[NFC][Py Reformat] Added more commits to .git-blame-ignore-revs
[llvm-project.git] / libc / src / string / memory_utils / op_generic.h
blob663f42809ecc956d06fd85778547688fdda32e59
1 //===-- Generic implementation of memory function building blocks ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides generic C++ building blocks.
10 // Depending on the requested size, the block operation uses unsigned integral
11 // types, vector types or an array of the type with the maximum size.
13 // The maximum size is passed as a template argument. For instance, on x86
14 // platforms that only supports integral types the maximum size would be 8
15 // (corresponding to uint64_t). On this platform if we request the size 32, this
16 // would be treated as a cpp::array<uint64_t, 4>.
18 // On the other hand, if the platform is x86 with support for AVX the maximum
19 // size is 32 and the operation can be handled with a single native operation.
21 //===----------------------------------------------------------------------===//
23 #ifndef LLVM_LIBC_SRC_STRING_MEMORY_UTILS_OP_GENERIC_H
24 #define LLVM_LIBC_SRC_STRING_MEMORY_UTILS_OP_GENERIC_H
26 #include "src/__support/CPP/array.h"
27 #include "src/__support/CPP/type_traits.h"
28 #include "src/__support/common.h"
29 #include "src/__support/endian.h"
30 #include "src/__support/macros/optimization.h"
31 #include "src/string/memory_utils/op_builtin.h"
32 #include "src/string/memory_utils/utils.h"
34 #include <stdint.h>
36 namespace __llvm_libc {
37 // Compiler types using the vector attributes.
38 using uint8x1_t = uint8_t __attribute__((__vector_size__(1)));
39 using uint8x2_t = uint8_t __attribute__((__vector_size__(2)));
40 using uint8x4_t = uint8_t __attribute__((__vector_size__(4)));
41 using uint8x8_t = uint8_t __attribute__((__vector_size__(8)));
42 using uint8x16_t = uint8_t __attribute__((__vector_size__(16)));
43 using uint8x32_t = uint8_t __attribute__((__vector_size__(32)));
44 using uint8x64_t = uint8_t __attribute__((__vector_size__(64)));
45 } // namespace __llvm_libc
47 namespace __llvm_libc::generic {
48 // We accept three types of values as elements for generic operations:
49 // - scalar : unsigned integral types
50 // - vector : compiler types using the vector attributes
51 // - array : a cpp::array<T, N> where T is itself either a scalar or a vector.
52 // The following traits help discriminate between these cases.
53 template <typename T>
54 constexpr bool is_scalar_v = cpp::is_integral_v<T> && cpp::is_unsigned_v<T>;
56 template <typename T>
57 constexpr bool is_vector_v =
58 cpp::details::is_unqualified_any_of<T, uint8x1_t, uint8x2_t, uint8x4_t,
59 uint8x8_t, uint8x16_t, uint8x32_t,
60 uint8x64_t>();
62 template <class T> struct is_array : cpp::false_type {};
63 template <class T, size_t N> struct is_array<cpp::array<T, N>> {
64 static constexpr bool value = is_scalar_v<T> || is_vector_v<T>;
66 template <typename T> constexpr bool is_array_v = is_array<T>::value;
68 template <typename T>
69 constexpr bool is_element_type_v =
70 is_scalar_v<T> || is_vector_v<T> || is_array_v<T>;
73 template <class T> struct array_size {};
74 template <class T, size_t N>
75 struct array_size<cpp::array<T, N>> : cpp::integral_constant<size_t, N> {};
76 template <typename T> constexpr size_t array_size_v = array_size<T>::value;
78 // Generic operations for the above type categories.
80 template <typename T> T load(CPtr src) {
81 static_assert(is_element_type_v<T>);
82 if constexpr (is_scalar_v<T> || is_vector_v<T>) {
83 return ::__llvm_libc::load<T>(src);
84 } else if constexpr (is_array_v<T>) {
85 using value_type = typename T::value_type;
86 T Value;
87 for (size_t I = 0; I < array_size_v<T>; ++I)
88 Value[I] = load<value_type>(src + (I * sizeof(value_type)));
89 return Value;
93 template <typename T> void store(Ptr dst, T value) {
94 static_assert(is_element_type_v<T>);
95 if constexpr (is_scalar_v<T> || is_vector_v<T>) {
96 ::__llvm_libc::store<T>(dst, value);
97 } else if constexpr (is_array_v<T>) {
98 using value_type = typename T::value_type;
99 for (size_t I = 0; I < array_size_v<T>; ++I)
100 store<value_type>(dst + (I * sizeof(value_type)), value[I]);
104 template <typename T> T splat(uint8_t value) {
105 static_assert(is_scalar_v<T> || is_vector_v<T>);
106 if constexpr (is_scalar_v<T>)
107 return T(~0) / T(0xFF) * T(value);
108 else if constexpr (is_vector_v<T>) {
109 T Out;
110 // This for loop is optimized out for vector types.
111 for (size_t i = 0; i < sizeof(T); ++i)
112 Out[i] = value;
113 return Out;
117 static_assert((UINTPTR_MAX == 4294967295U) ||
118 (UINTPTR_MAX == 18446744073709551615UL),
119 "We currently only support 32- or 64-bit platforms");
121 #if defined(LIBC_TARGET_ARCH_IS_X86_64) || defined(LIBC_TARGET_ARCH_IS_AARCH64)
122 #define LLVM_LIBC_HAS_UINT64
123 #endif
125 namespace details {
126 // Checks that each type is sorted in strictly decreasing order of size.
127 // i.e. sizeof(First) > sizeof(Second) > ... > sizeof(Last)
128 template <typename First> constexpr bool is_decreasing_size() {
129 return sizeof(First) == 1;
131 template <typename First, typename Second, typename... Next>
132 constexpr bool is_decreasing_size() {
133 if constexpr (sizeof...(Next) > 0)
134 return sizeof(First) > sizeof(Second) && is_decreasing_size<Next...>();
135 else
136 return sizeof(First) > sizeof(Second) && is_decreasing_size<Second>();
139 template <size_t Size, typename... Ts> struct Largest;
140 template <size_t Size> struct Largest<Size> : cpp::type_identity<uint8_t> {};
141 template <size_t Size, typename T, typename... Ts>
142 struct Largest<Size, T, Ts...> {
143 using next = Largest<Size, Ts...>;
144 using type = cpp::conditional_t<(Size >= sizeof(T)), T, typename next::type>;
147 } // namespace details
149 // 'SupportedTypes' holds a list of natively supported types.
150 // The types are instanciations of ScalarType or VectorType.
151 // They should be ordered in strictly decreasing order.
152 // The 'TypeFor<Size>' type retrieves is the largest supported type that can
153 // handle 'Size' bytes. e.g.
155 // using ST = SupportedTypes<ScalarType<uint16_t>, ScalarType<uint8_t>>;
156 // using Type = ST::TypeFor<10>;
157 // static_assert(cpp:is_same_v<Type, ScalarType<uint16_t>>);
159 template <typename First, typename... Ts> struct SupportedTypes {
160 static_assert(details::is_decreasing_size<First, Ts...>());
162 using MaxType = First;
164 template <size_t Size>
165 using TypeFor = typename details::Largest<Size, First, Ts...>::type;
168 // Map from sizes to structures offering static load, store and splat methods.
169 // Note: On platforms lacking vector support, we use the ArrayType below and
170 // decompose the operation in smaller pieces.
172 // Lists a generic native types to use for Memset and Memmove operations.
173 // TODO: Inject the native types within Memset and Memmove depending on the
174 // target architectures and derive MaxSize from it.
175 using NativeTypeMap = SupportedTypes<uint8x64_t, //
176 uint8x32_t, //
177 uint8x16_t,
178 #if defined(LLVM_LIBC_HAS_UINT64)
179 uint64_t, // Not available on 32bit
180 #endif
181 uint32_t, //
182 uint16_t, //
183 uint8_t>;
185 namespace details {
187 // Helper to test if a type is void.
188 template <typename T> inline constexpr bool is_void_v = cpp::is_same_v<T, void>;
190 // In case the 'Size' is not supported we can fall back to a sequence of smaller
191 // operations using the largest natively supported type.
192 template <size_t Size, size_t MaxSize> static constexpr bool useArrayType() {
193 return (Size > MaxSize) && ((Size % MaxSize) == 0) &&
194 !details::is_void_v<NativeTypeMap::TypeFor<MaxSize>>;
197 // Compute the type to handle an operation of 'Size' bytes knowing that the
198 // underlying platform only support native types up to MaxSize bytes.
199 template <size_t Size, size_t MaxSize>
200 using getTypeFor = cpp::conditional_t<
201 useArrayType<Size, MaxSize>(),
202 cpp::array<NativeTypeMap::TypeFor<MaxSize>, Size / MaxSize>,
203 NativeTypeMap::TypeFor<Size>>;
205 } // namespace details
207 ///////////////////////////////////////////////////////////////////////////////
208 // Memset
209 ///////////////////////////////////////////////////////////////////////////////
211 template <typename T> struct Memset {
212 static constexpr size_t SIZE = sizeof(T);
214 LIBC_INLINE static void block(Ptr dst, uint8_t value) {
215 static_assert(is_element_type_v<T>);
216 if constexpr (is_scalar_v<T> || is_vector_v<T>) {
217 store<T>(dst, splat<T>(value));
218 } else if constexpr (is_array_v<T>) {
219 using value_type = typename T::value_type;
220 const auto Splat = splat<value_type>(value);
221 for (size_t I = 0; I < array_size_v<T>; ++I)
222 store<value_type>(dst + (I * sizeof(value_type)), Splat);
226 LIBC_INLINE static void tail(Ptr dst, uint8_t value, size_t count) {
227 block(dst + count - SIZE, value);
230 LIBC_INLINE static void head_tail(Ptr dst, uint8_t value, size_t count) {
231 block(dst, value);
232 tail(dst, value, count);
235 LIBC_INLINE static void loop_and_tail(Ptr dst, uint8_t value, size_t count) {
236 static_assert(SIZE > 1, "a loop of size 1 does not need tail");
237 size_t offset = 0;
238 do {
239 block(dst + offset, value);
240 offset += SIZE;
241 } while (offset < count - SIZE);
242 tail(dst, value, count);
246 template <typename T, typename... TS> struct MemsetSequence {
247 static constexpr size_t SIZE = (sizeof(T) + ... + sizeof(TS));
248 LIBC_INLINE static void block(Ptr dst, uint8_t value) {
249 Memset<T>::block(dst, value);
250 if constexpr (sizeof...(TS) > 0) {
251 return MemsetSequence<TS...>::block(dst + sizeof(T), value);
256 ///////////////////////////////////////////////////////////////////////////////
257 // Memmove
258 ///////////////////////////////////////////////////////////////////////////////
260 template <typename T> struct Memmove {
261 static constexpr size_t SIZE = sizeof(T);
263 LIBC_INLINE static void block(Ptr dst, CPtr src) {
264 store<T>(dst, load<T>(src));
267 LIBC_INLINE static void head_tail(Ptr dst, CPtr src, size_t count) {
268 const size_t offset = count - SIZE;
269 // The load and store operations can be performed in any order as long as
270 // they are not interleaved. More investigations are needed to determine
271 // the best order.
272 const auto head = load<T>(src);
273 const auto tail = load<T>(src + offset);
274 store<T>(dst, head);
275 store<T>(dst + offset, tail);
278 // Align forward suitable when dst < src. The alignment is performed with
279 // an HeadTail operation of count ∈ [Alignment, 2 x Alignment].
281 // e.g. Moving two bytes forward, we make sure src is aligned.
282 // [ | | | | ]
283 // [____XXXXXXXXXXXXXXXXXXXXXXXXXXXX_]
284 // [____LLLLLLLL_____________________]
285 // [___________LLLLLLLA______________]
286 // [_SSSSSSSS________________________]
287 // [________SSSSSSSS_________________]
289 // e.g. Moving two bytes forward, we make sure dst is aligned.
290 // [ | | | | ]
291 // [____XXXXXXXXXXXXXXXXXXXXXXXXXXXX_]
292 // [____LLLLLLLL_____________________]
293 // [______LLLLLLLL___________________]
294 // [_SSSSSSSS________________________]
295 // [___SSSSSSSA______________________]
296 template <Arg AlignOn>
297 LIBC_INLINE static void align_forward(Ptr &dst, CPtr &src, size_t &count) {
298 Ptr prev_dst = dst;
299 CPtr prev_src = src;
300 size_t prev_count = count;
301 align_to_next_boundary<SIZE, AlignOn>(dst, src, count);
302 adjust(SIZE, dst, src, count);
303 head_tail(prev_dst, prev_src, prev_count - count);
306 // Align backward suitable when dst > src. The alignment is performed with
307 // an HeadTail operation of count ∈ [Alignment, 2 x Alignment].
309 // e.g. Moving two bytes backward, we make sure src is aligned.
310 // [ | | | | ]
311 // [____XXXXXXXXXXXXXXXXXXXXXXXX_____]
312 // [ _________________ALLLLLLL_______]
313 // [ ___________________LLLLLLLL_____]
314 // [____________________SSSSSSSS_____]
315 // [______________________SSSSSSSS___]
317 // e.g. Moving two bytes backward, we make sure dst is aligned.
318 // [ | | | | ]
319 // [____XXXXXXXXXXXXXXXXXXXXXXXX_____]
320 // [ _______________LLLLLLLL_________]
321 // [ ___________________LLLLLLLL_____]
322 // [__________________ASSSSSSS_______]
323 // [______________________SSSSSSSS___]
324 template <Arg AlignOn>
325 LIBC_INLINE static void align_backward(Ptr &dst, CPtr &src, size_t &count) {
326 Ptr headtail_dst = dst + count;
327 CPtr headtail_src = src + count;
328 size_t headtail_size = 0;
329 align_to_next_boundary<SIZE, AlignOn>(headtail_dst, headtail_src,
330 headtail_size);
331 adjust(-2 * SIZE, headtail_dst, headtail_src, headtail_size);
332 head_tail(headtail_dst, headtail_src, headtail_size);
333 count -= headtail_size;
336 // Move forward suitable when dst < src. We load the tail bytes before
337 // handling the loop.
339 // e.g. Moving two bytes
340 // [ | | | | |]
341 // [___XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX___]
342 // [_________________________LLLLLLLL___]
343 // [___LLLLLLLL_________________________]
344 // [_SSSSSSSS___________________________]
345 // [___________LLLLLLLL_________________]
346 // [_________SSSSSSSS___________________]
347 // [___________________LLLLLLLL_________]
348 // [_________________SSSSSSSS___________]
349 // [_______________________SSSSSSSS_____]
350 LIBC_INLINE static void loop_and_tail_forward(Ptr dst, CPtr src,
351 size_t count) {
352 static_assert(SIZE > 1, "a loop of size 1 does not need tail");
353 const size_t tail_offset = count - SIZE;
354 const auto tail_value = load<T>(src + tail_offset);
355 size_t offset = 0;
356 LIBC_LOOP_NOUNROLL
357 do {
358 block(dst + offset, src + offset);
359 offset += SIZE;
360 } while (offset < count - SIZE);
361 store<T>(dst + tail_offset, tail_value);
364 // Move backward suitable when dst > src. We load the head bytes before
365 // handling the loop.
367 // e.g. Moving two bytes
368 // [ | | | | |]
369 // [___XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX___]
370 // [___LLLLLLLL_________________________]
371 // [_________________________LLLLLLLL___]
372 // [___________________________SSSSSSSS_]
373 // [_________________LLLLLLLL___________]
374 // [___________________SSSSSSSS_________]
375 // [_________LLLLLLLL___________________]
376 // [___________SSSSSSSS_________________]
377 // [_____SSSSSSSS_______________________]
378 LIBC_INLINE static void loop_and_tail_backward(Ptr dst, CPtr src,
379 size_t count) {
380 static_assert(SIZE > 1, "a loop of size 1 does not need tail");
381 const auto head_value = load<T>(src);
382 ptrdiff_t offset = count - SIZE;
383 LIBC_LOOP_NOUNROLL
384 do {
385 block(dst + offset, src + offset);
386 offset -= SIZE;
387 } while (offset >= 0);
388 store<T>(dst, head_value);
392 ///////////////////////////////////////////////////////////////////////////////
393 // Bcmp
394 ///////////////////////////////////////////////////////////////////////////////
395 template <size_t Size> struct Bcmp {
396 static constexpr size_t SIZE = Size;
397 static constexpr size_t MaxSize = LLVM_LIBC_IS_DEFINED(LLVM_LIBC_HAS_UINT64)
398 ? sizeof(uint64_t)
399 : sizeof(uint32_t);
401 template <typename T> LIBC_INLINE static uint32_t load_xor(CPtr p1, CPtr p2) {
402 static_assert(sizeof(T) <= sizeof(uint32_t));
403 return load<T>(p1) ^ load<T>(p2);
406 template <typename T>
407 LIBC_INLINE static uint32_t load_not_equal(CPtr p1, CPtr p2) {
408 return load<T>(p1) != load<T>(p2);
411 LIBC_INLINE static BcmpReturnType block(CPtr p1, CPtr p2) {
412 if constexpr (Size == 1) {
413 return load_xor<uint8_t>(p1, p2);
414 } else if constexpr (Size == 2) {
415 return load_xor<uint16_t>(p1, p2);
416 } else if constexpr (Size == 4) {
417 return load_xor<uint32_t>(p1, p2);
418 } else if constexpr (Size == 8) {
419 return load_not_equal<uint64_t>(p1, p2);
420 } else if constexpr (details::useArrayType<Size, MaxSize>()) {
421 for (size_t offset = 0; offset < Size; offset += MaxSize)
422 if (auto value = Bcmp<MaxSize>::block(p1 + offset, p2 + offset))
423 return value;
424 } else {
425 deferred_static_assert("Unimplemented Size");
427 return BcmpReturnType::ZERO();
430 LIBC_INLINE static BcmpReturnType tail(CPtr p1, CPtr p2, size_t count) {
431 return block(p1 + count - SIZE, p2 + count - SIZE);
434 LIBC_INLINE static BcmpReturnType head_tail(CPtr p1, CPtr p2, size_t count) {
435 return block(p1, p2) | tail(p1, p2, count);
438 LIBC_INLINE static BcmpReturnType loop_and_tail(CPtr p1, CPtr p2,
439 size_t count) {
440 static_assert(Size > 1, "a loop of size 1 does not need tail");
441 size_t offset = 0;
442 do {
443 if (auto value = block(p1 + offset, p2 + offset))
444 return value;
445 offset += SIZE;
446 } while (offset < count - SIZE);
447 return tail(p1, p2, count);
451 ///////////////////////////////////////////////////////////////////////////////
452 // Memcmp
453 ///////////////////////////////////////////////////////////////////////////////
454 template <size_t Size> struct Memcmp {
455 static constexpr size_t SIZE = Size;
456 static constexpr size_t MaxSize = LLVM_LIBC_IS_DEFINED(LLVM_LIBC_HAS_UINT64)
457 ? sizeof(uint64_t)
458 : sizeof(uint32_t);
460 template <typename T> LIBC_INLINE static T load_be(CPtr ptr) {
461 return Endian::to_big_endian(load<T>(ptr));
464 template <typename T>
465 LIBC_INLINE static MemcmpReturnType load_be_diff(CPtr p1, CPtr p2) {
466 return load_be<T>(p1) - load_be<T>(p2);
469 template <typename T>
470 LIBC_INLINE static MemcmpReturnType load_be_cmp(CPtr p1, CPtr p2) {
471 const auto la = load_be<T>(p1);
472 const auto lb = load_be<T>(p2);
473 return la > lb ? 1 : la < lb ? -1 : 0;
476 LIBC_INLINE static MemcmpReturnType block(CPtr p1, CPtr p2) {
477 if constexpr (Size == 1) {
478 return load_be_diff<uint8_t>(p1, p2);
479 } else if constexpr (Size == 2) {
480 return load_be_diff<uint16_t>(p1, p2);
481 } else if constexpr (Size == 4) {
482 return load_be_cmp<uint32_t>(p1, p2);
483 } else if constexpr (Size == 8) {
484 return load_be_cmp<uint64_t>(p1, p2);
485 } else if constexpr (details::useArrayType<Size, MaxSize>()) {
486 for (size_t offset = 0; offset < Size; offset += MaxSize)
487 if (Bcmp<MaxSize>::block(p1 + offset, p2 + offset))
488 return Memcmp<MaxSize>::block(p1 + offset, p2 + offset);
489 return MemcmpReturnType::ZERO();
490 } else if constexpr (Size == 3) {
491 if (auto value = Memcmp<2>::block(p1, p2))
492 return value;
493 return Memcmp<1>::block(p1 + 2, p2 + 2);
494 } else {
495 deferred_static_assert("Unimplemented Size");
499 LIBC_INLINE static MemcmpReturnType tail(CPtr p1, CPtr p2, size_t count) {
500 return block(p1 + count - SIZE, p2 + count - SIZE);
503 LIBC_INLINE static MemcmpReturnType head_tail(CPtr p1, CPtr p2,
504 size_t count) {
505 if (auto value = block(p1, p2))
506 return value;
507 return tail(p1, p2, count);
510 LIBC_INLINE static MemcmpReturnType loop_and_tail(CPtr p1, CPtr p2,
511 size_t count) {
512 static_assert(Size > 1, "a loop of size 1 does not need tail");
513 size_t offset = 0;
514 do {
515 if (auto value = block(p1 + offset, p2 + offset))
516 return value;
517 offset += SIZE;
518 } while (offset < count - SIZE);
519 return tail(p1, p2, count);
523 } // namespace __llvm_libc::generic
525 #endif // LLVM_LIBC_SRC_STRING_MEMORY_UTILS_OP_GENERIC_H