1 //===-- Single-precision sincos function ----------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "src/math/sincosf.h"
10 #include "sincosf_utils.h"
11 #include "src/__support/FPUtil/FEnvImpl.h"
12 #include "src/__support/FPUtil/FPBits.h"
13 #include "src/__support/FPUtil/multiply_add.h"
14 #include "src/__support/common.h"
15 #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
16 #include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
20 namespace __llvm_libc
{
23 static constexpr int N_EXCEPTS
= 6;
25 static constexpr uint32_t EXCEPT_INPUTS
[N_EXCEPTS
] = {
26 0x46199998, // x = 0x1.33333p13 x
27 0x55325019, // x = 0x1.64a032p43 x
28 0x5922aa80, // x = 0x1.4555p51 x
29 0x5f18b878, // x = 0x1.3170fp63 x
30 0x6115cb11, // x = 0x1.2b9622p67 x
31 0x7beef5ef, // x = 0x1.ddebdep120 x
34 static constexpr uint32_t EXCEPT_OUTPUTS_SIN
[N_EXCEPTS
][4] = {
35 {0xbeb1fa5d, 0, 1, 0}, // x = 0x1.33333p13, sin(x) = -0x1.63f4bap-2 (RZ)
36 {0xbf171adf, 0, 1, 1}, // x = 0x1.64a032p43, sin(x) = -0x1.2e35bep-1 (RZ)
37 {0xbf587521, 0, 1, 1}, // x = 0x1.4555p51, sin(x) = -0x1.b0ea42p-1 (RZ)
38 {0x3dad60f6, 1, 0, 1}, // x = 0x1.3170fp63, sin(x) = 0x1.5ac1ecp-4 (RZ)
39 {0xbe7cc1e0, 0, 1, 1}, // x = 0x1.2b9622p67, sin(x) = -0x1.f983cp-3 (RZ)
40 {0xbf587d1b, 0, 1, 1}, // x = 0x1.ddebdep120, sin(x) = -0x1.b0fa36p-1 (RZ)
43 static constexpr uint32_t EXCEPT_OUTPUTS_COS
[N_EXCEPTS
][4] = {
44 {0xbf70090b, 0, 1, 0}, // x = 0x1.33333p13, cos(x) = -0x1.e01216p-1 (RZ)
45 {0x3f4ea5d2, 1, 0, 0}, // x = 0x1.64a032p43, cos(x) = 0x1.9d4ba4p-1 (RZ)
46 {0x3f08aebe, 1, 0, 1}, // x = 0x1.4555p51, cos(x) = 0x1.115d7cp-1 (RZ)
47 {0x3f7f14bb, 1, 0, 0}, // x = 0x1.3170fp63, cos(x) = 0x1.fe2976p-1 (RZ)
48 {0x3f78142e, 1, 0, 1}, // x = 0x1.2b9622p67, cos(x) = 0x1.f0285cp-1 (RZ)
49 {0x3f08a21c, 1, 0, 0}, // x = 0x1.ddebdep120, cos(x) = 0x1.114438p-1 (RZ)
52 LLVM_LIBC_FUNCTION(void, sincosf
, (float x
, float *sinp
, float *cosp
)) {
53 using FPBits
= typename
fputil::FPBits
<float>;
56 uint32_t x_abs
= xbits
.uintval() & 0x7fff'ffffU
;
57 double xd
= static_cast<double>(x
);
60 // For |x| >= 2^-12, we perform range reduction as follows:
61 // Find k and y such that:
62 // x = (k + y) * pi/32
65 // For small range (|x| < 2^45 when FMA instructions are available, 2^22
66 // otherwise), this is done by performing:
67 // k = round(x * 32/pi)
69 // For large range, we will omit all the higher parts of 32/pi such that the
70 // least significant bits of their full products with x are larger than 63,
72 // sin((k + y + 64*i) * pi/32) = sin(x + i * 2pi) = sin(x), and
73 // cos((k + y + 64*i) * pi/32) = cos(x + i * 2pi) = cos(x).
75 // When FMA instructions are not available, we store the digits of 32/pi in
76 // chunks of 28-bit precision. This will make sure that the products:
77 // x * THIRTYTWO_OVER_PI_28[i] are all exact.
78 // When FMA instructions are available, we simply store the digits of326/pi in
79 // chunks of doubles (53-bit of precision).
80 // So when multiplying by the largest values of single precision, the
81 // resulting output should be correct up to 2^(-208 + 128) ~ 2^-80. By the
82 // worst-case analysis of range reduction, |y| >= 2^-38, so this should give
83 // us more than 40 bits of accuracy. For the worst-case estimation of range
84 // reduction, see for instances:
85 // Elementary Functions by J-M. Muller, Chapter 11,
86 // Handbook of Floating-Point Arithmetic by J-M. Muller et. al.,
89 // Once k and y are computed, we then deduce the answer by the sine and cosine
91 // sin(x) = sin((k + y)*pi/32)
92 // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32)
93 // cos(x) = cos((k + y)*pi/32)
94 // = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32)
95 // The values of sin(k*pi/32) and cos(k*pi/32) for k = 0..63 are precomputed
96 // and stored using a vector of 32 doubles. Sin(y*pi/32) and cos(y*pi/32) are
97 // computed using degree-7 and degree-6 minimax polynomials generated by
98 // Sollya respectively.
101 if (LIBC_UNLIKELY(x_abs
< 0x3980'0000U
)) {
102 if (LIBC_UNLIKELY(x_abs
== 0U)) {
108 // When |x| < 2^-12, the relative errors of the approximations
109 // sin(x) ~ x, cos(x) ~ 1
111 // |sin(x) - x| / |sin(x)| < |x^3| / (6|x|)
115 // |cos(x) - 1| < |x^2 / 2| = 2^-25 < epsilon(1)/2.
116 // So the correctly rounded values of sin(x) and cos(x) are:
117 // sin(x) = x - sign(x)*eps(x) if rounding mode = FE_TOWARDZERO,
118 // or (rounding mode = FE_UPWARD and x is
121 // cos(x) = 1 - eps(x) if rounding mode = FE_TOWARDZERO or FE_DOWWARD,
123 // To simplify the rounding decision and make it more efficient and to
124 // prevent compiler to perform constant folding, we use
125 // sin(x) = fma(x, -2^-25, x),
126 // cos(x) = fma(x*0.5f, -x, 1)
128 // Note: to use the formula x - 2^-25*x to decide the correct rounding, we
129 // do need fma(x, -2^-25, x) to prevent underflow caused by -2^-25*x when
130 // |x| < 2^-125. For targets without FMA instructions, we simply use
131 // double for intermediate results as it is more efficient than using an
132 // emulated version of FMA.
133 #if defined(LIBC_TARGET_CPU_HAS_FMA)
134 *sinp
= fputil::multiply_add(x
, -0x1.0p
-25f
, x
);
135 *cosp
= fputil::multiply_add(FPBits(x_abs
).get_val(), -0x1.0p
-25f
, 1.0f
);
137 *sinp
= static_cast<float>(fputil::multiply_add(xd
, -0x1.0p
-25, xd
));
138 *cosp
= static_cast<float>(fputil::multiply_add(
139 static_cast<double>(FPBits(x_abs
).get_val()), -0x1.0p
-25, 1.0));
140 #endif // LIBC_TARGET_CPU_HAS_FMA
145 if (LIBC_UNLIKELY(x_abs
>= 0x7f80'0000U
)) {
146 if (x_abs
== 0x7f80'0000U
) {
147 fputil::set_errno_if_required(EDOM
);
148 fputil::raise_except_if_required(FE_INVALID
);
151 x
+ FPBits::build_nan(1 << (fputil::MantissaWidth
<float>::VALUE
- 1));
156 // Check exceptional values.
157 for (int i
= 0; i
< N_EXCEPTS
; ++i
) {
158 if (LIBC_UNLIKELY(x_abs
== EXCEPT_INPUTS
[i
])) {
159 uint32_t s
= EXCEPT_OUTPUTS_SIN
[i
][0]; // FE_TOWARDZERO
160 uint32_t c
= EXCEPT_OUTPUTS_COS
[i
][0]; // FE_TOWARDZERO
162 switch (fputil::get_round()) {
164 s
+= x_sign
? EXCEPT_OUTPUTS_SIN
[i
][2] : EXCEPT_OUTPUTS_SIN
[i
][1];
165 c
+= EXCEPT_OUTPUTS_COS
[i
][1];
168 s
+= x_sign
? EXCEPT_OUTPUTS_SIN
[i
][1] : EXCEPT_OUTPUTS_SIN
[i
][2];
169 c
+= EXCEPT_OUTPUTS_COS
[i
][2];
172 s
+= EXCEPT_OUTPUTS_SIN
[i
][3];
173 c
+= EXCEPT_OUTPUTS_COS
[i
][3];
176 *sinp
= x_sign
? -FPBits(s
).get_val() : FPBits(s
).get_val();
177 *cosp
= FPBits(c
).get_val();
183 // Combine the results with the sine and cosine of sum formulas:
184 // sin(x) = sin((k + y)*pi/32)
185 // = sin(y*pi/32) * cos(k*pi/32) + cos(y*pi/32) * sin(k*pi/32)
186 // = sin_y * cos_k + (1 + cosm1_y) * sin_k
187 // = sin_y * cos_k + (cosm1_y * sin_k + sin_k)
188 // cos(x) = cos((k + y)*pi/32)
189 // = cos(y*pi/32) * cos(k*pi/32) - sin(y*pi/32) * sin(k*pi/32)
190 // = cosm1_y * cos_k + sin_y * sin_k
191 // = (cosm1_y * cos_k + cos_k) + sin_y * sin_k
192 double sin_k
, cos_k
, sin_y
, cosm1_y
;
194 sincosf_eval(xd
, x_abs
, sin_k
, cos_k
, sin_y
, cosm1_y
);
196 *sinp
= static_cast<float>(fputil::multiply_add(
197 sin_y
, cos_k
, fputil::multiply_add(cosm1_y
, sin_k
, sin_k
)));
198 *cosp
= static_cast<float>(fputil::multiply_add(
199 sin_y
, -sin_k
, fputil::multiply_add(cosm1_y
, cos_k
, cos_k
)));
202 } // namespace __llvm_libc