1 //===- Store.cpp - Interface for maps from Locations to Values ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defined the types Store and StoreManager.
11 //===----------------------------------------------------------------------===//
13 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/CharUnits.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/Type.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
31 #include "llvm/ADT/APSInt.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/ErrorHandling.h"
39 using namespace clang
;
42 StoreManager::StoreManager(ProgramStateManager
&stateMgr
)
43 : svalBuilder(stateMgr
.getSValBuilder()), StateMgr(stateMgr
),
44 MRMgr(svalBuilder
.getRegionManager()), Ctx(stateMgr
.getContext()) {}
46 StoreRef
StoreManager::enterStackFrame(Store OldStore
,
47 const CallEvent
&Call
,
48 const StackFrameContext
*LCtx
) {
49 StoreRef Store
= StoreRef(OldStore
, *this);
51 SmallVector
<CallEvent::FrameBindingTy
, 16> InitialBindings
;
52 Call
.getInitialStackFrameContents(LCtx
, InitialBindings
);
54 for (const auto &I
: InitialBindings
)
55 Store
= Bind(Store
.getStore(), I
.first
.castAs
<Loc
>(), I
.second
);
60 const ElementRegion
*StoreManager::MakeElementRegion(const SubRegion
*Base
,
63 NonLoc idx
= svalBuilder
.makeArrayIndex(index
);
64 return MRMgr
.getElementRegion(EleTy
, idx
, Base
, svalBuilder
.getContext());
67 const ElementRegion
*StoreManager::GetElementZeroRegion(const SubRegion
*R
,
69 NonLoc idx
= svalBuilder
.makeZeroArrayIndex();
71 return MRMgr
.getElementRegion(T
, idx
, R
, Ctx
);
74 std::optional
<const MemRegion
*> StoreManager::castRegion(const MemRegion
*R
,
76 ASTContext
&Ctx
= StateMgr
.getContext();
78 // Handle casts to Objective-C objects.
79 if (CastToTy
->isObjCObjectPointerType())
80 return R
->StripCasts();
82 if (CastToTy
->isBlockPointerType()) {
83 // FIXME: We may need different solutions, depending on the symbol
84 // involved. Blocks can be casted to/from 'id', as they can be treated
85 // as Objective-C objects. This could possibly be handled by enhancing
86 // our reasoning of downcasts of symbolic objects.
87 if (isa
<CodeTextRegion
, SymbolicRegion
>(R
))
90 // We don't know what to make of it. Return a NULL region, which
91 // will be interpreted as UnknownVal.
95 // Now assume we are casting from pointer to pointer. Other cases should
96 // already be handled.
97 QualType PointeeTy
= CastToTy
->getPointeeType();
98 QualType CanonPointeeTy
= Ctx
.getCanonicalType(PointeeTy
);
99 CanonPointeeTy
= CanonPointeeTy
.getLocalUnqualifiedType();
101 // Handle casts to void*. We just pass the region through.
102 if (CanonPointeeTy
== Ctx
.VoidTy
)
105 const auto IsSameRegionType
= [&Ctx
](const MemRegion
*R
, QualType OtherTy
) {
106 if (const auto *TR
= dyn_cast
<TypedValueRegion
>(R
)) {
107 QualType ObjTy
= Ctx
.getCanonicalType(TR
->getValueType());
108 if (OtherTy
== ObjTy
.getLocalUnqualifiedType())
114 // Handle casts from compatible types.
115 if (R
->isBoundable() && IsSameRegionType(R
, CanonPointeeTy
))
118 // Process region cast according to the kind of the region being cast.
119 switch (R
->getKind()) {
120 case MemRegion::CXXThisRegionKind
:
121 case MemRegion::CodeSpaceRegionKind
:
122 case MemRegion::StackLocalsSpaceRegionKind
:
123 case MemRegion::StackArgumentsSpaceRegionKind
:
124 case MemRegion::HeapSpaceRegionKind
:
125 case MemRegion::UnknownSpaceRegionKind
:
126 case MemRegion::StaticGlobalSpaceRegionKind
:
127 case MemRegion::GlobalInternalSpaceRegionKind
:
128 case MemRegion::GlobalSystemSpaceRegionKind
:
129 case MemRegion::GlobalImmutableSpaceRegionKind
: {
130 llvm_unreachable("Invalid region cast");
133 case MemRegion::FunctionCodeRegionKind
:
134 case MemRegion::BlockCodeRegionKind
:
135 case MemRegion::BlockDataRegionKind
:
136 case MemRegion::StringRegionKind
:
137 // FIXME: Need to handle arbitrary downcasts.
138 case MemRegion::SymbolicRegionKind
:
139 case MemRegion::AllocaRegionKind
:
140 case MemRegion::CompoundLiteralRegionKind
:
141 case MemRegion::FieldRegionKind
:
142 case MemRegion::ObjCIvarRegionKind
:
143 case MemRegion::ObjCStringRegionKind
:
144 case MemRegion::NonParamVarRegionKind
:
145 case MemRegion::ParamVarRegionKind
:
146 case MemRegion::CXXTempObjectRegionKind
:
147 case MemRegion::CXXLifetimeExtendedObjectRegionKind
:
148 case MemRegion::CXXBaseObjectRegionKind
:
149 case MemRegion::CXXDerivedObjectRegionKind
:
150 return MakeElementRegion(cast
<SubRegion
>(R
), PointeeTy
);
152 case MemRegion::ElementRegionKind
: {
153 // If we are casting from an ElementRegion to another type, the
154 // algorithm is as follows:
156 // (1) Compute the "raw offset" of the ElementRegion from the
157 // base region. This is done by calling 'getAsRawOffset()'.
159 // (2a) If we get a 'RegionRawOffset' after calling
160 // 'getAsRawOffset()', determine if the absolute offset
161 // can be exactly divided into chunks of the size of the
162 // casted-pointee type. If so, create a new ElementRegion with
163 // the pointee-cast type as the new ElementType and the index
164 // being the offset divded by the chunk size. If not, create
165 // a new ElementRegion at offset 0 off the raw offset region.
167 // (2b) If we don't a get a 'RegionRawOffset' after calling
168 // 'getAsRawOffset()', it means that we are at offset 0.
170 // FIXME: Handle symbolic raw offsets.
172 const ElementRegion
*elementR
= cast
<ElementRegion
>(R
);
173 const RegionRawOffset
&rawOff
= elementR
->getAsArrayOffset();
174 const MemRegion
*baseR
= rawOff
.getRegion();
176 // If we cannot compute a raw offset, throw up our hands and return
177 // a NULL MemRegion*.
181 CharUnits off
= rawOff
.getOffset();
184 // Edge case: we are at 0 bytes off the beginning of baseR. We check to
185 // see if the type we are casting to is the same as the type of the base
186 // region. If so, just return the base region.
187 if (IsSameRegionType(baseR
, CanonPointeeTy
))
189 // Otherwise, create a new ElementRegion at offset 0.
190 return MakeElementRegion(cast
<SubRegion
>(baseR
), PointeeTy
);
193 // We have a non-zero offset from the base region. We want to determine
194 // if the offset can be evenly divided by sizeof(PointeeTy). If so,
195 // we create an ElementRegion whose index is that value. Otherwise, we
196 // create two ElementRegions, one that reflects a raw offset and the other
197 // that reflects the cast.
199 // Compute the index for the new ElementRegion.
200 int64_t newIndex
= 0;
201 const MemRegion
*newSuperR
= nullptr;
203 // We can only compute sizeof(PointeeTy) if it is a complete type.
204 if (!PointeeTy
->isIncompleteType()) {
205 // Compute the size in **bytes**.
206 CharUnits pointeeTySize
= Ctx
.getTypeSizeInChars(PointeeTy
);
207 if (!pointeeTySize
.isZero()) {
208 // Is the offset a multiple of the size? If so, we can layer the
209 // ElementRegion (with elementType == PointeeTy) directly on top of
211 if (off
% pointeeTySize
== 0) {
212 newIndex
= off
/ pointeeTySize
;
219 // Create an intermediate ElementRegion to represent the raw byte.
220 // This will be the super region of the final ElementRegion.
221 newSuperR
= MakeElementRegion(cast
<SubRegion
>(baseR
), Ctx
.CharTy
,
225 return MakeElementRegion(cast
<SubRegion
>(newSuperR
), PointeeTy
, newIndex
);
229 llvm_unreachable("unreachable");
232 static bool regionMatchesCXXRecordType(SVal V
, QualType Ty
) {
233 const MemRegion
*MR
= V
.getAsRegion();
237 const auto *TVR
= dyn_cast
<TypedValueRegion
>(MR
);
241 const CXXRecordDecl
*RD
= TVR
->getValueType()->getAsCXXRecordDecl();
245 const CXXRecordDecl
*Expected
= Ty
->getPointeeCXXRecordDecl();
247 Expected
= Ty
->getAsCXXRecordDecl();
249 return Expected
->getCanonicalDecl() == RD
->getCanonicalDecl();
252 SVal
StoreManager::evalDerivedToBase(SVal Derived
, const CastExpr
*Cast
) {
253 // Early return to avoid doing the wrong thing in the face of
255 if (!regionMatchesCXXRecordType(Derived
, Cast
->getSubExpr()->getType()))
258 // Walk through the cast path to create nested CXXBaseRegions.
259 SVal Result
= Derived
;
260 for (const CXXBaseSpecifier
*Base
: Cast
->path()) {
261 Result
= evalDerivedToBase(Result
, Base
->getType(), Base
->isVirtual());
266 SVal
StoreManager::evalDerivedToBase(SVal Derived
, const CXXBasePath
&Path
) {
267 // Walk through the path to create nested CXXBaseRegions.
268 SVal Result
= Derived
;
269 for (const auto &I
: Path
)
270 Result
= evalDerivedToBase(Result
, I
.Base
->getType(),
271 I
.Base
->isVirtual());
275 SVal
StoreManager::evalDerivedToBase(SVal Derived
, QualType BaseType
,
277 const MemRegion
*DerivedReg
= Derived
.getAsRegion();
281 const CXXRecordDecl
*BaseDecl
= BaseType
->getPointeeCXXRecordDecl();
283 BaseDecl
= BaseType
->getAsCXXRecordDecl();
284 assert(BaseDecl
&& "not a C++ object?");
286 if (const auto *AlreadyDerivedReg
=
287 dyn_cast
<CXXDerivedObjectRegion
>(DerivedReg
)) {
289 dyn_cast
<SymbolicRegion
>(AlreadyDerivedReg
->getSuperRegion()))
290 if (SR
->getSymbol()->getType()->getPointeeCXXRecordDecl() == BaseDecl
)
291 return loc::MemRegionVal(SR
);
293 DerivedReg
= AlreadyDerivedReg
->getSuperRegion();
296 const MemRegion
*BaseReg
= MRMgr
.getCXXBaseObjectRegion(
297 BaseDecl
, cast
<SubRegion
>(DerivedReg
), IsVirtual
);
299 return loc::MemRegionVal(BaseReg
);
302 /// Returns the static type of the given region, if it represents a C++ class
305 /// This handles both fully-typed regions, where the dynamic type is known, and
306 /// symbolic regions, where the dynamic type is merely bounded (and even then,
307 /// only ostensibly!), but does not take advantage of any dynamic type info.
308 static const CXXRecordDecl
*getCXXRecordType(const MemRegion
*MR
) {
309 if (const auto *TVR
= dyn_cast
<TypedValueRegion
>(MR
))
310 return TVR
->getValueType()->getAsCXXRecordDecl();
311 if (const auto *SR
= dyn_cast
<SymbolicRegion
>(MR
))
312 return SR
->getSymbol()->getType()->getPointeeCXXRecordDecl();
316 std::optional
<SVal
> StoreManager::evalBaseToDerived(SVal Base
,
317 QualType TargetType
) {
318 const MemRegion
*MR
= Base
.getAsRegion();
322 // Assume the derived class is a pointer or a reference to a CXX record.
323 TargetType
= TargetType
->getPointeeType();
324 assert(!TargetType
.isNull());
325 const CXXRecordDecl
*TargetClass
= TargetType
->getAsCXXRecordDecl();
326 if (!TargetClass
&& !TargetType
->isVoidType())
329 // Drill down the CXXBaseObject chains, which represent upcasts (casts from
331 while (const CXXRecordDecl
*MRClass
= getCXXRecordType(MR
)) {
332 // If found the derived class, the cast succeeds.
333 if (MRClass
== TargetClass
)
334 return loc::MemRegionVal(MR
);
336 // We skip over incomplete types. They must be the result of an earlier
337 // reinterpret_cast, as one can only dynamic_cast between types in the same
339 if (!TargetType
->isVoidType() && MRClass
->hasDefinition()) {
340 // Static upcasts are marked as DerivedToBase casts by Sema, so this will
341 // only happen when multiple or virtual inheritance is involved.
342 CXXBasePaths
Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/true,
343 /*DetectVirtual=*/false);
344 if (MRClass
->isDerivedFrom(TargetClass
, Paths
))
345 return evalDerivedToBase(loc::MemRegionVal(MR
), Paths
.front());
348 if (const auto *BaseR
= dyn_cast
<CXXBaseObjectRegion
>(MR
)) {
349 // Drill down the chain to get the derived classes.
350 MR
= BaseR
->getSuperRegion();
354 // If this is a cast to void*, return the region.
355 if (TargetType
->isVoidType())
356 return loc::MemRegionVal(MR
);
358 // Strange use of reinterpret_cast can give us paths we don't reason
359 // about well, by putting in ElementRegions where we'd expect
360 // CXXBaseObjectRegions. If it's a valid reinterpret_cast (i.e. if the
361 // derived class has a zero offset from the base class), then it's safe
362 // to strip the cast; if it's invalid, -Wreinterpret-base-class should
363 // catch it. In the interest of performance, the analyzer will silently
364 // do the wrong thing in the invalid case (because offsets for subregions
366 const MemRegion
*Uncasted
= MR
->StripCasts(/*IncludeBaseCasts=*/false);
367 if (Uncasted
== MR
) {
368 // We reached the bottom of the hierarchy and did not find the derived
369 // class. We must be casting the base to derived, so the cast should
377 // If we're casting a symbolic base pointer to a derived class, use
378 // CXXDerivedObjectRegion to represent the cast. If it's a pointer to an
379 // unrelated type, it must be a weird reinterpret_cast and we have to
380 // be fine with ElementRegion. TODO: Should we instead make
381 // Derived{TargetClass, Element{SourceClass, SR}}?
382 if (const auto *SR
= dyn_cast
<SymbolicRegion
>(MR
)) {
383 QualType T
= SR
->getSymbol()->getType();
384 const CXXRecordDecl
*SourceClass
= T
->getPointeeCXXRecordDecl();
385 if (TargetClass
&& SourceClass
&& TargetClass
->isDerivedFrom(SourceClass
))
386 return loc::MemRegionVal(
387 MRMgr
.getCXXDerivedObjectRegion(TargetClass
, SR
));
388 return loc::MemRegionVal(GetElementZeroRegion(SR
, TargetType
));
391 // We failed if the region we ended up with has perfect type info.
392 if (isa
<TypedValueRegion
>(MR
))
398 SVal
StoreManager::getLValueFieldOrIvar(const Decl
*D
, SVal Base
) {
399 if (Base
.isUnknownOrUndef())
402 Loc BaseL
= Base
.castAs
<Loc
>();
403 const SubRegion
* BaseR
= nullptr;
405 switch (BaseL
.getSubKind()) {
406 case loc::MemRegionValKind
:
407 BaseR
= cast
<SubRegion
>(BaseL
.castAs
<loc::MemRegionVal
>().getRegion());
410 case loc::GotoLabelKind
:
411 // These are anormal cases. Flag an undefined value.
412 return UndefinedVal();
414 case loc::ConcreteIntKind
:
415 // While these seem funny, this can happen through casts.
416 // FIXME: What we should return is the field offset, not base. For example,
417 // add the field offset to the integer value. That way things
418 // like this work properly: &(((struct foo *) 0xa)->f)
419 // However, that's not easy to fix without reducing our abilities
420 // to catch null pointer dereference. Eg., ((struct foo *)0x0)->f = 7
421 // is a null dereference even though we're dereferencing offset of f
422 // rather than null. Coming up with an approach that computes offsets
423 // over null pointers properly while still being able to catch null
424 // dereferences might be worth it.
428 llvm_unreachable("Unhandled Base.");
431 // NOTE: We must have this check first because ObjCIvarDecl is a subclass
433 if (const auto *ID
= dyn_cast
<ObjCIvarDecl
>(D
))
434 return loc::MemRegionVal(MRMgr
.getObjCIvarRegion(ID
, BaseR
));
436 return loc::MemRegionVal(MRMgr
.getFieldRegion(cast
<FieldDecl
>(D
), BaseR
));
439 SVal
StoreManager::getLValueIvar(const ObjCIvarDecl
*decl
, SVal base
) {
440 return getLValueFieldOrIvar(decl
, base
);
443 SVal
StoreManager::getLValueElement(QualType elementType
, NonLoc Offset
,
446 // Special case, if index is 0, return the same type as if
447 // this was not an array dereference.
448 if (Offset
.isZeroConstant()) {
449 QualType BT
= Base
.getType(this->Ctx
);
450 if (!BT
.isNull() && !elementType
.isNull()) {
451 QualType PointeeTy
= BT
->getPointeeType();
452 if (!PointeeTy
.isNull() &&
453 PointeeTy
.getCanonicalType() == elementType
.getCanonicalType())
458 // If the base is an unknown or undefined value, just return it back.
459 // FIXME: For absolute pointer addresses, we just return that value back as
460 // well, although in reality we should return the offset added to that
461 // value. See also the similar FIXME in getLValueFieldOrIvar().
462 if (Base
.isUnknownOrUndef() || isa
<loc::ConcreteInt
>(Base
))
465 if (isa
<loc::GotoLabel
>(Base
))
468 const SubRegion
*BaseRegion
=
469 Base
.castAs
<loc::MemRegionVal
>().getRegionAs
<SubRegion
>();
471 // Pointer of any type can be cast and used as array base.
472 const auto *ElemR
= dyn_cast
<ElementRegion
>(BaseRegion
);
474 // Convert the offset to the appropriate size and signedness.
475 Offset
= svalBuilder
.convertToArrayIndex(Offset
).castAs
<NonLoc
>();
478 // If the base region is not an ElementRegion, create one.
479 // This can happen in the following example:
481 // char *p = __builtin_alloc(10);
484 // Observe that 'p' binds to an AllocaRegion.
485 return loc::MemRegionVal(MRMgr
.getElementRegion(elementType
, Offset
,
489 SVal BaseIdx
= ElemR
->getIndex();
491 if (!isa
<nonloc::ConcreteInt
>(BaseIdx
))
494 const llvm::APSInt
&BaseIdxI
=
495 BaseIdx
.castAs
<nonloc::ConcreteInt
>().getValue();
497 // Only allow non-integer offsets if the base region has no offset itself.
498 // FIXME: This is a somewhat arbitrary restriction. We should be using
499 // SValBuilder here to add the two offsets without checking their types.
500 if (!isa
<nonloc::ConcreteInt
>(Offset
)) {
501 if (isa
<ElementRegion
>(BaseRegion
->StripCasts()))
504 return loc::MemRegionVal(MRMgr
.getElementRegion(
505 elementType
, Offset
, cast
<SubRegion
>(ElemR
->getSuperRegion()), Ctx
));
508 const llvm::APSInt
& OffI
= Offset
.castAs
<nonloc::ConcreteInt
>().getValue();
509 assert(BaseIdxI
.isSigned());
511 // Compute the new index.
512 nonloc::ConcreteInt
NewIdx(svalBuilder
.getBasicValueFactory().getValue(BaseIdxI
+
515 // Construct the new ElementRegion.
516 const SubRegion
*ArrayR
= cast
<SubRegion
>(ElemR
->getSuperRegion());
517 return loc::MemRegionVal(MRMgr
.getElementRegion(elementType
, NewIdx
, ArrayR
,
521 StoreManager::BindingsHandler::~BindingsHandler() = default;
523 bool StoreManager::FindUniqueBinding::HandleBinding(StoreManager
& SMgr
,
527 SymbolRef SymV
= val
.getAsLocSymbol();
528 if (!SymV
|| SymV
!= Sym
)