1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
13 //===----------------------------------------------------------------------===//
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/AnalysisDeclContext.h"
29 #include "clang/Analysis/CFG.h"
30 #include "clang/Analysis/CFGStmtMap.h"
31 #include "clang/Analysis/PathDiagnostic.h"
32 #include "clang/Analysis/ProgramPoint.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/CrossTU/CrossTranslationUnit.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
48 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/ImmutableList.h"
52 #include "llvm/ADT/PointerIntPair.h"
53 #include "llvm/ADT/SmallSet.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
66 #define DEBUG_TYPE "static-analyzer-call-event"
68 using namespace clang
;
71 QualType
CallEvent::getResultType() const {
72 ASTContext
&Ctx
= getState()->getStateManager().getContext();
73 const Expr
*E
= getOriginExpr();
76 return Ctx
.getReferenceQualifiedType(E
);
79 static bool isCallback(QualType T
) {
80 // If a parameter is a block or a callback, assume it can modify pointer.
81 if (T
->isBlockPointerType() ||
82 T
->isFunctionPointerType() ||
86 // Check if a callback is passed inside a struct (for both, struct passed by
87 // reference and by value). Dig just one level into the struct for now.
89 if (T
->isAnyPointerType() || T
->isReferenceType())
90 T
= T
->getPointeeType();
92 if (const RecordType
*RT
= T
->getAsStructureType()) {
93 const RecordDecl
*RD
= RT
->getDecl();
94 for (const auto *I
: RD
->fields()) {
95 QualType FieldT
= I
->getType();
96 if (FieldT
->isBlockPointerType() || FieldT
->isFunctionPointerType())
103 static bool isVoidPointerToNonConst(QualType T
) {
104 if (const auto *PT
= T
->getAs
<PointerType
>()) {
105 QualType PointeeTy
= PT
->getPointeeType();
106 if (PointeeTy
.isConstQualified())
108 return PointeeTy
->isVoidType();
113 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition
)(QualType
)) const {
114 unsigned NumOfArgs
= getNumArgs();
116 // If calling using a function pointer, assume the function does not
117 // satisfy the callback.
118 // TODO: We could check the types of the arguments here.
123 for (CallEvent::param_type_iterator I
= param_type_begin(),
124 E
= param_type_end();
125 I
!= E
&& Idx
< NumOfArgs
; ++I
, ++Idx
) {
126 // If the parameter is 0, it's harmless.
127 if (getArgSVal(Idx
).isZeroConstant())
136 bool CallEvent::hasNonZeroCallbackArg() const {
137 return hasNonNullArgumentsWithType(isCallback
);
140 bool CallEvent::hasVoidPointerToNonConstArg() const {
141 return hasNonNullArgumentsWithType(isVoidPointerToNonConst
);
144 bool CallEvent::isGlobalCFunction(StringRef FunctionName
) const {
145 const auto *FD
= dyn_cast_or_null
<FunctionDecl
>(getDecl());
149 return CheckerContext::isCLibraryFunction(FD
, FunctionName
);
152 AnalysisDeclContext
*CallEvent::getCalleeAnalysisDeclContext() const {
153 const Decl
*D
= getDecl();
157 AnalysisDeclContext
*ADC
=
158 LCtx
->getAnalysisDeclContext()->getManager()->getContext(D
);
163 const StackFrameContext
*
164 CallEvent::getCalleeStackFrame(unsigned BlockCount
) const {
165 AnalysisDeclContext
*ADC
= getCalleeAnalysisDeclContext();
169 const Expr
*E
= getOriginExpr();
173 // Recover CFG block via reverse lookup.
174 // TODO: If we were to keep CFG element information as part of the CallEvent
175 // instead of doing this reverse lookup, we would be able to build the stack
176 // frame for non-expression-based calls, and also we wouldn't need the reverse
178 CFGStmtMap
*Map
= LCtx
->getAnalysisDeclContext()->getCFGStmtMap();
179 const CFGBlock
*B
= Map
->getBlock(E
);
182 // Also recover CFG index by scanning the CFG block.
183 unsigned Idx
= 0, Sz
= B
->size();
184 for (; Idx
< Sz
; ++Idx
)
185 if (auto StmtElem
= (*B
)[Idx
].getAs
<CFGStmt
>())
186 if (StmtElem
->getStmt() == E
)
190 return ADC
->getManager()->getStackFrame(ADC
, LCtx
, E
, B
, BlockCount
, Idx
);
194 *CallEvent::getParameterLocation(unsigned Index
, unsigned BlockCount
) const {
195 const StackFrameContext
*SFC
= getCalleeStackFrame(BlockCount
);
196 // We cannot construct a VarRegion without a stack frame.
200 const ParamVarRegion
*PVR
=
201 State
->getStateManager().getRegionManager().getParamVarRegion(
202 getOriginExpr(), Index
, SFC
);
206 /// Returns true if a type is a pointer-to-const or reference-to-const
207 /// with no further indirection.
208 static bool isPointerToConst(QualType Ty
) {
209 QualType PointeeTy
= Ty
->getPointeeType();
210 if (PointeeTy
== QualType())
212 if (!PointeeTy
.isConstQualified())
214 if (PointeeTy
->isAnyPointerType())
219 // Try to retrieve the function declaration and find the function parameter
220 // types which are pointers/references to a non-pointer const.
221 // We will not invalidate the corresponding argument regions.
222 static void findPtrToConstParams(llvm::SmallSet
<unsigned, 4> &PreserveArgs
,
223 const CallEvent
&Call
) {
225 for (CallEvent::param_type_iterator I
= Call
.param_type_begin(),
226 E
= Call
.param_type_end();
227 I
!= E
; ++I
, ++Idx
) {
228 if (isPointerToConst(*I
))
229 PreserveArgs
.insert(Idx
);
233 ProgramStateRef
CallEvent::invalidateRegions(unsigned BlockCount
,
234 ProgramStateRef Orig
) const {
235 ProgramStateRef Result
= (Orig
? Orig
: getState());
237 // Don't invalidate anything if the callee is marked pure/const.
238 if (const Decl
*callee
= getDecl())
239 if (callee
->hasAttr
<PureAttr
>() || callee
->hasAttr
<ConstAttr
>())
242 SmallVector
<SVal
, 8> ValuesToInvalidate
;
243 RegionAndSymbolInvalidationTraits ETraits
;
245 getExtraInvalidatedValues(ValuesToInvalidate
, &ETraits
);
247 // Indexes of arguments whose values will be preserved by the call.
248 llvm::SmallSet
<unsigned, 4> PreserveArgs
;
249 if (!argumentsMayEscape())
250 findPtrToConstParams(PreserveArgs
, *this);
252 for (unsigned Idx
= 0, Count
= getNumArgs(); Idx
!= Count
; ++Idx
) {
253 // Mark this region for invalidation. We batch invalidate regions
254 // below for efficiency.
255 if (PreserveArgs
.count(Idx
))
256 if (const MemRegion
*MR
= getArgSVal(Idx
).getAsRegion())
257 ETraits
.setTrait(MR
->getBaseRegion(),
258 RegionAndSymbolInvalidationTraits::TK_PreserveContents
);
259 // TODO: Factor this out + handle the lower level const pointers.
261 ValuesToInvalidate
.push_back(getArgSVal(Idx
));
263 // If a function accepts an object by argument (which would of course be a
264 // temporary that isn't lifetime-extended), invalidate the object itself,
265 // not only other objects reachable from it. This is necessary because the
266 // destructor has access to the temporary object after the call.
267 // TODO: Support placement arguments once we start
268 // constructing them directly.
269 // TODO: This is unnecessary when there's no destructor, but that's
270 // currently hard to figure out.
271 if (getKind() != CE_CXXAllocator
)
272 if (isArgumentConstructedDirectly(Idx
))
273 if (auto AdjIdx
= getAdjustedParameterIndex(Idx
))
274 if (const TypedValueRegion
*TVR
=
275 getParameterLocation(*AdjIdx
, BlockCount
))
276 ValuesToInvalidate
.push_back(loc::MemRegionVal(TVR
));
279 // Invalidate designated regions using the batch invalidation API.
280 // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
282 return Result
->invalidateRegions(ValuesToInvalidate
, getOriginExpr(),
283 BlockCount
, getLocationContext(),
284 /*CausedByPointerEscape*/ true,
285 /*Symbols=*/nullptr, this, &ETraits
);
288 ProgramPoint
CallEvent::getProgramPoint(bool IsPreVisit
,
289 const ProgramPointTag
*Tag
) const {
291 if (const Expr
*E
= getOriginExpr()) {
293 return PreStmt(E
, getLocationContext(), Tag
);
294 return PostStmt(E
, getLocationContext(), Tag
);
297 const Decl
*D
= getDecl();
298 assert(D
&& "Cannot get a program point without a statement or decl");
299 assert(ElemRef
.getParent() &&
300 "Cannot get a program point without a CFGElementRef");
302 SourceLocation Loc
= getSourceRange().getBegin();
304 return PreImplicitCall(D
, Loc
, getLocationContext(), ElemRef
, Tag
);
305 return PostImplicitCall(D
, Loc
, getLocationContext(), ElemRef
, Tag
);
308 SVal
CallEvent::getArgSVal(unsigned Index
) const {
309 const Expr
*ArgE
= getArgExpr(Index
);
312 return getSVal(ArgE
);
315 SourceRange
CallEvent::getArgSourceRange(unsigned Index
) const {
316 const Expr
*ArgE
= getArgExpr(Index
);
319 return ArgE
->getSourceRange();
322 SVal
CallEvent::getReturnValue() const {
323 const Expr
*E
= getOriginExpr();
325 return UndefinedVal();
329 LLVM_DUMP_METHOD
void CallEvent::dump() const { dump(llvm::errs()); }
331 void CallEvent::dump(raw_ostream
&Out
) const {
332 ASTContext
&Ctx
= getState()->getStateManager().getContext();
333 if (const Expr
*E
= getOriginExpr()) {
334 E
->printPretty(Out
, nullptr, Ctx
.getPrintingPolicy());
338 if (const Decl
*D
= getDecl()) {
340 D
->print(Out
, Ctx
.getPrintingPolicy());
344 Out
<< "Unknown call (type " << getKindAsString() << ")";
347 bool CallEvent::isCallStmt(const Stmt
*S
) {
348 return isa
<CallExpr
, ObjCMessageExpr
, CXXConstructExpr
, CXXNewExpr
>(S
);
351 QualType
CallEvent::getDeclaredResultType(const Decl
*D
) {
353 if (const auto *FD
= dyn_cast
<FunctionDecl
>(D
))
354 return FD
->getReturnType();
355 if (const auto *MD
= dyn_cast
<ObjCMethodDecl
>(D
))
356 return MD
->getReturnType();
357 if (const auto *BD
= dyn_cast
<BlockDecl
>(D
)) {
358 // Blocks are difficult because the return type may not be stored in the
359 // BlockDecl itself. The AST should probably be enhanced, but for now we
360 // just do what we can.
361 // If the block is declared without an explicit argument list, the
362 // signature-as-written just includes the return type, not the entire
364 // FIXME: All blocks should have signatures-as-written, even if the return
365 // type is inferred. (That's signified with a dependent result type.)
366 if (const TypeSourceInfo
*TSI
= BD
->getSignatureAsWritten()) {
367 QualType Ty
= TSI
->getType();
368 if (const FunctionType
*FT
= Ty
->getAs
<FunctionType
>())
369 Ty
= FT
->getReturnType();
370 if (!Ty
->isDependentType())
377 llvm_unreachable("unknown callable kind");
380 bool CallEvent::isVariadic(const Decl
*D
) {
383 if (const auto *FD
= dyn_cast
<FunctionDecl
>(D
))
384 return FD
->isVariadic();
385 if (const auto *MD
= dyn_cast
<ObjCMethodDecl
>(D
))
386 return MD
->isVariadic();
387 if (const auto *BD
= dyn_cast
<BlockDecl
>(D
))
388 return BD
->isVariadic();
390 llvm_unreachable("unknown callable kind");
393 static bool isTransparentUnion(QualType T
) {
394 const RecordType
*UT
= T
->getAsUnionType();
395 return UT
&& UT
->getDecl()->hasAttr
<TransparentUnionAttr
>();
398 // In some cases, symbolic cases should be transformed before we associate
399 // them with parameters. This function incapsulates such cases.
400 static SVal
processArgument(SVal Value
, const Expr
*ArgumentExpr
,
401 const ParmVarDecl
*Parameter
, SValBuilder
&SVB
) {
402 QualType ParamType
= Parameter
->getType();
403 QualType ArgumentType
= ArgumentExpr
->getType();
405 // Transparent unions allow users to easily convert values of union field
406 // types into union-typed objects.
408 // Also, more importantly, they allow users to define functions with different
409 // different parameter types, substituting types matching transparent union
410 // field types with the union type itself.
412 // Here, we check specifically for latter cases and prevent binding
413 // field-typed values to union-typed regions.
414 if (isTransparentUnion(ParamType
) &&
415 // Let's check that we indeed trying to bind different types.
416 !isTransparentUnion(ArgumentType
)) {
417 BasicValueFactory
&BVF
= SVB
.getBasicValueFactory();
419 llvm::ImmutableList
<SVal
> CompoundSVals
= BVF
.getEmptySValList();
420 CompoundSVals
= BVF
.prependSVal(Value
, CompoundSVals
);
422 // Wrap it with compound value.
423 return SVB
.makeCompoundVal(ParamType
, CompoundSVals
);
429 /// Cast the argument value to the type of the parameter at the function
431 /// Returns the argument value if it didn't need a cast.
432 /// Or returns the cast argument if it needed a cast.
433 /// Or returns 'Unknown' if it would need a cast but the callsite and the
434 /// runtime definition don't match in terms of argument and parameter count.
435 static SVal
castArgToParamTypeIfNeeded(const CallEvent
&Call
, unsigned ArgIdx
,
436 SVal ArgVal
, SValBuilder
&SVB
) {
437 const FunctionDecl
*RTDecl
=
438 Call
.getRuntimeDefinition().getDecl()->getAsFunction();
439 const auto *CallExprDecl
= dyn_cast_or_null
<FunctionDecl
>(Call
.getDecl());
441 if (!RTDecl
|| !CallExprDecl
)
444 // The function decl of the Call (in the AST) will not have any parameter
445 // declarations, if it was 'only' declared without a prototype. However, the
446 // engine will find the appropriate runtime definition - basically a
447 // redeclaration, which has a function body (and a function prototype).
448 if (CallExprDecl
->hasPrototype() || !RTDecl
->hasPrototype())
451 // Only do this cast if the number arguments at the callsite matches with
452 // the parameters at the runtime definition.
453 if (Call
.getNumArgs() != RTDecl
->getNumParams())
456 const Expr
*ArgExpr
= Call
.getArgExpr(ArgIdx
);
457 const ParmVarDecl
*Param
= RTDecl
->getParamDecl(ArgIdx
);
458 return SVB
.evalCast(ArgVal
, Param
->getType(), ArgExpr
->getType());
461 static void addParameterValuesToBindings(const StackFrameContext
*CalleeCtx
,
462 CallEvent::BindingsTy
&Bindings
,
464 const CallEvent
&Call
,
465 ArrayRef
<ParmVarDecl
*> parameters
) {
466 MemRegionManager
&MRMgr
= SVB
.getRegionManager();
468 // If the function has fewer parameters than the call has arguments, we simply
469 // do not bind any values to them.
470 unsigned NumArgs
= Call
.getNumArgs();
472 ArrayRef
<ParmVarDecl
*>::iterator I
= parameters
.begin(), E
= parameters
.end();
473 for (; I
!= E
&& Idx
< NumArgs
; ++I
, ++Idx
) {
474 assert(*I
&& "Formal parameter has no decl?");
476 // TODO: Support allocator calls.
477 if (Call
.getKind() != CE_CXXAllocator
)
478 if (Call
.isArgumentConstructedDirectly(Call
.getASTArgumentIndex(Idx
)))
481 // TODO: Allocators should receive the correct size and possibly alignment,
482 // determined in compile-time but not represented as arg-expressions,
483 // which makes getArgSVal() fail and return UnknownVal.
484 SVal ArgVal
= Call
.getArgSVal(Idx
);
485 const Expr
*ArgExpr
= Call
.getArgExpr(Idx
);
487 if (ArgVal
.isUnknown())
490 // Cast the argument value to match the type of the parameter in some
492 ArgVal
= castArgToParamTypeIfNeeded(Call
, Idx
, ArgVal
, SVB
);
494 Loc ParamLoc
= SVB
.makeLoc(
495 MRMgr
.getParamVarRegion(Call
.getOriginExpr(), Idx
, CalleeCtx
));
497 std::make_pair(ParamLoc
, processArgument(ArgVal
, ArgExpr
, *I
, SVB
)));
500 // FIXME: Variadic arguments are not handled at all right now.
503 const ConstructionContext
*CallEvent::getConstructionContext() const {
504 const StackFrameContext
*StackFrame
= getCalleeStackFrame(0);
508 const CFGElement Element
= StackFrame
->getCallSiteCFGElement();
509 if (const auto Ctor
= Element
.getAs
<CFGConstructor
>()) {
510 return Ctor
->getConstructionContext();
513 if (const auto RecCall
= Element
.getAs
<CFGCXXRecordTypedCall
>()) {
514 return RecCall
->getConstructionContext();
520 std::optional
<SVal
> CallEvent::getReturnValueUnderConstruction() const {
521 const auto *CC
= getConstructionContext();
525 EvalCallOptions CallOpts
;
526 ExprEngine
&Engine
= getState()->getStateManager().getOwningEngine();
527 SVal RetVal
= Engine
.computeObjectUnderConstruction(
528 getOriginExpr(), getState(), &Engine
.getBuilderContext(),
529 getLocationContext(), CC
, CallOpts
);
533 ArrayRef
<ParmVarDecl
*> AnyFunctionCall::parameters() const {
534 const FunctionDecl
*D
= getDecl();
537 return D
->parameters();
540 RuntimeDefinition
AnyFunctionCall::getRuntimeDefinition() const {
541 const FunctionDecl
*FD
= getDecl();
545 // Note that the AnalysisDeclContext will have the FunctionDecl with
546 // the definition (if one exists).
547 AnalysisDeclContext
*AD
=
548 getLocationContext()->getAnalysisDeclContext()->
549 getManager()->getContext(FD
);
550 bool IsAutosynthesized
;
551 Stmt
* Body
= AD
->getBody(IsAutosynthesized
);
553 if (IsAutosynthesized
)
554 llvm::dbgs() << "Using autosynthesized body for " << FD
->getName()
558 ExprEngine
&Engine
= getState()->getStateManager().getOwningEngine();
559 cross_tu::CrossTranslationUnitContext
&CTUCtx
=
560 *Engine
.getCrossTranslationUnitContext();
562 AnalyzerOptions
&Opts
= Engine
.getAnalysisManager().options
;
565 const Decl
* Decl
= AD
->getDecl();
566 if (Opts
.IsNaiveCTUEnabled
&& CTUCtx
.isImportedAsNew(Decl
)) {
567 // A newly created definition, but we had error(s) during the import.
568 if (CTUCtx
.hasError(Decl
))
570 return RuntimeDefinition(Decl
, /*Foreign=*/true);
572 return RuntimeDefinition(Decl
, /*Foreign=*/false);
575 // Try to get CTU definition only if CTUDir is provided.
576 if (!Opts
.IsNaiveCTUEnabled
)
579 llvm::Expected
<const FunctionDecl
*> CTUDeclOrError
=
580 CTUCtx
.getCrossTUDefinition(FD
, Opts
.CTUDir
, Opts
.CTUIndexName
,
581 Opts
.DisplayCTUProgress
);
583 if (!CTUDeclOrError
) {
584 handleAllErrors(CTUDeclOrError
.takeError(),
585 [&](const cross_tu::IndexError
&IE
) {
586 CTUCtx
.emitCrossTUDiagnostics(IE
);
591 return RuntimeDefinition(*CTUDeclOrError
, /*Foreign=*/true);
594 void AnyFunctionCall::getInitialStackFrameContents(
595 const StackFrameContext
*CalleeCtx
,
596 BindingsTy
&Bindings
) const {
597 const auto *D
= cast
<FunctionDecl
>(CalleeCtx
->getDecl());
598 SValBuilder
&SVB
= getState()->getStateManager().getSValBuilder();
599 addParameterValuesToBindings(CalleeCtx
, Bindings
, SVB
, *this,
603 bool AnyFunctionCall::argumentsMayEscape() const {
604 if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
607 const FunctionDecl
*D
= getDecl();
611 const IdentifierInfo
*II
= D
->getIdentifier();
615 // This set of "escaping" APIs is
617 // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
618 // value into thread local storage. The value can later be retrieved with
619 // 'void *ptheread_getspecific(pthread_key)'. So even thought the
620 // parameter is 'const void *', the region escapes through the call.
621 if (II
->isStr("pthread_setspecific"))
624 // - xpc_connection_set_context stores a value which can be retrieved later
625 // with xpc_connection_get_context.
626 if (II
->isStr("xpc_connection_set_context"))
629 // - funopen - sets a buffer for future IO calls.
630 if (II
->isStr("funopen"))
633 // - __cxa_demangle - can reallocate memory and can return the pointer to
635 if (II
->isStr("__cxa_demangle"))
638 StringRef FName
= II
->getName();
640 // - CoreFoundation functions that end with "NoCopy" can free a passed-in
641 // buffer even if it is const.
642 if (FName
.endswith("NoCopy"))
645 // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
646 // be deallocated by NSMapRemove.
647 if (FName
.startswith("NS") && FName
.contains("Insert"))
650 // - Many CF containers allow objects to escape through custom
651 // allocators/deallocators upon container construction. (PR12101)
652 if (FName
.startswith("CF") || FName
.startswith("CG")) {
653 return StrInStrNoCase(FName
, "InsertValue") != StringRef::npos
||
654 StrInStrNoCase(FName
, "AddValue") != StringRef::npos
||
655 StrInStrNoCase(FName
, "SetValue") != StringRef::npos
||
656 StrInStrNoCase(FName
, "WithData") != StringRef::npos
||
657 StrInStrNoCase(FName
, "AppendValue") != StringRef::npos
||
658 StrInStrNoCase(FName
, "SetAttribute") != StringRef::npos
;
664 const FunctionDecl
*SimpleFunctionCall::getDecl() const {
665 const FunctionDecl
*D
= getOriginExpr()->getDirectCallee();
669 return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
672 const FunctionDecl
*CXXInstanceCall::getDecl() const {
673 const auto *CE
= cast_or_null
<CallExpr
>(getOriginExpr());
675 return AnyFunctionCall::getDecl();
677 const FunctionDecl
*D
= CE
->getDirectCallee();
681 return getSVal(CE
->getCallee()).getAsFunctionDecl();
684 void CXXInstanceCall::getExtraInvalidatedValues(
685 ValueList
&Values
, RegionAndSymbolInvalidationTraits
*ETraits
) const {
686 SVal ThisVal
= getCXXThisVal();
687 Values
.push_back(ThisVal
);
689 // Don't invalidate if the method is const and there are no mutable fields.
690 if (const auto *D
= cast_or_null
<CXXMethodDecl
>(getDecl())) {
693 // Get the record decl for the class of 'This'. D->getParent() may return a
694 // base class decl, rather than the class of the instance which needs to be
695 // checked for mutable fields.
696 // TODO: We might as well look at the dynamic type of the object.
697 const Expr
*Ex
= getCXXThisExpr()->IgnoreParenBaseCasts();
698 QualType T
= Ex
->getType();
699 if (T
->isPointerType()) // Arrow or implicit-this syntax?
700 T
= T
->getPointeeType();
701 const CXXRecordDecl
*ParentRecord
= T
->getAsCXXRecordDecl();
702 assert(ParentRecord
);
703 if (ParentRecord
->hasMutableFields())
706 const MemRegion
*ThisRegion
= ThisVal
.getAsRegion();
710 ETraits
->setTrait(ThisRegion
->getBaseRegion(),
711 RegionAndSymbolInvalidationTraits::TK_PreserveContents
);
715 SVal
CXXInstanceCall::getCXXThisVal() const {
716 const Expr
*Base
= getCXXThisExpr();
717 // FIXME: This doesn't handle an overloaded ->* operator.
721 SVal ThisVal
= getSVal(Base
);
722 assert(ThisVal
.isUnknownOrUndef() || isa
<Loc
>(ThisVal
));
726 RuntimeDefinition
CXXInstanceCall::getRuntimeDefinition() const {
727 // Do we have a decl at all?
728 const Decl
*D
= getDecl();
732 // If the method is non-virtual, we know we can inline it.
733 const auto *MD
= cast
<CXXMethodDecl
>(D
);
734 if (!MD
->isVirtual())
735 return AnyFunctionCall::getRuntimeDefinition();
737 // Do we know the implicit 'this' object being called?
738 const MemRegion
*R
= getCXXThisVal().getAsRegion();
742 // Do we know anything about the type of 'this'?
743 DynamicTypeInfo DynType
= getDynamicTypeInfo(getState(), R
);
744 if (!DynType
.isValid())
747 // Is the type a C++ class? (This is mostly a defensive check.)
748 QualType RegionType
= DynType
.getType()->getPointeeType();
749 assert(!RegionType
.isNull() && "DynamicTypeInfo should always be a pointer.");
751 const CXXRecordDecl
*RD
= RegionType
->getAsCXXRecordDecl();
752 if (!RD
|| !RD
->hasDefinition())
755 // Find the decl for this method in that class.
756 const CXXMethodDecl
*Result
= MD
->getCorrespondingMethodInClass(RD
, true);
758 // We might not even get the original statically-resolved method due to
759 // some particularly nasty casting (e.g. casts to sister classes).
760 // However, we should at least be able to search up and down our own class
761 // hierarchy, and some real bugs have been caught by checking this.
762 assert(!RD
->isDerivedFrom(MD
->getParent()) && "Couldn't find known method");
764 // FIXME: This is checking that our DynamicTypeInfo is at least as good as
765 // the static type. However, because we currently don't update
766 // DynamicTypeInfo when an object is cast, we can't actually be sure the
767 // DynamicTypeInfo is up to date. This assert should be re-enabled once
770 // assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
775 // Does the decl that we found have an implementation?
776 const FunctionDecl
*Definition
;
777 if (!Result
->hasBody(Definition
)) {
778 if (!DynType
.canBeASubClass())
779 return AnyFunctionCall::getRuntimeDefinition();
783 // We found a definition. If we're not sure that this devirtualization is
784 // actually what will happen at runtime, make sure to provide the region so
785 // that ExprEngine can decide what to do with it.
786 if (DynType
.canBeASubClass())
787 return RuntimeDefinition(Definition
, R
->StripCasts());
788 return RuntimeDefinition(Definition
, /*DispatchRegion=*/nullptr);
791 void CXXInstanceCall::getInitialStackFrameContents(
792 const StackFrameContext
*CalleeCtx
,
793 BindingsTy
&Bindings
) const {
794 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx
, Bindings
);
796 // Handle the binding of 'this' in the new stack frame.
797 SVal ThisVal
= getCXXThisVal();
798 if (!ThisVal
.isUnknown()) {
799 ProgramStateManager
&StateMgr
= getState()->getStateManager();
800 SValBuilder
&SVB
= StateMgr
.getSValBuilder();
802 const auto *MD
= cast
<CXXMethodDecl
>(CalleeCtx
->getDecl());
803 Loc ThisLoc
= SVB
.getCXXThis(MD
, CalleeCtx
);
805 // If we devirtualized to a different member function, we need to make sure
806 // we have the proper layering of CXXBaseObjectRegions.
807 if (MD
->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
808 ASTContext
&Ctx
= SVB
.getContext();
809 const CXXRecordDecl
*Class
= MD
->getParent();
810 QualType Ty
= Ctx
.getPointerType(Ctx
.getRecordType(Class
));
812 // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
813 std::optional
<SVal
> V
=
814 StateMgr
.getStoreManager().evalBaseToDerived(ThisVal
, Ty
);
816 // We might have suffered some sort of placement new earlier, so
817 // we're constructing in a completely unexpected storage.
818 // Fall back to a generic pointer cast for this-value.
819 const CXXMethodDecl
*StaticMD
= cast
<CXXMethodDecl
>(getDecl());
820 const CXXRecordDecl
*StaticClass
= StaticMD
->getParent();
821 QualType StaticTy
= Ctx
.getPointerType(Ctx
.getRecordType(StaticClass
));
822 ThisVal
= SVB
.evalCast(ThisVal
, Ty
, StaticTy
);
827 if (!ThisVal
.isUnknown())
828 Bindings
.push_back(std::make_pair(ThisLoc
, ThisVal
));
832 const Expr
*CXXMemberCall::getCXXThisExpr() const {
833 return getOriginExpr()->getImplicitObjectArgument();
836 RuntimeDefinition
CXXMemberCall::getRuntimeDefinition() const {
837 // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
838 // id-expression in the class member access expression is a qualified-id,
839 // that function is called. Otherwise, its final overrider in the dynamic type
840 // of the object expression is called.
841 if (const auto *ME
= dyn_cast
<MemberExpr
>(getOriginExpr()->getCallee()))
842 if (ME
->hasQualifier())
843 return AnyFunctionCall::getRuntimeDefinition();
845 return CXXInstanceCall::getRuntimeDefinition();
848 const Expr
*CXXMemberOperatorCall::getCXXThisExpr() const {
849 return getOriginExpr()->getArg(0);
852 const BlockDataRegion
*BlockCall::getBlockRegion() const {
853 const Expr
*Callee
= getOriginExpr()->getCallee();
854 const MemRegion
*DataReg
= getSVal(Callee
).getAsRegion();
856 return dyn_cast_or_null
<BlockDataRegion
>(DataReg
);
859 ArrayRef
<ParmVarDecl
*> BlockCall::parameters() const {
860 const BlockDecl
*D
= getDecl();
863 return D
->parameters();
866 void BlockCall::getExtraInvalidatedValues(ValueList
&Values
,
867 RegionAndSymbolInvalidationTraits
*ETraits
) const {
868 // FIXME: This also needs to invalidate captured globals.
869 if (const MemRegion
*R
= getBlockRegion())
870 Values
.push_back(loc::MemRegionVal(R
));
873 void BlockCall::getInitialStackFrameContents(const StackFrameContext
*CalleeCtx
,
874 BindingsTy
&Bindings
) const {
875 SValBuilder
&SVB
= getState()->getStateManager().getSValBuilder();
876 ArrayRef
<ParmVarDecl
*> Params
;
877 if (isConversionFromLambda()) {
878 auto *LambdaOperatorDecl
= cast
<CXXMethodDecl
>(CalleeCtx
->getDecl());
879 Params
= LambdaOperatorDecl
->parameters();
881 // For blocks converted from a C++ lambda, the callee declaration is the
882 // operator() method on the lambda so we bind "this" to
883 // the lambda captured by the block.
884 const VarRegion
*CapturedLambdaRegion
= getRegionStoringCapturedLambda();
885 SVal ThisVal
= loc::MemRegionVal(CapturedLambdaRegion
);
886 Loc ThisLoc
= SVB
.getCXXThis(LambdaOperatorDecl
, CalleeCtx
);
887 Bindings
.push_back(std::make_pair(ThisLoc
, ThisVal
));
889 Params
= cast
<BlockDecl
>(CalleeCtx
->getDecl())->parameters();
892 addParameterValuesToBindings(CalleeCtx
, Bindings
, SVB
, *this,
896 SVal
AnyCXXConstructorCall::getCXXThisVal() const {
898 return loc::MemRegionVal(static_cast<const MemRegion
*>(Data
));
902 void AnyCXXConstructorCall::getExtraInvalidatedValues(ValueList
&Values
,
903 RegionAndSymbolInvalidationTraits
*ETraits
) const {
904 SVal V
= getCXXThisVal();
905 if (SymbolRef Sym
= V
.getAsSymbol(true))
906 ETraits
->setTrait(Sym
,
907 RegionAndSymbolInvalidationTraits::TK_SuppressEscape
);
911 void AnyCXXConstructorCall::getInitialStackFrameContents(
912 const StackFrameContext
*CalleeCtx
,
913 BindingsTy
&Bindings
) const {
914 AnyFunctionCall::getInitialStackFrameContents(CalleeCtx
, Bindings
);
916 SVal ThisVal
= getCXXThisVal();
917 if (!ThisVal
.isUnknown()) {
918 SValBuilder
&SVB
= getState()->getStateManager().getSValBuilder();
919 const auto *MD
= cast
<CXXMethodDecl
>(CalleeCtx
->getDecl());
920 Loc ThisLoc
= SVB
.getCXXThis(MD
, CalleeCtx
);
921 Bindings
.push_back(std::make_pair(ThisLoc
, ThisVal
));
925 const StackFrameContext
*
926 CXXInheritedConstructorCall::getInheritingStackFrame() const {
927 const StackFrameContext
*SFC
= getLocationContext()->getStackFrame();
928 while (isa
<CXXInheritedCtorInitExpr
>(SFC
->getCallSite()))
929 SFC
= SFC
->getParent()->getStackFrame();
933 SVal
CXXDestructorCall::getCXXThisVal() const {
935 return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data
).getPointer());
939 RuntimeDefinition
CXXDestructorCall::getRuntimeDefinition() const {
940 // Base destructors are always called non-virtually.
941 // Skip CXXInstanceCall's devirtualization logic in this case.
942 if (isBaseDestructor())
943 return AnyFunctionCall::getRuntimeDefinition();
945 return CXXInstanceCall::getRuntimeDefinition();
948 ArrayRef
<ParmVarDecl
*> ObjCMethodCall::parameters() const {
949 const ObjCMethodDecl
*D
= getDecl();
952 return D
->parameters();
955 void ObjCMethodCall::getExtraInvalidatedValues(
956 ValueList
&Values
, RegionAndSymbolInvalidationTraits
*ETraits
) const {
958 // If the method call is a setter for property known to be backed by
959 // an instance variable, don't invalidate the entire receiver, just
960 // the storage for that instance variable.
961 if (const ObjCPropertyDecl
*PropDecl
= getAccessedProperty()) {
962 if (const ObjCIvarDecl
*PropIvar
= PropDecl
->getPropertyIvarDecl()) {
963 SVal IvarLVal
= getState()->getLValue(PropIvar
, getReceiverSVal());
964 if (const MemRegion
*IvarRegion
= IvarLVal
.getAsRegion()) {
967 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion
);
970 RegionAndSymbolInvalidationTraits::TK_SuppressEscape
);
971 Values
.push_back(IvarLVal
);
977 Values
.push_back(getReceiverSVal());
980 SVal
ObjCMethodCall::getReceiverSVal() const {
981 // FIXME: Is this the best way to handle class receivers?
982 if (!isInstanceMessage())
985 if (const Expr
*RecE
= getOriginExpr()->getInstanceReceiver())
986 return getSVal(RecE
);
988 // An instance message with no expression means we are sending to super.
989 // In this case the object reference is the same as 'self'.
990 assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance
);
991 SVal SelfVal
= getState()->getSelfSVal(getLocationContext());
992 assert(SelfVal
.isValid() && "Calling super but not in ObjC method");
996 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
997 if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance
||
998 getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass
)
1001 if (!isInstanceMessage())
1004 SVal RecVal
= getSVal(getOriginExpr()->getInstanceReceiver());
1005 SVal SelfVal
= getState()->getSelfSVal(getLocationContext());
1007 return (RecVal
== SelfVal
);
1010 SourceRange
ObjCMethodCall::getSourceRange() const {
1011 switch (getMessageKind()) {
1013 return getOriginExpr()->getSourceRange();
1014 case OCM_PropertyAccess
:
1016 return getContainingPseudoObjectExpr()->getSourceRange();
1018 llvm_unreachable("unknown message kind");
1021 using ObjCMessageDataTy
= llvm::PointerIntPair
<const PseudoObjectExpr
*, 2>;
1023 const PseudoObjectExpr
*ObjCMethodCall::getContainingPseudoObjectExpr() const {
1024 assert(Data
&& "Lazy lookup not yet performed.");
1025 assert(getMessageKind() != OCM_Message
&& "Explicit message send.");
1026 return ObjCMessageDataTy::getFromOpaqueValue(Data
).getPointer();
1030 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr
*POE
) {
1031 const Expr
*Syntactic
= POE
->getSyntacticForm()->IgnoreParens();
1033 // This handles the funny case of assigning to the result of a getter.
1034 // This can happen if the getter returns a non-const reference.
1035 if (const auto *BO
= dyn_cast
<BinaryOperator
>(Syntactic
))
1036 Syntactic
= BO
->getLHS()->IgnoreParens();
1041 ObjCMessageKind
ObjCMethodCall::getMessageKind() const {
1043 // Find the parent, ignoring implicit casts.
1044 const ParentMap
&PM
= getLocationContext()->getParentMap();
1045 const Stmt
*S
= PM
.getParentIgnoreParenCasts(getOriginExpr());
1047 // Check if parent is a PseudoObjectExpr.
1048 if (const auto *POE
= dyn_cast_or_null
<PseudoObjectExpr
>(S
)) {
1049 const Expr
*Syntactic
= getSyntacticFromForPseudoObjectExpr(POE
);
1052 switch (Syntactic
->getStmtClass()) {
1053 case Stmt::ObjCPropertyRefExprClass
:
1054 K
= OCM_PropertyAccess
;
1056 case Stmt::ObjCSubscriptRefExprClass
:
1060 // FIXME: Can this ever happen?
1065 if (K
!= OCM_Message
) {
1066 const_cast<ObjCMethodCall
*>(this)->Data
1067 = ObjCMessageDataTy(POE
, K
).getOpaqueValue();
1068 assert(getMessageKind() == K
);
1073 const_cast<ObjCMethodCall
*>(this)->Data
1074 = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1075 assert(getMessageKind() == OCM_Message
);
1079 ObjCMessageDataTy Info
= ObjCMessageDataTy::getFromOpaqueValue(Data
);
1080 if (!Info
.getPointer())
1082 return static_cast<ObjCMessageKind
>(Info
.getInt());
1085 const ObjCPropertyDecl
*ObjCMethodCall::getAccessedProperty() const {
1086 // Look for properties accessed with property syntax (foo.bar = ...)
1087 if (getMessageKind() == OCM_PropertyAccess
) {
1088 const PseudoObjectExpr
*POE
= getContainingPseudoObjectExpr();
1089 assert(POE
&& "Property access without PseudoObjectExpr?");
1091 const Expr
*Syntactic
= getSyntacticFromForPseudoObjectExpr(POE
);
1092 auto *RefExpr
= cast
<ObjCPropertyRefExpr
>(Syntactic
);
1094 if (RefExpr
->isExplicitProperty())
1095 return RefExpr
->getExplicitProperty();
1098 // Look for properties accessed with method syntax ([foo setBar:...]).
1099 const ObjCMethodDecl
*MD
= getDecl();
1100 if (!MD
|| !MD
->isPropertyAccessor())
1103 // Note: This is potentially quite slow.
1104 return MD
->findPropertyDecl();
1107 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl
*IDecl
,
1108 Selector Sel
) const {
1110 AnalysisManager
&AMgr
=
1111 getState()->getStateManager().getOwningEngine().getAnalysisManager();
1112 // If the class interface is declared inside the main file, assume it is not
1114 // TODO: It could actually be subclassed if the subclass is private as well.
1115 // This is probably very rare.
1116 SourceLocation InterfLoc
= IDecl
->getEndOfDefinitionLoc();
1117 if (InterfLoc
.isValid() && AMgr
.isInCodeFile(InterfLoc
))
1120 // Assume that property accessors are not overridden.
1121 if (getMessageKind() == OCM_PropertyAccess
)
1124 // We assume that if the method is public (declared outside of main file) or
1125 // has a parent which publicly declares the method, the method could be
1126 // overridden in a subclass.
1128 // Find the first declaration in the class hierarchy that declares
1130 ObjCMethodDecl
*D
= nullptr;
1132 D
= IDecl
->lookupMethod(Sel
, true);
1134 // Cannot find a public definition.
1138 // If outside the main file,
1139 if (D
->getLocation().isValid() && !AMgr
.isInCodeFile(D
->getLocation()))
1142 if (D
->isOverriding()) {
1143 // Search in the superclass on the next iteration.
1144 IDecl
= D
->getClassInterface();
1148 IDecl
= IDecl
->getSuperClass();
1158 llvm_unreachable("The while loop should always terminate.");
1161 static const ObjCMethodDecl
*findDefiningRedecl(const ObjCMethodDecl
*MD
) {
1165 // Find the redeclaration that defines the method.
1166 if (!MD
->hasBody()) {
1167 for (auto *I
: MD
->redecls())
1169 MD
= cast
<ObjCMethodDecl
>(I
);
1174 struct PrivateMethodKey
{
1175 const ObjCInterfaceDecl
*Interface
;
1176 Selector LookupSelector
;
1181 template <> struct DenseMapInfo
<PrivateMethodKey
> {
1182 using InterfaceInfo
= DenseMapInfo
<const ObjCInterfaceDecl
*>;
1183 using SelectorInfo
= DenseMapInfo
<Selector
>;
1185 static inline PrivateMethodKey
getEmptyKey() {
1186 return {InterfaceInfo::getEmptyKey(), SelectorInfo::getEmptyKey(), false};
1189 static inline PrivateMethodKey
getTombstoneKey() {
1190 return {InterfaceInfo::getTombstoneKey(), SelectorInfo::getTombstoneKey(),
1194 static unsigned getHashValue(const PrivateMethodKey
&Key
) {
1195 return llvm::hash_combine(
1196 llvm::hash_code(InterfaceInfo::getHashValue(Key
.Interface
)),
1197 llvm::hash_code(SelectorInfo::getHashValue(Key
.LookupSelector
)),
1201 static bool isEqual(const PrivateMethodKey
&LHS
,
1202 const PrivateMethodKey
&RHS
) {
1203 return InterfaceInfo::isEqual(LHS
.Interface
, RHS
.Interface
) &&
1204 SelectorInfo::isEqual(LHS
.LookupSelector
, RHS
.LookupSelector
) &&
1205 LHS
.IsClassMethod
== RHS
.IsClassMethod
;
1208 } // end namespace llvm
1210 static const ObjCMethodDecl
*
1211 lookupRuntimeDefinition(const ObjCInterfaceDecl
*Interface
,
1212 Selector LookupSelector
, bool InstanceMethod
) {
1213 // Repeatedly calling lookupPrivateMethod() is expensive, especially
1214 // when in many cases it returns null. We cache the results so
1215 // that repeated queries on the same ObjCIntefaceDecl and Selector
1216 // don't incur the same cost. On some test cases, we can see the
1217 // same query being issued thousands of times.
1219 // NOTE: This cache is essentially a "global" variable, but it
1220 // only gets lazily created when we get here. The value of the
1221 // cache probably comes from it being global across ExprEngines,
1222 // where the same queries may get issued. If we are worried about
1223 // concurrency, or possibly loading/unloading ASTs, etc., we may
1224 // need to revisit this someday. In terms of memory, this table
1225 // stays around until clang quits, which also may be bad if we
1226 // need to release memory.
1227 using PrivateMethodCache
=
1228 llvm::DenseMap
<PrivateMethodKey
, std::optional
<const ObjCMethodDecl
*>>;
1230 static PrivateMethodCache PMC
;
1231 std::optional
<const ObjCMethodDecl
*> &Val
=
1232 PMC
[{Interface
, LookupSelector
, InstanceMethod
}];
1234 // Query lookupPrivateMethod() if the cache does not hit.
1236 Val
= Interface
->lookupPrivateMethod(LookupSelector
, InstanceMethod
);
1239 // Query 'lookupMethod' as a backup.
1240 Val
= Interface
->lookupMethod(LookupSelector
, InstanceMethod
);
1247 RuntimeDefinition
ObjCMethodCall::getRuntimeDefinition() const {
1248 const ObjCMessageExpr
*E
= getOriginExpr();
1250 Selector Sel
= E
->getSelector();
1252 if (E
->isInstanceMessage()) {
1253 // Find the receiver type.
1254 const ObjCObjectType
*ReceiverT
= nullptr;
1255 bool CanBeSubClassed
= false;
1256 bool LookingForInstanceMethod
= true;
1257 QualType SupersType
= E
->getSuperType();
1258 const MemRegion
*Receiver
= nullptr;
1260 if (!SupersType
.isNull()) {
1261 // The receiver is guaranteed to be 'super' in this case.
1262 // Super always means the type of immediate predecessor to the method
1263 // where the call occurs.
1264 ReceiverT
= cast
<ObjCObjectPointerType
>(SupersType
)->getObjectType();
1266 Receiver
= getReceiverSVal().getAsRegion();
1270 DynamicTypeInfo DTI
= getDynamicTypeInfo(getState(), Receiver
);
1271 if (!DTI
.isValid()) {
1272 assert(isa
<AllocaRegion
>(Receiver
) &&
1273 "Unhandled untyped region class!");
1277 QualType DynType
= DTI
.getType();
1278 CanBeSubClassed
= DTI
.canBeASubClass();
1280 const auto *ReceiverDynT
=
1281 dyn_cast
<ObjCObjectPointerType
>(DynType
.getCanonicalType());
1284 ReceiverT
= ReceiverDynT
->getObjectType();
1286 // It can be actually class methods called with Class object as a
1287 // receiver. This type of messages is treated by the compiler as
1288 // instance (not class).
1289 if (ReceiverT
->isObjCClass()) {
1291 SVal SelfVal
= getState()->getSelfSVal(getLocationContext());
1292 // For [self classMethod], return compiler visible declaration.
1293 if (Receiver
== SelfVal
.getAsRegion()) {
1294 return RuntimeDefinition(findDefiningRedecl(E
->getMethodDecl()));
1297 // Otherwise, let's check if we know something about the type
1298 // inside of this class object.
1299 if (SymbolRef ReceiverSym
= getReceiverSVal().getAsSymbol()) {
1300 DynamicTypeInfo DTI
=
1301 getClassObjectDynamicTypeInfo(getState(), ReceiverSym
);
1302 if (DTI
.isValid()) {
1303 // Let's use this type for lookup.
1305 cast
<ObjCObjectType
>(DTI
.getType().getCanonicalType());
1307 CanBeSubClassed
= DTI
.canBeASubClass();
1308 // And it should be a class method instead.
1309 LookingForInstanceMethod
= false;
1314 if (CanBeSubClassed
)
1315 if (ObjCInterfaceDecl
*IDecl
= ReceiverT
->getInterface())
1316 // Even if `DynamicTypeInfo` told us that it can be
1317 // not necessarily this type, but its descendants, we still want
1318 // to check again if this selector can be actually overridden.
1319 CanBeSubClassed
= canBeOverridenInSubclass(IDecl
, Sel
);
1323 // Lookup the instance method implementation.
1325 if (ObjCInterfaceDecl
*IDecl
= ReceiverT
->getInterface()) {
1326 const ObjCMethodDecl
*MD
=
1327 lookupRuntimeDefinition(IDecl
, Sel
, LookingForInstanceMethod
);
1329 if (MD
&& !MD
->hasBody())
1330 MD
= MD
->getCanonicalDecl();
1332 if (CanBeSubClassed
)
1333 return RuntimeDefinition(MD
, Receiver
);
1335 return RuntimeDefinition(MD
, nullptr);
1338 // This is a class method.
1339 // If we have type info for the receiver class, we are calling via
1341 if (ObjCInterfaceDecl
*IDecl
= E
->getReceiverInterface()) {
1342 // Find/Return the method implementation.
1343 return RuntimeDefinition(IDecl
->lookupPrivateClassMethod(Sel
));
1350 bool ObjCMethodCall::argumentsMayEscape() const {
1351 if (isInSystemHeader() && !isInstanceMessage()) {
1352 Selector Sel
= getSelector();
1353 if (Sel
.getNumArgs() == 1 &&
1354 Sel
.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1358 return CallEvent::argumentsMayEscape();
1361 void ObjCMethodCall::getInitialStackFrameContents(
1362 const StackFrameContext
*CalleeCtx
,
1363 BindingsTy
&Bindings
) const {
1364 const auto *D
= cast
<ObjCMethodDecl
>(CalleeCtx
->getDecl());
1365 SValBuilder
&SVB
= getState()->getStateManager().getSValBuilder();
1366 addParameterValuesToBindings(CalleeCtx
, Bindings
, SVB
, *this,
1369 SVal SelfVal
= getReceiverSVal();
1370 if (!SelfVal
.isUnknown()) {
1371 const VarDecl
*SelfD
= CalleeCtx
->getAnalysisDeclContext()->getSelfDecl();
1372 MemRegionManager
&MRMgr
= SVB
.getRegionManager();
1373 Loc SelfLoc
= SVB
.makeLoc(MRMgr
.getVarRegion(SelfD
, CalleeCtx
));
1374 Bindings
.push_back(std::make_pair(SelfLoc
, SelfVal
));
1379 CallEventManager::getSimpleCall(const CallExpr
*CE
, ProgramStateRef State
,
1380 const LocationContext
*LCtx
,
1381 CFGBlock::ConstCFGElementRef ElemRef
) {
1382 if (const auto *MCE
= dyn_cast
<CXXMemberCallExpr
>(CE
))
1383 return create
<CXXMemberCall
>(MCE
, State
, LCtx
, ElemRef
);
1385 if (const auto *OpCE
= dyn_cast
<CXXOperatorCallExpr
>(CE
)) {
1386 const FunctionDecl
*DirectCallee
= OpCE
->getDirectCallee();
1387 if (const auto *MD
= dyn_cast
<CXXMethodDecl
>(DirectCallee
))
1388 if (MD
->isInstance())
1389 return create
<CXXMemberOperatorCall
>(OpCE
, State
, LCtx
, ElemRef
);
1391 } else if (CE
->getCallee()->getType()->isBlockPointerType()) {
1392 return create
<BlockCall
>(CE
, State
, LCtx
, ElemRef
);
1395 // Otherwise, it's a normal function call, static member function call, or
1396 // something we can't reason about.
1397 return create
<SimpleFunctionCall
>(CE
, State
, LCtx
, ElemRef
);
1401 CallEventManager::getCaller(const StackFrameContext
*CalleeCtx
,
1402 ProgramStateRef State
) {
1403 const LocationContext
*ParentCtx
= CalleeCtx
->getParent();
1404 const LocationContext
*CallerCtx
= ParentCtx
->getStackFrame();
1405 CFGBlock::ConstCFGElementRef ElemRef
= {CalleeCtx
->getCallSiteBlock(),
1406 CalleeCtx
->getIndex()};
1407 assert(CallerCtx
&& "This should not be used for top-level stack frames");
1409 const Stmt
*CallSite
= CalleeCtx
->getCallSite();
1412 if (CallEventRef
<> Out
= getCall(CallSite
, State
, CallerCtx
, ElemRef
))
1415 SValBuilder
&SVB
= State
->getStateManager().getSValBuilder();
1416 const auto *Ctor
= cast
<CXXMethodDecl
>(CalleeCtx
->getDecl());
1417 Loc ThisPtr
= SVB
.getCXXThis(Ctor
, CalleeCtx
);
1418 SVal ThisVal
= State
->getSVal(ThisPtr
);
1420 if (const auto *CE
= dyn_cast
<CXXConstructExpr
>(CallSite
))
1421 return getCXXConstructorCall(CE
, ThisVal
.getAsRegion(), State
, CallerCtx
,
1423 else if (const auto *CIE
= dyn_cast
<CXXInheritedCtorInitExpr
>(CallSite
))
1424 return getCXXInheritedConstructorCall(CIE
, ThisVal
.getAsRegion(), State
,
1425 CallerCtx
, ElemRef
);
1427 // All other cases are handled by getCall.
1428 llvm_unreachable("This is not an inlineable statement");
1432 // Fall back to the CFG. The only thing we haven't handled yet is
1433 // destructors, though this could change in the future.
1434 const CFGBlock
*B
= CalleeCtx
->getCallSiteBlock();
1435 CFGElement E
= (*B
)[CalleeCtx
->getIndex()];
1436 assert((E
.getAs
<CFGImplicitDtor
>() || E
.getAs
<CFGTemporaryDtor
>()) &&
1437 "All other CFG elements should have exprs");
1439 SValBuilder
&SVB
= State
->getStateManager().getSValBuilder();
1440 const auto *Dtor
= cast
<CXXDestructorDecl
>(CalleeCtx
->getDecl());
1441 Loc ThisPtr
= SVB
.getCXXThis(Dtor
, CalleeCtx
);
1442 SVal ThisVal
= State
->getSVal(ThisPtr
);
1444 const Stmt
*Trigger
;
1445 if (std::optional
<CFGAutomaticObjDtor
> AutoDtor
=
1446 E
.getAs
<CFGAutomaticObjDtor
>())
1447 Trigger
= AutoDtor
->getTriggerStmt();
1448 else if (std::optional
<CFGDeleteDtor
> DeleteDtor
= E
.getAs
<CFGDeleteDtor
>())
1449 Trigger
= DeleteDtor
->getDeleteExpr();
1451 Trigger
= Dtor
->getBody();
1453 return getCXXDestructorCall(Dtor
, Trigger
, ThisVal
.getAsRegion(),
1454 E
.getAs
<CFGBaseDtor
>().has_value(), State
,
1455 CallerCtx
, ElemRef
);
1458 CallEventRef
<> CallEventManager::getCall(const Stmt
*S
, ProgramStateRef State
,
1459 const LocationContext
*LC
,
1460 CFGBlock::ConstCFGElementRef ElemRef
) {
1461 if (const auto *CE
= dyn_cast
<CallExpr
>(S
)) {
1462 return getSimpleCall(CE
, State
, LC
, ElemRef
);
1463 } else if (const auto *NE
= dyn_cast
<CXXNewExpr
>(S
)) {
1464 return getCXXAllocatorCall(NE
, State
, LC
, ElemRef
);
1465 } else if (const auto *DE
= dyn_cast
<CXXDeleteExpr
>(S
)) {
1466 return getCXXDeallocatorCall(DE
, State
, LC
, ElemRef
);
1467 } else if (const auto *ME
= dyn_cast
<ObjCMessageExpr
>(S
)) {
1468 return getObjCMethodCall(ME
, State
, LC
, ElemRef
);