[AArch64][SME2] Add multi-vector saturating doubling multiply high intrinsics
[llvm-project.git] / lld / ELF / Relocations.cpp
blob1368d9053125003e180b28d942d72b096e449092
1 //===- Relocations.cpp ----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains platform-independent functions to process relocations.
10 // I'll describe the overview of this file here.
12 // Simple relocations are easy to handle for the linker. For example,
13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations
14 // with the relative offsets to the target symbols. It would just be
15 // reading records from relocation sections and applying them to output.
17 // But not all relocations are that easy to handle. For example, for
18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for
19 // symbols if they don't exist, and fix up locations with GOT entry
20 // offsets from the beginning of GOT section. So there is more than
21 // fixing addresses in relocation processing.
23 // ELF defines a large number of complex relocations.
25 // The functions in this file analyze relocations and do whatever needs
26 // to be done. It includes, but not limited to, the following.
28 // - create GOT/PLT entries
29 // - create new relocations in .dynsym to let the dynamic linker resolve
30 // them at runtime (since ELF supports dynamic linking, not all
31 // relocations can be resolved at link-time)
32 // - create COPY relocs and reserve space in .bss
33 // - replace expensive relocs (in terms of runtime cost) with cheap ones
34 // - error out infeasible combinations such as PIC and non-relative relocs
36 // Note that the functions in this file don't actually apply relocations
37 // because it doesn't know about the output file nor the output file buffer.
38 // It instead stores Relocation objects to InputSection's Relocations
39 // vector to let it apply later in InputSection::writeTo.
41 //===----------------------------------------------------------------------===//
43 #include "Relocations.h"
44 #include "Config.h"
45 #include "InputFiles.h"
46 #include "LinkerScript.h"
47 #include "OutputSections.h"
48 #include "SymbolTable.h"
49 #include "Symbols.h"
50 #include "SyntheticSections.h"
51 #include "Target.h"
52 #include "Thunks.h"
53 #include "lld/Common/ErrorHandler.h"
54 #include "lld/Common/Memory.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/Demangle/Demangle.h"
57 #include "llvm/Support/Endian.h"
58 #include <algorithm>
60 using namespace llvm;
61 using namespace llvm::ELF;
62 using namespace llvm::object;
63 using namespace llvm::support::endian;
64 using namespace lld;
65 using namespace lld::elf;
67 static std::optional<std::string> getLinkerScriptLocation(const Symbol &sym) {
68 for (SectionCommand *cmd : script->sectionCommands)
69 if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
70 if (assign->sym == &sym)
71 return assign->location;
72 return std::nullopt;
75 static std::string getDefinedLocation(const Symbol &sym) {
76 const char msg[] = "\n>>> defined in ";
77 if (sym.file)
78 return msg + toString(sym.file);
79 if (std::optional<std::string> loc = getLinkerScriptLocation(sym))
80 return msg + *loc;
81 return "";
84 // Construct a message in the following format.
86 // >>> defined in /home/alice/src/foo.o
87 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
88 // >>> /home/alice/src/bar.o:(.text+0x1)
89 static std::string getLocation(InputSectionBase &s, const Symbol &sym,
90 uint64_t off) {
91 std::string msg = getDefinedLocation(sym) + "\n>>> referenced by ";
92 std::string src = s.getSrcMsg(sym, off);
93 if (!src.empty())
94 msg += src + "\n>>> ";
95 return msg + s.getObjMsg(off);
98 void elf::reportRangeError(uint8_t *loc, const Relocation &rel, const Twine &v,
99 int64_t min, uint64_t max) {
100 ErrorPlace errPlace = getErrorPlace(loc);
101 std::string hint;
102 if (rel.sym && !rel.sym->isSection())
103 hint = "; references " + lld::toString(*rel.sym);
104 if (!errPlace.srcLoc.empty())
105 hint += "\n>>> referenced by " + errPlace.srcLoc;
106 if (rel.sym && !rel.sym->isSection())
107 hint += getDefinedLocation(*rel.sym);
109 if (errPlace.isec && errPlace.isec->name.startswith(".debug"))
110 hint += "; consider recompiling with -fdebug-types-section to reduce size "
111 "of debug sections";
113 errorOrWarn(errPlace.loc + "relocation " + lld::toString(rel.type) +
114 " out of range: " + v.str() + " is not in [" + Twine(min).str() +
115 ", " + Twine(max).str() + "]" + hint);
118 void elf::reportRangeError(uint8_t *loc, int64_t v, int n, const Symbol &sym,
119 const Twine &msg) {
120 ErrorPlace errPlace = getErrorPlace(loc);
121 std::string hint;
122 if (!sym.getName().empty())
123 hint = "; references " + lld::toString(sym) + getDefinedLocation(sym);
124 errorOrWarn(errPlace.loc + msg + " is out of range: " + Twine(v) +
125 " is not in [" + Twine(llvm::minIntN(n)) + ", " +
126 Twine(llvm::maxIntN(n)) + "]" + hint);
129 // Build a bitmask with one bit set for each 64 subset of RelExpr.
130 static constexpr uint64_t buildMask() { return 0; }
132 template <typename... Tails>
133 static constexpr uint64_t buildMask(int head, Tails... tails) {
134 return (0 <= head && head < 64 ? uint64_t(1) << head : 0) |
135 buildMask(tails...);
138 // Return true if `Expr` is one of `Exprs`.
139 // There are more than 64 but less than 128 RelExprs, so we divide the set of
140 // exprs into [0, 64) and [64, 128) and represent each range as a constant
141 // 64-bit mask. Then we decide which mask to test depending on the value of
142 // expr and use a simple shift and bitwise-and to test for membership.
143 template <RelExpr... Exprs> static bool oneof(RelExpr expr) {
144 assert(0 <= expr && (int)expr < 128 &&
145 "RelExpr is too large for 128-bit mask!");
147 if (expr >= 64)
148 return (uint64_t(1) << (expr - 64)) & buildMask((Exprs - 64)...);
149 return (uint64_t(1) << expr) & buildMask(Exprs...);
152 static RelType getMipsPairType(RelType type, bool isLocal) {
153 switch (type) {
154 case R_MIPS_HI16:
155 return R_MIPS_LO16;
156 case R_MIPS_GOT16:
157 // In case of global symbol, the R_MIPS_GOT16 relocation does not
158 // have a pair. Each global symbol has a unique entry in the GOT
159 // and a corresponding instruction with help of the R_MIPS_GOT16
160 // relocation loads an address of the symbol. In case of local
161 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
162 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
163 // relocations handle low 16 bits of the address. That allows
164 // to allocate only one GOT entry for every 64 KBytes of local data.
165 return isLocal ? R_MIPS_LO16 : R_MIPS_NONE;
166 case R_MICROMIPS_GOT16:
167 return isLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE;
168 case R_MIPS_PCHI16:
169 return R_MIPS_PCLO16;
170 case R_MICROMIPS_HI16:
171 return R_MICROMIPS_LO16;
172 default:
173 return R_MIPS_NONE;
177 // True if non-preemptable symbol always has the same value regardless of where
178 // the DSO is loaded.
179 static bool isAbsolute(const Symbol &sym) {
180 if (sym.isUndefWeak())
181 return true;
182 if (const auto *dr = dyn_cast<Defined>(&sym))
183 return dr->section == nullptr; // Absolute symbol.
184 return false;
187 static bool isAbsoluteValue(const Symbol &sym) {
188 return isAbsolute(sym) || sym.isTls();
191 // Returns true if Expr refers a PLT entry.
192 static bool needsPlt(RelExpr expr) {
193 return oneof<R_PLT, R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT>(
194 expr);
197 // Returns true if Expr refers a GOT entry. Note that this function
198 // returns false for TLS variables even though they need GOT, because
199 // TLS variables uses GOT differently than the regular variables.
200 static bool needsGot(RelExpr expr) {
201 return oneof<R_GOT, R_GOT_OFF, R_MIPS_GOT_LOCAL_PAGE, R_MIPS_GOT_OFF,
202 R_MIPS_GOT_OFF32, R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTPLT,
203 R_AARCH64_GOT_PAGE>(expr);
206 // True if this expression is of the form Sym - X, where X is a position in the
207 // file (PC, or GOT for example).
208 static bool isRelExpr(RelExpr expr) {
209 return oneof<R_PC, R_GOTREL, R_GOTPLTREL, R_MIPS_GOTREL, R_PPC64_CALL,
210 R_PPC64_RELAX_TOC, R_AARCH64_PAGE_PC, R_RELAX_GOT_PC,
211 R_RISCV_PC_INDIRECT, R_PPC64_RELAX_GOT_PC>(expr);
215 static RelExpr toPlt(RelExpr expr) {
216 switch (expr) {
217 case R_PPC64_CALL:
218 return R_PPC64_CALL_PLT;
219 case R_PC:
220 return R_PLT_PC;
221 case R_ABS:
222 return R_PLT;
223 default:
224 return expr;
228 static RelExpr fromPlt(RelExpr expr) {
229 // We decided not to use a plt. Optimize a reference to the plt to a
230 // reference to the symbol itself.
231 switch (expr) {
232 case R_PLT_PC:
233 case R_PPC32_PLTREL:
234 return R_PC;
235 case R_PPC64_CALL_PLT:
236 return R_PPC64_CALL;
237 case R_PLT:
238 return R_ABS;
239 case R_PLT_GOTPLT:
240 return R_GOTPLTREL;
241 default:
242 return expr;
246 // Returns true if a given shared symbol is in a read-only segment in a DSO.
247 template <class ELFT> static bool isReadOnly(SharedSymbol &ss) {
248 using Elf_Phdr = typename ELFT::Phdr;
250 // Determine if the symbol is read-only by scanning the DSO's program headers.
251 const auto &file = cast<SharedFile>(*ss.file);
252 for (const Elf_Phdr &phdr :
253 check(file.template getObj<ELFT>().program_headers()))
254 if ((phdr.p_type == ELF::PT_LOAD || phdr.p_type == ELF::PT_GNU_RELRO) &&
255 !(phdr.p_flags & ELF::PF_W) && ss.value >= phdr.p_vaddr &&
256 ss.value < phdr.p_vaddr + phdr.p_memsz)
257 return true;
258 return false;
261 // Returns symbols at the same offset as a given symbol, including SS itself.
263 // If two or more symbols are at the same offset, and at least one of
264 // them are copied by a copy relocation, all of them need to be copied.
265 // Otherwise, they would refer to different places at runtime.
266 template <class ELFT>
267 static SmallSet<SharedSymbol *, 4> getSymbolsAt(SharedSymbol &ss) {
268 using Elf_Sym = typename ELFT::Sym;
270 const auto &file = cast<SharedFile>(*ss.file);
272 SmallSet<SharedSymbol *, 4> ret;
273 for (const Elf_Sym &s : file.template getGlobalELFSyms<ELFT>()) {
274 if (s.st_shndx == SHN_UNDEF || s.st_shndx == SHN_ABS ||
275 s.getType() == STT_TLS || s.st_value != ss.value)
276 continue;
277 StringRef name = check(s.getName(file.getStringTable()));
278 Symbol *sym = symtab.find(name);
279 if (auto *alias = dyn_cast_or_null<SharedSymbol>(sym))
280 ret.insert(alias);
283 // The loop does not check SHT_GNU_verneed, so ret does not contain
284 // non-default version symbols. If ss has a non-default version, ret won't
285 // contain ss. Just add ss unconditionally. If a non-default version alias is
286 // separately copy relocated, it and ss will have different addresses.
287 // Fortunately this case is impractical and fails with GNU ld as well.
288 ret.insert(&ss);
289 return ret;
292 // When a symbol is copy relocated or we create a canonical plt entry, it is
293 // effectively a defined symbol. In the case of copy relocation the symbol is
294 // in .bss and in the case of a canonical plt entry it is in .plt. This function
295 // replaces the existing symbol with a Defined pointing to the appropriate
296 // location.
297 static void replaceWithDefined(Symbol &sym, SectionBase &sec, uint64_t value,
298 uint64_t size) {
299 Symbol old = sym;
300 Defined(sym.file, StringRef(), sym.binding, sym.stOther, sym.type, value,
301 size, &sec)
302 .overwrite(sym);
304 sym.verdefIndex = old.verdefIndex;
305 sym.exportDynamic = true;
306 sym.isUsedInRegularObj = true;
307 // A copy relocated alias may need a GOT entry.
308 sym.flags.store(old.flags.load(std::memory_order_relaxed) & NEEDS_GOT,
309 std::memory_order_relaxed);
312 // Reserve space in .bss or .bss.rel.ro for copy relocation.
314 // The copy relocation is pretty much a hack. If you use a copy relocation
315 // in your program, not only the symbol name but the symbol's size, RW/RO
316 // bit and alignment become part of the ABI. In addition to that, if the
317 // symbol has aliases, the aliases become part of the ABI. That's subtle,
318 // but if you violate that implicit ABI, that can cause very counter-
319 // intuitive consequences.
321 // So, what is the copy relocation? It's for linking non-position
322 // independent code to DSOs. In an ideal world, all references to data
323 // exported by DSOs should go indirectly through GOT. But if object files
324 // are compiled as non-PIC, all data references are direct. There is no
325 // way for the linker to transform the code to use GOT, as machine
326 // instructions are already set in stone in object files. This is where
327 // the copy relocation takes a role.
329 // A copy relocation instructs the dynamic linker to copy data from a DSO
330 // to a specified address (which is usually in .bss) at load-time. If the
331 // static linker (that's us) finds a direct data reference to a DSO
332 // symbol, it creates a copy relocation, so that the symbol can be
333 // resolved as if it were in .bss rather than in a DSO.
335 // As you can see in this function, we create a copy relocation for the
336 // dynamic linker, and the relocation contains not only symbol name but
337 // various other information about the symbol. So, such attributes become a
338 // part of the ABI.
340 // Note for application developers: I can give you a piece of advice if
341 // you are writing a shared library. You probably should export only
342 // functions from your library. You shouldn't export variables.
344 // As an example what can happen when you export variables without knowing
345 // the semantics of copy relocations, assume that you have an exported
346 // variable of type T. It is an ABI-breaking change to add new members at
347 // end of T even though doing that doesn't change the layout of the
348 // existing members. That's because the space for the new members are not
349 // reserved in .bss unless you recompile the main program. That means they
350 // are likely to overlap with other data that happens to be laid out next
351 // to the variable in .bss. This kind of issue is sometimes very hard to
352 // debug. What's a solution? Instead of exporting a variable V from a DSO,
353 // define an accessor getV().
354 template <class ELFT> static void addCopyRelSymbol(SharedSymbol &ss) {
355 // Copy relocation against zero-sized symbol doesn't make sense.
356 uint64_t symSize = ss.getSize();
357 if (symSize == 0 || ss.alignment == 0)
358 fatal("cannot create a copy relocation for symbol " + toString(ss));
360 // See if this symbol is in a read-only segment. If so, preserve the symbol's
361 // memory protection by reserving space in the .bss.rel.ro section.
362 bool isRO = isReadOnly<ELFT>(ss);
363 BssSection *sec =
364 make<BssSection>(isRO ? ".bss.rel.ro" : ".bss", symSize, ss.alignment);
365 OutputSection *osec = (isRO ? in.bssRelRo : in.bss)->getParent();
367 // At this point, sectionBases has been migrated to sections. Append sec to
368 // sections.
369 if (osec->commands.empty() ||
370 !isa<InputSectionDescription>(osec->commands.back()))
371 osec->commands.push_back(make<InputSectionDescription>(""));
372 auto *isd = cast<InputSectionDescription>(osec->commands.back());
373 isd->sections.push_back(sec);
374 osec->commitSection(sec);
376 // Look through the DSO's dynamic symbol table for aliases and create a
377 // dynamic symbol for each one. This causes the copy relocation to correctly
378 // interpose any aliases.
379 for (SharedSymbol *sym : getSymbolsAt<ELFT>(ss))
380 replaceWithDefined(*sym, *sec, 0, sym->size);
382 mainPart->relaDyn->addSymbolReloc(target->copyRel, *sec, 0, ss);
385 // .eh_frame sections are mergeable input sections, so their input
386 // offsets are not linearly mapped to output section. For each input
387 // offset, we need to find a section piece containing the offset and
388 // add the piece's base address to the input offset to compute the
389 // output offset. That isn't cheap.
391 // This class is to speed up the offset computation. When we process
392 // relocations, we access offsets in the monotonically increasing
393 // order. So we can optimize for that access pattern.
395 // For sections other than .eh_frame, this class doesn't do anything.
396 namespace {
397 class OffsetGetter {
398 public:
399 OffsetGetter() = default;
400 explicit OffsetGetter(InputSectionBase &sec) {
401 if (auto *eh = dyn_cast<EhInputSection>(&sec)) {
402 cies = eh->cies;
403 fdes = eh->fdes;
404 i = cies.begin();
405 j = fdes.begin();
409 // Translates offsets in input sections to offsets in output sections.
410 // Given offset must increase monotonically. We assume that Piece is
411 // sorted by inputOff.
412 uint64_t get(uint64_t off) {
413 if (cies.empty())
414 return off;
416 while (j != fdes.end() && j->inputOff <= off)
417 ++j;
418 auto it = j;
419 if (j == fdes.begin() || j[-1].inputOff + j[-1].size <= off) {
420 while (i != cies.end() && i->inputOff <= off)
421 ++i;
422 if (i == cies.begin() || i[-1].inputOff + i[-1].size <= off)
423 fatal(".eh_frame: relocation is not in any piece");
424 it = i;
427 // Offset -1 means that the piece is dead (i.e. garbage collected).
428 if (it[-1].outputOff == -1)
429 return -1;
430 return it[-1].outputOff + (off - it[-1].inputOff);
433 private:
434 ArrayRef<EhSectionPiece> cies, fdes;
435 ArrayRef<EhSectionPiece>::iterator i, j;
438 // This class encapsulates states needed to scan relocations for one
439 // InputSectionBase.
440 class RelocationScanner {
441 public:
442 template <class ELFT> void scanSection(InputSectionBase &s);
444 private:
445 InputSectionBase *sec;
446 OffsetGetter getter;
448 // End of relocations, used by Mips/PPC64.
449 const void *end = nullptr;
451 template <class RelTy> RelType getMipsN32RelType(RelTy *&rel) const;
452 template <class ELFT, class RelTy>
453 int64_t computeMipsAddend(const RelTy &rel, RelExpr expr, bool isLocal) const;
454 bool isStaticLinkTimeConstant(RelExpr e, RelType type, const Symbol &sym,
455 uint64_t relOff) const;
456 void processAux(RelExpr expr, RelType type, uint64_t offset, Symbol &sym,
457 int64_t addend) const;
458 template <class ELFT, class RelTy> void scanOne(RelTy *&i);
459 template <class ELFT, class RelTy> void scan(ArrayRef<RelTy> rels);
461 } // namespace
463 // MIPS has an odd notion of "paired" relocations to calculate addends.
464 // For example, if a relocation is of R_MIPS_HI16, there must be a
465 // R_MIPS_LO16 relocation after that, and an addend is calculated using
466 // the two relocations.
467 template <class ELFT, class RelTy>
468 int64_t RelocationScanner::computeMipsAddend(const RelTy &rel, RelExpr expr,
469 bool isLocal) const {
470 if (expr == R_MIPS_GOTREL && isLocal)
471 return sec->getFile<ELFT>()->mipsGp0;
473 // The ABI says that the paired relocation is used only for REL.
474 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
475 if (RelTy::IsRela)
476 return 0;
478 RelType type = rel.getType(config->isMips64EL);
479 uint32_t pairTy = getMipsPairType(type, isLocal);
480 if (pairTy == R_MIPS_NONE)
481 return 0;
483 const uint8_t *buf = sec->content().data();
484 uint32_t symIndex = rel.getSymbol(config->isMips64EL);
486 // To make things worse, paired relocations might not be contiguous in
487 // the relocation table, so we need to do linear search. *sigh*
488 for (const RelTy *ri = &rel; ri != static_cast<const RelTy *>(end); ++ri)
489 if (ri->getType(config->isMips64EL) == pairTy &&
490 ri->getSymbol(config->isMips64EL) == symIndex)
491 return target->getImplicitAddend(buf + ri->r_offset, pairTy);
493 warn("can't find matching " + toString(pairTy) + " relocation for " +
494 toString(type));
495 return 0;
498 // Custom error message if Sym is defined in a discarded section.
499 template <class ELFT>
500 static std::string maybeReportDiscarded(Undefined &sym) {
501 auto *file = dyn_cast_or_null<ObjFile<ELFT>>(sym.file);
502 if (!file || !sym.discardedSecIdx ||
503 file->getSections()[sym.discardedSecIdx] != &InputSection::discarded)
504 return "";
505 ArrayRef<typename ELFT::Shdr> objSections =
506 file->template getELFShdrs<ELFT>();
508 std::string msg;
509 if (sym.type == ELF::STT_SECTION) {
510 msg = "relocation refers to a discarded section: ";
511 msg += CHECK(
512 file->getObj().getSectionName(objSections[sym.discardedSecIdx]), file);
513 } else {
514 msg = "relocation refers to a symbol in a discarded section: " +
515 toString(sym);
517 msg += "\n>>> defined in " + toString(file);
519 Elf_Shdr_Impl<ELFT> elfSec = objSections[sym.discardedSecIdx - 1];
520 if (elfSec.sh_type != SHT_GROUP)
521 return msg;
523 // If the discarded section is a COMDAT.
524 StringRef signature = file->getShtGroupSignature(objSections, elfSec);
525 if (const InputFile *prevailing =
526 symtab.comdatGroups.lookup(CachedHashStringRef(signature))) {
527 msg += "\n>>> section group signature: " + signature.str() +
528 "\n>>> prevailing definition is in " + toString(prevailing);
529 if (sym.nonPrevailing) {
530 msg += "\n>>> or the symbol in the prevailing group had STB_WEAK "
531 "binding and the symbol in a non-prevailing group had STB_GLOBAL "
532 "binding. Mixing groups with STB_WEAK and STB_GLOBAL binding "
533 "signature is not supported";
536 return msg;
539 namespace {
540 // Undefined diagnostics are collected in a vector and emitted once all of
541 // them are known, so that some postprocessing on the list of undefined symbols
542 // can happen before lld emits diagnostics.
543 struct UndefinedDiag {
544 Undefined *sym;
545 struct Loc {
546 InputSectionBase *sec;
547 uint64_t offset;
549 std::vector<Loc> locs;
550 bool isWarning;
553 std::vector<UndefinedDiag> undefs;
554 std::mutex relocMutex;
557 // Check whether the definition name def is a mangled function name that matches
558 // the reference name ref.
559 static bool canSuggestExternCForCXX(StringRef ref, StringRef def) {
560 llvm::ItaniumPartialDemangler d;
561 std::string name = def.str();
562 if (d.partialDemangle(name.c_str()))
563 return false;
564 char *buf = d.getFunctionName(nullptr, nullptr);
565 if (!buf)
566 return false;
567 bool ret = ref == buf;
568 free(buf);
569 return ret;
572 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
573 // the suggested symbol, which is either in the symbol table, or in the same
574 // file of sym.
575 static const Symbol *getAlternativeSpelling(const Undefined &sym,
576 std::string &pre_hint,
577 std::string &post_hint) {
578 DenseMap<StringRef, const Symbol *> map;
579 if (sym.file && sym.file->kind() == InputFile::ObjKind) {
580 auto *file = cast<ELFFileBase>(sym.file);
581 // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
582 // will give an error. Don't suggest an alternative spelling.
583 if (file && sym.discardedSecIdx != 0 &&
584 file->getSections()[sym.discardedSecIdx] == &InputSection::discarded)
585 return nullptr;
587 // Build a map of local defined symbols.
588 for (const Symbol *s : sym.file->getSymbols())
589 if (s->isLocal() && s->isDefined() && !s->getName().empty())
590 map.try_emplace(s->getName(), s);
593 auto suggest = [&](StringRef newName) -> const Symbol * {
594 // If defined locally.
595 if (const Symbol *s = map.lookup(newName))
596 return s;
598 // If in the symbol table and not undefined.
599 if (const Symbol *s = symtab.find(newName))
600 if (!s->isUndefined())
601 return s;
603 return nullptr;
606 // This loop enumerates all strings of Levenshtein distance 1 as typo
607 // correction candidates and suggests the one that exists as a non-undefined
608 // symbol.
609 StringRef name = sym.getName();
610 for (size_t i = 0, e = name.size(); i != e + 1; ++i) {
611 // Insert a character before name[i].
612 std::string newName = (name.substr(0, i) + "0" + name.substr(i)).str();
613 for (char c = '0'; c <= 'z'; ++c) {
614 newName[i] = c;
615 if (const Symbol *s = suggest(newName))
616 return s;
618 if (i == e)
619 break;
621 // Substitute name[i].
622 newName = std::string(name);
623 for (char c = '0'; c <= 'z'; ++c) {
624 newName[i] = c;
625 if (const Symbol *s = suggest(newName))
626 return s;
629 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
630 // common.
631 if (i + 1 < e) {
632 newName[i] = name[i + 1];
633 newName[i + 1] = name[i];
634 if (const Symbol *s = suggest(newName))
635 return s;
638 // Delete name[i].
639 newName = (name.substr(0, i) + name.substr(i + 1)).str();
640 if (const Symbol *s = suggest(newName))
641 return s;
644 // Case mismatch, e.g. Foo vs FOO.
645 for (auto &it : map)
646 if (name.equals_insensitive(it.first))
647 return it.second;
648 for (Symbol *sym : symtab.getSymbols())
649 if (!sym->isUndefined() && name.equals_insensitive(sym->getName()))
650 return sym;
652 // The reference may be a mangled name while the definition is not. Suggest a
653 // missing extern "C".
654 if (name.startswith("_Z")) {
655 std::string buf = name.str();
656 llvm::ItaniumPartialDemangler d;
657 if (!d.partialDemangle(buf.c_str()))
658 if (char *buf = d.getFunctionName(nullptr, nullptr)) {
659 const Symbol *s = suggest(buf);
660 free(buf);
661 if (s) {
662 pre_hint = ": extern \"C\" ";
663 return s;
666 } else {
667 const Symbol *s = nullptr;
668 for (auto &it : map)
669 if (canSuggestExternCForCXX(name, it.first)) {
670 s = it.second;
671 break;
673 if (!s)
674 for (Symbol *sym : symtab.getSymbols())
675 if (canSuggestExternCForCXX(name, sym->getName())) {
676 s = sym;
677 break;
679 if (s) {
680 pre_hint = " to declare ";
681 post_hint = " as extern \"C\"?";
682 return s;
686 return nullptr;
689 static void reportUndefinedSymbol(const UndefinedDiag &undef,
690 bool correctSpelling) {
691 Undefined &sym = *undef.sym;
693 auto visibility = [&]() -> std::string {
694 switch (sym.visibility()) {
695 case STV_INTERNAL:
696 return "internal ";
697 case STV_HIDDEN:
698 return "hidden ";
699 case STV_PROTECTED:
700 return "protected ";
701 default:
702 return "";
706 std::string msg;
707 switch (config->ekind) {
708 case ELF32LEKind:
709 msg = maybeReportDiscarded<ELF32LE>(sym);
710 break;
711 case ELF32BEKind:
712 msg = maybeReportDiscarded<ELF32BE>(sym);
713 break;
714 case ELF64LEKind:
715 msg = maybeReportDiscarded<ELF64LE>(sym);
716 break;
717 case ELF64BEKind:
718 msg = maybeReportDiscarded<ELF64BE>(sym);
719 break;
720 default:
721 llvm_unreachable("");
723 if (msg.empty())
724 msg = "undefined " + visibility() + "symbol: " + toString(sym);
726 const size_t maxUndefReferences = 3;
727 size_t i = 0;
728 for (UndefinedDiag::Loc l : undef.locs) {
729 if (i >= maxUndefReferences)
730 break;
731 InputSectionBase &sec = *l.sec;
732 uint64_t offset = l.offset;
734 msg += "\n>>> referenced by ";
735 std::string src = sec.getSrcMsg(sym, offset);
736 if (!src.empty())
737 msg += src + "\n>>> ";
738 msg += sec.getObjMsg(offset);
739 i++;
742 if (i < undef.locs.size())
743 msg += ("\n>>> referenced " + Twine(undef.locs.size() - i) + " more times")
744 .str();
746 if (correctSpelling) {
747 std::string pre_hint = ": ", post_hint;
748 if (const Symbol *corrected =
749 getAlternativeSpelling(sym, pre_hint, post_hint)) {
750 msg += "\n>>> did you mean" + pre_hint + toString(*corrected) + post_hint;
751 if (corrected->file)
752 msg += "\n>>> defined in: " + toString(corrected->file);
756 if (sym.getName().startswith("_ZTV"))
757 msg +=
758 "\n>>> the vtable symbol may be undefined because the class is missing "
759 "its key function (see https://lld.llvm.org/missingkeyfunction)";
760 if (config->gcSections && config->zStartStopGC &&
761 sym.getName().startswith("__start_")) {
762 msg += "\n>>> the encapsulation symbol needs to be retained under "
763 "--gc-sections properly; consider -z nostart-stop-gc "
764 "(see https://lld.llvm.org/ELF/start-stop-gc)";
767 if (undef.isWarning)
768 warn(msg);
769 else
770 error(msg, ErrorTag::SymbolNotFound, {sym.getName()});
773 void elf::reportUndefinedSymbols() {
774 // Find the first "undefined symbol" diagnostic for each diagnostic, and
775 // collect all "referenced from" lines at the first diagnostic.
776 DenseMap<Symbol *, UndefinedDiag *> firstRef;
777 for (UndefinedDiag &undef : undefs) {
778 assert(undef.locs.size() == 1);
779 if (UndefinedDiag *canon = firstRef.lookup(undef.sym)) {
780 canon->locs.push_back(undef.locs[0]);
781 undef.locs.clear();
782 } else
783 firstRef[undef.sym] = &undef;
786 // Enable spell corrector for the first 2 diagnostics.
787 for (const auto &[i, undef] : llvm::enumerate(undefs))
788 if (!undef.locs.empty())
789 reportUndefinedSymbol(undef, i < 2);
790 undefs.clear();
793 // Report an undefined symbol if necessary.
794 // Returns true if the undefined symbol will produce an error message.
795 static bool maybeReportUndefined(Undefined &sym, InputSectionBase &sec,
796 uint64_t offset) {
797 std::lock_guard<std::mutex> lock(relocMutex);
798 // If versioned, issue an error (even if the symbol is weak) because we don't
799 // know the defining filename which is required to construct a Verneed entry.
800 if (sym.hasVersionSuffix) {
801 undefs.push_back({&sym, {{&sec, offset}}, false});
802 return true;
804 if (sym.isWeak())
805 return false;
807 bool canBeExternal = !sym.isLocal() && sym.visibility() == STV_DEFAULT;
808 if (config->unresolvedSymbols == UnresolvedPolicy::Ignore && canBeExternal)
809 return false;
811 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
812 // which references a switch table in a discarded .rodata/.text section. The
813 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
814 // spec says references from outside the group to a STB_LOCAL symbol are not
815 // allowed. Work around the bug.
817 // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
818 // because .LC0-.LTOC is not representable if the two labels are in different
819 // .got2
820 if (sym.discardedSecIdx != 0 && (sec.name == ".got2" || sec.name == ".toc"))
821 return false;
823 bool isWarning =
824 (config->unresolvedSymbols == UnresolvedPolicy::Warn && canBeExternal) ||
825 config->noinhibitExec;
826 undefs.push_back({&sym, {{&sec, offset}}, isWarning});
827 return !isWarning;
830 // MIPS N32 ABI treats series of successive relocations with the same offset
831 // as a single relocation. The similar approach used by N64 ABI, but this ABI
832 // packs all relocations into the single relocation record. Here we emulate
833 // this for the N32 ABI. Iterate over relocation with the same offset and put
834 // theirs types into the single bit-set.
835 template <class RelTy>
836 RelType RelocationScanner::getMipsN32RelType(RelTy *&rel) const {
837 RelType type = 0;
838 uint64_t offset = rel->r_offset;
840 int n = 0;
841 while (rel != static_cast<const RelTy *>(end) && rel->r_offset == offset)
842 type |= (rel++)->getType(config->isMips64EL) << (8 * n++);
843 return type;
846 template <bool shard = false>
847 static void addRelativeReloc(InputSectionBase &isec, uint64_t offsetInSec,
848 Symbol &sym, int64_t addend, RelExpr expr,
849 RelType type) {
850 Partition &part = isec.getPartition();
852 // Add a relative relocation. If relrDyn section is enabled, and the
853 // relocation offset is guaranteed to be even, add the relocation to
854 // the relrDyn section, otherwise add it to the relaDyn section.
855 // relrDyn sections don't support odd offsets. Also, relrDyn sections
856 // don't store the addend values, so we must write it to the relocated
857 // address.
858 if (part.relrDyn && isec.addralign >= 2 && offsetInSec % 2 == 0) {
859 isec.addReloc({expr, type, offsetInSec, addend, &sym});
860 if (shard)
861 part.relrDyn->relocsVec[parallel::getThreadIndex()].push_back(
862 {&isec, offsetInSec});
863 else
864 part.relrDyn->relocs.push_back({&isec, offsetInSec});
865 return;
867 part.relaDyn->addRelativeReloc<shard>(target->relativeRel, isec, offsetInSec,
868 sym, addend, type, expr);
871 template <class PltSection, class GotPltSection>
872 static void addPltEntry(PltSection &plt, GotPltSection &gotPlt,
873 RelocationBaseSection &rel, RelType type, Symbol &sym) {
874 plt.addEntry(sym);
875 gotPlt.addEntry(sym);
876 rel.addReloc({type, &gotPlt, sym.getGotPltOffset(),
877 sym.isPreemptible ? DynamicReloc::AgainstSymbol
878 : DynamicReloc::AddendOnlyWithTargetVA,
879 sym, 0, R_ABS});
882 static void addGotEntry(Symbol &sym) {
883 in.got->addEntry(sym);
884 uint64_t off = sym.getGotOffset();
886 // If preemptible, emit a GLOB_DAT relocation.
887 if (sym.isPreemptible) {
888 mainPart->relaDyn->addReloc({target->gotRel, in.got.get(), off,
889 DynamicReloc::AgainstSymbol, sym, 0, R_ABS});
890 return;
893 // Otherwise, the value is either a link-time constant or the load base
894 // plus a constant.
895 if (!config->isPic || isAbsolute(sym))
896 in.got->addConstant({R_ABS, target->symbolicRel, off, 0, &sym});
897 else
898 addRelativeReloc(*in.got, off, sym, 0, R_ABS, target->symbolicRel);
901 static void addTpOffsetGotEntry(Symbol &sym) {
902 in.got->addEntry(sym);
903 uint64_t off = sym.getGotOffset();
904 if (!sym.isPreemptible && !config->isPic) {
905 in.got->addConstant({R_TPREL, target->symbolicRel, off, 0, &sym});
906 return;
908 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
909 target->tlsGotRel, *in.got, off, sym, target->symbolicRel);
912 // Return true if we can define a symbol in the executable that
913 // contains the value/function of a symbol defined in a shared
914 // library.
915 static bool canDefineSymbolInExecutable(Symbol &sym) {
916 // If the symbol has default visibility the symbol defined in the
917 // executable will preempt it.
918 // Note that we want the visibility of the shared symbol itself, not
919 // the visibility of the symbol in the output file we are producing.
920 if (!sym.dsoProtected)
921 return true;
923 // If we are allowed to break address equality of functions, defining
924 // a plt entry will allow the program to call the function in the
925 // .so, but the .so and the executable will no agree on the address
926 // of the function. Similar logic for objects.
927 return ((sym.isFunc() && config->ignoreFunctionAddressEquality) ||
928 (sym.isObject() && config->ignoreDataAddressEquality));
931 // Returns true if a given relocation can be computed at link-time.
932 // This only handles relocation types expected in processAux.
934 // For instance, we know the offset from a relocation to its target at
935 // link-time if the relocation is PC-relative and refers a
936 // non-interposable function in the same executable. This function
937 // will return true for such relocation.
939 // If this function returns false, that means we need to emit a
940 // dynamic relocation so that the relocation will be fixed at load-time.
941 bool RelocationScanner::isStaticLinkTimeConstant(RelExpr e, RelType type,
942 const Symbol &sym,
943 uint64_t relOff) const {
944 // These expressions always compute a constant
945 if (oneof<R_GOTPLT, R_GOT_OFF, R_RELAX_HINT, R_MIPS_GOT_LOCAL_PAGE,
946 R_MIPS_GOTREL, R_MIPS_GOT_OFF, R_MIPS_GOT_OFF32, R_MIPS_GOT_GP_PC,
947 R_AARCH64_GOT_PAGE_PC, R_GOT_PC, R_GOTONLY_PC, R_GOTPLTONLY_PC,
948 R_PLT_PC, R_PLT_GOTPLT, R_PPC32_PLTREL, R_PPC64_CALL_PLT,
949 R_PPC64_RELAX_TOC, R_RISCV_ADD, R_AARCH64_GOT_PAGE>(e))
950 return true;
952 // These never do, except if the entire file is position dependent or if
953 // only the low bits are used.
954 if (e == R_GOT || e == R_PLT)
955 return target->usesOnlyLowPageBits(type) || !config->isPic;
957 if (sym.isPreemptible)
958 return false;
959 if (!config->isPic)
960 return true;
962 // The size of a non preemptible symbol is a constant.
963 if (e == R_SIZE)
964 return true;
966 // For the target and the relocation, we want to know if they are
967 // absolute or relative.
968 bool absVal = isAbsoluteValue(sym);
969 bool relE = isRelExpr(e);
970 if (absVal && !relE)
971 return true;
972 if (!absVal && relE)
973 return true;
974 if (!absVal && !relE)
975 return target->usesOnlyLowPageBits(type);
977 assert(absVal && relE);
979 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
980 // in PIC mode. This is a little strange, but it allows us to link function
981 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
982 // Normally such a call will be guarded with a comparison, which will load a
983 // zero from the GOT.
984 if (sym.isUndefWeak())
985 return true;
987 // We set the final symbols values for linker script defined symbols later.
988 // They always can be computed as a link time constant.
989 if (sym.scriptDefined)
990 return true;
992 error("relocation " + toString(type) + " cannot refer to absolute symbol: " +
993 toString(sym) + getLocation(*sec, sym, relOff));
994 return true;
997 // The reason we have to do this early scan is as follows
998 // * To mmap the output file, we need to know the size
999 // * For that, we need to know how many dynamic relocs we will have.
1000 // It might be possible to avoid this by outputting the file with write:
1001 // * Write the allocated output sections, computing addresses.
1002 // * Apply relocations, recording which ones require a dynamic reloc.
1003 // * Write the dynamic relocations.
1004 // * Write the rest of the file.
1005 // This would have some drawbacks. For example, we would only know if .rela.dyn
1006 // is needed after applying relocations. If it is, it will go after rw and rx
1007 // sections. Given that it is ro, we will need an extra PT_LOAD. This
1008 // complicates things for the dynamic linker and means we would have to reserve
1009 // space for the extra PT_LOAD even if we end up not using it.
1010 void RelocationScanner::processAux(RelExpr expr, RelType type, uint64_t offset,
1011 Symbol &sym, int64_t addend) const {
1012 // If non-ifunc non-preemptible, change PLT to direct call and optimize GOT
1013 // indirection.
1014 const bool isIfunc = sym.isGnuIFunc();
1015 if (!sym.isPreemptible && (!isIfunc || config->zIfuncNoplt)) {
1016 if (expr != R_GOT_PC) {
1017 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1018 // stub type. It should be ignored if optimized to R_PC.
1019 if (config->emachine == EM_PPC && expr == R_PPC32_PLTREL)
1020 addend &= ~0x8000;
1021 // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into
1022 // call __tls_get_addr even if the symbol is non-preemptible.
1023 if (!(config->emachine == EM_HEXAGON &&
1024 (type == R_HEX_GD_PLT_B22_PCREL ||
1025 type == R_HEX_GD_PLT_B22_PCREL_X ||
1026 type == R_HEX_GD_PLT_B32_PCREL_X)))
1027 expr = fromPlt(expr);
1028 } else if (!isAbsoluteValue(sym)) {
1029 expr =
1030 target->adjustGotPcExpr(type, addend, sec->content().data() + offset);
1034 // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1035 // direct relocation on through.
1036 if (LLVM_UNLIKELY(isIfunc) && config->zIfuncNoplt) {
1037 std::lock_guard<std::mutex> lock(relocMutex);
1038 sym.exportDynamic = true;
1039 mainPart->relaDyn->addSymbolReloc(type, *sec, offset, sym, addend, type);
1040 return;
1043 if (needsGot(expr)) {
1044 if (config->emachine == EM_MIPS) {
1045 // MIPS ABI has special rules to process GOT entries and doesn't
1046 // require relocation entries for them. A special case is TLS
1047 // relocations. In that case dynamic loader applies dynamic
1048 // relocations to initialize TLS GOT entries.
1049 // See "Global Offset Table" in Chapter 5 in the following document
1050 // for detailed description:
1051 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1052 in.mipsGot->addEntry(*sec->file, sym, addend, expr);
1053 } else {
1054 sym.setFlags(NEEDS_GOT);
1056 } else if (needsPlt(expr)) {
1057 sym.setFlags(NEEDS_PLT);
1058 } else if (LLVM_UNLIKELY(isIfunc)) {
1059 sym.setFlags(HAS_DIRECT_RELOC);
1062 // If the relocation is known to be a link-time constant, we know no dynamic
1063 // relocation will be created, pass the control to relocateAlloc() or
1064 // relocateNonAlloc() to resolve it.
1066 // The behavior of an undefined weak reference is implementation defined. For
1067 // non-link-time constants, we resolve relocations statically (let
1068 // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic
1069 // relocations for -pie and -shared.
1071 // The general expectation of -no-pie static linking is that there is no
1072 // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for
1073 // -shared matches the spirit of its -z undefs default. -pie has freedom on
1074 // choices, and we choose dynamic relocations to be consistent with the
1075 // handling of GOT-generating relocations.
1076 if (isStaticLinkTimeConstant(expr, type, sym, offset) ||
1077 (!config->isPic && sym.isUndefWeak())) {
1078 sec->addReloc({expr, type, offset, addend, &sym});
1079 return;
1082 bool canWrite = (sec->flags & SHF_WRITE) || !config->zText;
1083 if (canWrite) {
1084 RelType rel = target->getDynRel(type);
1085 if (expr == R_GOT || (rel == target->symbolicRel && !sym.isPreemptible)) {
1086 addRelativeReloc<true>(*sec, offset, sym, addend, expr, type);
1087 return;
1088 } else if (rel != 0) {
1089 if (config->emachine == EM_MIPS && rel == target->symbolicRel)
1090 rel = target->relativeRel;
1091 std::lock_guard<std::mutex> lock(relocMutex);
1092 sec->getPartition().relaDyn->addSymbolReloc(rel, *sec, offset, sym,
1093 addend, type);
1095 // MIPS ABI turns using of GOT and dynamic relocations inside out.
1096 // While regular ABI uses dynamic relocations to fill up GOT entries
1097 // MIPS ABI requires dynamic linker to fills up GOT entries using
1098 // specially sorted dynamic symbol table. This affects even dynamic
1099 // relocations against symbols which do not require GOT entries
1100 // creation explicitly, i.e. do not have any GOT-relocations. So if
1101 // a preemptible symbol has a dynamic relocation we anyway have
1102 // to create a GOT entry for it.
1103 // If a non-preemptible symbol has a dynamic relocation against it,
1104 // dynamic linker takes it st_value, adds offset and writes down
1105 // result of the dynamic relocation. In case of preemptible symbol
1106 // dynamic linker performs symbol resolution, writes the symbol value
1107 // to the GOT entry and reads the GOT entry when it needs to perform
1108 // a dynamic relocation.
1109 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1110 if (config->emachine == EM_MIPS)
1111 in.mipsGot->addEntry(*sec->file, sym, addend, expr);
1112 return;
1116 // When producing an executable, we can perform copy relocations (for
1117 // STT_OBJECT) and canonical PLT (for STT_FUNC).
1118 if (!config->shared) {
1119 if (!canDefineSymbolInExecutable(sym)) {
1120 errorOrWarn("cannot preempt symbol: " + toString(sym) +
1121 getLocation(*sec, sym, offset));
1122 return;
1125 if (sym.isObject()) {
1126 // Produce a copy relocation.
1127 if (auto *ss = dyn_cast<SharedSymbol>(&sym)) {
1128 if (!config->zCopyreloc)
1129 error("unresolvable relocation " + toString(type) +
1130 " against symbol '" + toString(*ss) +
1131 "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1132 getLocation(*sec, sym, offset));
1133 sym.setFlags(NEEDS_COPY);
1135 sec->addReloc({expr, type, offset, addend, &sym});
1136 return;
1139 // This handles a non PIC program call to function in a shared library. In
1140 // an ideal world, we could just report an error saying the relocation can
1141 // overflow at runtime. In the real world with glibc, crt1.o has a
1142 // R_X86_64_PC32 pointing to libc.so.
1144 // The general idea on how to handle such cases is to create a PLT entry and
1145 // use that as the function value.
1147 // For the static linking part, we just return a plt expr and everything
1148 // else will use the PLT entry as the address.
1150 // The remaining problem is making sure pointer equality still works. We
1151 // need the help of the dynamic linker for that. We let it know that we have
1152 // a direct reference to a so symbol by creating an undefined symbol with a
1153 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1154 // the value of the symbol we created. This is true even for got entries, so
1155 // pointer equality is maintained. To avoid an infinite loop, the only entry
1156 // that points to the real function is a dedicated got entry used by the
1157 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1158 // R_386_JMP_SLOT, etc).
1160 // For position independent executable on i386, the plt entry requires ebx
1161 // to be set. This causes two problems:
1162 // * If some code has a direct reference to a function, it was probably
1163 // compiled without -fPIE/-fPIC and doesn't maintain ebx.
1164 // * If a library definition gets preempted to the executable, it will have
1165 // the wrong ebx value.
1166 if (sym.isFunc()) {
1167 if (config->pie && config->emachine == EM_386)
1168 errorOrWarn("symbol '" + toString(sym) +
1169 "' cannot be preempted; recompile with -fPIE" +
1170 getLocation(*sec, sym, offset));
1171 sym.setFlags(NEEDS_COPY | NEEDS_PLT);
1172 sec->addReloc({expr, type, offset, addend, &sym});
1173 return;
1177 errorOrWarn("relocation " + toString(type) + " cannot be used against " +
1178 (sym.getName().empty() ? "local symbol"
1179 : "symbol '" + toString(sym) + "'") +
1180 "; recompile with -fPIC" + getLocation(*sec, sym, offset));
1183 // This function is similar to the `handleTlsRelocation`. MIPS does not
1184 // support any relaxations for TLS relocations so by factoring out MIPS
1185 // handling in to the separate function we can simplify the code and do not
1186 // pollute other `handleTlsRelocation` by MIPS `ifs` statements.
1187 // Mips has a custom MipsGotSection that handles the writing of GOT entries
1188 // without dynamic relocations.
1189 static unsigned handleMipsTlsRelocation(RelType type, Symbol &sym,
1190 InputSectionBase &c, uint64_t offset,
1191 int64_t addend, RelExpr expr) {
1192 if (expr == R_MIPS_TLSLD) {
1193 in.mipsGot->addTlsIndex(*c.file);
1194 c.addReloc({expr, type, offset, addend, &sym});
1195 return 1;
1197 if (expr == R_MIPS_TLSGD) {
1198 in.mipsGot->addDynTlsEntry(*c.file, sym);
1199 c.addReloc({expr, type, offset, addend, &sym});
1200 return 1;
1202 return 0;
1205 // Notes about General Dynamic and Local Dynamic TLS models below. They may
1206 // require the generation of a pair of GOT entries that have associated dynamic
1207 // relocations. The pair of GOT entries created are of the form GOT[e0] Module
1208 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
1209 // symbol in TLS block.
1211 // Returns the number of relocations processed.
1212 static unsigned handleTlsRelocation(RelType type, Symbol &sym,
1213 InputSectionBase &c, uint64_t offset,
1214 int64_t addend, RelExpr expr) {
1215 if (expr == R_TPREL || expr == R_TPREL_NEG) {
1216 if (config->shared) {
1217 errorOrWarn("relocation " + toString(type) + " against " + toString(sym) +
1218 " cannot be used with -shared" + getLocation(c, sym, offset));
1219 return 1;
1221 return 0;
1224 if (config->emachine == EM_MIPS)
1225 return handleMipsTlsRelocation(type, sym, c, offset, addend, expr);
1227 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1228 R_TLSDESC_GOTPLT>(expr) &&
1229 config->shared) {
1230 if (expr != R_TLSDESC_CALL) {
1231 sym.setFlags(NEEDS_TLSDESC);
1232 c.addReloc({expr, type, offset, addend, &sym});
1234 return 1;
1237 // ARM, Hexagon and RISC-V do not support GD/LD to IE/LE relaxation. For
1238 // PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable
1239 // relaxation as well.
1240 bool toExecRelax = !config->shared && config->emachine != EM_ARM &&
1241 config->emachine != EM_HEXAGON &&
1242 config->emachine != EM_RISCV &&
1243 !c.file->ppc64DisableTLSRelax;
1245 // If we are producing an executable and the symbol is non-preemptable, it
1246 // must be defined and the code sequence can be relaxed to use Local-Exec.
1248 // ARM and RISC-V do not support any relaxations for TLS relocations, however,
1249 // we can omit the DTPMOD dynamic relocations and resolve them at link time
1250 // because them are always 1. This may be necessary for static linking as
1251 // DTPMOD may not be expected at load time.
1252 bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1254 // Local Dynamic is for access to module local TLS variables, while still
1255 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
1256 // module index, with a special value of 0 for the current module. GOT[e1] is
1257 // unused. There only needs to be one module index entry.
1258 if (oneof<R_TLSLD_GOT, R_TLSLD_GOTPLT, R_TLSLD_PC, R_TLSLD_HINT>(
1259 expr)) {
1260 // Local-Dynamic relocs can be relaxed to Local-Exec.
1261 if (toExecRelax) {
1262 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE), type,
1263 offset, addend, &sym});
1264 return target->getTlsGdRelaxSkip(type);
1266 if (expr == R_TLSLD_HINT)
1267 return 1;
1268 ctx.needsTlsLd.store(true, std::memory_order_relaxed);
1269 c.addReloc({expr, type, offset, addend, &sym});
1270 return 1;
1273 // Local-Dynamic relocs can be relaxed to Local-Exec.
1274 if (expr == R_DTPREL) {
1275 if (toExecRelax)
1276 expr = target->adjustTlsExpr(type, R_RELAX_TLS_LD_TO_LE);
1277 c.addReloc({expr, type, offset, addend, &sym});
1278 return 1;
1281 // Local-Dynamic sequence where offset of tls variable relative to dynamic
1282 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
1283 if (expr == R_TLSLD_GOT_OFF) {
1284 sym.setFlags(NEEDS_GOT_DTPREL);
1285 c.addReloc({expr, type, offset, addend, &sym});
1286 return 1;
1289 if (oneof<R_AARCH64_TLSDESC_PAGE, R_TLSDESC, R_TLSDESC_CALL, R_TLSDESC_PC,
1290 R_TLSDESC_GOTPLT, R_TLSGD_GOT, R_TLSGD_GOTPLT, R_TLSGD_PC>(expr)) {
1291 if (!toExecRelax) {
1292 sym.setFlags(NEEDS_TLSGD);
1293 c.addReloc({expr, type, offset, addend, &sym});
1294 return 1;
1297 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
1298 // depending on the symbol being locally defined or not.
1299 if (sym.isPreemptible) {
1300 sym.setFlags(NEEDS_TLSGD_TO_IE);
1301 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_IE), type,
1302 offset, addend, &sym});
1303 } else {
1304 c.addReloc({target->adjustTlsExpr(type, R_RELAX_TLS_GD_TO_LE), type,
1305 offset, addend, &sym});
1307 return target->getTlsGdRelaxSkip(type);
1310 if (oneof<R_GOT, R_GOTPLT, R_GOT_PC, R_AARCH64_GOT_PAGE_PC, R_GOT_OFF,
1311 R_TLSIE_HINT>(expr)) {
1312 ctx.hasTlsIe.store(true, std::memory_order_relaxed);
1313 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
1314 // defined.
1315 if (toExecRelax && isLocalInExecutable) {
1316 c.addReloc({R_RELAX_TLS_IE_TO_LE, type, offset, addend, &sym});
1317 } else if (expr != R_TLSIE_HINT) {
1318 sym.setFlags(NEEDS_TLSIE);
1319 // R_GOT needs a relative relocation for PIC on i386 and Hexagon.
1320 if (expr == R_GOT && config->isPic && !target->usesOnlyLowPageBits(type))
1321 addRelativeReloc<true>(c, offset, sym, addend, expr, type);
1322 else
1323 c.addReloc({expr, type, offset, addend, &sym});
1325 return 1;
1328 return 0;
1331 template <class ELFT, class RelTy> void RelocationScanner::scanOne(RelTy *&i) {
1332 const RelTy &rel = *i;
1333 uint32_t symIndex = rel.getSymbol(config->isMips64EL);
1334 Symbol &sym = sec->getFile<ELFT>()->getSymbol(symIndex);
1335 RelType type;
1336 if (config->mipsN32Abi) {
1337 type = getMipsN32RelType(i);
1338 } else {
1339 type = rel.getType(config->isMips64EL);
1340 ++i;
1342 // Get an offset in an output section this relocation is applied to.
1343 uint64_t offset = getter.get(rel.r_offset);
1344 if (offset == uint64_t(-1))
1345 return;
1347 RelExpr expr = target->getRelExpr(type, sym, sec->content().data() + offset);
1348 int64_t addend = RelTy::IsRela
1349 ? getAddend<ELFT>(rel)
1350 : target->getImplicitAddend(
1351 sec->content().data() + rel.r_offset, type);
1352 if (LLVM_UNLIKELY(config->emachine == EM_MIPS))
1353 addend += computeMipsAddend<ELFT>(rel, expr, sym.isLocal());
1354 else if (config->emachine == EM_PPC64 && config->isPic && type == R_PPC64_TOC)
1355 addend += getPPC64TocBase();
1357 // Ignore R_*_NONE and other marker relocations.
1358 if (expr == R_NONE)
1359 return;
1361 // Error if the target symbol is undefined. Symbol index 0 may be used by
1362 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1363 if (sym.isUndefined() && symIndex != 0 &&
1364 maybeReportUndefined(cast<Undefined>(sym), *sec, offset))
1365 return;
1367 if (config->emachine == EM_PPC64) {
1368 // We can separate the small code model relocations into 2 categories:
1369 // 1) Those that access the compiler generated .toc sections.
1370 // 2) Those that access the linker allocated got entries.
1371 // lld allocates got entries to symbols on demand. Since we don't try to
1372 // sort the got entries in any way, we don't have to track which objects
1373 // have got-based small code model relocs. The .toc sections get placed
1374 // after the end of the linker allocated .got section and we do sort those
1375 // so sections addressed with small code model relocations come first.
1376 if (type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS)
1377 sec->file->ppc64SmallCodeModelTocRelocs = true;
1379 // Record the TOC entry (.toc + addend) as not relaxable. See the comment in
1380 // InputSectionBase::relocateAlloc().
1381 if (type == R_PPC64_TOC16_LO && sym.isSection() && isa<Defined>(sym) &&
1382 cast<Defined>(sym).section->name == ".toc")
1383 ppc64noTocRelax.insert({&sym, addend});
1385 if ((type == R_PPC64_TLSGD && expr == R_TLSDESC_CALL) ||
1386 (type == R_PPC64_TLSLD && expr == R_TLSLD_HINT)) {
1387 if (i == end) {
1388 errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last "
1389 "relocation" +
1390 getLocation(*sec, sym, offset));
1391 return;
1394 // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case,
1395 // so we can discern it later from the toc-case.
1396 if (i->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC)
1397 ++offset;
1401 // If the relocation does not emit a GOT or GOTPLT entry but its computation
1402 // uses their addresses, we need GOT or GOTPLT to be created.
1404 // The 5 types that relative GOTPLT are all x86 and x86-64 specific.
1405 if (oneof<R_GOTPLTONLY_PC, R_GOTPLTREL, R_GOTPLT, R_PLT_GOTPLT,
1406 R_TLSDESC_GOTPLT, R_TLSGD_GOTPLT>(expr)) {
1407 in.gotPlt->hasGotPltOffRel.store(true, std::memory_order_relaxed);
1408 } else if (oneof<R_GOTONLY_PC, R_GOTREL, R_PPC32_PLTREL, R_PPC64_TOCBASE,
1409 R_PPC64_RELAX_TOC>(expr)) {
1410 in.got->hasGotOffRel.store(true, std::memory_order_relaxed);
1413 // Process TLS relocations, including relaxing TLS relocations. Note that
1414 // R_TPREL and R_TPREL_NEG relocations are resolved in processAux.
1415 if (sym.isTls()) {
1416 if (unsigned processed =
1417 handleTlsRelocation(type, sym, *sec, offset, addend, expr)) {
1418 i += processed - 1;
1419 return;
1423 processAux(expr, type, offset, sym, addend);
1426 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for
1427 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is
1428 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the
1429 // instructions are generated by very old IBM XL compilers. Work around the
1430 // issue by disabling GD/LD to IE/LE relaxation.
1431 template <class RelTy>
1432 static void checkPPC64TLSRelax(InputSectionBase &sec, ArrayRef<RelTy> rels) {
1433 // Skip if sec is synthetic (sec.file is null) or if sec has been marked.
1434 if (!sec.file || sec.file->ppc64DisableTLSRelax)
1435 return;
1436 bool hasGDLD = false;
1437 for (const RelTy &rel : rels) {
1438 RelType type = rel.getType(false);
1439 switch (type) {
1440 case R_PPC64_TLSGD:
1441 case R_PPC64_TLSLD:
1442 return; // Found a marker
1443 case R_PPC64_GOT_TLSGD16:
1444 case R_PPC64_GOT_TLSGD16_HA:
1445 case R_PPC64_GOT_TLSGD16_HI:
1446 case R_PPC64_GOT_TLSGD16_LO:
1447 case R_PPC64_GOT_TLSLD16:
1448 case R_PPC64_GOT_TLSLD16_HA:
1449 case R_PPC64_GOT_TLSLD16_HI:
1450 case R_PPC64_GOT_TLSLD16_LO:
1451 hasGDLD = true;
1452 break;
1455 if (hasGDLD) {
1456 sec.file->ppc64DisableTLSRelax = true;
1457 warn(toString(sec.file) +
1458 ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without "
1459 "R_PPC64_TLSGD/R_PPC64_TLSLD relocations");
1463 template <class ELFT, class RelTy>
1464 void RelocationScanner::scan(ArrayRef<RelTy> rels) {
1465 // Not all relocations end up in Sec->Relocations, but a lot do.
1466 sec->relocations.reserve(rels.size());
1468 if (config->emachine == EM_PPC64)
1469 checkPPC64TLSRelax<RelTy>(*sec, rels);
1471 // For EhInputSection, OffsetGetter expects the relocations to be sorted by
1472 // r_offset. In rare cases (.eh_frame pieces are reordered by a linker
1473 // script), the relocations may be unordered.
1474 SmallVector<RelTy, 0> storage;
1475 if (isa<EhInputSection>(sec))
1476 rels = sortRels(rels, storage);
1478 end = static_cast<const void *>(rels.end());
1479 for (auto i = rels.begin(); i != end;)
1480 scanOne<ELFT>(i);
1482 // Sort relocations by offset for more efficient searching for
1483 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1484 if (config->emachine == EM_RISCV ||
1485 (config->emachine == EM_PPC64 && sec->name == ".toc"))
1486 llvm::stable_sort(sec->relocs(),
1487 [](const Relocation &lhs, const Relocation &rhs) {
1488 return lhs.offset < rhs.offset;
1492 template <class ELFT> void RelocationScanner::scanSection(InputSectionBase &s) {
1493 sec = &s;
1494 getter = OffsetGetter(s);
1495 const RelsOrRelas<ELFT> rels = s.template relsOrRelas<ELFT>();
1496 if (rels.areRelocsRel())
1497 scan<ELFT>(rels.rels);
1498 else
1499 scan<ELFT>(rels.relas);
1502 template <class ELFT> void elf::scanRelocations() {
1503 // Scan all relocations. Each relocation goes through a series of tests to
1504 // determine if it needs special treatment, such as creating GOT, PLT,
1505 // copy relocations, etc. Note that relocations for non-alloc sections are
1506 // directly processed by InputSection::relocateNonAlloc.
1508 // Deterministic parallellism needs sorting relocations which is unsuitable
1509 // for -z nocombreloc. MIPS and PPC64 use global states which are not suitable
1510 // for parallelism.
1511 bool serial = !config->zCombreloc || config->emachine == EM_MIPS ||
1512 config->emachine == EM_PPC64;
1513 parallel::TaskGroup tg;
1514 for (ELFFileBase *f : ctx.objectFiles) {
1515 auto fn = [f]() {
1516 RelocationScanner scanner;
1517 for (InputSectionBase *s : f->getSections()) {
1518 if (s && s->kind() == SectionBase::Regular && s->isLive() &&
1519 (s->flags & SHF_ALLOC) &&
1520 !(s->type == SHT_ARM_EXIDX && config->emachine == EM_ARM))
1521 scanner.template scanSection<ELFT>(*s);
1524 if (serial)
1525 fn();
1526 else
1527 tg.execute(fn);
1530 // Both the main thread and thread pool index 0 use getThreadIndex()==0. Be
1531 // careful that they don't concurrently run scanSections. When serial is
1532 // true, fn() has finished at this point, so running execute is safe.
1533 tg.execute([] {
1534 RelocationScanner scanner;
1535 for (Partition &part : partitions) {
1536 for (EhInputSection *sec : part.ehFrame->sections)
1537 scanner.template scanSection<ELFT>(*sec);
1538 if (part.armExidx && part.armExidx->isLive())
1539 for (InputSection *sec : part.armExidx->exidxSections)
1540 scanner.template scanSection<ELFT>(*sec);
1545 static bool handleNonPreemptibleIfunc(Symbol &sym, uint16_t flags) {
1546 // Handle a reference to a non-preemptible ifunc. These are special in a
1547 // few ways:
1549 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1550 // a fixed value. But assuming that all references to the ifunc are
1551 // GOT-generating or PLT-generating, the handling of an ifunc is
1552 // relatively straightforward. We create a PLT entry in Iplt, which is
1553 // usually at the end of .plt, which makes an indirect call using a
1554 // matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1555 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
1556 // which is usually at the end of .rela.plt. Unlike most relocations in
1557 // .rela.plt, which may be evaluated lazily without -z now, dynamic
1558 // loaders evaluate IRELATIVE relocs eagerly, which means that for
1559 // IRELATIVE relocs only, GOT-generating relocations can point directly to
1560 // .got.plt without requiring a separate GOT entry.
1562 // - Despite the fact that an ifunc does not have a fixed value, compilers
1563 // that are not passed -fPIC will assume that they do, and will emit
1564 // direct (non-GOT-generating, non-PLT-generating) relocations to the
1565 // symbol. This means that if a direct relocation to the symbol is
1566 // seen, the linker must set a value for the symbol, and this value must
1567 // be consistent no matter what type of reference is made to the symbol.
1568 // This can be done by creating a PLT entry for the symbol in the way
1569 // described above and making it canonical, that is, making all references
1570 // point to the PLT entry instead of the resolver. In lld we also store
1571 // the address of the PLT entry in the dynamic symbol table, which means
1572 // that the symbol will also have the same value in other modules.
1573 // Because the value loaded from the GOT needs to be consistent with
1574 // the value computed using a direct relocation, a non-preemptible ifunc
1575 // may end up with two GOT entries, one in .got.plt that points to the
1576 // address returned by the resolver and is used only by the PLT entry,
1577 // and another in .got that points to the PLT entry and is used by
1578 // GOT-generating relocations.
1580 // - The fact that these symbols do not have a fixed value makes them an
1581 // exception to the general rule that a statically linked executable does
1582 // not require any form of dynamic relocation. To handle these relocations
1583 // correctly, the IRELATIVE relocations are stored in an array which a
1584 // statically linked executable's startup code must enumerate using the
1585 // linker-defined symbols __rela?_iplt_{start,end}.
1586 if (!sym.isGnuIFunc() || sym.isPreemptible || config->zIfuncNoplt)
1587 return false;
1588 // Skip unreferenced non-preemptible ifunc.
1589 if (!(flags & (NEEDS_GOT | NEEDS_PLT | HAS_DIRECT_RELOC)))
1590 return true;
1592 sym.isInIplt = true;
1594 // Create an Iplt and the associated IRELATIVE relocation pointing to the
1595 // original section/value pairs. For non-GOT non-PLT relocation case below, we
1596 // may alter section/value, so create a copy of the symbol to make
1597 // section/value fixed.
1598 auto *directSym = makeDefined(cast<Defined>(sym));
1599 directSym->allocateAux();
1600 addPltEntry(*in.iplt, *in.igotPlt, *in.relaIplt, target->iRelativeRel,
1601 *directSym);
1602 sym.allocateAux();
1603 symAux.back().pltIdx = symAux[directSym->auxIdx].pltIdx;
1605 if (flags & HAS_DIRECT_RELOC) {
1606 // Change the value to the IPLT and redirect all references to it.
1607 auto &d = cast<Defined>(sym);
1608 d.section = in.iplt.get();
1609 d.value = d.getPltIdx() * target->ipltEntrySize;
1610 d.size = 0;
1611 // It's important to set the symbol type here so that dynamic loaders
1612 // don't try to call the PLT as if it were an ifunc resolver.
1613 d.type = STT_FUNC;
1615 if (flags & NEEDS_GOT)
1616 addGotEntry(sym);
1617 } else if (flags & NEEDS_GOT) {
1618 // Redirect GOT accesses to point to the Igot.
1619 sym.gotInIgot = true;
1621 return true;
1624 void elf::postScanRelocations() {
1625 auto fn = [](Symbol &sym) {
1626 auto flags = sym.flags.load(std::memory_order_relaxed);
1627 if (handleNonPreemptibleIfunc(sym, flags))
1628 return;
1629 if (!sym.needsDynReloc())
1630 return;
1631 sym.allocateAux();
1633 if (flags & NEEDS_GOT)
1634 addGotEntry(sym);
1635 if (flags & NEEDS_PLT)
1636 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel, sym);
1637 if (flags & NEEDS_COPY) {
1638 if (sym.isObject()) {
1639 invokeELFT(addCopyRelSymbol, cast<SharedSymbol>(sym));
1640 // NEEDS_COPY is cleared for sym and its aliases so that in
1641 // later iterations aliases won't cause redundant copies.
1642 assert(!sym.hasFlag(NEEDS_COPY));
1643 } else {
1644 assert(sym.isFunc() && sym.hasFlag(NEEDS_PLT));
1645 if (!sym.isDefined()) {
1646 replaceWithDefined(sym, *in.plt,
1647 target->pltHeaderSize +
1648 target->pltEntrySize * sym.getPltIdx(),
1650 sym.setFlags(NEEDS_COPY);
1651 if (config->emachine == EM_PPC) {
1652 // PPC32 canonical PLT entries are at the beginning of .glink
1653 cast<Defined>(sym).value = in.plt->headerSize;
1654 in.plt->headerSize += 16;
1655 cast<PPC32GlinkSection>(*in.plt).canonical_plts.push_back(&sym);
1661 if (!sym.isTls())
1662 return;
1663 bool isLocalInExecutable = !sym.isPreemptible && !config->shared;
1664 GotSection *got = in.got.get();
1666 if (flags & NEEDS_TLSDESC) {
1667 got->addTlsDescEntry(sym);
1668 mainPart->relaDyn->addAddendOnlyRelocIfNonPreemptible(
1669 target->tlsDescRel, *got, got->getTlsDescOffset(sym), sym,
1670 target->tlsDescRel);
1672 if (flags & NEEDS_TLSGD) {
1673 got->addDynTlsEntry(sym);
1674 uint64_t off = got->getGlobalDynOffset(sym);
1675 if (isLocalInExecutable)
1676 // Write one to the GOT slot.
1677 got->addConstant({R_ADDEND, target->symbolicRel, off, 1, &sym});
1678 else
1679 mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *got, off,
1680 sym);
1682 // If the symbol is preemptible we need the dynamic linker to write
1683 // the offset too.
1684 uint64_t offsetOff = off + config->wordsize;
1685 if (sym.isPreemptible)
1686 mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *got, offsetOff,
1687 sym);
1688 else
1689 got->addConstant({R_ABS, target->tlsOffsetRel, offsetOff, 0, &sym});
1691 if (flags & NEEDS_TLSGD_TO_IE) {
1692 got->addEntry(sym);
1693 mainPart->relaDyn->addSymbolReloc(target->tlsGotRel, *got,
1694 sym.getGotOffset(), sym);
1696 if (flags & NEEDS_GOT_DTPREL) {
1697 got->addEntry(sym);
1698 got->addConstant(
1699 {R_ABS, target->tlsOffsetRel, sym.getGotOffset(), 0, &sym});
1702 if ((flags & NEEDS_TLSIE) && !(flags & NEEDS_TLSGD_TO_IE))
1703 addTpOffsetGotEntry(sym);
1706 GotSection *got = in.got.get();
1707 if (ctx.needsTlsLd.load(std::memory_order_relaxed) && got->addTlsIndex()) {
1708 static Undefined dummy(nullptr, "", STB_LOCAL, 0, 0);
1709 if (config->shared)
1710 mainPart->relaDyn->addReloc(
1711 {target->tlsModuleIndexRel, got, got->getTlsIndexOff()});
1712 else
1713 got->addConstant(
1714 {R_ADDEND, target->symbolicRel, got->getTlsIndexOff(), 1, &dummy});
1717 assert(symAux.size() == 1);
1718 for (Symbol *sym : symtab.getSymbols())
1719 fn(*sym);
1721 // Local symbols may need the aforementioned non-preemptible ifunc and GOT
1722 // handling. They don't need regular PLT.
1723 for (ELFFileBase *file : ctx.objectFiles)
1724 for (Symbol *sym : file->getLocalSymbols())
1725 fn(*sym);
1728 static bool mergeCmp(const InputSection *a, const InputSection *b) {
1729 // std::merge requires a strict weak ordering.
1730 if (a->outSecOff < b->outSecOff)
1731 return true;
1733 // FIXME dyn_cast<ThunkSection> is non-null for any SyntheticSection.
1734 if (a->outSecOff == b->outSecOff && a != b) {
1735 auto *ta = dyn_cast<ThunkSection>(a);
1736 auto *tb = dyn_cast<ThunkSection>(b);
1738 // Check if Thunk is immediately before any specific Target
1739 // InputSection for example Mips LA25 Thunks.
1740 if (ta && ta->getTargetInputSection() == b)
1741 return true;
1743 // Place Thunk Sections without specific targets before
1744 // non-Thunk Sections.
1745 if (ta && !tb && !ta->getTargetInputSection())
1746 return true;
1749 return false;
1752 // Call Fn on every executable InputSection accessed via the linker script
1753 // InputSectionDescription::Sections.
1754 static void forEachInputSectionDescription(
1755 ArrayRef<OutputSection *> outputSections,
1756 llvm::function_ref<void(OutputSection *, InputSectionDescription *)> fn) {
1757 for (OutputSection *os : outputSections) {
1758 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
1759 continue;
1760 for (SectionCommand *bc : os->commands)
1761 if (auto *isd = dyn_cast<InputSectionDescription>(bc))
1762 fn(os, isd);
1766 // Thunk Implementation
1768 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1769 // of code that the linker inserts inbetween a caller and a callee. The thunks
1770 // are added at link time rather than compile time as the decision on whether
1771 // a thunk is needed, such as the caller and callee being out of range, can only
1772 // be made at link time.
1774 // It is straightforward to tell given the current state of the program when a
1775 // thunk is needed for a particular call. The more difficult part is that
1776 // the thunk needs to be placed in the program such that the caller can reach
1777 // the thunk and the thunk can reach the callee; furthermore, adding thunks to
1778 // the program alters addresses, which can mean more thunks etc.
1780 // In lld we have a synthetic ThunkSection that can hold many Thunks.
1781 // The decision to have a ThunkSection act as a container means that we can
1782 // more easily handle the most common case of a single block of contiguous
1783 // Thunks by inserting just a single ThunkSection.
1785 // The implementation of Thunks in lld is split across these areas
1786 // Relocations.cpp : Framework for creating and placing thunks
1787 // Thunks.cpp : The code generated for each supported thunk
1788 // Target.cpp : Target specific hooks that the framework uses to decide when
1789 // a thunk is used
1790 // Synthetic.cpp : Implementation of ThunkSection
1791 // Writer.cpp : Iteratively call framework until no more Thunks added
1793 // Thunk placement requirements:
1794 // Mips LA25 thunks. These must be placed immediately before the callee section
1795 // We can assume that the caller is in range of the Thunk. These are modelled
1796 // by Thunks that return the section they must precede with
1797 // getTargetInputSection().
1799 // ARM interworking and range extension thunks. These thunks must be placed
1800 // within range of the caller. All implemented ARM thunks can always reach the
1801 // callee as they use an indirect jump via a register that has no range
1802 // restrictions.
1804 // Thunk placement algorithm:
1805 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1806 // getTargetInputSection().
1808 // For thunks that must be placed within range of the caller there are many
1809 // possible choices given that the maximum range from the caller is usually
1810 // much larger than the average InputSection size. Desirable properties include:
1811 // - Maximize reuse of thunks by multiple callers
1812 // - Minimize number of ThunkSections to simplify insertion
1813 // - Handle impact of already added Thunks on addresses
1814 // - Simple to understand and implement
1816 // In lld for the first pass, we pre-create one or more ThunkSections per
1817 // InputSectionDescription at Target specific intervals. A ThunkSection is
1818 // placed so that the estimated end of the ThunkSection is within range of the
1819 // start of the InputSectionDescription or the previous ThunkSection. For
1820 // example:
1821 // InputSectionDescription
1822 // Section 0
1823 // ...
1824 // Section N
1825 // ThunkSection 0
1826 // Section N + 1
1827 // ...
1828 // Section N + K
1829 // Thunk Section 1
1831 // The intention is that we can add a Thunk to a ThunkSection that is well
1832 // spaced enough to service a number of callers without having to do a lot
1833 // of work. An important principle is that it is not an error if a Thunk cannot
1834 // be placed in a pre-created ThunkSection; when this happens we create a new
1835 // ThunkSection placed next to the caller. This allows us to handle the vast
1836 // majority of thunks simply, but also handle rare cases where the branch range
1837 // is smaller than the target specific spacing.
1839 // The algorithm is expected to create all the thunks that are needed in a
1840 // single pass, with a small number of programs needing a second pass due to
1841 // the insertion of thunks in the first pass increasing the offset between
1842 // callers and callees that were only just in range.
1844 // A consequence of allowing new ThunkSections to be created outside of the
1845 // pre-created ThunkSections is that in rare cases calls to Thunks that were in
1846 // range in pass K, are out of range in some pass > K due to the insertion of
1847 // more Thunks in between the caller and callee. When this happens we retarget
1848 // the relocation back to the original target and create another Thunk.
1850 // Remove ThunkSections that are empty, this should only be the initial set
1851 // precreated on pass 0.
1853 // Insert the Thunks for OutputSection OS into their designated place
1854 // in the Sections vector, and recalculate the InputSection output section
1855 // offsets.
1856 // This may invalidate any output section offsets stored outside of InputSection
1857 void ThunkCreator::mergeThunks(ArrayRef<OutputSection *> outputSections) {
1858 forEachInputSectionDescription(
1859 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1860 if (isd->thunkSections.empty())
1861 return;
1863 // Remove any zero sized precreated Thunks.
1864 llvm::erase_if(isd->thunkSections,
1865 [](const std::pair<ThunkSection *, uint32_t> &ts) {
1866 return ts.first->getSize() == 0;
1869 // ISD->ThunkSections contains all created ThunkSections, including
1870 // those inserted in previous passes. Extract the Thunks created this
1871 // pass and order them in ascending outSecOff.
1872 std::vector<ThunkSection *> newThunks;
1873 for (std::pair<ThunkSection *, uint32_t> ts : isd->thunkSections)
1874 if (ts.second == pass)
1875 newThunks.push_back(ts.first);
1876 llvm::stable_sort(newThunks,
1877 [](const ThunkSection *a, const ThunkSection *b) {
1878 return a->outSecOff < b->outSecOff;
1881 // Merge sorted vectors of Thunks and InputSections by outSecOff
1882 SmallVector<InputSection *, 0> tmp;
1883 tmp.reserve(isd->sections.size() + newThunks.size());
1885 std::merge(isd->sections.begin(), isd->sections.end(),
1886 newThunks.begin(), newThunks.end(), std::back_inserter(tmp),
1887 mergeCmp);
1889 isd->sections = std::move(tmp);
1893 static int64_t getPCBias(RelType type) {
1894 if (config->emachine != EM_ARM)
1895 return 0;
1896 switch (type) {
1897 case R_ARM_THM_JUMP19:
1898 case R_ARM_THM_JUMP24:
1899 case R_ARM_THM_CALL:
1900 return 4;
1901 default:
1902 return 8;
1906 // Find or create a ThunkSection within the InputSectionDescription (ISD) that
1907 // is in range of Src. An ISD maps to a range of InputSections described by a
1908 // linker script section pattern such as { .text .text.* }.
1909 ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *os,
1910 InputSection *isec,
1911 InputSectionDescription *isd,
1912 const Relocation &rel,
1913 uint64_t src) {
1914 // See the comment in getThunk for -pcBias below.
1915 const int64_t pcBias = getPCBias(rel.type);
1916 for (std::pair<ThunkSection *, uint32_t> tp : isd->thunkSections) {
1917 ThunkSection *ts = tp.first;
1918 uint64_t tsBase = os->addr + ts->outSecOff - pcBias;
1919 uint64_t tsLimit = tsBase + ts->getSize();
1920 if (target->inBranchRange(rel.type, src,
1921 (src > tsLimit) ? tsBase : tsLimit))
1922 return ts;
1925 // No suitable ThunkSection exists. This can happen when there is a branch
1926 // with lower range than the ThunkSection spacing or when there are too
1927 // many Thunks. Create a new ThunkSection as close to the InputSection as
1928 // possible. Error if InputSection is so large we cannot place ThunkSection
1929 // anywhere in Range.
1930 uint64_t thunkSecOff = isec->outSecOff;
1931 if (!target->inBranchRange(rel.type, src,
1932 os->addr + thunkSecOff + rel.addend)) {
1933 thunkSecOff = isec->outSecOff + isec->getSize();
1934 if (!target->inBranchRange(rel.type, src,
1935 os->addr + thunkSecOff + rel.addend))
1936 fatal("InputSection too large for range extension thunk " +
1937 isec->getObjMsg(src - (os->addr + isec->outSecOff)));
1939 return addThunkSection(os, isd, thunkSecOff);
1942 // Add a Thunk that needs to be placed in a ThunkSection that immediately
1943 // precedes its Target.
1944 ThunkSection *ThunkCreator::getISThunkSec(InputSection *isec) {
1945 ThunkSection *ts = thunkedSections.lookup(isec);
1946 if (ts)
1947 return ts;
1949 // Find InputSectionRange within Target Output Section (TOS) that the
1950 // InputSection (IS) that we need to precede is in.
1951 OutputSection *tos = isec->getParent();
1952 for (SectionCommand *bc : tos->commands) {
1953 auto *isd = dyn_cast<InputSectionDescription>(bc);
1954 if (!isd || isd->sections.empty())
1955 continue;
1957 InputSection *first = isd->sections.front();
1958 InputSection *last = isd->sections.back();
1960 if (isec->outSecOff < first->outSecOff || last->outSecOff < isec->outSecOff)
1961 continue;
1963 ts = addThunkSection(tos, isd, isec->outSecOff);
1964 thunkedSections[isec] = ts;
1965 return ts;
1968 return nullptr;
1971 // Create one or more ThunkSections per OS that can be used to place Thunks.
1972 // We attempt to place the ThunkSections using the following desirable
1973 // properties:
1974 // - Within range of the maximum number of callers
1975 // - Minimise the number of ThunkSections
1977 // We follow a simple but conservative heuristic to place ThunkSections at
1978 // offsets that are multiples of a Target specific branch range.
1979 // For an InputSectionDescription that is smaller than the range, a single
1980 // ThunkSection at the end of the range will do.
1982 // For an InputSectionDescription that is more than twice the size of the range,
1983 // we place the last ThunkSection at range bytes from the end of the
1984 // InputSectionDescription in order to increase the likelihood that the
1985 // distance from a thunk to its target will be sufficiently small to
1986 // allow for the creation of a short thunk.
1987 void ThunkCreator::createInitialThunkSections(
1988 ArrayRef<OutputSection *> outputSections) {
1989 uint32_t thunkSectionSpacing = target->getThunkSectionSpacing();
1991 forEachInputSectionDescription(
1992 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
1993 if (isd->sections.empty())
1994 return;
1996 uint32_t isdBegin = isd->sections.front()->outSecOff;
1997 uint32_t isdEnd =
1998 isd->sections.back()->outSecOff + isd->sections.back()->getSize();
1999 uint32_t lastThunkLowerBound = -1;
2000 if (isdEnd - isdBegin > thunkSectionSpacing * 2)
2001 lastThunkLowerBound = isdEnd - thunkSectionSpacing;
2003 uint32_t isecLimit;
2004 uint32_t prevIsecLimit = isdBegin;
2005 uint32_t thunkUpperBound = isdBegin + thunkSectionSpacing;
2007 for (const InputSection *isec : isd->sections) {
2008 isecLimit = isec->outSecOff + isec->getSize();
2009 if (isecLimit > thunkUpperBound) {
2010 addThunkSection(os, isd, prevIsecLimit);
2011 thunkUpperBound = prevIsecLimit + thunkSectionSpacing;
2013 if (isecLimit > lastThunkLowerBound)
2014 break;
2015 prevIsecLimit = isecLimit;
2017 addThunkSection(os, isd, isecLimit);
2021 ThunkSection *ThunkCreator::addThunkSection(OutputSection *os,
2022 InputSectionDescription *isd,
2023 uint64_t off) {
2024 auto *ts = make<ThunkSection>(os, off);
2025 ts->partition = os->partition;
2026 if ((config->fixCortexA53Errata843419 || config->fixCortexA8) &&
2027 !isd->sections.empty()) {
2028 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
2029 // thunks we disturb the base addresses of sections placed after the thunks
2030 // this makes patches we have generated redundant, and may cause us to
2031 // generate more patches as different instructions are now in sensitive
2032 // locations. When we generate more patches we may force more branches to
2033 // go out of range, causing more thunks to be generated. In pathological
2034 // cases this can cause the address dependent content pass not to converge.
2035 // We fix this by rounding up the size of the ThunkSection to 4KiB, this
2036 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
2037 // which means that adding Thunks to the section does not invalidate
2038 // errata patches for following code.
2039 // Rounding up the size to 4KiB has consequences for code-size and can
2040 // trip up linker script defined assertions. For example the linux kernel
2041 // has an assertion that what LLD represents as an InputSectionDescription
2042 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
2043 // We use the heuristic of rounding up the size when both of the following
2044 // conditions are true:
2045 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
2046 // accounts for the case where no single InputSectionDescription is
2047 // larger than the OutputSection size. This is conservative but simple.
2048 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
2049 // any assertion failures that an InputSectionDescription is < 4 KiB
2050 // in size.
2051 uint64_t isdSize = isd->sections.back()->outSecOff +
2052 isd->sections.back()->getSize() -
2053 isd->sections.front()->outSecOff;
2054 if (os->size > target->getThunkSectionSpacing() && isdSize > 4096)
2055 ts->roundUpSizeForErrata = true;
2057 isd->thunkSections.push_back({ts, pass});
2058 return ts;
2061 static bool isThunkSectionCompatible(InputSection *source,
2062 SectionBase *target) {
2063 // We can't reuse thunks in different loadable partitions because they might
2064 // not be loaded. But partition 1 (the main partition) will always be loaded.
2065 if (source->partition != target->partition)
2066 return target->partition == 1;
2067 return true;
2070 std::pair<Thunk *, bool> ThunkCreator::getThunk(InputSection *isec,
2071 Relocation &rel, uint64_t src) {
2072 std::vector<Thunk *> *thunkVec = nullptr;
2073 // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled
2074 // out in the relocation addend. We compensate for the PC bias so that
2075 // an Arm and Thumb relocation to the same destination get the same keyAddend,
2076 // which is usually 0.
2077 const int64_t pcBias = getPCBias(rel.type);
2078 const int64_t keyAddend = rel.addend + pcBias;
2080 // We use a ((section, offset), addend) pair to find the thunk position if
2081 // possible so that we create only one thunk for aliased symbols or ICFed
2082 // sections. There may be multiple relocations sharing the same (section,
2083 // offset + addend) pair. We may revert the relocation back to its original
2084 // non-Thunk target, so we cannot fold offset + addend.
2085 if (auto *d = dyn_cast<Defined>(rel.sym))
2086 if (!d->isInPlt() && d->section)
2087 thunkVec = &thunkedSymbolsBySectionAndAddend[{{d->section, d->value},
2088 keyAddend}];
2089 if (!thunkVec)
2090 thunkVec = &thunkedSymbols[{rel.sym, keyAddend}];
2092 // Check existing Thunks for Sym to see if they can be reused
2093 for (Thunk *t : *thunkVec)
2094 if (isThunkSectionCompatible(isec, t->getThunkTargetSym()->section) &&
2095 t->isCompatibleWith(*isec, rel) &&
2096 target->inBranchRange(rel.type, src,
2097 t->getThunkTargetSym()->getVA(-pcBias)))
2098 return std::make_pair(t, false);
2100 // No existing compatible Thunk in range, create a new one
2101 Thunk *t = addThunk(*isec, rel);
2102 thunkVec->push_back(t);
2103 return std::make_pair(t, true);
2106 // Return true if the relocation target is an in range Thunk.
2107 // Return false if the relocation is not to a Thunk. If the relocation target
2108 // was originally to a Thunk, but is no longer in range we revert the
2109 // relocation back to its original non-Thunk target.
2110 bool ThunkCreator::normalizeExistingThunk(Relocation &rel, uint64_t src) {
2111 if (Thunk *t = thunks.lookup(rel.sym)) {
2112 if (target->inBranchRange(rel.type, src, rel.sym->getVA(rel.addend)))
2113 return true;
2114 rel.sym = &t->destination;
2115 rel.addend = t->addend;
2116 if (rel.sym->isInPlt())
2117 rel.expr = toPlt(rel.expr);
2119 return false;
2122 // Process all relocations from the InputSections that have been assigned
2123 // to InputSectionDescriptions and redirect through Thunks if needed. The
2124 // function should be called iteratively until it returns false.
2126 // PreConditions:
2127 // All InputSections that may need a Thunk are reachable from
2128 // OutputSectionCommands.
2130 // All OutputSections have an address and all InputSections have an offset
2131 // within the OutputSection.
2133 // The offsets between caller (relocation place) and callee
2134 // (relocation target) will not be modified outside of createThunks().
2136 // PostConditions:
2137 // If return value is true then ThunkSections have been inserted into
2138 // OutputSections. All relocations that needed a Thunk based on the information
2139 // available to createThunks() on entry have been redirected to a Thunk. Note
2140 // that adding Thunks changes offsets between caller and callee so more Thunks
2141 // may be required.
2143 // If return value is false then no more Thunks are needed, and createThunks has
2144 // made no changes. If the target requires range extension thunks, currently
2145 // ARM, then any future change in offset between caller and callee risks a
2146 // relocation out of range error.
2147 bool ThunkCreator::createThunks(uint32_t pass,
2148 ArrayRef<OutputSection *> outputSections) {
2149 this->pass = pass;
2150 bool addressesChanged = false;
2152 if (pass == 0 && target->getThunkSectionSpacing())
2153 createInitialThunkSections(outputSections);
2155 // Create all the Thunks and insert them into synthetic ThunkSections. The
2156 // ThunkSections are later inserted back into InputSectionDescriptions.
2157 // We separate the creation of ThunkSections from the insertion of the
2158 // ThunkSections as ThunkSections are not always inserted into the same
2159 // InputSectionDescription as the caller.
2160 forEachInputSectionDescription(
2161 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2162 for (InputSection *isec : isd->sections)
2163 for (Relocation &rel : isec->relocs()) {
2164 uint64_t src = isec->getVA(rel.offset);
2166 // If we are a relocation to an existing Thunk, check if it is
2167 // still in range. If not then Rel will be altered to point to its
2168 // original target so another Thunk can be generated.
2169 if (pass > 0 && normalizeExistingThunk(rel, src))
2170 continue;
2172 if (!target->needsThunk(rel.expr, rel.type, isec->file, src,
2173 *rel.sym, rel.addend))
2174 continue;
2176 Thunk *t;
2177 bool isNew;
2178 std::tie(t, isNew) = getThunk(isec, rel, src);
2180 if (isNew) {
2181 // Find or create a ThunkSection for the new Thunk
2182 ThunkSection *ts;
2183 if (auto *tis = t->getTargetInputSection())
2184 ts = getISThunkSec(tis);
2185 else
2186 ts = getISDThunkSec(os, isec, isd, rel, src);
2187 ts->addThunk(t);
2188 thunks[t->getThunkTargetSym()] = t;
2191 // Redirect relocation to Thunk, we never go via the PLT to a Thunk
2192 rel.sym = t->getThunkTargetSym();
2193 rel.expr = fromPlt(rel.expr);
2195 // On AArch64 and PPC, a jump/call relocation may be encoded as
2196 // STT_SECTION + non-zero addend, clear the addend after
2197 // redirection.
2198 if (config->emachine != EM_MIPS)
2199 rel.addend = -getPCBias(rel.type);
2202 for (auto &p : isd->thunkSections)
2203 addressesChanged |= p.first->assignOffsets();
2206 for (auto &p : thunkedSections)
2207 addressesChanged |= p.second->assignOffsets();
2209 // Merge all created synthetic ThunkSections back into OutputSection
2210 mergeThunks(outputSections);
2211 return addressesChanged;
2214 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr
2215 // hexagonNeedsTLSSymbol scans for relocations would require a call to
2216 // __tls_get_addr.
2217 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr.
2218 bool elf::hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections) {
2219 bool needTlsSymbol = false;
2220 forEachInputSectionDescription(
2221 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2222 for (InputSection *isec : isd->sections)
2223 for (Relocation &rel : isec->relocs())
2224 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2225 needTlsSymbol = true;
2226 return;
2229 return needTlsSymbol;
2232 void elf::hexagonTLSSymbolUpdate(ArrayRef<OutputSection *> outputSections) {
2233 Symbol *sym = symtab.find("__tls_get_addr");
2234 if (!sym)
2235 return;
2236 bool needEntry = true;
2237 forEachInputSectionDescription(
2238 outputSections, [&](OutputSection *os, InputSectionDescription *isd) {
2239 for (InputSection *isec : isd->sections)
2240 for (Relocation &rel : isec->relocs())
2241 if (rel.sym->type == llvm::ELF::STT_TLS && rel.expr == R_PLT_PC) {
2242 if (needEntry) {
2243 sym->allocateAux();
2244 addPltEntry(*in.plt, *in.gotPlt, *in.relaPlt, target->pltRel,
2245 *sym);
2246 needEntry = false;
2248 rel.sym = sym;
2253 template void elf::scanRelocations<ELF32LE>();
2254 template void elf::scanRelocations<ELF32BE>();
2255 template void elf::scanRelocations<ELF64LE>();
2256 template void elf::scanRelocations<ELF64BE>();