[llvm] Stop including llvm/ADT/DenseMap.h (NFC)
[llvm-project.git] / llvm / lib / Target / X86 / X86FlagsCopyLowering.cpp
blob968e9755fa83022079d647f865af7c5f523d16e3
1 //====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
11 /// flag bits.
12 ///
13 /// We have to do this by carefully analyzing and rewriting the usage of the
14 /// copied EFLAGS register because there is no general way to rematerialize the
15 /// entire EFLAGS register safely and efficiently. Using `popf` both forces
16 /// dynamic stack adjustment and can create correctness issues due to IF, TF,
17 /// and other non-status flags being overwritten. Using sequences involving
18 /// SAHF don't work on all x86 processors and are often quite slow compared to
19 /// directly testing a single status preserved in its own GPR.
20 ///
21 //===----------------------------------------------------------------------===//
23 #include "X86.h"
24 #include "X86InstrBuilder.h"
25 #include "X86InstrInfo.h"
26 #include "X86Subtarget.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/PostOrderIterator.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/ScopeExit.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/SparseBitVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineConstantPool.h"
38 #include "llvm/CodeGen/MachineDominators.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/MachineSSAUpdater.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSchedule.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/MC/MCSchedule.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <iterator>
60 #include <utility>
62 using namespace llvm;
64 #define PASS_KEY "x86-flags-copy-lowering"
65 #define DEBUG_TYPE PASS_KEY
67 STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
68 STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
69 STATISTIC(NumTestsInserted, "Number of test instructions inserted");
70 STATISTIC(NumAddsInserted, "Number of adds instructions inserted");
72 namespace {
74 // Convenient array type for storing registers associated with each condition.
75 using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>;
77 class X86FlagsCopyLoweringPass : public MachineFunctionPass {
78 public:
79 X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) { }
81 StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
82 bool runOnMachineFunction(MachineFunction &MF) override;
83 void getAnalysisUsage(AnalysisUsage &AU) const override;
85 /// Pass identification, replacement for typeid.
86 static char ID;
88 private:
89 MachineRegisterInfo *MRI = nullptr;
90 const X86Subtarget *Subtarget = nullptr;
91 const X86InstrInfo *TII = nullptr;
92 const TargetRegisterInfo *TRI = nullptr;
93 const TargetRegisterClass *PromoteRC = nullptr;
94 MachineDominatorTree *MDT = nullptr;
96 CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
97 MachineBasicBlock::iterator CopyDefI);
99 Register promoteCondToReg(MachineBasicBlock &MBB,
100 MachineBasicBlock::iterator TestPos,
101 const DebugLoc &TestLoc, X86::CondCode Cond);
102 std::pair<unsigned, bool> getCondOrInverseInReg(
103 MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
104 const DebugLoc &TestLoc, X86::CondCode Cond, CondRegArray &CondRegs);
105 void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
106 const DebugLoc &Loc, unsigned Reg);
108 void rewriteArithmetic(MachineBasicBlock &TestMBB,
109 MachineBasicBlock::iterator TestPos,
110 const DebugLoc &TestLoc, MachineInstr &MI,
111 MachineOperand &FlagUse, CondRegArray &CondRegs);
112 void rewriteCMov(MachineBasicBlock &TestMBB,
113 MachineBasicBlock::iterator TestPos, const DebugLoc &TestLoc,
114 MachineInstr &CMovI, MachineOperand &FlagUse,
115 CondRegArray &CondRegs);
116 void rewriteFCMov(MachineBasicBlock &TestMBB,
117 MachineBasicBlock::iterator TestPos,
118 const DebugLoc &TestLoc, MachineInstr &CMovI,
119 MachineOperand &FlagUse, CondRegArray &CondRegs);
120 void rewriteCondJmp(MachineBasicBlock &TestMBB,
121 MachineBasicBlock::iterator TestPos,
122 const DebugLoc &TestLoc, MachineInstr &JmpI,
123 CondRegArray &CondRegs);
124 void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse,
125 MachineInstr &CopyDefI);
126 void rewriteSetCC(MachineBasicBlock &TestMBB,
127 MachineBasicBlock::iterator TestPos,
128 const DebugLoc &TestLoc, MachineInstr &SetCCI,
129 MachineOperand &FlagUse, CondRegArray &CondRegs);
132 } // end anonymous namespace
134 INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
135 "X86 EFLAGS copy lowering", false, false)
136 INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
137 "X86 EFLAGS copy lowering", false, false)
139 FunctionPass *llvm::createX86FlagsCopyLoweringPass() {
140 return new X86FlagsCopyLoweringPass();
143 char X86FlagsCopyLoweringPass::ID = 0;
145 void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
146 AU.addRequired<MachineDominatorTree>();
147 MachineFunctionPass::getAnalysisUsage(AU);
150 namespace {
151 /// An enumeration of the arithmetic instruction mnemonics which have
152 /// interesting flag semantics.
154 /// We can map instruction opcodes into these mnemonics to make it easy to
155 /// dispatch with specific functionality.
156 enum class FlagArithMnemonic {
157 ADC,
158 RCL,
159 RCR,
160 SBB,
161 SETB,
163 } // namespace
165 static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) {
166 switch (Opcode) {
167 default:
168 report_fatal_error("No support for lowering a copy into EFLAGS when used "
169 "by this instruction!");
171 #define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX) \
172 case X86::MNEMONIC##8##SUFFIX: \
173 case X86::MNEMONIC##16##SUFFIX: \
174 case X86::MNEMONIC##32##SUFFIX: \
175 case X86::MNEMONIC##64##SUFFIX:
177 #define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC) \
178 LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr) \
179 LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV) \
180 LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm) \
181 LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr) \
182 case X86::MNEMONIC##8ri: \
183 case X86::MNEMONIC##16ri8: \
184 case X86::MNEMONIC##32ri8: \
185 case X86::MNEMONIC##64ri8: \
186 case X86::MNEMONIC##16ri: \
187 case X86::MNEMONIC##32ri: \
188 case X86::MNEMONIC##64ri32: \
189 case X86::MNEMONIC##8mi: \
190 case X86::MNEMONIC##16mi8: \
191 case X86::MNEMONIC##32mi8: \
192 case X86::MNEMONIC##64mi8: \
193 case X86::MNEMONIC##16mi: \
194 case X86::MNEMONIC##32mi: \
195 case X86::MNEMONIC##64mi32: \
196 case X86::MNEMONIC##8i8: \
197 case X86::MNEMONIC##16i16: \
198 case X86::MNEMONIC##32i32: \
199 case X86::MNEMONIC##64i32:
201 LLVM_EXPAND_ADC_SBB_INSTR(ADC)
202 return FlagArithMnemonic::ADC;
204 LLVM_EXPAND_ADC_SBB_INSTR(SBB)
205 return FlagArithMnemonic::SBB;
207 #undef LLVM_EXPAND_ADC_SBB_INSTR
209 LLVM_EXPAND_INSTR_SIZES(RCL, rCL)
210 LLVM_EXPAND_INSTR_SIZES(RCL, r1)
211 LLVM_EXPAND_INSTR_SIZES(RCL, ri)
212 return FlagArithMnemonic::RCL;
214 LLVM_EXPAND_INSTR_SIZES(RCR, rCL)
215 LLVM_EXPAND_INSTR_SIZES(RCR, r1)
216 LLVM_EXPAND_INSTR_SIZES(RCR, ri)
217 return FlagArithMnemonic::RCR;
219 #undef LLVM_EXPAND_INSTR_SIZES
221 case X86::SETB_C32r:
222 case X86::SETB_C64r:
223 return FlagArithMnemonic::SETB;
227 static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB,
228 MachineInstr &SplitI,
229 const X86InstrInfo &TII) {
230 MachineFunction &MF = *MBB.getParent();
232 assert(SplitI.getParent() == &MBB &&
233 "Split instruction must be in the split block!");
234 assert(SplitI.isBranch() &&
235 "Only designed to split a tail of branch instructions!");
236 assert(X86::getCondFromBranch(SplitI) != X86::COND_INVALID &&
237 "Must split on an actual jCC instruction!");
239 // Dig out the previous instruction to the split point.
240 MachineInstr &PrevI = *std::prev(SplitI.getIterator());
241 assert(PrevI.isBranch() && "Must split after a branch!");
242 assert(X86::getCondFromBranch(PrevI) != X86::COND_INVALID &&
243 "Must split after an actual jCC instruction!");
244 assert(!std::prev(PrevI.getIterator())->isTerminator() &&
245 "Must only have this one terminator prior to the split!");
247 // Grab the one successor edge that will stay in `MBB`.
248 MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();
250 // Analyze the original block to see if we are actually splitting an edge
251 // into two edges. This can happen when we have multiple conditional jumps to
252 // the same successor.
253 bool IsEdgeSplit =
254 std::any_of(SplitI.getIterator(), MBB.instr_end(),
255 [&](MachineInstr &MI) {
256 assert(MI.isTerminator() &&
257 "Should only have spliced terminators!");
258 return llvm::any_of(
259 MI.operands(), [&](MachineOperand &MOp) {
260 return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
262 }) ||
263 MBB.getFallThrough() == &UnsplitSucc;
265 MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
267 // Insert the new block immediately after the current one. Any existing
268 // fallthrough will be sunk into this new block anyways.
269 MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
271 // Splice the tail of instructions into the new block.
272 NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());
274 // Copy the necessary succesors (and their probability info) into the new
275 // block.
276 for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
277 if (IsEdgeSplit || *SI != &UnsplitSucc)
278 NewMBB.copySuccessor(&MBB, SI);
279 // Normalize the probabilities if we didn't end up splitting the edge.
280 if (!IsEdgeSplit)
281 NewMBB.normalizeSuccProbs();
283 // Now replace all of the moved successors in the original block with the new
284 // block. This will merge their probabilities.
285 for (MachineBasicBlock *Succ : NewMBB.successors())
286 if (Succ != &UnsplitSucc)
287 MBB.replaceSuccessor(Succ, &NewMBB);
289 // We should always end up replacing at least one successor.
290 assert(MBB.isSuccessor(&NewMBB) &&
291 "Failed to make the new block a successor!");
293 // Now update all the PHIs.
294 for (MachineBasicBlock *Succ : NewMBB.successors()) {
295 for (MachineInstr &MI : *Succ) {
296 if (!MI.isPHI())
297 break;
299 for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
300 OpIdx += 2) {
301 MachineOperand &OpV = MI.getOperand(OpIdx);
302 MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
303 assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
304 if (OpMBB.getMBB() != &MBB)
305 continue;
307 // Replace the operand for unsplit successors
308 if (!IsEdgeSplit || Succ != &UnsplitSucc) {
309 OpMBB.setMBB(&NewMBB);
311 // We have to continue scanning as there may be multiple entries in
312 // the PHI.
313 continue;
316 // When we have split the edge append a new successor.
317 MI.addOperand(MF, OpV);
318 MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
319 break;
324 return NewMBB;
327 static X86::CondCode getCondFromFCMOV(unsigned Opcode) {
328 switch (Opcode) {
329 default: return X86::COND_INVALID;
330 case X86::CMOVBE_Fp32: case X86::CMOVBE_Fp64: case X86::CMOVBE_Fp80:
331 return X86::COND_BE;
332 case X86::CMOVB_Fp32: case X86::CMOVB_Fp64: case X86::CMOVB_Fp80:
333 return X86::COND_B;
334 case X86::CMOVE_Fp32: case X86::CMOVE_Fp64: case X86::CMOVE_Fp80:
335 return X86::COND_E;
336 case X86::CMOVNBE_Fp32: case X86::CMOVNBE_Fp64: case X86::CMOVNBE_Fp80:
337 return X86::COND_A;
338 case X86::CMOVNB_Fp32: case X86::CMOVNB_Fp64: case X86::CMOVNB_Fp80:
339 return X86::COND_AE;
340 case X86::CMOVNE_Fp32: case X86::CMOVNE_Fp64: case X86::CMOVNE_Fp80:
341 return X86::COND_NE;
342 case X86::CMOVNP_Fp32: case X86::CMOVNP_Fp64: case X86::CMOVNP_Fp80:
343 return X86::COND_NP;
344 case X86::CMOVP_Fp32: case X86::CMOVP_Fp64: case X86::CMOVP_Fp80:
345 return X86::COND_P;
349 bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
350 LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
351 << " **********\n");
353 Subtarget = &MF.getSubtarget<X86Subtarget>();
354 MRI = &MF.getRegInfo();
355 TII = Subtarget->getInstrInfo();
356 TRI = Subtarget->getRegisterInfo();
357 MDT = &getAnalysis<MachineDominatorTree>();
358 PromoteRC = &X86::GR8RegClass;
360 if (MF.begin() == MF.end())
361 // Nothing to do for a degenerate empty function...
362 return false;
364 // Collect the copies in RPO so that when there are chains where a copy is in
365 // turn copied again we visit the first one first. This ensures we can find
366 // viable locations for testing the original EFLAGS that dominate all the
367 // uses across complex CFGs.
368 SmallVector<MachineInstr *, 4> Copies;
369 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
370 for (MachineBasicBlock *MBB : RPOT)
371 for (MachineInstr &MI : *MBB)
372 if (MI.getOpcode() == TargetOpcode::COPY &&
373 MI.getOperand(0).getReg() == X86::EFLAGS)
374 Copies.push_back(&MI);
376 for (MachineInstr *CopyI : Copies) {
377 MachineBasicBlock &MBB = *CopyI->getParent();
379 MachineOperand &VOp = CopyI->getOperand(1);
380 assert(VOp.isReg() &&
381 "The input to the copy for EFLAGS should always be a register!");
382 MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
383 if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
384 // FIXME: The big likely candidate here are PHI nodes. We could in theory
385 // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
386 // enough that it is probably better to change every other part of LLVM
387 // to avoid creating them. The issue is that once we have PHIs we won't
388 // know which original EFLAGS value we need to capture with our setCCs
389 // below. The end result will be computing a complete set of setCCs that
390 // we *might* want, computing them in every place where we copy *out* of
391 // EFLAGS and then doing SSA formation on all of them to insert necessary
392 // PHI nodes and consume those here. Then hoping that somehow we DCE the
393 // unnecessary ones. This DCE seems very unlikely to be successful and so
394 // we will almost certainly end up with a glut of dead setCC
395 // instructions. Until we have a motivating test case and fail to avoid
396 // it by changing other parts of LLVM's lowering, we refuse to handle
397 // this complex case here.
398 LLVM_DEBUG(
399 dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
400 CopyDefI.dump());
401 report_fatal_error(
402 "Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
405 auto Cleanup = make_scope_exit([&] {
406 // All uses of the EFLAGS copy are now rewritten, kill the copy into
407 // eflags and if dead the copy from.
408 CopyI->eraseFromParent();
409 if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
410 CopyDefI.eraseFromParent();
411 ++NumCopiesEliminated;
414 MachineOperand &DOp = CopyI->getOperand(0);
415 assert(DOp.isDef() && "Expected register def!");
416 assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
417 if (DOp.isDead())
418 continue;
420 MachineBasicBlock *TestMBB = CopyDefI.getParent();
421 auto TestPos = CopyDefI.getIterator();
422 DebugLoc TestLoc = CopyDefI.getDebugLoc();
424 LLVM_DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());
426 // Walk up across live-in EFLAGS to find where they were actually def'ed.
428 // This copy's def may just be part of a region of blocks covered by
429 // a single def of EFLAGS and we want to find the top of that region where
430 // possible.
432 // This is essentially a search for a *candidate* reaching definition
433 // location. We don't need to ever find the actual reaching definition here,
434 // but we want to walk up the dominator tree to find the highest point which
435 // would be viable for such a definition.
436 auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin,
437 MachineBasicBlock::iterator End) {
438 // Scan backwards as we expect these to be relatively short and often find
439 // a clobber near the end.
440 return llvm::any_of(
441 llvm::reverse(llvm::make_range(Begin, End)), [&](MachineInstr &MI) {
442 // Flag any instruction (other than the copy we are
443 // currently rewriting) that defs EFLAGS.
444 return &MI != CopyI && MI.findRegisterDefOperand(X86::EFLAGS);
447 auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB,
448 MachineBasicBlock *EndMBB) {
449 assert(MDT->dominates(BeginMBB, EndMBB) &&
450 "Only support paths down the dominator tree!");
451 SmallPtrSet<MachineBasicBlock *, 4> Visited;
452 SmallVector<MachineBasicBlock *, 4> Worklist;
453 // We terminate at the beginning. No need to scan it.
454 Visited.insert(BeginMBB);
455 Worklist.push_back(EndMBB);
456 do {
457 auto *MBB = Worklist.pop_back_val();
458 for (auto *PredMBB : MBB->predecessors()) {
459 if (!Visited.insert(PredMBB).second)
460 continue;
461 if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end()))
462 return true;
463 // Enqueue this block to walk its predecessors.
464 Worklist.push_back(PredMBB);
466 } while (!Worklist.empty());
467 // No clobber found along a path from the begin to end.
468 return false;
470 while (TestMBB->isLiveIn(X86::EFLAGS) && !TestMBB->pred_empty() &&
471 !HasEFLAGSClobber(TestMBB->begin(), TestPos)) {
472 // Find the nearest common dominator of the predecessors, as
473 // that will be the best candidate to hoist into.
474 MachineBasicBlock *HoistMBB =
475 std::accumulate(std::next(TestMBB->pred_begin()), TestMBB->pred_end(),
476 *TestMBB->pred_begin(),
477 [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) {
478 return MDT->findNearestCommonDominator(LHS, RHS);
481 // Now we need to scan all predecessors that may be reached along paths to
482 // the hoist block. A clobber anywhere in any of these blocks the hoist.
483 // Note that this even handles loops because we require *no* clobbers.
484 if (HasEFLAGSClobberPath(HoistMBB, TestMBB))
485 break;
487 // We also need the terminators to not sneakily clobber flags.
488 if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(),
489 HoistMBB->instr_end()))
490 break;
492 // We found a viable location, hoist our test position to it.
493 TestMBB = HoistMBB;
494 TestPos = TestMBB->getFirstTerminator()->getIterator();
495 // Clear the debug location as it would just be confusing after hoisting.
496 TestLoc = DebugLoc();
498 LLVM_DEBUG({
499 auto DefIt = llvm::find_if(
500 llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)),
501 [&](MachineInstr &MI) {
502 return MI.findRegisterDefOperand(X86::EFLAGS);
504 if (DefIt.base() != TestMBB->instr_begin()) {
505 dbgs() << " Using EFLAGS defined by: ";
506 DefIt->dump();
507 } else {
508 dbgs() << " Using live-in flags for BB:\n";
509 TestMBB->dump();
513 // While rewriting uses, we buffer jumps and rewrite them in a second pass
514 // because doing so will perturb the CFG that we are walking to find the
515 // uses in the first place.
516 SmallVector<MachineInstr *, 4> JmpIs;
518 // Gather the condition flags that have already been preserved in
519 // registers. We do this from scratch each time as we expect there to be
520 // very few of them and we expect to not revisit the same copy definition
521 // many times. If either of those change sufficiently we could build a map
522 // of these up front instead.
523 CondRegArray CondRegs = collectCondsInRegs(*TestMBB, TestPos);
525 // Collect the basic blocks we need to scan. Typically this will just be
526 // a single basic block but we may have to scan multiple blocks if the
527 // EFLAGS copy lives into successors.
528 SmallVector<MachineBasicBlock *, 2> Blocks;
529 SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks;
530 Blocks.push_back(&MBB);
532 do {
533 MachineBasicBlock &UseMBB = *Blocks.pop_back_val();
535 // Track when if/when we find a kill of the flags in this block.
536 bool FlagsKilled = false;
538 // In most cases, we walk from the beginning to the end of the block. But
539 // when the block is the same block as the copy is from, we will visit it
540 // twice. The first time we start from the copy and go to the end. The
541 // second time we start from the beginning and go to the copy. This lets
542 // us handle copies inside of cycles.
543 // FIXME: This loop is *super* confusing. This is at least in part
544 // a symptom of all of this routine needing to be refactored into
545 // documentable components. Once done, there may be a better way to write
546 // this loop.
547 for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(&UseMBB))
548 ? std::next(CopyI->getIterator())
549 : UseMBB.instr_begin(),
550 MIE = UseMBB.instr_end();
551 MII != MIE;) {
552 MachineInstr &MI = *MII++;
553 // If we are in the original copy block and encounter either the copy
554 // def or the copy itself, break so that we don't re-process any part of
555 // the block or process the instructions in the range that was copied
556 // over.
557 if (&MI == CopyI || &MI == &CopyDefI) {
558 assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) &&
559 "Should only encounter these on the second pass over the "
560 "original block.");
561 break;
564 MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS);
565 if (!FlagUse) {
566 if (MI.findRegisterDefOperand(X86::EFLAGS)) {
567 // If EFLAGS are defined, it's as-if they were killed. We can stop
568 // scanning here.
570 // NB!!! Many instructions only modify some flags. LLVM currently
571 // models this as clobbering all flags, but if that ever changes
572 // this will need to be carefully updated to handle that more
573 // complex logic.
574 FlagsKilled = true;
575 break;
577 continue;
580 LLVM_DEBUG(dbgs() << " Rewriting use: "; MI.dump());
582 // Check the kill flag before we rewrite as that may change it.
583 if (FlagUse->isKill())
584 FlagsKilled = true;
586 // Once we encounter a branch, the rest of the instructions must also be
587 // branches. We can't rewrite in place here, so we handle them below.
589 // Note that we don't have to handle tail calls here, even conditional
590 // tail calls, as those are not introduced into the X86 MI until post-RA
591 // branch folding or black placement. As a consequence, we get to deal
592 // with the simpler formulation of conditional branches followed by tail
593 // calls.
594 if (X86::getCondFromBranch(MI) != X86::COND_INVALID) {
595 auto JmpIt = MI.getIterator();
596 do {
597 JmpIs.push_back(&*JmpIt);
598 ++JmpIt;
599 } while (JmpIt != UseMBB.instr_end() &&
600 X86::getCondFromBranch(*JmpIt) !=
601 X86::COND_INVALID);
602 break;
605 // Otherwise we can just rewrite in-place.
606 if (X86::getCondFromCMov(MI) != X86::COND_INVALID) {
607 rewriteCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
608 } else if (getCondFromFCMOV(MI.getOpcode()) != X86::COND_INVALID) {
609 rewriteFCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
610 } else if (X86::getCondFromSETCC(MI) != X86::COND_INVALID) {
611 rewriteSetCC(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
612 } else if (MI.getOpcode() == TargetOpcode::COPY) {
613 rewriteCopy(MI, *FlagUse, CopyDefI);
614 } else {
615 // We assume all other instructions that use flags also def them.
616 assert(MI.findRegisterDefOperand(X86::EFLAGS) &&
617 "Expected a def of EFLAGS for this instruction!");
619 // NB!!! Several arithmetic instructions only *partially* update
620 // flags. Theoretically, we could generate MI code sequences that
621 // would rely on this fact and observe different flags independently.
622 // But currently LLVM models all of these instructions as clobbering
623 // all the flags in an undef way. We rely on that to simplify the
624 // logic.
625 FlagsKilled = true;
627 // Generically handle remaining uses as arithmetic instructions.
628 rewriteArithmetic(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
629 CondRegs);
632 // If this was the last use of the flags, we're done.
633 if (FlagsKilled)
634 break;
637 // If the flags were killed, we're done with this block.
638 if (FlagsKilled)
639 continue;
641 // Otherwise we need to scan successors for ones where the flags live-in
642 // and queue those up for processing.
643 for (MachineBasicBlock *SuccMBB : UseMBB.successors())
644 if (SuccMBB->isLiveIn(X86::EFLAGS) &&
645 VisitedBlocks.insert(SuccMBB).second) {
646 // We currently don't do any PHI insertion and so we require that the
647 // test basic block dominates all of the use basic blocks. Further, we
648 // can't have a cycle from the test block back to itself as that would
649 // create a cycle requiring a PHI to break it.
651 // We could in theory do PHI insertion here if it becomes useful by
652 // just taking undef values in along every edge that we don't trace
653 // this EFLAGS copy along. This isn't as bad as fully general PHI
654 // insertion, but still seems like a great deal of complexity.
656 // Because it is theoretically possible that some earlier MI pass or
657 // other lowering transformation could induce this to happen, we do
658 // a hard check even in non-debug builds here.
659 if (SuccMBB == TestMBB || !MDT->dominates(TestMBB, SuccMBB)) {
660 LLVM_DEBUG({
661 dbgs()
662 << "ERROR: Encountered use that is not dominated by our test "
663 "basic block! Rewriting this would require inserting PHI "
664 "nodes to track the flag state across the CFG.\n\nTest "
665 "block:\n";
666 TestMBB->dump();
667 dbgs() << "Use block:\n";
668 SuccMBB->dump();
670 report_fatal_error(
671 "Cannot lower EFLAGS copy when original copy def "
672 "does not dominate all uses.");
675 Blocks.push_back(SuccMBB);
677 // After this, EFLAGS will be recreated before each use.
678 SuccMBB->removeLiveIn(X86::EFLAGS);
680 } while (!Blocks.empty());
682 // Now rewrite the jumps that use the flags. These we handle specially
683 // because if there are multiple jumps in a single basic block we'll have
684 // to do surgery on the CFG.
685 MachineBasicBlock *LastJmpMBB = nullptr;
686 for (MachineInstr *JmpI : JmpIs) {
687 // Past the first jump within a basic block we need to split the blocks
688 // apart.
689 if (JmpI->getParent() == LastJmpMBB)
690 splitBlock(*JmpI->getParent(), *JmpI, *TII);
691 else
692 LastJmpMBB = JmpI->getParent();
694 rewriteCondJmp(*TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
697 // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
698 // the copy's def operand is itself a kill.
701 #ifndef NDEBUG
702 for (MachineBasicBlock &MBB : MF)
703 for (MachineInstr &MI : MBB)
704 if (MI.getOpcode() == TargetOpcode::COPY &&
705 (MI.getOperand(0).getReg() == X86::EFLAGS ||
706 MI.getOperand(1).getReg() == X86::EFLAGS)) {
707 LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: ";
708 MI.dump());
709 llvm_unreachable("Unlowered EFLAGS copy!");
711 #endif
713 return true;
716 /// Collect any conditions that have already been set in registers so that we
717 /// can re-use them rather than adding duplicates.
718 CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs(
719 MachineBasicBlock &MBB, MachineBasicBlock::iterator TestPos) {
720 CondRegArray CondRegs = {};
722 // Scan backwards across the range of instructions with live EFLAGS.
723 for (MachineInstr &MI :
724 llvm::reverse(llvm::make_range(MBB.begin(), TestPos))) {
725 X86::CondCode Cond = X86::getCondFromSETCC(MI);
726 if (Cond != X86::COND_INVALID && !MI.mayStore() &&
727 MI.getOperand(0).isReg() && MI.getOperand(0).getReg().isVirtual()) {
728 assert(MI.getOperand(0).isDef() &&
729 "A non-storing SETcc should always define a register!");
730 CondRegs[Cond] = MI.getOperand(0).getReg();
733 // Stop scanning when we see the first definition of the EFLAGS as prior to
734 // this we would potentially capture the wrong flag state.
735 if (MI.findRegisterDefOperand(X86::EFLAGS))
736 break;
738 return CondRegs;
741 Register X86FlagsCopyLoweringPass::promoteCondToReg(
742 MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
743 const DebugLoc &TestLoc, X86::CondCode Cond) {
744 Register Reg = MRI->createVirtualRegister(PromoteRC);
745 auto SetI = BuildMI(TestMBB, TestPos, TestLoc,
746 TII->get(X86::SETCCr), Reg).addImm(Cond);
747 (void)SetI;
748 LLVM_DEBUG(dbgs() << " save cond: "; SetI->dump());
749 ++NumSetCCsInserted;
750 return Reg;
753 std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
754 MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
755 const DebugLoc &TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
756 unsigned &CondReg = CondRegs[Cond];
757 unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
758 if (!CondReg && !InvCondReg)
759 CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
761 if (CondReg)
762 return {CondReg, false};
763 else
764 return {InvCondReg, true};
767 void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
768 MachineBasicBlock::iterator Pos,
769 const DebugLoc &Loc, unsigned Reg) {
770 auto TestI =
771 BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8rr)).addReg(Reg).addReg(Reg);
772 (void)TestI;
773 LLVM_DEBUG(dbgs() << " test cond: "; TestI->dump());
774 ++NumTestsInserted;
777 void X86FlagsCopyLoweringPass::rewriteArithmetic(
778 MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
779 const DebugLoc &TestLoc, MachineInstr &MI, MachineOperand &FlagUse,
780 CondRegArray &CondRegs) {
781 // Arithmetic is either reading CF or OF. Figure out which condition we need
782 // to preserve in a register.
783 X86::CondCode Cond = X86::COND_INVALID;
785 // The addend to use to reset CF or OF when added to the flag value.
786 int Addend = 0;
788 switch (getMnemonicFromOpcode(MI.getOpcode())) {
789 case FlagArithMnemonic::ADC:
790 case FlagArithMnemonic::RCL:
791 case FlagArithMnemonic::RCR:
792 case FlagArithMnemonic::SBB:
793 case FlagArithMnemonic::SETB:
794 Cond = X86::COND_B; // CF == 1
795 // Set up an addend that when one is added will need a carry due to not
796 // having a higher bit available.
797 Addend = 255;
798 break;
801 // Now get a register that contains the value of the flag input to the
802 // arithmetic. We require exactly this flag to simplify the arithmetic
803 // required to materialize it back into the flag.
804 unsigned &CondReg = CondRegs[Cond];
805 if (!CondReg)
806 CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
808 MachineBasicBlock &MBB = *MI.getParent();
810 // Insert an instruction that will set the flag back to the desired value.
811 Register TmpReg = MRI->createVirtualRegister(PromoteRC);
812 auto AddI =
813 BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri))
814 .addDef(TmpReg, RegState::Dead)
815 .addReg(CondReg)
816 .addImm(Addend);
817 (void)AddI;
818 LLVM_DEBUG(dbgs() << " add cond: "; AddI->dump());
819 ++NumAddsInserted;
820 FlagUse.setIsKill(true);
823 void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB,
824 MachineBasicBlock::iterator TestPos,
825 const DebugLoc &TestLoc,
826 MachineInstr &CMovI,
827 MachineOperand &FlagUse,
828 CondRegArray &CondRegs) {
829 // First get the register containing this specific condition.
830 X86::CondCode Cond = X86::getCondFromCMov(CMovI);
831 unsigned CondReg;
832 bool Inverted;
833 std::tie(CondReg, Inverted) =
834 getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
836 MachineBasicBlock &MBB = *CMovI.getParent();
838 // Insert a direct test of the saved register.
839 insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
841 // Rewrite the CMov to use the !ZF flag from the test, and then kill its use
842 // of the flags afterward.
843 CMovI.getOperand(CMovI.getDesc().getNumOperands() - 1)
844 .setImm(Inverted ? X86::COND_E : X86::COND_NE);
845 FlagUse.setIsKill(true);
846 LLVM_DEBUG(dbgs() << " fixed cmov: "; CMovI.dump());
849 void X86FlagsCopyLoweringPass::rewriteFCMov(MachineBasicBlock &TestMBB,
850 MachineBasicBlock::iterator TestPos,
851 const DebugLoc &TestLoc,
852 MachineInstr &CMovI,
853 MachineOperand &FlagUse,
854 CondRegArray &CondRegs) {
855 // First get the register containing this specific condition.
856 X86::CondCode Cond = getCondFromFCMOV(CMovI.getOpcode());
857 unsigned CondReg;
858 bool Inverted;
859 std::tie(CondReg, Inverted) =
860 getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
862 MachineBasicBlock &MBB = *CMovI.getParent();
864 // Insert a direct test of the saved register.
865 insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
867 auto getFCMOVOpcode = [](unsigned Opcode, bool Inverted) {
868 switch (Opcode) {
869 default: llvm_unreachable("Unexpected opcode!");
870 case X86::CMOVBE_Fp32: case X86::CMOVNBE_Fp32:
871 case X86::CMOVB_Fp32: case X86::CMOVNB_Fp32:
872 case X86::CMOVE_Fp32: case X86::CMOVNE_Fp32:
873 case X86::CMOVP_Fp32: case X86::CMOVNP_Fp32:
874 return Inverted ? X86::CMOVE_Fp32 : X86::CMOVNE_Fp32;
875 case X86::CMOVBE_Fp64: case X86::CMOVNBE_Fp64:
876 case X86::CMOVB_Fp64: case X86::CMOVNB_Fp64:
877 case X86::CMOVE_Fp64: case X86::CMOVNE_Fp64:
878 case X86::CMOVP_Fp64: case X86::CMOVNP_Fp64:
879 return Inverted ? X86::CMOVE_Fp64 : X86::CMOVNE_Fp64;
880 case X86::CMOVBE_Fp80: case X86::CMOVNBE_Fp80:
881 case X86::CMOVB_Fp80: case X86::CMOVNB_Fp80:
882 case X86::CMOVE_Fp80: case X86::CMOVNE_Fp80:
883 case X86::CMOVP_Fp80: case X86::CMOVNP_Fp80:
884 return Inverted ? X86::CMOVE_Fp80 : X86::CMOVNE_Fp80;
888 // Rewrite the CMov to use the !ZF flag from the test.
889 CMovI.setDesc(TII->get(getFCMOVOpcode(CMovI.getOpcode(), Inverted)));
890 FlagUse.setIsKill(true);
891 LLVM_DEBUG(dbgs() << " fixed fcmov: "; CMovI.dump());
894 void X86FlagsCopyLoweringPass::rewriteCondJmp(
895 MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
896 const DebugLoc &TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) {
897 // First get the register containing this specific condition.
898 X86::CondCode Cond = X86::getCondFromBranch(JmpI);
899 unsigned CondReg;
900 bool Inverted;
901 std::tie(CondReg, Inverted) =
902 getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
904 MachineBasicBlock &JmpMBB = *JmpI.getParent();
906 // Insert a direct test of the saved register.
907 insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg);
909 // Rewrite the jump to use the !ZF flag from the test, and kill its use of
910 // flags afterward.
911 JmpI.getOperand(1).setImm(Inverted ? X86::COND_E : X86::COND_NE);
912 JmpI.findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
913 LLVM_DEBUG(dbgs() << " fixed jCC: "; JmpI.dump());
916 void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI,
917 MachineOperand &FlagUse,
918 MachineInstr &CopyDefI) {
919 // Just replace this copy with the original copy def.
920 MRI->replaceRegWith(MI.getOperand(0).getReg(),
921 CopyDefI.getOperand(0).getReg());
922 MI.eraseFromParent();
925 void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB,
926 MachineBasicBlock::iterator TestPos,
927 const DebugLoc &TestLoc,
928 MachineInstr &SetCCI,
929 MachineOperand &FlagUse,
930 CondRegArray &CondRegs) {
931 X86::CondCode Cond = X86::getCondFromSETCC(SetCCI);
932 // Note that we can't usefully rewrite this to the inverse without complex
933 // analysis of the users of the setCC. Largely we rely on duplicates which
934 // could have been avoided already being avoided here.
935 unsigned &CondReg = CondRegs[Cond];
936 if (!CondReg)
937 CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
939 // Rewriting a register def is trivial: we just replace the register and
940 // remove the setcc.
941 if (!SetCCI.mayStore()) {
942 assert(SetCCI.getOperand(0).isReg() &&
943 "Cannot have a non-register defined operand to SETcc!");
944 Register OldReg = SetCCI.getOperand(0).getReg();
945 // Drop Kill flags on the old register before replacing. CondReg may have
946 // a longer live range.
947 MRI->clearKillFlags(OldReg);
948 MRI->replaceRegWith(OldReg, CondReg);
949 SetCCI.eraseFromParent();
950 return;
953 // Otherwise, we need to emit a store.
954 auto MIB = BuildMI(*SetCCI.getParent(), SetCCI.getIterator(),
955 SetCCI.getDebugLoc(), TII->get(X86::MOV8mr));
956 // Copy the address operands.
957 for (int i = 0; i < X86::AddrNumOperands; ++i)
958 MIB.add(SetCCI.getOperand(i));
960 MIB.addReg(CondReg);
962 MIB.setMemRefs(SetCCI.memoperands());
964 SetCCI.eraseFromParent();