[AArch64][SME2] Add multi-vector saturating doubling multiply high intrinsics
[llvm-project.git] / bolt / README.md
blobeed46fff848f120b0a09deef228e195d4dc64d38
1 # BOLT
3 BOLT is a post-link optimizer developed to speed up large applications.
4 It achieves the improvements by optimizing application's code layout based on
5 execution profile gathered by sampling profiler, such as Linux `perf` tool.
6 An overview of the ideas implemented in BOLT along with a discussion of its
7 potential and current results is available in
8 [CGO'19 paper](https://research.fb.com/publications/bolt-a-practical-binary-optimizer-for-data-centers-and-beyond/).
10 ## Input Binary Requirements
12 BOLT operates on X86-64 and AArch64 ELF binaries. At the minimum, the binaries
13 should have an unstripped symbol table, and, to get maximum performance gains,
14 they should be linked with relocations (`--emit-relocs` or `-q` linker flag).
16 BOLT disassembles functions and reconstructs the control flow graph (CFG)
17 before it runs optimizations. Since this is a nontrivial task,
18 especially when indirect branches are present, we rely on certain heuristics
19 to accomplish it. These heuristics have been tested on a code generated with
20 Clang and GCC compilers. The main requirement for C/C++ code is not to rely
21 on code layout properties, such as function pointer deltas.
22 Assembly code can be processed too. Requirements for it include a clear
23 separation of code and data, with data objects being placed into data
24 sections/segments. If indirect jumps are used for intra-function control
25 transfer (e.g., jump tables), the code patterns should be matching those
26 generated by Clang/GCC.
28 NOTE: BOLT is currently incompatible with the `-freorder-blocks-and-partition`
29 compiler option. Since GCC8 enables this option by default, you have to
30 explicitly disable it by adding `-fno-reorder-blocks-and-partition` flag if
31 you are compiling with GCC8 or above.
33 NOTE2: DWARF v5 is the new debugging format generated by the latest LLVM and GCC
34 compilers. It offers several benefits over the previous DWARF v4. Currently, the
35 support for v5 is a work in progress for BOLT. While you will be able to
36 optimize binaries produced by the latest compilers, until the support is
37 complete, you will not be able to update the debug info with
38 `-update-debug-sections`. To temporarily work around the issue, we recommend
39 compiling binaries with `-gdwarf-4` option that forces DWARF v4 output.
41 PIE and .so support has been added recently. Please report bugs if you
42 encounter any issues.
44 ## Installation
46 ### Docker Image
48 You can build and use the docker image containing BOLT using our [docker file](utils/docker/Dockerfile).
49 Alternatively, you can build BOLT manually using the steps below.
51 ### Manual Build
53 BOLT heavily uses LLVM libraries, and by design, it is built as one of LLVM
54 tools. The build process is not much different from a regular LLVM build.
55 The following instructions are assuming that you are running under Linux.
57 Start with cloning LLVM repo:
59 ```
60 > git clone https://github.com/llvm/llvm-project.git
61 > mkdir build
62 > cd build
63 > cmake -G Ninja ../llvm-project/llvm -DLLVM_TARGETS_TO_BUILD="X86;AArch64" -DCMAKE_BUILD_TYPE=Release -DLLVM_ENABLE_ASSERTIONS=ON -DLLVM_ENABLE_PROJECTS="bolt"
64 > ninja bolt
65 ```
67 `llvm-bolt` will be available under `bin/`. Add this directory to your path to
68 ensure the rest of the commands in this tutorial work.
70 ## Optimizing BOLT's Performance
72 BOLT runs many internal passes in parallel. If you foresee heavy usage of
73 BOLT, you can improve the processing time by linking against one of memory
74 allocation libraries with good support for concurrency. E.g. to use jemalloc:
76 ```
77 > sudo yum install jemalloc-devel
78 > LD_PRELOAD=/usr/lib64/libjemalloc.so llvm-bolt ....
79 ```
80 Or if you rather use tcmalloc:
81 ```
82 > sudo yum install gperftools-devel
83 > LD_PRELOAD=/usr/lib64/libtcmalloc_minimal.so llvm-bolt ....
84 ```
86 ## Usage
88 For a complete practical guide of using BOLT see [Optimizing Clang with BOLT](docs/OptimizingClang.md).
90 ### Step 0
92 In order to allow BOLT to re-arrange functions (in addition to re-arranging
93 code within functions) in your program, it needs a little help from the linker.
94 Add `--emit-relocs` to the final link step of your application. You can verify
95 the presence of relocations by checking for `.rela.text` section in the binary.
96 BOLT will also report if it detects relocations while processing the binary.
98 ### Step 1: Collect Profile
100 This step is different for different kinds of executables. If you can invoke
101 your program to run on a representative input from a command line, then check
102 **For Applications** section below. If your program typically runs as a
103 server/service, then skip to **For Services** section.
105 The version of `perf` command used for the following steps has to support
106 `-F brstack` option. We recommend using `perf` version 4.5 or later.
108 #### For Applications
110 This assumes you can run your program from a command line with a typical input.
111 In this case, simply prepend the command line invocation with `perf`:
113 $ perf record -e cycles:u -j any,u -o perf.data -- <executable> <args> ...
116 #### For Services
118 Once you get the service deployed and warmed-up, it is time to collect perf
119 data with LBR (branch information). The exact perf command to use will depend
120 on the service. E.g., to collect the data for all processes running on the
121 server for the next 3 minutes use:
123 $ perf record -e cycles:u -j any,u -a -o perf.data -- sleep 180
126 Depending on the application, you may need more samples to be included with
127 your profile. It's hard to tell upfront what would be a sweet spot for your
128 application. We recommend the profile to cover 1B instructions as reported
129 by BOLT `-dyno-stats` option. If you need to increase the number of samples
130 in the profile, you can either run the `sleep` command for longer and use
131 `-F<N>` option with `perf` to increase sampling frequency.
133 Note that for profile collection we recommend using cycle events and not
134 `BR_INST_RETIRED.*`. Empirically we found it to produce better results.
136 If the collection of a profile with branches is not available, e.g., when you run on
137 a VM or on hardware that does not support it, then you can use only sample
138 events, such as cycles. In this case, the quality of the profile information
139 would not be as good, and performance gains with BOLT are expected to be lower.
141 #### With instrumentation
143 If perf record is not available to you, you may collect profile by first
144 instrumenting the binary with BOLT and then running it.
146 llvm-bolt <executable> -instrument -o <instrumented-executable>
149 After you run instrumented-executable with the desired workload, its BOLT
150 profile should be ready for you in `/tmp/prof.fdata` and you can skip
151 **Step 2**.
153 Run BOLT with the `-help` option and check the category "BOLT instrumentation
154 options" for a quick reference on instrumentation knobs.
156 ### Step 2: Convert Profile to BOLT Format
158 NOTE: you can skip this step and feed `perf.data` directly to BOLT using
159 experimental `-p perf.data` option.
161 For this step, you will need `perf.data` file collected from the previous step and
162 a copy of the binary that was running. The binary has to be either
163 unstripped, or should have a symbol table intact (i.e., running `strip -g` is
164 okay).
166 Make sure `perf` is in your `PATH`, and execute `perf2bolt`:
168 $ perf2bolt -p perf.data -o perf.fdata <executable>
171 This command will aggregate branch data from `perf.data` and store it in a
172 format that is both more compact and more resilient to binary modifications.
174 If the profile was collected without LBRs, you will need to add `-nl` flag to
175 the command line above.
177 ### Step 3: Optimize with BOLT
179 Once you have `perf.fdata` ready, you can use it for optimizations with
180 BOLT. Assuming your environment is setup to include the right path, execute
181 `llvm-bolt`:
183 $ llvm-bolt <executable> -o <executable>.bolt -data=perf.fdata -reorder-blocks=ext-tsp -reorder-functions=hfsort -split-functions -split-all-cold -split-eh -dyno-stats
186 If you do need an updated debug info, then add `-update-debug-sections` option
187 to the command above. The processing time will be slightly longer.
189 For a full list of options see `-help`/`-help-hidden` output.
191 The input binary for this step does not have to 100% match the binary used for
192 profile collection in **Step 1**. This could happen when you are doing active
193 development, and the source code constantly changes, yet you want to benefit
194 from profile-guided optimizations. However, since the binary is not precisely the
195 same, the profile information could become invalid or stale, and BOLT will
196 report the number of functions with a stale profile. The higher the
197 number, the less performance improvement should be expected. Thus, it is
198 crucial to update `.fdata` for release branches.
200 ## Multiple Profiles
202 Suppose your application can run in different modes, and you can generate
203 multiple profiles for each one of them. To generate a single binary that can
204 benefit all modes (assuming the profiles don't contradict each other) you can
205 use `merge-fdata` tool:
207 $ merge-fdata *.fdata > combined.fdata
209 Use `combined.fdata` for **Step 3** above to generate a universally optimized
210 binary.
212 ## License
214 BOLT is licensed under the [Apache License v2.0 with LLVM Exceptions](./LICENSE.TXT).