[DFAJumpThreading] Remove incoming StartBlock from all phis when unfolding select...
[llvm-project.git] / clang / lib / StaticAnalyzer / Core / BugReporter.cpp
blob9532254e3c459681bef893d7f4905fd5040d778a
1 //===- BugReporter.cpp - Generate PathDiagnostics for bugs ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines BugReporter, a utility class for generating
10 // PathDiagnostics.
12 //===----------------------------------------------------------------------===//
14 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclBase.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/Expr.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ParentMap.h"
21 #include "clang/AST/Stmt.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/AST/StmtObjC.h"
24 #include "clang/Analysis/AnalysisDeclContext.h"
25 #include "clang/Analysis/CFG.h"
26 #include "clang/Analysis/CFGStmtMap.h"
27 #include "clang/Analysis/PathDiagnostic.h"
28 #include "clang/Analysis/ProgramPoint.h"
29 #include "clang/Basic/LLVM.h"
30 #include "clang/Basic/SourceLocation.h"
31 #include "clang/Basic/SourceManager.h"
32 #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
33 #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h"
34 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
35 #include "clang/StaticAnalyzer/Core/Checker.h"
36 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
37 #include "clang/StaticAnalyzer/Core/CheckerRegistryData.h"
38 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/SMTConv.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
45 #include "llvm/ADT/ArrayRef.h"
46 #include "llvm/ADT/DenseMap.h"
47 #include "llvm/ADT/DenseSet.h"
48 #include "llvm/ADT/FoldingSet.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/ADT/SmallPtrSet.h"
51 #include "llvm/ADT/SmallString.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/Statistic.h"
54 #include "llvm/ADT/StringExtras.h"
55 #include "llvm/ADT/StringRef.h"
56 #include "llvm/ADT/iterator_range.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/MemoryBuffer.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstddef>
65 #include <iterator>
66 #include <memory>
67 #include <optional>
68 #include <queue>
69 #include <string>
70 #include <tuple>
71 #include <utility>
72 #include <vector>
74 using namespace clang;
75 using namespace ento;
76 using namespace llvm;
78 #define DEBUG_TYPE "BugReporter"
80 STATISTIC(MaxBugClassSize,
81 "The maximum number of bug reports in the same equivalence class");
82 STATISTIC(MaxValidBugClassSize,
83 "The maximum number of bug reports in the same equivalence class "
84 "where at least one report is valid (not suppressed)");
86 BugReporterVisitor::~BugReporterVisitor() = default;
88 void BugReporterContext::anchor() {}
90 //===----------------------------------------------------------------------===//
91 // PathDiagnosticBuilder and its associated routines and helper objects.
92 //===----------------------------------------------------------------------===//
94 namespace {
96 /// A (CallPiece, node assiciated with its CallEnter) pair.
97 using CallWithEntry =
98 std::pair<PathDiagnosticCallPiece *, const ExplodedNode *>;
99 using CallWithEntryStack = SmallVector<CallWithEntry, 6>;
101 /// Map from each node to the diagnostic pieces visitors emit for them.
102 using VisitorsDiagnosticsTy =
103 llvm::DenseMap<const ExplodedNode *, std::vector<PathDiagnosticPieceRef>>;
105 /// A map from PathDiagnosticPiece to the LocationContext of the inlined
106 /// function call it represents.
107 using LocationContextMap =
108 llvm::DenseMap<const PathPieces *, const LocationContext *>;
110 /// A helper class that contains everything needed to construct a
111 /// PathDiagnostic object. It does no much more then providing convenient
112 /// getters and some well placed asserts for extra security.
113 class PathDiagnosticConstruct {
114 /// The consumer we're constructing the bug report for.
115 const PathDiagnosticConsumer *Consumer;
116 /// Our current position in the bug path, which is owned by
117 /// PathDiagnosticBuilder.
118 const ExplodedNode *CurrentNode;
119 /// A mapping from parts of the bug path (for example, a function call, which
120 /// would span backwards from a CallExit to a CallEnter with the nodes in
121 /// between them) with the location contexts it is associated with.
122 LocationContextMap LCM;
123 const SourceManager &SM;
125 public:
126 /// We keep stack of calls to functions as we're ascending the bug path.
127 /// TODO: PathDiagnostic has a stack doing the same thing, shouldn't we use
128 /// that instead?
129 CallWithEntryStack CallStack;
130 /// The bug report we're constructing. For ease of use, this field is kept
131 /// public, though some "shortcut" getters are provided for commonly used
132 /// methods of PathDiagnostic.
133 std::unique_ptr<PathDiagnostic> PD;
135 public:
136 PathDiagnosticConstruct(const PathDiagnosticConsumer *PDC,
137 const ExplodedNode *ErrorNode,
138 const PathSensitiveBugReport *R);
140 /// \returns the location context associated with the current position in the
141 /// bug path.
142 const LocationContext *getCurrLocationContext() const {
143 assert(CurrentNode && "Already reached the root!");
144 return CurrentNode->getLocationContext();
147 /// Same as getCurrLocationContext (they should always return the same
148 /// location context), but works after reaching the root of the bug path as
149 /// well.
150 const LocationContext *getLocationContextForActivePath() const {
151 return LCM.find(&PD->getActivePath())->getSecond();
154 const ExplodedNode *getCurrentNode() const { return CurrentNode; }
156 /// Steps the current node to its predecessor.
157 /// \returns whether we reached the root of the bug path.
158 bool ascendToPrevNode() {
159 CurrentNode = CurrentNode->getFirstPred();
160 return static_cast<bool>(CurrentNode);
163 const ParentMap &getParentMap() const {
164 return getCurrLocationContext()->getParentMap();
167 const SourceManager &getSourceManager() const { return SM; }
169 const Stmt *getParent(const Stmt *S) const {
170 return getParentMap().getParent(S);
173 void updateLocCtxMap(const PathPieces *Path, const LocationContext *LC) {
174 assert(Path && LC);
175 LCM[Path] = LC;
178 const LocationContext *getLocationContextFor(const PathPieces *Path) const {
179 assert(LCM.count(Path) &&
180 "Failed to find the context associated with these pieces!");
181 return LCM.find(Path)->getSecond();
184 bool isInLocCtxMap(const PathPieces *Path) const { return LCM.count(Path); }
186 PathPieces &getActivePath() { return PD->getActivePath(); }
187 PathPieces &getMutablePieces() { return PD->getMutablePieces(); }
189 bool shouldAddPathEdges() const { return Consumer->shouldAddPathEdges(); }
190 bool shouldAddControlNotes() const {
191 return Consumer->shouldAddControlNotes();
193 bool shouldGenerateDiagnostics() const {
194 return Consumer->shouldGenerateDiagnostics();
196 bool supportsLogicalOpControlFlow() const {
197 return Consumer->supportsLogicalOpControlFlow();
201 /// Contains every contextual information needed for constructing a
202 /// PathDiagnostic object for a given bug report. This class and its fields are
203 /// immutable, and passes a BugReportConstruct object around during the
204 /// construction.
205 class PathDiagnosticBuilder : public BugReporterContext {
206 /// A linear path from the error node to the root.
207 std::unique_ptr<const ExplodedGraph> BugPath;
208 /// The bug report we're describing. Visitors create their diagnostics with
209 /// them being the last entities being able to modify it (for example,
210 /// changing interestingness here would cause inconsistencies as to how this
211 /// file and visitors construct diagnostics), hence its const.
212 const PathSensitiveBugReport *R;
213 /// The leaf of the bug path. This isn't the same as the bug reports error
214 /// node, which refers to the *original* graph, not the bug path.
215 const ExplodedNode *const ErrorNode;
216 /// The diagnostic pieces visitors emitted, which is expected to be collected
217 /// by the time this builder is constructed.
218 std::unique_ptr<const VisitorsDiagnosticsTy> VisitorsDiagnostics;
220 public:
221 /// Find a non-invalidated report for a given equivalence class, and returns
222 /// a PathDiagnosticBuilder able to construct bug reports for different
223 /// consumers. Returns std::nullopt if no valid report is found.
224 static std::optional<PathDiagnosticBuilder>
225 findValidReport(ArrayRef<PathSensitiveBugReport *> &bugReports,
226 PathSensitiveBugReporter &Reporter);
228 PathDiagnosticBuilder(
229 BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
230 PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
231 std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics);
233 /// This function is responsible for generating diagnostic pieces that are
234 /// *not* provided by bug report visitors.
235 /// These diagnostics may differ depending on the consumer's settings,
236 /// and are therefore constructed separately for each consumer.
238 /// There are two path diagnostics generation modes: with adding edges (used
239 /// for plists) and without (used for HTML and text). When edges are added,
240 /// the path is modified to insert artificially generated edges.
241 /// Otherwise, more detailed diagnostics is emitted for block edges,
242 /// explaining the transitions in words.
243 std::unique_ptr<PathDiagnostic>
244 generate(const PathDiagnosticConsumer *PDC) const;
246 private:
247 void updateStackPiecesWithMessage(PathDiagnosticPieceRef P,
248 const CallWithEntryStack &CallStack) const;
249 void generatePathDiagnosticsForNode(PathDiagnosticConstruct &C,
250 PathDiagnosticLocation &PrevLoc) const;
252 void generateMinimalDiagForBlockEdge(PathDiagnosticConstruct &C,
253 BlockEdge BE) const;
255 PathDiagnosticPieceRef
256 generateDiagForGotoOP(const PathDiagnosticConstruct &C, const Stmt *S,
257 PathDiagnosticLocation &Start) const;
259 PathDiagnosticPieceRef
260 generateDiagForSwitchOP(const PathDiagnosticConstruct &C, const CFGBlock *Dst,
261 PathDiagnosticLocation &Start) const;
263 PathDiagnosticPieceRef
264 generateDiagForBinaryOP(const PathDiagnosticConstruct &C, const Stmt *T,
265 const CFGBlock *Src, const CFGBlock *DstC) const;
267 PathDiagnosticLocation
268 ExecutionContinues(const PathDiagnosticConstruct &C) const;
270 PathDiagnosticLocation
271 ExecutionContinues(llvm::raw_string_ostream &os,
272 const PathDiagnosticConstruct &C) const;
274 const PathSensitiveBugReport *getBugReport() const { return R; }
277 } // namespace
279 //===----------------------------------------------------------------------===//
280 // Base implementation of stack hint generators.
281 //===----------------------------------------------------------------------===//
283 StackHintGenerator::~StackHintGenerator() = default;
285 std::string StackHintGeneratorForSymbol::getMessage(const ExplodedNode *N){
286 if (!N)
287 return getMessageForSymbolNotFound();
289 ProgramPoint P = N->getLocation();
290 CallExitEnd CExit = P.castAs<CallExitEnd>();
292 // FIXME: Use CallEvent to abstract this over all calls.
293 const Stmt *CallSite = CExit.getCalleeContext()->getCallSite();
294 const auto *CE = dyn_cast_or_null<CallExpr>(CallSite);
295 if (!CE)
296 return {};
298 // Check if one of the parameters are set to the interesting symbol.
299 for (auto [Idx, ArgExpr] : llvm::enumerate(CE->arguments())) {
300 SVal SV = N->getSVal(ArgExpr);
302 // Check if the variable corresponding to the symbol is passed by value.
303 SymbolRef AS = SV.getAsLocSymbol();
304 if (AS == Sym) {
305 return getMessageForArg(ArgExpr, Idx);
308 // Check if the parameter is a pointer to the symbol.
309 if (std::optional<loc::MemRegionVal> Reg = SV.getAs<loc::MemRegionVal>()) {
310 // Do not attempt to dereference void*.
311 if (ArgExpr->getType()->isVoidPointerType())
312 continue;
313 SVal PSV = N->getState()->getSVal(Reg->getRegion());
314 SymbolRef AS = PSV.getAsLocSymbol();
315 if (AS == Sym) {
316 return getMessageForArg(ArgExpr, Idx);
321 // Check if we are returning the interesting symbol.
322 SVal SV = N->getSVal(CE);
323 SymbolRef RetSym = SV.getAsLocSymbol();
324 if (RetSym == Sym) {
325 return getMessageForReturn(CE);
328 return getMessageForSymbolNotFound();
331 std::string StackHintGeneratorForSymbol::getMessageForArg(const Expr *ArgE,
332 unsigned ArgIndex) {
333 // Printed parameters start at 1, not 0.
334 ++ArgIndex;
336 return (llvm::Twine(Msg) + " via " + std::to_string(ArgIndex) +
337 llvm::getOrdinalSuffix(ArgIndex) + " parameter").str();
340 //===----------------------------------------------------------------------===//
341 // Diagnostic cleanup.
342 //===----------------------------------------------------------------------===//
344 static PathDiagnosticEventPiece *
345 eventsDescribeSameCondition(PathDiagnosticEventPiece *X,
346 PathDiagnosticEventPiece *Y) {
347 // Prefer diagnostics that come from ConditionBRVisitor over
348 // those that came from TrackConstraintBRVisitor,
349 // unless the one from ConditionBRVisitor is
350 // its generic fallback diagnostic.
351 const void *tagPreferred = ConditionBRVisitor::getTag();
352 const void *tagLesser = TrackConstraintBRVisitor::getTag();
354 if (X->getLocation() != Y->getLocation())
355 return nullptr;
357 if (X->getTag() == tagPreferred && Y->getTag() == tagLesser)
358 return ConditionBRVisitor::isPieceMessageGeneric(X) ? Y : X;
360 if (Y->getTag() == tagPreferred && X->getTag() == tagLesser)
361 return ConditionBRVisitor::isPieceMessageGeneric(Y) ? X : Y;
363 return nullptr;
366 /// An optimization pass over PathPieces that removes redundant diagnostics
367 /// generated by both ConditionBRVisitor and TrackConstraintBRVisitor. Both
368 /// BugReporterVisitors use different methods to generate diagnostics, with
369 /// one capable of emitting diagnostics in some cases but not in others. This
370 /// can lead to redundant diagnostic pieces at the same point in a path.
371 static void removeRedundantMsgs(PathPieces &path) {
372 unsigned N = path.size();
373 if (N < 2)
374 return;
375 // NOTE: this loop intentionally is not using an iterator. Instead, we
376 // are streaming the path and modifying it in place. This is done by
377 // grabbing the front, processing it, and if we decide to keep it append
378 // it to the end of the path. The entire path is processed in this way.
379 for (unsigned i = 0; i < N; ++i) {
380 auto piece = std::move(path.front());
381 path.pop_front();
383 switch (piece->getKind()) {
384 case PathDiagnosticPiece::Call:
385 removeRedundantMsgs(cast<PathDiagnosticCallPiece>(*piece).path);
386 break;
387 case PathDiagnosticPiece::Macro:
388 removeRedundantMsgs(cast<PathDiagnosticMacroPiece>(*piece).subPieces);
389 break;
390 case PathDiagnosticPiece::Event: {
391 if (i == N-1)
392 break;
394 if (auto *nextEvent =
395 dyn_cast<PathDiagnosticEventPiece>(path.front().get())) {
396 auto *event = cast<PathDiagnosticEventPiece>(piece.get());
397 // Check to see if we should keep one of the two pieces. If we
398 // come up with a preference, record which piece to keep, and consume
399 // another piece from the path.
400 if (auto *pieceToKeep =
401 eventsDescribeSameCondition(event, nextEvent)) {
402 piece = std::move(pieceToKeep == event ? piece : path.front());
403 path.pop_front();
404 ++i;
407 break;
409 case PathDiagnosticPiece::ControlFlow:
410 case PathDiagnosticPiece::Note:
411 case PathDiagnosticPiece::PopUp:
412 break;
414 path.push_back(std::move(piece));
418 /// Recursively scan through a path and prune out calls and macros pieces
419 /// that aren't needed. Return true if afterwards the path contains
420 /// "interesting stuff" which means it shouldn't be pruned from the parent path.
421 static bool removeUnneededCalls(const PathDiagnosticConstruct &C,
422 PathPieces &pieces,
423 const PathSensitiveBugReport *R,
424 bool IsInteresting = false) {
425 bool containsSomethingInteresting = IsInteresting;
426 const unsigned N = pieces.size();
428 for (unsigned i = 0 ; i < N ; ++i) {
429 // Remove the front piece from the path. If it is still something we
430 // want to keep once we are done, we will push it back on the end.
431 auto piece = std::move(pieces.front());
432 pieces.pop_front();
434 switch (piece->getKind()) {
435 case PathDiagnosticPiece::Call: {
436 auto &call = cast<PathDiagnosticCallPiece>(*piece);
437 // Check if the location context is interesting.
438 if (!removeUnneededCalls(
439 C, call.path, R,
440 R->isInteresting(C.getLocationContextFor(&call.path))))
441 continue;
443 containsSomethingInteresting = true;
444 break;
446 case PathDiagnosticPiece::Macro: {
447 auto &macro = cast<PathDiagnosticMacroPiece>(*piece);
448 if (!removeUnneededCalls(C, macro.subPieces, R, IsInteresting))
449 continue;
450 containsSomethingInteresting = true;
451 break;
453 case PathDiagnosticPiece::Event: {
454 auto &event = cast<PathDiagnosticEventPiece>(*piece);
456 // We never throw away an event, but we do throw it away wholesale
457 // as part of a path if we throw the entire path away.
458 containsSomethingInteresting |= !event.isPrunable();
459 break;
461 case PathDiagnosticPiece::ControlFlow:
462 case PathDiagnosticPiece::Note:
463 case PathDiagnosticPiece::PopUp:
464 break;
467 pieces.push_back(std::move(piece));
470 return containsSomethingInteresting;
473 /// Same logic as above to remove extra pieces.
474 static void removePopUpNotes(PathPieces &Path) {
475 for (unsigned int i = 0; i < Path.size(); ++i) {
476 auto Piece = std::move(Path.front());
477 Path.pop_front();
478 if (!isa<PathDiagnosticPopUpPiece>(*Piece))
479 Path.push_back(std::move(Piece));
483 /// Returns true if the given decl has been implicitly given a body, either by
484 /// the analyzer or by the compiler proper.
485 static bool hasImplicitBody(const Decl *D) {
486 assert(D);
487 return D->isImplicit() || !D->hasBody();
490 /// Recursively scan through a path and make sure that all call pieces have
491 /// valid locations.
492 static void
493 adjustCallLocations(PathPieces &Pieces,
494 PathDiagnosticLocation *LastCallLocation = nullptr) {
495 for (const auto &I : Pieces) {
496 auto *Call = dyn_cast<PathDiagnosticCallPiece>(I.get());
498 if (!Call)
499 continue;
501 if (LastCallLocation) {
502 bool CallerIsImplicit = hasImplicitBody(Call->getCaller());
503 if (CallerIsImplicit || !Call->callEnter.asLocation().isValid())
504 Call->callEnter = *LastCallLocation;
505 if (CallerIsImplicit || !Call->callReturn.asLocation().isValid())
506 Call->callReturn = *LastCallLocation;
509 // Recursively clean out the subclass. Keep this call around if
510 // it contains any informative diagnostics.
511 PathDiagnosticLocation *ThisCallLocation;
512 if (Call->callEnterWithin.asLocation().isValid() &&
513 !hasImplicitBody(Call->getCallee()))
514 ThisCallLocation = &Call->callEnterWithin;
515 else
516 ThisCallLocation = &Call->callEnter;
518 assert(ThisCallLocation && "Outermost call has an invalid location");
519 adjustCallLocations(Call->path, ThisCallLocation);
523 /// Remove edges in and out of C++ default initializer expressions. These are
524 /// for fields that have in-class initializers, as opposed to being initialized
525 /// explicitly in a constructor or braced list.
526 static void removeEdgesToDefaultInitializers(PathPieces &Pieces) {
527 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
528 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
529 removeEdgesToDefaultInitializers(C->path);
531 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
532 removeEdgesToDefaultInitializers(M->subPieces);
534 if (auto *CF = dyn_cast<PathDiagnosticControlFlowPiece>(I->get())) {
535 const Stmt *Start = CF->getStartLocation().asStmt();
536 const Stmt *End = CF->getEndLocation().asStmt();
537 if (isa_and_nonnull<CXXDefaultInitExpr>(Start)) {
538 I = Pieces.erase(I);
539 continue;
540 } else if (isa_and_nonnull<CXXDefaultInitExpr>(End)) {
541 PathPieces::iterator Next = std::next(I);
542 if (Next != E) {
543 if (auto *NextCF =
544 dyn_cast<PathDiagnosticControlFlowPiece>(Next->get())) {
545 NextCF->setStartLocation(CF->getStartLocation());
548 I = Pieces.erase(I);
549 continue;
553 I++;
557 /// Remove all pieces with invalid locations as these cannot be serialized.
558 /// We might have pieces with invalid locations as a result of inlining Body
559 /// Farm generated functions.
560 static void removePiecesWithInvalidLocations(PathPieces &Pieces) {
561 for (PathPieces::iterator I = Pieces.begin(), E = Pieces.end(); I != E;) {
562 if (auto *C = dyn_cast<PathDiagnosticCallPiece>(I->get()))
563 removePiecesWithInvalidLocations(C->path);
565 if (auto *M = dyn_cast<PathDiagnosticMacroPiece>(I->get()))
566 removePiecesWithInvalidLocations(M->subPieces);
568 if (!(*I)->getLocation().isValid() ||
569 !(*I)->getLocation().asLocation().isValid()) {
570 I = Pieces.erase(I);
571 continue;
573 I++;
577 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
578 const PathDiagnosticConstruct &C) const {
579 if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
580 return PathDiagnosticLocation(S, getSourceManager(),
581 C.getCurrLocationContext());
583 return PathDiagnosticLocation::createDeclEnd(C.getCurrLocationContext(),
584 getSourceManager());
587 PathDiagnosticLocation PathDiagnosticBuilder::ExecutionContinues(
588 llvm::raw_string_ostream &os, const PathDiagnosticConstruct &C) const {
589 // Slow, but probably doesn't matter.
590 if (os.str().empty())
591 os << ' ';
593 const PathDiagnosticLocation &Loc = ExecutionContinues(C);
595 if (Loc.asStmt())
596 os << "Execution continues on line "
597 << getSourceManager().getExpansionLineNumber(Loc.asLocation())
598 << '.';
599 else {
600 os << "Execution jumps to the end of the ";
601 const Decl *D = C.getCurrLocationContext()->getDecl();
602 if (isa<ObjCMethodDecl>(D))
603 os << "method";
604 else if (isa<FunctionDecl>(D))
605 os << "function";
606 else {
607 assert(isa<BlockDecl>(D));
608 os << "anonymous block";
610 os << '.';
613 return Loc;
616 static const Stmt *getEnclosingParent(const Stmt *S, const ParentMap &PM) {
617 if (isa<Expr>(S) && PM.isConsumedExpr(cast<Expr>(S)))
618 return PM.getParentIgnoreParens(S);
620 const Stmt *Parent = PM.getParentIgnoreParens(S);
621 if (!Parent)
622 return nullptr;
624 switch (Parent->getStmtClass()) {
625 case Stmt::ForStmtClass:
626 case Stmt::DoStmtClass:
627 case Stmt::WhileStmtClass:
628 case Stmt::ObjCForCollectionStmtClass:
629 case Stmt::CXXForRangeStmtClass:
630 return Parent;
631 default:
632 break;
635 return nullptr;
638 static PathDiagnosticLocation
639 getEnclosingStmtLocation(const Stmt *S, const LocationContext *LC,
640 bool allowNestedContexts = false) {
641 if (!S)
642 return {};
644 const SourceManager &SMgr = LC->getDecl()->getASTContext().getSourceManager();
646 while (const Stmt *Parent = getEnclosingParent(S, LC->getParentMap())) {
647 switch (Parent->getStmtClass()) {
648 case Stmt::BinaryOperatorClass: {
649 const auto *B = cast<BinaryOperator>(Parent);
650 if (B->isLogicalOp())
651 return PathDiagnosticLocation(allowNestedContexts ? B : S, SMgr, LC);
652 break;
654 case Stmt::CompoundStmtClass:
655 case Stmt::StmtExprClass:
656 return PathDiagnosticLocation(S, SMgr, LC);
657 case Stmt::ChooseExprClass:
658 // Similar to '?' if we are referring to condition, just have the edge
659 // point to the entire choose expression.
660 if (allowNestedContexts || cast<ChooseExpr>(Parent)->getCond() == S)
661 return PathDiagnosticLocation(Parent, SMgr, LC);
662 else
663 return PathDiagnosticLocation(S, SMgr, LC);
664 case Stmt::BinaryConditionalOperatorClass:
665 case Stmt::ConditionalOperatorClass:
666 // For '?', if we are referring to condition, just have the edge point
667 // to the entire '?' expression.
668 if (allowNestedContexts ||
669 cast<AbstractConditionalOperator>(Parent)->getCond() == S)
670 return PathDiagnosticLocation(Parent, SMgr, LC);
671 else
672 return PathDiagnosticLocation(S, SMgr, LC);
673 case Stmt::CXXForRangeStmtClass:
674 if (cast<CXXForRangeStmt>(Parent)->getBody() == S)
675 return PathDiagnosticLocation(S, SMgr, LC);
676 break;
677 case Stmt::DoStmtClass:
678 return PathDiagnosticLocation(S, SMgr, LC);
679 case Stmt::ForStmtClass:
680 if (cast<ForStmt>(Parent)->getBody() == S)
681 return PathDiagnosticLocation(S, SMgr, LC);
682 break;
683 case Stmt::IfStmtClass:
684 if (cast<IfStmt>(Parent)->getCond() != S)
685 return PathDiagnosticLocation(S, SMgr, LC);
686 break;
687 case Stmt::ObjCForCollectionStmtClass:
688 if (cast<ObjCForCollectionStmt>(Parent)->getBody() == S)
689 return PathDiagnosticLocation(S, SMgr, LC);
690 break;
691 case Stmt::WhileStmtClass:
692 if (cast<WhileStmt>(Parent)->getCond() != S)
693 return PathDiagnosticLocation(S, SMgr, LC);
694 break;
695 default:
696 break;
699 S = Parent;
702 assert(S && "Cannot have null Stmt for PathDiagnosticLocation");
704 return PathDiagnosticLocation(S, SMgr, LC);
707 //===----------------------------------------------------------------------===//
708 // "Minimal" path diagnostic generation algorithm.
709 //===----------------------------------------------------------------------===//
711 /// If the piece contains a special message, add it to all the call pieces on
712 /// the active stack. For example, my_malloc allocated memory, so MallocChecker
713 /// will construct an event at the call to malloc(), and add a stack hint that
714 /// an allocated memory was returned. We'll use this hint to construct a message
715 /// when returning from the call to my_malloc
717 /// void *my_malloc() { return malloc(sizeof(int)); }
718 /// void fishy() {
719 /// void *ptr = my_malloc(); // returned allocated memory
720 /// } // leak
721 void PathDiagnosticBuilder::updateStackPiecesWithMessage(
722 PathDiagnosticPieceRef P, const CallWithEntryStack &CallStack) const {
723 if (R->hasCallStackHint(P))
724 for (const auto &I : CallStack) {
725 PathDiagnosticCallPiece *CP = I.first;
726 const ExplodedNode *N = I.second;
727 std::string stackMsg = R->getCallStackMessage(P, N);
729 // The last message on the path to final bug is the most important
730 // one. Since we traverse the path backwards, do not add the message
731 // if one has been previously added.
732 if (!CP->hasCallStackMessage())
733 CP->setCallStackMessage(stackMsg);
737 static void CompactMacroExpandedPieces(PathPieces &path,
738 const SourceManager& SM);
740 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForSwitchOP(
741 const PathDiagnosticConstruct &C, const CFGBlock *Dst,
742 PathDiagnosticLocation &Start) const {
744 const SourceManager &SM = getSourceManager();
745 // Figure out what case arm we took.
746 std::string sbuf;
747 llvm::raw_string_ostream os(sbuf);
748 PathDiagnosticLocation End;
750 if (const Stmt *S = Dst->getLabel()) {
751 End = PathDiagnosticLocation(S, SM, C.getCurrLocationContext());
753 switch (S->getStmtClass()) {
754 default:
755 os << "No cases match in the switch statement. "
756 "Control jumps to line "
757 << End.asLocation().getExpansionLineNumber();
758 break;
759 case Stmt::DefaultStmtClass:
760 os << "Control jumps to the 'default' case at line "
761 << End.asLocation().getExpansionLineNumber();
762 break;
764 case Stmt::CaseStmtClass: {
765 os << "Control jumps to 'case ";
766 const auto *Case = cast<CaseStmt>(S);
767 const Expr *LHS = Case->getLHS()->IgnoreParenImpCasts();
769 // Determine if it is an enum.
770 bool GetRawInt = true;
772 if (const auto *DR = dyn_cast<DeclRefExpr>(LHS)) {
773 // FIXME: Maybe this should be an assertion. Are there cases
774 // were it is not an EnumConstantDecl?
775 const auto *D = dyn_cast<EnumConstantDecl>(DR->getDecl());
777 if (D) {
778 GetRawInt = false;
779 os << *D;
783 if (GetRawInt)
784 os << LHS->EvaluateKnownConstInt(getASTContext());
786 os << ":' at line " << End.asLocation().getExpansionLineNumber();
787 break;
790 } else {
791 os << "'Default' branch taken. ";
792 End = ExecutionContinues(os, C);
794 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
795 os.str());
798 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForGotoOP(
799 const PathDiagnosticConstruct &C, const Stmt *S,
800 PathDiagnosticLocation &Start) const {
801 std::string sbuf;
802 llvm::raw_string_ostream os(sbuf);
803 const PathDiagnosticLocation &End =
804 getEnclosingStmtLocation(S, C.getCurrLocationContext());
805 os << "Control jumps to line " << End.asLocation().getExpansionLineNumber();
806 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str());
809 PathDiagnosticPieceRef PathDiagnosticBuilder::generateDiagForBinaryOP(
810 const PathDiagnosticConstruct &C, const Stmt *T, const CFGBlock *Src,
811 const CFGBlock *Dst) const {
813 const SourceManager &SM = getSourceManager();
815 const auto *B = cast<BinaryOperator>(T);
816 std::string sbuf;
817 llvm::raw_string_ostream os(sbuf);
818 os << "Left side of '";
819 PathDiagnosticLocation Start, End;
821 if (B->getOpcode() == BO_LAnd) {
822 os << "&&"
823 << "' is ";
825 if (*(Src->succ_begin() + 1) == Dst) {
826 os << "false";
827 End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
828 Start =
829 PathDiagnosticLocation::createOperatorLoc(B, SM);
830 } else {
831 os << "true";
832 Start =
833 PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
834 End = ExecutionContinues(C);
836 } else {
837 assert(B->getOpcode() == BO_LOr);
838 os << "||"
839 << "' is ";
841 if (*(Src->succ_begin() + 1) == Dst) {
842 os << "false";
843 Start =
844 PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
845 End = ExecutionContinues(C);
846 } else {
847 os << "true";
848 End = PathDiagnosticLocation(B->getLHS(), SM, C.getCurrLocationContext());
849 Start =
850 PathDiagnosticLocation::createOperatorLoc(B, SM);
853 return std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
854 os.str());
857 void PathDiagnosticBuilder::generateMinimalDiagForBlockEdge(
858 PathDiagnosticConstruct &C, BlockEdge BE) const {
859 const SourceManager &SM = getSourceManager();
860 const LocationContext *LC = C.getCurrLocationContext();
861 const CFGBlock *Src = BE.getSrc();
862 const CFGBlock *Dst = BE.getDst();
863 const Stmt *T = Src->getTerminatorStmt();
864 if (!T)
865 return;
867 auto Start = PathDiagnosticLocation::createBegin(T, SM, LC);
868 switch (T->getStmtClass()) {
869 default:
870 break;
872 case Stmt::GotoStmtClass:
873 case Stmt::IndirectGotoStmtClass: {
874 if (const Stmt *S = C.getCurrentNode()->getNextStmtForDiagnostics())
875 C.getActivePath().push_front(generateDiagForGotoOP(C, S, Start));
876 break;
879 case Stmt::SwitchStmtClass: {
880 C.getActivePath().push_front(generateDiagForSwitchOP(C, Dst, Start));
881 break;
884 case Stmt::BreakStmtClass:
885 case Stmt::ContinueStmtClass: {
886 std::string sbuf;
887 llvm::raw_string_ostream os(sbuf);
888 PathDiagnosticLocation End = ExecutionContinues(os, C);
889 C.getActivePath().push_front(
890 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
891 break;
894 // Determine control-flow for ternary '?'.
895 case Stmt::BinaryConditionalOperatorClass:
896 case Stmt::ConditionalOperatorClass: {
897 std::string sbuf;
898 llvm::raw_string_ostream os(sbuf);
899 os << "'?' condition is ";
901 if (*(Src->succ_begin() + 1) == Dst)
902 os << "false";
903 else
904 os << "true";
906 PathDiagnosticLocation End = ExecutionContinues(C);
908 if (const Stmt *S = End.asStmt())
909 End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
911 C.getActivePath().push_front(
912 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End, os.str()));
913 break;
916 // Determine control-flow for short-circuited '&&' and '||'.
917 case Stmt::BinaryOperatorClass: {
918 if (!C.supportsLogicalOpControlFlow())
919 break;
921 C.getActivePath().push_front(generateDiagForBinaryOP(C, T, Src, Dst));
922 break;
925 case Stmt::DoStmtClass:
926 if (*(Src->succ_begin()) == Dst) {
927 std::string sbuf;
928 llvm::raw_string_ostream os(sbuf);
930 os << "Loop condition is true. ";
931 PathDiagnosticLocation End = ExecutionContinues(os, C);
933 if (const Stmt *S = End.asStmt())
934 End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
936 C.getActivePath().push_front(
937 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
938 os.str()));
939 } else {
940 PathDiagnosticLocation End = ExecutionContinues(C);
942 if (const Stmt *S = End.asStmt())
943 End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
945 C.getActivePath().push_front(
946 std::make_shared<PathDiagnosticControlFlowPiece>(
947 Start, End, "Loop condition is false. Exiting loop"));
949 break;
951 case Stmt::WhileStmtClass:
952 case Stmt::ForStmtClass:
953 if (*(Src->succ_begin() + 1) == Dst) {
954 std::string sbuf;
955 llvm::raw_string_ostream os(sbuf);
957 os << "Loop condition is false. ";
958 PathDiagnosticLocation End = ExecutionContinues(os, C);
959 if (const Stmt *S = End.asStmt())
960 End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
962 C.getActivePath().push_front(
963 std::make_shared<PathDiagnosticControlFlowPiece>(Start, End,
964 os.str()));
965 } else {
966 PathDiagnosticLocation End = ExecutionContinues(C);
967 if (const Stmt *S = End.asStmt())
968 End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
970 C.getActivePath().push_front(
971 std::make_shared<PathDiagnosticControlFlowPiece>(
972 Start, End, "Loop condition is true. Entering loop body"));
975 break;
977 case Stmt::IfStmtClass: {
978 PathDiagnosticLocation End = ExecutionContinues(C);
980 if (const Stmt *S = End.asStmt())
981 End = getEnclosingStmtLocation(S, C.getCurrLocationContext());
983 if (*(Src->succ_begin() + 1) == Dst)
984 C.getActivePath().push_front(
985 std::make_shared<PathDiagnosticControlFlowPiece>(
986 Start, End, "Taking false branch"));
987 else
988 C.getActivePath().push_front(
989 std::make_shared<PathDiagnosticControlFlowPiece>(
990 Start, End, "Taking true branch"));
992 break;
997 //===----------------------------------------------------------------------===//
998 // Functions for determining if a loop was executed 0 times.
999 //===----------------------------------------------------------------------===//
1001 static bool isLoop(const Stmt *Term) {
1002 switch (Term->getStmtClass()) {
1003 case Stmt::ForStmtClass:
1004 case Stmt::WhileStmtClass:
1005 case Stmt::ObjCForCollectionStmtClass:
1006 case Stmt::CXXForRangeStmtClass:
1007 return true;
1008 default:
1009 // Note that we intentionally do not include do..while here.
1010 return false;
1014 static bool isJumpToFalseBranch(const BlockEdge *BE) {
1015 const CFGBlock *Src = BE->getSrc();
1016 assert(Src->succ_size() == 2);
1017 return (*(Src->succ_begin()+1) == BE->getDst());
1020 static bool isContainedByStmt(const ParentMap &PM, const Stmt *S,
1021 const Stmt *SubS) {
1022 while (SubS) {
1023 if (SubS == S)
1024 return true;
1025 SubS = PM.getParent(SubS);
1027 return false;
1030 static const Stmt *getStmtBeforeCond(const ParentMap &PM, const Stmt *Term,
1031 const ExplodedNode *N) {
1032 while (N) {
1033 std::optional<StmtPoint> SP = N->getLocation().getAs<StmtPoint>();
1034 if (SP) {
1035 const Stmt *S = SP->getStmt();
1036 if (!isContainedByStmt(PM, Term, S))
1037 return S;
1039 N = N->getFirstPred();
1041 return nullptr;
1044 static bool isInLoopBody(const ParentMap &PM, const Stmt *S, const Stmt *Term) {
1045 const Stmt *LoopBody = nullptr;
1046 switch (Term->getStmtClass()) {
1047 case Stmt::CXXForRangeStmtClass: {
1048 const auto *FR = cast<CXXForRangeStmt>(Term);
1049 if (isContainedByStmt(PM, FR->getInc(), S))
1050 return true;
1051 if (isContainedByStmt(PM, FR->getLoopVarStmt(), S))
1052 return true;
1053 LoopBody = FR->getBody();
1054 break;
1056 case Stmt::ForStmtClass: {
1057 const auto *FS = cast<ForStmt>(Term);
1058 if (isContainedByStmt(PM, FS->getInc(), S))
1059 return true;
1060 LoopBody = FS->getBody();
1061 break;
1063 case Stmt::ObjCForCollectionStmtClass: {
1064 const auto *FC = cast<ObjCForCollectionStmt>(Term);
1065 LoopBody = FC->getBody();
1066 break;
1068 case Stmt::WhileStmtClass:
1069 LoopBody = cast<WhileStmt>(Term)->getBody();
1070 break;
1071 default:
1072 return false;
1074 return isContainedByStmt(PM, LoopBody, S);
1077 /// Adds a sanitized control-flow diagnostic edge to a path.
1078 static void addEdgeToPath(PathPieces &path,
1079 PathDiagnosticLocation &PrevLoc,
1080 PathDiagnosticLocation NewLoc) {
1081 if (!NewLoc.isValid())
1082 return;
1084 SourceLocation NewLocL = NewLoc.asLocation();
1085 if (NewLocL.isInvalid())
1086 return;
1088 if (!PrevLoc.isValid() || !PrevLoc.asLocation().isValid()) {
1089 PrevLoc = NewLoc;
1090 return;
1093 // Ignore self-edges, which occur when there are multiple nodes at the same
1094 // statement.
1095 if (NewLoc.asStmt() && NewLoc.asStmt() == PrevLoc.asStmt())
1096 return;
1098 path.push_front(
1099 std::make_shared<PathDiagnosticControlFlowPiece>(NewLoc, PrevLoc));
1100 PrevLoc = NewLoc;
1103 /// A customized wrapper for CFGBlock::getTerminatorCondition()
1104 /// which returns the element for ObjCForCollectionStmts.
1105 static const Stmt *getTerminatorCondition(const CFGBlock *B) {
1106 const Stmt *S = B->getTerminatorCondition();
1107 if (const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(S))
1108 return FS->getElement();
1109 return S;
1112 constexpr llvm::StringLiteral StrEnteringLoop = "Entering loop body";
1113 constexpr llvm::StringLiteral StrLoopBodyZero = "Loop body executed 0 times";
1114 constexpr llvm::StringLiteral StrLoopRangeEmpty =
1115 "Loop body skipped when range is empty";
1116 constexpr llvm::StringLiteral StrLoopCollectionEmpty =
1117 "Loop body skipped when collection is empty";
1119 static std::unique_ptr<FilesToLineNumsMap>
1120 findExecutedLines(const SourceManager &SM, const ExplodedNode *N);
1122 void PathDiagnosticBuilder::generatePathDiagnosticsForNode(
1123 PathDiagnosticConstruct &C, PathDiagnosticLocation &PrevLoc) const {
1124 ProgramPoint P = C.getCurrentNode()->getLocation();
1125 const SourceManager &SM = getSourceManager();
1127 // Have we encountered an entrance to a call? It may be
1128 // the case that we have not encountered a matching
1129 // call exit before this point. This means that the path
1130 // terminated within the call itself.
1131 if (auto CE = P.getAs<CallEnter>()) {
1133 if (C.shouldAddPathEdges()) {
1134 // Add an edge to the start of the function.
1135 const StackFrameContext *CalleeLC = CE->getCalleeContext();
1136 const Decl *D = CalleeLC->getDecl();
1137 // Add the edge only when the callee has body. We jump to the beginning
1138 // of the *declaration*, however we expect it to be followed by the
1139 // body. This isn't the case for autosynthesized property accessors in
1140 // Objective-C. No need for a similar extra check for CallExit points
1141 // because the exit edge comes from a statement (i.e. return),
1142 // not from declaration.
1143 if (D->hasBody())
1144 addEdgeToPath(C.getActivePath(), PrevLoc,
1145 PathDiagnosticLocation::createBegin(D, SM));
1148 // Did we visit an entire call?
1149 bool VisitedEntireCall = C.PD->isWithinCall();
1150 C.PD->popActivePath();
1152 PathDiagnosticCallPiece *Call;
1153 if (VisitedEntireCall) {
1154 Call = cast<PathDiagnosticCallPiece>(C.getActivePath().front().get());
1155 } else {
1156 // The path terminated within a nested location context, create a new
1157 // call piece to encapsulate the rest of the path pieces.
1158 const Decl *Caller = CE->getLocationContext()->getDecl();
1159 Call = PathDiagnosticCallPiece::construct(C.getActivePath(), Caller);
1160 assert(C.getActivePath().size() == 1 &&
1161 C.getActivePath().front().get() == Call);
1163 // Since we just transferred the path over to the call piece, reset the
1164 // mapping of the active path to the current location context.
1165 assert(C.isInLocCtxMap(&C.getActivePath()) &&
1166 "When we ascend to a previously unvisited call, the active path's "
1167 "address shouldn't change, but rather should be compacted into "
1168 "a single CallEvent!");
1169 C.updateLocCtxMap(&C.getActivePath(), C.getCurrLocationContext());
1171 // Record the location context mapping for the path within the call.
1172 assert(!C.isInLocCtxMap(&Call->path) &&
1173 "When we ascend to a previously unvisited call, this must be the "
1174 "first time we encounter the caller context!");
1175 C.updateLocCtxMap(&Call->path, CE->getCalleeContext());
1177 Call->setCallee(*CE, SM);
1179 // Update the previous location in the active path.
1180 PrevLoc = Call->getLocation();
1182 if (!C.CallStack.empty()) {
1183 assert(C.CallStack.back().first == Call);
1184 C.CallStack.pop_back();
1186 return;
1189 assert(C.getCurrLocationContext() == C.getLocationContextForActivePath() &&
1190 "The current position in the bug path is out of sync with the "
1191 "location context associated with the active path!");
1193 // Have we encountered an exit from a function call?
1194 if (std::optional<CallExitEnd> CE = P.getAs<CallExitEnd>()) {
1196 // We are descending into a call (backwards). Construct
1197 // a new call piece to contain the path pieces for that call.
1198 auto Call = PathDiagnosticCallPiece::construct(*CE, SM);
1199 // Record the mapping from call piece to LocationContext.
1200 assert(!C.isInLocCtxMap(&Call->path) &&
1201 "We just entered a call, this must've been the first time we "
1202 "encounter its context!");
1203 C.updateLocCtxMap(&Call->path, CE->getCalleeContext());
1205 if (C.shouldAddPathEdges()) {
1206 // Add the edge to the return site.
1207 addEdgeToPath(C.getActivePath(), PrevLoc, Call->callReturn);
1208 PrevLoc.invalidate();
1211 auto *P = Call.get();
1212 C.getActivePath().push_front(std::move(Call));
1214 // Make the contents of the call the active path for now.
1215 C.PD->pushActivePath(&P->path);
1216 C.CallStack.push_back(CallWithEntry(P, C.getCurrentNode()));
1217 return;
1220 if (auto PS = P.getAs<PostStmt>()) {
1221 if (!C.shouldAddPathEdges())
1222 return;
1224 // Add an edge. If this is an ObjCForCollectionStmt do
1225 // not add an edge here as it appears in the CFG both
1226 // as a terminator and as a terminator condition.
1227 if (!isa<ObjCForCollectionStmt>(PS->getStmt())) {
1228 PathDiagnosticLocation L =
1229 PathDiagnosticLocation(PS->getStmt(), SM, C.getCurrLocationContext());
1230 addEdgeToPath(C.getActivePath(), PrevLoc, L);
1233 } else if (auto BE = P.getAs<BlockEdge>()) {
1235 if (C.shouldAddControlNotes()) {
1236 generateMinimalDiagForBlockEdge(C, *BE);
1239 if (!C.shouldAddPathEdges()) {
1240 return;
1243 // Are we jumping to the head of a loop? Add a special diagnostic.
1244 if (const Stmt *Loop = BE->getSrc()->getLoopTarget()) {
1245 PathDiagnosticLocation L(Loop, SM, C.getCurrLocationContext());
1246 const Stmt *Body = nullptr;
1248 if (const auto *FS = dyn_cast<ForStmt>(Loop))
1249 Body = FS->getBody();
1250 else if (const auto *WS = dyn_cast<WhileStmt>(Loop))
1251 Body = WS->getBody();
1252 else if (const auto *OFS = dyn_cast<ObjCForCollectionStmt>(Loop)) {
1253 Body = OFS->getBody();
1254 } else if (const auto *FRS = dyn_cast<CXXForRangeStmt>(Loop)) {
1255 Body = FRS->getBody();
1257 // do-while statements are explicitly excluded here
1259 auto p = std::make_shared<PathDiagnosticEventPiece>(
1260 L, "Looping back to the head of the loop");
1261 p->setPrunable(true);
1263 addEdgeToPath(C.getActivePath(), PrevLoc, p->getLocation());
1264 // We might've added a very similar control node already
1265 if (!C.shouldAddControlNotes()) {
1266 C.getActivePath().push_front(std::move(p));
1269 if (const auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
1270 addEdgeToPath(C.getActivePath(), PrevLoc,
1271 PathDiagnosticLocation::createEndBrace(CS, SM));
1275 const CFGBlock *BSrc = BE->getSrc();
1276 const ParentMap &PM = C.getParentMap();
1278 if (const Stmt *Term = BSrc->getTerminatorStmt()) {
1279 // Are we jumping past the loop body without ever executing the
1280 // loop (because the condition was false)?
1281 if (isLoop(Term)) {
1282 const Stmt *TermCond = getTerminatorCondition(BSrc);
1283 bool IsInLoopBody = isInLoopBody(
1284 PM, getStmtBeforeCond(PM, TermCond, C.getCurrentNode()), Term);
1286 StringRef str;
1288 if (isJumpToFalseBranch(&*BE)) {
1289 if (!IsInLoopBody) {
1290 if (isa<ObjCForCollectionStmt>(Term)) {
1291 str = StrLoopCollectionEmpty;
1292 } else if (isa<CXXForRangeStmt>(Term)) {
1293 str = StrLoopRangeEmpty;
1294 } else {
1295 str = StrLoopBodyZero;
1298 } else {
1299 str = StrEnteringLoop;
1302 if (!str.empty()) {
1303 PathDiagnosticLocation L(TermCond ? TermCond : Term, SM,
1304 C.getCurrLocationContext());
1305 auto PE = std::make_shared<PathDiagnosticEventPiece>(L, str);
1306 PE->setPrunable(true);
1307 addEdgeToPath(C.getActivePath(), PrevLoc, PE->getLocation());
1309 // We might've added a very similar control node already
1310 if (!C.shouldAddControlNotes()) {
1311 C.getActivePath().push_front(std::move(PE));
1314 } else if (isa<BreakStmt, ContinueStmt, GotoStmt>(Term)) {
1315 PathDiagnosticLocation L(Term, SM, C.getCurrLocationContext());
1316 addEdgeToPath(C.getActivePath(), PrevLoc, L);
1322 static std::unique_ptr<PathDiagnostic>
1323 generateDiagnosticForBasicReport(const BasicBugReport *R) {
1324 const BugType &BT = R->getBugType();
1325 return std::make_unique<PathDiagnostic>(
1326 BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(),
1327 R->getDescription(), R->getShortDescription(/*UseFallback=*/false),
1328 BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(),
1329 std::make_unique<FilesToLineNumsMap>());
1332 static std::unique_ptr<PathDiagnostic>
1333 generateEmptyDiagnosticForReport(const PathSensitiveBugReport *R,
1334 const SourceManager &SM) {
1335 const BugType &BT = R->getBugType();
1336 return std::make_unique<PathDiagnostic>(
1337 BT.getCheckerName(), R->getDeclWithIssue(), BT.getDescription(),
1338 R->getDescription(), R->getShortDescription(/*UseFallback=*/false),
1339 BT.getCategory(), R->getUniqueingLocation(), R->getUniqueingDecl(),
1340 findExecutedLines(SM, R->getErrorNode()));
1343 static const Stmt *getStmtParent(const Stmt *S, const ParentMap &PM) {
1344 if (!S)
1345 return nullptr;
1347 while (true) {
1348 S = PM.getParentIgnoreParens(S);
1350 if (!S)
1351 break;
1353 if (isa<FullExpr, CXXBindTemporaryExpr, SubstNonTypeTemplateParmExpr>(S))
1354 continue;
1356 break;
1359 return S;
1362 static bool isConditionForTerminator(const Stmt *S, const Stmt *Cond) {
1363 switch (S->getStmtClass()) {
1364 case Stmt::BinaryOperatorClass: {
1365 const auto *BO = cast<BinaryOperator>(S);
1366 if (!BO->isLogicalOp())
1367 return false;
1368 return BO->getLHS() == Cond || BO->getRHS() == Cond;
1370 case Stmt::IfStmtClass:
1371 return cast<IfStmt>(S)->getCond() == Cond;
1372 case Stmt::ForStmtClass:
1373 return cast<ForStmt>(S)->getCond() == Cond;
1374 case Stmt::WhileStmtClass:
1375 return cast<WhileStmt>(S)->getCond() == Cond;
1376 case Stmt::DoStmtClass:
1377 return cast<DoStmt>(S)->getCond() == Cond;
1378 case Stmt::ChooseExprClass:
1379 return cast<ChooseExpr>(S)->getCond() == Cond;
1380 case Stmt::IndirectGotoStmtClass:
1381 return cast<IndirectGotoStmt>(S)->getTarget() == Cond;
1382 case Stmt::SwitchStmtClass:
1383 return cast<SwitchStmt>(S)->getCond() == Cond;
1384 case Stmt::BinaryConditionalOperatorClass:
1385 return cast<BinaryConditionalOperator>(S)->getCond() == Cond;
1386 case Stmt::ConditionalOperatorClass: {
1387 const auto *CO = cast<ConditionalOperator>(S);
1388 return CO->getCond() == Cond ||
1389 CO->getLHS() == Cond ||
1390 CO->getRHS() == Cond;
1392 case Stmt::ObjCForCollectionStmtClass:
1393 return cast<ObjCForCollectionStmt>(S)->getElement() == Cond;
1394 case Stmt::CXXForRangeStmtClass: {
1395 const auto *FRS = cast<CXXForRangeStmt>(S);
1396 return FRS->getCond() == Cond || FRS->getRangeInit() == Cond;
1398 default:
1399 return false;
1403 static bool isIncrementOrInitInForLoop(const Stmt *S, const Stmt *FL) {
1404 if (const auto *FS = dyn_cast<ForStmt>(FL))
1405 return FS->getInc() == S || FS->getInit() == S;
1406 if (const auto *FRS = dyn_cast<CXXForRangeStmt>(FL))
1407 return FRS->getInc() == S || FRS->getRangeStmt() == S ||
1408 FRS->getLoopVarStmt() || FRS->getRangeInit() == S;
1409 return false;
1412 using OptimizedCallsSet = llvm::DenseSet<const PathDiagnosticCallPiece *>;
1414 /// Adds synthetic edges from top-level statements to their subexpressions.
1416 /// This avoids a "swoosh" effect, where an edge from a top-level statement A
1417 /// points to a sub-expression B.1 that's not at the start of B. In these cases,
1418 /// we'd like to see an edge from A to B, then another one from B to B.1.
1419 static void addContextEdges(PathPieces &pieces, const LocationContext *LC) {
1420 const ParentMap &PM = LC->getParentMap();
1421 PathPieces::iterator Prev = pieces.end();
1422 for (PathPieces::iterator I = pieces.begin(), E = Prev; I != E;
1423 Prev = I, ++I) {
1424 auto *Piece = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1426 if (!Piece)
1427 continue;
1429 PathDiagnosticLocation SrcLoc = Piece->getStartLocation();
1430 SmallVector<PathDiagnosticLocation, 4> SrcContexts;
1432 PathDiagnosticLocation NextSrcContext = SrcLoc;
1433 const Stmt *InnerStmt = nullptr;
1434 while (NextSrcContext.isValid() && NextSrcContext.asStmt() != InnerStmt) {
1435 SrcContexts.push_back(NextSrcContext);
1436 InnerStmt = NextSrcContext.asStmt();
1437 NextSrcContext = getEnclosingStmtLocation(InnerStmt, LC,
1438 /*allowNested=*/true);
1441 // Repeatedly split the edge as necessary.
1442 // This is important for nested logical expressions (||, &&, ?:) where we
1443 // want to show all the levels of context.
1444 while (true) {
1445 const Stmt *Dst = Piece->getEndLocation().getStmtOrNull();
1447 // We are looking at an edge. Is the destination within a larger
1448 // expression?
1449 PathDiagnosticLocation DstContext =
1450 getEnclosingStmtLocation(Dst, LC, /*allowNested=*/true);
1451 if (!DstContext.isValid() || DstContext.asStmt() == Dst)
1452 break;
1454 // If the source is in the same context, we're already good.
1455 if (llvm::is_contained(SrcContexts, DstContext))
1456 break;
1458 // Update the subexpression node to point to the context edge.
1459 Piece->setStartLocation(DstContext);
1461 // Try to extend the previous edge if it's at the same level as the source
1462 // context.
1463 if (Prev != E) {
1464 auto *PrevPiece = dyn_cast<PathDiagnosticControlFlowPiece>(Prev->get());
1466 if (PrevPiece) {
1467 if (const Stmt *PrevSrc =
1468 PrevPiece->getStartLocation().getStmtOrNull()) {
1469 const Stmt *PrevSrcParent = getStmtParent(PrevSrc, PM);
1470 if (PrevSrcParent ==
1471 getStmtParent(DstContext.getStmtOrNull(), PM)) {
1472 PrevPiece->setEndLocation(DstContext);
1473 break;
1479 // Otherwise, split the current edge into a context edge and a
1480 // subexpression edge. Note that the context statement may itself have
1481 // context.
1482 auto P =
1483 std::make_shared<PathDiagnosticControlFlowPiece>(SrcLoc, DstContext);
1484 Piece = P.get();
1485 I = pieces.insert(I, std::move(P));
1490 /// Move edges from a branch condition to a branch target
1491 /// when the condition is simple.
1493 /// This restructures some of the work of addContextEdges. That function
1494 /// creates edges this may destroy, but they work together to create a more
1495 /// aesthetically set of edges around branches. After the call to
1496 /// addContextEdges, we may have (1) an edge to the branch, (2) an edge from
1497 /// the branch to the branch condition, and (3) an edge from the branch
1498 /// condition to the branch target. We keep (1), but may wish to remove (2)
1499 /// and move the source of (3) to the branch if the branch condition is simple.
1500 static void simplifySimpleBranches(PathPieces &pieces) {
1501 for (PathPieces::iterator I = pieces.begin(), E = pieces.end(); I != E; ++I) {
1502 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1504 if (!PieceI)
1505 continue;
1507 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1508 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull();
1510 if (!s1Start || !s1End)
1511 continue;
1513 PathPieces::iterator NextI = I; ++NextI;
1514 if (NextI == E)
1515 break;
1517 PathDiagnosticControlFlowPiece *PieceNextI = nullptr;
1519 while (true) {
1520 if (NextI == E)
1521 break;
1523 const auto *EV = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
1524 if (EV) {
1525 StringRef S = EV->getString();
1526 if (S == StrEnteringLoop || S == StrLoopBodyZero ||
1527 S == StrLoopCollectionEmpty || S == StrLoopRangeEmpty) {
1528 ++NextI;
1529 continue;
1531 break;
1534 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1535 break;
1538 if (!PieceNextI)
1539 continue;
1541 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1542 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull();
1544 if (!s2Start || !s2End || s1End != s2Start)
1545 continue;
1547 // We only perform this transformation for specific branch kinds.
1548 // We don't want to do this for do..while, for example.
1549 if (!isa<ForStmt, WhileStmt, IfStmt, ObjCForCollectionStmt,
1550 CXXForRangeStmt>(s1Start))
1551 continue;
1553 // Is s1End the branch condition?
1554 if (!isConditionForTerminator(s1Start, s1End))
1555 continue;
1557 // Perform the hoisting by eliminating (2) and changing the start
1558 // location of (3).
1559 PieceNextI->setStartLocation(PieceI->getStartLocation());
1560 I = pieces.erase(I);
1564 /// Returns the number of bytes in the given (character-based) SourceRange.
1566 /// If the locations in the range are not on the same line, returns
1567 /// std::nullopt.
1569 /// Note that this does not do a precise user-visible character or column count.
1570 static std::optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1571 SourceRange Range) {
1572 SourceRange ExpansionRange(SM.getExpansionLoc(Range.getBegin()),
1573 SM.getExpansionRange(Range.getEnd()).getEnd());
1575 FileID FID = SM.getFileID(ExpansionRange.getBegin());
1576 if (FID != SM.getFileID(ExpansionRange.getEnd()))
1577 return std::nullopt;
1579 std::optional<MemoryBufferRef> Buffer = SM.getBufferOrNone(FID);
1580 if (!Buffer)
1581 return std::nullopt;
1583 unsigned BeginOffset = SM.getFileOffset(ExpansionRange.getBegin());
1584 unsigned EndOffset = SM.getFileOffset(ExpansionRange.getEnd());
1585 StringRef Snippet = Buffer->getBuffer().slice(BeginOffset, EndOffset);
1587 // We're searching the raw bytes of the buffer here, which might include
1588 // escaped newlines and such. That's okay; we're trying to decide whether the
1589 // SourceRange is covering a large or small amount of space in the user's
1590 // editor.
1591 if (Snippet.find_first_of("\r\n") != StringRef::npos)
1592 return std::nullopt;
1594 // This isn't Unicode-aware, but it doesn't need to be.
1595 return Snippet.size();
1598 /// \sa getLengthOnSingleLine(SourceManager, SourceRange)
1599 static std::optional<size_t> getLengthOnSingleLine(const SourceManager &SM,
1600 const Stmt *S) {
1601 return getLengthOnSingleLine(SM, S->getSourceRange());
1604 /// Eliminate two-edge cycles created by addContextEdges().
1606 /// Once all the context edges are in place, there are plenty of cases where
1607 /// there's a single edge from a top-level statement to a subexpression,
1608 /// followed by a single path note, and then a reverse edge to get back out to
1609 /// the top level. If the statement is simple enough, the subexpression edges
1610 /// just add noise and make it harder to understand what's going on.
1612 /// This function only removes edges in pairs, because removing only one edge
1613 /// might leave other edges dangling.
1615 /// This will not remove edges in more complicated situations:
1616 /// - if there is more than one "hop" leading to or from a subexpression.
1617 /// - if there is an inlined call between the edges instead of a single event.
1618 /// - if the whole statement is large enough that having subexpression arrows
1619 /// might be helpful.
1620 static void removeContextCycles(PathPieces &Path, const SourceManager &SM) {
1621 for (PathPieces::iterator I = Path.begin(), E = Path.end(); I != E; ) {
1622 // Pattern match the current piece and its successor.
1623 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1625 if (!PieceI) {
1626 ++I;
1627 continue;
1630 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1631 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull();
1633 PathPieces::iterator NextI = I; ++NextI;
1634 if (NextI == E)
1635 break;
1637 const auto *PieceNextI =
1638 dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1640 if (!PieceNextI) {
1641 if (isa<PathDiagnosticEventPiece>(NextI->get())) {
1642 ++NextI;
1643 if (NextI == E)
1644 break;
1645 PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1648 if (!PieceNextI) {
1649 ++I;
1650 continue;
1654 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1655 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull();
1657 if (s1Start && s2Start && s1Start == s2End && s2Start == s1End) {
1658 const size_t MAX_SHORT_LINE_LENGTH = 80;
1659 std::optional<size_t> s1Length = getLengthOnSingleLine(SM, s1Start);
1660 if (s1Length && *s1Length <= MAX_SHORT_LINE_LENGTH) {
1661 std::optional<size_t> s2Length = getLengthOnSingleLine(SM, s2Start);
1662 if (s2Length && *s2Length <= MAX_SHORT_LINE_LENGTH) {
1663 Path.erase(I);
1664 I = Path.erase(NextI);
1665 continue;
1670 ++I;
1674 /// Return true if X is contained by Y.
1675 static bool lexicalContains(const ParentMap &PM, const Stmt *X, const Stmt *Y) {
1676 while (X) {
1677 if (X == Y)
1678 return true;
1679 X = PM.getParent(X);
1681 return false;
1684 // Remove short edges on the same line less than 3 columns in difference.
1685 static void removePunyEdges(PathPieces &path, const SourceManager &SM,
1686 const ParentMap &PM) {
1687 bool erased = false;
1689 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E;
1690 erased ? I : ++I) {
1691 erased = false;
1693 const auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1695 if (!PieceI)
1696 continue;
1698 const Stmt *start = PieceI->getStartLocation().getStmtOrNull();
1699 const Stmt *end = PieceI->getEndLocation().getStmtOrNull();
1701 if (!start || !end)
1702 continue;
1704 const Stmt *endParent = PM.getParent(end);
1705 if (!endParent)
1706 continue;
1708 if (isConditionForTerminator(end, endParent))
1709 continue;
1711 SourceLocation FirstLoc = start->getBeginLoc();
1712 SourceLocation SecondLoc = end->getBeginLoc();
1714 if (!SM.isWrittenInSameFile(FirstLoc, SecondLoc))
1715 continue;
1716 if (SM.isBeforeInTranslationUnit(SecondLoc, FirstLoc))
1717 std::swap(SecondLoc, FirstLoc);
1719 SourceRange EdgeRange(FirstLoc, SecondLoc);
1720 std::optional<size_t> ByteWidth = getLengthOnSingleLine(SM, EdgeRange);
1722 // If the statements are on different lines, continue.
1723 if (!ByteWidth)
1724 continue;
1726 const size_t MAX_PUNY_EDGE_LENGTH = 2;
1727 if (*ByteWidth <= MAX_PUNY_EDGE_LENGTH) {
1728 // FIXME: There are enough /bytes/ between the endpoints of the edge, but
1729 // there might not be enough /columns/. A proper user-visible column count
1730 // is probably too expensive, though.
1731 I = path.erase(I);
1732 erased = true;
1733 continue;
1738 static void removeIdenticalEvents(PathPieces &path) {
1739 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ++I) {
1740 const auto *PieceI = dyn_cast<PathDiagnosticEventPiece>(I->get());
1742 if (!PieceI)
1743 continue;
1745 PathPieces::iterator NextI = I; ++NextI;
1746 if (NextI == E)
1747 return;
1749 const auto *PieceNextI = dyn_cast<PathDiagnosticEventPiece>(NextI->get());
1751 if (!PieceNextI)
1752 continue;
1754 // Erase the second piece if it has the same exact message text.
1755 if (PieceI->getString() == PieceNextI->getString()) {
1756 path.erase(NextI);
1761 static bool optimizeEdges(const PathDiagnosticConstruct &C, PathPieces &path,
1762 OptimizedCallsSet &OCS) {
1763 bool hasChanges = false;
1764 const LocationContext *LC = C.getLocationContextFor(&path);
1765 assert(LC);
1766 const ParentMap &PM = LC->getParentMap();
1767 const SourceManager &SM = C.getSourceManager();
1769 for (PathPieces::iterator I = path.begin(), E = path.end(); I != E; ) {
1770 // Optimize subpaths.
1771 if (auto *CallI = dyn_cast<PathDiagnosticCallPiece>(I->get())) {
1772 // Record the fact that a call has been optimized so we only do the
1773 // effort once.
1774 if (!OCS.count(CallI)) {
1775 while (optimizeEdges(C, CallI->path, OCS)) {
1777 OCS.insert(CallI);
1779 ++I;
1780 continue;
1783 // Pattern match the current piece and its successor.
1784 auto *PieceI = dyn_cast<PathDiagnosticControlFlowPiece>(I->get());
1786 if (!PieceI) {
1787 ++I;
1788 continue;
1791 const Stmt *s1Start = PieceI->getStartLocation().getStmtOrNull();
1792 const Stmt *s1End = PieceI->getEndLocation().getStmtOrNull();
1793 const Stmt *level1 = getStmtParent(s1Start, PM);
1794 const Stmt *level2 = getStmtParent(s1End, PM);
1796 PathPieces::iterator NextI = I; ++NextI;
1797 if (NextI == E)
1798 break;
1800 const auto *PieceNextI = dyn_cast<PathDiagnosticControlFlowPiece>(NextI->get());
1802 if (!PieceNextI) {
1803 ++I;
1804 continue;
1807 const Stmt *s2Start = PieceNextI->getStartLocation().getStmtOrNull();
1808 const Stmt *s2End = PieceNextI->getEndLocation().getStmtOrNull();
1809 const Stmt *level3 = getStmtParent(s2Start, PM);
1810 const Stmt *level4 = getStmtParent(s2End, PM);
1812 // Rule I.
1814 // If we have two consecutive control edges whose end/begin locations
1815 // are at the same level (e.g. statements or top-level expressions within
1816 // a compound statement, or siblings share a single ancestor expression),
1817 // then merge them if they have no interesting intermediate event.
1819 // For example:
1821 // (1.1 -> 1.2) -> (1.2 -> 1.3) becomes (1.1 -> 1.3) because the common
1822 // parent is '1'. Here 'x.y.z' represents the hierarchy of statements.
1824 // NOTE: this will be limited later in cases where we add barriers
1825 // to prevent this optimization.
1826 if (level1 && level1 == level2 && level1 == level3 && level1 == level4) {
1827 PieceI->setEndLocation(PieceNextI->getEndLocation());
1828 path.erase(NextI);
1829 hasChanges = true;
1830 continue;
1833 // Rule II.
1835 // Eliminate edges between subexpressions and parent expressions
1836 // when the subexpression is consumed.
1838 // NOTE: this will be limited later in cases where we add barriers
1839 // to prevent this optimization.
1840 if (s1End && s1End == s2Start && level2) {
1841 bool removeEdge = false;
1842 // Remove edges into the increment or initialization of a
1843 // loop that have no interleaving event. This means that
1844 // they aren't interesting.
1845 if (isIncrementOrInitInForLoop(s1End, level2))
1846 removeEdge = true;
1847 // Next only consider edges that are not anchored on
1848 // the condition of a terminator. This are intermediate edges
1849 // that we might want to trim.
1850 else if (!isConditionForTerminator(level2, s1End)) {
1851 // Trim edges on expressions that are consumed by
1852 // the parent expression.
1853 if (isa<Expr>(s1End) && PM.isConsumedExpr(cast<Expr>(s1End))) {
1854 removeEdge = true;
1856 // Trim edges where a lexical containment doesn't exist.
1857 // For example:
1859 // X -> Y -> Z
1861 // If 'Z' lexically contains Y (it is an ancestor) and
1862 // 'X' does not lexically contain Y (it is a descendant OR
1863 // it has no lexical relationship at all) then trim.
1865 // This can eliminate edges where we dive into a subexpression
1866 // and then pop back out, etc.
1867 else if (s1Start && s2End &&
1868 lexicalContains(PM, s2Start, s2End) &&
1869 !lexicalContains(PM, s1End, s1Start)) {
1870 removeEdge = true;
1872 // Trim edges from a subexpression back to the top level if the
1873 // subexpression is on a different line.
1875 // A.1 -> A -> B
1876 // becomes
1877 // A.1 -> B
1879 // These edges just look ugly and don't usually add anything.
1880 else if (s1Start && s2End &&
1881 lexicalContains(PM, s1Start, s1End)) {
1882 SourceRange EdgeRange(PieceI->getEndLocation().asLocation(),
1883 PieceI->getStartLocation().asLocation());
1884 if (!getLengthOnSingleLine(SM, EdgeRange))
1885 removeEdge = true;
1889 if (removeEdge) {
1890 PieceI->setEndLocation(PieceNextI->getEndLocation());
1891 path.erase(NextI);
1892 hasChanges = true;
1893 continue;
1897 // Optimize edges for ObjC fast-enumeration loops.
1899 // (X -> collection) -> (collection -> element)
1901 // becomes:
1903 // (X -> element)
1904 if (s1End == s2Start) {
1905 const auto *FS = dyn_cast_or_null<ObjCForCollectionStmt>(level3);
1906 if (FS && FS->getCollection()->IgnoreParens() == s2Start &&
1907 s2End == FS->getElement()) {
1908 PieceI->setEndLocation(PieceNextI->getEndLocation());
1909 path.erase(NextI);
1910 hasChanges = true;
1911 continue;
1915 // No changes at this index? Move to the next one.
1916 ++I;
1919 if (!hasChanges) {
1920 // Adjust edges into subexpressions to make them more uniform
1921 // and aesthetically pleasing.
1922 addContextEdges(path, LC);
1923 // Remove "cyclical" edges that include one or more context edges.
1924 removeContextCycles(path, SM);
1925 // Hoist edges originating from branch conditions to branches
1926 // for simple branches.
1927 simplifySimpleBranches(path);
1928 // Remove any puny edges left over after primary optimization pass.
1929 removePunyEdges(path, SM, PM);
1930 // Remove identical events.
1931 removeIdenticalEvents(path);
1934 return hasChanges;
1937 /// Drop the very first edge in a path, which should be a function entry edge.
1939 /// If the first edge is not a function entry edge (say, because the first
1940 /// statement had an invalid source location), this function does nothing.
1941 // FIXME: We should just generate invalid edges anyway and have the optimizer
1942 // deal with them.
1943 static void dropFunctionEntryEdge(const PathDiagnosticConstruct &C,
1944 PathPieces &Path) {
1945 const auto *FirstEdge =
1946 dyn_cast<PathDiagnosticControlFlowPiece>(Path.front().get());
1947 if (!FirstEdge)
1948 return;
1950 const Decl *D = C.getLocationContextFor(&Path)->getDecl();
1951 PathDiagnosticLocation EntryLoc =
1952 PathDiagnosticLocation::createBegin(D, C.getSourceManager());
1953 if (FirstEdge->getStartLocation() != EntryLoc)
1954 return;
1956 Path.pop_front();
1959 /// Populate executes lines with lines containing at least one diagnostics.
1960 static void updateExecutedLinesWithDiagnosticPieces(PathDiagnostic &PD) {
1962 PathPieces path = PD.path.flatten(/*ShouldFlattenMacros=*/true);
1963 FilesToLineNumsMap &ExecutedLines = PD.getExecutedLines();
1965 for (const auto &P : path) {
1966 FullSourceLoc Loc = P->getLocation().asLocation().getExpansionLoc();
1967 FileID FID = Loc.getFileID();
1968 unsigned LineNo = Loc.getLineNumber();
1969 assert(FID.isValid());
1970 ExecutedLines[FID].insert(LineNo);
1974 PathDiagnosticConstruct::PathDiagnosticConstruct(
1975 const PathDiagnosticConsumer *PDC, const ExplodedNode *ErrorNode,
1976 const PathSensitiveBugReport *R)
1977 : Consumer(PDC), CurrentNode(ErrorNode),
1978 SM(CurrentNode->getCodeDecl().getASTContext().getSourceManager()),
1979 PD(generateEmptyDiagnosticForReport(R, getSourceManager())) {
1980 LCM[&PD->getActivePath()] = ErrorNode->getLocationContext();
1983 PathDiagnosticBuilder::PathDiagnosticBuilder(
1984 BugReporterContext BRC, std::unique_ptr<ExplodedGraph> BugPath,
1985 PathSensitiveBugReport *r, const ExplodedNode *ErrorNode,
1986 std::unique_ptr<VisitorsDiagnosticsTy> VisitorsDiagnostics)
1987 : BugReporterContext(BRC), BugPath(std::move(BugPath)), R(r),
1988 ErrorNode(ErrorNode),
1989 VisitorsDiagnostics(std::move(VisitorsDiagnostics)) {}
1991 std::unique_ptr<PathDiagnostic>
1992 PathDiagnosticBuilder::generate(const PathDiagnosticConsumer *PDC) const {
1993 PathDiagnosticConstruct Construct(PDC, ErrorNode, R);
1995 const SourceManager &SM = getSourceManager();
1996 const AnalyzerOptions &Opts = getAnalyzerOptions();
1998 if (!PDC->shouldGenerateDiagnostics())
1999 return generateEmptyDiagnosticForReport(R, getSourceManager());
2001 // Construct the final (warning) event for the bug report.
2002 auto EndNotes = VisitorsDiagnostics->find(ErrorNode);
2003 PathDiagnosticPieceRef LastPiece;
2004 if (EndNotes != VisitorsDiagnostics->end()) {
2005 assert(!EndNotes->second.empty());
2006 LastPiece = EndNotes->second[0];
2007 } else {
2008 LastPiece = BugReporterVisitor::getDefaultEndPath(*this, ErrorNode,
2009 *getBugReport());
2011 Construct.PD->setEndOfPath(LastPiece);
2013 PathDiagnosticLocation PrevLoc = Construct.PD->getLocation();
2014 // From the error node to the root, ascend the bug path and construct the bug
2015 // report.
2016 while (Construct.ascendToPrevNode()) {
2017 generatePathDiagnosticsForNode(Construct, PrevLoc);
2019 auto VisitorNotes = VisitorsDiagnostics->find(Construct.getCurrentNode());
2020 if (VisitorNotes == VisitorsDiagnostics->end())
2021 continue;
2023 // This is a workaround due to inability to put shared PathDiagnosticPiece
2024 // into a FoldingSet.
2025 std::set<llvm::FoldingSetNodeID> DeduplicationSet;
2027 // Add pieces from custom visitors.
2028 for (const PathDiagnosticPieceRef &Note : VisitorNotes->second) {
2029 llvm::FoldingSetNodeID ID;
2030 Note->Profile(ID);
2031 if (!DeduplicationSet.insert(ID).second)
2032 continue;
2034 if (PDC->shouldAddPathEdges())
2035 addEdgeToPath(Construct.getActivePath(), PrevLoc, Note->getLocation());
2036 updateStackPiecesWithMessage(Note, Construct.CallStack);
2037 Construct.getActivePath().push_front(Note);
2041 if (PDC->shouldAddPathEdges()) {
2042 // Add an edge to the start of the function.
2043 // We'll prune it out later, but it helps make diagnostics more uniform.
2044 const StackFrameContext *CalleeLC =
2045 Construct.getLocationContextForActivePath()->getStackFrame();
2046 const Decl *D = CalleeLC->getDecl();
2047 addEdgeToPath(Construct.getActivePath(), PrevLoc,
2048 PathDiagnosticLocation::createBegin(D, SM));
2052 // Finally, prune the diagnostic path of uninteresting stuff.
2053 if (!Construct.PD->path.empty()) {
2054 if (R->shouldPrunePath() && Opts.ShouldPrunePaths) {
2055 bool stillHasNotes =
2056 removeUnneededCalls(Construct, Construct.getMutablePieces(), R);
2057 assert(stillHasNotes);
2058 (void)stillHasNotes;
2061 // Remove pop-up notes if needed.
2062 if (!Opts.ShouldAddPopUpNotes)
2063 removePopUpNotes(Construct.getMutablePieces());
2065 // Redirect all call pieces to have valid locations.
2066 adjustCallLocations(Construct.getMutablePieces());
2067 removePiecesWithInvalidLocations(Construct.getMutablePieces());
2069 if (PDC->shouldAddPathEdges()) {
2071 // Reduce the number of edges from a very conservative set
2072 // to an aesthetically pleasing subset that conveys the
2073 // necessary information.
2074 OptimizedCallsSet OCS;
2075 while (optimizeEdges(Construct, Construct.getMutablePieces(), OCS)) {
2078 // Drop the very first function-entry edge. It's not really necessary
2079 // for top-level functions.
2080 dropFunctionEntryEdge(Construct, Construct.getMutablePieces());
2083 // Remove messages that are basically the same, and edges that may not
2084 // make sense.
2085 // We have to do this after edge optimization in the Extensive mode.
2086 removeRedundantMsgs(Construct.getMutablePieces());
2087 removeEdgesToDefaultInitializers(Construct.getMutablePieces());
2090 if (Opts.ShouldDisplayMacroExpansions)
2091 CompactMacroExpandedPieces(Construct.getMutablePieces(), SM);
2093 return std::move(Construct.PD);
2096 //===----------------------------------------------------------------------===//
2097 // Methods for BugType and subclasses.
2098 //===----------------------------------------------------------------------===//
2100 void BugType::anchor() {}
2102 //===----------------------------------------------------------------------===//
2103 // Methods for BugReport and subclasses.
2104 //===----------------------------------------------------------------------===//
2106 LLVM_ATTRIBUTE_USED static bool
2107 isDependency(const CheckerRegistryData &Registry, StringRef CheckerName) {
2108 for (const std::pair<StringRef, StringRef> &Pair : Registry.Dependencies) {
2109 if (Pair.second == CheckerName)
2110 return true;
2112 return false;
2115 LLVM_ATTRIBUTE_USED static bool isHidden(const CheckerRegistryData &Registry,
2116 StringRef CheckerName) {
2117 for (const CheckerInfo &Checker : Registry.Checkers) {
2118 if (Checker.FullName == CheckerName)
2119 return Checker.IsHidden;
2121 llvm_unreachable(
2122 "Checker name not found in CheckerRegistry -- did you retrieve it "
2123 "correctly from CheckerManager::getCurrentCheckerName?");
2126 PathSensitiveBugReport::PathSensitiveBugReport(
2127 const BugType &bt, StringRef shortDesc, StringRef desc,
2128 const ExplodedNode *errorNode, PathDiagnosticLocation LocationToUnique,
2129 const Decl *DeclToUnique)
2130 : BugReport(Kind::PathSensitive, bt, shortDesc, desc), ErrorNode(errorNode),
2131 ErrorNodeRange(getStmt() ? getStmt()->getSourceRange() : SourceRange()),
2132 UniqueingLocation(LocationToUnique), UniqueingDecl(DeclToUnique) {
2133 assert(!isDependency(ErrorNode->getState()
2134 ->getAnalysisManager()
2135 .getCheckerManager()
2136 ->getCheckerRegistryData(),
2137 bt.getCheckerName()) &&
2138 "Some checkers depend on this one! We don't allow dependency "
2139 "checkers to emit warnings, because checkers should depend on "
2140 "*modeling*, not *diagnostics*.");
2142 assert(
2143 (bt.getCheckerName().startswith("debug") ||
2144 !isHidden(ErrorNode->getState()
2145 ->getAnalysisManager()
2146 .getCheckerManager()
2147 ->getCheckerRegistryData(),
2148 bt.getCheckerName())) &&
2149 "Hidden checkers musn't emit diagnostics as they are by definition "
2150 "non-user facing!");
2153 void PathSensitiveBugReport::addVisitor(
2154 std::unique_ptr<BugReporterVisitor> visitor) {
2155 if (!visitor)
2156 return;
2158 llvm::FoldingSetNodeID ID;
2159 visitor->Profile(ID);
2161 void *InsertPos = nullptr;
2162 if (CallbacksSet.FindNodeOrInsertPos(ID, InsertPos)) {
2163 return;
2166 Callbacks.push_back(std::move(visitor));
2169 void PathSensitiveBugReport::clearVisitors() {
2170 Callbacks.clear();
2173 const Decl *PathSensitiveBugReport::getDeclWithIssue() const {
2174 const ExplodedNode *N = getErrorNode();
2175 if (!N)
2176 return nullptr;
2178 const LocationContext *LC = N->getLocationContext();
2179 return LC->getStackFrame()->getDecl();
2182 void BasicBugReport::Profile(llvm::FoldingSetNodeID& hash) const {
2183 hash.AddInteger(static_cast<int>(getKind()));
2184 hash.AddPointer(&BT);
2185 hash.AddString(Description);
2186 assert(Location.isValid());
2187 Location.Profile(hash);
2189 for (SourceRange range : Ranges) {
2190 if (!range.isValid())
2191 continue;
2192 hash.Add(range.getBegin());
2193 hash.Add(range.getEnd());
2197 void PathSensitiveBugReport::Profile(llvm::FoldingSetNodeID &hash) const {
2198 hash.AddInteger(static_cast<int>(getKind()));
2199 hash.AddPointer(&BT);
2200 hash.AddString(Description);
2201 PathDiagnosticLocation UL = getUniqueingLocation();
2202 if (UL.isValid()) {
2203 UL.Profile(hash);
2204 } else {
2205 // TODO: The statement may be null if the report was emitted before any
2206 // statements were executed. In particular, some checkers by design
2207 // occasionally emit their reports in empty functions (that have no
2208 // statements in their body). Do we profile correctly in this case?
2209 hash.AddPointer(ErrorNode->getCurrentOrPreviousStmtForDiagnostics());
2212 for (SourceRange range : Ranges) {
2213 if (!range.isValid())
2214 continue;
2215 hash.Add(range.getBegin());
2216 hash.Add(range.getEnd());
2220 template <class T>
2221 static void insertToInterestingnessMap(
2222 llvm::DenseMap<T, bugreporter::TrackingKind> &InterestingnessMap, T Val,
2223 bugreporter::TrackingKind TKind) {
2224 auto Result = InterestingnessMap.insert({Val, TKind});
2226 if (Result.second)
2227 return;
2229 // Even if this symbol/region was already marked as interesting as a
2230 // condition, if we later mark it as interesting again but with
2231 // thorough tracking, overwrite it. Entities marked with thorough
2232 // interestiness are the most important (or most interesting, if you will),
2233 // and we wouldn't like to downplay their importance.
2235 switch (TKind) {
2236 case bugreporter::TrackingKind::Thorough:
2237 Result.first->getSecond() = bugreporter::TrackingKind::Thorough;
2238 return;
2239 case bugreporter::TrackingKind::Condition:
2240 return;
2243 llvm_unreachable(
2244 "BugReport::markInteresting currently can only handle 2 different "
2245 "tracking kinds! Please define what tracking kind should this entitiy"
2246 "have, if it was already marked as interesting with a different kind!");
2249 void PathSensitiveBugReport::markInteresting(SymbolRef sym,
2250 bugreporter::TrackingKind TKind) {
2251 if (!sym)
2252 return;
2254 insertToInterestingnessMap(InterestingSymbols, sym, TKind);
2256 // FIXME: No tests exist for this code and it is questionable:
2257 // How to handle multiple metadata for the same region?
2258 if (const auto *meta = dyn_cast<SymbolMetadata>(sym))
2259 markInteresting(meta->getRegion(), TKind);
2262 void PathSensitiveBugReport::markNotInteresting(SymbolRef sym) {
2263 if (!sym)
2264 return;
2265 InterestingSymbols.erase(sym);
2267 // The metadata part of markInteresting is not reversed here.
2268 // Just making the same region not interesting is incorrect
2269 // in specific cases.
2270 if (const auto *meta = dyn_cast<SymbolMetadata>(sym))
2271 markNotInteresting(meta->getRegion());
2274 void PathSensitiveBugReport::markInteresting(const MemRegion *R,
2275 bugreporter::TrackingKind TKind) {
2276 if (!R)
2277 return;
2279 R = R->getBaseRegion();
2280 insertToInterestingnessMap(InterestingRegions, R, TKind);
2282 if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2283 markInteresting(SR->getSymbol(), TKind);
2286 void PathSensitiveBugReport::markNotInteresting(const MemRegion *R) {
2287 if (!R)
2288 return;
2290 R = R->getBaseRegion();
2291 InterestingRegions.erase(R);
2293 if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2294 markNotInteresting(SR->getSymbol());
2297 void PathSensitiveBugReport::markInteresting(SVal V,
2298 bugreporter::TrackingKind TKind) {
2299 markInteresting(V.getAsRegion(), TKind);
2300 markInteresting(V.getAsSymbol(), TKind);
2303 void PathSensitiveBugReport::markInteresting(const LocationContext *LC) {
2304 if (!LC)
2305 return;
2306 InterestingLocationContexts.insert(LC);
2309 std::optional<bugreporter::TrackingKind>
2310 PathSensitiveBugReport::getInterestingnessKind(SVal V) const {
2311 auto RKind = getInterestingnessKind(V.getAsRegion());
2312 auto SKind = getInterestingnessKind(V.getAsSymbol());
2313 if (!RKind)
2314 return SKind;
2315 if (!SKind)
2316 return RKind;
2318 // If either is marked with throrough tracking, return that, we wouldn't like
2319 // to downplay a note's importance by 'only' mentioning it as a condition.
2320 switch(*RKind) {
2321 case bugreporter::TrackingKind::Thorough:
2322 return RKind;
2323 case bugreporter::TrackingKind::Condition:
2324 return SKind;
2327 llvm_unreachable(
2328 "BugReport::getInterestingnessKind currently can only handle 2 different "
2329 "tracking kinds! Please define what tracking kind should we return here "
2330 "when the kind of getAsRegion() and getAsSymbol() is different!");
2331 return std::nullopt;
2334 std::optional<bugreporter::TrackingKind>
2335 PathSensitiveBugReport::getInterestingnessKind(SymbolRef sym) const {
2336 if (!sym)
2337 return std::nullopt;
2338 // We don't currently consider metadata symbols to be interesting
2339 // even if we know their region is interesting. Is that correct behavior?
2340 auto It = InterestingSymbols.find(sym);
2341 if (It == InterestingSymbols.end())
2342 return std::nullopt;
2343 return It->getSecond();
2346 std::optional<bugreporter::TrackingKind>
2347 PathSensitiveBugReport::getInterestingnessKind(const MemRegion *R) const {
2348 if (!R)
2349 return std::nullopt;
2351 R = R->getBaseRegion();
2352 auto It = InterestingRegions.find(R);
2353 if (It != InterestingRegions.end())
2354 return It->getSecond();
2356 if (const auto *SR = dyn_cast<SymbolicRegion>(R))
2357 return getInterestingnessKind(SR->getSymbol());
2358 return std::nullopt;
2361 bool PathSensitiveBugReport::isInteresting(SVal V) const {
2362 return getInterestingnessKind(V).has_value();
2365 bool PathSensitiveBugReport::isInteresting(SymbolRef sym) const {
2366 return getInterestingnessKind(sym).has_value();
2369 bool PathSensitiveBugReport::isInteresting(const MemRegion *R) const {
2370 return getInterestingnessKind(R).has_value();
2373 bool PathSensitiveBugReport::isInteresting(const LocationContext *LC) const {
2374 if (!LC)
2375 return false;
2376 return InterestingLocationContexts.count(LC);
2379 const Stmt *PathSensitiveBugReport::getStmt() const {
2380 if (!ErrorNode)
2381 return nullptr;
2383 ProgramPoint ProgP = ErrorNode->getLocation();
2384 const Stmt *S = nullptr;
2386 if (std::optional<BlockEntrance> BE = ProgP.getAs<BlockEntrance>()) {
2387 CFGBlock &Exit = ProgP.getLocationContext()->getCFG()->getExit();
2388 if (BE->getBlock() == &Exit)
2389 S = ErrorNode->getPreviousStmtForDiagnostics();
2391 if (!S)
2392 S = ErrorNode->getStmtForDiagnostics();
2394 return S;
2397 ArrayRef<SourceRange>
2398 PathSensitiveBugReport::getRanges() const {
2399 // If no custom ranges, add the range of the statement corresponding to
2400 // the error node.
2401 if (Ranges.empty() && isa_and_nonnull<Expr>(getStmt()))
2402 return ErrorNodeRange;
2404 return Ranges;
2407 PathDiagnosticLocation
2408 PathSensitiveBugReport::getLocation() const {
2409 assert(ErrorNode && "Cannot create a location with a null node.");
2410 const Stmt *S = ErrorNode->getStmtForDiagnostics();
2411 ProgramPoint P = ErrorNode->getLocation();
2412 const LocationContext *LC = P.getLocationContext();
2413 SourceManager &SM =
2414 ErrorNode->getState()->getStateManager().getContext().getSourceManager();
2416 if (!S) {
2417 // If this is an implicit call, return the implicit call point location.
2418 if (std::optional<PreImplicitCall> PIE = P.getAs<PreImplicitCall>())
2419 return PathDiagnosticLocation(PIE->getLocation(), SM);
2420 if (auto FE = P.getAs<FunctionExitPoint>()) {
2421 if (const ReturnStmt *RS = FE->getStmt())
2422 return PathDiagnosticLocation::createBegin(RS, SM, LC);
2424 S = ErrorNode->getNextStmtForDiagnostics();
2427 if (S) {
2428 // For member expressions, return the location of the '.' or '->'.
2429 if (const auto *ME = dyn_cast<MemberExpr>(S))
2430 return PathDiagnosticLocation::createMemberLoc(ME, SM);
2432 // For binary operators, return the location of the operator.
2433 if (const auto *B = dyn_cast<BinaryOperator>(S))
2434 return PathDiagnosticLocation::createOperatorLoc(B, SM);
2436 if (P.getAs<PostStmtPurgeDeadSymbols>())
2437 return PathDiagnosticLocation::createEnd(S, SM, LC);
2439 if (S->getBeginLoc().isValid())
2440 return PathDiagnosticLocation(S, SM, LC);
2442 return PathDiagnosticLocation(
2443 PathDiagnosticLocation::getValidSourceLocation(S, LC), SM);
2446 return PathDiagnosticLocation::createDeclEnd(ErrorNode->getLocationContext(),
2447 SM);
2450 //===----------------------------------------------------------------------===//
2451 // Methods for BugReporter and subclasses.
2452 //===----------------------------------------------------------------------===//
2454 const ExplodedGraph &PathSensitiveBugReporter::getGraph() const {
2455 return Eng.getGraph();
2458 ProgramStateManager &PathSensitiveBugReporter::getStateManager() const {
2459 return Eng.getStateManager();
2462 BugReporter::BugReporter(BugReporterData &d) : D(d) {}
2463 BugReporter::~BugReporter() {
2464 // Make sure reports are flushed.
2465 assert(StrBugTypes.empty() &&
2466 "Destroying BugReporter before diagnostics are emitted!");
2468 // Free the bug reports we are tracking.
2469 for (const auto I : EQClassesVector)
2470 delete I;
2473 void BugReporter::FlushReports() {
2474 // We need to flush reports in deterministic order to ensure the order
2475 // of the reports is consistent between runs.
2476 for (const auto EQ : EQClassesVector)
2477 FlushReport(*EQ);
2479 // BugReporter owns and deletes only BugTypes created implicitly through
2480 // EmitBasicReport.
2481 // FIXME: There are leaks from checkers that assume that the BugTypes they
2482 // create will be destroyed by the BugReporter.
2483 StrBugTypes.clear();
2486 //===----------------------------------------------------------------------===//
2487 // PathDiagnostics generation.
2488 //===----------------------------------------------------------------------===//
2490 namespace {
2492 /// A wrapper around an ExplodedGraph that contains a single path from the root
2493 /// to the error node.
2494 class BugPathInfo {
2495 public:
2496 std::unique_ptr<ExplodedGraph> BugPath;
2497 PathSensitiveBugReport *Report;
2498 const ExplodedNode *ErrorNode;
2501 /// A wrapper around an ExplodedGraph whose leafs are all error nodes. Can
2502 /// conveniently retrieve bug paths from a single error node to the root.
2503 class BugPathGetter {
2504 std::unique_ptr<ExplodedGraph> TrimmedGraph;
2506 using PriorityMapTy = llvm::DenseMap<const ExplodedNode *, unsigned>;
2508 /// Assign each node with its distance from the root.
2509 PriorityMapTy PriorityMap;
2511 /// Since the getErrorNode() or BugReport refers to the original ExplodedGraph,
2512 /// we need to pair it to the error node of the constructed trimmed graph.
2513 using ReportNewNodePair =
2514 std::pair<PathSensitiveBugReport *, const ExplodedNode *>;
2515 SmallVector<ReportNewNodePair, 32> ReportNodes;
2517 BugPathInfo CurrentBugPath;
2519 /// A helper class for sorting ExplodedNodes by priority.
2520 template <bool Descending>
2521 class PriorityCompare {
2522 const PriorityMapTy &PriorityMap;
2524 public:
2525 PriorityCompare(const PriorityMapTy &M) : PriorityMap(M) {}
2527 bool operator()(const ExplodedNode *LHS, const ExplodedNode *RHS) const {
2528 PriorityMapTy::const_iterator LI = PriorityMap.find(LHS);
2529 PriorityMapTy::const_iterator RI = PriorityMap.find(RHS);
2530 PriorityMapTy::const_iterator E = PriorityMap.end();
2532 if (LI == E)
2533 return Descending;
2534 if (RI == E)
2535 return !Descending;
2537 return Descending ? LI->second > RI->second
2538 : LI->second < RI->second;
2541 bool operator()(const ReportNewNodePair &LHS,
2542 const ReportNewNodePair &RHS) const {
2543 return (*this)(LHS.second, RHS.second);
2547 public:
2548 BugPathGetter(const ExplodedGraph *OriginalGraph,
2549 ArrayRef<PathSensitiveBugReport *> &bugReports);
2551 BugPathInfo *getNextBugPath();
2554 } // namespace
2556 BugPathGetter::BugPathGetter(const ExplodedGraph *OriginalGraph,
2557 ArrayRef<PathSensitiveBugReport *> &bugReports) {
2558 SmallVector<const ExplodedNode *, 32> Nodes;
2559 for (const auto I : bugReports) {
2560 assert(I->isValid() &&
2561 "We only allow BugReporterVisitors and BugReporter itself to "
2562 "invalidate reports!");
2563 Nodes.emplace_back(I->getErrorNode());
2566 // The trimmed graph is created in the body of the constructor to ensure
2567 // that the DenseMaps have been initialized already.
2568 InterExplodedGraphMap ForwardMap;
2569 TrimmedGraph = OriginalGraph->trim(Nodes, &ForwardMap);
2571 // Find the (first) error node in the trimmed graph. We just need to consult
2572 // the node map which maps from nodes in the original graph to nodes
2573 // in the new graph.
2574 llvm::SmallPtrSet<const ExplodedNode *, 32> RemainingNodes;
2576 for (PathSensitiveBugReport *Report : bugReports) {
2577 const ExplodedNode *NewNode = ForwardMap.lookup(Report->getErrorNode());
2578 assert(NewNode &&
2579 "Failed to construct a trimmed graph that contains this error "
2580 "node!");
2581 ReportNodes.emplace_back(Report, NewNode);
2582 RemainingNodes.insert(NewNode);
2585 assert(!RemainingNodes.empty() && "No error node found in the trimmed graph");
2587 // Perform a forward BFS to find all the shortest paths.
2588 std::queue<const ExplodedNode *> WS;
2590 assert(TrimmedGraph->num_roots() == 1);
2591 WS.push(*TrimmedGraph->roots_begin());
2592 unsigned Priority = 0;
2594 while (!WS.empty()) {
2595 const ExplodedNode *Node = WS.front();
2596 WS.pop();
2598 PriorityMapTy::iterator PriorityEntry;
2599 bool IsNew;
2600 std::tie(PriorityEntry, IsNew) = PriorityMap.insert({Node, Priority});
2601 ++Priority;
2603 if (!IsNew) {
2604 assert(PriorityEntry->second <= Priority);
2605 continue;
2608 if (RemainingNodes.erase(Node))
2609 if (RemainingNodes.empty())
2610 break;
2612 for (const ExplodedNode *Succ : Node->succs())
2613 WS.push(Succ);
2616 // Sort the error paths from longest to shortest.
2617 llvm::sort(ReportNodes, PriorityCompare<true>(PriorityMap));
2620 BugPathInfo *BugPathGetter::getNextBugPath() {
2621 if (ReportNodes.empty())
2622 return nullptr;
2624 const ExplodedNode *OrigN;
2625 std::tie(CurrentBugPath.Report, OrigN) = ReportNodes.pop_back_val();
2626 assert(PriorityMap.contains(OrigN) && "error node not accessible from root");
2628 // Create a new graph with a single path. This is the graph that will be
2629 // returned to the caller.
2630 auto GNew = std::make_unique<ExplodedGraph>();
2632 // Now walk from the error node up the BFS path, always taking the
2633 // predeccessor with the lowest number.
2634 ExplodedNode *Succ = nullptr;
2635 while (true) {
2636 // Create the equivalent node in the new graph with the same state
2637 // and location.
2638 ExplodedNode *NewN = GNew->createUncachedNode(
2639 OrigN->getLocation(), OrigN->getState(),
2640 OrigN->getID(), OrigN->isSink());
2642 // Link up the new node with the previous node.
2643 if (Succ)
2644 Succ->addPredecessor(NewN, *GNew);
2645 else
2646 CurrentBugPath.ErrorNode = NewN;
2648 Succ = NewN;
2650 // Are we at the final node?
2651 if (OrigN->pred_empty()) {
2652 GNew->addRoot(NewN);
2653 break;
2656 // Find the next predeccessor node. We choose the node that is marked
2657 // with the lowest BFS number.
2658 OrigN = *std::min_element(OrigN->pred_begin(), OrigN->pred_end(),
2659 PriorityCompare<false>(PriorityMap));
2662 CurrentBugPath.BugPath = std::move(GNew);
2664 return &CurrentBugPath;
2667 /// CompactMacroExpandedPieces - This function postprocesses a PathDiagnostic
2668 /// object and collapses PathDiagosticPieces that are expanded by macros.
2669 static void CompactMacroExpandedPieces(PathPieces &path,
2670 const SourceManager& SM) {
2671 using MacroStackTy = std::vector<
2672 std::pair<std::shared_ptr<PathDiagnosticMacroPiece>, SourceLocation>>;
2674 using PiecesTy = std::vector<PathDiagnosticPieceRef>;
2676 MacroStackTy MacroStack;
2677 PiecesTy Pieces;
2679 for (PathPieces::const_iterator I = path.begin(), E = path.end();
2680 I != E; ++I) {
2681 const auto &piece = *I;
2683 // Recursively compact calls.
2684 if (auto *call = dyn_cast<PathDiagnosticCallPiece>(&*piece)) {
2685 CompactMacroExpandedPieces(call->path, SM);
2688 // Get the location of the PathDiagnosticPiece.
2689 const FullSourceLoc Loc = piece->getLocation().asLocation();
2691 // Determine the instantiation location, which is the location we group
2692 // related PathDiagnosticPieces.
2693 SourceLocation InstantiationLoc = Loc.isMacroID() ?
2694 SM.getExpansionLoc(Loc) :
2695 SourceLocation();
2697 if (Loc.isFileID()) {
2698 MacroStack.clear();
2699 Pieces.push_back(piece);
2700 continue;
2703 assert(Loc.isMacroID());
2705 // Is the PathDiagnosticPiece within the same macro group?
2706 if (!MacroStack.empty() && InstantiationLoc == MacroStack.back().second) {
2707 MacroStack.back().first->subPieces.push_back(piece);
2708 continue;
2711 // We aren't in the same group. Are we descending into a new macro
2712 // or are part of an old one?
2713 std::shared_ptr<PathDiagnosticMacroPiece> MacroGroup;
2715 SourceLocation ParentInstantiationLoc = InstantiationLoc.isMacroID() ?
2716 SM.getExpansionLoc(Loc) :
2717 SourceLocation();
2719 // Walk the entire macro stack.
2720 while (!MacroStack.empty()) {
2721 if (InstantiationLoc == MacroStack.back().second) {
2722 MacroGroup = MacroStack.back().first;
2723 break;
2726 if (ParentInstantiationLoc == MacroStack.back().second) {
2727 MacroGroup = MacroStack.back().first;
2728 break;
2731 MacroStack.pop_back();
2734 if (!MacroGroup || ParentInstantiationLoc == MacroStack.back().second) {
2735 // Create a new macro group and add it to the stack.
2736 auto NewGroup = std::make_shared<PathDiagnosticMacroPiece>(
2737 PathDiagnosticLocation::createSingleLocation(piece->getLocation()));
2739 if (MacroGroup)
2740 MacroGroup->subPieces.push_back(NewGroup);
2741 else {
2742 assert(InstantiationLoc.isFileID());
2743 Pieces.push_back(NewGroup);
2746 MacroGroup = NewGroup;
2747 MacroStack.push_back(std::make_pair(MacroGroup, InstantiationLoc));
2750 // Finally, add the PathDiagnosticPiece to the group.
2751 MacroGroup->subPieces.push_back(piece);
2754 // Now take the pieces and construct a new PathDiagnostic.
2755 path.clear();
2757 path.insert(path.end(), Pieces.begin(), Pieces.end());
2760 /// Generate notes from all visitors.
2761 /// Notes associated with @c ErrorNode are generated using
2762 /// @c getEndPath, and the rest are generated with @c VisitNode.
2763 static std::unique_ptr<VisitorsDiagnosticsTy>
2764 generateVisitorsDiagnostics(PathSensitiveBugReport *R,
2765 const ExplodedNode *ErrorNode,
2766 BugReporterContext &BRC) {
2767 std::unique_ptr<VisitorsDiagnosticsTy> Notes =
2768 std::make_unique<VisitorsDiagnosticsTy>();
2769 PathSensitiveBugReport::VisitorList visitors;
2771 // Run visitors on all nodes starting from the node *before* the last one.
2772 // The last node is reserved for notes generated with @c getEndPath.
2773 const ExplodedNode *NextNode = ErrorNode->getFirstPred();
2774 while (NextNode) {
2776 // At each iteration, move all visitors from report to visitor list. This is
2777 // important, because the Profile() functions of the visitors make sure that
2778 // a visitor isn't added multiple times for the same node, but it's fine
2779 // to add the a visitor with Profile() for different nodes (e.g. tracking
2780 // a region at different points of the symbolic execution).
2781 for (std::unique_ptr<BugReporterVisitor> &Visitor : R->visitors())
2782 visitors.push_back(std::move(Visitor));
2784 R->clearVisitors();
2786 const ExplodedNode *Pred = NextNode->getFirstPred();
2787 if (!Pred) {
2788 PathDiagnosticPieceRef LastPiece;
2789 for (auto &V : visitors) {
2790 V->finalizeVisitor(BRC, ErrorNode, *R);
2792 if (auto Piece = V->getEndPath(BRC, ErrorNode, *R)) {
2793 assert(!LastPiece &&
2794 "There can only be one final piece in a diagnostic.");
2795 assert(Piece->getKind() == PathDiagnosticPiece::Kind::Event &&
2796 "The final piece must contain a message!");
2797 LastPiece = std::move(Piece);
2798 (*Notes)[ErrorNode].push_back(LastPiece);
2801 break;
2804 for (auto &V : visitors) {
2805 auto P = V->VisitNode(NextNode, BRC, *R);
2806 if (P)
2807 (*Notes)[NextNode].push_back(std::move(P));
2810 if (!R->isValid())
2811 break;
2813 NextNode = Pred;
2816 return Notes;
2819 std::optional<PathDiagnosticBuilder> PathDiagnosticBuilder::findValidReport(
2820 ArrayRef<PathSensitiveBugReport *> &bugReports,
2821 PathSensitiveBugReporter &Reporter) {
2823 BugPathGetter BugGraph(&Reporter.getGraph(), bugReports);
2825 while (BugPathInfo *BugPath = BugGraph.getNextBugPath()) {
2826 // Find the BugReport with the original location.
2827 PathSensitiveBugReport *R = BugPath->Report;
2828 assert(R && "No original report found for sliced graph.");
2829 assert(R->isValid() && "Report selected by trimmed graph marked invalid.");
2830 const ExplodedNode *ErrorNode = BugPath->ErrorNode;
2832 // Register refutation visitors first, if they mark the bug invalid no
2833 // further analysis is required
2834 R->addVisitor<LikelyFalsePositiveSuppressionBRVisitor>();
2836 // Register additional node visitors.
2837 R->addVisitor<NilReceiverBRVisitor>();
2838 R->addVisitor<ConditionBRVisitor>();
2839 R->addVisitor<TagVisitor>();
2841 BugReporterContext BRC(Reporter);
2843 // Run all visitors on a given graph, once.
2844 std::unique_ptr<VisitorsDiagnosticsTy> visitorNotes =
2845 generateVisitorsDiagnostics(R, ErrorNode, BRC);
2847 if (R->isValid()) {
2848 if (Reporter.getAnalyzerOptions().ShouldCrosscheckWithZ3) {
2849 // If crosscheck is enabled, remove all visitors, add the refutation
2850 // visitor and check again
2851 R->clearVisitors();
2852 R->addVisitor<FalsePositiveRefutationBRVisitor>();
2854 // We don't overwrite the notes inserted by other visitors because the
2855 // refutation manager does not add any new note to the path
2856 generateVisitorsDiagnostics(R, BugPath->ErrorNode, BRC);
2859 // Check if the bug is still valid
2860 if (R->isValid())
2861 return PathDiagnosticBuilder(
2862 std::move(BRC), std::move(BugPath->BugPath), BugPath->Report,
2863 BugPath->ErrorNode, std::move(visitorNotes));
2867 return {};
2870 std::unique_ptr<DiagnosticForConsumerMapTy>
2871 PathSensitiveBugReporter::generatePathDiagnostics(
2872 ArrayRef<PathDiagnosticConsumer *> consumers,
2873 ArrayRef<PathSensitiveBugReport *> &bugReports) {
2874 assert(!bugReports.empty());
2876 auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
2878 std::optional<PathDiagnosticBuilder> PDB =
2879 PathDiagnosticBuilder::findValidReport(bugReports, *this);
2881 if (PDB) {
2882 for (PathDiagnosticConsumer *PC : consumers) {
2883 if (std::unique_ptr<PathDiagnostic> PD = PDB->generate(PC)) {
2884 (*Out)[PC] = std::move(PD);
2889 return Out;
2892 void BugReporter::emitReport(std::unique_ptr<BugReport> R) {
2893 bool ValidSourceLoc = R->getLocation().isValid();
2894 assert(ValidSourceLoc);
2895 // If we mess up in a release build, we'd still prefer to just drop the bug
2896 // instead of trying to go on.
2897 if (!ValidSourceLoc)
2898 return;
2900 // Compute the bug report's hash to determine its equivalence class.
2901 llvm::FoldingSetNodeID ID;
2902 R->Profile(ID);
2904 // Lookup the equivance class. If there isn't one, create it.
2905 void *InsertPos;
2906 BugReportEquivClass* EQ = EQClasses.FindNodeOrInsertPos(ID, InsertPos);
2908 if (!EQ) {
2909 EQ = new BugReportEquivClass(std::move(R));
2910 EQClasses.InsertNode(EQ, InsertPos);
2911 EQClassesVector.push_back(EQ);
2912 } else
2913 EQ->AddReport(std::move(R));
2916 void PathSensitiveBugReporter::emitReport(std::unique_ptr<BugReport> R) {
2917 if (auto PR = dyn_cast<PathSensitiveBugReport>(R.get()))
2918 if (const ExplodedNode *E = PR->getErrorNode()) {
2919 // An error node must either be a sink or have a tag, otherwise
2920 // it could get reclaimed before the path diagnostic is created.
2921 assert((E->isSink() || E->getLocation().getTag()) &&
2922 "Error node must either be a sink or have a tag");
2924 const AnalysisDeclContext *DeclCtx =
2925 E->getLocationContext()->getAnalysisDeclContext();
2926 // The source of autosynthesized body can be handcrafted AST or a model
2927 // file. The locations from handcrafted ASTs have no valid source
2928 // locations and have to be discarded. Locations from model files should
2929 // be preserved for processing and reporting.
2930 if (DeclCtx->isBodyAutosynthesized() &&
2931 !DeclCtx->isBodyAutosynthesizedFromModelFile())
2932 return;
2935 BugReporter::emitReport(std::move(R));
2938 //===----------------------------------------------------------------------===//
2939 // Emitting reports in equivalence classes.
2940 //===----------------------------------------------------------------------===//
2942 namespace {
2944 struct FRIEC_WLItem {
2945 const ExplodedNode *N;
2946 ExplodedNode::const_succ_iterator I, E;
2948 FRIEC_WLItem(const ExplodedNode *n)
2949 : N(n), I(N->succ_begin()), E(N->succ_end()) {}
2952 } // namespace
2954 BugReport *PathSensitiveBugReporter::findReportInEquivalenceClass(
2955 BugReportEquivClass &EQ, SmallVectorImpl<BugReport *> &bugReports) {
2956 // If we don't need to suppress any of the nodes because they are
2957 // post-dominated by a sink, simply add all the nodes in the equivalence class
2958 // to 'Nodes'. Any of the reports will serve as a "representative" report.
2959 assert(EQ.getReports().size() > 0);
2960 const BugType& BT = EQ.getReports()[0]->getBugType();
2961 if (!BT.isSuppressOnSink()) {
2962 BugReport *R = EQ.getReports()[0].get();
2963 for (auto &J : EQ.getReports()) {
2964 if (auto *PR = dyn_cast<PathSensitiveBugReport>(J.get())) {
2965 R = PR;
2966 bugReports.push_back(PR);
2969 return R;
2972 // For bug reports that should be suppressed when all paths are post-dominated
2973 // by a sink node, iterate through the reports in the equivalence class
2974 // until we find one that isn't post-dominated (if one exists). We use a
2975 // DFS traversal of the ExplodedGraph to find a non-sink node. We could write
2976 // this as a recursive function, but we don't want to risk blowing out the
2977 // stack for very long paths.
2978 BugReport *exampleReport = nullptr;
2980 for (const auto &I: EQ.getReports()) {
2981 auto *R = dyn_cast<PathSensitiveBugReport>(I.get());
2982 if (!R)
2983 continue;
2985 const ExplodedNode *errorNode = R->getErrorNode();
2986 if (errorNode->isSink()) {
2987 llvm_unreachable(
2988 "BugType::isSuppressSink() should not be 'true' for sink end nodes");
2990 // No successors? By definition this nodes isn't post-dominated by a sink.
2991 if (errorNode->succ_empty()) {
2992 bugReports.push_back(R);
2993 if (!exampleReport)
2994 exampleReport = R;
2995 continue;
2998 // See if we are in a no-return CFG block. If so, treat this similarly
2999 // to being post-dominated by a sink. This works better when the analysis
3000 // is incomplete and we have never reached the no-return function call(s)
3001 // that we'd inevitably bump into on this path.
3002 if (const CFGBlock *ErrorB = errorNode->getCFGBlock())
3003 if (ErrorB->isInevitablySinking())
3004 continue;
3006 // At this point we know that 'N' is not a sink and it has at least one
3007 // successor. Use a DFS worklist to find a non-sink end-of-path node.
3008 using WLItem = FRIEC_WLItem;
3009 using DFSWorkList = SmallVector<WLItem, 10>;
3011 llvm::DenseMap<const ExplodedNode *, unsigned> Visited;
3013 DFSWorkList WL;
3014 WL.push_back(errorNode);
3015 Visited[errorNode] = 1;
3017 while (!WL.empty()) {
3018 WLItem &WI = WL.back();
3019 assert(!WI.N->succ_empty());
3021 for (; WI.I != WI.E; ++WI.I) {
3022 const ExplodedNode *Succ = *WI.I;
3023 // End-of-path node?
3024 if (Succ->succ_empty()) {
3025 // If we found an end-of-path node that is not a sink.
3026 if (!Succ->isSink()) {
3027 bugReports.push_back(R);
3028 if (!exampleReport)
3029 exampleReport = R;
3030 WL.clear();
3031 break;
3033 // Found a sink? Continue on to the next successor.
3034 continue;
3036 // Mark the successor as visited. If it hasn't been explored,
3037 // enqueue it to the DFS worklist.
3038 unsigned &mark = Visited[Succ];
3039 if (!mark) {
3040 mark = 1;
3041 WL.push_back(Succ);
3042 break;
3046 // The worklist may have been cleared at this point. First
3047 // check if it is empty before checking the last item.
3048 if (!WL.empty() && &WL.back() == &WI)
3049 WL.pop_back();
3053 // ExampleReport will be NULL if all the nodes in the equivalence class
3054 // were post-dominated by sinks.
3055 return exampleReport;
3058 void BugReporter::FlushReport(BugReportEquivClass& EQ) {
3059 SmallVector<BugReport*, 10> bugReports;
3060 BugReport *report = findReportInEquivalenceClass(EQ, bugReports);
3061 if (!report)
3062 return;
3064 // See whether we need to silence the checker/package.
3065 for (const std::string &CheckerOrPackage :
3066 getAnalyzerOptions().SilencedCheckersAndPackages) {
3067 if (report->getBugType().getCheckerName().startswith(
3068 CheckerOrPackage))
3069 return;
3072 ArrayRef<PathDiagnosticConsumer*> Consumers = getPathDiagnosticConsumers();
3073 std::unique_ptr<DiagnosticForConsumerMapTy> Diagnostics =
3074 generateDiagnosticForConsumerMap(report, Consumers, bugReports);
3076 for (auto &P : *Diagnostics) {
3077 PathDiagnosticConsumer *Consumer = P.first;
3078 std::unique_ptr<PathDiagnostic> &PD = P.second;
3080 // If the path is empty, generate a single step path with the location
3081 // of the issue.
3082 if (PD->path.empty()) {
3083 PathDiagnosticLocation L = report->getLocation();
3084 auto piece = std::make_unique<PathDiagnosticEventPiece>(
3085 L, report->getDescription());
3086 for (SourceRange Range : report->getRanges())
3087 piece->addRange(Range);
3088 PD->setEndOfPath(std::move(piece));
3091 PathPieces &Pieces = PD->getMutablePieces();
3092 if (getAnalyzerOptions().ShouldDisplayNotesAsEvents) {
3093 // For path diagnostic consumers that don't support extra notes,
3094 // we may optionally convert those to path notes.
3095 for (const auto &I : llvm::reverse(report->getNotes())) {
3096 PathDiagnosticNotePiece *Piece = I.get();
3097 auto ConvertedPiece = std::make_shared<PathDiagnosticEventPiece>(
3098 Piece->getLocation(), Piece->getString());
3099 for (const auto &R: Piece->getRanges())
3100 ConvertedPiece->addRange(R);
3102 Pieces.push_front(std::move(ConvertedPiece));
3104 } else {
3105 for (const auto &I : llvm::reverse(report->getNotes()))
3106 Pieces.push_front(I);
3109 for (const auto &I : report->getFixits())
3110 Pieces.back()->addFixit(I);
3112 updateExecutedLinesWithDiagnosticPieces(*PD);
3113 Consumer->HandlePathDiagnostic(std::move(PD));
3117 /// Insert all lines participating in the function signature \p Signature
3118 /// into \p ExecutedLines.
3119 static void populateExecutedLinesWithFunctionSignature(
3120 const Decl *Signature, const SourceManager &SM,
3121 FilesToLineNumsMap &ExecutedLines) {
3122 SourceRange SignatureSourceRange;
3123 const Stmt* Body = Signature->getBody();
3124 if (const auto FD = dyn_cast<FunctionDecl>(Signature)) {
3125 SignatureSourceRange = FD->getSourceRange();
3126 } else if (const auto OD = dyn_cast<ObjCMethodDecl>(Signature)) {
3127 SignatureSourceRange = OD->getSourceRange();
3128 } else {
3129 return;
3131 SourceLocation Start = SignatureSourceRange.getBegin();
3132 SourceLocation End = Body ? Body->getSourceRange().getBegin()
3133 : SignatureSourceRange.getEnd();
3134 if (!Start.isValid() || !End.isValid())
3135 return;
3136 unsigned StartLine = SM.getExpansionLineNumber(Start);
3137 unsigned EndLine = SM.getExpansionLineNumber(End);
3139 FileID FID = SM.getFileID(SM.getExpansionLoc(Start));
3140 for (unsigned Line = StartLine; Line <= EndLine; Line++)
3141 ExecutedLines[FID].insert(Line);
3144 static void populateExecutedLinesWithStmt(
3145 const Stmt *S, const SourceManager &SM,
3146 FilesToLineNumsMap &ExecutedLines) {
3147 SourceLocation Loc = S->getSourceRange().getBegin();
3148 if (!Loc.isValid())
3149 return;
3150 SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc);
3151 FileID FID = SM.getFileID(ExpansionLoc);
3152 unsigned LineNo = SM.getExpansionLineNumber(ExpansionLoc);
3153 ExecutedLines[FID].insert(LineNo);
3156 /// \return all executed lines including function signatures on the path
3157 /// starting from \p N.
3158 static std::unique_ptr<FilesToLineNumsMap>
3159 findExecutedLines(const SourceManager &SM, const ExplodedNode *N) {
3160 auto ExecutedLines = std::make_unique<FilesToLineNumsMap>();
3162 while (N) {
3163 if (N->getFirstPred() == nullptr) {
3164 // First node: show signature of the entrance point.
3165 const Decl *D = N->getLocationContext()->getDecl();
3166 populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines);
3167 } else if (auto CE = N->getLocationAs<CallEnter>()) {
3168 // Inlined function: show signature.
3169 const Decl* D = CE->getCalleeContext()->getDecl();
3170 populateExecutedLinesWithFunctionSignature(D, SM, *ExecutedLines);
3171 } else if (const Stmt *S = N->getStmtForDiagnostics()) {
3172 populateExecutedLinesWithStmt(S, SM, *ExecutedLines);
3174 // Show extra context for some parent kinds.
3175 const Stmt *P = N->getParentMap().getParent(S);
3177 // The path exploration can die before the node with the associated
3178 // return statement is generated, but we do want to show the whole
3179 // return.
3180 if (const auto *RS = dyn_cast_or_null<ReturnStmt>(P)) {
3181 populateExecutedLinesWithStmt(RS, SM, *ExecutedLines);
3182 P = N->getParentMap().getParent(RS);
3185 if (isa_and_nonnull<SwitchCase, LabelStmt>(P))
3186 populateExecutedLinesWithStmt(P, SM, *ExecutedLines);
3189 N = N->getFirstPred();
3191 return ExecutedLines;
3194 std::unique_ptr<DiagnosticForConsumerMapTy>
3195 BugReporter::generateDiagnosticForConsumerMap(
3196 BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3197 ArrayRef<BugReport *> bugReports) {
3198 auto *basicReport = cast<BasicBugReport>(exampleReport);
3199 auto Out = std::make_unique<DiagnosticForConsumerMapTy>();
3200 for (auto *Consumer : consumers)
3201 (*Out)[Consumer] = generateDiagnosticForBasicReport(basicReport);
3202 return Out;
3205 static PathDiagnosticCallPiece *
3206 getFirstStackedCallToHeaderFile(PathDiagnosticCallPiece *CP,
3207 const SourceManager &SMgr) {
3208 SourceLocation CallLoc = CP->callEnter.asLocation();
3210 // If the call is within a macro, don't do anything (for now).
3211 if (CallLoc.isMacroID())
3212 return nullptr;
3214 assert(AnalysisManager::isInCodeFile(CallLoc, SMgr) &&
3215 "The call piece should not be in a header file.");
3217 // Check if CP represents a path through a function outside of the main file.
3218 if (!AnalysisManager::isInCodeFile(CP->callEnterWithin.asLocation(), SMgr))
3219 return CP;
3221 const PathPieces &Path = CP->path;
3222 if (Path.empty())
3223 return nullptr;
3225 // Check if the last piece in the callee path is a call to a function outside
3226 // of the main file.
3227 if (auto *CPInner = dyn_cast<PathDiagnosticCallPiece>(Path.back().get()))
3228 return getFirstStackedCallToHeaderFile(CPInner, SMgr);
3230 // Otherwise, the last piece is in the main file.
3231 return nullptr;
3234 static void resetDiagnosticLocationToMainFile(PathDiagnostic &PD) {
3235 if (PD.path.empty())
3236 return;
3238 PathDiagnosticPiece *LastP = PD.path.back().get();
3239 assert(LastP);
3240 const SourceManager &SMgr = LastP->getLocation().getManager();
3242 // We only need to check if the report ends inside headers, if the last piece
3243 // is a call piece.
3244 if (auto *CP = dyn_cast<PathDiagnosticCallPiece>(LastP)) {
3245 CP = getFirstStackedCallToHeaderFile(CP, SMgr);
3246 if (CP) {
3247 // Mark the piece.
3248 CP->setAsLastInMainSourceFile();
3250 // Update the path diagnostic message.
3251 const auto *ND = dyn_cast<NamedDecl>(CP->getCallee());
3252 if (ND) {
3253 SmallString<200> buf;
3254 llvm::raw_svector_ostream os(buf);
3255 os << " (within a call to '" << ND->getDeclName() << "')";
3256 PD.appendToDesc(os.str());
3259 // Reset the report containing declaration and location.
3260 PD.setDeclWithIssue(CP->getCaller());
3261 PD.setLocation(CP->getLocation());
3263 return;
3270 std::unique_ptr<DiagnosticForConsumerMapTy>
3271 PathSensitiveBugReporter::generateDiagnosticForConsumerMap(
3272 BugReport *exampleReport, ArrayRef<PathDiagnosticConsumer *> consumers,
3273 ArrayRef<BugReport *> bugReports) {
3274 std::vector<BasicBugReport *> BasicBugReports;
3275 std::vector<PathSensitiveBugReport *> PathSensitiveBugReports;
3276 if (isa<BasicBugReport>(exampleReport))
3277 return BugReporter::generateDiagnosticForConsumerMap(exampleReport,
3278 consumers, bugReports);
3280 // Generate the full path sensitive diagnostic, using the generation scheme
3281 // specified by the PathDiagnosticConsumer. Note that we have to generate
3282 // path diagnostics even for consumers which do not support paths, because
3283 // the BugReporterVisitors may mark this bug as a false positive.
3284 assert(!bugReports.empty());
3285 MaxBugClassSize.updateMax(bugReports.size());
3287 // Avoid copying the whole array because there may be a lot of reports.
3288 ArrayRef<PathSensitiveBugReport *> convertedArrayOfReports(
3289 reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.begin()),
3290 reinterpret_cast<PathSensitiveBugReport *const *>(&*bugReports.end()));
3291 std::unique_ptr<DiagnosticForConsumerMapTy> Out = generatePathDiagnostics(
3292 consumers, convertedArrayOfReports);
3294 if (Out->empty())
3295 return Out;
3297 MaxValidBugClassSize.updateMax(bugReports.size());
3299 // Examine the report and see if the last piece is in a header. Reset the
3300 // report location to the last piece in the main source file.
3301 const AnalyzerOptions &Opts = getAnalyzerOptions();
3302 for (auto const &P : *Out)
3303 if (Opts.ShouldReportIssuesInMainSourceFile && !Opts.AnalyzeAll)
3304 resetDiagnosticLocationToMainFile(*P.second);
3306 return Out;
3309 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3310 const CheckerBase *Checker, StringRef Name,
3311 StringRef Category, StringRef Str,
3312 PathDiagnosticLocation Loc,
3313 ArrayRef<SourceRange> Ranges,
3314 ArrayRef<FixItHint> Fixits) {
3315 EmitBasicReport(DeclWithIssue, Checker->getCheckerName(), Name, Category, Str,
3316 Loc, Ranges, Fixits);
3319 void BugReporter::EmitBasicReport(const Decl *DeclWithIssue,
3320 CheckerNameRef CheckName,
3321 StringRef name, StringRef category,
3322 StringRef str, PathDiagnosticLocation Loc,
3323 ArrayRef<SourceRange> Ranges,
3324 ArrayRef<FixItHint> Fixits) {
3325 // 'BT' is owned by BugReporter.
3326 BugType *BT = getBugTypeForName(CheckName, name, category);
3327 auto R = std::make_unique<BasicBugReport>(*BT, str, Loc);
3328 R->setDeclWithIssue(DeclWithIssue);
3329 for (const auto &SR : Ranges)
3330 R->addRange(SR);
3331 for (const auto &FH : Fixits)
3332 R->addFixItHint(FH);
3333 emitReport(std::move(R));
3336 BugType *BugReporter::getBugTypeForName(CheckerNameRef CheckName,
3337 StringRef name, StringRef category) {
3338 SmallString<136> fullDesc;
3339 llvm::raw_svector_ostream(fullDesc) << CheckName.getName() << ":" << name
3340 << ":" << category;
3341 std::unique_ptr<BugType> &BT = StrBugTypes[fullDesc];
3342 if (!BT)
3343 BT = std::make_unique<BugType>(CheckName, name, category);
3344 return BT.get();