1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements folding of constants for LLVM. This implements the
10 // (internal) ConstantFold.h interface, which is used by the
11 // ConstantExpr::get* methods to automatically fold constants when possible.
13 // The current constant folding implementation is implemented in two pieces: the
14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
15 // a dependence in IR on Target.
17 //===----------------------------------------------------------------------===//
19 #include "ConstantFold.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
35 using namespace llvm::PatternMatch
;
37 //===----------------------------------------------------------------------===//
38 // ConstantFold*Instruction Implementations
39 //===----------------------------------------------------------------------===//
41 /// Convert the specified vector Constant node to the specified vector type.
42 /// At this point, we know that the elements of the input vector constant are
43 /// all simple integer or FP values.
44 static Constant
*BitCastConstantVector(Constant
*CV
, VectorType
*DstTy
) {
46 if (CV
->isAllOnesValue()) return Constant::getAllOnesValue(DstTy
);
47 if (CV
->isNullValue()) return Constant::getNullValue(DstTy
);
49 // If this cast changes element count then we can't handle it here:
50 // doing so requires endianness information. This should be handled by
51 // Analysis/ConstantFolding.cpp
52 unsigned NumElts
= DstTy
->getNumElements();
53 if (NumElts
!= CV
->getType()->getVectorNumElements())
56 Type
*DstEltTy
= DstTy
->getElementType();
58 SmallVector
<Constant
*, 16> Result
;
59 Type
*Ty
= IntegerType::get(CV
->getContext(), 32);
60 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
62 ConstantExpr::getExtractElement(CV
, ConstantInt::get(Ty
, i
));
63 C
= ConstantExpr::getBitCast(C
, DstEltTy
);
67 return ConstantVector::get(Result
);
70 /// This function determines which opcode to use to fold two constant cast
71 /// expressions together. It uses CastInst::isEliminableCastPair to determine
72 /// the opcode. Consequently its just a wrapper around that function.
73 /// Determine if it is valid to fold a cast of a cast
76 unsigned opc
, ///< opcode of the second cast constant expression
77 ConstantExpr
*Op
, ///< the first cast constant expression
78 Type
*DstTy
///< destination type of the first cast
80 assert(Op
&& Op
->isCast() && "Can't fold cast of cast without a cast!");
81 assert(DstTy
&& DstTy
->isFirstClassType() && "Invalid cast destination type");
82 assert(CastInst::isCast(opc
) && "Invalid cast opcode");
84 // The types and opcodes for the two Cast constant expressions
85 Type
*SrcTy
= Op
->getOperand(0)->getType();
86 Type
*MidTy
= Op
->getType();
87 Instruction::CastOps firstOp
= Instruction::CastOps(Op
->getOpcode());
88 Instruction::CastOps secondOp
= Instruction::CastOps(opc
);
90 // Assume that pointers are never more than 64 bits wide, and only use this
91 // for the middle type. Otherwise we could end up folding away illegal
92 // bitcasts between address spaces with different sizes.
93 IntegerType
*FakeIntPtrTy
= Type::getInt64Ty(DstTy
->getContext());
95 // Let CastInst::isEliminableCastPair do the heavy lifting.
96 return CastInst::isEliminableCastPair(firstOp
, secondOp
, SrcTy
, MidTy
, DstTy
,
97 nullptr, FakeIntPtrTy
, nullptr);
100 static Constant
*FoldBitCast(Constant
*V
, Type
*DestTy
) {
101 Type
*SrcTy
= V
->getType();
103 return V
; // no-op cast
105 // Check to see if we are casting a pointer to an aggregate to a pointer to
106 // the first element. If so, return the appropriate GEP instruction.
107 if (PointerType
*PTy
= dyn_cast
<PointerType
>(V
->getType()))
108 if (PointerType
*DPTy
= dyn_cast
<PointerType
>(DestTy
))
109 if (PTy
->getAddressSpace() == DPTy
->getAddressSpace()
110 && PTy
->getElementType()->isSized()) {
111 SmallVector
<Value
*, 8> IdxList
;
113 Constant::getNullValue(Type::getInt32Ty(DPTy
->getContext()));
114 IdxList
.push_back(Zero
);
115 Type
*ElTy
= PTy
->getElementType();
116 while (ElTy
!= DPTy
->getElementType()) {
117 if (StructType
*STy
= dyn_cast
<StructType
>(ElTy
)) {
118 if (STy
->getNumElements() == 0) break;
119 ElTy
= STy
->getElementType(0);
120 IdxList
.push_back(Zero
);
121 } else if (SequentialType
*STy
=
122 dyn_cast
<SequentialType
>(ElTy
)) {
123 ElTy
= STy
->getElementType();
124 IdxList
.push_back(Zero
);
130 if (ElTy
== DPTy
->getElementType())
131 // This GEP is inbounds because all indices are zero.
132 return ConstantExpr::getInBoundsGetElementPtr(PTy
->getElementType(),
136 // Handle casts from one vector constant to another. We know that the src
137 // and dest type have the same size (otherwise its an illegal cast).
138 if (VectorType
*DestPTy
= dyn_cast
<VectorType
>(DestTy
)) {
139 if (VectorType
*SrcTy
= dyn_cast
<VectorType
>(V
->getType())) {
140 assert(DestPTy
->getBitWidth() == SrcTy
->getBitWidth() &&
141 "Not cast between same sized vectors!");
143 // First, check for null. Undef is already handled.
144 if (isa
<ConstantAggregateZero
>(V
))
145 return Constant::getNullValue(DestTy
);
147 // Handle ConstantVector and ConstantAggregateVector.
148 return BitCastConstantVector(V
, DestPTy
);
151 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
152 // This allows for other simplifications (although some of them
153 // can only be handled by Analysis/ConstantFolding.cpp).
154 if (isa
<ConstantInt
>(V
) || isa
<ConstantFP
>(V
))
155 return ConstantExpr::getBitCast(ConstantVector::get(V
), DestPTy
);
158 // Finally, implement bitcast folding now. The code below doesn't handle
160 if (isa
<ConstantPointerNull
>(V
)) // ptr->ptr cast.
161 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
163 // Handle integral constant input.
164 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
165 if (DestTy
->isIntegerTy())
166 // Integral -> Integral. This is a no-op because the bit widths must
167 // be the same. Consequently, we just fold to V.
170 // See note below regarding the PPC_FP128 restriction.
171 if (DestTy
->isFloatingPointTy() && !DestTy
->isPPC_FP128Ty())
172 return ConstantFP::get(DestTy
->getContext(),
173 APFloat(DestTy
->getFltSemantics(),
176 // Otherwise, can't fold this (vector?)
180 // Handle ConstantFP input: FP -> Integral.
181 if (ConstantFP
*FP
= dyn_cast
<ConstantFP
>(V
)) {
182 // PPC_FP128 is really the sum of two consecutive doubles, where the first
183 // double is always stored first in memory, regardless of the target
184 // endianness. The memory layout of i128, however, depends on the target
185 // endianness, and so we can't fold this without target endianness
186 // information. This should instead be handled by
187 // Analysis/ConstantFolding.cpp
188 if (FP
->getType()->isPPC_FP128Ty())
191 // Make sure dest type is compatible with the folded integer constant.
192 if (!DestTy
->isIntegerTy())
195 return ConstantInt::get(FP
->getContext(),
196 FP
->getValueAPF().bitcastToAPInt());
203 /// V is an integer constant which only has a subset of its bytes used.
204 /// The bytes used are indicated by ByteStart (which is the first byte used,
205 /// counting from the least significant byte) and ByteSize, which is the number
208 /// This function analyzes the specified constant to see if the specified byte
209 /// range can be returned as a simplified constant. If so, the constant is
210 /// returned, otherwise null is returned.
211 static Constant
*ExtractConstantBytes(Constant
*C
, unsigned ByteStart
,
213 assert(C
->getType()->isIntegerTy() &&
214 (cast
<IntegerType
>(C
->getType())->getBitWidth() & 7) == 0 &&
215 "Non-byte sized integer input");
216 unsigned CSize
= cast
<IntegerType
>(C
->getType())->getBitWidth()/8;
217 assert(ByteSize
&& "Must be accessing some piece");
218 assert(ByteStart
+ByteSize
<= CSize
&& "Extracting invalid piece from input");
219 assert(ByteSize
!= CSize
&& "Should not extract everything");
221 // Constant Integers are simple.
222 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
)) {
223 APInt V
= CI
->getValue();
225 V
.lshrInPlace(ByteStart
*8);
226 V
= V
.trunc(ByteSize
*8);
227 return ConstantInt::get(CI
->getContext(), V
);
230 // In the input is a constant expr, we might be able to recursively simplify.
231 // If not, we definitely can't do anything.
232 ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
);
233 if (!CE
) return nullptr;
235 switch (CE
->getOpcode()) {
236 default: return nullptr;
237 case Instruction::Or
: {
238 Constant
*RHS
= ExtractConstantBytes(CE
->getOperand(1), ByteStart
,ByteSize
);
243 if (ConstantInt
*RHSC
= dyn_cast
<ConstantInt
>(RHS
))
244 if (RHSC
->isMinusOne())
247 Constant
*LHS
= ExtractConstantBytes(CE
->getOperand(0), ByteStart
,ByteSize
);
250 return ConstantExpr::getOr(LHS
, RHS
);
252 case Instruction::And
: {
253 Constant
*RHS
= ExtractConstantBytes(CE
->getOperand(1), ByteStart
,ByteSize
);
258 if (RHS
->isNullValue())
261 Constant
*LHS
= ExtractConstantBytes(CE
->getOperand(0), ByteStart
,ByteSize
);
264 return ConstantExpr::getAnd(LHS
, RHS
);
266 case Instruction::LShr
: {
267 ConstantInt
*Amt
= dyn_cast
<ConstantInt
>(CE
->getOperand(1));
270 unsigned ShAmt
= Amt
->getZExtValue();
271 // Cannot analyze non-byte shifts.
272 if ((ShAmt
& 7) != 0)
276 // If the extract is known to be all zeros, return zero.
277 if (ByteStart
>= CSize
-ShAmt
)
278 return Constant::getNullValue(IntegerType::get(CE
->getContext(),
280 // If the extract is known to be fully in the input, extract it.
281 if (ByteStart
+ByteSize
+ShAmt
<= CSize
)
282 return ExtractConstantBytes(CE
->getOperand(0), ByteStart
+ShAmt
, ByteSize
);
284 // TODO: Handle the 'partially zero' case.
288 case Instruction::Shl
: {
289 ConstantInt
*Amt
= dyn_cast
<ConstantInt
>(CE
->getOperand(1));
292 unsigned ShAmt
= Amt
->getZExtValue();
293 // Cannot analyze non-byte shifts.
294 if ((ShAmt
& 7) != 0)
298 // If the extract is known to be all zeros, return zero.
299 if (ByteStart
+ByteSize
<= ShAmt
)
300 return Constant::getNullValue(IntegerType::get(CE
->getContext(),
302 // If the extract is known to be fully in the input, extract it.
303 if (ByteStart
>= ShAmt
)
304 return ExtractConstantBytes(CE
->getOperand(0), ByteStart
-ShAmt
, ByteSize
);
306 // TODO: Handle the 'partially zero' case.
310 case Instruction::ZExt
: {
311 unsigned SrcBitSize
=
312 cast
<IntegerType
>(CE
->getOperand(0)->getType())->getBitWidth();
314 // If extracting something that is completely zero, return 0.
315 if (ByteStart
*8 >= SrcBitSize
)
316 return Constant::getNullValue(IntegerType::get(CE
->getContext(),
319 // If exactly extracting the input, return it.
320 if (ByteStart
== 0 && ByteSize
*8 == SrcBitSize
)
321 return CE
->getOperand(0);
323 // If extracting something completely in the input, if the input is a
324 // multiple of 8 bits, recurse.
325 if ((SrcBitSize
&7) == 0 && (ByteStart
+ByteSize
)*8 <= SrcBitSize
)
326 return ExtractConstantBytes(CE
->getOperand(0), ByteStart
, ByteSize
);
328 // Otherwise, if extracting a subset of the input, which is not multiple of
329 // 8 bits, do a shift and trunc to get the bits.
330 if ((ByteStart
+ByteSize
)*8 < SrcBitSize
) {
331 assert((SrcBitSize
&7) && "Shouldn't get byte sized case here");
332 Constant
*Res
= CE
->getOperand(0);
334 Res
= ConstantExpr::getLShr(Res
,
335 ConstantInt::get(Res
->getType(), ByteStart
*8));
336 return ConstantExpr::getTrunc(Res
, IntegerType::get(C
->getContext(),
340 // TODO: Handle the 'partially zero' case.
346 /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known
347 /// factors factored out. If Folded is false, return null if no factoring was
348 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
349 /// top-level folder.
350 static Constant
*getFoldedSizeOf(Type
*Ty
, Type
*DestTy
, bool Folded
) {
351 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
352 Constant
*N
= ConstantInt::get(DestTy
, ATy
->getNumElements());
353 Constant
*E
= getFoldedSizeOf(ATy
->getElementType(), DestTy
, true);
354 return ConstantExpr::getNUWMul(E
, N
);
357 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
358 if (!STy
->isPacked()) {
359 unsigned NumElems
= STy
->getNumElements();
360 // An empty struct has size zero.
362 return ConstantExpr::getNullValue(DestTy
);
363 // Check for a struct with all members having the same size.
364 Constant
*MemberSize
=
365 getFoldedSizeOf(STy
->getElementType(0), DestTy
, true);
367 for (unsigned i
= 1; i
!= NumElems
; ++i
)
369 getFoldedSizeOf(STy
->getElementType(i
), DestTy
, true)) {
374 Constant
*N
= ConstantInt::get(DestTy
, NumElems
);
375 return ConstantExpr::getNUWMul(MemberSize
, N
);
379 // Pointer size doesn't depend on the pointee type, so canonicalize them
380 // to an arbitrary pointee.
381 if (PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
))
382 if (!PTy
->getElementType()->isIntegerTy(1))
384 getFoldedSizeOf(PointerType::get(IntegerType::get(PTy
->getContext(), 1),
385 PTy
->getAddressSpace()),
388 // If there's no interesting folding happening, bail so that we don't create
389 // a constant that looks like it needs folding but really doesn't.
393 // Base case: Get a regular sizeof expression.
394 Constant
*C
= ConstantExpr::getSizeOf(Ty
);
395 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
401 /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known
402 /// factors factored out. If Folded is false, return null if no factoring was
403 /// possible, to avoid endlessly bouncing an unfoldable expression back into the
404 /// top-level folder.
405 static Constant
*getFoldedAlignOf(Type
*Ty
, Type
*DestTy
, bool Folded
) {
406 // The alignment of an array is equal to the alignment of the
407 // array element. Note that this is not always true for vectors.
408 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
409 Constant
*C
= ConstantExpr::getAlignOf(ATy
->getElementType());
410 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
417 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
418 // Packed structs always have an alignment of 1.
420 return ConstantInt::get(DestTy
, 1);
422 // Otherwise, struct alignment is the maximum alignment of any member.
423 // Without target data, we can't compare much, but we can check to see
424 // if all the members have the same alignment.
425 unsigned NumElems
= STy
->getNumElements();
426 // An empty struct has minimal alignment.
428 return ConstantInt::get(DestTy
, 1);
429 // Check for a struct with all members having the same alignment.
430 Constant
*MemberAlign
=
431 getFoldedAlignOf(STy
->getElementType(0), DestTy
, true);
433 for (unsigned i
= 1; i
!= NumElems
; ++i
)
434 if (MemberAlign
!= getFoldedAlignOf(STy
->getElementType(i
), DestTy
, true)) {
442 // Pointer alignment doesn't depend on the pointee type, so canonicalize them
443 // to an arbitrary pointee.
444 if (PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
))
445 if (!PTy
->getElementType()->isIntegerTy(1))
447 getFoldedAlignOf(PointerType::get(IntegerType::get(PTy
->getContext(),
449 PTy
->getAddressSpace()),
452 // If there's no interesting folding happening, bail so that we don't create
453 // a constant that looks like it needs folding but really doesn't.
457 // Base case: Get a regular alignof expression.
458 Constant
*C
= ConstantExpr::getAlignOf(Ty
);
459 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
465 /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with
466 /// any known factors factored out. If Folded is false, return null if no
467 /// factoring was possible, to avoid endlessly bouncing an unfoldable expression
468 /// back into the top-level folder.
469 static Constant
*getFoldedOffsetOf(Type
*Ty
, Constant
*FieldNo
, Type
*DestTy
,
471 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
472 Constant
*N
= ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo
, false,
475 Constant
*E
= getFoldedSizeOf(ATy
->getElementType(), DestTy
, true);
476 return ConstantExpr::getNUWMul(E
, N
);
479 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
480 if (!STy
->isPacked()) {
481 unsigned NumElems
= STy
->getNumElements();
482 // An empty struct has no members.
485 // Check for a struct with all members having the same size.
486 Constant
*MemberSize
=
487 getFoldedSizeOf(STy
->getElementType(0), DestTy
, true);
489 for (unsigned i
= 1; i
!= NumElems
; ++i
)
491 getFoldedSizeOf(STy
->getElementType(i
), DestTy
, true)) {
496 Constant
*N
= ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo
,
501 return ConstantExpr::getNUWMul(MemberSize
, N
);
505 // If there's no interesting folding happening, bail so that we don't create
506 // a constant that looks like it needs folding but really doesn't.
510 // Base case: Get a regular offsetof expression.
511 Constant
*C
= ConstantExpr::getOffsetOf(Ty
, FieldNo
);
512 C
= ConstantExpr::getCast(CastInst::getCastOpcode(C
, false,
518 Constant
*llvm::ConstantFoldCastInstruction(unsigned opc
, Constant
*V
,
520 if (isa
<UndefValue
>(V
)) {
521 // zext(undef) = 0, because the top bits will be zero.
522 // sext(undef) = 0, because the top bits will all be the same.
523 // [us]itofp(undef) = 0, because the result value is bounded.
524 if (opc
== Instruction::ZExt
|| opc
== Instruction::SExt
||
525 opc
== Instruction::UIToFP
|| opc
== Instruction::SIToFP
)
526 return Constant::getNullValue(DestTy
);
527 return UndefValue::get(DestTy
);
530 if (V
->isNullValue() && !DestTy
->isX86_MMXTy() &&
531 opc
!= Instruction::AddrSpaceCast
)
532 return Constant::getNullValue(DestTy
);
534 // If the cast operand is a constant expression, there's a few things we can
535 // do to try to simplify it.
536 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
)) {
538 // Try hard to fold cast of cast because they are often eliminable.
539 if (unsigned newOpc
= foldConstantCastPair(opc
, CE
, DestTy
))
540 return ConstantExpr::getCast(newOpc
, CE
->getOperand(0), DestTy
);
541 } else if (CE
->getOpcode() == Instruction::GetElementPtr
&&
542 // Do not fold addrspacecast (gep 0, .., 0). It might make the
543 // addrspacecast uncanonicalized.
544 opc
!= Instruction::AddrSpaceCast
&&
545 // Do not fold bitcast (gep) with inrange index, as this loses
547 !cast
<GEPOperator
>(CE
)->getInRangeIndex().hasValue() &&
548 // Do not fold if the gep type is a vector, as bitcasting
549 // operand 0 of a vector gep will result in a bitcast between
551 !CE
->getType()->isVectorTy()) {
552 // If all of the indexes in the GEP are null values, there is no pointer
553 // adjustment going on. We might as well cast the source pointer.
554 bool isAllNull
= true;
555 for (unsigned i
= 1, e
= CE
->getNumOperands(); i
!= e
; ++i
)
556 if (!CE
->getOperand(i
)->isNullValue()) {
561 // This is casting one pointer type to another, always BitCast
562 return ConstantExpr::getPointerCast(CE
->getOperand(0), DestTy
);
566 // If the cast operand is a constant vector, perform the cast by
567 // operating on each element. In the cast of bitcasts, the element
568 // count may be mismatched; don't attempt to handle that here.
569 if ((isa
<ConstantVector
>(V
) || isa
<ConstantDataVector
>(V
)) &&
570 DestTy
->isVectorTy() &&
571 DestTy
->getVectorNumElements() == V
->getType()->getVectorNumElements()) {
572 SmallVector
<Constant
*, 16> res
;
573 VectorType
*DestVecTy
= cast
<VectorType
>(DestTy
);
574 Type
*DstEltTy
= DestVecTy
->getElementType();
575 Type
*Ty
= IntegerType::get(V
->getContext(), 32);
576 for (unsigned i
= 0, e
= V
->getType()->getVectorNumElements(); i
!= e
; ++i
) {
578 ConstantExpr::getExtractElement(V
, ConstantInt::get(Ty
, i
));
579 res
.push_back(ConstantExpr::getCast(opc
, C
, DstEltTy
));
581 return ConstantVector::get(res
);
584 // We actually have to do a cast now. Perform the cast according to the
588 llvm_unreachable("Failed to cast constant expression");
589 case Instruction::FPTrunc
:
590 case Instruction::FPExt
:
591 if (ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
593 APFloat Val
= FPC
->getValueAPF();
594 Val
.convert(DestTy
->isHalfTy() ? APFloat::IEEEhalf() :
595 DestTy
->isFloatTy() ? APFloat::IEEEsingle() :
596 DestTy
->isDoubleTy() ? APFloat::IEEEdouble() :
597 DestTy
->isX86_FP80Ty() ? APFloat::x87DoubleExtended() :
598 DestTy
->isFP128Ty() ? APFloat::IEEEquad() :
599 DestTy
->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() :
601 APFloat::rmNearestTiesToEven
, &ignored
);
602 return ConstantFP::get(V
->getContext(), Val
);
604 return nullptr; // Can't fold.
605 case Instruction::FPToUI
:
606 case Instruction::FPToSI
:
607 if (ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(V
)) {
608 const APFloat
&V
= FPC
->getValueAPF();
610 uint32_t DestBitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
611 APSInt
IntVal(DestBitWidth
, opc
== Instruction::FPToUI
);
612 if (APFloat::opInvalidOp
==
613 V
.convertToInteger(IntVal
, APFloat::rmTowardZero
, &ignored
)) {
614 // Undefined behavior invoked - the destination type can't represent
615 // the input constant.
616 return UndefValue::get(DestTy
);
618 return ConstantInt::get(FPC
->getContext(), IntVal
);
620 return nullptr; // Can't fold.
621 case Instruction::IntToPtr
: //always treated as unsigned
622 if (V
->isNullValue()) // Is it an integral null value?
623 return ConstantPointerNull::get(cast
<PointerType
>(DestTy
));
624 return nullptr; // Other pointer types cannot be casted
625 case Instruction::PtrToInt
: // always treated as unsigned
626 // Is it a null pointer value?
627 if (V
->isNullValue())
628 return ConstantInt::get(DestTy
, 0);
629 // If this is a sizeof-like expression, pull out multiplications by
630 // known factors to expose them to subsequent folding. If it's an
631 // alignof-like expression, factor out known factors.
632 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(V
))
633 if (CE
->getOpcode() == Instruction::GetElementPtr
&&
634 CE
->getOperand(0)->isNullValue()) {
635 // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and
636 // getFoldedAlignOf() don't handle the case when DestTy is a vector of
637 // pointers yet. We end up in asserts in CastInst::getCastOpcode (see
638 // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this
639 // happen in one "real" C-code test case, so it does not seem to be an
640 // important optimization to handle vectors here. For now, simply bail
642 if (DestTy
->isVectorTy())
644 GEPOperator
*GEPO
= cast
<GEPOperator
>(CE
);
645 Type
*Ty
= GEPO
->getSourceElementType();
646 if (CE
->getNumOperands() == 2) {
647 // Handle a sizeof-like expression.
648 Constant
*Idx
= CE
->getOperand(1);
649 bool isOne
= isa
<ConstantInt
>(Idx
) && cast
<ConstantInt
>(Idx
)->isOne();
650 if (Constant
*C
= getFoldedSizeOf(Ty
, DestTy
, !isOne
)) {
651 Idx
= ConstantExpr::getCast(CastInst::getCastOpcode(Idx
, true,
654 return ConstantExpr::getMul(C
, Idx
);
656 } else if (CE
->getNumOperands() == 3 &&
657 CE
->getOperand(1)->isNullValue()) {
658 // Handle an alignof-like expression.
659 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
))
660 if (!STy
->isPacked()) {
661 ConstantInt
*CI
= cast
<ConstantInt
>(CE
->getOperand(2));
663 STy
->getNumElements() == 2 &&
664 STy
->getElementType(0)->isIntegerTy(1)) {
665 return getFoldedAlignOf(STy
->getElementType(1), DestTy
, false);
668 // Handle an offsetof-like expression.
669 if (Ty
->isStructTy() || Ty
->isArrayTy()) {
670 if (Constant
*C
= getFoldedOffsetOf(Ty
, CE
->getOperand(2),
676 // Other pointer types cannot be casted
678 case Instruction::UIToFP
:
679 case Instruction::SIToFP
:
680 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
681 const APInt
&api
= CI
->getValue();
682 APFloat
apf(DestTy
->getFltSemantics(),
683 APInt::getNullValue(DestTy
->getPrimitiveSizeInBits()));
684 apf
.convertFromAPInt(api
, opc
==Instruction::SIToFP
,
685 APFloat::rmNearestTiesToEven
);
686 return ConstantFP::get(V
->getContext(), apf
);
689 case Instruction::ZExt
:
690 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
691 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
692 return ConstantInt::get(V
->getContext(),
693 CI
->getValue().zext(BitWidth
));
696 case Instruction::SExt
:
697 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
698 uint32_t BitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
699 return ConstantInt::get(V
->getContext(),
700 CI
->getValue().sext(BitWidth
));
703 case Instruction::Trunc
: {
704 if (V
->getType()->isVectorTy())
707 uint32_t DestBitWidth
= cast
<IntegerType
>(DestTy
)->getBitWidth();
708 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
709 return ConstantInt::get(V
->getContext(),
710 CI
->getValue().trunc(DestBitWidth
));
713 // The input must be a constantexpr. See if we can simplify this based on
714 // the bytes we are demanding. Only do this if the source and dest are an
715 // even multiple of a byte.
716 if ((DestBitWidth
& 7) == 0 &&
717 (cast
<IntegerType
>(V
->getType())->getBitWidth() & 7) == 0)
718 if (Constant
*Res
= ExtractConstantBytes(V
, 0, DestBitWidth
/ 8))
723 case Instruction::BitCast
:
724 return FoldBitCast(V
, DestTy
);
725 case Instruction::AddrSpaceCast
:
730 Constant
*llvm::ConstantFoldSelectInstruction(Constant
*Cond
,
731 Constant
*V1
, Constant
*V2
) {
732 // Check for i1 and vector true/false conditions.
733 if (Cond
->isNullValue()) return V2
;
734 if (Cond
->isAllOnesValue()) return V1
;
736 // If the condition is a vector constant, fold the result elementwise.
737 if (ConstantVector
*CondV
= dyn_cast
<ConstantVector
>(Cond
)) {
738 SmallVector
<Constant
*, 16> Result
;
739 Type
*Ty
= IntegerType::get(CondV
->getContext(), 32);
740 for (unsigned i
= 0, e
= V1
->getType()->getVectorNumElements(); i
!= e
;++i
){
742 Constant
*V1Element
= ConstantExpr::getExtractElement(V1
,
743 ConstantInt::get(Ty
, i
));
744 Constant
*V2Element
= ConstantExpr::getExtractElement(V2
,
745 ConstantInt::get(Ty
, i
));
746 Constant
*Cond
= dyn_cast
<Constant
>(CondV
->getOperand(i
));
747 if (V1Element
== V2Element
) {
749 } else if (isa
<UndefValue
>(Cond
)) {
750 V
= isa
<UndefValue
>(V1Element
) ? V1Element
: V2Element
;
752 if (!isa
<ConstantInt
>(Cond
)) break;
753 V
= Cond
->isNullValue() ? V2Element
: V1Element
;
758 // If we were able to build the vector, return it.
759 if (Result
.size() == V1
->getType()->getVectorNumElements())
760 return ConstantVector::get(Result
);
763 if (isa
<UndefValue
>(Cond
)) {
764 if (isa
<UndefValue
>(V1
)) return V1
;
767 if (isa
<UndefValue
>(V1
)) return V2
;
768 if (isa
<UndefValue
>(V2
)) return V1
;
769 if (V1
== V2
) return V1
;
771 if (ConstantExpr
*TrueVal
= dyn_cast
<ConstantExpr
>(V1
)) {
772 if (TrueVal
->getOpcode() == Instruction::Select
)
773 if (TrueVal
->getOperand(0) == Cond
)
774 return ConstantExpr::getSelect(Cond
, TrueVal
->getOperand(1), V2
);
776 if (ConstantExpr
*FalseVal
= dyn_cast
<ConstantExpr
>(V2
)) {
777 if (FalseVal
->getOpcode() == Instruction::Select
)
778 if (FalseVal
->getOperand(0) == Cond
)
779 return ConstantExpr::getSelect(Cond
, V1
, FalseVal
->getOperand(2));
785 Constant
*llvm::ConstantFoldExtractElementInstruction(Constant
*Val
,
787 if (isa
<UndefValue
>(Val
)) // ee(undef, x) -> undef
788 return UndefValue::get(Val
->getType()->getVectorElementType());
789 if (Val
->isNullValue()) // ee(zero, x) -> zero
790 return Constant::getNullValue(Val
->getType()->getVectorElementType());
791 // ee({w,x,y,z}, undef) -> undef
792 if (isa
<UndefValue
>(Idx
))
793 return UndefValue::get(Val
->getType()->getVectorElementType());
795 if (ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
)) {
796 // ee({w,x,y,z}, wrong_value) -> undef
797 if (CIdx
->uge(Val
->getType()->getVectorNumElements()))
798 return UndefValue::get(Val
->getType()->getVectorElementType());
799 return Val
->getAggregateElement(CIdx
->getZExtValue());
804 Constant
*llvm::ConstantFoldInsertElementInstruction(Constant
*Val
,
807 if (isa
<UndefValue
>(Idx
))
808 return UndefValue::get(Val
->getType());
810 ConstantInt
*CIdx
= dyn_cast
<ConstantInt
>(Idx
);
811 if (!CIdx
) return nullptr;
813 unsigned NumElts
= Val
->getType()->getVectorNumElements();
814 if (CIdx
->uge(NumElts
))
815 return UndefValue::get(Val
->getType());
817 SmallVector
<Constant
*, 16> Result
;
818 Result
.reserve(NumElts
);
819 auto *Ty
= Type::getInt32Ty(Val
->getContext());
820 uint64_t IdxVal
= CIdx
->getZExtValue();
821 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
823 Result
.push_back(Elt
);
827 Constant
*C
= ConstantExpr::getExtractElement(Val
, ConstantInt::get(Ty
, i
));
831 return ConstantVector::get(Result
);
834 Constant
*llvm::ConstantFoldShuffleVectorInstruction(Constant
*V1
,
837 unsigned MaskNumElts
= Mask
->getType()->getVectorNumElements();
838 Type
*EltTy
= V1
->getType()->getVectorElementType();
840 // Undefined shuffle mask -> undefined value.
841 if (isa
<UndefValue
>(Mask
))
842 return UndefValue::get(VectorType::get(EltTy
, MaskNumElts
));
844 // Don't break the bitcode reader hack.
845 if (isa
<ConstantExpr
>(Mask
)) return nullptr;
847 unsigned SrcNumElts
= V1
->getType()->getVectorNumElements();
849 // Loop over the shuffle mask, evaluating each element.
850 SmallVector
<Constant
*, 32> Result
;
851 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
852 int Elt
= ShuffleVectorInst::getMaskValue(Mask
, i
);
854 Result
.push_back(UndefValue::get(EltTy
));
858 if (unsigned(Elt
) >= SrcNumElts
*2)
859 InElt
= UndefValue::get(EltTy
);
860 else if (unsigned(Elt
) >= SrcNumElts
) {
861 Type
*Ty
= IntegerType::get(V2
->getContext(), 32);
863 ConstantExpr::getExtractElement(V2
,
864 ConstantInt::get(Ty
, Elt
- SrcNumElts
));
866 Type
*Ty
= IntegerType::get(V1
->getContext(), 32);
867 InElt
= ConstantExpr::getExtractElement(V1
, ConstantInt::get(Ty
, Elt
));
869 Result
.push_back(InElt
);
872 return ConstantVector::get(Result
);
875 Constant
*llvm::ConstantFoldExtractValueInstruction(Constant
*Agg
,
876 ArrayRef
<unsigned> Idxs
) {
877 // Base case: no indices, so return the entire value.
881 if (Constant
*C
= Agg
->getAggregateElement(Idxs
[0]))
882 return ConstantFoldExtractValueInstruction(C
, Idxs
.slice(1));
887 Constant
*llvm::ConstantFoldInsertValueInstruction(Constant
*Agg
,
889 ArrayRef
<unsigned> Idxs
) {
890 // Base case: no indices, so replace the entire value.
895 if (StructType
*ST
= dyn_cast
<StructType
>(Agg
->getType()))
896 NumElts
= ST
->getNumElements();
898 NumElts
= cast
<SequentialType
>(Agg
->getType())->getNumElements();
900 SmallVector
<Constant
*, 32> Result
;
901 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
902 Constant
*C
= Agg
->getAggregateElement(i
);
903 if (!C
) return nullptr;
906 C
= ConstantFoldInsertValueInstruction(C
, Val
, Idxs
.slice(1));
911 if (StructType
*ST
= dyn_cast
<StructType
>(Agg
->getType()))
912 return ConstantStruct::get(ST
, Result
);
913 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(Agg
->getType()))
914 return ConstantArray::get(AT
, Result
);
915 return ConstantVector::get(Result
);
918 Constant
*llvm::ConstantFoldBinaryInstruction(unsigned Opcode
, Constant
*C1
,
920 assert(Instruction::isBinaryOp(Opcode
) && "Non-binary instruction detected");
922 // Handle scalar UndefValue. Vectors are always evaluated per element.
923 bool HasScalarUndef
= !C1
->getType()->isVectorTy() &&
924 (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
));
925 if (HasScalarUndef
) {
926 switch (static_cast<Instruction::BinaryOps
>(Opcode
)) {
927 case Instruction::Xor
:
928 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
929 // Handle undef ^ undef -> 0 special case. This is a common
931 return Constant::getNullValue(C1
->getType());
933 case Instruction::Add
:
934 case Instruction::Sub
:
935 return UndefValue::get(C1
->getType());
936 case Instruction::And
:
937 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
)) // undef & undef -> undef
939 return Constant::getNullValue(C1
->getType()); // undef & X -> 0
940 case Instruction::Mul
: {
941 // undef * undef -> undef
942 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
945 // X * undef -> undef if X is odd
946 if (match(C1
, m_APInt(CV
)) || match(C2
, m_APInt(CV
)))
948 return UndefValue::get(C1
->getType());
950 // X * undef -> 0 otherwise
951 return Constant::getNullValue(C1
->getType());
953 case Instruction::SDiv
:
954 case Instruction::UDiv
:
955 // X / undef -> undef
956 if (isa
<UndefValue
>(C2
))
958 // undef / 0 -> undef
959 // undef / 1 -> undef
960 if (match(C2
, m_Zero()) || match(C2
, m_One()))
962 // undef / X -> 0 otherwise
963 return Constant::getNullValue(C1
->getType());
964 case Instruction::URem
:
965 case Instruction::SRem
:
966 // X % undef -> undef
967 if (match(C2
, m_Undef()))
969 // undef % 0 -> undef
970 if (match(C2
, m_Zero()))
972 // undef % X -> 0 otherwise
973 return Constant::getNullValue(C1
->getType());
974 case Instruction::Or
: // X | undef -> -1
975 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
)) // undef | undef -> undef
977 return Constant::getAllOnesValue(C1
->getType()); // undef | X -> ~0
978 case Instruction::LShr
:
979 // X >>l undef -> undef
980 if (isa
<UndefValue
>(C2
))
982 // undef >>l 0 -> undef
983 if (match(C2
, m_Zero()))
986 return Constant::getNullValue(C1
->getType());
987 case Instruction::AShr
:
988 // X >>a undef -> undef
989 if (isa
<UndefValue
>(C2
))
991 // undef >>a 0 -> undef
992 if (match(C2
, m_Zero()))
994 // TODO: undef >>a X -> undef if the shift is exact
996 return Constant::getNullValue(C1
->getType());
997 case Instruction::Shl
:
998 // X << undef -> undef
999 if (isa
<UndefValue
>(C2
))
1001 // undef << 0 -> undef
1002 if (match(C2
, m_Zero()))
1005 return Constant::getNullValue(C1
->getType());
1006 case Instruction::FAdd
:
1007 case Instruction::FSub
:
1008 case Instruction::FMul
:
1009 case Instruction::FDiv
:
1010 case Instruction::FRem
:
1011 // [any flop] undef, undef -> undef
1012 if (isa
<UndefValue
>(C1
) && isa
<UndefValue
>(C2
))
1014 // [any flop] C, undef -> NaN
1015 // [any flop] undef, C -> NaN
1016 // We could potentially specialize NaN/Inf constants vs. 'normal'
1017 // constants (possibly differently depending on opcode and operand). This
1018 // would allow returning undef sometimes. But it is always safe to fold to
1019 // NaN because we can choose the undef operand as NaN, and any FP opcode
1020 // with a NaN operand will propagate NaN.
1021 return ConstantFP::getNaN(C1
->getType());
1022 case Instruction::BinaryOpsEnd
:
1023 llvm_unreachable("Invalid BinaryOp");
1027 // Neither constant should be UndefValue, unless these are vector constants.
1028 assert(!HasScalarUndef
&& "Unexpected UndefValue");
1030 // Handle simplifications when the RHS is a constant int.
1031 if (ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
1033 case Instruction::Add
:
1034 if (CI2
->isZero()) return C1
; // X + 0 == X
1036 case Instruction::Sub
:
1037 if (CI2
->isZero()) return C1
; // X - 0 == X
1039 case Instruction::Mul
:
1040 if (CI2
->isZero()) return C2
; // X * 0 == 0
1042 return C1
; // X * 1 == X
1044 case Instruction::UDiv
:
1045 case Instruction::SDiv
:
1047 return C1
; // X / 1 == X
1049 return UndefValue::get(CI2
->getType()); // X / 0 == undef
1051 case Instruction::URem
:
1052 case Instruction::SRem
:
1054 return Constant::getNullValue(CI2
->getType()); // X % 1 == 0
1056 return UndefValue::get(CI2
->getType()); // X % 0 == undef
1058 case Instruction::And
:
1059 if (CI2
->isZero()) return C2
; // X & 0 == 0
1060 if (CI2
->isMinusOne())
1061 return C1
; // X & -1 == X
1063 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
1064 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1065 if (CE1
->getOpcode() == Instruction::ZExt
) {
1066 unsigned DstWidth
= CI2
->getType()->getBitWidth();
1068 CE1
->getOperand(0)->getType()->getPrimitiveSizeInBits();
1069 APInt
PossiblySetBits(APInt::getLowBitsSet(DstWidth
, SrcWidth
));
1070 if ((PossiblySetBits
& CI2
->getValue()) == PossiblySetBits
)
1074 // If and'ing the address of a global with a constant, fold it.
1075 if (CE1
->getOpcode() == Instruction::PtrToInt
&&
1076 isa
<GlobalValue
>(CE1
->getOperand(0))) {
1077 GlobalValue
*GV
= cast
<GlobalValue
>(CE1
->getOperand(0));
1079 // Functions are at least 4-byte aligned.
1080 unsigned GVAlign
= GV
->getAlignment();
1081 if (isa
<Function
>(GV
))
1082 GVAlign
= std::max(GVAlign
, 4U);
1085 unsigned DstWidth
= CI2
->getType()->getBitWidth();
1086 unsigned SrcWidth
= std::min(DstWidth
, Log2_32(GVAlign
));
1087 APInt
BitsNotSet(APInt::getLowBitsSet(DstWidth
, SrcWidth
));
1089 // If checking bits we know are clear, return zero.
1090 if ((CI2
->getValue() & BitsNotSet
) == CI2
->getValue())
1091 return Constant::getNullValue(CI2
->getType());
1096 case Instruction::Or
:
1097 if (CI2
->isZero()) return C1
; // X | 0 == X
1098 if (CI2
->isMinusOne())
1099 return C2
; // X | -1 == -1
1101 case Instruction::Xor
:
1102 if (CI2
->isZero()) return C1
; // X ^ 0 == X
1104 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
1105 switch (CE1
->getOpcode()) {
1107 case Instruction::ICmp
:
1108 case Instruction::FCmp
:
1109 // cmp pred ^ true -> cmp !pred
1110 assert(CI2
->isOne());
1111 CmpInst::Predicate pred
= (CmpInst::Predicate
)CE1
->getPredicate();
1112 pred
= CmpInst::getInversePredicate(pred
);
1113 return ConstantExpr::getCompare(pred
, CE1
->getOperand(0),
1114 CE1
->getOperand(1));
1118 case Instruction::AShr
:
1119 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1120 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
))
1121 if (CE1
->getOpcode() == Instruction::ZExt
) // Top bits known zero.
1122 return ConstantExpr::getLShr(C1
, C2
);
1125 } else if (isa
<ConstantInt
>(C1
)) {
1126 // If C1 is a ConstantInt and C2 is not, swap the operands.
1127 if (Instruction::isCommutative(Opcode
))
1128 return ConstantExpr::get(Opcode
, C2
, C1
);
1131 if (ConstantInt
*CI1
= dyn_cast
<ConstantInt
>(C1
)) {
1132 if (ConstantInt
*CI2
= dyn_cast
<ConstantInt
>(C2
)) {
1133 const APInt
&C1V
= CI1
->getValue();
1134 const APInt
&C2V
= CI2
->getValue();
1138 case Instruction::Add
:
1139 return ConstantInt::get(CI1
->getContext(), C1V
+ C2V
);
1140 case Instruction::Sub
:
1141 return ConstantInt::get(CI1
->getContext(), C1V
- C2V
);
1142 case Instruction::Mul
:
1143 return ConstantInt::get(CI1
->getContext(), C1V
* C2V
);
1144 case Instruction::UDiv
:
1145 assert(!CI2
->isZero() && "Div by zero handled above");
1146 return ConstantInt::get(CI1
->getContext(), C1V
.udiv(C2V
));
1147 case Instruction::SDiv
:
1148 assert(!CI2
->isZero() && "Div by zero handled above");
1149 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
1150 return UndefValue::get(CI1
->getType()); // MIN_INT / -1 -> undef
1151 return ConstantInt::get(CI1
->getContext(), C1V
.sdiv(C2V
));
1152 case Instruction::URem
:
1153 assert(!CI2
->isZero() && "Div by zero handled above");
1154 return ConstantInt::get(CI1
->getContext(), C1V
.urem(C2V
));
1155 case Instruction::SRem
:
1156 assert(!CI2
->isZero() && "Div by zero handled above");
1157 if (C2V
.isAllOnesValue() && C1V
.isMinSignedValue())
1158 return UndefValue::get(CI1
->getType()); // MIN_INT % -1 -> undef
1159 return ConstantInt::get(CI1
->getContext(), C1V
.srem(C2V
));
1160 case Instruction::And
:
1161 return ConstantInt::get(CI1
->getContext(), C1V
& C2V
);
1162 case Instruction::Or
:
1163 return ConstantInt::get(CI1
->getContext(), C1V
| C2V
);
1164 case Instruction::Xor
:
1165 return ConstantInt::get(CI1
->getContext(), C1V
^ C2V
);
1166 case Instruction::Shl
:
1167 if (C2V
.ult(C1V
.getBitWidth()))
1168 return ConstantInt::get(CI1
->getContext(), C1V
.shl(C2V
));
1169 return UndefValue::get(C1
->getType()); // too big shift is undef
1170 case Instruction::LShr
:
1171 if (C2V
.ult(C1V
.getBitWidth()))
1172 return ConstantInt::get(CI1
->getContext(), C1V
.lshr(C2V
));
1173 return UndefValue::get(C1
->getType()); // too big shift is undef
1174 case Instruction::AShr
:
1175 if (C2V
.ult(C1V
.getBitWidth()))
1176 return ConstantInt::get(CI1
->getContext(), C1V
.ashr(C2V
));
1177 return UndefValue::get(C1
->getType()); // too big shift is undef
1182 case Instruction::SDiv
:
1183 case Instruction::UDiv
:
1184 case Instruction::URem
:
1185 case Instruction::SRem
:
1186 case Instruction::LShr
:
1187 case Instruction::AShr
:
1188 case Instruction::Shl
:
1189 if (CI1
->isZero()) return C1
;
1194 } else if (ConstantFP
*CFP1
= dyn_cast
<ConstantFP
>(C1
)) {
1195 if (ConstantFP
*CFP2
= dyn_cast
<ConstantFP
>(C2
)) {
1196 const APFloat
&C1V
= CFP1
->getValueAPF();
1197 const APFloat
&C2V
= CFP2
->getValueAPF();
1198 APFloat C3V
= C1V
; // copy for modification
1202 case Instruction::FAdd
:
1203 (void)C3V
.add(C2V
, APFloat::rmNearestTiesToEven
);
1204 return ConstantFP::get(C1
->getContext(), C3V
);
1205 case Instruction::FSub
:
1206 (void)C3V
.subtract(C2V
, APFloat::rmNearestTiesToEven
);
1207 return ConstantFP::get(C1
->getContext(), C3V
);
1208 case Instruction::FMul
:
1209 (void)C3V
.multiply(C2V
, APFloat::rmNearestTiesToEven
);
1210 return ConstantFP::get(C1
->getContext(), C3V
);
1211 case Instruction::FDiv
:
1212 (void)C3V
.divide(C2V
, APFloat::rmNearestTiesToEven
);
1213 return ConstantFP::get(C1
->getContext(), C3V
);
1214 case Instruction::FRem
:
1216 return ConstantFP::get(C1
->getContext(), C3V
);
1219 } else if (VectorType
*VTy
= dyn_cast
<VectorType
>(C1
->getType())) {
1220 // Fold each element and create a vector constant from those constants.
1221 SmallVector
<Constant
*, 16> Result
;
1222 Type
*Ty
= IntegerType::get(VTy
->getContext(), 32);
1223 for (unsigned i
= 0, e
= VTy
->getNumElements(); i
!= e
; ++i
) {
1224 Constant
*ExtractIdx
= ConstantInt::get(Ty
, i
);
1225 Constant
*LHS
= ConstantExpr::getExtractElement(C1
, ExtractIdx
);
1226 Constant
*RHS
= ConstantExpr::getExtractElement(C2
, ExtractIdx
);
1228 // If any element of a divisor vector is zero, the whole op is undef.
1229 if (Instruction::isIntDivRem(Opcode
) && RHS
->isNullValue())
1230 return UndefValue::get(VTy
);
1232 Result
.push_back(ConstantExpr::get(Opcode
, LHS
, RHS
));
1235 return ConstantVector::get(Result
);
1238 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
1239 // There are many possible foldings we could do here. We should probably
1240 // at least fold add of a pointer with an integer into the appropriate
1241 // getelementptr. This will improve alias analysis a bit.
1243 // Given ((a + b) + c), if (b + c) folds to something interesting, return
1245 if (Instruction::isAssociative(Opcode
) && CE1
->getOpcode() == Opcode
) {
1246 Constant
*T
= ConstantExpr::get(Opcode
, CE1
->getOperand(1), C2
);
1247 if (!isa
<ConstantExpr
>(T
) || cast
<ConstantExpr
>(T
)->getOpcode() != Opcode
)
1248 return ConstantExpr::get(Opcode
, CE1
->getOperand(0), T
);
1250 } else if (isa
<ConstantExpr
>(C2
)) {
1251 // If C2 is a constant expr and C1 isn't, flop them around and fold the
1252 // other way if possible.
1253 if (Instruction::isCommutative(Opcode
))
1254 return ConstantFoldBinaryInstruction(Opcode
, C2
, C1
);
1257 // i1 can be simplified in many cases.
1258 if (C1
->getType()->isIntegerTy(1)) {
1260 case Instruction::Add
:
1261 case Instruction::Sub
:
1262 return ConstantExpr::getXor(C1
, C2
);
1263 case Instruction::Mul
:
1264 return ConstantExpr::getAnd(C1
, C2
);
1265 case Instruction::Shl
:
1266 case Instruction::LShr
:
1267 case Instruction::AShr
:
1268 // We can assume that C2 == 0. If it were one the result would be
1269 // undefined because the shift value is as large as the bitwidth.
1271 case Instruction::SDiv
:
1272 case Instruction::UDiv
:
1273 // We can assume that C2 == 1. If it were zero the result would be
1274 // undefined through division by zero.
1276 case Instruction::URem
:
1277 case Instruction::SRem
:
1278 // We can assume that C2 == 1. If it were zero the result would be
1279 // undefined through division by zero.
1280 return ConstantInt::getFalse(C1
->getContext());
1286 // We don't know how to fold this.
1290 /// This type is zero-sized if it's an array or structure of zero-sized types.
1291 /// The only leaf zero-sized type is an empty structure.
1292 static bool isMaybeZeroSizedType(Type
*Ty
) {
1293 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
1294 if (STy
->isOpaque()) return true; // Can't say.
1296 // If all of elements have zero size, this does too.
1297 for (unsigned i
= 0, e
= STy
->getNumElements(); i
!= e
; ++i
)
1298 if (!isMaybeZeroSizedType(STy
->getElementType(i
))) return false;
1301 } else if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
1302 return isMaybeZeroSizedType(ATy
->getElementType());
1307 /// Compare the two constants as though they were getelementptr indices.
1308 /// This allows coercion of the types to be the same thing.
1310 /// If the two constants are the "same" (after coercion), return 0. If the
1311 /// first is less than the second, return -1, if the second is less than the
1312 /// first, return 1. If the constants are not integral, return -2.
1314 static int IdxCompare(Constant
*C1
, Constant
*C2
, Type
*ElTy
) {
1315 if (C1
== C2
) return 0;
1317 // Ok, we found a different index. If they are not ConstantInt, we can't do
1318 // anything with them.
1319 if (!isa
<ConstantInt
>(C1
) || !isa
<ConstantInt
>(C2
))
1320 return -2; // don't know!
1322 // We cannot compare the indices if they don't fit in an int64_t.
1323 if (cast
<ConstantInt
>(C1
)->getValue().getActiveBits() > 64 ||
1324 cast
<ConstantInt
>(C2
)->getValue().getActiveBits() > 64)
1325 return -2; // don't know!
1327 // Ok, we have two differing integer indices. Sign extend them to be the same
1329 int64_t C1Val
= cast
<ConstantInt
>(C1
)->getSExtValue();
1330 int64_t C2Val
= cast
<ConstantInt
>(C2
)->getSExtValue();
1332 if (C1Val
== C2Val
) return 0; // They are equal
1334 // If the type being indexed over is really just a zero sized type, there is
1335 // no pointer difference being made here.
1336 if (isMaybeZeroSizedType(ElTy
))
1337 return -2; // dunno.
1339 // If they are really different, now that they are the same type, then we
1340 // found a difference!
1347 /// This function determines if there is anything we can decide about the two
1348 /// constants provided. This doesn't need to handle simple things like
1349 /// ConstantFP comparisons, but should instead handle ConstantExprs.
1350 /// If we can determine that the two constants have a particular relation to
1351 /// each other, we should return the corresponding FCmpInst predicate,
1352 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1353 /// ConstantFoldCompareInstruction.
1355 /// To simplify this code we canonicalize the relation so that the first
1356 /// operand is always the most "complex" of the two. We consider ConstantFP
1357 /// to be the simplest, and ConstantExprs to be the most complex.
1358 static FCmpInst::Predicate
evaluateFCmpRelation(Constant
*V1
, Constant
*V2
) {
1359 assert(V1
->getType() == V2
->getType() &&
1360 "Cannot compare values of different types!");
1362 // We do not know if a constant expression will evaluate to a number or NaN.
1363 // Therefore, we can only say that the relation is unordered or equal.
1364 if (V1
== V2
) return FCmpInst::FCMP_UEQ
;
1366 if (!isa
<ConstantExpr
>(V1
)) {
1367 if (!isa
<ConstantExpr
>(V2
)) {
1368 // Simple case, use the standard constant folder.
1369 ConstantInt
*R
= nullptr;
1370 R
= dyn_cast
<ConstantInt
>(
1371 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ
, V1
, V2
));
1372 if (R
&& !R
->isZero())
1373 return FCmpInst::FCMP_OEQ
;
1374 R
= dyn_cast
<ConstantInt
>(
1375 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT
, V1
, V2
));
1376 if (R
&& !R
->isZero())
1377 return FCmpInst::FCMP_OLT
;
1378 R
= dyn_cast
<ConstantInt
>(
1379 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT
, V1
, V2
));
1380 if (R
&& !R
->isZero())
1381 return FCmpInst::FCMP_OGT
;
1383 // Nothing more we can do
1384 return FCmpInst::BAD_FCMP_PREDICATE
;
1387 // If the first operand is simple and second is ConstantExpr, swap operands.
1388 FCmpInst::Predicate SwappedRelation
= evaluateFCmpRelation(V2
, V1
);
1389 if (SwappedRelation
!= FCmpInst::BAD_FCMP_PREDICATE
)
1390 return FCmpInst::getSwappedPredicate(SwappedRelation
);
1392 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1393 // constantexpr or a simple constant.
1394 ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
1395 switch (CE1
->getOpcode()) {
1396 case Instruction::FPTrunc
:
1397 case Instruction::FPExt
:
1398 case Instruction::UIToFP
:
1399 case Instruction::SIToFP
:
1400 // We might be able to do something with these but we don't right now.
1406 // There are MANY other foldings that we could perform here. They will
1407 // probably be added on demand, as they seem needed.
1408 return FCmpInst::BAD_FCMP_PREDICATE
;
1411 static ICmpInst::Predicate
areGlobalsPotentiallyEqual(const GlobalValue
*GV1
,
1412 const GlobalValue
*GV2
) {
1413 auto isGlobalUnsafeForEquality
= [](const GlobalValue
*GV
) {
1414 if (GV
->hasExternalWeakLinkage() || GV
->hasWeakAnyLinkage())
1416 if (const auto *GVar
= dyn_cast
<GlobalVariable
>(GV
)) {
1417 Type
*Ty
= GVar
->getValueType();
1418 // A global with opaque type might end up being zero sized.
1421 // A global with an empty type might lie at the address of any other
1423 if (Ty
->isEmptyTy())
1428 // Don't try to decide equality of aliases.
1429 if (!isa
<GlobalAlias
>(GV1
) && !isa
<GlobalAlias
>(GV2
))
1430 if (!isGlobalUnsafeForEquality(GV1
) && !isGlobalUnsafeForEquality(GV2
))
1431 return ICmpInst::ICMP_NE
;
1432 return ICmpInst::BAD_ICMP_PREDICATE
;
1435 /// This function determines if there is anything we can decide about the two
1436 /// constants provided. This doesn't need to handle simple things like integer
1437 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
1438 /// If we can determine that the two constants have a particular relation to
1439 /// each other, we should return the corresponding ICmp predicate, otherwise
1440 /// return ICmpInst::BAD_ICMP_PREDICATE.
1442 /// To simplify this code we canonicalize the relation so that the first
1443 /// operand is always the most "complex" of the two. We consider simple
1444 /// constants (like ConstantInt) to be the simplest, followed by
1445 /// GlobalValues, followed by ConstantExpr's (the most complex).
1447 static ICmpInst::Predicate
evaluateICmpRelation(Constant
*V1
, Constant
*V2
,
1449 assert(V1
->getType() == V2
->getType() &&
1450 "Cannot compare different types of values!");
1451 if (V1
== V2
) return ICmpInst::ICMP_EQ
;
1453 if (!isa
<ConstantExpr
>(V1
) && !isa
<GlobalValue
>(V1
) &&
1454 !isa
<BlockAddress
>(V1
)) {
1455 if (!isa
<GlobalValue
>(V2
) && !isa
<ConstantExpr
>(V2
) &&
1456 !isa
<BlockAddress
>(V2
)) {
1457 // We distilled this down to a simple case, use the standard constant
1459 ConstantInt
*R
= nullptr;
1460 ICmpInst::Predicate pred
= ICmpInst::ICMP_EQ
;
1461 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, V1
, V2
));
1462 if (R
&& !R
->isZero())
1464 pred
= isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1465 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, V1
, V2
));
1466 if (R
&& !R
->isZero())
1468 pred
= isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1469 R
= dyn_cast
<ConstantInt
>(ConstantExpr::getICmp(pred
, V1
, V2
));
1470 if (R
&& !R
->isZero())
1473 // If we couldn't figure it out, bail.
1474 return ICmpInst::BAD_ICMP_PREDICATE
;
1477 // If the first operand is simple, swap operands.
1478 ICmpInst::Predicate SwappedRelation
=
1479 evaluateICmpRelation(V2
, V1
, isSigned
);
1480 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1481 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1483 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V1
)) {
1484 if (isa
<ConstantExpr
>(V2
)) { // Swap as necessary.
1485 ICmpInst::Predicate SwappedRelation
=
1486 evaluateICmpRelation(V2
, V1
, isSigned
);
1487 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1488 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1489 return ICmpInst::BAD_ICMP_PREDICATE
;
1492 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1493 // constant (which, since the types must match, means that it's a
1494 // ConstantPointerNull).
1495 if (const GlobalValue
*GV2
= dyn_cast
<GlobalValue
>(V2
)) {
1496 return areGlobalsPotentiallyEqual(GV
, GV2
);
1497 } else if (isa
<BlockAddress
>(V2
)) {
1498 return ICmpInst::ICMP_NE
; // Globals never equal labels.
1500 assert(isa
<ConstantPointerNull
>(V2
) && "Canonicalization guarantee!");
1501 // GlobalVals can never be null unless they have external weak linkage.
1502 // We don't try to evaluate aliases here.
1503 // NOTE: We should not be doing this constant folding if null pointer
1504 // is considered valid for the function. But currently there is no way to
1505 // query it from the Constant type.
1506 if (!GV
->hasExternalWeakLinkage() && !isa
<GlobalAlias
>(GV
) &&
1507 !NullPointerIsDefined(nullptr /* F */,
1508 GV
->getType()->getAddressSpace()))
1509 return ICmpInst::ICMP_NE
;
1511 } else if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(V1
)) {
1512 if (isa
<ConstantExpr
>(V2
)) { // Swap as necessary.
1513 ICmpInst::Predicate SwappedRelation
=
1514 evaluateICmpRelation(V2
, V1
, isSigned
);
1515 if (SwappedRelation
!= ICmpInst::BAD_ICMP_PREDICATE
)
1516 return ICmpInst::getSwappedPredicate(SwappedRelation
);
1517 return ICmpInst::BAD_ICMP_PREDICATE
;
1520 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1521 // constant (which, since the types must match, means that it is a
1522 // ConstantPointerNull).
1523 if (const BlockAddress
*BA2
= dyn_cast
<BlockAddress
>(V2
)) {
1524 // Block address in another function can't equal this one, but block
1525 // addresses in the current function might be the same if blocks are
1527 if (BA2
->getFunction() != BA
->getFunction())
1528 return ICmpInst::ICMP_NE
;
1530 // Block addresses aren't null, don't equal the address of globals.
1531 assert((isa
<ConstantPointerNull
>(V2
) || isa
<GlobalValue
>(V2
)) &&
1532 "Canonicalization guarantee!");
1533 return ICmpInst::ICMP_NE
;
1536 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1537 // constantexpr, a global, block address, or a simple constant.
1538 ConstantExpr
*CE1
= cast
<ConstantExpr
>(V1
);
1539 Constant
*CE1Op0
= CE1
->getOperand(0);
1541 switch (CE1
->getOpcode()) {
1542 case Instruction::Trunc
:
1543 case Instruction::FPTrunc
:
1544 case Instruction::FPExt
:
1545 case Instruction::FPToUI
:
1546 case Instruction::FPToSI
:
1547 break; // We can't evaluate floating point casts or truncations.
1549 case Instruction::UIToFP
:
1550 case Instruction::SIToFP
:
1551 case Instruction::BitCast
:
1552 case Instruction::ZExt
:
1553 case Instruction::SExt
:
1554 // We can't evaluate floating point casts or truncations.
1555 if (CE1Op0
->getType()->isFloatingPointTy())
1558 // If the cast is not actually changing bits, and the second operand is a
1559 // null pointer, do the comparison with the pre-casted value.
1560 if (V2
->isNullValue() && CE1
->getType()->isIntOrPtrTy()) {
1561 if (CE1
->getOpcode() == Instruction::ZExt
) isSigned
= false;
1562 if (CE1
->getOpcode() == Instruction::SExt
) isSigned
= true;
1563 return evaluateICmpRelation(CE1Op0
,
1564 Constant::getNullValue(CE1Op0
->getType()),
1569 case Instruction::GetElementPtr
: {
1570 GEPOperator
*CE1GEP
= cast
<GEPOperator
>(CE1
);
1571 // Ok, since this is a getelementptr, we know that the constant has a
1572 // pointer type. Check the various cases.
1573 if (isa
<ConstantPointerNull
>(V2
)) {
1574 // If we are comparing a GEP to a null pointer, check to see if the base
1575 // of the GEP equals the null pointer.
1576 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1577 if (GV
->hasExternalWeakLinkage())
1578 // Weak linkage GVals could be zero or not. We're comparing that
1579 // to null pointer so its greater-or-equal
1580 return isSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
1582 // If its not weak linkage, the GVal must have a non-zero address
1583 // so the result is greater-than
1584 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1585 } else if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1586 // If we are indexing from a null pointer, check to see if we have any
1587 // non-zero indices.
1588 for (unsigned i
= 1, e
= CE1
->getNumOperands(); i
!= e
; ++i
)
1589 if (!CE1
->getOperand(i
)->isNullValue())
1590 // Offsetting from null, must not be equal.
1591 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1592 // Only zero indexes from null, must still be zero.
1593 return ICmpInst::ICMP_EQ
;
1595 // Otherwise, we can't really say if the first operand is null or not.
1596 } else if (const GlobalValue
*GV2
= dyn_cast
<GlobalValue
>(V2
)) {
1597 if (isa
<ConstantPointerNull
>(CE1Op0
)) {
1598 if (GV2
->hasExternalWeakLinkage())
1599 // Weak linkage GVals could be zero or not. We're comparing it to
1600 // a null pointer, so its less-or-equal
1601 return isSigned
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
1603 // If its not weak linkage, the GVal must have a non-zero address
1604 // so the result is less-than
1605 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1606 } else if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CE1Op0
)) {
1608 // If this is a getelementptr of the same global, then it must be
1609 // different. Because the types must match, the getelementptr could
1610 // only have at most one index, and because we fold getelementptr's
1611 // with a single zero index, it must be nonzero.
1612 assert(CE1
->getNumOperands() == 2 &&
1613 !CE1
->getOperand(1)->isNullValue() &&
1614 "Surprising getelementptr!");
1615 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1617 if (CE1GEP
->hasAllZeroIndices())
1618 return areGlobalsPotentiallyEqual(GV
, GV2
);
1619 return ICmpInst::BAD_ICMP_PREDICATE
;
1623 ConstantExpr
*CE2
= cast
<ConstantExpr
>(V2
);
1624 Constant
*CE2Op0
= CE2
->getOperand(0);
1626 // There are MANY other foldings that we could perform here. They will
1627 // probably be added on demand, as they seem needed.
1628 switch (CE2
->getOpcode()) {
1630 case Instruction::GetElementPtr
:
1631 // By far the most common case to handle is when the base pointers are
1632 // obviously to the same global.
1633 if (isa
<GlobalValue
>(CE1Op0
) && isa
<GlobalValue
>(CE2Op0
)) {
1634 // Don't know relative ordering, but check for inequality.
1635 if (CE1Op0
!= CE2Op0
) {
1636 GEPOperator
*CE2GEP
= cast
<GEPOperator
>(CE2
);
1637 if (CE1GEP
->hasAllZeroIndices() && CE2GEP
->hasAllZeroIndices())
1638 return areGlobalsPotentiallyEqual(cast
<GlobalValue
>(CE1Op0
),
1639 cast
<GlobalValue
>(CE2Op0
));
1640 return ICmpInst::BAD_ICMP_PREDICATE
;
1642 // Ok, we know that both getelementptr instructions are based on the
1643 // same global. From this, we can precisely determine the relative
1644 // ordering of the resultant pointers.
1647 // The logic below assumes that the result of the comparison
1648 // can be determined by finding the first index that differs.
1649 // This doesn't work if there is over-indexing in any
1650 // subsequent indices, so check for that case first.
1651 if (!CE1
->isGEPWithNoNotionalOverIndexing() ||
1652 !CE2
->isGEPWithNoNotionalOverIndexing())
1653 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1655 // Compare all of the operands the GEP's have in common.
1656 gep_type_iterator GTI
= gep_type_begin(CE1
);
1657 for (;i
!= CE1
->getNumOperands() && i
!= CE2
->getNumOperands();
1659 switch (IdxCompare(CE1
->getOperand(i
),
1660 CE2
->getOperand(i
), GTI
.getIndexedType())) {
1661 case -1: return isSigned
? ICmpInst::ICMP_SLT
:ICmpInst::ICMP_ULT
;
1662 case 1: return isSigned
? ICmpInst::ICMP_SGT
:ICmpInst::ICMP_UGT
;
1663 case -2: return ICmpInst::BAD_ICMP_PREDICATE
;
1666 // Ok, we ran out of things they have in common. If any leftovers
1667 // are non-zero then we have a difference, otherwise we are equal.
1668 for (; i
< CE1
->getNumOperands(); ++i
)
1669 if (!CE1
->getOperand(i
)->isNullValue()) {
1670 if (isa
<ConstantInt
>(CE1
->getOperand(i
)))
1671 return isSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
1673 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1676 for (; i
< CE2
->getNumOperands(); ++i
)
1677 if (!CE2
->getOperand(i
)->isNullValue()) {
1678 if (isa
<ConstantInt
>(CE2
->getOperand(i
)))
1679 return isSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
1681 return ICmpInst::BAD_ICMP_PREDICATE
; // Might be equal.
1683 return ICmpInst::ICMP_EQ
;
1694 return ICmpInst::BAD_ICMP_PREDICATE
;
1697 Constant
*llvm::ConstantFoldCompareInstruction(unsigned short pred
,
1698 Constant
*C1
, Constant
*C2
) {
1700 if (VectorType
*VT
= dyn_cast
<VectorType
>(C1
->getType()))
1701 ResultTy
= VectorType::get(Type::getInt1Ty(C1
->getContext()),
1702 VT
->getNumElements());
1704 ResultTy
= Type::getInt1Ty(C1
->getContext());
1706 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1707 if (pred
== FCmpInst::FCMP_FALSE
)
1708 return Constant::getNullValue(ResultTy
);
1710 if (pred
== FCmpInst::FCMP_TRUE
)
1711 return Constant::getAllOnesValue(ResultTy
);
1713 // Handle some degenerate cases first
1714 if (isa
<UndefValue
>(C1
) || isa
<UndefValue
>(C2
)) {
1715 CmpInst::Predicate Predicate
= CmpInst::Predicate(pred
);
1716 bool isIntegerPredicate
= ICmpInst::isIntPredicate(Predicate
);
1717 // For EQ and NE, we can always pick a value for the undef to make the
1718 // predicate pass or fail, so we can return undef.
1719 // Also, if both operands are undef, we can return undef for int comparison.
1720 if (ICmpInst::isEquality(Predicate
) || (isIntegerPredicate
&& C1
== C2
))
1721 return UndefValue::get(ResultTy
);
1723 // Otherwise, for integer compare, pick the same value as the non-undef
1724 // operand, and fold it to true or false.
1725 if (isIntegerPredicate
)
1726 return ConstantInt::get(ResultTy
, CmpInst::isTrueWhenEqual(Predicate
));
1728 // Choosing NaN for the undef will always make unordered comparison succeed
1729 // and ordered comparison fails.
1730 return ConstantInt::get(ResultTy
, CmpInst::isUnordered(Predicate
));
1733 // icmp eq/ne(null,GV) -> false/true
1734 if (C1
->isNullValue()) {
1735 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C2
))
1736 // Don't try to evaluate aliases. External weak GV can be null.
1737 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage() &&
1738 !NullPointerIsDefined(nullptr /* F */,
1739 GV
->getType()->getAddressSpace())) {
1740 if (pred
== ICmpInst::ICMP_EQ
)
1741 return ConstantInt::getFalse(C1
->getContext());
1742 else if (pred
== ICmpInst::ICMP_NE
)
1743 return ConstantInt::getTrue(C1
->getContext());
1745 // icmp eq/ne(GV,null) -> false/true
1746 } else if (C2
->isNullValue()) {
1747 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C1
))
1748 // Don't try to evaluate aliases. External weak GV can be null.
1749 if (!isa
<GlobalAlias
>(GV
) && !GV
->hasExternalWeakLinkage() &&
1750 !NullPointerIsDefined(nullptr /* F */,
1751 GV
->getType()->getAddressSpace())) {
1752 if (pred
== ICmpInst::ICMP_EQ
)
1753 return ConstantInt::getFalse(C1
->getContext());
1754 else if (pred
== ICmpInst::ICMP_NE
)
1755 return ConstantInt::getTrue(C1
->getContext());
1759 // If the comparison is a comparison between two i1's, simplify it.
1760 if (C1
->getType()->isIntegerTy(1)) {
1762 case ICmpInst::ICMP_EQ
:
1763 if (isa
<ConstantInt
>(C2
))
1764 return ConstantExpr::getXor(C1
, ConstantExpr::getNot(C2
));
1765 return ConstantExpr::getXor(ConstantExpr::getNot(C1
), C2
);
1766 case ICmpInst::ICMP_NE
:
1767 return ConstantExpr::getXor(C1
, C2
);
1773 if (isa
<ConstantInt
>(C1
) && isa
<ConstantInt
>(C2
)) {
1774 const APInt
&V1
= cast
<ConstantInt
>(C1
)->getValue();
1775 const APInt
&V2
= cast
<ConstantInt
>(C2
)->getValue();
1777 default: llvm_unreachable("Invalid ICmp Predicate");
1778 case ICmpInst::ICMP_EQ
: return ConstantInt::get(ResultTy
, V1
== V2
);
1779 case ICmpInst::ICMP_NE
: return ConstantInt::get(ResultTy
, V1
!= V2
);
1780 case ICmpInst::ICMP_SLT
: return ConstantInt::get(ResultTy
, V1
.slt(V2
));
1781 case ICmpInst::ICMP_SGT
: return ConstantInt::get(ResultTy
, V1
.sgt(V2
));
1782 case ICmpInst::ICMP_SLE
: return ConstantInt::get(ResultTy
, V1
.sle(V2
));
1783 case ICmpInst::ICMP_SGE
: return ConstantInt::get(ResultTy
, V1
.sge(V2
));
1784 case ICmpInst::ICMP_ULT
: return ConstantInt::get(ResultTy
, V1
.ult(V2
));
1785 case ICmpInst::ICMP_UGT
: return ConstantInt::get(ResultTy
, V1
.ugt(V2
));
1786 case ICmpInst::ICMP_ULE
: return ConstantInt::get(ResultTy
, V1
.ule(V2
));
1787 case ICmpInst::ICMP_UGE
: return ConstantInt::get(ResultTy
, V1
.uge(V2
));
1789 } else if (isa
<ConstantFP
>(C1
) && isa
<ConstantFP
>(C2
)) {
1790 const APFloat
&C1V
= cast
<ConstantFP
>(C1
)->getValueAPF();
1791 const APFloat
&C2V
= cast
<ConstantFP
>(C2
)->getValueAPF();
1792 APFloat::cmpResult R
= C1V
.compare(C2V
);
1794 default: llvm_unreachable("Invalid FCmp Predicate");
1795 case FCmpInst::FCMP_FALSE
: return Constant::getNullValue(ResultTy
);
1796 case FCmpInst::FCMP_TRUE
: return Constant::getAllOnesValue(ResultTy
);
1797 case FCmpInst::FCMP_UNO
:
1798 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
);
1799 case FCmpInst::FCMP_ORD
:
1800 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpUnordered
);
1801 case FCmpInst::FCMP_UEQ
:
1802 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
||
1803 R
==APFloat::cmpEqual
);
1804 case FCmpInst::FCMP_OEQ
:
1805 return ConstantInt::get(ResultTy
, R
==APFloat::cmpEqual
);
1806 case FCmpInst::FCMP_UNE
:
1807 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpEqual
);
1808 case FCmpInst::FCMP_ONE
:
1809 return ConstantInt::get(ResultTy
, R
==APFloat::cmpLessThan
||
1810 R
==APFloat::cmpGreaterThan
);
1811 case FCmpInst::FCMP_ULT
:
1812 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
||
1813 R
==APFloat::cmpLessThan
);
1814 case FCmpInst::FCMP_OLT
:
1815 return ConstantInt::get(ResultTy
, R
==APFloat::cmpLessThan
);
1816 case FCmpInst::FCMP_UGT
:
1817 return ConstantInt::get(ResultTy
, R
==APFloat::cmpUnordered
||
1818 R
==APFloat::cmpGreaterThan
);
1819 case FCmpInst::FCMP_OGT
:
1820 return ConstantInt::get(ResultTy
, R
==APFloat::cmpGreaterThan
);
1821 case FCmpInst::FCMP_ULE
:
1822 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpGreaterThan
);
1823 case FCmpInst::FCMP_OLE
:
1824 return ConstantInt::get(ResultTy
, R
==APFloat::cmpLessThan
||
1825 R
==APFloat::cmpEqual
);
1826 case FCmpInst::FCMP_UGE
:
1827 return ConstantInt::get(ResultTy
, R
!=APFloat::cmpLessThan
);
1828 case FCmpInst::FCMP_OGE
:
1829 return ConstantInt::get(ResultTy
, R
==APFloat::cmpGreaterThan
||
1830 R
==APFloat::cmpEqual
);
1832 } else if (C1
->getType()->isVectorTy()) {
1833 // If we can constant fold the comparison of each element, constant fold
1834 // the whole vector comparison.
1835 SmallVector
<Constant
*, 4> ResElts
;
1836 Type
*Ty
= IntegerType::get(C1
->getContext(), 32);
1837 // Compare the elements, producing an i1 result or constant expr.
1838 for (unsigned i
= 0, e
= C1
->getType()->getVectorNumElements(); i
!= e
;++i
){
1840 ConstantExpr::getExtractElement(C1
, ConstantInt::get(Ty
, i
));
1842 ConstantExpr::getExtractElement(C2
, ConstantInt::get(Ty
, i
));
1844 ResElts
.push_back(ConstantExpr::getCompare(pred
, C1E
, C2E
));
1847 return ConstantVector::get(ResElts
);
1850 if (C1
->getType()->isFloatingPointTy() &&
1851 // Only call evaluateFCmpRelation if we have a constant expr to avoid
1852 // infinite recursive loop
1853 (isa
<ConstantExpr
>(C1
) || isa
<ConstantExpr
>(C2
))) {
1854 int Result
= -1; // -1 = unknown, 0 = known false, 1 = known true.
1855 switch (evaluateFCmpRelation(C1
, C2
)) {
1856 default: llvm_unreachable("Unknown relation!");
1857 case FCmpInst::FCMP_UNO
:
1858 case FCmpInst::FCMP_ORD
:
1859 case FCmpInst::FCMP_UNE
:
1860 case FCmpInst::FCMP_ULT
:
1861 case FCmpInst::FCMP_UGT
:
1862 case FCmpInst::FCMP_ULE
:
1863 case FCmpInst::FCMP_UGE
:
1864 case FCmpInst::FCMP_TRUE
:
1865 case FCmpInst::FCMP_FALSE
:
1866 case FCmpInst::BAD_FCMP_PREDICATE
:
1867 break; // Couldn't determine anything about these constants.
1868 case FCmpInst::FCMP_OEQ
: // We know that C1 == C2
1869 Result
= (pred
== FCmpInst::FCMP_UEQ
|| pred
== FCmpInst::FCMP_OEQ
||
1870 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
||
1871 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1873 case FCmpInst::FCMP_OLT
: // We know that C1 < C2
1874 Result
= (pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1875 pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
||
1876 pred
== FCmpInst::FCMP_ULE
|| pred
== FCmpInst::FCMP_OLE
);
1878 case FCmpInst::FCMP_OGT
: // We know that C1 > C2
1879 Result
= (pred
== FCmpInst::FCMP_UNE
|| pred
== FCmpInst::FCMP_ONE
||
1880 pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
||
1881 pred
== FCmpInst::FCMP_UGE
|| pred
== FCmpInst::FCMP_OGE
);
1883 case FCmpInst::FCMP_OLE
: // We know that C1 <= C2
1884 // We can only partially decide this relation.
1885 if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1887 else if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1890 case FCmpInst::FCMP_OGE
: // We known that C1 >= C2
1891 // We can only partially decide this relation.
1892 if (pred
== FCmpInst::FCMP_ULT
|| pred
== FCmpInst::FCMP_OLT
)
1894 else if (pred
== FCmpInst::FCMP_UGT
|| pred
== FCmpInst::FCMP_OGT
)
1897 case FCmpInst::FCMP_ONE
: // We know that C1 != C2
1898 // We can only partially decide this relation.
1899 if (pred
== FCmpInst::FCMP_OEQ
|| pred
== FCmpInst::FCMP_UEQ
)
1901 else if (pred
== FCmpInst::FCMP_ONE
|| pred
== FCmpInst::FCMP_UNE
)
1904 case FCmpInst::FCMP_UEQ
: // We know that C1 == C2 || isUnordered(C1, C2).
1905 // We can only partially decide this relation.
1906 if (pred
== FCmpInst::FCMP_ONE
)
1908 else if (pred
== FCmpInst::FCMP_UEQ
)
1913 // If we evaluated the result, return it now.
1915 return ConstantInt::get(ResultTy
, Result
);
1918 // Evaluate the relation between the two constants, per the predicate.
1919 int Result
= -1; // -1 = unknown, 0 = known false, 1 = known true.
1920 switch (evaluateICmpRelation(C1
, C2
,
1921 CmpInst::isSigned((CmpInst::Predicate
)pred
))) {
1922 default: llvm_unreachable("Unknown relational!");
1923 case ICmpInst::BAD_ICMP_PREDICATE
:
1924 break; // Couldn't determine anything about these constants.
1925 case ICmpInst::ICMP_EQ
: // We know the constants are equal!
1926 // If we know the constants are equal, we can decide the result of this
1927 // computation precisely.
1928 Result
= ICmpInst::isTrueWhenEqual((ICmpInst::Predicate
)pred
);
1930 case ICmpInst::ICMP_ULT
:
1932 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_ULE
:
1934 case ICmpInst::ICMP_UGT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_UGE
:
1938 case ICmpInst::ICMP_SLT
:
1940 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_SLE
:
1942 case ICmpInst::ICMP_SGT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_SGE
:
1946 case ICmpInst::ICMP_UGT
:
1948 case ICmpInst::ICMP_UGT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_UGE
:
1950 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_ULE
:
1954 case ICmpInst::ICMP_SGT
:
1956 case ICmpInst::ICMP_SGT
: case ICmpInst::ICMP_NE
: case ICmpInst::ICMP_SGE
:
1958 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_EQ
: case ICmpInst::ICMP_SLE
:
1962 case ICmpInst::ICMP_ULE
:
1963 if (pred
== ICmpInst::ICMP_UGT
) Result
= 0;
1964 if (pred
== ICmpInst::ICMP_ULT
|| pred
== ICmpInst::ICMP_ULE
) Result
= 1;
1966 case ICmpInst::ICMP_SLE
:
1967 if (pred
== ICmpInst::ICMP_SGT
) Result
= 0;
1968 if (pred
== ICmpInst::ICMP_SLT
|| pred
== ICmpInst::ICMP_SLE
) Result
= 1;
1970 case ICmpInst::ICMP_UGE
:
1971 if (pred
== ICmpInst::ICMP_ULT
) Result
= 0;
1972 if (pred
== ICmpInst::ICMP_UGT
|| pred
== ICmpInst::ICMP_UGE
) Result
= 1;
1974 case ICmpInst::ICMP_SGE
:
1975 if (pred
== ICmpInst::ICMP_SLT
) Result
= 0;
1976 if (pred
== ICmpInst::ICMP_SGT
|| pred
== ICmpInst::ICMP_SGE
) Result
= 1;
1978 case ICmpInst::ICMP_NE
:
1979 if (pred
== ICmpInst::ICMP_EQ
) Result
= 0;
1980 if (pred
== ICmpInst::ICMP_NE
) Result
= 1;
1984 // If we evaluated the result, return it now.
1986 return ConstantInt::get(ResultTy
, Result
);
1988 // If the right hand side is a bitcast, try using its inverse to simplify
1989 // it by moving it to the left hand side. We can't do this if it would turn
1990 // a vector compare into a scalar compare or visa versa, or if it would turn
1991 // the operands into FP values.
1992 if (ConstantExpr
*CE2
= dyn_cast
<ConstantExpr
>(C2
)) {
1993 Constant
*CE2Op0
= CE2
->getOperand(0);
1994 if (CE2
->getOpcode() == Instruction::BitCast
&&
1995 CE2
->getType()->isVectorTy() == CE2Op0
->getType()->isVectorTy() &&
1996 !CE2Op0
->getType()->isFPOrFPVectorTy()) {
1997 Constant
*Inverse
= ConstantExpr::getBitCast(C1
, CE2Op0
->getType());
1998 return ConstantExpr::getICmp(pred
, Inverse
, CE2Op0
);
2002 // If the left hand side is an extension, try eliminating it.
2003 if (ConstantExpr
*CE1
= dyn_cast
<ConstantExpr
>(C1
)) {
2004 if ((CE1
->getOpcode() == Instruction::SExt
&&
2005 ICmpInst::isSigned((ICmpInst::Predicate
)pred
)) ||
2006 (CE1
->getOpcode() == Instruction::ZExt
&&
2007 !ICmpInst::isSigned((ICmpInst::Predicate
)pred
))){
2008 Constant
*CE1Op0
= CE1
->getOperand(0);
2009 Constant
*CE1Inverse
= ConstantExpr::getTrunc(CE1
, CE1Op0
->getType());
2010 if (CE1Inverse
== CE1Op0
) {
2011 // Check whether we can safely truncate the right hand side.
2012 Constant
*C2Inverse
= ConstantExpr::getTrunc(C2
, CE1Op0
->getType());
2013 if (ConstantExpr::getCast(CE1
->getOpcode(), C2Inverse
,
2014 C2
->getType()) == C2
)
2015 return ConstantExpr::getICmp(pred
, CE1Inverse
, C2Inverse
);
2020 if ((!isa
<ConstantExpr
>(C1
) && isa
<ConstantExpr
>(C2
)) ||
2021 (C1
->isNullValue() && !C2
->isNullValue())) {
2022 // If C2 is a constant expr and C1 isn't, flip them around and fold the
2023 // other way if possible.
2024 // Also, if C1 is null and C2 isn't, flip them around.
2025 pred
= ICmpInst::getSwappedPredicate((ICmpInst::Predicate
)pred
);
2026 return ConstantExpr::getICmp(pred
, C2
, C1
);
2032 /// Test whether the given sequence of *normalized* indices is "inbounds".
2033 template<typename IndexTy
>
2034 static bool isInBoundsIndices(ArrayRef
<IndexTy
> Idxs
) {
2035 // No indices means nothing that could be out of bounds.
2036 if (Idxs
.empty()) return true;
2038 // If the first index is zero, it's in bounds.
2039 if (cast
<Constant
>(Idxs
[0])->isNullValue()) return true;
2041 // If the first index is one and all the rest are zero, it's in bounds,
2042 // by the one-past-the-end rule.
2043 if (auto *CI
= dyn_cast
<ConstantInt
>(Idxs
[0])) {
2047 auto *CV
= cast
<ConstantDataVector
>(Idxs
[0]);
2048 CI
= dyn_cast_or_null
<ConstantInt
>(CV
->getSplatValue());
2049 if (!CI
|| !CI
->isOne())
2053 for (unsigned i
= 1, e
= Idxs
.size(); i
!= e
; ++i
)
2054 if (!cast
<Constant
>(Idxs
[i
])->isNullValue())
2059 /// Test whether a given ConstantInt is in-range for a SequentialType.
2060 static bool isIndexInRangeOfArrayType(uint64_t NumElements
,
2061 const ConstantInt
*CI
) {
2062 // We cannot bounds check the index if it doesn't fit in an int64_t.
2063 if (CI
->getValue().getMinSignedBits() > 64)
2066 // A negative index or an index past the end of our sequential type is
2067 // considered out-of-range.
2068 int64_t IndexVal
= CI
->getSExtValue();
2069 if (IndexVal
< 0 || (NumElements
> 0 && (uint64_t)IndexVal
>= NumElements
))
2072 // Otherwise, it is in-range.
2076 Constant
*llvm::ConstantFoldGetElementPtr(Type
*PointeeTy
, Constant
*C
,
2078 Optional
<unsigned> InRangeIndex
,
2079 ArrayRef
<Value
*> Idxs
) {
2080 if (Idxs
.empty()) return C
;
2082 Type
*GEPTy
= GetElementPtrInst::getGEPReturnType(
2083 PointeeTy
, C
, makeArrayRef((Value
*const *)Idxs
.data(), Idxs
.size()));
2085 if (isa
<UndefValue
>(C
))
2086 return UndefValue::get(GEPTy
);
2088 Constant
*Idx0
= cast
<Constant
>(Idxs
[0]);
2089 if (Idxs
.size() == 1 && (Idx0
->isNullValue() || isa
<UndefValue
>(Idx0
)))
2090 return GEPTy
->isVectorTy() && !C
->getType()->isVectorTy()
2091 ? ConstantVector::getSplat(
2092 cast
<VectorType
>(GEPTy
)->getNumElements(), C
)
2095 if (C
->isNullValue()) {
2097 for (unsigned i
= 0, e
= Idxs
.size(); i
!= e
; ++i
)
2098 if (!isa
<UndefValue
>(Idxs
[i
]) &&
2099 !cast
<Constant
>(Idxs
[i
])->isNullValue()) {
2104 PointerType
*PtrTy
= cast
<PointerType
>(C
->getType()->getScalarType());
2105 Type
*Ty
= GetElementPtrInst::getIndexedType(PointeeTy
, Idxs
);
2107 assert(Ty
&& "Invalid indices for GEP!");
2108 Type
*OrigGEPTy
= PointerType::get(Ty
, PtrTy
->getAddressSpace());
2109 Type
*GEPTy
= PointerType::get(Ty
, PtrTy
->getAddressSpace());
2110 if (VectorType
*VT
= dyn_cast
<VectorType
>(C
->getType()))
2111 GEPTy
= VectorType::get(OrigGEPTy
, VT
->getNumElements());
2113 // The GEP returns a vector of pointers when one of more of
2114 // its arguments is a vector.
2115 for (unsigned i
= 0, e
= Idxs
.size(); i
!= e
; ++i
) {
2116 if (auto *VT
= dyn_cast
<VectorType
>(Idxs
[i
]->getType())) {
2117 GEPTy
= VectorType::get(OrigGEPTy
, VT
->getNumElements());
2122 return Constant::getNullValue(GEPTy
);
2126 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
2127 // Combine Indices - If the source pointer to this getelementptr instruction
2128 // is a getelementptr instruction, combine the indices of the two
2129 // getelementptr instructions into a single instruction.
2131 if (CE
->getOpcode() == Instruction::GetElementPtr
) {
2132 gep_type_iterator LastI
= gep_type_end(CE
);
2133 for (gep_type_iterator I
= gep_type_begin(CE
), E
= gep_type_end(CE
);
2137 // We cannot combine indices if doing so would take us outside of an
2138 // array or vector. Doing otherwise could trick us if we evaluated such a
2139 // GEP as part of a load.
2141 // e.g. Consider if the original GEP was:
2142 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2143 // i32 0, i32 0, i64 0)
2145 // If we then tried to offset it by '8' to get to the third element,
2146 // an i8, we should *not* get:
2147 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2148 // i32 0, i32 0, i64 8)
2150 // This GEP tries to index array element '8 which runs out-of-bounds.
2151 // Subsequent evaluation would get confused and produce erroneous results.
2153 // The following prohibits such a GEP from being formed by checking to see
2154 // if the index is in-range with respect to an array.
2155 // TODO: This code may be extended to handle vectors as well.
2156 bool PerformFold
= false;
2157 if (Idx0
->isNullValue())
2159 else if (LastI
.isSequential())
2160 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idx0
))
2161 PerformFold
= (!LastI
.isBoundedSequential() ||
2162 isIndexInRangeOfArrayType(
2163 LastI
.getSequentialNumElements(), CI
)) &&
2164 !CE
->getOperand(CE
->getNumOperands() - 1)
2169 SmallVector
<Value
*, 16> NewIndices
;
2170 NewIndices
.reserve(Idxs
.size() + CE
->getNumOperands());
2171 NewIndices
.append(CE
->op_begin() + 1, CE
->op_end() - 1);
2173 // Add the last index of the source with the first index of the new GEP.
2174 // Make sure to handle the case when they are actually different types.
2175 Constant
*Combined
= CE
->getOperand(CE
->getNumOperands()-1);
2176 // Otherwise it must be an array.
2177 if (!Idx0
->isNullValue()) {
2178 Type
*IdxTy
= Combined
->getType();
2179 if (IdxTy
!= Idx0
->getType()) {
2180 unsigned CommonExtendedWidth
=
2181 std::max(IdxTy
->getIntegerBitWidth(),
2182 Idx0
->getType()->getIntegerBitWidth());
2183 CommonExtendedWidth
= std::max(CommonExtendedWidth
, 64U);
2186 Type::getIntNTy(IdxTy
->getContext(), CommonExtendedWidth
);
2187 Constant
*C1
= ConstantExpr::getSExtOrBitCast(Idx0
, CommonTy
);
2188 Constant
*C2
= ConstantExpr::getSExtOrBitCast(Combined
, CommonTy
);
2189 Combined
= ConstantExpr::get(Instruction::Add
, C1
, C2
);
2192 ConstantExpr::get(Instruction::Add
, Idx0
, Combined
);
2196 NewIndices
.push_back(Combined
);
2197 NewIndices
.append(Idxs
.begin() + 1, Idxs
.end());
2199 // The combined GEP normally inherits its index inrange attribute from
2200 // the inner GEP, but if the inner GEP's last index was adjusted by the
2201 // outer GEP, any inbounds attribute on that index is invalidated.
2202 Optional
<unsigned> IRIndex
= cast
<GEPOperator
>(CE
)->getInRangeIndex();
2203 if (IRIndex
&& *IRIndex
== CE
->getNumOperands() - 2 && !Idx0
->isNullValue())
2206 return ConstantExpr::getGetElementPtr(
2207 cast
<GEPOperator
>(CE
)->getSourceElementType(), CE
->getOperand(0),
2208 NewIndices
, InBounds
&& cast
<GEPOperator
>(CE
)->isInBounds(),
2213 // Attempt to fold casts to the same type away. For example, folding:
2215 // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2219 // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2221 // Don't fold if the cast is changing address spaces.
2222 if (CE
->isCast() && Idxs
.size() > 1 && Idx0
->isNullValue()) {
2223 PointerType
*SrcPtrTy
=
2224 dyn_cast
<PointerType
>(CE
->getOperand(0)->getType());
2225 PointerType
*DstPtrTy
= dyn_cast
<PointerType
>(CE
->getType());
2226 if (SrcPtrTy
&& DstPtrTy
) {
2227 ArrayType
*SrcArrayTy
=
2228 dyn_cast
<ArrayType
>(SrcPtrTy
->getElementType());
2229 ArrayType
*DstArrayTy
=
2230 dyn_cast
<ArrayType
>(DstPtrTy
->getElementType());
2231 if (SrcArrayTy
&& DstArrayTy
2232 && SrcArrayTy
->getElementType() == DstArrayTy
->getElementType()
2233 && SrcPtrTy
->getAddressSpace() == DstPtrTy
->getAddressSpace())
2234 return ConstantExpr::getGetElementPtr(SrcArrayTy
,
2235 (Constant
*)CE
->getOperand(0),
2236 Idxs
, InBounds
, InRangeIndex
);
2241 // Check to see if any array indices are not within the corresponding
2242 // notional array or vector bounds. If so, try to determine if they can be
2243 // factored out into preceding dimensions.
2244 SmallVector
<Constant
*, 8> NewIdxs
;
2245 Type
*Ty
= PointeeTy
;
2246 Type
*Prev
= C
->getType();
2248 !isa
<ConstantInt
>(Idxs
[0]) && !isa
<ConstantDataVector
>(Idxs
[0]);
2249 for (unsigned i
= 1, e
= Idxs
.size(); i
!= e
;
2250 Prev
= Ty
, Ty
= cast
<CompositeType
>(Ty
)->getTypeAtIndex(Idxs
[i
]), ++i
) {
2251 if (!isa
<ConstantInt
>(Idxs
[i
]) && !isa
<ConstantDataVector
>(Idxs
[i
])) {
2252 // We don't know if it's in range or not.
2256 if (!isa
<ConstantInt
>(Idxs
[i
- 1]) && !isa
<ConstantDataVector
>(Idxs
[i
- 1]))
2257 // Skip if the type of the previous index is not supported.
2259 if (InRangeIndex
&& i
== *InRangeIndex
+ 1) {
2260 // If an index is marked inrange, we cannot apply this canonicalization to
2261 // the following index, as that will cause the inrange index to point to
2262 // the wrong element.
2265 if (isa
<StructType
>(Ty
)) {
2266 // The verify makes sure that GEPs into a struct are in range.
2269 auto *STy
= cast
<SequentialType
>(Ty
);
2270 if (isa
<VectorType
>(STy
)) {
2271 // There can be awkward padding in after a non-power of two vector.
2275 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Idxs
[i
])) {
2276 if (isIndexInRangeOfArrayType(STy
->getNumElements(), CI
))
2277 // It's in range, skip to the next index.
2279 if (CI
->getSExtValue() < 0) {
2280 // It's out of range and negative, don't try to factor it.
2285 auto *CV
= cast
<ConstantDataVector
>(Idxs
[i
]);
2286 bool InRange
= true;
2287 for (unsigned I
= 0, E
= CV
->getNumElements(); I
!= E
; ++I
) {
2288 auto *CI
= cast
<ConstantInt
>(CV
->getElementAsConstant(I
));
2289 InRange
&= isIndexInRangeOfArrayType(STy
->getNumElements(), CI
);
2290 if (CI
->getSExtValue() < 0) {
2295 if (InRange
|| Unknown
)
2296 // It's in range, skip to the next index.
2297 // It's out of range and negative, don't try to factor it.
2300 if (isa
<StructType
>(Prev
)) {
2301 // It's out of range, but the prior dimension is a struct
2302 // so we can't do anything about it.
2306 // It's out of range, but we can factor it into the prior
2308 NewIdxs
.resize(Idxs
.size());
2309 // Determine the number of elements in our sequential type.
2310 uint64_t NumElements
= STy
->getArrayNumElements();
2312 // Expand the current index or the previous index to a vector from a scalar
2314 Constant
*CurrIdx
= cast
<Constant
>(Idxs
[i
]);
2316 NewIdxs
[i
- 1] ? NewIdxs
[i
- 1] : cast
<Constant
>(Idxs
[i
- 1]);
2317 bool IsCurrIdxVector
= CurrIdx
->getType()->isVectorTy();
2318 bool IsPrevIdxVector
= PrevIdx
->getType()->isVectorTy();
2319 bool UseVector
= IsCurrIdxVector
|| IsPrevIdxVector
;
2321 if (!IsCurrIdxVector
&& IsPrevIdxVector
)
2322 CurrIdx
= ConstantDataVector::getSplat(
2323 PrevIdx
->getType()->getVectorNumElements(), CurrIdx
);
2325 if (!IsPrevIdxVector
&& IsCurrIdxVector
)
2326 PrevIdx
= ConstantDataVector::getSplat(
2327 CurrIdx
->getType()->getVectorNumElements(), PrevIdx
);
2330 ConstantInt::get(CurrIdx
->getType()->getScalarType(), NumElements
);
2332 Factor
= ConstantDataVector::getSplat(
2333 IsPrevIdxVector
? PrevIdx
->getType()->getVectorNumElements()
2334 : CurrIdx
->getType()->getVectorNumElements(),
2337 NewIdxs
[i
] = ConstantExpr::getSRem(CurrIdx
, Factor
);
2339 Constant
*Div
= ConstantExpr::getSDiv(CurrIdx
, Factor
);
2341 unsigned CommonExtendedWidth
=
2342 std::max(PrevIdx
->getType()->getScalarSizeInBits(),
2343 Div
->getType()->getScalarSizeInBits());
2344 CommonExtendedWidth
= std::max(CommonExtendedWidth
, 64U);
2346 // Before adding, extend both operands to i64 to avoid
2347 // overflow trouble.
2348 Type
*ExtendedTy
= Type::getIntNTy(Div
->getContext(), CommonExtendedWidth
);
2350 ExtendedTy
= VectorType::get(
2351 ExtendedTy
, IsPrevIdxVector
2352 ? PrevIdx
->getType()->getVectorNumElements()
2353 : CurrIdx
->getType()->getVectorNumElements());
2355 if (!PrevIdx
->getType()->isIntOrIntVectorTy(CommonExtendedWidth
))
2356 PrevIdx
= ConstantExpr::getSExt(PrevIdx
, ExtendedTy
);
2358 if (!Div
->getType()->isIntOrIntVectorTy(CommonExtendedWidth
))
2359 Div
= ConstantExpr::getSExt(Div
, ExtendedTy
);
2361 NewIdxs
[i
- 1] = ConstantExpr::getAdd(PrevIdx
, Div
);
2364 // If we did any factoring, start over with the adjusted indices.
2365 if (!NewIdxs
.empty()) {
2366 for (unsigned i
= 0, e
= Idxs
.size(); i
!= e
; ++i
)
2367 if (!NewIdxs
[i
]) NewIdxs
[i
] = cast
<Constant
>(Idxs
[i
]);
2368 return ConstantExpr::getGetElementPtr(PointeeTy
, C
, NewIdxs
, InBounds
,
2372 // If all indices are known integers and normalized, we can do a simple
2373 // check for the "inbounds" property.
2374 if (!Unknown
&& !InBounds
)
2375 if (auto *GV
= dyn_cast
<GlobalVariable
>(C
))
2376 if (!GV
->hasExternalWeakLinkage() && isInBoundsIndices(Idxs
))
2377 return ConstantExpr::getGetElementPtr(PointeeTy
, C
, Idxs
,
2378 /*InBounds=*/true, InRangeIndex
);