1 //===-- Utilities to convert floating point values to string ----*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_LIBC_SRC_SUPPORT_FLOAT_TO_STRING_H
10 #define LLVM_LIBC_SRC_SUPPORT_FLOAT_TO_STRING_H
14 #include "src/__support/CPP/type_traits.h"
15 #include "src/__support/FPUtil/FPBits.h"
16 #include "src/__support/UInt.h"
17 #include "src/__support/common.h"
18 #include "src/__support/libc_assert.h"
19 #include "src/__support/ryu_constants.h"
21 // This implementation is based on the Ryu Printf algorithm by Ulf Adams:
22 // Ulf Adams. 2019. Ryƫ revisited: printf floating point conversion.
23 // Proc. ACM Program. Lang. 3, OOPSLA, Article 169 (October 2019), 23 pages.
24 // https://doi.org/10.1145/3360595
26 // This version is modified to require significantly less memory (it doesn't use
27 // a large buffer to store the result).
29 // The general concept of this algorithm is as follows:
30 // We want to calculate a 9 digit segment of a floating point number using this
31 // formula: floor((mantissa * 2^exponent)/10^i) % 10^9.
32 // To do so normally would involve large integers (~1000 bits for doubles), so
33 // we use a shortcut. We can avoid calculating 2^exponent / 10^i by using a
34 // lookup table. The resulting intermediate value needs to be about 192 bits to
35 // store the result with enough precision. Since this is all being done with
36 // integers for appropriate precision, we would run into a problem if
37 // i > exponent since then 2^exponent / 10^i would be less than 1. To correct
38 // for this, the actual calculation done is 2^(exponent + c) / 10^i, and then
39 // when multiplying by the mantissa we reverse this by dividing by 2^c, like so:
40 // floor((mantissa * table[exponent][i])/(2^c)) % 10^9.
41 // This gives a 9 digit value, which is small enough to fit in a 32 bit integer,
42 // and that integer is converted into a string as normal, and called a block. In
43 // this implementation, the most recent block is buffered, so that if rounding
44 // is necessary the block can be adjusted before being written to the output.
45 // Any block that is all 9s adds one to the max block counter and doesn't clear
46 // the buffer because they can cause the block above them to be rounded up.
48 namespace __llvm_libc
{
50 using BlockInt
= uint32_t;
51 constexpr size_t BLOCK_SIZE
= 9;
53 using MantissaInt
= fputil::FPBits
<long double>::UIntType
;
55 constexpr size_t POW10_ADDITIONAL_BITS_CALC
= 128;
56 constexpr size_t POW10_ADDITIONAL_BITS_TABLE
= 120;
58 constexpr size_t MID_INT_SIZE
= 192;
62 // Returns floor(log_10(2^e)); requires 0 <= e <= 1650.
63 LIBC_INLINE
constexpr uint32_t log10_pow2(const uint32_t e
) {
64 // The first value this approximation fails for is 2^1651 which is just
65 // greater than 10^297.
66 LIBC_ASSERT(e
>= 0 && e
<= 1650 &&
67 "Incorrect exponent to perform log10_pow2 approximation.");
68 return (e
* 78913) >> 18;
71 // Returns 1 + floor(log_10(2^e). This could technically be off by 1 if any
72 // power of 2 was also a power of 10, but since that doesn't exist this is
73 // always accurate. This is used to calculate the maximum number of base-10
74 // digits a given e-bit number could have.
75 LIBC_INLINE
constexpr uint32_t ceil_log10_pow2(const uint32_t e
) {
76 return log10_pow2(e
) + 1;
79 // Returns the maximum number of 9 digit blocks a number described by the given
80 // index (which is ceil(exponent/16)) and mantissa width could need.
81 LIBC_INLINE
constexpr uint32_t length_for_num(const uint32_t idx
,
82 const uint32_t mantissa_width
) {
83 //+8 to round up when dividing by 9
84 return (ceil_log10_pow2(16 * idx
) + ceil_log10_pow2(mantissa_width
) +
87 // return (ceil_log10_pow2(16 * idx + mantissa_width) + 8) / 9;
90 // The formula for the table when i is positive (or zero) is as follows:
91 // floor(10^(-9i) * 2^(e + c_1) + 1) % (10^9 * 2^c_1)
92 // Rewritten slightly we get:
93 // floor(5^(-9i) * 2^(e + c_1 - 9i) + 1) % (10^9 * 2^c_1)
95 // TODO: Fix long doubles (needs bigger table or alternate algorithm.)
96 // Currently the table values are generated, which is very slow.
97 template <size_t INT_SIZE
>
98 LIBC_INLINE
constexpr cpp::UInt
<MID_INT_SIZE
>
99 get_table_positive(int exponent
, size_t i
, const size_t constant
) {
100 // INT_SIZE is the size of int that is used for the internal calculations of
101 // this function. It should be large enough to hold 2^(exponent+constant), so
102 // ~1000 for double and ~16000 for long double. Be warned that the time
103 // complexity of exponentiation is O(n^2 * log_2(m)) where n is the number of
104 // bits in the number being exponentiated and m is the exponent.
105 int shift_amount
= exponent
+ constant
- (9 * i
);
106 if (shift_amount
< 0) {
109 cpp::UInt
<INT_SIZE
> num(0);
110 // MOD_SIZE is one of the limiting factors for how big the constant argument
111 // can get, since it needs to be small enough to fit in the result UInt,
112 // otherwise we'll get truncation on return.
113 const cpp::UInt
<INT_SIZE
> MOD_SIZE
=
114 (cpp::UInt
<INT_SIZE
>(1) << constant
) * 1000000000;
115 constexpr uint64_t FIVE_EXP_NINE
= 1953125;
117 num
= cpp::UInt
<INT_SIZE
>(1) << (shift_amount
);
119 cpp::UInt
<INT_SIZE
> fives(FIVE_EXP_NINE
);
125 if (num
> MOD_SIZE
) {
126 num
= num
% MOD_SIZE
;
131 // The formula for the table when i is negative (or zero) is as follows:
132 // floor(10^(-9i) * 2^(c_0 - e)) % (10^9 * 2^c_0)
133 // Since we know i is always negative, we just take it as unsigned and treat it
134 // as negative. We do the same with exponent, while they're both always negative
135 // in theory, in practice they're converted to positive for simpler
137 // The formula being used looks more like this:
138 // floor(10^(9*(-i)) * 2^(c_0 + (-e))) % (10^9 * 2^c_0)
139 LIBC_INLINE
cpp::UInt
<MID_INT_SIZE
> get_table_negative(int exponent
, size_t i
,
140 const size_t constant
) {
141 constexpr size_t INT_SIZE
= 1024;
142 int shift_amount
= constant
- exponent
;
143 cpp::UInt
<INT_SIZE
> num(1);
144 // const cpp::UInt<INT_SIZE> MOD_SIZE =
145 // (cpp::UInt<INT_SIZE>(1) << constant) * 1000000000;
147 constexpr uint64_t TEN_EXP_NINE
= 1000000000;
148 constexpr uint64_t FIVE_EXP_NINE
= 1953125;
149 size_t ten_blocks
= i
;
150 size_t five_blocks
= 0;
151 if (shift_amount
< 0) {
152 int block_shifts
= (-shift_amount
) / 9;
153 if (block_shifts
< static_cast<int>(ten_blocks
)) {
154 ten_blocks
= ten_blocks
- block_shifts
;
155 five_blocks
= block_shifts
;
156 shift_amount
= shift_amount
+ (block_shifts
* 9);
160 shift_amount
= shift_amount
+ (i
* 9);
164 if (five_blocks
> 0) {
165 cpp::UInt
<INT_SIZE
> fives(FIVE_EXP_NINE
);
166 fives
.pow_n(five_blocks
);
169 if (ten_blocks
> 0) {
170 cpp::UInt
<INT_SIZE
> tens(TEN_EXP_NINE
);
171 tens
.pow_n(ten_blocks
);
175 if (shift_amount
> 0) {
176 num
= num
<< shift_amount
;
178 num
= num
>> (-shift_amount
);
180 // if (num > MOD_SIZE) {
181 // num = num % MOD_SIZE;
186 LIBC_INLINE
uint32_t fast_uint_mod_1e9(const cpp::UInt
<MID_INT_SIZE
> &val
) {
187 // The formula for mult_const is:
188 // 1 + floor((2^(bits in target integer size + log_2(divider))) / divider)
189 // Where divider is 10^9 and target integer size is 128.
190 const cpp::UInt
<MID_INT_SIZE
> mult_const(
191 {0x31680A88F8953031u
, 0x89705F4136B4A597u
, 0});
192 const auto middle
= (mult_const
* val
);
193 const uint64_t result
= static_cast<uint64_t>(middle
[2]);
194 const uint32_t shifted
= result
>> 29;
195 return static_cast<uint32_t>(val
) - (1000000000 * shifted
);
198 LIBC_INLINE
uint32_t mul_shift_mod_1e9(const MantissaInt mantissa
,
199 const cpp::UInt
<MID_INT_SIZE
> &large
,
200 const int32_t shift_amount
) {
201 constexpr size_t MANT_INT_SIZE
= sizeof(MantissaInt
) * 8;
202 cpp::UInt
<MID_INT_SIZE
+ MANT_INT_SIZE
> val(large
);
203 // TODO: Find a better way to force __uint128_t to be UInt<128>
204 cpp::UInt
<MANT_INT_SIZE
> wide_mant(0);
205 wide_mant
[0] = mantissa
& (uint64_t(-1));
206 wide_mant
[1] = mantissa
>> 64;
207 val
= (val
* wide_mant
) >> shift_amount
;
208 return fast_uint_mod_1e9(val
);
211 } // namespace internal
213 // Convert floating point values to their string representation.
214 // Because the result may not fit in a reasonably sized array, the caller must
215 // request blocks of digits and convert them from integers to strings themself.
216 // Blocks contain the most digits that can be stored in an BlockInt. This is 9
217 // digits for a 32 bit int and 18 digits for a 64 bit int.
218 // The intended use pattern is to create a FloatToString object of the
219 // appropriate type, then call get_positive_blocks to get an approximate number
220 // of blocks there are before the decimal point. Now the client code can start
221 // calling get_positive_block in a loop from the number of positive blocks to
222 // zero. This will give all digits before the decimal point. Then the user can
223 // start calling get_negative_block in a loop from 0 until the number of digits
224 // they need is reached. As an optimization, the client can use
225 // zero_blocks_after_point to find the number of blocks that are guaranteed to
226 // be zero after the decimal point and before the non-zero digits. Additionally,
227 // is_lowest_block will return if the current block is the lowest non-zero
229 template <typename T
, cpp::enable_if_t
<cpp::is_floating_point_v
<T
>, int> = 0>
230 class FloatToString
{
231 fputil::FPBits
<T
> float_bits
;
234 MantissaInt mantissa
;
236 static constexpr int MANT_WIDTH
= fputil::MantissaWidth
<T
>::VALUE
;
237 static constexpr int EXP_BIAS
= fputil::FPBits
<T
>::EXPONENT_BIAS
;
239 // constexpr void init_convert();
242 LIBC_INLINE
constexpr FloatToString(T init_float
) : float_bits(init_float
) {
243 is_negative
= float_bits
.get_sign();
244 exponent
= float_bits
.get_exponent();
245 mantissa
= float_bits
.get_explicit_mantissa();
247 // Handle the exponent for numbers with a 0 exponent.
248 if (exponent
== -EXP_BIAS
) {
249 if (mantissa
> 0) { // Subnormals
256 // Adjust for the width of the mantissa.
257 exponent
-= MANT_WIDTH
;
262 LIBC_INLINE
constexpr bool is_nan() { return float_bits
.is_nan(); }
263 LIBC_INLINE
constexpr bool is_inf() { return float_bits
.is_inf(); }
264 LIBC_INLINE
constexpr bool is_inf_or_nan() {
265 return float_bits
.is_inf_or_nan();
268 // get_block returns an integer that represents the digits in the requested
270 LIBC_INLINE
constexpr BlockInt
get_positive_block(int block_index
) {
271 if (exponent
>= -MANT_WIDTH
) {
272 // idx is ceil(exponent/16) or 0 if exponent is negative. This is used to
273 // find the coarse section of the POW10_SPLIT table that will be used to
274 // calculate the 9 digit window, as well as some other related values.
276 exponent
< 0 ? 0 : static_cast<uint32_t>(exponent
+ 15) / 16;
278 uint32_t temp_shift_amount
=
279 POW10_ADDITIONAL_BITS_TABLE
+ (16 * idx
) - exponent
;
280 const uint32_t shift_amount
= temp_shift_amount
;
281 // shift_amount = -(c0 - exponent) = c_0 + 16 * ceil(exponent/16) -
284 int32_t i
= block_index
;
285 cpp::UInt
<MID_INT_SIZE
> val
;
286 val
= POW10_SPLIT
[POW10_OFFSET
[idx
] + i
];
288 const uint32_t digits
=
289 internal::mul_shift_mod_1e9(mantissa
, val
, (int32_t)(shift_amount
));
296 LIBC_INLINE
constexpr BlockInt
get_negative_block(int block_index
) {
298 const int32_t idx
= -exponent
/ 16;
299 uint32_t i
= block_index
;
300 // if the requested block is zero
301 if (i
< MIN_BLOCK_2
[idx
]) {
304 const int32_t shift_amount
=
305 POW10_ADDITIONAL_BITS_TABLE
+ (-exponent
- 16 * idx
);
306 const uint32_t p
= POW10_OFFSET_2
[idx
] + i
- MIN_BLOCK_2
[idx
];
307 // If every digit after the requested block is zero.
308 if (p
>= POW10_OFFSET_2
[idx
+ 1]) {
312 cpp::UInt
<MID_INT_SIZE
> table_val
= POW10_SPLIT_2
[p
];
313 // cpp::UInt<MID_INT_SIZE> calculated_val =
314 // get_table_negative(idx * 16, i + 1, POW10_ADDITIONAL_BITS_CALC);
316 internal::mul_shift_mod_1e9(mantissa
, table_val
, shift_amount
);
323 LIBC_INLINE
constexpr BlockInt
get_block(int block_index
) {
324 if (block_index
>= 0) {
325 return get_positive_block(block_index
);
327 return get_negative_block(-1 - block_index
);
331 LIBC_INLINE
constexpr size_t get_positive_blocks() {
332 if (exponent
>= -MANT_WIDTH
) {
334 exponent
< 0 ? 0 : static_cast<uint32_t>(exponent
+ 15) / 16;
335 const uint32_t len
= internal::length_for_num(idx
, MANT_WIDTH
);
342 // This takes the index of a block after the decimal point (a negative block)
343 // and return if it's sure that all of the digits after it are zero.
344 LIBC_INLINE
constexpr bool is_lowest_block(size_t block_index
) {
345 const int32_t idx
= -exponent
/ 16;
346 const uint32_t p
= POW10_OFFSET_2
[idx
] + block_index
- MIN_BLOCK_2
[idx
];
347 // If the remaining digits are all 0, then this is the lowest block.
348 return p
>= POW10_OFFSET_2
[idx
+ 1];
351 LIBC_INLINE
constexpr size_t zero_blocks_after_point() {
352 return MIN_BLOCK_2
[-exponent
/ 16];
356 // template <> constexpr void FloatToString<float>::init_convert() { ; }
358 // template <> constexpr void FloatToString<double>::init_convert() { ; }
360 // template <> constexpr void FloatToString<long double>::init_convert() {
361 // // TODO: More here.
366 LIBC_INLINE
constexpr size_t
367 FloatToString
<long double>::zero_blocks_after_point() {
372 LIBC_INLINE
constexpr bool FloatToString
<long double>::is_lowest_block(size_t) {
377 LIBC_INLINE
constexpr BlockInt
378 FloatToString
<long double>::get_positive_block(int block_index
) {
379 if (exponent
>= -MANT_WIDTH
) {
380 const uint32_t pos_exp
= (exponent
< 0 ? 0 : exponent
);
382 uint32_t temp_shift_amount
=
383 POW10_ADDITIONAL_BITS_CALC
+ pos_exp
- exponent
;
384 const uint32_t shift_amount
= temp_shift_amount
;
385 // shift_amount = -(c0 - exponent) = c_0 + 16 * ceil(exponent/16) -
388 int32_t i
= block_index
;
389 cpp::UInt
<MID_INT_SIZE
> val
;
390 if (exponent
+ POW10_ADDITIONAL_BITS_CALC
< 1024) {
391 val
= internal::get_table_positive
<1024>(pos_exp
, i
,
392 POW10_ADDITIONAL_BITS_CALC
);
393 } else if (exponent
+ POW10_ADDITIONAL_BITS_CALC
< 4096) {
394 val
= internal::get_table_positive
<4096>(pos_exp
, i
,
395 POW10_ADDITIONAL_BITS_CALC
);
396 } else if (exponent
+ POW10_ADDITIONAL_BITS_CALC
< 8192) {
397 val
= internal::get_table_positive
<8192>(pos_exp
, i
,
398 POW10_ADDITIONAL_BITS_CALC
);
400 val
= internal::get_table_positive
<16384>(pos_exp
, i
,
401 POW10_ADDITIONAL_BITS_CALC
);
404 const BlockInt digits
=
405 internal::mul_shift_mod_1e9(mantissa
, val
, (int32_t)(shift_amount
));
413 LIBC_INLINE
constexpr BlockInt
414 FloatToString
<long double>::get_negative_block(int block_index
) {
416 const int32_t idx
= -exponent
/ 16;
417 uint32_t i
= -1 - block_index
;
418 // if the requested block is zero
419 if (i
<= MIN_BLOCK_2
[idx
]) {
422 const int32_t shift_amount
=
423 POW10_ADDITIONAL_BITS_CALC
+ (-exponent
- 16 * idx
);
424 const uint32_t p
= POW10_OFFSET_2
[idx
] + i
- MIN_BLOCK_2
[idx
];
425 // If every digit after the requested block is zero.
426 if (p
>= POW10_OFFSET_2
[idx
+ 1]) {
430 // cpp::UInt<MID_INT_SIZE> table_val = POW10_SPLIT_2[p];
431 cpp::UInt
<MID_INT_SIZE
> calculated_val
= internal::get_table_negative(
432 idx
* 16, i
+ 1, POW10_ADDITIONAL_BITS_CALC
);
434 internal::mul_shift_mod_1e9(mantissa
, calculated_val
, shift_amount
);
441 } // namespace __llvm_libc
443 #endif // LLVM_LIBC_SRC_SUPPORT_FLOAT_TO_STRING_H