1 //===-- Single-precision log1p(x) function --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "src/math/log1pf.h"
10 #include "common_constants.h" // Lookup table for (1/f) and log(f)
11 #include "src/__support/FPUtil/FEnvImpl.h"
12 #include "src/__support/FPUtil/FMA.h"
13 #include "src/__support/FPUtil/FPBits.h"
14 #include "src/__support/FPUtil/PolyEval.h"
15 #include "src/__support/FPUtil/except_value_utils.h"
16 #include "src/__support/FPUtil/multiply_add.h"
17 #include "src/__support/common.h"
18 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
19 #include "src/__support/macros/properties/cpu_features.h"
21 // This is an algorithm for log10(x) in single precision which is
22 // correctly rounded for all rounding modes.
23 // - An exhaustive test show that when x >= 2^45, log1pf(x) == logf(x)
24 // for all rounding modes.
25 // - When 2^(-6) <= |x| < 2^45, the sum (double(x) + 1.0) is exact,
26 // so we can adapt the correctly rounded algorithm of logf to compute
27 // log(double(x) + 1.0) correctly. For more information about the logf
28 // algorithm, see `libc/src/math/generic/logf.cpp`.
29 // - When |x| < 2^(-6), we use a degree-8 polynomial in double precision
30 // generated with Sollya using the following command:
31 // fpminimax(log(1 + x)/x, 7, [|D...|], [-2^-6; 2^-6]);
33 namespace __llvm_libc
{
37 // We don't need to treat denormal and 0
38 LIBC_INLINE
float log(double x
) {
39 constexpr double LOG_2
= 0x1.62e42fefa39efp
-1;
41 using FPBits
= typename
fputil::FPBits
<double>;
44 uint64_t x_u
= xbits
.uintval();
46 if (LIBC_UNLIKELY(x_u
> FPBits::MAX_NORMAL
)) {
47 if (xbits
.get_sign() && !xbits
.is_nan()) {
48 fputil::set_errno_if_required(EDOM
);
49 fputil::raise_except_if_required(FE_INVALID
);
50 return fputil::FPBits
<float>::build_quiet_nan(0);
52 return static_cast<float>(x
);
55 double m
= static_cast<double>(xbits
.get_exponent());
57 // Get the 8 highest bits, use 7 bits (excluding the implicit hidden bit) for
60 xbits
.get_mantissa() >> 45; // fputil::MantissaWidth<double>::VALUE - 7
63 xbits
.set_unbiased_exponent(0x3FF);
66 // Clear the lowest 45 bits.
67 f
.bits
&= ~0x0000'1FFF'FFFF'FFFFULL
;
69 double d
= static_cast<double>(xbits
) - static_cast<double>(f
);
70 d
*= ONE_OVER_F
[f_index
];
72 double extra_factor
= fputil::multiply_add(m
, LOG_2
, LOG_F
[f_index
]);
74 double r
= fputil::polyeval(d
, extra_factor
, 0x1.fffffffffffacp
-1,
75 -0x1.fffffffef9cb2p
-2, 0x1.5555513bc679ap
-2,
76 -0x1.fff4805ea441p
-3, 0x1.930180dbde91ap
-3);
78 return static_cast<float>(r
);
81 } // namespace internal
83 LLVM_LIBC_FUNCTION(float, log1pf
, (float x
)) {
84 using FPBits
= typename
fputil::FPBits
<float>;
86 uint32_t x_u
= xbits
.uintval();
87 uint32_t x_a
= x_u
& 0x7fff'ffffU
;
88 double xd
= static_cast<double>(x
);
90 // Use log1p(x) = log(1 + x) for |x| > 2^-6;
91 if (x_a
> 0x3c80'0000U
) {
92 // Hard-to-round cases.
94 case 0x41078febU
: // x = 0x1.0f1fd6p3
95 return fputil::round_result_slightly_up(0x1.1fcbcep1f
);
96 case 0x5cd69e88U
: // x = 0x1.ad3d1p+58f
97 return fputil::round_result_slightly_up(0x1.45c146p
+5f
);
98 case 0x65d890d3U
: // x = 0x1.b121a6p+76f
99 return fputil::round_result_slightly_down(0x1.a9a3f2p
+5f
);
100 case 0x6f31a8ecU
: // x = 0x1.6351d8p+95f
101 return fputil::round_result_slightly_down(0x1.08b512p
+6f
);
102 case 0x7a17f30aU
: // x = 0x1.2fe614p+117f
103 return fputil::round_result_slightly_up(0x1.451436p
+6f
);
104 case 0xbd1d20afU
: // x = -0x1.3a415ep-5f
105 return fputil::round_result_slightly_up(-0x1.407112p
-5f
);
106 case 0xbf800000U
: // x = -1.0
107 fputil::set_errno_if_required(ERANGE
);
108 fputil::raise_except_if_required(FE_DIVBYZERO
);
109 return static_cast<float>(fputil::FPBits
<float>::neg_inf());
110 #ifndef LIBC_TARGET_CPU_HAS_FMA
111 case 0x4cc1c80bU
: // x = 0x1.839016p+26f
112 return fputil::round_result_slightly_down(0x1.26fc04p
+4f
);
113 case 0x5ee8984eU
: // x = 0x1.d1309cp+62f
114 return fputil::round_result_slightly_up(0x1.5c9442p
+5f
);
115 case 0x665e7ca6U
: // x = 0x1.bcf94cp+77f
116 return fputil::round_result_slightly_up(0x1.af66cp
+5f
);
117 case 0x79e7ec37U
: // x = 0x1.cfd86ep+116f
118 return fputil::round_result_slightly_up(0x1.43ff6ep
+6);
119 #endif // LIBC_TARGET_CPU_HAS_FMA
122 return internal::log(xd
+ 1.0);
126 // Hard-to round cases.
128 case 0x35400003U
: // x = 0x1.800006p-21f
129 return fputil::round_result_slightly_down(0x1.7ffffep
-21f
);
130 case 0x3710001bU
: // x = 0x1.200036p-17f
131 return fputil::round_result_slightly_down(0x1.1fffe6p
-17f
);
132 case 0xb53ffffdU
: // x = -0x1.7ffffap-21
133 return fputil::round_result_slightly_down(-0x1.800002p
-21f
);
134 case 0xb70fffe5U
: // x = -0x1.1fffcap-17
135 return fputil::round_result_slightly_down(-0x1.20001ap
-17f
);
136 case 0xbb0ec8c4U
: // x = -0x1.1d9188p-9
137 return fputil::round_result_slightly_up(-0x1.1de14ap
-9f
);
140 // Polymial generated by Sollya with:
141 // > fpminimax(log(1 + x)/x, 7, [|D...|], [-2^-6; 2^-6]);
142 const double COEFFS
[7] = {-0x1.0000000000000p
-1, 0x1.5555555556aadp
-2,
143 -0x1.000000000181ap
-2, 0x1.999998998124ep
-3,
144 -0x1.55555452e2a2bp
-3, 0x1.24adb8cde4aa7p
-3,
145 -0x1.0019db915ef6fp
-3};
147 double xsq
= xd
* xd
;
148 double c0
= fputil::multiply_add(xd
, COEFFS
[1], COEFFS
[0]);
149 double c1
= fputil::multiply_add(xd
, COEFFS
[3], COEFFS
[2]);
150 double c2
= fputil::multiply_add(xd
, COEFFS
[5], COEFFS
[4]);
151 double r
= fputil::polyeval(xsq
, xd
, c0
, c1
, c2
, COEFFS
[6]);
153 return static_cast<float>(r
);
156 } // namespace __llvm_libc