1 //===- Relocations.cpp ----------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains platform-independent functions to process relocations.
10 // I'll describe the overview of this file here.
12 // Simple relocations are easy to handle for the linker. For example,
13 // for R_X86_64_PC64 relocs, the linker just has to fix up locations
14 // with the relative offsets to the target symbols. It would just be
15 // reading records from relocation sections and applying them to output.
17 // But not all relocations are that easy to handle. For example, for
18 // R_386_GOTOFF relocs, the linker has to create new GOT entries for
19 // symbols if they don't exist, and fix up locations with GOT entry
20 // offsets from the beginning of GOT section. So there is more than
21 // fixing addresses in relocation processing.
23 // ELF defines a large number of complex relocations.
25 // The functions in this file analyze relocations and do whatever needs
26 // to be done. It includes, but not limited to, the following.
28 // - create GOT/PLT entries
29 // - create new relocations in .dynsym to let the dynamic linker resolve
30 // them at runtime (since ELF supports dynamic linking, not all
31 // relocations can be resolved at link-time)
32 // - create COPY relocs and reserve space in .bss
33 // - replace expensive relocs (in terms of runtime cost) with cheap ones
34 // - error out infeasible combinations such as PIC and non-relative relocs
36 // Note that the functions in this file don't actually apply relocations
37 // because it doesn't know about the output file nor the output file buffer.
38 // It instead stores Relocation objects to InputSection's Relocations
39 // vector to let it apply later in InputSection::writeTo.
41 //===----------------------------------------------------------------------===//
43 #include "Relocations.h"
45 #include "InputFiles.h"
46 #include "LinkerScript.h"
47 #include "OutputSections.h"
48 #include "SymbolTable.h"
50 #include "SyntheticSections.h"
53 #include "lld/Common/ErrorHandler.h"
54 #include "lld/Common/Memory.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/Demangle/Demangle.h"
57 #include "llvm/Support/Endian.h"
61 using namespace llvm::ELF
;
62 using namespace llvm::object
;
63 using namespace llvm::support::endian
;
65 using namespace lld::elf
;
67 static std::optional
<std::string
> getLinkerScriptLocation(const Symbol
&sym
) {
68 for (SectionCommand
*cmd
: script
->sectionCommands
)
69 if (auto *assign
= dyn_cast
<SymbolAssignment
>(cmd
))
70 if (assign
->sym
== &sym
)
71 return assign
->location
;
75 static std::string
getDefinedLocation(const Symbol
&sym
) {
76 const char msg
[] = "\n>>> defined in ";
78 return msg
+ toString(sym
.file
);
79 if (std::optional
<std::string
> loc
= getLinkerScriptLocation(sym
))
84 // Construct a message in the following format.
86 // >>> defined in /home/alice/src/foo.o
87 // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12)
88 // >>> /home/alice/src/bar.o:(.text+0x1)
89 static std::string
getLocation(InputSectionBase
&s
, const Symbol
&sym
,
91 std::string msg
= getDefinedLocation(sym
) + "\n>>> referenced by ";
92 std::string src
= s
.getSrcMsg(sym
, off
);
94 msg
+= src
+ "\n>>> ";
95 return msg
+ s
.getObjMsg(off
);
98 void elf::reportRangeError(uint8_t *loc
, const Relocation
&rel
, const Twine
&v
,
99 int64_t min
, uint64_t max
) {
100 ErrorPlace errPlace
= getErrorPlace(loc
);
102 if (rel
.sym
&& !rel
.sym
->isSection())
103 hint
= "; references " + lld::toString(*rel
.sym
);
104 if (!errPlace
.srcLoc
.empty())
105 hint
+= "\n>>> referenced by " + errPlace
.srcLoc
;
106 if (rel
.sym
&& !rel
.sym
->isSection())
107 hint
+= getDefinedLocation(*rel
.sym
);
109 if (errPlace
.isec
&& errPlace
.isec
->name
.startswith(".debug"))
110 hint
+= "; consider recompiling with -fdebug-types-section to reduce size "
113 errorOrWarn(errPlace
.loc
+ "relocation " + lld::toString(rel
.type
) +
114 " out of range: " + v
.str() + " is not in [" + Twine(min
).str() +
115 ", " + Twine(max
).str() + "]" + hint
);
118 void elf::reportRangeError(uint8_t *loc
, int64_t v
, int n
, const Symbol
&sym
,
120 ErrorPlace errPlace
= getErrorPlace(loc
);
122 if (!sym
.getName().empty())
123 hint
= "; references " + lld::toString(sym
) + getDefinedLocation(sym
);
124 errorOrWarn(errPlace
.loc
+ msg
+ " is out of range: " + Twine(v
) +
125 " is not in [" + Twine(llvm::minIntN(n
)) + ", " +
126 Twine(llvm::maxIntN(n
)) + "]" + hint
);
129 // Build a bitmask with one bit set for each 64 subset of RelExpr.
130 static constexpr uint64_t buildMask() { return 0; }
132 template <typename
... Tails
>
133 static constexpr uint64_t buildMask(int head
, Tails
... tails
) {
134 return (0 <= head
&& head
< 64 ? uint64_t(1) << head
: 0) |
138 // Return true if `Expr` is one of `Exprs`.
139 // There are more than 64 but less than 128 RelExprs, so we divide the set of
140 // exprs into [0, 64) and [64, 128) and represent each range as a constant
141 // 64-bit mask. Then we decide which mask to test depending on the value of
142 // expr and use a simple shift and bitwise-and to test for membership.
143 template <RelExpr
... Exprs
> static bool oneof(RelExpr expr
) {
144 assert(0 <= expr
&& (int)expr
< 128 &&
145 "RelExpr is too large for 128-bit mask!");
148 return (uint64_t(1) << (expr
- 64)) & buildMask((Exprs
- 64)...);
149 return (uint64_t(1) << expr
) & buildMask(Exprs
...);
152 static RelType
getMipsPairType(RelType type
, bool isLocal
) {
157 // In case of global symbol, the R_MIPS_GOT16 relocation does not
158 // have a pair. Each global symbol has a unique entry in the GOT
159 // and a corresponding instruction with help of the R_MIPS_GOT16
160 // relocation loads an address of the symbol. In case of local
161 // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold
162 // the high 16 bits of the symbol's value. A paired R_MIPS_LO16
163 // relocations handle low 16 bits of the address. That allows
164 // to allocate only one GOT entry for every 64 KBytes of local data.
165 return isLocal
? R_MIPS_LO16
: R_MIPS_NONE
;
166 case R_MICROMIPS_GOT16
:
167 return isLocal
? R_MICROMIPS_LO16
: R_MIPS_NONE
;
169 return R_MIPS_PCLO16
;
170 case R_MICROMIPS_HI16
:
171 return R_MICROMIPS_LO16
;
177 // True if non-preemptable symbol always has the same value regardless of where
178 // the DSO is loaded.
179 static bool isAbsolute(const Symbol
&sym
) {
180 if (sym
.isUndefWeak())
182 if (const auto *dr
= dyn_cast
<Defined
>(&sym
))
183 return dr
->section
== nullptr; // Absolute symbol.
187 static bool isAbsoluteValue(const Symbol
&sym
) {
188 return isAbsolute(sym
) || sym
.isTls();
191 // Returns true if Expr refers a PLT entry.
192 static bool needsPlt(RelExpr expr
) {
193 return oneof
<R_PLT
, R_PLT_PC
, R_PLT_GOTPLT
, R_PPC32_PLTREL
, R_PPC64_CALL_PLT
>(
197 // Returns true if Expr refers a GOT entry. Note that this function
198 // returns false for TLS variables even though they need GOT, because
199 // TLS variables uses GOT differently than the regular variables.
200 static bool needsGot(RelExpr expr
) {
201 return oneof
<R_GOT
, R_GOT_OFF
, R_MIPS_GOT_LOCAL_PAGE
, R_MIPS_GOT_OFF
,
202 R_MIPS_GOT_OFF32
, R_AARCH64_GOT_PAGE_PC
, R_GOT_PC
, R_GOTPLT
,
203 R_AARCH64_GOT_PAGE
>(expr
);
206 // True if this expression is of the form Sym - X, where X is a position in the
207 // file (PC, or GOT for example).
208 static bool isRelExpr(RelExpr expr
) {
209 return oneof
<R_PC
, R_GOTREL
, R_GOTPLTREL
, R_MIPS_GOTREL
, R_PPC64_CALL
,
210 R_PPC64_RELAX_TOC
, R_AARCH64_PAGE_PC
, R_RELAX_GOT_PC
,
211 R_RISCV_PC_INDIRECT
, R_PPC64_RELAX_GOT_PC
>(expr
);
215 static RelExpr
toPlt(RelExpr expr
) {
218 return R_PPC64_CALL_PLT
;
228 static RelExpr
fromPlt(RelExpr expr
) {
229 // We decided not to use a plt. Optimize a reference to the plt to a
230 // reference to the symbol itself.
235 case R_PPC64_CALL_PLT
:
246 // Returns true if a given shared symbol is in a read-only segment in a DSO.
247 template <class ELFT
> static bool isReadOnly(SharedSymbol
&ss
) {
248 using Elf_Phdr
= typename
ELFT::Phdr
;
250 // Determine if the symbol is read-only by scanning the DSO's program headers.
251 const auto &file
= cast
<SharedFile
>(*ss
.file
);
252 for (const Elf_Phdr
&phdr
:
253 check(file
.template getObj
<ELFT
>().program_headers()))
254 if ((phdr
.p_type
== ELF::PT_LOAD
|| phdr
.p_type
== ELF::PT_GNU_RELRO
) &&
255 !(phdr
.p_flags
& ELF::PF_W
) && ss
.value
>= phdr
.p_vaddr
&&
256 ss
.value
< phdr
.p_vaddr
+ phdr
.p_memsz
)
261 // Returns symbols at the same offset as a given symbol, including SS itself.
263 // If two or more symbols are at the same offset, and at least one of
264 // them are copied by a copy relocation, all of them need to be copied.
265 // Otherwise, they would refer to different places at runtime.
266 template <class ELFT
>
267 static SmallSet
<SharedSymbol
*, 4> getSymbolsAt(SharedSymbol
&ss
) {
268 using Elf_Sym
= typename
ELFT::Sym
;
270 const auto &file
= cast
<SharedFile
>(*ss
.file
);
272 SmallSet
<SharedSymbol
*, 4> ret
;
273 for (const Elf_Sym
&s
: file
.template getGlobalELFSyms
<ELFT
>()) {
274 if (s
.st_shndx
== SHN_UNDEF
|| s
.st_shndx
== SHN_ABS
||
275 s
.getType() == STT_TLS
|| s
.st_value
!= ss
.value
)
277 StringRef name
= check(s
.getName(file
.getStringTable()));
278 Symbol
*sym
= symtab
.find(name
);
279 if (auto *alias
= dyn_cast_or_null
<SharedSymbol
>(sym
))
283 // The loop does not check SHT_GNU_verneed, so ret does not contain
284 // non-default version symbols. If ss has a non-default version, ret won't
285 // contain ss. Just add ss unconditionally. If a non-default version alias is
286 // separately copy relocated, it and ss will have different addresses.
287 // Fortunately this case is impractical and fails with GNU ld as well.
292 // When a symbol is copy relocated or we create a canonical plt entry, it is
293 // effectively a defined symbol. In the case of copy relocation the symbol is
294 // in .bss and in the case of a canonical plt entry it is in .plt. This function
295 // replaces the existing symbol with a Defined pointing to the appropriate
297 static void replaceWithDefined(Symbol
&sym
, SectionBase
&sec
, uint64_t value
,
300 Defined(sym
.file
, StringRef(), sym
.binding
, sym
.stOther
, sym
.type
, value
,
304 sym
.verdefIndex
= old
.verdefIndex
;
305 sym
.exportDynamic
= true;
306 sym
.isUsedInRegularObj
= true;
307 // A copy relocated alias may need a GOT entry.
308 sym
.flags
.store(old
.flags
.load(std::memory_order_relaxed
) & NEEDS_GOT
,
309 std::memory_order_relaxed
);
312 // Reserve space in .bss or .bss.rel.ro for copy relocation.
314 // The copy relocation is pretty much a hack. If you use a copy relocation
315 // in your program, not only the symbol name but the symbol's size, RW/RO
316 // bit and alignment become part of the ABI. In addition to that, if the
317 // symbol has aliases, the aliases become part of the ABI. That's subtle,
318 // but if you violate that implicit ABI, that can cause very counter-
319 // intuitive consequences.
321 // So, what is the copy relocation? It's for linking non-position
322 // independent code to DSOs. In an ideal world, all references to data
323 // exported by DSOs should go indirectly through GOT. But if object files
324 // are compiled as non-PIC, all data references are direct. There is no
325 // way for the linker to transform the code to use GOT, as machine
326 // instructions are already set in stone in object files. This is where
327 // the copy relocation takes a role.
329 // A copy relocation instructs the dynamic linker to copy data from a DSO
330 // to a specified address (which is usually in .bss) at load-time. If the
331 // static linker (that's us) finds a direct data reference to a DSO
332 // symbol, it creates a copy relocation, so that the symbol can be
333 // resolved as if it were in .bss rather than in a DSO.
335 // As you can see in this function, we create a copy relocation for the
336 // dynamic linker, and the relocation contains not only symbol name but
337 // various other information about the symbol. So, such attributes become a
340 // Note for application developers: I can give you a piece of advice if
341 // you are writing a shared library. You probably should export only
342 // functions from your library. You shouldn't export variables.
344 // As an example what can happen when you export variables without knowing
345 // the semantics of copy relocations, assume that you have an exported
346 // variable of type T. It is an ABI-breaking change to add new members at
347 // end of T even though doing that doesn't change the layout of the
348 // existing members. That's because the space for the new members are not
349 // reserved in .bss unless you recompile the main program. That means they
350 // are likely to overlap with other data that happens to be laid out next
351 // to the variable in .bss. This kind of issue is sometimes very hard to
352 // debug. What's a solution? Instead of exporting a variable V from a DSO,
353 // define an accessor getV().
354 template <class ELFT
> static void addCopyRelSymbol(SharedSymbol
&ss
) {
355 // Copy relocation against zero-sized symbol doesn't make sense.
356 uint64_t symSize
= ss
.getSize();
357 if (symSize
== 0 || ss
.alignment
== 0)
358 fatal("cannot create a copy relocation for symbol " + toString(ss
));
360 // See if this symbol is in a read-only segment. If so, preserve the symbol's
361 // memory protection by reserving space in the .bss.rel.ro section.
362 bool isRO
= isReadOnly
<ELFT
>(ss
);
364 make
<BssSection
>(isRO
? ".bss.rel.ro" : ".bss", symSize
, ss
.alignment
);
365 OutputSection
*osec
= (isRO
? in
.bssRelRo
: in
.bss
)->getParent();
367 // At this point, sectionBases has been migrated to sections. Append sec to
369 if (osec
->commands
.empty() ||
370 !isa
<InputSectionDescription
>(osec
->commands
.back()))
371 osec
->commands
.push_back(make
<InputSectionDescription
>(""));
372 auto *isd
= cast
<InputSectionDescription
>(osec
->commands
.back());
373 isd
->sections
.push_back(sec
);
374 osec
->commitSection(sec
);
376 // Look through the DSO's dynamic symbol table for aliases and create a
377 // dynamic symbol for each one. This causes the copy relocation to correctly
378 // interpose any aliases.
379 for (SharedSymbol
*sym
: getSymbolsAt
<ELFT
>(ss
))
380 replaceWithDefined(*sym
, *sec
, 0, sym
->size
);
382 mainPart
->relaDyn
->addSymbolReloc(target
->copyRel
, *sec
, 0, ss
);
385 // .eh_frame sections are mergeable input sections, so their input
386 // offsets are not linearly mapped to output section. For each input
387 // offset, we need to find a section piece containing the offset and
388 // add the piece's base address to the input offset to compute the
389 // output offset. That isn't cheap.
391 // This class is to speed up the offset computation. When we process
392 // relocations, we access offsets in the monotonically increasing
393 // order. So we can optimize for that access pattern.
395 // For sections other than .eh_frame, this class doesn't do anything.
399 OffsetGetter() = default;
400 explicit OffsetGetter(InputSectionBase
&sec
) {
401 if (auto *eh
= dyn_cast
<EhInputSection
>(&sec
)) {
409 // Translates offsets in input sections to offsets in output sections.
410 // Given offset must increase monotonically. We assume that Piece is
411 // sorted by inputOff.
412 uint64_t get(uint64_t off
) {
416 while (j
!= fdes
.end() && j
->inputOff
<= off
)
419 if (j
== fdes
.begin() || j
[-1].inputOff
+ j
[-1].size
<= off
) {
420 while (i
!= cies
.end() && i
->inputOff
<= off
)
422 if (i
== cies
.begin() || i
[-1].inputOff
+ i
[-1].size
<= off
)
423 fatal(".eh_frame: relocation is not in any piece");
427 // Offset -1 means that the piece is dead (i.e. garbage collected).
428 if (it
[-1].outputOff
== -1)
430 return it
[-1].outputOff
+ (off
- it
[-1].inputOff
);
434 ArrayRef
<EhSectionPiece
> cies
, fdes
;
435 ArrayRef
<EhSectionPiece
>::iterator i
, j
;
438 // This class encapsulates states needed to scan relocations for one
440 class RelocationScanner
{
442 template <class ELFT
> void scanSection(InputSectionBase
&s
);
445 InputSectionBase
*sec
;
448 // End of relocations, used by Mips/PPC64.
449 const void *end
= nullptr;
451 template <class RelTy
> RelType
getMipsN32RelType(RelTy
*&rel
) const;
452 template <class ELFT
, class RelTy
>
453 int64_t computeMipsAddend(const RelTy
&rel
, RelExpr expr
, bool isLocal
) const;
454 bool isStaticLinkTimeConstant(RelExpr e
, RelType type
, const Symbol
&sym
,
455 uint64_t relOff
) const;
456 void processAux(RelExpr expr
, RelType type
, uint64_t offset
, Symbol
&sym
,
457 int64_t addend
) const;
458 template <class ELFT
, class RelTy
> void scanOne(RelTy
*&i
);
459 template <class ELFT
, class RelTy
> void scan(ArrayRef
<RelTy
> rels
);
463 // MIPS has an odd notion of "paired" relocations to calculate addends.
464 // For example, if a relocation is of R_MIPS_HI16, there must be a
465 // R_MIPS_LO16 relocation after that, and an addend is calculated using
466 // the two relocations.
467 template <class ELFT
, class RelTy
>
468 int64_t RelocationScanner::computeMipsAddend(const RelTy
&rel
, RelExpr expr
,
469 bool isLocal
) const {
470 if (expr
== R_MIPS_GOTREL
&& isLocal
)
471 return sec
->getFile
<ELFT
>()->mipsGp0
;
473 // The ABI says that the paired relocation is used only for REL.
474 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
478 RelType type
= rel
.getType(config
->isMips64EL
);
479 uint32_t pairTy
= getMipsPairType(type
, isLocal
);
480 if (pairTy
== R_MIPS_NONE
)
483 const uint8_t *buf
= sec
->content().data();
484 uint32_t symIndex
= rel
.getSymbol(config
->isMips64EL
);
486 // To make things worse, paired relocations might not be contiguous in
487 // the relocation table, so we need to do linear search. *sigh*
488 for (const RelTy
*ri
= &rel
; ri
!= static_cast<const RelTy
*>(end
); ++ri
)
489 if (ri
->getType(config
->isMips64EL
) == pairTy
&&
490 ri
->getSymbol(config
->isMips64EL
) == symIndex
)
491 return target
->getImplicitAddend(buf
+ ri
->r_offset
, pairTy
);
493 warn("can't find matching " + toString(pairTy
) + " relocation for " +
498 // Custom error message if Sym is defined in a discarded section.
499 template <class ELFT
>
500 static std::string
maybeReportDiscarded(Undefined
&sym
) {
501 auto *file
= dyn_cast_or_null
<ObjFile
<ELFT
>>(sym
.file
);
502 if (!file
|| !sym
.discardedSecIdx
||
503 file
->getSections()[sym
.discardedSecIdx
] != &InputSection::discarded
)
505 ArrayRef
<typename
ELFT::Shdr
> objSections
=
506 file
->template getELFShdrs
<ELFT
>();
509 if (sym
.type
== ELF::STT_SECTION
) {
510 msg
= "relocation refers to a discarded section: ";
512 file
->getObj().getSectionName(objSections
[sym
.discardedSecIdx
]), file
);
514 msg
= "relocation refers to a symbol in a discarded section: " +
517 msg
+= "\n>>> defined in " + toString(file
);
519 Elf_Shdr_Impl
<ELFT
> elfSec
= objSections
[sym
.discardedSecIdx
- 1];
520 if (elfSec
.sh_type
!= SHT_GROUP
)
523 // If the discarded section is a COMDAT.
524 StringRef signature
= file
->getShtGroupSignature(objSections
, elfSec
);
525 if (const InputFile
*prevailing
=
526 symtab
.comdatGroups
.lookup(CachedHashStringRef(signature
))) {
527 msg
+= "\n>>> section group signature: " + signature
.str() +
528 "\n>>> prevailing definition is in " + toString(prevailing
);
529 if (sym
.nonPrevailing
) {
530 msg
+= "\n>>> or the symbol in the prevailing group had STB_WEAK "
531 "binding and the symbol in a non-prevailing group had STB_GLOBAL "
532 "binding. Mixing groups with STB_WEAK and STB_GLOBAL binding "
533 "signature is not supported";
540 // Undefined diagnostics are collected in a vector and emitted once all of
541 // them are known, so that some postprocessing on the list of undefined symbols
542 // can happen before lld emits diagnostics.
543 struct UndefinedDiag
{
546 InputSectionBase
*sec
;
549 std::vector
<Loc
> locs
;
553 std::vector
<UndefinedDiag
> undefs
;
554 std::mutex relocMutex
;
557 // Check whether the definition name def is a mangled function name that matches
558 // the reference name ref.
559 static bool canSuggestExternCForCXX(StringRef ref
, StringRef def
) {
560 llvm::ItaniumPartialDemangler d
;
561 std::string name
= def
.str();
562 if (d
.partialDemangle(name
.c_str()))
564 char *buf
= d
.getFunctionName(nullptr, nullptr);
567 bool ret
= ref
== buf
;
572 // Suggest an alternative spelling of an "undefined symbol" diagnostic. Returns
573 // the suggested symbol, which is either in the symbol table, or in the same
575 static const Symbol
*getAlternativeSpelling(const Undefined
&sym
,
576 std::string
&pre_hint
,
577 std::string
&post_hint
) {
578 DenseMap
<StringRef
, const Symbol
*> map
;
579 if (sym
.file
&& sym
.file
->kind() == InputFile::ObjKind
) {
580 auto *file
= cast
<ELFFileBase
>(sym
.file
);
581 // If sym is a symbol defined in a discarded section, maybeReportDiscarded()
582 // will give an error. Don't suggest an alternative spelling.
583 if (file
&& sym
.discardedSecIdx
!= 0 &&
584 file
->getSections()[sym
.discardedSecIdx
] == &InputSection::discarded
)
587 // Build a map of local defined symbols.
588 for (const Symbol
*s
: sym
.file
->getSymbols())
589 if (s
->isLocal() && s
->isDefined() && !s
->getName().empty())
590 map
.try_emplace(s
->getName(), s
);
593 auto suggest
= [&](StringRef newName
) -> const Symbol
* {
594 // If defined locally.
595 if (const Symbol
*s
= map
.lookup(newName
))
598 // If in the symbol table and not undefined.
599 if (const Symbol
*s
= symtab
.find(newName
))
600 if (!s
->isUndefined())
606 // This loop enumerates all strings of Levenshtein distance 1 as typo
607 // correction candidates and suggests the one that exists as a non-undefined
609 StringRef name
= sym
.getName();
610 for (size_t i
= 0, e
= name
.size(); i
!= e
+ 1; ++i
) {
611 // Insert a character before name[i].
612 std::string newName
= (name
.substr(0, i
) + "0" + name
.substr(i
)).str();
613 for (char c
= '0'; c
<= 'z'; ++c
) {
615 if (const Symbol
*s
= suggest(newName
))
621 // Substitute name[i].
622 newName
= std::string(name
);
623 for (char c
= '0'; c
<= 'z'; ++c
) {
625 if (const Symbol
*s
= suggest(newName
))
629 // Transpose name[i] and name[i+1]. This is of edit distance 2 but it is
632 newName
[i
] = name
[i
+ 1];
633 newName
[i
+ 1] = name
[i
];
634 if (const Symbol
*s
= suggest(newName
))
639 newName
= (name
.substr(0, i
) + name
.substr(i
+ 1)).str();
640 if (const Symbol
*s
= suggest(newName
))
644 // Case mismatch, e.g. Foo vs FOO.
646 if (name
.equals_insensitive(it
.first
))
648 for (Symbol
*sym
: symtab
.getSymbols())
649 if (!sym
->isUndefined() && name
.equals_insensitive(sym
->getName()))
652 // The reference may be a mangled name while the definition is not. Suggest a
653 // missing extern "C".
654 if (name
.startswith("_Z")) {
655 std::string buf
= name
.str();
656 llvm::ItaniumPartialDemangler d
;
657 if (!d
.partialDemangle(buf
.c_str()))
658 if (char *buf
= d
.getFunctionName(nullptr, nullptr)) {
659 const Symbol
*s
= suggest(buf
);
662 pre_hint
= ": extern \"C\" ";
667 const Symbol
*s
= nullptr;
669 if (canSuggestExternCForCXX(name
, it
.first
)) {
674 for (Symbol
*sym
: symtab
.getSymbols())
675 if (canSuggestExternCForCXX(name
, sym
->getName())) {
680 pre_hint
= " to declare ";
681 post_hint
= " as extern \"C\"?";
689 static void reportUndefinedSymbol(const UndefinedDiag
&undef
,
690 bool correctSpelling
) {
691 Undefined
&sym
= *undef
.sym
;
693 auto visibility
= [&]() -> std::string
{
694 switch (sym
.visibility()) {
707 switch (config
->ekind
) {
709 msg
= maybeReportDiscarded
<ELF32LE
>(sym
);
712 msg
= maybeReportDiscarded
<ELF32BE
>(sym
);
715 msg
= maybeReportDiscarded
<ELF64LE
>(sym
);
718 msg
= maybeReportDiscarded
<ELF64BE
>(sym
);
721 llvm_unreachable("");
724 msg
= "undefined " + visibility() + "symbol: " + toString(sym
);
726 const size_t maxUndefReferences
= 3;
728 for (UndefinedDiag::Loc l
: undef
.locs
) {
729 if (i
>= maxUndefReferences
)
731 InputSectionBase
&sec
= *l
.sec
;
732 uint64_t offset
= l
.offset
;
734 msg
+= "\n>>> referenced by ";
735 std::string src
= sec
.getSrcMsg(sym
, offset
);
737 msg
+= src
+ "\n>>> ";
738 msg
+= sec
.getObjMsg(offset
);
742 if (i
< undef
.locs
.size())
743 msg
+= ("\n>>> referenced " + Twine(undef
.locs
.size() - i
) + " more times")
746 if (correctSpelling
) {
747 std::string pre_hint
= ": ", post_hint
;
748 if (const Symbol
*corrected
=
749 getAlternativeSpelling(sym
, pre_hint
, post_hint
)) {
750 msg
+= "\n>>> did you mean" + pre_hint
+ toString(*corrected
) + post_hint
;
752 msg
+= "\n>>> defined in: " + toString(corrected
->file
);
756 if (sym
.getName().startswith("_ZTV"))
758 "\n>>> the vtable symbol may be undefined because the class is missing "
759 "its key function (see https://lld.llvm.org/missingkeyfunction)";
760 if (config
->gcSections
&& config
->zStartStopGC
&&
761 sym
.getName().startswith("__start_")) {
762 msg
+= "\n>>> the encapsulation symbol needs to be retained under "
763 "--gc-sections properly; consider -z nostart-stop-gc "
764 "(see https://lld.llvm.org/ELF/start-stop-gc)";
770 error(msg
, ErrorTag::SymbolNotFound
, {sym
.getName()});
773 void elf::reportUndefinedSymbols() {
774 // Find the first "undefined symbol" diagnostic for each diagnostic, and
775 // collect all "referenced from" lines at the first diagnostic.
776 DenseMap
<Symbol
*, UndefinedDiag
*> firstRef
;
777 for (UndefinedDiag
&undef
: undefs
) {
778 assert(undef
.locs
.size() == 1);
779 if (UndefinedDiag
*canon
= firstRef
.lookup(undef
.sym
)) {
780 canon
->locs
.push_back(undef
.locs
[0]);
783 firstRef
[undef
.sym
] = &undef
;
786 // Enable spell corrector for the first 2 diagnostics.
787 for (const auto &[i
, undef
] : llvm::enumerate(undefs
))
788 if (!undef
.locs
.empty())
789 reportUndefinedSymbol(undef
, i
< 2);
793 // Report an undefined symbol if necessary.
794 // Returns true if the undefined symbol will produce an error message.
795 static bool maybeReportUndefined(Undefined
&sym
, InputSectionBase
&sec
,
797 std::lock_guard
<std::mutex
> lock(relocMutex
);
798 // If versioned, issue an error (even if the symbol is weak) because we don't
799 // know the defining filename which is required to construct a Verneed entry.
800 if (sym
.hasVersionSuffix
) {
801 undefs
.push_back({&sym
, {{&sec
, offset
}}, false});
807 bool canBeExternal
= !sym
.isLocal() && sym
.visibility() == STV_DEFAULT
;
808 if (config
->unresolvedSymbols
== UnresolvedPolicy::Ignore
&& canBeExternal
)
811 // clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
812 // which references a switch table in a discarded .rodata/.text section. The
813 // .toc and the .rela.toc are incorrectly not placed in the comdat. The ELF
814 // spec says references from outside the group to a STB_LOCAL symbol are not
815 // allowed. Work around the bug.
817 // PPC32 .got2 is similar but cannot be fixed. Multiple .got2 is infeasible
818 // because .LC0-.LTOC is not representable if the two labels are in different
820 if (sym
.discardedSecIdx
!= 0 && (sec
.name
== ".got2" || sec
.name
== ".toc"))
824 (config
->unresolvedSymbols
== UnresolvedPolicy::Warn
&& canBeExternal
) ||
825 config
->noinhibitExec
;
826 undefs
.push_back({&sym
, {{&sec
, offset
}}, isWarning
});
830 // MIPS N32 ABI treats series of successive relocations with the same offset
831 // as a single relocation. The similar approach used by N64 ABI, but this ABI
832 // packs all relocations into the single relocation record. Here we emulate
833 // this for the N32 ABI. Iterate over relocation with the same offset and put
834 // theirs types into the single bit-set.
835 template <class RelTy
>
836 RelType
RelocationScanner::getMipsN32RelType(RelTy
*&rel
) const {
838 uint64_t offset
= rel
->r_offset
;
841 while (rel
!= static_cast<const RelTy
*>(end
) && rel
->r_offset
== offset
)
842 type
|= (rel
++)->getType(config
->isMips64EL
) << (8 * n
++);
846 template <bool shard
= false>
847 static void addRelativeReloc(InputSectionBase
&isec
, uint64_t offsetInSec
,
848 Symbol
&sym
, int64_t addend
, RelExpr expr
,
850 Partition
&part
= isec
.getPartition();
852 // Add a relative relocation. If relrDyn section is enabled, and the
853 // relocation offset is guaranteed to be even, add the relocation to
854 // the relrDyn section, otherwise add it to the relaDyn section.
855 // relrDyn sections don't support odd offsets. Also, relrDyn sections
856 // don't store the addend values, so we must write it to the relocated
858 if (part
.relrDyn
&& isec
.addralign
>= 2 && offsetInSec
% 2 == 0) {
859 isec
.addReloc({expr
, type
, offsetInSec
, addend
, &sym
});
861 part
.relrDyn
->relocsVec
[parallel::getThreadIndex()].push_back(
862 {&isec
, offsetInSec
});
864 part
.relrDyn
->relocs
.push_back({&isec
, offsetInSec
});
867 part
.relaDyn
->addRelativeReloc
<shard
>(target
->relativeRel
, isec
, offsetInSec
,
868 sym
, addend
, type
, expr
);
871 template <class PltSection
, class GotPltSection
>
872 static void addPltEntry(PltSection
&plt
, GotPltSection
&gotPlt
,
873 RelocationBaseSection
&rel
, RelType type
, Symbol
&sym
) {
875 gotPlt
.addEntry(sym
);
876 rel
.addReloc({type
, &gotPlt
, sym
.getGotPltOffset(),
877 sym
.isPreemptible
? DynamicReloc::AgainstSymbol
878 : DynamicReloc::AddendOnlyWithTargetVA
,
882 static void addGotEntry(Symbol
&sym
) {
883 in
.got
->addEntry(sym
);
884 uint64_t off
= sym
.getGotOffset();
886 // If preemptible, emit a GLOB_DAT relocation.
887 if (sym
.isPreemptible
) {
888 mainPart
->relaDyn
->addReloc({target
->gotRel
, in
.got
.get(), off
,
889 DynamicReloc::AgainstSymbol
, sym
, 0, R_ABS
});
893 // Otherwise, the value is either a link-time constant or the load base
895 if (!config
->isPic
|| isAbsolute(sym
))
896 in
.got
->addConstant({R_ABS
, target
->symbolicRel
, off
, 0, &sym
});
898 addRelativeReloc(*in
.got
, off
, sym
, 0, R_ABS
, target
->symbolicRel
);
901 static void addTpOffsetGotEntry(Symbol
&sym
) {
902 in
.got
->addEntry(sym
);
903 uint64_t off
= sym
.getGotOffset();
904 if (!sym
.isPreemptible
&& !config
->isPic
) {
905 in
.got
->addConstant({R_TPREL
, target
->symbolicRel
, off
, 0, &sym
});
908 mainPart
->relaDyn
->addAddendOnlyRelocIfNonPreemptible(
909 target
->tlsGotRel
, *in
.got
, off
, sym
, target
->symbolicRel
);
912 // Return true if we can define a symbol in the executable that
913 // contains the value/function of a symbol defined in a shared
915 static bool canDefineSymbolInExecutable(Symbol
&sym
) {
916 // If the symbol has default visibility the symbol defined in the
917 // executable will preempt it.
918 // Note that we want the visibility of the shared symbol itself, not
919 // the visibility of the symbol in the output file we are producing.
920 if (!sym
.dsoProtected
)
923 // If we are allowed to break address equality of functions, defining
924 // a plt entry will allow the program to call the function in the
925 // .so, but the .so and the executable will no agree on the address
926 // of the function. Similar logic for objects.
927 return ((sym
.isFunc() && config
->ignoreFunctionAddressEquality
) ||
928 (sym
.isObject() && config
->ignoreDataAddressEquality
));
931 // Returns true if a given relocation can be computed at link-time.
932 // This only handles relocation types expected in processAux.
934 // For instance, we know the offset from a relocation to its target at
935 // link-time if the relocation is PC-relative and refers a
936 // non-interposable function in the same executable. This function
937 // will return true for such relocation.
939 // If this function returns false, that means we need to emit a
940 // dynamic relocation so that the relocation will be fixed at load-time.
941 bool RelocationScanner::isStaticLinkTimeConstant(RelExpr e
, RelType type
,
943 uint64_t relOff
) const {
944 // These expressions always compute a constant
945 if (oneof
<R_GOTPLT
, R_GOT_OFF
, R_RELAX_HINT
, R_MIPS_GOT_LOCAL_PAGE
,
946 R_MIPS_GOTREL
, R_MIPS_GOT_OFF
, R_MIPS_GOT_OFF32
, R_MIPS_GOT_GP_PC
,
947 R_AARCH64_GOT_PAGE_PC
, R_GOT_PC
, R_GOTONLY_PC
, R_GOTPLTONLY_PC
,
948 R_PLT_PC
, R_PLT_GOTPLT
, R_PPC32_PLTREL
, R_PPC64_CALL_PLT
,
949 R_PPC64_RELAX_TOC
, R_RISCV_ADD
, R_AARCH64_GOT_PAGE
>(e
))
952 // These never do, except if the entire file is position dependent or if
953 // only the low bits are used.
954 if (e
== R_GOT
|| e
== R_PLT
)
955 return target
->usesOnlyLowPageBits(type
) || !config
->isPic
;
957 if (sym
.isPreemptible
)
962 // The size of a non preemptible symbol is a constant.
966 // For the target and the relocation, we want to know if they are
967 // absolute or relative.
968 bool absVal
= isAbsoluteValue(sym
);
969 bool relE
= isRelExpr(e
);
974 if (!absVal
&& !relE
)
975 return target
->usesOnlyLowPageBits(type
);
977 assert(absVal
&& relE
);
979 // Allow R_PLT_PC (optimized to R_PC here) to a hidden undefined weak symbol
980 // in PIC mode. This is a little strange, but it allows us to link function
981 // calls to such symbols (e.g. glibc/stdlib/exit.c:__run_exit_handlers).
982 // Normally such a call will be guarded with a comparison, which will load a
983 // zero from the GOT.
984 if (sym
.isUndefWeak())
987 // We set the final symbols values for linker script defined symbols later.
988 // They always can be computed as a link time constant.
989 if (sym
.scriptDefined
)
992 error("relocation " + toString(type
) + " cannot refer to absolute symbol: " +
993 toString(sym
) + getLocation(*sec
, sym
, relOff
));
997 // The reason we have to do this early scan is as follows
998 // * To mmap the output file, we need to know the size
999 // * For that, we need to know how many dynamic relocs we will have.
1000 // It might be possible to avoid this by outputting the file with write:
1001 // * Write the allocated output sections, computing addresses.
1002 // * Apply relocations, recording which ones require a dynamic reloc.
1003 // * Write the dynamic relocations.
1004 // * Write the rest of the file.
1005 // This would have some drawbacks. For example, we would only know if .rela.dyn
1006 // is needed after applying relocations. If it is, it will go after rw and rx
1007 // sections. Given that it is ro, we will need an extra PT_LOAD. This
1008 // complicates things for the dynamic linker and means we would have to reserve
1009 // space for the extra PT_LOAD even if we end up not using it.
1010 void RelocationScanner::processAux(RelExpr expr
, RelType type
, uint64_t offset
,
1011 Symbol
&sym
, int64_t addend
) const {
1012 // If non-ifunc non-preemptible, change PLT to direct call and optimize GOT
1014 const bool isIfunc
= sym
.isGnuIFunc();
1015 if (!sym
.isPreemptible
&& (!isIfunc
|| config
->zIfuncNoplt
)) {
1016 if (expr
!= R_GOT_PC
) {
1017 // The 0x8000 bit of r_addend of R_PPC_PLTREL24 is used to choose call
1018 // stub type. It should be ignored if optimized to R_PC.
1019 if (config
->emachine
== EM_PPC
&& expr
== R_PPC32_PLTREL
)
1021 // R_HEX_GD_PLT_B22_PCREL (call a@GDPLT) is transformed into
1022 // call __tls_get_addr even if the symbol is non-preemptible.
1023 if (!(config
->emachine
== EM_HEXAGON
&&
1024 (type
== R_HEX_GD_PLT_B22_PCREL
||
1025 type
== R_HEX_GD_PLT_B22_PCREL_X
||
1026 type
== R_HEX_GD_PLT_B32_PCREL_X
)))
1027 expr
= fromPlt(expr
);
1028 } else if (!isAbsoluteValue(sym
)) {
1030 target
->adjustGotPcExpr(type
, addend
, sec
->content().data() + offset
);
1034 // We were asked not to generate PLT entries for ifuncs. Instead, pass the
1035 // direct relocation on through.
1036 if (LLVM_UNLIKELY(isIfunc
) && config
->zIfuncNoplt
) {
1037 std::lock_guard
<std::mutex
> lock(relocMutex
);
1038 sym
.exportDynamic
= true;
1039 mainPart
->relaDyn
->addSymbolReloc(type
, *sec
, offset
, sym
, addend
, type
);
1043 if (needsGot(expr
)) {
1044 if (config
->emachine
== EM_MIPS
) {
1045 // MIPS ABI has special rules to process GOT entries and doesn't
1046 // require relocation entries for them. A special case is TLS
1047 // relocations. In that case dynamic loader applies dynamic
1048 // relocations to initialize TLS GOT entries.
1049 // See "Global Offset Table" in Chapter 5 in the following document
1050 // for detailed description:
1051 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1052 in
.mipsGot
->addEntry(*sec
->file
, sym
, addend
, expr
);
1054 sym
.setFlags(NEEDS_GOT
);
1056 } else if (needsPlt(expr
)) {
1057 sym
.setFlags(NEEDS_PLT
);
1058 } else if (LLVM_UNLIKELY(isIfunc
)) {
1059 sym
.setFlags(HAS_DIRECT_RELOC
);
1062 // If the relocation is known to be a link-time constant, we know no dynamic
1063 // relocation will be created, pass the control to relocateAlloc() or
1064 // relocateNonAlloc() to resolve it.
1066 // The behavior of an undefined weak reference is implementation defined. For
1067 // non-link-time constants, we resolve relocations statically (let
1068 // relocate{,Non}Alloc() resolve them) for -no-pie and try producing dynamic
1069 // relocations for -pie and -shared.
1071 // The general expectation of -no-pie static linking is that there is no
1072 // dynamic relocation (except IRELATIVE). Emitting dynamic relocations for
1073 // -shared matches the spirit of its -z undefs default. -pie has freedom on
1074 // choices, and we choose dynamic relocations to be consistent with the
1075 // handling of GOT-generating relocations.
1076 if (isStaticLinkTimeConstant(expr
, type
, sym
, offset
) ||
1077 (!config
->isPic
&& sym
.isUndefWeak())) {
1078 sec
->addReloc({expr
, type
, offset
, addend
, &sym
});
1082 bool canWrite
= (sec
->flags
& SHF_WRITE
) || !config
->zText
;
1084 RelType rel
= target
->getDynRel(type
);
1085 if (expr
== R_GOT
|| (rel
== target
->symbolicRel
&& !sym
.isPreemptible
)) {
1086 addRelativeReloc
<true>(*sec
, offset
, sym
, addend
, expr
, type
);
1088 } else if (rel
!= 0) {
1089 if (config
->emachine
== EM_MIPS
&& rel
== target
->symbolicRel
)
1090 rel
= target
->relativeRel
;
1091 std::lock_guard
<std::mutex
> lock(relocMutex
);
1092 sec
->getPartition().relaDyn
->addSymbolReloc(rel
, *sec
, offset
, sym
,
1095 // MIPS ABI turns using of GOT and dynamic relocations inside out.
1096 // While regular ABI uses dynamic relocations to fill up GOT entries
1097 // MIPS ABI requires dynamic linker to fills up GOT entries using
1098 // specially sorted dynamic symbol table. This affects even dynamic
1099 // relocations against symbols which do not require GOT entries
1100 // creation explicitly, i.e. do not have any GOT-relocations. So if
1101 // a preemptible symbol has a dynamic relocation we anyway have
1102 // to create a GOT entry for it.
1103 // If a non-preemptible symbol has a dynamic relocation against it,
1104 // dynamic linker takes it st_value, adds offset and writes down
1105 // result of the dynamic relocation. In case of preemptible symbol
1106 // dynamic linker performs symbol resolution, writes the symbol value
1107 // to the GOT entry and reads the GOT entry when it needs to perform
1108 // a dynamic relocation.
1109 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
1110 if (config
->emachine
== EM_MIPS
)
1111 in
.mipsGot
->addEntry(*sec
->file
, sym
, addend
, expr
);
1116 // When producing an executable, we can perform copy relocations (for
1117 // STT_OBJECT) and canonical PLT (for STT_FUNC).
1118 if (!config
->shared
) {
1119 if (!canDefineSymbolInExecutable(sym
)) {
1120 errorOrWarn("cannot preempt symbol: " + toString(sym
) +
1121 getLocation(*sec
, sym
, offset
));
1125 if (sym
.isObject()) {
1126 // Produce a copy relocation.
1127 if (auto *ss
= dyn_cast
<SharedSymbol
>(&sym
)) {
1128 if (!config
->zCopyreloc
)
1129 error("unresolvable relocation " + toString(type
) +
1130 " against symbol '" + toString(*ss
) +
1131 "'; recompile with -fPIC or remove '-z nocopyreloc'" +
1132 getLocation(*sec
, sym
, offset
));
1133 sym
.setFlags(NEEDS_COPY
);
1135 sec
->addReloc({expr
, type
, offset
, addend
, &sym
});
1139 // This handles a non PIC program call to function in a shared library. In
1140 // an ideal world, we could just report an error saying the relocation can
1141 // overflow at runtime. In the real world with glibc, crt1.o has a
1142 // R_X86_64_PC32 pointing to libc.so.
1144 // The general idea on how to handle such cases is to create a PLT entry and
1145 // use that as the function value.
1147 // For the static linking part, we just return a plt expr and everything
1148 // else will use the PLT entry as the address.
1150 // The remaining problem is making sure pointer equality still works. We
1151 // need the help of the dynamic linker for that. We let it know that we have
1152 // a direct reference to a so symbol by creating an undefined symbol with a
1153 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
1154 // the value of the symbol we created. This is true even for got entries, so
1155 // pointer equality is maintained. To avoid an infinite loop, the only entry
1156 // that points to the real function is a dedicated got entry used by the
1157 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
1158 // R_386_JMP_SLOT, etc).
1160 // For position independent executable on i386, the plt entry requires ebx
1161 // to be set. This causes two problems:
1162 // * If some code has a direct reference to a function, it was probably
1163 // compiled without -fPIE/-fPIC and doesn't maintain ebx.
1164 // * If a library definition gets preempted to the executable, it will have
1165 // the wrong ebx value.
1167 if (config
->pie
&& config
->emachine
== EM_386
)
1168 errorOrWarn("symbol '" + toString(sym
) +
1169 "' cannot be preempted; recompile with -fPIE" +
1170 getLocation(*sec
, sym
, offset
));
1171 sym
.setFlags(NEEDS_COPY
| NEEDS_PLT
);
1172 sec
->addReloc({expr
, type
, offset
, addend
, &sym
});
1177 errorOrWarn("relocation " + toString(type
) + " cannot be used against " +
1178 (sym
.getName().empty() ? "local symbol"
1179 : "symbol '" + toString(sym
) + "'") +
1180 "; recompile with -fPIC" + getLocation(*sec
, sym
, offset
));
1183 // This function is similar to the `handleTlsRelocation`. MIPS does not
1184 // support any relaxations for TLS relocations so by factoring out MIPS
1185 // handling in to the separate function we can simplify the code and do not
1186 // pollute other `handleTlsRelocation` by MIPS `ifs` statements.
1187 // Mips has a custom MipsGotSection that handles the writing of GOT entries
1188 // without dynamic relocations.
1189 static unsigned handleMipsTlsRelocation(RelType type
, Symbol
&sym
,
1190 InputSectionBase
&c
, uint64_t offset
,
1191 int64_t addend
, RelExpr expr
) {
1192 if (expr
== R_MIPS_TLSLD
) {
1193 in
.mipsGot
->addTlsIndex(*c
.file
);
1194 c
.addReloc({expr
, type
, offset
, addend
, &sym
});
1197 if (expr
== R_MIPS_TLSGD
) {
1198 in
.mipsGot
->addDynTlsEntry(*c
.file
, sym
);
1199 c
.addReloc({expr
, type
, offset
, addend
, &sym
});
1205 // Notes about General Dynamic and Local Dynamic TLS models below. They may
1206 // require the generation of a pair of GOT entries that have associated dynamic
1207 // relocations. The pair of GOT entries created are of the form GOT[e0] Module
1208 // Index (Used to find pointer to TLS block at run-time) GOT[e1] Offset of
1209 // symbol in TLS block.
1211 // Returns the number of relocations processed.
1212 static unsigned handleTlsRelocation(RelType type
, Symbol
&sym
,
1213 InputSectionBase
&c
, uint64_t offset
,
1214 int64_t addend
, RelExpr expr
) {
1215 if (expr
== R_TPREL
|| expr
== R_TPREL_NEG
) {
1216 if (config
->shared
) {
1217 errorOrWarn("relocation " + toString(type
) + " against " + toString(sym
) +
1218 " cannot be used with -shared" + getLocation(c
, sym
, offset
));
1224 if (config
->emachine
== EM_MIPS
)
1225 return handleMipsTlsRelocation(type
, sym
, c
, offset
, addend
, expr
);
1227 if (oneof
<R_AARCH64_TLSDESC_PAGE
, R_TLSDESC
, R_TLSDESC_CALL
, R_TLSDESC_PC
,
1228 R_TLSDESC_GOTPLT
>(expr
) &&
1230 if (expr
!= R_TLSDESC_CALL
) {
1231 sym
.setFlags(NEEDS_TLSDESC
);
1232 c
.addReloc({expr
, type
, offset
, addend
, &sym
});
1237 // ARM, Hexagon and RISC-V do not support GD/LD to IE/LE relaxation. For
1238 // PPC64, if the file has missing R_PPC64_TLSGD/R_PPC64_TLSLD, disable
1239 // relaxation as well.
1240 bool toExecRelax
= !config
->shared
&& config
->emachine
!= EM_ARM
&&
1241 config
->emachine
!= EM_HEXAGON
&&
1242 config
->emachine
!= EM_RISCV
&&
1243 !c
.file
->ppc64DisableTLSRelax
;
1245 // If we are producing an executable and the symbol is non-preemptable, it
1246 // must be defined and the code sequence can be relaxed to use Local-Exec.
1248 // ARM and RISC-V do not support any relaxations for TLS relocations, however,
1249 // we can omit the DTPMOD dynamic relocations and resolve them at link time
1250 // because them are always 1. This may be necessary for static linking as
1251 // DTPMOD may not be expected at load time.
1252 bool isLocalInExecutable
= !sym
.isPreemptible
&& !config
->shared
;
1254 // Local Dynamic is for access to module local TLS variables, while still
1255 // being suitable for being dynamically loaded via dlopen. GOT[e0] is the
1256 // module index, with a special value of 0 for the current module. GOT[e1] is
1257 // unused. There only needs to be one module index entry.
1258 if (oneof
<R_TLSLD_GOT
, R_TLSLD_GOTPLT
, R_TLSLD_PC
, R_TLSLD_HINT
>(
1260 // Local-Dynamic relocs can be relaxed to Local-Exec.
1262 c
.addReloc({target
->adjustTlsExpr(type
, R_RELAX_TLS_LD_TO_LE
), type
,
1263 offset
, addend
, &sym
});
1264 return target
->getTlsGdRelaxSkip(type
);
1266 if (expr
== R_TLSLD_HINT
)
1268 ctx
.needsTlsLd
.store(true, std::memory_order_relaxed
);
1269 c
.addReloc({expr
, type
, offset
, addend
, &sym
});
1273 // Local-Dynamic relocs can be relaxed to Local-Exec.
1274 if (expr
== R_DTPREL
) {
1276 expr
= target
->adjustTlsExpr(type
, R_RELAX_TLS_LD_TO_LE
);
1277 c
.addReloc({expr
, type
, offset
, addend
, &sym
});
1281 // Local-Dynamic sequence where offset of tls variable relative to dynamic
1282 // thread pointer is stored in the got. This cannot be relaxed to Local-Exec.
1283 if (expr
== R_TLSLD_GOT_OFF
) {
1284 sym
.setFlags(NEEDS_GOT_DTPREL
);
1285 c
.addReloc({expr
, type
, offset
, addend
, &sym
});
1289 if (oneof
<R_AARCH64_TLSDESC_PAGE
, R_TLSDESC
, R_TLSDESC_CALL
, R_TLSDESC_PC
,
1290 R_TLSDESC_GOTPLT
, R_TLSGD_GOT
, R_TLSGD_GOTPLT
, R_TLSGD_PC
>(expr
)) {
1292 sym
.setFlags(NEEDS_TLSGD
);
1293 c
.addReloc({expr
, type
, offset
, addend
, &sym
});
1297 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
1298 // depending on the symbol being locally defined or not.
1299 if (sym
.isPreemptible
) {
1300 sym
.setFlags(NEEDS_TLSGD_TO_IE
);
1301 c
.addReloc({target
->adjustTlsExpr(type
, R_RELAX_TLS_GD_TO_IE
), type
,
1302 offset
, addend
, &sym
});
1304 c
.addReloc({target
->adjustTlsExpr(type
, R_RELAX_TLS_GD_TO_LE
), type
,
1305 offset
, addend
, &sym
});
1307 return target
->getTlsGdRelaxSkip(type
);
1310 if (oneof
<R_GOT
, R_GOTPLT
, R_GOT_PC
, R_AARCH64_GOT_PAGE_PC
, R_GOT_OFF
,
1311 R_TLSIE_HINT
>(expr
)) {
1312 ctx
.hasTlsIe
.store(true, std::memory_order_relaxed
);
1313 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
1315 if (toExecRelax
&& isLocalInExecutable
) {
1316 c
.addReloc({R_RELAX_TLS_IE_TO_LE
, type
, offset
, addend
, &sym
});
1317 } else if (expr
!= R_TLSIE_HINT
) {
1318 sym
.setFlags(NEEDS_TLSIE
);
1319 // R_GOT needs a relative relocation for PIC on i386 and Hexagon.
1320 if (expr
== R_GOT
&& config
->isPic
&& !target
->usesOnlyLowPageBits(type
))
1321 addRelativeReloc
<true>(c
, offset
, sym
, addend
, expr
, type
);
1323 c
.addReloc({expr
, type
, offset
, addend
, &sym
});
1331 template <class ELFT
, class RelTy
> void RelocationScanner::scanOne(RelTy
*&i
) {
1332 const RelTy
&rel
= *i
;
1333 uint32_t symIndex
= rel
.getSymbol(config
->isMips64EL
);
1334 Symbol
&sym
= sec
->getFile
<ELFT
>()->getSymbol(symIndex
);
1336 if (config
->mipsN32Abi
) {
1337 type
= getMipsN32RelType(i
);
1339 type
= rel
.getType(config
->isMips64EL
);
1342 // Get an offset in an output section this relocation is applied to.
1343 uint64_t offset
= getter
.get(rel
.r_offset
);
1344 if (offset
== uint64_t(-1))
1347 RelExpr expr
= target
->getRelExpr(type
, sym
, sec
->content().data() + offset
);
1348 int64_t addend
= RelTy::IsRela
1349 ? getAddend
<ELFT
>(rel
)
1350 : target
->getImplicitAddend(
1351 sec
->content().data() + rel
.r_offset
, type
);
1352 if (LLVM_UNLIKELY(config
->emachine
== EM_MIPS
))
1353 addend
+= computeMipsAddend
<ELFT
>(rel
, expr
, sym
.isLocal());
1354 else if (config
->emachine
== EM_PPC64
&& config
->isPic
&& type
== R_PPC64_TOC
)
1355 addend
+= getPPC64TocBase();
1357 // Ignore R_*_NONE and other marker relocations.
1361 // Error if the target symbol is undefined. Symbol index 0 may be used by
1362 // marker relocations, e.g. R_*_NONE and R_ARM_V4BX. Don't error on them.
1363 if (sym
.isUndefined() && symIndex
!= 0 &&
1364 maybeReportUndefined(cast
<Undefined
>(sym
), *sec
, offset
))
1367 if (config
->emachine
== EM_PPC64
) {
1368 // We can separate the small code model relocations into 2 categories:
1369 // 1) Those that access the compiler generated .toc sections.
1370 // 2) Those that access the linker allocated got entries.
1371 // lld allocates got entries to symbols on demand. Since we don't try to
1372 // sort the got entries in any way, we don't have to track which objects
1373 // have got-based small code model relocs. The .toc sections get placed
1374 // after the end of the linker allocated .got section and we do sort those
1375 // so sections addressed with small code model relocations come first.
1376 if (type
== R_PPC64_TOC16
|| type
== R_PPC64_TOC16_DS
)
1377 sec
->file
->ppc64SmallCodeModelTocRelocs
= true;
1379 // Record the TOC entry (.toc + addend) as not relaxable. See the comment in
1380 // InputSectionBase::relocateAlloc().
1381 if (type
== R_PPC64_TOC16_LO
&& sym
.isSection() && isa
<Defined
>(sym
) &&
1382 cast
<Defined
>(sym
).section
->name
== ".toc")
1383 ppc64noTocRelax
.insert({&sym
, addend
});
1385 if ((type
== R_PPC64_TLSGD
&& expr
== R_TLSDESC_CALL
) ||
1386 (type
== R_PPC64_TLSLD
&& expr
== R_TLSLD_HINT
)) {
1388 errorOrWarn("R_PPC64_TLSGD/R_PPC64_TLSLD may not be the last "
1390 getLocation(*sec
, sym
, offset
));
1394 // Offset the 4-byte aligned R_PPC64_TLSGD by one byte in the NOTOC case,
1395 // so we can discern it later from the toc-case.
1396 if (i
->getType(/*isMips64EL=*/false) == R_PPC64_REL24_NOTOC
)
1401 // If the relocation does not emit a GOT or GOTPLT entry but its computation
1402 // uses their addresses, we need GOT or GOTPLT to be created.
1404 // The 5 types that relative GOTPLT are all x86 and x86-64 specific.
1405 if (oneof
<R_GOTPLTONLY_PC
, R_GOTPLTREL
, R_GOTPLT
, R_PLT_GOTPLT
,
1406 R_TLSDESC_GOTPLT
, R_TLSGD_GOTPLT
>(expr
)) {
1407 in
.gotPlt
->hasGotPltOffRel
.store(true, std::memory_order_relaxed
);
1408 } else if (oneof
<R_GOTONLY_PC
, R_GOTREL
, R_PPC32_PLTREL
, R_PPC64_TOCBASE
,
1409 R_PPC64_RELAX_TOC
>(expr
)) {
1410 in
.got
->hasGotOffRel
.store(true, std::memory_order_relaxed
);
1413 // Process TLS relocations, including relaxing TLS relocations. Note that
1414 // R_TPREL and R_TPREL_NEG relocations are resolved in processAux.
1416 if (unsigned processed
=
1417 handleTlsRelocation(type
, sym
, *sec
, offset
, addend
, expr
)) {
1423 processAux(expr
, type
, offset
, sym
, addend
);
1426 // R_PPC64_TLSGD/R_PPC64_TLSLD is required to mark `bl __tls_get_addr` for
1427 // General Dynamic/Local Dynamic code sequences. If a GD/LD GOT relocation is
1428 // found but no R_PPC64_TLSGD/R_PPC64_TLSLD is seen, we assume that the
1429 // instructions are generated by very old IBM XL compilers. Work around the
1430 // issue by disabling GD/LD to IE/LE relaxation.
1431 template <class RelTy
>
1432 static void checkPPC64TLSRelax(InputSectionBase
&sec
, ArrayRef
<RelTy
> rels
) {
1433 // Skip if sec is synthetic (sec.file is null) or if sec has been marked.
1434 if (!sec
.file
|| sec
.file
->ppc64DisableTLSRelax
)
1436 bool hasGDLD
= false;
1437 for (const RelTy
&rel
: rels
) {
1438 RelType type
= rel
.getType(false);
1442 return; // Found a marker
1443 case R_PPC64_GOT_TLSGD16
:
1444 case R_PPC64_GOT_TLSGD16_HA
:
1445 case R_PPC64_GOT_TLSGD16_HI
:
1446 case R_PPC64_GOT_TLSGD16_LO
:
1447 case R_PPC64_GOT_TLSLD16
:
1448 case R_PPC64_GOT_TLSLD16_HA
:
1449 case R_PPC64_GOT_TLSLD16_HI
:
1450 case R_PPC64_GOT_TLSLD16_LO
:
1456 sec
.file
->ppc64DisableTLSRelax
= true;
1457 warn(toString(sec
.file
) +
1458 ": disable TLS relaxation due to R_PPC64_GOT_TLS* relocations without "
1459 "R_PPC64_TLSGD/R_PPC64_TLSLD relocations");
1463 template <class ELFT
, class RelTy
>
1464 void RelocationScanner::scan(ArrayRef
<RelTy
> rels
) {
1465 // Not all relocations end up in Sec->Relocations, but a lot do.
1466 sec
->relocations
.reserve(rels
.size());
1468 if (config
->emachine
== EM_PPC64
)
1469 checkPPC64TLSRelax
<RelTy
>(*sec
, rels
);
1471 // For EhInputSection, OffsetGetter expects the relocations to be sorted by
1472 // r_offset. In rare cases (.eh_frame pieces are reordered by a linker
1473 // script), the relocations may be unordered.
1474 SmallVector
<RelTy
, 0> storage
;
1475 if (isa
<EhInputSection
>(sec
))
1476 rels
= sortRels(rels
, storage
);
1478 end
= static_cast<const void *>(rels
.end());
1479 for (auto i
= rels
.begin(); i
!= end
;)
1482 // Sort relocations by offset for more efficient searching for
1483 // R_RISCV_PCREL_HI20 and R_PPC64_ADDR64.
1484 if (config
->emachine
== EM_RISCV
||
1485 (config
->emachine
== EM_PPC64
&& sec
->name
== ".toc"))
1486 llvm::stable_sort(sec
->relocs(),
1487 [](const Relocation
&lhs
, const Relocation
&rhs
) {
1488 return lhs
.offset
< rhs
.offset
;
1492 template <class ELFT
> void RelocationScanner::scanSection(InputSectionBase
&s
) {
1494 getter
= OffsetGetter(s
);
1495 const RelsOrRelas
<ELFT
> rels
= s
.template relsOrRelas
<ELFT
>();
1496 if (rels
.areRelocsRel())
1497 scan
<ELFT
>(rels
.rels
);
1499 scan
<ELFT
>(rels
.relas
);
1502 template <class ELFT
> void elf::scanRelocations() {
1503 // Scan all relocations. Each relocation goes through a series of tests to
1504 // determine if it needs special treatment, such as creating GOT, PLT,
1505 // copy relocations, etc. Note that relocations for non-alloc sections are
1506 // directly processed by InputSection::relocateNonAlloc.
1508 // Deterministic parallellism needs sorting relocations which is unsuitable
1509 // for -z nocombreloc. MIPS and PPC64 use global states which are not suitable
1511 bool serial
= !config
->zCombreloc
|| config
->emachine
== EM_MIPS
||
1512 config
->emachine
== EM_PPC64
;
1513 parallel::TaskGroup tg
;
1514 for (ELFFileBase
*f
: ctx
.objectFiles
) {
1516 RelocationScanner scanner
;
1517 for (InputSectionBase
*s
: f
->getSections()) {
1518 if (s
&& s
->kind() == SectionBase::Regular
&& s
->isLive() &&
1519 (s
->flags
& SHF_ALLOC
) &&
1520 !(s
->type
== SHT_ARM_EXIDX
&& config
->emachine
== EM_ARM
))
1521 scanner
.template scanSection
<ELFT
>(*s
);
1530 // Both the main thread and thread pool index 0 use getThreadIndex()==0. Be
1531 // careful that they don't concurrently run scanSections. When serial is
1532 // true, fn() has finished at this point, so running execute is safe.
1534 RelocationScanner scanner
;
1535 for (Partition
&part
: partitions
) {
1536 for (EhInputSection
*sec
: part
.ehFrame
->sections
)
1537 scanner
.template scanSection
<ELFT
>(*sec
);
1538 if (part
.armExidx
&& part
.armExidx
->isLive())
1539 for (InputSection
*sec
: part
.armExidx
->exidxSections
)
1540 scanner
.template scanSection
<ELFT
>(*sec
);
1545 static bool handleNonPreemptibleIfunc(Symbol
&sym
, uint16_t flags
) {
1546 // Handle a reference to a non-preemptible ifunc. These are special in a
1549 // - Unlike most non-preemptible symbols, non-preemptible ifuncs do not have
1550 // a fixed value. But assuming that all references to the ifunc are
1551 // GOT-generating or PLT-generating, the handling of an ifunc is
1552 // relatively straightforward. We create a PLT entry in Iplt, which is
1553 // usually at the end of .plt, which makes an indirect call using a
1554 // matching GOT entry in igotPlt, which is usually at the end of .got.plt.
1555 // The GOT entry is relocated using an IRELATIVE relocation in relaIplt,
1556 // which is usually at the end of .rela.plt. Unlike most relocations in
1557 // .rela.plt, which may be evaluated lazily without -z now, dynamic
1558 // loaders evaluate IRELATIVE relocs eagerly, which means that for
1559 // IRELATIVE relocs only, GOT-generating relocations can point directly to
1560 // .got.plt without requiring a separate GOT entry.
1562 // - Despite the fact that an ifunc does not have a fixed value, compilers
1563 // that are not passed -fPIC will assume that they do, and will emit
1564 // direct (non-GOT-generating, non-PLT-generating) relocations to the
1565 // symbol. This means that if a direct relocation to the symbol is
1566 // seen, the linker must set a value for the symbol, and this value must
1567 // be consistent no matter what type of reference is made to the symbol.
1568 // This can be done by creating a PLT entry for the symbol in the way
1569 // described above and making it canonical, that is, making all references
1570 // point to the PLT entry instead of the resolver. In lld we also store
1571 // the address of the PLT entry in the dynamic symbol table, which means
1572 // that the symbol will also have the same value in other modules.
1573 // Because the value loaded from the GOT needs to be consistent with
1574 // the value computed using a direct relocation, a non-preemptible ifunc
1575 // may end up with two GOT entries, one in .got.plt that points to the
1576 // address returned by the resolver and is used only by the PLT entry,
1577 // and another in .got that points to the PLT entry and is used by
1578 // GOT-generating relocations.
1580 // - The fact that these symbols do not have a fixed value makes them an
1581 // exception to the general rule that a statically linked executable does
1582 // not require any form of dynamic relocation. To handle these relocations
1583 // correctly, the IRELATIVE relocations are stored in an array which a
1584 // statically linked executable's startup code must enumerate using the
1585 // linker-defined symbols __rela?_iplt_{start,end}.
1586 if (!sym
.isGnuIFunc() || sym
.isPreemptible
|| config
->zIfuncNoplt
)
1588 // Skip unreferenced non-preemptible ifunc.
1589 if (!(flags
& (NEEDS_GOT
| NEEDS_PLT
| HAS_DIRECT_RELOC
)))
1592 sym
.isInIplt
= true;
1594 // Create an Iplt and the associated IRELATIVE relocation pointing to the
1595 // original section/value pairs. For non-GOT non-PLT relocation case below, we
1596 // may alter section/value, so create a copy of the symbol to make
1597 // section/value fixed.
1598 auto *directSym
= makeDefined(cast
<Defined
>(sym
));
1599 directSym
->allocateAux();
1600 addPltEntry(*in
.iplt
, *in
.igotPlt
, *in
.relaIplt
, target
->iRelativeRel
,
1603 symAux
.back().pltIdx
= symAux
[directSym
->auxIdx
].pltIdx
;
1605 if (flags
& HAS_DIRECT_RELOC
) {
1606 // Change the value to the IPLT and redirect all references to it.
1607 auto &d
= cast
<Defined
>(sym
);
1608 d
.section
= in
.iplt
.get();
1609 d
.value
= d
.getPltIdx() * target
->ipltEntrySize
;
1611 // It's important to set the symbol type here so that dynamic loaders
1612 // don't try to call the PLT as if it were an ifunc resolver.
1615 if (flags
& NEEDS_GOT
)
1617 } else if (flags
& NEEDS_GOT
) {
1618 // Redirect GOT accesses to point to the Igot.
1619 sym
.gotInIgot
= true;
1624 void elf::postScanRelocations() {
1625 auto fn
= [](Symbol
&sym
) {
1626 auto flags
= sym
.flags
.load(std::memory_order_relaxed
);
1627 if (handleNonPreemptibleIfunc(sym
, flags
))
1629 if (!sym
.needsDynReloc())
1633 if (flags
& NEEDS_GOT
)
1635 if (flags
& NEEDS_PLT
)
1636 addPltEntry(*in
.plt
, *in
.gotPlt
, *in
.relaPlt
, target
->pltRel
, sym
);
1637 if (flags
& NEEDS_COPY
) {
1638 if (sym
.isObject()) {
1639 invokeELFT(addCopyRelSymbol
, cast
<SharedSymbol
>(sym
));
1640 // NEEDS_COPY is cleared for sym and its aliases so that in
1641 // later iterations aliases won't cause redundant copies.
1642 assert(!sym
.hasFlag(NEEDS_COPY
));
1644 assert(sym
.isFunc() && sym
.hasFlag(NEEDS_PLT
));
1645 if (!sym
.isDefined()) {
1646 replaceWithDefined(sym
, *in
.plt
,
1647 target
->pltHeaderSize
+
1648 target
->pltEntrySize
* sym
.getPltIdx(),
1650 sym
.setFlags(NEEDS_COPY
);
1651 if (config
->emachine
== EM_PPC
) {
1652 // PPC32 canonical PLT entries are at the beginning of .glink
1653 cast
<Defined
>(sym
).value
= in
.plt
->headerSize
;
1654 in
.plt
->headerSize
+= 16;
1655 cast
<PPC32GlinkSection
>(*in
.plt
).canonical_plts
.push_back(&sym
);
1663 bool isLocalInExecutable
= !sym
.isPreemptible
&& !config
->shared
;
1664 GotSection
*got
= in
.got
.get();
1666 if (flags
& NEEDS_TLSDESC
) {
1667 got
->addTlsDescEntry(sym
);
1668 mainPart
->relaDyn
->addAddendOnlyRelocIfNonPreemptible(
1669 target
->tlsDescRel
, *got
, got
->getTlsDescOffset(sym
), sym
,
1670 target
->tlsDescRel
);
1672 if (flags
& NEEDS_TLSGD
) {
1673 got
->addDynTlsEntry(sym
);
1674 uint64_t off
= got
->getGlobalDynOffset(sym
);
1675 if (isLocalInExecutable
)
1676 // Write one to the GOT slot.
1677 got
->addConstant({R_ADDEND
, target
->symbolicRel
, off
, 1, &sym
});
1679 mainPart
->relaDyn
->addSymbolReloc(target
->tlsModuleIndexRel
, *got
, off
,
1682 // If the symbol is preemptible we need the dynamic linker to write
1684 uint64_t offsetOff
= off
+ config
->wordsize
;
1685 if (sym
.isPreemptible
)
1686 mainPart
->relaDyn
->addSymbolReloc(target
->tlsOffsetRel
, *got
, offsetOff
,
1689 got
->addConstant({R_ABS
, target
->tlsOffsetRel
, offsetOff
, 0, &sym
});
1691 if (flags
& NEEDS_TLSGD_TO_IE
) {
1693 mainPart
->relaDyn
->addSymbolReloc(target
->tlsGotRel
, *got
,
1694 sym
.getGotOffset(), sym
);
1696 if (flags
& NEEDS_GOT_DTPREL
) {
1699 {R_ABS
, target
->tlsOffsetRel
, sym
.getGotOffset(), 0, &sym
});
1702 if ((flags
& NEEDS_TLSIE
) && !(flags
& NEEDS_TLSGD_TO_IE
))
1703 addTpOffsetGotEntry(sym
);
1706 GotSection
*got
= in
.got
.get();
1707 if (ctx
.needsTlsLd
.load(std::memory_order_relaxed
) && got
->addTlsIndex()) {
1708 static Undefined
dummy(nullptr, "", STB_LOCAL
, 0, 0);
1710 mainPart
->relaDyn
->addReloc(
1711 {target
->tlsModuleIndexRel
, got
, got
->getTlsIndexOff()});
1714 {R_ADDEND
, target
->symbolicRel
, got
->getTlsIndexOff(), 1, &dummy
});
1717 assert(symAux
.size() == 1);
1718 for (Symbol
*sym
: symtab
.getSymbols())
1721 // Local symbols may need the aforementioned non-preemptible ifunc and GOT
1722 // handling. They don't need regular PLT.
1723 for (ELFFileBase
*file
: ctx
.objectFiles
)
1724 for (Symbol
*sym
: file
->getLocalSymbols())
1728 static bool mergeCmp(const InputSection
*a
, const InputSection
*b
) {
1729 // std::merge requires a strict weak ordering.
1730 if (a
->outSecOff
< b
->outSecOff
)
1733 // FIXME dyn_cast<ThunkSection> is non-null for any SyntheticSection.
1734 if (a
->outSecOff
== b
->outSecOff
&& a
!= b
) {
1735 auto *ta
= dyn_cast
<ThunkSection
>(a
);
1736 auto *tb
= dyn_cast
<ThunkSection
>(b
);
1738 // Check if Thunk is immediately before any specific Target
1739 // InputSection for example Mips LA25 Thunks.
1740 if (ta
&& ta
->getTargetInputSection() == b
)
1743 // Place Thunk Sections without specific targets before
1744 // non-Thunk Sections.
1745 if (ta
&& !tb
&& !ta
->getTargetInputSection())
1752 // Call Fn on every executable InputSection accessed via the linker script
1753 // InputSectionDescription::Sections.
1754 static void forEachInputSectionDescription(
1755 ArrayRef
<OutputSection
*> outputSections
,
1756 llvm::function_ref
<void(OutputSection
*, InputSectionDescription
*)> fn
) {
1757 for (OutputSection
*os
: outputSections
) {
1758 if (!(os
->flags
& SHF_ALLOC
) || !(os
->flags
& SHF_EXECINSTR
))
1760 for (SectionCommand
*bc
: os
->commands
)
1761 if (auto *isd
= dyn_cast
<InputSectionDescription
>(bc
))
1766 // Thunk Implementation
1768 // Thunks (sometimes called stubs, veneers or branch islands) are small pieces
1769 // of code that the linker inserts inbetween a caller and a callee. The thunks
1770 // are added at link time rather than compile time as the decision on whether
1771 // a thunk is needed, such as the caller and callee being out of range, can only
1772 // be made at link time.
1774 // It is straightforward to tell given the current state of the program when a
1775 // thunk is needed for a particular call. The more difficult part is that
1776 // the thunk needs to be placed in the program such that the caller can reach
1777 // the thunk and the thunk can reach the callee; furthermore, adding thunks to
1778 // the program alters addresses, which can mean more thunks etc.
1780 // In lld we have a synthetic ThunkSection that can hold many Thunks.
1781 // The decision to have a ThunkSection act as a container means that we can
1782 // more easily handle the most common case of a single block of contiguous
1783 // Thunks by inserting just a single ThunkSection.
1785 // The implementation of Thunks in lld is split across these areas
1786 // Relocations.cpp : Framework for creating and placing thunks
1787 // Thunks.cpp : The code generated for each supported thunk
1788 // Target.cpp : Target specific hooks that the framework uses to decide when
1790 // Synthetic.cpp : Implementation of ThunkSection
1791 // Writer.cpp : Iteratively call framework until no more Thunks added
1793 // Thunk placement requirements:
1794 // Mips LA25 thunks. These must be placed immediately before the callee section
1795 // We can assume that the caller is in range of the Thunk. These are modelled
1796 // by Thunks that return the section they must precede with
1797 // getTargetInputSection().
1799 // ARM interworking and range extension thunks. These thunks must be placed
1800 // within range of the caller. All implemented ARM thunks can always reach the
1801 // callee as they use an indirect jump via a register that has no range
1804 // Thunk placement algorithm:
1805 // For Mips LA25 ThunkSections; the placement is explicit, it has to be before
1806 // getTargetInputSection().
1808 // For thunks that must be placed within range of the caller there are many
1809 // possible choices given that the maximum range from the caller is usually
1810 // much larger than the average InputSection size. Desirable properties include:
1811 // - Maximize reuse of thunks by multiple callers
1812 // - Minimize number of ThunkSections to simplify insertion
1813 // - Handle impact of already added Thunks on addresses
1814 // - Simple to understand and implement
1816 // In lld for the first pass, we pre-create one or more ThunkSections per
1817 // InputSectionDescription at Target specific intervals. A ThunkSection is
1818 // placed so that the estimated end of the ThunkSection is within range of the
1819 // start of the InputSectionDescription or the previous ThunkSection. For
1821 // InputSectionDescription
1831 // The intention is that we can add a Thunk to a ThunkSection that is well
1832 // spaced enough to service a number of callers without having to do a lot
1833 // of work. An important principle is that it is not an error if a Thunk cannot
1834 // be placed in a pre-created ThunkSection; when this happens we create a new
1835 // ThunkSection placed next to the caller. This allows us to handle the vast
1836 // majority of thunks simply, but also handle rare cases where the branch range
1837 // is smaller than the target specific spacing.
1839 // The algorithm is expected to create all the thunks that are needed in a
1840 // single pass, with a small number of programs needing a second pass due to
1841 // the insertion of thunks in the first pass increasing the offset between
1842 // callers and callees that were only just in range.
1844 // A consequence of allowing new ThunkSections to be created outside of the
1845 // pre-created ThunkSections is that in rare cases calls to Thunks that were in
1846 // range in pass K, are out of range in some pass > K due to the insertion of
1847 // more Thunks in between the caller and callee. When this happens we retarget
1848 // the relocation back to the original target and create another Thunk.
1850 // Remove ThunkSections that are empty, this should only be the initial set
1851 // precreated on pass 0.
1853 // Insert the Thunks for OutputSection OS into their designated place
1854 // in the Sections vector, and recalculate the InputSection output section
1856 // This may invalidate any output section offsets stored outside of InputSection
1857 void ThunkCreator::mergeThunks(ArrayRef
<OutputSection
*> outputSections
) {
1858 forEachInputSectionDescription(
1859 outputSections
, [&](OutputSection
*os
, InputSectionDescription
*isd
) {
1860 if (isd
->thunkSections
.empty())
1863 // Remove any zero sized precreated Thunks.
1864 llvm::erase_if(isd
->thunkSections
,
1865 [](const std::pair
<ThunkSection
*, uint32_t> &ts
) {
1866 return ts
.first
->getSize() == 0;
1869 // ISD->ThunkSections contains all created ThunkSections, including
1870 // those inserted in previous passes. Extract the Thunks created this
1871 // pass and order them in ascending outSecOff.
1872 std::vector
<ThunkSection
*> newThunks
;
1873 for (std::pair
<ThunkSection
*, uint32_t> ts
: isd
->thunkSections
)
1874 if (ts
.second
== pass
)
1875 newThunks
.push_back(ts
.first
);
1876 llvm::stable_sort(newThunks
,
1877 [](const ThunkSection
*a
, const ThunkSection
*b
) {
1878 return a
->outSecOff
< b
->outSecOff
;
1881 // Merge sorted vectors of Thunks and InputSections by outSecOff
1882 SmallVector
<InputSection
*, 0> tmp
;
1883 tmp
.reserve(isd
->sections
.size() + newThunks
.size());
1885 std::merge(isd
->sections
.begin(), isd
->sections
.end(),
1886 newThunks
.begin(), newThunks
.end(), std::back_inserter(tmp
),
1889 isd
->sections
= std::move(tmp
);
1893 static int64_t getPCBias(RelType type
) {
1894 if (config
->emachine
!= EM_ARM
)
1897 case R_ARM_THM_JUMP19
:
1898 case R_ARM_THM_JUMP24
:
1899 case R_ARM_THM_CALL
:
1906 // Find or create a ThunkSection within the InputSectionDescription (ISD) that
1907 // is in range of Src. An ISD maps to a range of InputSections described by a
1908 // linker script section pattern such as { .text .text.* }.
1909 ThunkSection
*ThunkCreator::getISDThunkSec(OutputSection
*os
,
1911 InputSectionDescription
*isd
,
1912 const Relocation
&rel
,
1914 // See the comment in getThunk for -pcBias below.
1915 const int64_t pcBias
= getPCBias(rel
.type
);
1916 for (std::pair
<ThunkSection
*, uint32_t> tp
: isd
->thunkSections
) {
1917 ThunkSection
*ts
= tp
.first
;
1918 uint64_t tsBase
= os
->addr
+ ts
->outSecOff
- pcBias
;
1919 uint64_t tsLimit
= tsBase
+ ts
->getSize();
1920 if (target
->inBranchRange(rel
.type
, src
,
1921 (src
> tsLimit
) ? tsBase
: tsLimit
))
1925 // No suitable ThunkSection exists. This can happen when there is a branch
1926 // with lower range than the ThunkSection spacing or when there are too
1927 // many Thunks. Create a new ThunkSection as close to the InputSection as
1928 // possible. Error if InputSection is so large we cannot place ThunkSection
1929 // anywhere in Range.
1930 uint64_t thunkSecOff
= isec
->outSecOff
;
1931 if (!target
->inBranchRange(rel
.type
, src
,
1932 os
->addr
+ thunkSecOff
+ rel
.addend
)) {
1933 thunkSecOff
= isec
->outSecOff
+ isec
->getSize();
1934 if (!target
->inBranchRange(rel
.type
, src
,
1935 os
->addr
+ thunkSecOff
+ rel
.addend
))
1936 fatal("InputSection too large for range extension thunk " +
1937 isec
->getObjMsg(src
- (os
->addr
+ isec
->outSecOff
)));
1939 return addThunkSection(os
, isd
, thunkSecOff
);
1942 // Add a Thunk that needs to be placed in a ThunkSection that immediately
1943 // precedes its Target.
1944 ThunkSection
*ThunkCreator::getISThunkSec(InputSection
*isec
) {
1945 ThunkSection
*ts
= thunkedSections
.lookup(isec
);
1949 // Find InputSectionRange within Target Output Section (TOS) that the
1950 // InputSection (IS) that we need to precede is in.
1951 OutputSection
*tos
= isec
->getParent();
1952 for (SectionCommand
*bc
: tos
->commands
) {
1953 auto *isd
= dyn_cast
<InputSectionDescription
>(bc
);
1954 if (!isd
|| isd
->sections
.empty())
1957 InputSection
*first
= isd
->sections
.front();
1958 InputSection
*last
= isd
->sections
.back();
1960 if (isec
->outSecOff
< first
->outSecOff
|| last
->outSecOff
< isec
->outSecOff
)
1963 ts
= addThunkSection(tos
, isd
, isec
->outSecOff
);
1964 thunkedSections
[isec
] = ts
;
1971 // Create one or more ThunkSections per OS that can be used to place Thunks.
1972 // We attempt to place the ThunkSections using the following desirable
1974 // - Within range of the maximum number of callers
1975 // - Minimise the number of ThunkSections
1977 // We follow a simple but conservative heuristic to place ThunkSections at
1978 // offsets that are multiples of a Target specific branch range.
1979 // For an InputSectionDescription that is smaller than the range, a single
1980 // ThunkSection at the end of the range will do.
1982 // For an InputSectionDescription that is more than twice the size of the range,
1983 // we place the last ThunkSection at range bytes from the end of the
1984 // InputSectionDescription in order to increase the likelihood that the
1985 // distance from a thunk to its target will be sufficiently small to
1986 // allow for the creation of a short thunk.
1987 void ThunkCreator::createInitialThunkSections(
1988 ArrayRef
<OutputSection
*> outputSections
) {
1989 uint32_t thunkSectionSpacing
= target
->getThunkSectionSpacing();
1991 forEachInputSectionDescription(
1992 outputSections
, [&](OutputSection
*os
, InputSectionDescription
*isd
) {
1993 if (isd
->sections
.empty())
1996 uint32_t isdBegin
= isd
->sections
.front()->outSecOff
;
1998 isd
->sections
.back()->outSecOff
+ isd
->sections
.back()->getSize();
1999 uint32_t lastThunkLowerBound
= -1;
2000 if (isdEnd
- isdBegin
> thunkSectionSpacing
* 2)
2001 lastThunkLowerBound
= isdEnd
- thunkSectionSpacing
;
2004 uint32_t prevIsecLimit
= isdBegin
;
2005 uint32_t thunkUpperBound
= isdBegin
+ thunkSectionSpacing
;
2007 for (const InputSection
*isec
: isd
->sections
) {
2008 isecLimit
= isec
->outSecOff
+ isec
->getSize();
2009 if (isecLimit
> thunkUpperBound
) {
2010 addThunkSection(os
, isd
, prevIsecLimit
);
2011 thunkUpperBound
= prevIsecLimit
+ thunkSectionSpacing
;
2013 if (isecLimit
> lastThunkLowerBound
)
2015 prevIsecLimit
= isecLimit
;
2017 addThunkSection(os
, isd
, isecLimit
);
2021 ThunkSection
*ThunkCreator::addThunkSection(OutputSection
*os
,
2022 InputSectionDescription
*isd
,
2024 auto *ts
= make
<ThunkSection
>(os
, off
);
2025 ts
->partition
= os
->partition
;
2026 if ((config
->fixCortexA53Errata843419
|| config
->fixCortexA8
) &&
2027 !isd
->sections
.empty()) {
2028 // The errata fixes are sensitive to addresses modulo 4 KiB. When we add
2029 // thunks we disturb the base addresses of sections placed after the thunks
2030 // this makes patches we have generated redundant, and may cause us to
2031 // generate more patches as different instructions are now in sensitive
2032 // locations. When we generate more patches we may force more branches to
2033 // go out of range, causing more thunks to be generated. In pathological
2034 // cases this can cause the address dependent content pass not to converge.
2035 // We fix this by rounding up the size of the ThunkSection to 4KiB, this
2036 // limits the insertion of a ThunkSection on the addresses modulo 4 KiB,
2037 // which means that adding Thunks to the section does not invalidate
2038 // errata patches for following code.
2039 // Rounding up the size to 4KiB has consequences for code-size and can
2040 // trip up linker script defined assertions. For example the linux kernel
2041 // has an assertion that what LLD represents as an InputSectionDescription
2042 // does not exceed 4 KiB even if the overall OutputSection is > 128 Mib.
2043 // We use the heuristic of rounding up the size when both of the following
2044 // conditions are true:
2045 // 1.) The OutputSection is larger than the ThunkSectionSpacing. This
2046 // accounts for the case where no single InputSectionDescription is
2047 // larger than the OutputSection size. This is conservative but simple.
2048 // 2.) The InputSectionDescription is larger than 4 KiB. This will prevent
2049 // any assertion failures that an InputSectionDescription is < 4 KiB
2051 uint64_t isdSize
= isd
->sections
.back()->outSecOff
+
2052 isd
->sections
.back()->getSize() -
2053 isd
->sections
.front()->outSecOff
;
2054 if (os
->size
> target
->getThunkSectionSpacing() && isdSize
> 4096)
2055 ts
->roundUpSizeForErrata
= true;
2057 isd
->thunkSections
.push_back({ts
, pass
});
2061 static bool isThunkSectionCompatible(InputSection
*source
,
2062 SectionBase
*target
) {
2063 // We can't reuse thunks in different loadable partitions because they might
2064 // not be loaded. But partition 1 (the main partition) will always be loaded.
2065 if (source
->partition
!= target
->partition
)
2066 return target
->partition
== 1;
2070 std::pair
<Thunk
*, bool> ThunkCreator::getThunk(InputSection
*isec
,
2071 Relocation
&rel
, uint64_t src
) {
2072 std::vector
<Thunk
*> *thunkVec
= nullptr;
2073 // Arm and Thumb have a PC Bias of 8 and 4 respectively, this is cancelled
2074 // out in the relocation addend. We compensate for the PC bias so that
2075 // an Arm and Thumb relocation to the same destination get the same keyAddend,
2076 // which is usually 0.
2077 const int64_t pcBias
= getPCBias(rel
.type
);
2078 const int64_t keyAddend
= rel
.addend
+ pcBias
;
2080 // We use a ((section, offset), addend) pair to find the thunk position if
2081 // possible so that we create only one thunk for aliased symbols or ICFed
2082 // sections. There may be multiple relocations sharing the same (section,
2083 // offset + addend) pair. We may revert the relocation back to its original
2084 // non-Thunk target, so we cannot fold offset + addend.
2085 if (auto *d
= dyn_cast
<Defined
>(rel
.sym
))
2086 if (!d
->isInPlt() && d
->section
)
2087 thunkVec
= &thunkedSymbolsBySectionAndAddend
[{{d
->section
, d
->value
},
2090 thunkVec
= &thunkedSymbols
[{rel
.sym
, keyAddend
}];
2092 // Check existing Thunks for Sym to see if they can be reused
2093 for (Thunk
*t
: *thunkVec
)
2094 if (isThunkSectionCompatible(isec
, t
->getThunkTargetSym()->section
) &&
2095 t
->isCompatibleWith(*isec
, rel
) &&
2096 target
->inBranchRange(rel
.type
, src
,
2097 t
->getThunkTargetSym()->getVA(-pcBias
)))
2098 return std::make_pair(t
, false);
2100 // No existing compatible Thunk in range, create a new one
2101 Thunk
*t
= addThunk(*isec
, rel
);
2102 thunkVec
->push_back(t
);
2103 return std::make_pair(t
, true);
2106 // Return true if the relocation target is an in range Thunk.
2107 // Return false if the relocation is not to a Thunk. If the relocation target
2108 // was originally to a Thunk, but is no longer in range we revert the
2109 // relocation back to its original non-Thunk target.
2110 bool ThunkCreator::normalizeExistingThunk(Relocation
&rel
, uint64_t src
) {
2111 if (Thunk
*t
= thunks
.lookup(rel
.sym
)) {
2112 if (target
->inBranchRange(rel
.type
, src
, rel
.sym
->getVA(rel
.addend
)))
2114 rel
.sym
= &t
->destination
;
2115 rel
.addend
= t
->addend
;
2116 if (rel
.sym
->isInPlt())
2117 rel
.expr
= toPlt(rel
.expr
);
2122 // Process all relocations from the InputSections that have been assigned
2123 // to InputSectionDescriptions and redirect through Thunks if needed. The
2124 // function should be called iteratively until it returns false.
2127 // All InputSections that may need a Thunk are reachable from
2128 // OutputSectionCommands.
2130 // All OutputSections have an address and all InputSections have an offset
2131 // within the OutputSection.
2133 // The offsets between caller (relocation place) and callee
2134 // (relocation target) will not be modified outside of createThunks().
2137 // If return value is true then ThunkSections have been inserted into
2138 // OutputSections. All relocations that needed a Thunk based on the information
2139 // available to createThunks() on entry have been redirected to a Thunk. Note
2140 // that adding Thunks changes offsets between caller and callee so more Thunks
2143 // If return value is false then no more Thunks are needed, and createThunks has
2144 // made no changes. If the target requires range extension thunks, currently
2145 // ARM, then any future change in offset between caller and callee risks a
2146 // relocation out of range error.
2147 bool ThunkCreator::createThunks(uint32_t pass
,
2148 ArrayRef
<OutputSection
*> outputSections
) {
2150 bool addressesChanged
= false;
2152 if (pass
== 0 && target
->getThunkSectionSpacing())
2153 createInitialThunkSections(outputSections
);
2155 // Create all the Thunks and insert them into synthetic ThunkSections. The
2156 // ThunkSections are later inserted back into InputSectionDescriptions.
2157 // We separate the creation of ThunkSections from the insertion of the
2158 // ThunkSections as ThunkSections are not always inserted into the same
2159 // InputSectionDescription as the caller.
2160 forEachInputSectionDescription(
2161 outputSections
, [&](OutputSection
*os
, InputSectionDescription
*isd
) {
2162 for (InputSection
*isec
: isd
->sections
)
2163 for (Relocation
&rel
: isec
->relocs()) {
2164 uint64_t src
= isec
->getVA(rel
.offset
);
2166 // If we are a relocation to an existing Thunk, check if it is
2167 // still in range. If not then Rel will be altered to point to its
2168 // original target so another Thunk can be generated.
2169 if (pass
> 0 && normalizeExistingThunk(rel
, src
))
2172 if (!target
->needsThunk(rel
.expr
, rel
.type
, isec
->file
, src
,
2173 *rel
.sym
, rel
.addend
))
2178 std::tie(t
, isNew
) = getThunk(isec
, rel
, src
);
2181 // Find or create a ThunkSection for the new Thunk
2183 if (auto *tis
= t
->getTargetInputSection())
2184 ts
= getISThunkSec(tis
);
2186 ts
= getISDThunkSec(os
, isec
, isd
, rel
, src
);
2188 thunks
[t
->getThunkTargetSym()] = t
;
2191 // Redirect relocation to Thunk, we never go via the PLT to a Thunk
2192 rel
.sym
= t
->getThunkTargetSym();
2193 rel
.expr
= fromPlt(rel
.expr
);
2195 // On AArch64 and PPC, a jump/call relocation may be encoded as
2196 // STT_SECTION + non-zero addend, clear the addend after
2198 if (config
->emachine
!= EM_MIPS
)
2199 rel
.addend
= -getPCBias(rel
.type
);
2202 for (auto &p
: isd
->thunkSections
)
2203 addressesChanged
|= p
.first
->assignOffsets();
2206 for (auto &p
: thunkedSections
)
2207 addressesChanged
|= p
.second
->assignOffsets();
2209 // Merge all created synthetic ThunkSections back into OutputSection
2210 mergeThunks(outputSections
);
2211 return addressesChanged
;
2214 // The following aid in the conversion of call x@GDPLT to call __tls_get_addr
2215 // hexagonNeedsTLSSymbol scans for relocations would require a call to
2217 // hexagonTLSSymbolUpdate rebinds the relocation to __tls_get_addr.
2218 bool elf::hexagonNeedsTLSSymbol(ArrayRef
<OutputSection
*> outputSections
) {
2219 bool needTlsSymbol
= false;
2220 forEachInputSectionDescription(
2221 outputSections
, [&](OutputSection
*os
, InputSectionDescription
*isd
) {
2222 for (InputSection
*isec
: isd
->sections
)
2223 for (Relocation
&rel
: isec
->relocs())
2224 if (rel
.sym
->type
== llvm::ELF::STT_TLS
&& rel
.expr
== R_PLT_PC
) {
2225 needTlsSymbol
= true;
2229 return needTlsSymbol
;
2232 void elf::hexagonTLSSymbolUpdate(ArrayRef
<OutputSection
*> outputSections
) {
2233 Symbol
*sym
= symtab
.find("__tls_get_addr");
2236 bool needEntry
= true;
2237 forEachInputSectionDescription(
2238 outputSections
, [&](OutputSection
*os
, InputSectionDescription
*isd
) {
2239 for (InputSection
*isec
: isd
->sections
)
2240 for (Relocation
&rel
: isec
->relocs())
2241 if (rel
.sym
->type
== llvm::ELF::STT_TLS
&& rel
.expr
== R_PLT_PC
) {
2244 addPltEntry(*in
.plt
, *in
.gotPlt
, *in
.relaPlt
, target
->pltRel
,
2253 template void elf::scanRelocations
<ELF32LE
>();
2254 template void elf::scanRelocations
<ELF32BE
>();
2255 template void elf::scanRelocations
<ELF64LE
>();
2256 template void elf::scanRelocations
<ELF64BE
>();