[NFC][Py Reformat] Added more commits to .git-blame-ignore-revs
[llvm-project.git] / libc / src / math / generic / asinf.cpp
blob9b724d3296c84e93884fa9675cbefb2fddd8c4fa
1 //===-- Single-precision asin function ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "src/math/asinf.h"
10 #include "src/__support/FPUtil/FEnvImpl.h"
11 #include "src/__support/FPUtil/FPBits.h"
12 #include "src/__support/FPUtil/PolyEval.h"
13 #include "src/__support/FPUtil/except_value_utils.h"
14 #include "src/__support/FPUtil/multiply_add.h"
15 #include "src/__support/FPUtil/sqrt.h"
16 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
17 #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
19 #include <errno.h>
21 #include "inv_trigf_utils.h"
23 namespace __llvm_libc {
25 static constexpr size_t N_EXCEPTS = 2;
27 // Exceptional values when |x| <= 0.5
28 static constexpr fputil::ExceptValues<float, N_EXCEPTS> ASINF_EXCEPTS_LO = {{
29 // (inputs, RZ output, RU offset, RD offset, RN offset)
30 // x = 0x1.137f0cp-5, asinf(x) = 0x1.138c58p-5 (RZ)
31 {0x3d09bf86, 0x3d09c62c, 1, 0, 1},
32 // x = 0x1.cbf43cp-4, asinf(x) = 0x1.cced1cp-4 (RZ)
33 {0x3de5fa1e, 0x3de6768e, 1, 0, 0},
34 }};
36 // Exceptional values when 0.5 < |x| <= 1
37 static constexpr fputil::ExceptValues<float, N_EXCEPTS> ASINF_EXCEPTS_HI = {{
38 // (inputs, RZ output, RU offset, RD offset, RN offset)
39 // x = 0x1.107434p-1, asinf(x) = 0x1.1f4b64p-1 (RZ)
40 {0x3f083a1a, 0x3f0fa5b2, 1, 0, 0},
41 // x = 0x1.ee836cp-1, asinf(x) = 0x1.4f0654p0 (RZ)
42 {0x3f7741b6, 0x3fa7832a, 1, 0, 0},
43 }};
45 LLVM_LIBC_FUNCTION(float, asinf, (float x)) {
46 using FPBits = typename fputil::FPBits<float>;
47 FPBits xbits(x);
48 uint32_t x_uint = xbits.uintval();
49 uint32_t x_abs = xbits.uintval() & 0x7fff'ffffU;
50 constexpr double SIGN[2] = {1.0, -1.0};
51 uint32_t x_sign = x_uint >> 31;
53 // |x| <= 0.5-ish
54 if (x_abs < 0x3f04'471dU) {
55 // |x| < 0x1.d12edp-12
56 if (LIBC_UNLIKELY(x_abs < 0x39e8'9768U)) {
57 // When |x| < 2^-12, the relative error of the approximation asin(x) ~ x
58 // is:
59 // |asin(x) - x| / |asin(x)| < |x^3| / (6|x|)
60 // = x^2 / 6
61 // < 2^-25
62 // < epsilon(1)/2.
63 // So the correctly rounded values of asin(x) are:
64 // = x + sign(x)*eps(x) if rounding mode = FE_TOWARDZERO,
65 // or (rounding mode = FE_UPWARD and x is
66 // negative),
67 // = x otherwise.
68 // To simplify the rounding decision and make it more efficient, we use
69 // fma(x, 2^-25, x) instead.
70 // An exhaustive test shows that this formula work correctly for all
71 // rounding modes up to |x| < 0x1.d12edp-12.
72 // Note: to use the formula x + 2^-25*x to decide the correct rounding, we
73 // do need fma(x, 2^-25, x) to prevent underflow caused by 2^-25*x when
74 // |x| < 2^-125. For targets without FMA instructions, we simply use
75 // double for intermediate results as it is more efficient than using an
76 // emulated version of FMA.
77 #if defined(LIBC_TARGET_CPU_HAS_FMA)
78 return fputil::multiply_add(x, 0x1.0p-25f, x);
79 #else
80 double xd = static_cast<double>(x);
81 return static_cast<float>(fputil::multiply_add(xd, 0x1.0p-25, xd));
82 #endif // LIBC_TARGET_CPU_HAS_FMA
85 // Check for exceptional values
86 if (auto r = ASINF_EXCEPTS_LO.lookup_odd(x_abs, x_sign);
87 LIBC_UNLIKELY(r.has_value()))
88 return r.value();
90 // For |x| <= 0.5, we approximate asinf(x) by:
91 // asin(x) = x * P(x^2)
92 // Where P(X^2) = Q(X) is a degree-20 minimax even polynomial approximating
93 // asin(x)/x on [0, 0.5] generated by Sollya with:
94 // > Q = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20|],
95 // [|1, D...|], [0, 0.5]);
96 // An exhaustive test shows that this approximation works well up to a
97 // little more than 0.5.
98 double xd = static_cast<double>(x);
99 double xsq = xd * xd;
100 double x3 = xd * xsq;
101 double r = asin_eval(xsq);
102 return static_cast<float>(fputil::multiply_add(x3, r, xd));
105 // |x| > 1, return NaNs.
106 if (LIBC_UNLIKELY(x_abs > 0x3f80'0000U)) {
107 if (x_abs <= 0x7f80'0000U) {
108 fputil::set_errno_if_required(EDOM);
109 fputil::raise_except_if_required(FE_INVALID);
111 return x +
112 FPBits::build_nan(1 << (fputil::MantissaWidth<float>::VALUE - 1));
115 // Check for exceptional values
116 if (auto r = ASINF_EXCEPTS_HI.lookup_odd(x_abs, x_sign);
117 LIBC_UNLIKELY(r.has_value()))
118 return r.value();
120 // When |x| > 0.5, we perform range reduction as follow:
122 // Assume further that 0.5 < x <= 1, and let:
123 // y = asin(x)
124 // We will use the double angle formula:
125 // cos(2y) = 1 - 2 sin^2(y)
126 // and the complement angle identity:
127 // x = sin(y) = cos(pi/2 - y)
128 // = 1 - 2 sin^2 (pi/4 - y/2)
129 // So:
130 // sin(pi/4 - y/2) = sqrt( (1 - x)/2 )
131 // And hence:
132 // pi/4 - y/2 = asin( sqrt( (1 - x)/2 ) )
133 // Equivalently:
134 // asin(x) = y = pi/2 - 2 * asin( sqrt( (1 - x)/2 ) )
135 // Let u = (1 - x)/2, then:
136 // asin(x) = pi/2 - 2 * asin( sqrt(u) )
137 // Moreover, since 0.5 < x <= 1:
138 // 0 <= u < 1/4, and 0 <= sqrt(u) < 0.5,
139 // And hence we can reuse the same polynomial approximation of asin(x) when
140 // |x| <= 0.5:
141 // asin(x) ~ pi/2 - 2 * sqrt(u) * P(u),
143 xbits.set_sign(false);
144 double sign = SIGN[x_sign];
145 double xd = static_cast<double>(xbits.get_val());
146 double u = fputil::multiply_add(-0.5, xd, 0.5);
147 double c1 = sign * (-2 * fputil::sqrt(u));
148 double c2 = fputil::multiply_add(sign, M_MATH_PI_2, c1);
149 double c3 = c1 * u;
151 double r = asin_eval(u);
152 return static_cast<float>(fputil::multiply_add(c3, r, c2));
155 } // namespace __llvm_libc