2 * Double-precision x^y function.
4 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 * See https://llvm.org/LICENSE.txt for license information.
6 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
12 #include "math_config.h"
15 Worst-case error: 0.54 ULP (~= ulperr_exp + 1024*Ln2*relerr_log*2^53)
16 relerr_log: 1.3 * 2^-68 (Relative error of log, 1.5 * 2^-68 without fma)
17 ulperr_exp: 0.509 ULP (ULP error of exp, 0.511 ULP without fma)
20 #define T __pow_log_data.tab
21 #define A __pow_log_data.poly
22 #define Ln2hi __pow_log_data.ln2hi
23 #define Ln2lo __pow_log_data.ln2lo
24 #define N (1 << POW_LOG_TABLE_BITS)
25 #define OFF 0x3fe6955500000000
27 /* Top 12 bits of a double (sign and exponent bits). */
28 static inline uint32_t
31 return asuint64 (x
) >> 52;
34 /* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
35 additional 15 bits precision. IX is the bit representation of x, but
36 normalized in the subnormal range using the sign bit for the exponent. */
37 static inline double_t
38 log_inline (uint64_t ix
, double_t
*tail
)
40 /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
41 double_t z
, r
, y
, invc
, logc
, logctail
, kd
, hi
, t1
, t2
, lo
, lo1
, lo2
, p
;
45 /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
46 The range is split into N subintervals.
47 The ith subinterval contains z and c is near its center. */
49 i
= (tmp
>> (52 - POW_LOG_TABLE_BITS
)) % N
;
50 k
= (int64_t) tmp
>> 52; /* arithmetic shift */
51 iz
= ix
- (tmp
& 0xfffULL
<< 52);
55 /* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */
58 logctail
= T
[i
].logctail
;
60 /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
61 |z/c - 1| < 1/N, so r = z/c - 1 is exactly representable. */
63 r
= fma (z
, invc
, -1.0);
65 /* Split z such that rhi, rlo and rhi*rhi are exact and |rlo| <= |r|. */
66 double_t zhi
= asdouble ((iz
+ (1ULL << 31)) & (-1ULL << 32));
67 double_t zlo
= z
- zhi
;
68 double_t rhi
= zhi
* invc
- 1.0;
69 double_t rlo
= zlo
* invc
;
73 /* k*Ln2 + log(c) + r. */
74 t1
= kd
* Ln2hi
+ logc
;
76 lo1
= kd
* Ln2lo
+ logctail
;
79 /* Evaluation is optimized assuming superscalar pipelined execution. */
80 double_t ar
, ar2
, ar3
, lo3
, lo4
;
81 ar
= A
[0] * r
; /* A[0] = -0.5. */
84 /* k*Ln2 + log(c) + r + A[0]*r*r. */
87 lo3
= fma (ar
, r
, -ar2
);
90 double_t arhi
= A
[0] * rhi
;
91 double_t arhi2
= rhi
* arhi
;
93 lo3
= rlo
* (ar
+ arhi
);
94 lo4
= t2
- hi
+ arhi2
;
96 /* p = log1p(r) - r - A[0]*r*r. */
97 #if POW_LOG_POLY_ORDER == 8
99 * (A
[1] + r
* A
[2] + ar2
* (A
[3] + r
* A
[4] + ar2
* (A
[5] + r
* A
[6]))));
101 lo
= lo1
+ lo2
+ lo3
+ lo4
+ p
;
109 #define N (1 << EXP_TABLE_BITS)
110 #define InvLn2N __exp_data.invln2N
111 #define NegLn2hiN __exp_data.negln2hiN
112 #define NegLn2loN __exp_data.negln2loN
113 #define Shift __exp_data.shift
114 #define T __exp_data.tab
115 #define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
116 #define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
117 #define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
118 #define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
119 #define C6 __exp_data.poly[9 - EXP_POLY_ORDER]
121 /* Handle cases that may overflow or underflow when computing the result that
122 is scale*(1+TMP) without intermediate rounding. The bit representation of
123 scale is in SBITS, however it has a computed exponent that may have
124 overflown into the sign bit so that needs to be adjusted before using it as
125 a double. (int32_t)KI is the k used in the argument reduction and exponent
126 adjustment of scale, positive k here means the result may overflow and
127 negative k means the result may underflow. */
129 specialcase (double_t tmp
, uint64_t sbits
, uint64_t ki
)
133 if ((ki
& 0x80000000) == 0)
135 /* k > 0, the exponent of scale might have overflowed by <= 460. */
136 sbits
-= 1009ull << 52;
137 scale
= asdouble (sbits
);
138 y
= 0x1p
1009 * (scale
+ scale
* tmp
);
139 return check_oflow (eval_as_double (y
));
141 /* k < 0, need special care in the subnormal range. */
142 sbits
+= 1022ull << 52;
143 /* Note: sbits is signed scale. */
144 scale
= asdouble (sbits
);
145 y
= scale
+ scale
* tmp
;
148 /* Round y to the right precision before scaling it into the subnormal
149 range to avoid double rounding that can cause 0.5+E/2 ulp error where
150 E is the worst-case ulp error outside the subnormal range. So this
151 is only useful if the goal is better than 1 ulp worst-case error. */
152 double_t hi
, lo
, one
= 1.0;
155 lo
= scale
- y
+ scale
* tmp
;
157 lo
= one
- hi
+ y
+ lo
;
158 y
= eval_as_double (hi
+ lo
) - one
;
159 /* Fix the sign of 0. */
161 y
= asdouble (sbits
& 0x8000000000000000);
162 /* The underflow exception needs to be signaled explicitly. */
163 force_eval_double (opt_barrier_double (0x1p
-1022) * 0x1p
-1022);
166 return check_uflow (eval_as_double (y
));
169 #define SIGN_BIAS (0x800 << EXP_TABLE_BITS)
171 /* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
172 The sign_bias argument is SIGN_BIAS or 0 and sets the sign to -1 or 1. */
174 exp_inline (double_t x
, double_t xtail
, uint32_t sign_bias
)
177 uint64_t ki
, idx
, top
, sbits
;
178 /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
179 double_t kd
, z
, r
, r2
, scale
, tail
, tmp
;
181 abstop
= top12 (x
) & 0x7ff;
182 if (unlikely (abstop
- top12 (0x1p
-54) >= top12 (512.0) - top12 (0x1p
-54)))
184 if (abstop
- top12 (0x1p
-54) >= 0x80000000)
186 /* Avoid spurious underflow for tiny x. */
187 /* Note: 0 is common input. */
188 double_t one
= WANT_ROUNDING
? 1.0 + x
: 1.0;
189 return sign_bias
? -one
: one
;
191 if (abstop
>= top12 (1024.0))
193 /* Note: inf and nan are already handled. */
194 if (asuint64 (x
) >> 63)
195 return __math_uflow (sign_bias
);
197 return __math_oflow (sign_bias
);
199 /* Large x is special cased below. */
203 /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
204 /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */
208 ki
= converttoint (z
);
209 #elif EXP_USE_TOINT_NARROW
210 /* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes. */
211 kd
= eval_as_double (z
+ Shift
);
212 ki
= asuint64 (kd
) >> 16;
213 kd
= (double_t
) (int32_t) ki
;
215 /* z - kd is in [-1, 1] in non-nearest rounding modes. */
216 kd
= eval_as_double (z
+ Shift
);
220 r
= x
+ kd
* NegLn2hiN
+ kd
* NegLn2loN
;
221 /* The code assumes 2^-200 < |xtail| < 2^-8/N. */
223 /* 2^(k/N) ~= scale * (1 + tail). */
225 top
= (ki
+ sign_bias
) << (52 - EXP_TABLE_BITS
);
226 tail
= asdouble (T
[idx
]);
227 /* This is only a valid scale when -1023*N < k < 1024*N. */
228 sbits
= T
[idx
+ 1] + top
;
229 /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */
230 /* Evaluation is optimized assuming superscalar pipelined execution. */
232 /* Without fma the worst case error is 0.25/N ulp larger. */
233 /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */
234 #if EXP_POLY_ORDER == 4
235 tmp
= tail
+ r
+ r2
* C2
+ r
* r2
* (C3
+ r
* C4
);
236 #elif EXP_POLY_ORDER == 5
237 tmp
= tail
+ r
+ r2
* (C2
+ r
* C3
) + r2
* r2
* (C4
+ r
* C5
);
238 #elif EXP_POLY_ORDER == 6
239 tmp
= tail
+ r
+ r2
* (0.5 + r
* C3
) + r2
* r2
* (C4
+ r
* C5
+ r2
* C6
);
241 if (unlikely (abstop
== 0))
242 return specialcase (tmp
, sbits
, ki
);
243 scale
= asdouble (sbits
);
244 /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
245 is no spurious underflow here even without fma. */
246 return eval_as_double (scale
+ scale
* tmp
);
249 /* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
250 the bit representation of a non-zero finite floating-point value. */
252 checkint (uint64_t iy
)
254 int e
= iy
>> 52 & 0x7ff;
259 if (iy
& ((1ULL << (0x3ff + 52 - e
)) - 1))
261 if (iy
& (1ULL << (0x3ff + 52 - e
)))
266 /* Returns 1 if input is the bit representation of 0, infinity or nan. */
268 zeroinfnan (uint64_t i
)
270 return 2 * i
- 1 >= 2 * asuint64 (INFINITY
) - 1;
274 pow (double x
, double y
)
276 uint32_t sign_bias
= 0;
284 if (unlikely (topx
- 0x001 >= 0x7ff - 0x001
285 || (topy
& 0x7ff) - 0x3be >= 0x43e - 0x3be))
287 /* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0
288 and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. */
289 /* Special cases: (x < 0x1p-126 or inf or nan) or
290 (|y| < 0x1p-65 or |y| >= 0x1p63 or nan). */
291 if (unlikely (zeroinfnan (iy
)))
294 return issignaling_inline (x
) ? x
+ y
: 1.0;
295 if (ix
== asuint64 (1.0))
296 return issignaling_inline (y
) ? x
+ y
: 1.0;
297 if (2 * ix
> 2 * asuint64 (INFINITY
)
298 || 2 * iy
> 2 * asuint64 (INFINITY
))
300 if (2 * ix
== 2 * asuint64 (1.0))
302 if ((2 * ix
< 2 * asuint64 (1.0)) == !(iy
>> 63))
303 return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
306 if (unlikely (zeroinfnan (ix
)))
309 if (ix
>> 63 && checkint (iy
) == 1)
314 if (WANT_ERRNO
&& 2 * ix
== 0 && iy
>> 63)
315 return __math_divzero (sign_bias
);
316 /* Without the barrier some versions of clang hoist the 1/x2 and
317 thus division by zero exception can be signaled spuriously. */
318 return iy
>> 63 ? opt_barrier_double (1 / x2
) : x2
;
320 /* Here x and y are non-zero finite. */
324 int yint
= checkint (iy
);
326 return __math_invalid (x
);
328 sign_bias
= SIGN_BIAS
;
329 ix
&= 0x7fffffffffffffff;
332 if ((topy
& 0x7ff) - 0x3be >= 0x43e - 0x3be)
334 /* Note: sign_bias == 0 here because y is not odd. */
335 if (ix
== asuint64 (1.0))
337 if ((topy
& 0x7ff) < 0x3be)
339 /* |y| < 2^-65, x^y ~= 1 + y*log(x). */
341 return ix
> asuint64 (1.0) ? 1.0 + y
: 1.0 - y
;
345 return (ix
> asuint64 (1.0)) == (topy
< 0x800) ? __math_oflow (0)
350 /* Normalize subnormal x so exponent becomes negative. */
351 /* Without the barrier some versions of clang evaluate the mul
352 unconditionally causing spurious overflow exceptions. */
353 ix
= asuint64 (opt_barrier_double (x
) * 0x1p
52);
354 ix
&= 0x7fffffffffffffff;
360 double_t hi
= log_inline (ix
, &lo
);
364 elo
= y
* lo
+ fma (y
, hi
, -ehi
);
366 double_t yhi
= asdouble (iy
& -1ULL << 27);
367 double_t ylo
= y
- yhi
;
368 double_t lhi
= asdouble (asuint64 (hi
) & -1ULL << 27);
369 double_t llo
= hi
- lhi
+ lo
;
371 elo
= ylo
* lhi
+ y
* llo
; /* |elo| < |ehi| * 2^-25. */
373 return exp_inline (ehi
, elo
, sign_bias
);
376 strong_alias (pow
, __pow_finite
)
377 hidden_alias (pow
, __ieee754_pow
)
378 # if LDBL_MANT_DIG == 53
379 long double powl (long double x
, long double y
) { return pow (x
, y
); }