PathDiagnosticControlFlowPiece
>(
972 Start
, End
, "Loop condition is true. Entering loop body"));
977 case Stmt::IfStmtClass
: {
978 PathDiagnosticLocation End
= ExecutionContinues(C
);
980 if (const Stmt
*S
= End
.asStmt())
981 End
= getEnclosingStmtLocation(S
, C
.getCurrLocationContext());
983 if (*(Src
->succ_begin() + 1) == Dst
)
984 C
.getActivePath().push_front(
985 std::make_shared
<PathDiagnosticControlFlowPiece
>(
986 Start
, End
, "Taking false branch"));
988 C
.getActivePath().push_front(
989 std::make_shared
<PathDiagnosticControlFlowPiece
>(
990 Start
, End
, "Taking true branch"));
997 //===----------------------------------------------------------------------===//
998 // Functions for determining if a loop was executed 0 times.
999 //===----------------------------------------------------------------------===//
1001 static bool isLoop(const Stmt
*Term
) {
1002 switch (Term
->getStmtClass()) {
1003 case Stmt::ForStmtClass
:
1004 case Stmt::WhileStmtClass
:
1005 case Stmt::ObjCForCollectionStmtClass
:
1006 case Stmt::CXXForRangeStmtClass
:
1009 // Note that we intentionally do not include do..while here.
1014 static bool isJumpToFalseBranch(const BlockEdge
*BE
) {
1015 const CFGBlock
*Src
= BE
->getSrc();
1016 assert(Src
->succ_size() == 2);
1017 return (*(Src
->succ_begin()+1) == BE
->getDst());
1020 static bool isContainedByStmt(const ParentMap
&PM
, const Stmt
*S
,
1025 SubS
= PM
.getParent(SubS
);
1030 static const Stmt
*getStmtBeforeCond(const ParentMap
&PM
, const Stmt
*Term
,
1031 const ExplodedNode
*N
) {
1033 std::optional
<StmtPoint
> SP
= N
->getLocation().getAs
<StmtPoint
>();
1035 const Stmt
*S
= SP
->getStmt();
1036 if (!isContainedByStmt(PM
, Term
, S
))
1039 N
= N
->getFirstPred();
1044 static bool isInLoopBody(const ParentMap
&PM
, const Stmt
*S
, const Stmt
*Term
) {
1045 const Stmt
*LoopBody
= nullptr;
1046 switch (Term
->getStmtClass()) {
1047 case Stmt::CXXForRangeStmtClass
: {
1048 const auto *FR
= cast
<CXXForRangeStmt
>(Term
);
1049 if (isContainedByStmt(PM
, FR
->getInc(), S
))
1051 if (isContainedByStmt(PM
, FR
->getLoopVarStmt(), S
))
1053 LoopBody
= FR
->getBody();
1056 case Stmt::ForStmtClass
: {
1057 const auto *FS
= cast
<ForStmt
>(Term
);
1058 if (isContainedByStmt(PM
, FS
->getInc(), S
))
1060 LoopBody
= FS
->getBody();
1063 case Stmt::ObjCForCollectionStmtClass
: {
1064 const auto *FC
= cast
<ObjCForCollectionStmt
>(Term
);
1065 LoopBody
= FC
->getBody();
1068 case Stmt::WhileStmtClass
:
1069 LoopBody
= cast
<WhileStmt
>(Term
)->getBody();
1074 return isContainedByStmt(PM
, LoopBody
, S
);
1077 /// Adds a sanitized control-flow diagnostic edge to a path.
1078 static void addEdgeToPath(PathPieces
&path
,
1079 PathDiagnosticLocation
&PrevLoc
,
1080 PathDiagnosticLocation NewLoc
) {
1081 if (!NewLoc
.isValid())
1084 SourceLocation NewLocL
= NewLoc
.asLocation();
1085 if (NewLocL
.isInvalid())
1088 if (!PrevLoc
.isValid() || !PrevLoc
.asLocation().isValid()) {
1093 // Ignore self-edges, which occur when there are multiple nodes at the same
1095 if (NewLoc
.asStmt() && NewLoc
.asStmt() == PrevLoc
.asStmt())
1099 std::make_shared
<PathDiagnosticControlFlowPiece
>(NewLoc
, PrevLoc
));
1103 /// A customized wrapper for CFGBlock::getTerminatorCondition()
1104 /// which returns the element for ObjCForCollectionStmts.
1105 static const Stmt
*getTerminatorCondition(const CFGBlock
*B
) {
1106 const Stmt
*S
= B
->getTerminatorCondition();
1107 if (const auto *FS
= dyn_cast_or_null
<ObjCForCollectionStmt
>(S
))
1108 return FS
->getElement();
1112 constexpr llvm::StringLiteral StrEnteringLoop
= "Entering loop body";
1113 constexpr llvm::StringLiteral StrLoopBodyZero
= "Loop body executed 0 times";
1114 constexpr llvm::StringLiteral StrLoopRangeEmpty
=
1115 "Loop body skipped when range is empty";
1116 constexpr llvm::StringLiteral StrLoopCollectionEmpty
=
1117 "Loop body skipped when collection is empty";
1119 static std::unique_ptr
<FilesToLineNumsMap
>
1120 findExecutedLines(const SourceManager
&SM
, const ExplodedNode
*N
);
1122 void PathDiagnosticBuilder::generatePathDiagnosticsForNode(
1123 PathDiagnosticConstruct
&C
, PathDiagnosticLocation
&PrevLoc
) const {
1124 ProgramPoint P
= C
.getCurrentNode()->getLocation();
1125 const SourceManager
&SM
= getSourceManager();
1127 // Have we encountered an entrance to a call? It may be
1128 // the case that we have not encountered a matching
1129 // call exit before this point. This means that the path
1130 // terminated within the call itself.
1131 if (auto CE
= P
.getAs
<CallEnter
>()) {
1133 if (C
.shouldAddPathEdges()) {
1134 // Add an edge to the start of the function.
1135 const StackFrameContext
*CalleeLC
= CE
->getCalleeContext();
1136 const Decl
*D
= CalleeLC
->getDecl();
1137 // Add the edge only when the callee has body. We jump to the beginning
1138 // of the *declaration*, however we expect it to be followed by the
1139 // body. This isn't the case for autosynthesized property accessors in
1140 // Objective-C. No need for a similar extra check for CallExit points
1141 // because the exit edge comes from a statement (i.e. return),
1142 // not from declaration.
1144 addEdgeToPath(C
.getActivePath(), PrevLoc
,
1145 PathDiagnosticLocation::createBegin(D
, SM
));
1148 // Did we visit an entire call?
1149 bool VisitedEntireCall
= C
.PD
->isWithinCall();
1150 C
.PD
->popActivePath();
1152 PathDiagnosticCallPiece
*Call
;
1153 if (VisitedEntireCall
) {
1154 Call
= cast
<PathDiagnosticCallPiece
>(C
.getActivePath().front().get());
1156 // The path terminated within a nested location context, create a new
1157 // call piece to encapsulate the rest of the path pieces.
1158 const Decl
*Caller
= CE
->getLocationContext()->getDecl();
1159 Call
= PathDiagnosticCallPiece::construct(C
.getActivePath(), Caller
);
1160 assert(C
.getActivePath().size() == 1 &&
1161 C
.getActivePath().front().get() == Call
);
1163 // Since we just transferred the path over to the call piece, reset the
1164 // mapping of the active path to the current location context.
1165 assert(C
.isInLocCtxMap(&C
.getActivePath()) &&
1166 "When we ascend to a previously unvisited call, the active path's "
1167 "address shouldn't change, but rather should be compacted into "
1168 "a single CallEvent!");
1169 C
.updateLocCtxMap(&C
.getActivePath(), C
.getCurrLocationContext());
1171 // Record the location context mapping for the path within the call.
1172 assert(!C
.isInLocCtxMap(&Call
->path
) &&
1173 "When we ascend to a previously unvisited call, this must be the "
1174 "first time we encounter the caller context!");
1175 C
.updateLocCtxMap(&Call
->path
, CE
->getCalleeContext());
1177 Call
->setCallee(*CE
, SM
);
1179 // Update the previous location in the active path.
1180 PrevLoc
= Call
->getLocation();
1182 if (!C
.CallStack
.empty()) {
1183 assert(C
.CallStack
.back().first
== Call
);
1184 C
.CallStack
.pop_back();
1189 assert(C
.getCurrLocationContext() == C
.getLocationContextForActivePath() &&
1190 "The current position in the bug path is out of sync with the "
1191 "location context associated with the active path!");
1193 // Have we encountered an exit from a function call?
1194 if (std::optional
<CallExitEnd
> CE
= P
.getAs
<CallExitEnd
>()) {
1196 // We are descending into a call (backwards). Construct
1197 // a new call piece to contain the path pieces for that call.
1198 auto Call
= PathDiagnosticCallPiece::construct(*CE
, SM
);
1199 // Record the mapping from call piece to LocationContext.
1200 assert(!C
.isInLocCtxMap(&Call
->path
) &&
1201 "We just entered a call, this must've been the first time we "
1202 "encounter its context!");
1203 C
.updateLocCtxMap(&Call
->path
, CE
->getCalleeContext());
1205 if (C
.shouldAddPathEdges()) {
1206 // Add the edge to the return site.
1207 addEdgeToPath(C
.getActivePath(), PrevLoc
, Call
->callReturn
);
1208 PrevLoc
.invalidate();
1211 auto *P
= Call
.get();
1212 C
.getActivePath().push_front(std::move(Call
));
1214 // Make the contents of the call the active path for now.
1215 C
.PD
->pushActivePath(&P
->path
);
1216 C
.CallStack
.push_back(CallWithEntry(P
, C
.getCurrentNode()));
1220 if (auto PS
= P
.getAs
<PostStmt
>()) {
1221 if (!C
.shouldAddPathEdges())
1224 // Add an edge. If this is an ObjCForCollectionStmt do
1225 // not add an edge here as it appears in the CFG both
1226 // as a terminator and as a terminator condition.
1227 if (!isa
<ObjCForCollectionStmt
>(PS
->getStmt())) {
1228 PathDiagnosticLocation L
=
1229 PathDiagnosticLocation(PS
->getStmt(), SM
, C
.getCurrLocationContext());
1230 addEdgeToPath(C
.getActivePath(), PrevLoc
, L
);
1233 } else if (auto BE
= P
.getAs
<BlockEdge
>()) {
1235 if (C
.shouldAddControlNotes()) {
1236 generateMinimalDiagForBlockEdge(C
, *BE
);
1239 if (!C
.shouldAddPathEdges()) {
1243 // Are we jumping to the head of a loop? Add a special diagnostic.
1244 if (const Stmt
*Loop
= BE
->getSrc()->getLoopTarget()) {
1245 PathDiagnosticLocation
L(Loop
, SM
, C
.getCurrLocationContext());
1246 const Stmt
*Body
= nullptr;
1248 if (const auto *FS
= dyn_cast
<ForStmt
>(Loop
))
1249 Body
= FS
->getBody();
1250 else if (const auto *WS
= dyn_cast
<WhileStmt
>(Loop
))
1251 Body
= WS
->getBody();
1252 else if (const auto *OFS
= dyn_cast
<ObjCForCollectionStmt
>(Loop
)) {
1253 Body
= OFS
->getBody();
1254 } else if (const auto *FRS
= dyn_cast
<CXXForRangeStmt
>(Loop
)) {
1255 Body
= FRS
->getBody();
1257 // do-while statements are explicitly excluded here
1259 auto p
= std::make_shared
<PathDiagnosticEventPiece
>(
1260 L
, "Looping back to the head of the loop");
1261 p
->setPrunable(true);
1263 addEdgeToPath(C
.getActivePath(), PrevLoc
, p
->getLocation());
1264 // We might've added a very similar control node already
1265 if (!C
.shouldAddControlNotes()) {
1266 C
.getActivePath().push_front(std::move(p
));
1269 if (const auto *CS
= dyn_cast_or_null
<CompoundStmt
>(Body
)) {
1270 addEdgeToPath(C
.getActivePath(), PrevLoc
,
1271 PathDiagnosticLocation::createEndBrace(CS
, SM
));
1275 const CFGBlock
*BSrc
= BE
->getSrc();
1276 const ParentMap
&PM
= C
.getParentMap();
1278 if (const Stmt
*Term
= BSrc
->getTerminatorStmt()) {
1279 // Are we jumping past the loop body without ever executing the
1280 // loop (because the condition was false)?
1282 const Stmt
*TermCond
= getTerminatorCondition(BSrc
);
1283 bool IsInLoopBody
= isInLoopBody(
1284 PM
, getStmtBeforeCond(PM
, TermCond
, C
.getCurrentNode()), Term
);
1288 if (isJumpToFalseBranch(&*BE
)) {
1289 if (!IsInLoopBody
) {
1290 if (isa
<ObjCForCollectionStmt
>(Term
)) {
1291 str
= StrLoopCollectionEmpty
;
1292 } else if (isa
<CXXForRangeStmt
>(Term
)) {
1293 str
= StrLoopRangeEmpty
;
1295 str
= StrLoopBodyZero
;
1299 str
= StrEnteringLoop
;
1303 PathDiagnosticLocation
L(TermCond
? TermCond
: Term
, SM
,
1304 C
.getCurrLocationContext());
1305 auto PE
= std::make_shared
<PathDiagnosticEventPiece
>(L
, str
);
1306 PE
->setPrunable(true);
1307 addEdgeToPath(C
.getActivePath(), PrevLoc
, PE
->getLocation());
1309 // We might've added a very similar control node already
1310 if (!C
.shouldAddControlNotes()) {
1311 C
.getActivePath().push_front(std::move(PE
));
1314 } else if (isa
<BreakStmt
, ContinueStmt
, GotoStmt
>(Term
)) {
1315 PathDiagnosticLocation
L(Term
, SM
, C
.getCurrLocationContext());
1316 addEdgeToPath(C
.getActivePath(), PrevLoc
, L
);
1322 static std::unique_ptr
<PathDiagnostic
>
1323 generateDiagnosticForBasicReport(const BasicBugReport
*R
) {
1324 const BugType
&BT
= R
->getBugType();
1325 return std::make_unique
<PathDiagnostic
>(
1326 BT
.getCheckerName(), R
->getDeclWithIssue(), BT
.getDescription(),
1327 R
->getDescription(), R
->getShortDescription(/*UseFallback=*/false),
1328 BT
.getCategory(), R
->getUniqueingLocation(), R
->getUniqueingDecl(),
1329 std::make_unique
<FilesToLineNumsMap
>());
1332 static std::unique_ptr
<PathDiagnostic
>
1333 generateEmptyDiagnosticForReport(const PathSensitiveBugReport
*R
,
1334 const SourceManager
&SM
) {
1335 const BugType
&BT
= R
->getBugType();
1336 return std::make_unique
<PathDiagnostic
>(
1337 BT
.getCheckerName(), R
->getDeclWithIssue(), BT
.getDescription(),
1338 R
->getDescription(), R
->getShortDescription(/*UseFallback=*/false),
1339 BT
.getCategory(), R
->getUniqueingLocation(), R
->getUniqueingDecl(),
1340 findExecutedLines(SM
, R
->getErrorNode()));
1343 static const Stmt
*getStmtParent(const Stmt
*S
, const ParentMap
&PM
) {
1348 S
= PM
.getParentIgnoreParens(S
);
1353 if (isa
<FullExpr
, CXXBindTemporaryExpr
, SubstNonTypeTemplateParmExpr
>(S
))
1362 static bool isConditionForTerminator(const Stmt
*S
, const Stmt
*Cond
) {
1363 switch (S
->getStmtClass()) {
1364 case Stmt::BinaryOperatorClass
: {
1365 const auto *BO
= cast
<BinaryOperator
>(S
);
1366 if (!BO
->isLogicalOp())
1368 return BO
->getLHS() == Cond
|| BO
->getRHS() == Cond
;
1370 case Stmt::IfStmtClass
:
1371 return cast
<IfStmt
>(S
)->getCond() == Cond
;
1372 case Stmt::ForStmtClass
:
1373 return cast
<ForStmt
>(S
)->getCond() == Cond
;
1374 case Stmt::WhileStmtClass
:
1375 return cast
<WhileStmt
>(S
)->getCond() == Cond
;
1376 case Stmt::DoStmtClass
:
1377 return cast
<DoStmt
>(S
)->getCond() == Cond
;
1378 case Stmt::ChooseExprClass
:
1379 return cast
<ChooseExpr
>(S
)->getCond() == Cond
;
1380 case Stmt::IndirectGotoStmtClass
:
1381 return cast
<IndirectGotoStmt
>(S
)->getTarget() == Cond
;
1382 case Stmt::SwitchStmtClass
:
1383 return cast
<SwitchStmt
>(S
)->getCond() == Cond
;
1384 case Stmt::BinaryConditionalOperatorClass
:
1385 return cast
<BinaryConditionalOperator
>(S
)->getCond() == Cond
;
1386 case Stmt::ConditionalOperatorClass
: {
1387 const auto *CO
= cast
<ConditionalOperator
>(S
);
1388 return CO
->getCond() == Cond
||
1389 CO
->getLHS() == Cond
||
1390 CO
->getRHS() == Cond
;
1392 case Stmt::ObjCForCollectionStmtClass
:
1393 return cast
<ObjCForCollectionStmt
>(S
)->getElement() == Cond
;
1394 case Stmt::CXXForRangeStmtClass
: {
1395 const auto *FRS
= cast
<CXXForRangeStmt
>(S
);
1396 return FRS
->getCond() == Cond
|| FRS
->getRangeInit() == Cond
;
1403 static bool isIncrementOrInitInForLoop(const Stmt
*S
, const Stmt
*FL
) {
1404 if (const auto *FS
= dyn_cast
<ForStmt
>(FL
))
1405 return FS
->getInc() == S
|| FS
->getInit() == S
;
1406 if (const auto *FRS
= dyn_cast
<CXXForRangeStmt
>(FL
))
1407 return FRS
->getInc() == S
|| FRS
->getRangeStmt() == S
||
1408 FRS
->getLoopVarStmt() || FRS
->getRangeInit() == S
;
1412 using OptimizedCallsSet
= llvm::DenseSet
<const PathDiagnosticCallPiece
*>;
1414 /// Adds synthetic edges from top-level statements to their subexpressions.
1416 /// This avoids a "swoosh" effect, where an edge from a top-level statement A
1417 /// points to a sub-expression B.1 that's not at the start of B. In these cases,
1418 /// we'd like to see an edge from A to B, then another one from B to B.1.
1419 static void addContextEdges(PathPieces
&pieces
, const LocationContext
*LC
) {
1420 const ParentMap
&PM
= LC
->getParentMap();
1421 PathPieces::iterator Prev
= pieces
.end();
1422 for (PathPieces::iterator I
= pieces
.begin(), E
= Prev
; I
!= E
;
1424 auto *Piece
= dyn_cast
<PathDiagnosticControlFlowPiece
>(I
->get());
1429 PathDiagnosticLocation SrcLoc
= Piece
->getStartLocation();
1430 SmallVector
<PathDiagnosticLocation
, 4> SrcContexts
;
1432 PathDiagnosticLocation NextSrcContext
= SrcLoc
;
1433 const Stmt
*InnerStmt
= nullptr;
1434 while (NextSrcContext
.isValid() && NextSrcContext
.asStmt() != InnerStmt
) {
1435 SrcContexts
.push_back(NextSrcContext
);
1436 InnerStmt
= NextSrcContext
.asStmt();
1437 NextSrcContext
= getEnclosingStmtLocation(InnerStmt
, LC
,
1438 /*allowNested=*/true);
1441 // Repeatedly split the edge as necessary.
1442 // This is important for nested logical expressions (||, &&, ?:) where we
1443 // want to show all the levels of context.
1445 const Stmt
*Dst
= Piece
->getEndLocation().getStmtOrNull();
1447 // We are looking at an edge. Is the destination within a larger
1449 PathDiagnosticLocation DstContext
=
1450 getEnclosingStmtLocation(Dst
, LC
, /*allowNested=*/true);
1451 if (!DstContext
.isValid() || DstContext
.asStmt() == Dst
)
1454 // If the source is in the same context, we're already good.
1455 if (llvm::is_contained(SrcContexts
, DstContext
))
1458 // Update the subexpression node to point to the context edge.
1459 Piece
->setStartLocation(DstContext
);
1461 // Try to extend the previous edge if it's at the same level as the source
1464 auto *PrevPiece
= dyn_cast
<PathDiagnosticControlFlowPiece
>(Prev
->get());
1467 if (const Stmt
*PrevSrc
=
1468 PrevPiece
->getStartLocation().getStmtOrNull()) {
1469 const Stmt
*PrevSrcParent
= getStmtParent(PrevSrc
, PM
);
1470 if (PrevSrcParent
==
1471 getStmtParent(DstContext
.getStmtOrNull(), PM
)) {
1472 PrevPiece
->setEndLocation(DstContext
);
1479 // Otherwise, split the current edge into a context edge and a
1480 // subexpression edge. Note that the context statement may itself have
1483 std::make_shared
<PathDiagnosticControlFlowPiece
>(SrcLoc
, DstContext
);
1485 I
= pieces
.insert(I
, std::move(P
));
1490 /// Move edges from a branch condition to a branch target
1491 /// when the condition is simple.
1493 /// This restructures some of the work of addContextEdges. That function
1494 /// creates edges this may destroy, but they work together to create a more
1495 /// aesthetically set of edges around branches. After the call to
1496 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
1497 /// the branch to the branch condition, and (3) an edge from the branch
1498 /// condition to the branch target. We keep (1), but may wish to remove (2)
1499 /// and move the source of (3) to the branch if the branch condition is simple.
1500 static void simplifySimpleBranches(PathPieces
&pieces
) {
1501 for (PathPieces::iterator I
= pieces
.begin(), E
= pieces
.end(); I
!= E
; ++I
) {
1502 const auto *PieceI
= dyn_cast
<PathDiagnosticControlFlowPiece
>(I
->get());
1507 const Stmt
*s1Start
= PieceI
->getStartLocation().getStmtOrNull();
1508 const Stmt
*s1End
= PieceI
->getEndLocation().getStmtOrNull();
1510 if (!s1Start
|| !s1End
)
1513 PathPieces::iterator NextI
= I
; ++NextI
;
1517 PathDiagnosticControlFlowPiece
*PieceNextI
= nullptr;
1523 const auto *EV
= dyn_cast
<PathDiagnosticEventPiece
>(NextI
->get());
1525 StringRef S
= EV
->getString();
1526 if (S
== StrEnteringLoop
|| S
== StrLoopBodyZero
||
1527 S
== StrLoopCollectionEmpty
|| S
== StrLoopRangeEmpty
) {
1534 PieceNextI
= dyn_cast
<PathDiagnosticControlFlowPiece
>(NextI
->get());
1541 const Stmt
*s2Start
= PieceNextI
->getStartLocation().getStmtOrNull();
1542 const Stmt
*s2End
= PieceNextI
->getEndLocation().getStmtOrNull();
1544 if (!s2Start
|| !s2End
|| s1End
!= s2Start
)
1547 // We only perform this transformation for specific branch kinds.
1548 // We don't want to do this for do..while, for example.
1549 if (!isa
<ForStmt
, WhileStmt
, IfStmt
, ObjCForCollectionStmt
,
1550 CXXForRangeStmt
>(s1Start
))
1553 // Is s1End the branch condition?
1554 if (!isConditionForTerminator(s1Start
, s1End
))
1557 // Perform the hoisting by eliminating (2) and changing the start
1559 PieceNextI
->setStartLocation(PieceI
->getStartLocation());
1560 I
= pieces
.erase(I
);
1564 /// Returns the number of bytes in the given (character-based) SourceRange.
1566 /// If the locations in the range are not on the same line, returns
1569 /// Note that this does not do a precise user-visible character or column count.
1570 static std::optional
<size_t> getLengthOnSingleLine(const SourceManager
&SM
,
1571 SourceRange Range
) {
1572 SourceRange
ExpansionRange(SM
.getExpansionLoc(Range
.getBegin()),
1573 SM
.getExpansionRange(Range
.getEnd()).getEnd());
1575 FileID FID
= SM
.getFileID(ExpansionRange
.getBegin());
1576 if (FID
!= SM
.getFileID(ExpansionRange
.getEnd()))
1577 return std::nullopt
;
1579 std::optional
<MemoryBufferRef
> Buffer
= SM
.getBufferOrNone(FID
);
1581 return std::nullopt
;
1583 unsigned BeginOffset
= SM
.getFileOffset(ExpansionRange
.getBegin());
1584 unsigned EndOffset
= SM
.getFileOffset(ExpansionRange
.getEnd());
1585 StringRef Snippet
= Buffer
->getBuffer().slice(BeginOffset
, EndOffset
);
1587 // We're searching the raw bytes of the buffer here, which might include
1588 // escaped newlines and such. That's okay; we're trying to decide whether the
1589 // SourceRange is covering a large or small amount of space in the user's
1591 if (Snippet
.find_first_of("\r\n") != StringRef::npos
)
1592 return std::nullopt
;
1594 // This isn't Unicode-aware, but it doesn't need to be.
1595 return Snippet
.size();
1598 /// \sa getLengthOnSingleLine(SourceManager, SourceRange)
1599 static std::optional
<size_t> getLengthOnSingleLine(const SourceManager
&SM
,
1601 return getLengthOnSingleLine(SM
, S
->getSourceRange());
1604 /// Eliminate two-edge cycles created by addContextEdges().
1606 /// Once all the context edges are in place, there are plenty of cases where
1607 /// there's a single edge from a top-level statement to a subexpression,
1608 /// followed by a single path note, and then a reverse edge to get back out to
1609 /// the top level. If the statement is simple enough, the subexpression edges
1610 /// just add noise and make it harder to understand what's going on.
1612 /// This function only removes edges in pairs, because removing only one edge
1613 /// might leave other edges dangling.
1615 /// This will not remove edges in more complicated situations:
1616 /// - if there is more than one "hop" leading to or from a subexpression.
1617 /// - if there is an inlined call between the edges instead of a single event.
1618 /// - if the whole statement is large enough that having subexpression arrows
1619 /// might be helpful.
1620 static void removeContextCycles(PathPieces
&Path
, const SourceManager
&SM
) {
1621 for (PathPieces::iterator I
= Path
.begin(), E
= Path
.end(); I
!= E
; ) {
1622 // Pattern match the current piece and its successor.
1623 const auto *PieceI
= dyn_cast
<PathDiagnosticControlFlowPiece
>(I
->get());
1630 const Stmt
*s1Start
= PieceI
->getStartLocation().getStmtOrNull();
1631 const Stmt
*s1End
= PieceI
->getEndLocation().getStmtOrNull();
1633 PathPieces::iterator NextI
= I
; ++NextI
;
1637 const auto *PieceNextI
=
1638 dyn_cast
<PathDiagnosticControlFlowPiece
>(NextI
->get());
1641 if (isa
<PathDiagnosticEventPiece
>(NextI
->get())) {
1645 PieceNextI
= dyn_cast
<PathDiagnosticControlFlowPiece
>(NextI
->get());
1654 const Stmt
*s2Start
= PieceNextI
->getStartLocation().getStmtOrNull();
1655 const Stmt
*s2End
= PieceNextI
->getEndLocation().getStmtOrNull();
1657 if (s1Start
&& s2Start
&& s1Start
== s2End
&& s2Start
== s1End
) {
1658 const size_t MAX_SHORT_LINE_LENGTH
= 80;
1659 std::optional
<size_t> s1Length
= getLengthOnSingleLine(SM
, s1Start
);
1660 if (s1Length
&& *s1Length
<= MAX_SHORT_LINE_LENGTH
) {
1661 std::optional
<size_t> s2Length
= getLengthOnSingleLine(SM
, s2Start
);
1662 if (s2Length
&& *s2Length
<= MAX_SHORT_LINE_LENGTH
) {
1664 I
= Path
.erase(NextI
);
1674 /// Return true if X is contained by Y.
1675 static bool lexicalContains(const ParentMap
&PM
, const Stmt
*X
, const Stmt
*Y
) {
1679 X
= PM
.getParent(X
);
1684 // Remove short edges on the same line less than 3 columns in difference.
1685 static void removePunyEdges(PathPieces
&path
, const SourceManager
&SM
,
1686 const ParentMap
&PM
) {
1687 bool erased
= false;
1689 for (PathPieces::iterator I
= path
.begin(), E
= path
.end(); I
!= E
;
1693 const auto *PieceI
= dyn_cast
<PathDiagnosticControlFlowPiece
>(I
->get());
1698 const Stmt
*start
= PieceI
->getStartLocation().getStmtOrNull();
1699 const Stmt
*end
= PieceI
->getEndLocation().getStmtOrNull();
1704 const Stmt
*endParent
= PM
.getParent(end
);
1708 if (isConditionForTerminator(end
, endParent
))
1711 SourceLocation FirstLoc
= start
->getBeginLoc();
1712 SourceLocation SecondLoc
= end
->getBeginLoc();
1714 if (!SM
.isWrittenInSameFile(FirstLoc
, SecondLoc
))
1716 if (SM
.isBeforeInTranslationUnit(SecondLoc
, FirstLoc
))
1717 std::swap(SecondLoc
, FirstLoc
);
1719 SourceRange
EdgeRange(FirstLoc
, SecondLoc
);
1720 std::optional
<size_t> ByteWidth
= getLengthOnSingleLine(SM
, EdgeRange
);
1722 // If the statements are on different lines, continue.
1726 const size_t MAX_PUNY_EDGE_LENGTH
= 2;
1727 if (*ByteWidth
<= MAX_PUNY_EDGE_LENGTH
) {
1728 // FIXME: There are enough /bytes/ between the endpoints of the edge, but
1729 // there might not be enough /columns/. A proper user-visible column count
1730 // is probably too expensive, though.
1738 static void removeIdenticalEvents(PathPieces
&path
) {
1739 for (PathPieces::iterator I
= path
.begin(), E
= path
.end(); I
!= E
; ++I
) {
1740 const auto *PieceI
= dyn_cast
<PathDiagnosticEventPiece
>(I
->get());
1745 PathPieces::iterator NextI
= I
; ++NextI
;
1749 const auto *PieceNextI
= dyn_cast
<PathDiagnosticEventPiece
>(NextI
->get());
1754 // Erase the second piece if it has the same exact message text.
1755 if (PieceI
->getString() == PieceNextI
->getString()) {
1761 static bool optimizeEdges(const PathDiagnosticConstruct
&C
, PathPieces
&path
,
1762 OptimizedCallsSet
&OCS
) {
1763 bool hasChanges
= false;
1764 const LocationContext
*LC
= C
.getLocationContextFor(&path
);
1766 const ParentMap
&PM
= LC
->getParentMap();
1767 const SourceManager
&SM
= C
.getSourceManager();
1769 for (PathPieces::iterator I
= path
.begin(), E
= path
.end(); I
!= E
; ) {
1770 // Optimize subpaths.
1771 if (auto *CallI
= dyn_cast
<PathDiagnosticCallPiece
>(I
->get())) {
1772 // Record the fact that a call has been optimized so we only do the
1774 if (!OCS
.count(CallI
)) {
1775 while (optimizeEdges(C
, CallI
->path
, OCS
)) {
1783 // Pattern match the current piece and its successor.
1784 auto *PieceI
= dyn_cast
<PathDiagnosticControlFlowPiece
>(I
->get());
1791 const Stmt
*s1Start
= PieceI
->getStartLocation().getStmtOrNull();
1792 const Stmt
*s1End
= PieceI
->getEndLocation().getStmtOrNull();
1793 const Stmt
*level1
= getStmtParent(s1Start
, PM
);
1794 const Stmt
*level2
= getStmtParent(s1End
, PM
);
1796 PathPieces::iterator NextI
= I
; ++NextI
;
1800 const auto *PieceNextI
= dyn_cast
<PathDiagnosticControlFlowPiece
>(NextI
->get());
1807 const Stmt
*s2Start
= PieceNextI
->getStartLocation().getStmtOrNull();
1808 const Stmt
*s2End
= PieceNextI
->getEndLocation().getStmtOrNull();
1809 const Stmt
*level3
= getStmtParent(s2Start
, PM
);
1810 const Stmt
*level4
= getStmtParent(s2End
, PM
);
1814 // If we have two consecutive control edges whose end/begin locations
1815 // are at the same level (e.g. statements or top-level expressions within
1816 // a compound statement, or siblings share a single ancestor expression),
1817 // then merge them if they have no interesting intermediate event.
1821 // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
1822 // parent is '1'. Here 'x.y.z' represents the hierarchy of statements.
1824 // NOTE: this will be limited later in cases where we add barriers
1825 // to prevent this optimization.
1826 if (level1
&& level1
== level2
&& level1
== level3
&& level1
== level4
) {
1827 PieceI
->setEndLocation(PieceNextI
->getEndLocation());
1835 // Eliminate edges between subexpressions and parent expressions
1836 // when the subexpression is consumed.
1838 // NOTE: this will be limited later in cases where we add barriers
1839 // to prevent this optimization.
1840 if (s1End
&& s1End
== s2Start
&& level2
) {
1841 bool removeEdge
= false;
1842 // Remove edges into the increment or initialization of a
1843 // loop that have no interleaving event. This means that
1844 // they aren't interesting.
1845 if (isIncrementOrInitInForLoop(s1End
, level2
))
1847 // Next only consider edges that are not anchored on
1848 // the condition of a terminator. This are intermediate edges
1849 // that we might want to trim.
1850 else if (!isConditionForTerminator(level2
, s1End
)) {
1851 // Trim edges on expressions that are consumed by
1852 // the parent expression.
1853 if (isa
<Expr
>(s1End
) && PM
.isConsumedExpr(cast
<Expr
>(s1End
))) {
1856 // Trim edges where a lexical containment doesn't exist.
1861 // If 'Z' lexically contains Y (it is an ancestor) and
1862 // 'X' does not lexically contain Y (it is a descendant OR
1863 // it has no lexical relationship at all) then trim.
1865 // This can eliminate edges where we dive into a subexpression
1866 // and then pop back out, etc.
1867 else if (s1Start
&& s2End
&&
1868 lexicalContains(PM
, s2Start
, s2End
) &&
1869 !lexicalContains(PM
, s1End
, s1Start
)) {
1872 // Trim edges from a subexpression back to the top level if the
1873 // subexpression is on a different line.
1879 // These edges just look ugly and don't usually add anything.
1880 else if (s1Start
&& s2End
&&
1881 lexicalContains(PM
, s1Start
, s1End
)) {
1882 SourceRange
EdgeRange(PieceI
->getEndLocation().asLocation(),
1883 PieceI
->getStartLocation().asLocation());
1884 if (!getLengthOnSingleLine(SM
, EdgeRange
))
1890 PieceI
->setEndLocation(PieceNextI
->getEndLocation());
1897 // Optimize edges for ObjC fast-enumeration loops.
1899 // (X -> collection) -> (collection -> element)
1904 if (s1End
== s2Start
) {
1905 const auto *FS
= dyn_cast_or_null
<ObjCForCollectionStmt
>(level3
);
1906 if (FS
&& FS
->getCollection()->IgnoreParens() == s2Start
&&
1907 s2End
== FS
->getElement()) {
1908 PieceI
->setEndLocation(PieceNextI
->getEndLocation());
1915 // No changes at this index? Move to the next one.
1920 // Adjust edges into subexpressions to make them more uniform
1921 // and aesthetically pleasing.
1922 addContextEdges(path
, LC
);
1923 // Remove "cyclical" edges that include one or more context edges.
1924 removeContextCycles(path
, SM
);
1925 // Hoist edges originating from branch conditions to branches
1926 // for simple branches.
1927 simplifySimpleBranches(path
);
1928 // Remove any puny edges left over after primary optimization pass.
1929 removePunyEdges(path
, SM
, PM
);
1930 // Remove identical events.
1931 removeIdenticalEvents(path
);
1937 /// Drop the very first edge in a path, which should be a function entry edge.
1939 /// If the first edge is not a function entry edge (say, because the first
1940 /// statement had an invalid source location), this function does nothing.
1941 // FIXME: We should just generate invalid edges anyway and have the optimizer
1943 static void dropFunctionEntryEdge(const PathDiagnosticConstruct
&C
,
1945 const auto *FirstEdge
=
1946 dyn_cast
<PathDiagnosticControlFlowPiece
>(Path
.front().get());
1950 const Decl
*D
= C
.getLocationContextFor(&Path
)->getDecl();
1951 PathDiagnosticLocation EntryLoc
=
1952 PathDiagnosticLocation::createBegin(D
, C
.getSourceManager());
1953 if (FirstEdge
->getStartLocation() != EntryLoc
)
1959 /// Populate executes lines with lines containing at least one diagnostics.
1960 static void updateExecutedLinesWithDiagnosticPieces(PathDiagnostic
&PD
) {
1962 PathPieces path
= PD
.path
.flatten(/*ShouldFlattenMacros=*/true);
1963 FilesToLineNumsMap
&ExecutedLines
= PD
.getExecutedLines();
1965 for (const auto &P
: path
) {
1966 FullSourceLoc Loc
= P
->getLocation().asLocation().getExpansionLoc();
1967 FileID FID
= Loc
.getFileID();
1968 unsigned LineNo
= Loc
.getLineNumber();
1969 assert(FID
.isValid());
1970 ExecutedLines
[FID
].insert(LineNo
);
1974 PathDiagnosticConstruct::PathDiagnosticConstruct(
1975 const PathDiagnosticConsumer
*PDC
, const ExplodedNode
*ErrorNode
,
1976 const PathSensitiveBugReport
*R
)
1977 : Consumer(PDC
), CurrentNode(ErrorNode
),
1978 SM(CurrentNode
->getCodeDecl().getASTContext().getSourceManager()),
1979 PD(generateEmptyDiagnosticForReport(R
, getSourceManager())) {
1980 LCM
[&PD
->getActivePath()] = ErrorNode
->getLocationContext();
1983 PathDiagnosticBuilder::PathDiagnosticBuilder(
1984 BugReporterContext BRC
, std::unique_ptr
<ExplodedGraph
> BugPath
,
1985 PathSensitiveBugReport
*r
, const ExplodedNode
*ErrorNode
,
1986 std::unique_ptr
<VisitorsDiagnosticsTy
> VisitorsDiagnostics
)
1987 : BugReporterContext(BRC
), BugPath(std::move(BugPath
)), R(r
),
1988 ErrorNode(ErrorNode
),
1989 VisitorsDiagnostics(std::move(VisitorsDiagnostics
)) {}
1991 std::unique_ptr
<PathDiagnostic
>
1992 PathDiagnosticBuilder::generate(const PathDiagnosticConsumer
*PDC
) const {
1993 PathDiagnosticConstruct
Construct(PDC
, ErrorNode
, R
);
1995 const SourceManager
&SM
= getSourceManager();
1996 const AnalyzerOptions
&Opts
= getAnalyzerOptions();
1998 if (!PDC
->shouldGenerateDiagnostics())
1999 return generateEmptyDiagnosticForReport(R
, getSourceManager());
2001 // Construct the final (warning) event for the bug report.
2002 auto EndNotes
= VisitorsDiagnostics
->find(ErrorNode
);
2003 PathDiagnosticPieceRef LastPiece
;
2004 if (EndNotes
!= VisitorsDiagnostics
->end()) {
2005 assert(!EndNotes
->second
.empty());
2006 LastPiece
= EndNotes
->second
[0];
2008 LastPiece
= BugReporterVisitor::getDefaultEndPath(*this, ErrorNode
,
2011 Construct
.PD
->setEndOfPath(LastPiece
);
2013 PathDiagnosticLocation PrevLoc
= Construct
.PD
->getLocation();
2014 // From the error node to the root, ascend the bug path and construct the bug
2016 while (Construct
.ascendToPrevNode()) {
2017 generatePathDiagnosticsForNode(Construct
, PrevLoc
);
2019 auto VisitorNotes
= VisitorsDiagnostics
->find(Construct
.getCurrentNode());
2020 if (VisitorNotes
== VisitorsDiagnostics
->end())
2023 // This is a workaround due to inability to put shared PathDiagnosticPiece
2024 // into a FoldingSet.
2025 std::set
<llvm::FoldingSetNodeID
> DeduplicationSet
;
2027 // Add pieces from custom visitors.
2028 for (const PathDiagnosticPieceRef
&Note
: VisitorNotes
->second
) {
2029 llvm::FoldingSetNodeID ID
;
2031 if (!DeduplicationSet
.insert(ID
).second
)
2034 if (PDC
->shouldAddPathEdges())
2035 addEdgeToPath(Construct
.getActivePath(), PrevLoc
, Note
->getLocation());
2036 updateStackPiecesWithMessage(Note
, Construct
.CallStack
);
2037 Construct
.getActivePath().push_front(Note
);
2041 if (PDC
->shouldAddPathEdges()) {
2042 // Add an edge to the start of the function.
2043 // We'll prune it out later, but it helps make diagnostics more uniform.
2044 const StackFrameContext
*CalleeLC
=
2045 Construct
.getLocationContextForActivePath()->getStackFrame();
2046 const Decl
*D
= CalleeLC
->getDecl();
2047 addEdgeToPath(Construct
.getActivePath(), PrevLoc
,
2048 PathDiagnosticLocation::createBegin(D
, SM
));
2052 // Finally, prune the diagnostic path of uninteresting stuff.
2053 if (!Construct
.PD
->path
.empty()) {
2054 if (R
->shouldPrunePath() && Opts
.ShouldPrunePaths
) {
2055 bool stillHasNotes
=
2056 removeUnneededCalls(Construct
, Construct
.getMutablePieces(), R
);
2057 assert(stillHasNotes
);
2058 (void)stillHasNotes
;
2061 // Remove pop-up notes if needed.
2062 if (!Opts
.ShouldAddPopUpNotes
)
2063 removePopUpNotes(Construct
.getMutablePieces());
2065 // Redirect all call pieces to have valid locations.
2066 adjustCallLocations(Construct
.getMutablePieces());
2067 removePiecesWithInvalidLocations(Construct
.getMutablePieces());
2069 if (PDC
->shouldAddPathEdges()) {
2071 // Reduce the number of edges from a very conservative set
2072 // to an aesthetically pleasing subset that conveys the
2073 // necessary information.
2074 OptimizedCallsSet OCS
;
2075 while (optimizeEdges(Construct
, Construct
.getMutablePieces(), OCS
)) {
2078 // Drop the very first function-entry edge. It's not really necessary
2079 // for top-level functions.
2080 dropFunctionEntryEdge(Construct
, Construct
.getMutablePieces());
2083 // Remove messages that are basically the same, and edges that may not
2085 // We have to do this after edge optimization in the Extensive mode.
2086 removeRedundantMsgs(Construct
.getMutablePieces());
2087 removeEdgesToDefaultInitializers(Construct
.getMutablePieces());
2090 if (Opts
.ShouldDisplayMacroExpansions
)
2091 CompactMacroExpandedPieces(Construct
.getMutablePieces(), SM
);
2093 return std::move(Construct
.PD
);
2096 //===----------------------------------------------------------------------===//
2097 // Methods for BugType and subclasses.
2098 //===----------------------------------------------------------------------===//
2100 void BugType::anchor() {}
2102 //===----------------------------------------------------------------------===//
2103 // Methods for BugReport and subclasses.
2104 //===----------------------------------------------------------------------===//
2106 LLVM_ATTRIBUTE_USED
static bool
2107 isDependency(const CheckerRegistryData
&Registry
, StringRef CheckerName
) {
2108 for (const std::pair
<StringRef
, StringRef
> &Pair
: Registry
.Dependencies
) {
2109 if (Pair
.second
== CheckerName
)
2115 LLVM_ATTRIBUTE_USED
static bool isHidden(const CheckerRegistryData
&Registry
,
2116 StringRef CheckerName
) {
2117 for (const CheckerInfo
&Checker
: Registry
.Checkers
) {
2118 if (Checker
.FullName
== CheckerName
)
2119 return Checker
.IsHidden
;
2122 "Checker name not found in CheckerRegistry -- did you retrieve it "
2123 "correctly from CheckerManager::getCurrentCheckerName?");
2126 PathSensitiveBugReport::PathSensitiveBugReport(
2127 const BugType
&bt
, StringRef shortDesc
, StringRef desc
,
2128 const ExplodedNode
*errorNode
, PathDiagnosticLocation LocationToUnique
,
2129 const Decl
*DeclToUnique
)
2130 : BugReport(Kind::PathSensitive
, bt
, shortDesc
, desc
), ErrorNode(errorNode
),
2131 ErrorNodeRange(getStmt() ? getStmt()->getSourceRange() : SourceRange()),
2132 UniqueingLocation(LocationToUnique
), UniqueingDecl(DeclToUnique
) {
2133 assert(!isDependency(ErrorNode
->getState()
2134 ->getAnalysisManager()
2135 .getCheckerManager()
2136 ->getCheckerRegistryData(),
2137 bt
.getCheckerName()) &&
2138 "Some checkers depend on this one! We don't allow dependency "
2139 "checkers to emit warnings, because checkers should depend on "
2140 "*modeling*, not *diagnostics*.");
2143 (bt
.getCheckerName().startswith("debug") ||
2144 !isHidden(ErrorNode
->getState()
2145 ->getAnalysisManager()
2146 .getCheckerManager()
2147 ->getCheckerRegistryData(),
2148 bt
.getCheckerName())) &&
2149 "Hidden checkers musn't emit diagnostics as they are by definition "
2150 "non-user facing!");
2153 void PathSensitiveBugReport::addVisitor(
2154 std::unique_ptr
<BugReporterVisitor
> visitor
) {
2158 llvm::FoldingSetNodeID ID
;
2159 visitor
->Profile(ID
);
2161 void *InsertPos
= nullptr;
2162 if (CallbacksSet
.FindNodeOrInsertPos(ID
, InsertPos
)) {
2166 Callbacks
.push_back(std::move(visitor
));
2169 void PathSensitiveBugReport::clearVisitors() {
2173 const Decl
*PathSensitiveBugReport::getDeclWithIssue() const {
2174 const ExplodedNode
*N
= getErrorNode();
2178 const LocationContext
*LC
= N
->getLocationContext();
2179 return LC
->getStackFrame()->getDecl();
2182 void BasicBugReport::Profile(llvm::FoldingSetNodeID
& hash
) const {
2183 hash
.AddInteger(static_cast<int>(getKind()));
2184 hash
.AddPointer(&BT
);
2185 hash
.AddString(Description
);
2186 assert(Location
.isValid());
2187 Location
.Profile(hash
);
2189 for (SourceRange range
: Ranges
) {
2190 if (!range
.isValid())
2192 hash
.Add(range
.getBegin());
2193 hash
.Add(range
.getEnd());
2197 void PathSensitiveBugReport::Profile(llvm::FoldingSetNodeID
&hash
) const {
2198 hash
.AddInteger(static_cast<int>(getKind()));
2199 hash
.AddPointer(&BT
);
2200 hash
.AddString(Description
);
2201 PathDiagnosticLocation UL
= getUniqueingLocation();
2205 // TODO: The statement may be null if the report was emitted before any
2206 // statements were executed. In particular, some checkers by design
2207 // occasionally emit their reports in empty functions (that have no
2208 // statements in their body). Do we profile correctly in this case?
2209 hash
.AddPointer(ErrorNode
->getCurrentOrPreviousStmtForDiagnostics());
2212 for (SourceRange range
: Ranges
) {
2213 if (!range
.isValid())
2215 hash
.Add(range
.getBegin());
2216 hash
.Add(range
.getEnd());
2221 static void insertToInterestingnessMap(
2222 llvm::DenseMap
<T
, bugreporter::TrackingKind
> &InterestingnessMap
, T Val
,
2223 bugreporter::TrackingKind TKind
) {
2224 auto Result
= InterestingnessMap
.insert({Val
, TKind
});
2229 // Even if this symbol/region was already marked as interesting as a
2230 // condition, if we later mark it as interesting again but with
2231 // thorough tracking, overwrite it. Entities marked with thorough
2232 // interestiness are the most important (or most interesting, if you will),
2233 // and we wouldn't like to downplay their importance.
2236 case bugreporter::TrackingKind::Thorough
:
2237 Result
.first
->getSecond() = bugreporter::TrackingKind::Thorough
;
2239 case bugreporter::TrackingKind::Condition
:
2244 "BugReport::markInteresting currently can only handle 2 different "
2245 "tracking kinds! Please define what tracking kind should this entitiy"
2246 "have, if it was already marked as interesting with a different kind!");
2249 void PathSensitiveBugReport::markInteresting(SymbolRef sym
,
2250 bugreporter::TrackingKind TKind
) {
2254 insertToInterestingnessMap(InterestingSymbols
, sym
, TKind
);
2256 // FIXME: No tests exist for this code and it is questionable:
2257 // How to handle multiple metadata for the same region?
2258 if (const auto *meta
= dyn_cast
<SymbolMetadata
>(sym
))
2259 markInteresting(meta
->getRegion(), TKind
);
2262 void PathSensitiveBugReport::markNotInteresting(SymbolRef sym
) {
2265 InterestingSymbols
.erase(sym
);
2267 // The metadata part of markInteresting is not reversed here.
2268 // Just making the same region not interesting is incorrect
2269 // in specific cases.
2270 if (const auto *meta
= dyn_cast
<SymbolMetadata
>(sym
))
2271 markNotInteresting(meta
->getRegion());
2274 void PathSensitiveBugReport::markInteresting(const MemRegion
*R
,
2275 bugreporter::TrackingKind TKind
) {
2279 R
= R
->getBaseRegion();
2280 insertToInterestingnessMap(InterestingRegions
, R
, TKind
);
2282 if (const auto *SR
= dyn_cast
<SymbolicRegion
>(R
))
2283 markInteresting(SR
->getSymbol(), TKind
);
2286 void PathSensitiveBugReport::markNotInteresting(const MemRegion
*R
) {
2290 R
= R
->getBaseRegion();
2291 InterestingRegions
.erase(R
);
2293 if (const auto *SR
= dyn_cast
<SymbolicRegion
>(R
))
2294 markNotInteresting(SR
->getSymbol());
2297 void PathSensitiveBugReport::markInteresting(SVal V
,
2298 bugreporter::TrackingKind TKind
) {
2299 markInteresting(V
.getAsRegion(), TKind
);
2300 markInteresting(V
.getAsSymbol(), TKind
);
2303 void PathSensitiveBugReport::markInteresting(const LocationContext
*LC
) {
2306 InterestingLocationContexts
.insert(LC
);
2309 std::optional
<bugreporter::TrackingKind
>
2310 PathSensitiveBugReport::getInterestingnessKind(SVal V
) const {
2311 auto RKind
= getInterestingnessKind(V
.getAsRegion());
2312 auto SKind
= getInterestingnessKind(V
.getAsSymbol());
2318 // If either is marked with throrough tracking, return that, we wouldn't like
2319 // to downplay a note's importance by 'only' mentioning it as a condition.
2321 case bugreporter::TrackingKind::Thorough
:
2323 case bugreporter::TrackingKind::Condition
:
2328 "BugReport::getInterestingnessKind currently can only handle 2 different "
2329 "tracking kinds! Please define what tracking kind should we return here "
2330 "when the kind of getAsRegion() and getAsSymbol() is different!");
2331 return std::nullopt
;
2334 std::optional
<bugreporter::TrackingKind
>
2335 PathSensitiveBugReport::getInterestingnessKind(SymbolRef sym
) const {
2337 return std::nullopt
;
2338 // We don't currently consider metadata symbols to be interesting
2339 // even if we know their region is interesting. Is that correct behavior?
2340 auto It
= InterestingSymbols
.find(sym
);
2341 if (It
== InterestingSymbols
.end())
2342 return std::nullopt
;
2343 return It
->getSecond();
2346 std::optional
<bugreporter::TrackingKind
>
2347 PathSensitiveBugReport::getInterestingnessKind(const MemRegion
*R
) const {
2349 return std::nullopt
;
2351 R
= R
->getBaseRegion();
2352 auto It
= InterestingRegions
.find(R
);
2353 if (It
!= InterestingRegions
.end())
2354 return It
->getSecond();
2356 if (const auto *SR
= dyn_cast
<SymbolicRegion
>(R
))
2357 return getInterestingnessKind(SR
->getSymbol());
2358 return std::nullopt
;
2361 bool PathSensitiveBugReport::isInteresting(SVal V
) const {
2362 return getInterestingnessKind(V
).has_value();
2365 bool PathSensitiveBugReport::isInteresting(SymbolRef sym
) const {
2366 return getInterestingnessKind(sym
).has_value();
2369 bool PathSensitiveBugReport::isInteresting(const MemRegion
*R
) const {
2370 return getInterestingnessKind(R
).has_value();
2373 bool PathSensitiveBugReport::isInteresting(const LocationContext
*LC
) const {
2376 return InterestingLocationContexts
.count(LC
);
2379 const Stmt
*PathSensitiveBugReport::getStmt() const {
2383 ProgramPoint ProgP
= ErrorNode
->getLocation();
2384 const Stmt
*S
= nullptr;
2386 if (std::optional
<BlockEntrance
> BE
= ProgP
.getAs
<BlockEntrance
>()) {
2387 CFGBlock
&Exit
= ProgP
.getLocationContext()->getCFG()->getExit();
2388 if (BE
->getBlock() == &Exit
)
2389 S
= ErrorNode
->getPreviousStmtForDiagnostics();
2392 S
= ErrorNode
->getStmtForDiagnostics();
2397 ArrayRef
<SourceRange
>
2398 PathSensitiveBugReport::getRanges() const {
2399 // If no custom ranges, add the range of the statement corresponding to
2401 if (Ranges
.empty() && isa_and_nonnull
<Expr
>(getStmt()))
2402 return ErrorNodeRange
;
2407 PathDiagnosticLocation
2408 PathSensitiveBugReport::getLocation() const {
2409 assert(ErrorNode
&& "Cannot create a location with a null node.");
2410 const Stmt
*S
= ErrorNode
->getStmtForDiagnostics();
2411 ProgramPoint P
= ErrorNode
->getLocation();
2412 const LocationContext
*LC
= P
.getLocationContext();
2414 ErrorNode
->getState()->getStateManager().getContext().getSourceManager();
2417 // If this is an implicit call, return the implicit call point location.
2418 if (std::optional
<PreImplicitCall
> PIE
= P
.getAs
<PreImplicitCall
>())
2419 return PathDiagnosticLocation(PIE
->getLocation(), SM
);
2420 if (auto FE
= P
.getAs
<FunctionExitPoint
>()) {
2421 if (const ReturnStmt
*RS
= FE
->getStmt())
2422 return PathDiagnosticLocation::createBegin(RS
, SM
, LC
);
2424 S
= ErrorNode
->getNextStmtForDiagnostics();
2428 // For member expressions, return the location of the '.' or '->'.
2429 if (const auto *ME
= dyn_cast
<MemberExpr
>(S
))
2430 return PathDiagnosticLocation::createMemberLoc(ME
, SM
);
2432 // For binary operators, return the location of the operator.
2433 if (const auto *B
= dyn_cast
<BinaryOperator
>(S
))
2434 return PathDiagnosticLocation::createOperatorLoc(B
, SM
);
2436 if (P
.getAs
<PostStmtPurgeDeadSymbols
>())
2437 return PathDiagnosticLocation::createEnd(S
, SM
, LC
);
2439 if (S
->getBeginLoc().isValid())
2440 return PathDiagnosticLocation(S
, SM
, LC
);
2442 return PathDiagnosticLocation(
2443 PathDiagnosticLocation::getValidSourceLocation(S
, LC
), SM
);
2446 return PathDiagnosticLocation::createDeclEnd(ErrorNode
->getLocationContext(),
2450 //===----------------------------------------------------------------------===//
2451 // Methods for BugReporter and subclasses.
2452 //===----------------------------------------------------------------------===//
2454 const ExplodedGraph
&PathSensitiveBugReporter::getGraph() const {
2455 return Eng
.getGraph();
2458 ProgramStateManager
&PathSensitiveBugReporter::getStateManager() const {
2459 return Eng
.getStateManager();
2462 BugReporter::BugReporter(BugReporterData
&d
) : D(d
) {}
2463 BugReporter::~BugReporter() {
2464 // Make sure reports are flushed.
2465 assert(StrBugTypes
.empty() &&
2466 "Destroying BugReporter before diagnostics are emitted!");
2468 // Free the bug reports we are tracking.
2469 for (const auto I
: EQClassesVector
)
2473 void BugReporter::FlushReports() {
2474 // We need to flush reports in deterministic order to ensure the order
2475 // of the reports is consistent between runs.
2476 for (const auto EQ
: EQClassesVector
)
2479 // BugReporter owns and deletes only BugTypes created implicitly through
2481 // FIXME: There are leaks from checkers that assume that the BugTypes they
2482 // create will be destroyed by the BugReporter.
2483 StrBugTypes
.clear();
2486 //===----------------------------------------------------------------------===//
2487 // PathDiagnostics generation.
2488 //===----------------------------------------------------------------------===//
2492 /// A wrapper around an ExplodedGraph that contains a single path from the root
2493 /// to the error node.
2496 std::unique_ptr
<ExplodedGraph
> BugPath
;
2497 PathSensitiveBugReport
*Report
;
2498 const ExplodedNode
*ErrorNode
;
2501 /// A wrapper around an ExplodedGraph whose leafs are all error nodes. Can
2502 /// conveniently retrieve bug paths from a single error node to the root.
2503 class BugPathGetter
{
2504 std::unique_ptr
<ExplodedGraph
> TrimmedGraph
;
2506 using PriorityMapTy
= llvm::DenseMap
<const ExplodedNode
*, unsigned>;
2508 /// Assign each node with its distance from the root.
2509 PriorityMapTy PriorityMap
;
2511 /// Since the getErrorNode() or BugReport refers to the original ExplodedGraph,
2512 /// we need to pair it to the error node of the constructed trimmed graph.
2513 using ReportNewNodePair
=
2514 std::pair
<PathSensitiveBugReport
*, const ExplodedNode
*>;
2515 SmallVector
<ReportNewNodePair
, 32> ReportNodes
;
2517 BugPathInfo CurrentBugPath
;
2519 /// A helper class for sorting ExplodedNodes by priority.
2520 template <bool Descending
>
2521 class PriorityCompare
{
2522 const PriorityMapTy
&PriorityMap
;
2525 PriorityCompare(const PriorityMapTy
&M
) : PriorityMap(M
) {}
2527 bool operator()(const ExplodedNode
*LHS
, const ExplodedNode
*RHS
) const {
2528 PriorityMapTy::const_iterator LI
= PriorityMap
.find(LHS
);
2529 PriorityMapTy::const_iterator RI
= PriorityMap
.find(RHS
);
2530 PriorityMapTy::const_iterator E
= PriorityMap
.end();
2537 return Descending
? LI
->second
> RI
->second
2538 : LI
->second
< RI
->second
;
2541 bool operator()(const ReportNewNodePair
&LHS
,
2542 const ReportNewNodePair
&RHS
) const {
2543 return (*this)(LHS
.second
, RHS
.second
);
2548 BugPathGetter(const ExplodedGraph
*OriginalGraph
,
2549 ArrayRef
<PathSensitiveBugReport
*> &bugReports
);
2551 BugPathInfo
*getNextBugPath();
2556 BugPathGetter::BugPathGetter(const ExplodedGraph
*OriginalGraph
,
2557 ArrayRef
<PathSensitiveBugReport
*> &bugReports
) {
2558 SmallVector
<const ExplodedNode
*, 32> Nodes
;
2559 for (const auto I
: bugReports
) {
2560 assert(I
->isValid() &&
2561 "We only allow BugReporterVisitors and BugReporter itself to "
2562 "invalidate reports!");
2563 Nodes
.emplace_back(I
->getErrorNode());
2566 // The trimmed graph is created in the body of the constructor to ensure
2567 // that the DenseMaps have been initialized already.
2568 InterExplodedGraphMap ForwardMap
;
2569 TrimmedGraph
= OriginalGraph
->trim(Nodes
, &ForwardMap
);
2571 // Find the (first) error node in the trimmed graph. We just need to consult
2572 // the node map which maps from nodes in the original graph to nodes
2573 // in the new graph.
2574 llvm::SmallPtrSet
<const ExplodedNode
*, 32> RemainingNodes
;
2576 for (PathSensitiveBugReport
*Report
: bugReports
) {
2577 const ExplodedNode
*NewNode
= ForwardMap
.lookup(Report
->getErrorNode());
2579 "Failed to construct a trimmed graph that contains this error "
2581 ReportNodes
.emplace_back(Report
, NewNode
);
2582 RemainingNodes
.insert(NewNode
);
2585 assert(!RemainingNodes
.empty() && "No error node found in the trimmed graph");
2587 // Perform a forward BFS to find all the shortest paths.
2588 std::queue
<const ExplodedNode
*> WS
;
2590 assert(TrimmedGraph
->num_roots() == 1);
2591 WS
.push(*TrimmedGraph
->roots_begin());
2592 unsigned Priority
= 0;
2594 while (!WS
.empty()) {
2595 const ExplodedNode
*Node
= WS
.front();
2598 PriorityMapTy::iterator PriorityEntry
;
2600 std::tie(PriorityEntry
, IsNew
) = PriorityMap
.insert({Node
, Priority
});
2604 assert(PriorityEntry
->second
<= Priority
);
2608 if (RemainingNodes
.erase(Node
))
2609 if (RemainingNodes
.empty())
2612 for (const ExplodedNode
*Succ
: Node
->succs())
2616 // Sort the error paths from longest to shortest.
2617 llvm::sort(ReportNodes
, PriorityCompare
<true>(PriorityMap
));
2620 BugPathInfo
*BugPathGetter::getNextBugPath() {
2621 if (ReportNodes
.empty())
2624 const ExplodedNode
*OrigN
;
2625 std::tie(CurrentBugPath
.Report
, OrigN
) = ReportNodes
.pop_back_val();
2626 assert(PriorityMap
.contains(OrigN
) && "error node not accessible from root");
2628 // Create a new graph with a single path. This is the graph that will be
2629 // returned to the caller.
2630 auto GNew
= std::make_unique
<ExplodedGraph
>();
2632 // Now walk from the error node up the BFS path, always taking the
2633 // predeccessor with the lowest number.
2634 ExplodedNode
*Succ
= nullptr;
2636 // Create the equivalent node in the new graph with the same state
2638 ExplodedNode
*NewN
= GNew
->createUncachedNode(
2639 OrigN
->getLocation(), OrigN
->getState(),
2640 OrigN
->getID(), OrigN
->isSink());
2642 // Link up the new node with the previous node.
2644 Succ
->addPredecessor(NewN
, *GNew
);
2646 CurrentBugPath
.ErrorNode
= NewN
;
2650 // Are we at the final node?
2651 if (OrigN
->pred_empty()) {
2652 GNew
->addRoot(NewN
);
2656 // Find the next predeccessor node. We choose the node that is marked
2657 // with the lowest BFS number.
2658 OrigN
= *std::min_element(OrigN
->pred_begin(), OrigN
->pred_end(),
2659 PriorityCompare
<false>(PriorityMap
));
2662 CurrentBugPath
.BugPath
= std::move(GNew
);
2664 return &CurrentBugPath
;
2667 /// CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic
2668 /// object and collapses PathDiagosticPieces that are expanded by macros.
2669 static void CompactMacroExpandedPieces(PathPieces
&path
,
2670 const SourceManager
& SM
) {
2671 using MacroStackTy
= std::vector
<
2672 std::pair
<std::shared_ptr
<PathDiagnosticMacroPiece
>, SourceLocation
>>;
2674 using PiecesTy
= std::vector
<PathDiagnosticPieceRef
>;
2676 MacroStackTy MacroStack
;
2679 for (PathPieces::const_iterator I
= path
.begin(), E
= path
.end();
2681 const auto &piece
= *I
;
2683 // Recursively compact calls.
2684 if (auto *call
= dyn_cast
<PathDiagnosticCallPiece
>(&*piece
)) {
2685 CompactMacroExpandedPieces(call
->path
, SM
);
2688 // Get the location of the PathDiagnosticPiece.
2689 const FullSourceLoc Loc
= piece
->getLocation().asLocation();
2691 // Determine the instantiation location, which is the location we group
2692 // related PathDiagnosticPieces.
2693 SourceLocation InstantiationLoc
= Loc
.isMacroID() ?
2694 SM
.getExpansionLoc(Loc
) :
2697 if (Loc
.isFileID()) {
2699 Pieces
.push_back(piece
);
2703 assert(Loc
.isMacroID());
2705 // Is the PathDiagnosticPiece within the same macro group?
2706 if (!MacroStack
.empty() && InstantiationLoc
== MacroStack
.back().second
) {
2707 MacroStack
.back().first
->subPieces
.push_back(piece
);
2711 // We aren't in the same group. Are we descending into a new macro
2712 // or are part of an old one?
2713 std::shared_ptr
<PathDiagnosticMacroPiece
> MacroGroup
;
2715 SourceLocation ParentInstantiationLoc
= InstantiationLoc
.isMacroID() ?
2716 SM
.getExpansionLoc(Loc
) :
2719 // Walk the entire macro stack.
2720 while (!MacroStack
.empty()) {
2721 if (InstantiationLoc
== MacroStack
.back().second
) {
2722 MacroGroup
= MacroStack
.back().first
;
2726 if (ParentInstantiationLoc
== MacroStack
.back().second
) {
2727 MacroGroup
= MacroStack
.back().first
;
2731 MacroStack
.pop_back();
2734 if (!MacroGroup
|| ParentInstantiationLoc
== MacroStack
.back().second
) {
2735 // Create a new macro group and add it to the stack.
2736 auto NewGroup
= std::make_shared
<PathDiagnosticMacroPiece
>(
2737 PathDiagnosticLocation::createSingleLocation(piece
->getLocation()));
2740 MacroGroup
->subPieces
.push_back(NewGroup
);
2742 assert(InstantiationLoc
.isFileID());
2743 Pieces
.push_back(NewGroup
);
2746 MacroGroup
= NewGroup
;
2747 MacroStack
.push_back(std::make_pair(MacroGroup
, InstantiationLoc
));
2750 // Finally, add the PathDiagnosticPiece to the group.
2751 MacroGroup
->subPieces
.push_back(piece
);
2754 // Now take the pieces and construct a new PathDiagnostic.
2757 path
.insert(path
.end(), Pieces
.begin(), Pieces
.end());
2760 /// Generate notes from all visitors.
2761 /// Notes associated with @c ErrorNode are generated using
2762 /// @c getEndPath, and the rest are generated with @c VisitNode.
2763 static std::unique_ptr
<VisitorsDiagnosticsTy
>
2764 generateVisitorsDiagnostics(PathSensitiveBugReport
*R
,
2765 const ExplodedNode
*ErrorNode
,
2766 BugReporterContext
&BRC
) {
2767 std::unique_ptr
<VisitorsDiagnosticsTy
> Notes
=
2768 std::make_unique
<VisitorsDiagnosticsTy
>();
2769 PathSensitiveBugReport::VisitorList visitors
;
2771 // Run visitors on all nodes starting from the node *before* the last one.
2772 // The last node is reserved for notes generated with @c getEndPath.
2773 const ExplodedNode
*NextNode
= ErrorNode
->getFirstPred();
2776 // At each iteration, move all visitors from report to visitor list. This is
2777 // important, because the Profile() functions of the visitors make sure that
2778 // a visitor isn't added multiple times for the same node, but it's fine
2779 // to add the a visitor with Profile() for different nodes (e.g. tracking
2780 // a region at different points of the symbolic execution).
2781 for (std::unique_ptr
<BugReporterVisitor
> &Visitor
: R
->visitors())
2782 visitors
.push_back(std::move(Visitor
));
2786 const ExplodedNode
*Pred
= NextNode
->getFirstPred();
2788 PathDiagnosticPieceRef LastPiece
;
2789 for (auto &V
: visitors
) {
2790 V
->finalizeVisitor(BRC
, ErrorNode
, *R
);
2792 if (auto Piece
= V
->getEndPath(BRC
, ErrorNode
, *R
)) {
2793 assert(!LastPiece
&&
2794 "There can only be one final piece in a diagnostic.");
2795 assert(Piece
->getKind() == PathDiagnosticPiece::Kind::Event
&&
2796 "The final piece must contain a message!");
2797 LastPiece
= std::move(Piece
);
2798 (*Notes
)[ErrorNode
].push_back(LastPiece
);
2804 for (auto &V
: visitors
) {
2805 auto P
= V
->VisitNode(NextNode
, BRC
, *R
);
2807 (*Notes
)[NextNode
].push_back(std::move(P
));
2819 std::optional
<PathDiagnosticBuilder
> PathDiagnosticBuilder::findValidReport(
2820 ArrayRef
<PathSensitiveBugReport
*> &bugReports
,
2821 PathSensitiveBugReporter
&Reporter
) {
2823 BugPathGetter
BugGraph(&Reporter
.getGraph(), bugReports
);
2825 while (BugPathInfo
*BugPath
= BugGraph
.getNextBugPath()) {
2826 // Find the BugReport with the original location.
2827 PathSensitiveBugReport
*R
= BugPath
->Report
;
2828 assert(R
&& "No original report found for sliced graph.");
2829 assert(R
->isValid() && "Report selected by trimmed graph marked invalid.");
2830 const ExplodedNode
*ErrorNode
= BugPath
->ErrorNode
;
2832 // Register refutation visitors first, if they mark the bug invalid no
2833 // further analysis is required
2834 R
->addVisitor
<LikelyFalsePositiveSuppressionBRVisitor
>();
2836 // Register additional node visitors.
2837 R
->addVisitor
<NilReceiverBRVisitor
>();
2838 R
->addVisitor
<ConditionBRVisitor
>();
2839 R
->addVisitor
<TagVisitor
>();
2841 BugReporterContext
BRC(Reporter
);
2843 // Run all visitors on a given graph, once.
2844 std::unique_ptr
<VisitorsDiagnosticsTy
> visitorNotes
=
2845 generateVisitorsDiagnostics(R
, ErrorNode
, BRC
);
2848 if (Reporter
.getAnalyzerOptions().ShouldCrosscheckWithZ3
) {
2849 // If crosscheck is enabled, remove all visitors, add the refutation
2850 // visitor and check again
2852 R
->addVisitor
<FalsePositiveRefutationBRVisitor
>();
2854 // We don't overwrite the notes inserted by other visitors because the
2855 // refutation manager does not add any new note to the path
2856 generateVisitorsDiagnostics(R
, BugPath
->ErrorNode
, BRC
);
2859 // Check if the bug is still valid
2861 return PathDiagnosticBuilder(
2862 std::move(BRC
), std::move(BugPath
->BugPath
), BugPath
->Report
,
2863 BugPath
->ErrorNode
, std::move(visitorNotes
));
2870 std::unique_ptr
<DiagnosticForConsumerMapTy
>
2871 PathSensitiveBugReporter::generatePathDiagnostics(
2872 ArrayRef
<PathDiagnosticConsumer
*> consumers
,
2873 ArrayRef
<PathSensitiveBugReport
*> &bugReports
) {
2874 assert(!bugReports
.empty());
2876 auto Out
= std::make_unique
<DiagnosticForConsumerMapTy
>();
2878 std::optional
<PathDiagnosticBuilder
> PDB
=
2879 PathDiagnosticBuilder::findValidReport(bugReports
, *this);
2882 for (PathDiagnosticConsumer
*PC
: consumers
) {
2883 if (std::unique_ptr
<PathDiagnostic
> PD
= PDB
->generate(PC
)) {
2884 (*Out
)[PC
] = std::move(PD
);
2892 void BugReporter::emitReport(std::unique_ptr
<BugReport
> R
) {
2893 bool ValidSourceLoc
= R
->getLocation().isValid();
2894 assert(ValidSourceLoc
);
2895 // If we mess up in a release build, we'd still prefer to just drop the bug
2896 // instead of trying to go on.
2897 if (!ValidSourceLoc
)
2900 // Compute the bug report's hash to determine its equivalence class.
2901 llvm::FoldingSetNodeID ID
;
2904 // Lookup the equivance class. If there isn't one, create it.
2906 BugReportEquivClass
* EQ
= EQClasses
.FindNodeOrInsertPos(ID
, InsertPos
);
2909 EQ
= new BugReportEquivClass(std::move(R
));
2910 EQClasses
.InsertNode(EQ
, InsertPos
);
2911 EQClassesVector
.push_back(EQ
);
2913 EQ
->AddReport(std::move(R
));
2916 void PathSensitiveBugReporter::emitReport(std::unique_ptr
<BugReport
> R
) {
2917 if (auto PR
= dyn_cast
<PathSensitiveBugReport
>(R
.get()))
2918 if (const ExplodedNode
*E
= PR
->getErrorNode()) {
2919 // An error node must either be a sink or have a tag, otherwise
2920 // it could get reclaimed before the path diagnostic is created.
2921 assert((E
->isSink() || E
->getLocation().getTag()) &&
2922 "Error node must either be a sink or have a tag");
2924 const AnalysisDeclContext
*DeclCtx
=
2925 E
->getLocationContext()->getAnalysisDeclContext();
2926 // The source of autosynthesized body can be handcrafted AST or a model
2927 // file. The locations from handcrafted ASTs have no valid source
2928 // locations and have to be discarded. Locations from model files should
2929 // be preserved for processing and reporting.
2930 if (DeclCtx
->isBodyAutosynthesized() &&
2931 !DeclCtx
->isBodyAutosynthesizedFromModelFile())
2935 BugReporter::emitReport(std::move(R
));
2938 //===----------------------------------------------------------------------===//
2939 // Emitting reports in equivalence classes.
2940 //===----------------------------------------------------------------------===//
2944 struct FRIEC_WLItem
{
2945 const ExplodedNode
*N
;
2946 ExplodedNode::const_succ_iterator I
, E
;
2948 FRIEC_WLItem(const ExplodedNode
*n
)
2949 : N(n
), I(N
->succ_begin()), E(N
->succ_end()) {}
2954 BugReport
*PathSensitiveBugReporter::findReportInEquivalenceClass(
2955 BugReportEquivClass
&EQ
, SmallVectorImpl
<BugReport
*> &bugReports
) {
2956 // If we don't need to suppress any of the nodes because they are
2957 // post-dominated by a sink, simply add all the nodes in the equivalence class
2958 // to 'Nodes'. Any of the reports will serve as a "representative" report.
2959 assert(EQ
.getReports().size() > 0);
2960 const BugType
& BT
= EQ
.getReports()[0]->getBugType();
2961 if (!BT
.isSuppressOnSink()) {
2962 BugReport
*R
= EQ
.getReports()[0].get();
2963 for (auto &J
: EQ
.getReports()) {
2964 if (auto *PR
= dyn_cast
<PathSensitiveBugReport
>(J
.get())) {
2966 bugReports
.push_back(PR
);
2972 // For bug reports that should be suppressed when all paths are post-dominated
2973 // by a sink node, iterate through the reports in the equivalence class
2974 // until we find one that isn't post-dominated (if one exists). We use a
2975 // DFS traversal of the ExplodedGraph to find a non-sink node. We could write
2976 // this as a recursive function, but we don't want to risk blowing out the
2977 // stack for very long paths.
2978 BugReport
*exampleReport
= nullptr;
2980 for (const auto &I
: EQ
.getReports()) {
2981 auto *R
= dyn_cast
<PathSensitiveBugReport
>(I
.get());
2985 const ExplodedNode
*errorNode
= R
->getErrorNode();
2986 if (errorNode
->isSink()) {
2988 "BugType::isSuppressSink() should not be 'true' for sink end nodes");
2990 // No successors? By definition this nodes isn't post-dominated by a sink.
2991 if (errorNode
->succ_empty()) {
2992 bugReports
.push_back(R
);
2998 // See if we are in a no-return CFG block. If so, treat this similarly
2999 // to being post-dominated by a sink. This works better when the analysis
3000 // is incomplete and we have never reached the no-return function call(s)
3001 // that we'd inevitably bump into on this path.
3002 if (const CFGBlock
*ErrorB
= errorNode
->getCFGBlock())
3003 if (ErrorB
->isInevitablySinking())
3006 // At this point we know that 'N' is not a sink and it has at least one
3007 // successor. Use a DFS worklist to find a non-sink end-of-path node.
3008 using WLItem
= FRIEC_WLItem
;
3009 using DFSWorkList
= SmallVector
<WLItem
, 10>;
3011 llvm::DenseMap
<const ExplodedNode
*, unsigned> Visited
;
3014 WL
.push_back(errorNode
);
3015 Visited
[errorNode
] = 1;
3017 while (!WL
.empty()) {
3018 WLItem
&WI
= WL
.back();
3019 assert(!WI
.N
->succ_empty());
3021 for (; WI
.I
!= WI
.E
; ++WI
.I
) {
3022 const ExplodedNode
*Succ
= *WI
.I
;
3023 // End-of-path node?
3024 if (Succ
->succ_empty()) {
3025 // If we found an end-of-path node that is not a sink.
3026 if (!Succ
->isSink()) {
3027 bugReports
.push_back(R
);
3033 // Found a sink? Continue on to the next successor.
3036 // Mark the successor as visited. If it hasn't been explored,
3037 // enqueue it to the DFS worklist.
3038 unsigned &mark
= Visited
[Succ
];
3046 // The worklist may have been cleared at this point. First
3047 // check if it is empty before checking the last item.
3048 if (!WL
.empty() && &WL
.back() == &WI
)
3053 // ExampleReport will be NULL if all the nodes in the equivalence class
3054 // were post-dominated by sinks.
3055 return exampleReport
;
3058 void BugReporter::FlushReport(BugReportEquivClass
& EQ
) {
3059 SmallVector
<BugReport
*, 10> bugReports
;
3060 BugReport
*report
= findReportInEquivalenceClass(EQ
, bugReports
);
3064 // See whether we need to silence the checker/package.
3065 for (const std::string
&CheckerOrPackage
:
3066 getAnalyzerOptions().SilencedCheckersAndPackages
) {
3067 if (report
->getBugType().getCheckerName().startswith(
3072 ArrayRef
<PathDiagnosticConsumer
*> Consumers
= getPathDiagnosticConsumers();
3073 std::unique_ptr
<DiagnosticForConsumerMapTy
> Diagnostics
=
3074 generateDiagnosticForConsumerMap(report
, Consumers
, bugReports
);
3076 for (auto &P
: *Diagnostics
) {
3077 PathDiagnosticConsumer
*Consumer
= P
.first
;
3078 std::unique_ptr
<PathDiagnostic
> &PD
= P
.second
;
3080 // If the path is empty, generate a single step path with the location
3082 if (PD
->path
.empty()) {
3083 PathDiagnosticLocation L
= report
->getLocation();
3084 auto piece
= std::make_unique
<PathDiagnosticEventPiece
>(
3085 L
, report
->getDescription());
3086 for (SourceRange Range
: report
->getRanges())
3087 piece
->addRange(Range
);
3088 PD
->setEndOfPath(std::move(piece
));
3091 PathPieces
&Pieces
= PD
->getMutablePieces();
3092 if (getAnalyzerOptions().ShouldDisplayNotesAsEvents
) {
3093 // For path diagnostic consumers that don't support extra notes,
3094 // we may optionally convert those to path notes.
3095 for (const auto &I
: llvm::reverse(report
->getNotes())) {
3096 PathDiagnosticNotePiece
*Piece
= I
.get();
3097 auto ConvertedPiece
= std::make_shared
<PathDiagnosticEventPiece
>(
3098 Piece
->getLocation(), Piece
->getString());
3099 for (const auto &R
: Piece
->getRanges())
3100 ConvertedPiece
->addRange(R
);
3102 Pieces
.push_front(std::move(ConvertedPiece
));
3105 for (const auto &I
: llvm::reverse(report
->getNotes()))
3106 Pieces
.push_front(I
);
3109 for (const auto &I
: report
->getFixits())
3110 Pieces
.back()->addFixit(I
);
3112 updateExecutedLinesWithDiagnosticPieces(*PD
);
3113 Consumer
->HandlePathDiagnostic(std::move(PD
));
3117 /// Insert all lines participating in the function signature \p Signature
3118 /// into \p ExecutedLines.
3119 static void populateExecutedLinesWithFunctionSignature(
3120 const Decl
*Signature
, const SourceManager
&SM
,
3121 FilesToLineNumsMap
&ExecutedLines
) {
3122 SourceRange SignatureSourceRange
;
3123 const Stmt
* Body
= Signature
->getBody();
3124 if (const auto FD
= dyn_cast
<FunctionDecl
>(Signature
)) {
3125 SignatureSourceRange
= FD
->getSourceRange();
3126 } else if (const auto OD
= dyn_cast
<ObjCMethodDecl
>(Signature
)) {
3127 SignatureSourceRange
= OD
->getSourceRange();
3131 SourceLocation Start
= SignatureSourceRange
.getBegin();
3132 SourceLocation End
= Body
? Body
->getSourceRange().getBegin()
3133 : SignatureSourceRange
.getEnd();
3134 if (!Start
.isValid() || !End
.isValid())
3136 unsigned StartLine
= SM
.getExpansionLineNumber(Start
);
3137 unsigned EndLine
= SM
.getExpansionLineNumber(End
);
3139 FileID FID
= SM
.getFileID(SM
.getExpansionLoc(Start
));
3140 for (unsigned Line
= StartLine
; Line
<= EndLine
; Line
++)
3141 ExecutedLines
[FID
].insert(Line
);
3144 static void populateExecutedLinesWithStmt(
3145 const Stmt
*S
, const SourceManager
&SM
,
3146 FilesToLineNumsMap
&ExecutedLines
) {
3147 SourceLocation Loc
= S
->getSourceRange().getBegin();
3150 SourceLocation ExpansionLoc
= SM
.getExpansionLoc(Loc
);
3151 FileID FID
= SM
.getFileID(ExpansionLoc
);
3152 unsigned LineNo
= SM
.getExpansionLineNumber(ExpansionLoc
);
3153 ExecutedLines
[FID
].insert(LineNo
);
3156 /// \return all executed lines including function signatures on the path
3157 /// starting from \p N.
3158 static std::unique_ptr
<FilesToLineNumsMap
>
3159 findExecutedLines(const SourceManager
&SM
, const ExplodedNode
*N
) {
3160 auto ExecutedLines
= std::make_unique
<FilesToLineNumsMap
>();
3163 if (N
->getFirstPred() == nullptr) {
3164 // First node: show signature of the entrance point.
3165 const Decl
*D
= N
->getLocationContext()->getDecl();
3166 populateExecutedLinesWithFunctionSignature(D
, SM
, *ExecutedLines
);
3167 } else if (auto CE
= N
->getLocationAs
<CallEnter
>()) {
3168 // Inlined function: show signature.
3169 const Decl
* D
= CE
->getCalleeContext()->getDecl();
3170 populateExecutedLinesWithFunctionSignature(D
, SM
, *ExecutedLines
);
3171 } else if (const Stmt
*S
= N
->getStmtForDiagnostics()) {
3172 populateExecutedLinesWithStmt(S
, SM
, *ExecutedLines
);
3174 // Show extra context for some parent kinds.
3175 const Stmt
*P
= N
->getParentMap().getParent(S
);
3177 // The path exploration can die before the node with the associated
3178 // return statement is generated, but we do want to show the whole
3180 if (const auto *RS
= dyn_cast_or_null
<ReturnStmt
>(P
)) {
3181 populateExecutedLinesWithStmt(RS
, SM
, *ExecutedLines
);
3182 P
= N
->getParentMap().getParent(RS
);
3185 if (isa_and_nonnull
<SwitchCase
, LabelStmt
>(P
))
3186 populateExecutedLinesWithStmt(P
, SM
, *ExecutedLines
);
3189 N
= N
->getFirstPred();
3191 return ExecutedLines
;
3194 std::unique_ptr
<DiagnosticForConsumerMapTy
>
3195 BugReporter::generateDiagnosticForConsumerMap(
3196 BugReport
*exampleReport
, ArrayRef
<PathDiagnosticConsumer
*> consumers
,
3197 ArrayRef
<BugReport
*> bugReports
) {
3198 auto *basicReport
= cast
<BasicBugReport
>(exampleReport
);
3199 auto Out
= std::make_unique
<DiagnosticForConsumerMapTy
>();
3200 for (auto *Consumer
: consumers
)
3201 (*Out
)[Consumer
] = generateDiagnosticForBasicReport(basicReport
);
3205 static PathDiagnosticCallPiece
*
3206 getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece
*CP
,
3207 const SourceManager
&SMgr
) {
3208 SourceLocation CallLoc
= CP
->callEnter
.asLocation();
3210 // If the call is within a macro, don't do anything (for now).
3211 if (CallLoc
.isMacroID())
3214 assert(AnalysisManager::isInCodeFile(CallLoc
, SMgr
) &&
3215 "The call piece should not be in a header file.");
3217 // Check if CP represents a path through a function outside of the main file.
3218 if (!AnalysisManager::isInCodeFile(CP
->callEnterWithin
.asLocation(), SMgr
))
3221 const PathPieces
&Path
= CP
->path
;
3225 // Check if the last piece in the callee path is a call to a function outside
3226 // of the main file.
3227 if (auto *CPInner
= dyn_cast
<PathDiagnosticCallPiece
>(Path
.back().get()))
3228 return getFirstStackedCallToHeaderFile(CPInner
, SMgr
);
3230 // Otherwise, the last piece is in the main file.
3234 static void resetDiagnosticLocationToMainFile(PathDiagnostic
&PD
) {
3235 if (PD
.path
.empty())
3238 PathDiagnosticPiece
*LastP
= PD
.path
.back().get();
3240 const SourceManager
&SMgr
= LastP
->getLocation().getManager();
3242 // We only need to check if the report ends inside headers, if the last piece
3244 if (auto *CP
= dyn_cast
<PathDiagnosticCallPiece
>(LastP
)) {
3245 CP
= getFirstStackedCallToHeaderFile(CP
, SMgr
);
3248 CP
->setAsLastInMainSourceFile();
3250 // Update the path diagnostic message.
3251 const auto *ND
= dyn_cast
<NamedDecl
>(CP
->getCallee());
3253 SmallString
<200> buf
;
3254 llvm::raw_svector_ostream
os(buf
);
3255 os
<< " (within a call to '" << ND
->getDeclName() << "')";
3256 PD
.appendToDesc(os
.str());
3259 // Reset the report containing declaration and location.
3260 PD
.setDeclWithIssue(CP
->getCaller());
3261 PD
.setLocation(CP
->getLocation());
3270 std::unique_ptr
<DiagnosticForConsumerMapTy
>
3271 PathSensitiveBugReporter::generateDiagnosticForConsumerMap(
3272 BugReport
*exampleReport
, ArrayRef
<PathDiagnosticConsumer
*> consumers
,
3273 ArrayRef
<BugReport
*> bugReports
) {
3274 std::vector
<BasicBugReport
*> BasicBugReports
;
3275 std::vector
<PathSensitiveBugReport
*> PathSensitiveBugReports
;
3276 if (isa
<BasicBugReport
>(exampleReport
))
3277 return BugReporter::generateDiagnosticForConsumerMap(exampleReport
,
3278 consumers
, bugReports
);
3280 // Generate the full path sensitive diagnostic, using the generation scheme
3281 // specified by the PathDiagnosticConsumer. Note that we have to generate
3282 // path diagnostics even for consumers which do not support paths, because
3283 // the BugReporterVisitors may mark this bug as a false positive.
3284 assert(!bugReports
.empty());
3285 MaxBugClassSize
.updateMax(bugReports
.size());
3287 // Avoid copying the whole array because there may be a lot of reports.
3288 ArrayRef
<PathSensitiveBugReport
*> convertedArrayOfReports(
3289 reinterpret_cast<PathSensitiveBugReport
*const *>(&*bugReports
.begin()),
3290 reinterpret_cast<PathSensitiveBugReport
*const *>(&*bugReports
.end()));
3291 std::unique_ptr
<DiagnosticForConsumerMapTy
> Out
= generatePathDiagnostics(
3292 consumers
, convertedArrayOfReports
);
3297 MaxValidBugClassSize
.updateMax(bugReports
.size());
3299 // Examine the report and see if the last piece is in a header. Reset the
3300 // report location to the last piece in the main source file.
3301 const AnalyzerOptions
&Opts
= getAnalyzerOptions();
3302 for (auto const &P
: *Out
)
3303 if (Opts
.ShouldReportIssuesInMainSourceFile
&& !Opts
.AnalyzeAll
)
3304 resetDiagnosticLocationToMainFile(*P
.second
);
3309 void BugReporter::EmitBasicReport(const Decl
*DeclWithIssue
,
3310 const CheckerBase
*Checker
, StringRef Name
,
3311 StringRef Category
, StringRef Str
,
3312 PathDiagnosticLocation Loc
,
3313 ArrayRef
<SourceRange
> Ranges
,
3314 ArrayRef
<FixItHint
> Fixits
) {
3315 EmitBasicReport(DeclWithIssue
, Checker
->getCheckerName(), Name
, Category
, Str
,
3316 Loc
, Ranges
, Fixits
);
3319 void BugReporter::EmitBasicReport(const Decl
*DeclWithIssue
,
3320 CheckerNameRef CheckName
,
3321 StringRef name
, StringRef category
,
3322 StringRef str
, PathDiagnosticLocation Loc
,
3323 ArrayRef
<SourceRange
> Ranges
,
3324 ArrayRef
<FixItHint
> Fixits
) {
3325 // 'BT' is owned by BugReporter.
3326 BugType
*BT
= getBugTypeForName(CheckName
, name
, category
);
3327 auto R
= std::make_unique
<BasicBugReport
>(*BT
, str
, Loc
);
3328 R
->setDeclWithIssue(DeclWithIssue
);
3329 for (const auto &SR
: Ranges
)
3331 for (const auto &FH
: Fixits
)
3332 R
->addFixItHint(FH
);
3333 emitReport(std::move(R
));
3336 BugType
*BugReporter::getBugTypeForName(CheckerNameRef CheckName
,
3337 StringRef name
, StringRef category
) {
3338 SmallString
<136> fullDesc
;
3339 llvm::raw_svector_ostream(fullDesc
) << CheckName
.getName() << ":" << name
3341 std::unique_ptr
<BugType
> &BT
= StrBugTypes
[fullDesc
];
3343 BT
= std::make_unique
<BugType
>(CheckName
, name
, category
);