[llvm] Stop including llvm/ADT/DenseMap.h (NFC)
[llvm-project.git] / llvm / lib / Target / X86 / X86MCInstLower.cpp
blobbd64729e7bddc19dda0b6f87d7e7f9c1df7dc418
1 //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains code to lower X86 MachineInstrs to their corresponding
10 // MCInst records.
12 //===----------------------------------------------------------------------===//
14 #include "MCTargetDesc/X86ATTInstPrinter.h"
15 #include "MCTargetDesc/X86BaseInfo.h"
16 #include "MCTargetDesc/X86EncodingOptimization.h"
17 #include "MCTargetDesc/X86InstComments.h"
18 #include "MCTargetDesc/X86ShuffleDecode.h"
19 #include "MCTargetDesc/X86TargetStreamer.h"
20 #include "X86AsmPrinter.h"
21 #include "X86MachineFunctionInfo.h"
22 #include "X86RegisterInfo.h"
23 #include "X86ShuffleDecodeConstantPool.h"
24 #include "X86Subtarget.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/IR/Mangler.h"
35 #include "llvm/MC/MCAsmInfo.h"
36 #include "llvm/MC/MCCodeEmitter.h"
37 #include "llvm/MC/MCContext.h"
38 #include "llvm/MC/MCExpr.h"
39 #include "llvm/MC/MCFixup.h"
40 #include "llvm/MC/MCInst.h"
41 #include "llvm/MC/MCInstBuilder.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCSectionELF.h"
44 #include "llvm/MC/MCStreamer.h"
45 #include "llvm/MC/MCSymbol.h"
46 #include "llvm/MC/MCSymbolELF.h"
47 #include "llvm/MC/TargetRegistry.h"
48 #include "llvm/Target/TargetLoweringObjectFile.h"
49 #include "llvm/Target/TargetMachine.h"
50 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
51 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
52 #include <string>
54 using namespace llvm;
56 namespace {
58 /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
59 class X86MCInstLower {
60 MCContext &Ctx;
61 const MachineFunction &MF;
62 const TargetMachine &TM;
63 const MCAsmInfo &MAI;
64 X86AsmPrinter &AsmPrinter;
66 public:
67 X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter);
69 std::optional<MCOperand> LowerMachineOperand(const MachineInstr *MI,
70 const MachineOperand &MO) const;
71 void Lower(const MachineInstr *MI, MCInst &OutMI) const;
73 MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const;
74 MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
76 private:
77 MachineModuleInfoMachO &getMachOMMI() const;
80 } // end anonymous namespace
82 /// A RAII helper which defines a region of instructions which can't have
83 /// padding added between them for correctness.
84 struct NoAutoPaddingScope {
85 MCStreamer &OS;
86 const bool OldAllowAutoPadding;
87 NoAutoPaddingScope(MCStreamer &OS)
88 : OS(OS), OldAllowAutoPadding(OS.getAllowAutoPadding()) {
89 changeAndComment(false);
91 ~NoAutoPaddingScope() { changeAndComment(OldAllowAutoPadding); }
92 void changeAndComment(bool b) {
93 if (b == OS.getAllowAutoPadding())
94 return;
95 OS.setAllowAutoPadding(b);
96 if (b)
97 OS.emitRawComment("autopadding");
98 else
99 OS.emitRawComment("noautopadding");
103 // Emit a minimal sequence of nops spanning NumBytes bytes.
104 static void emitX86Nops(MCStreamer &OS, unsigned NumBytes,
105 const X86Subtarget *Subtarget);
107 void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst,
108 const MCSubtargetInfo &STI,
109 MCCodeEmitter *CodeEmitter) {
110 if (InShadow) {
111 SmallString<256> Code;
112 SmallVector<MCFixup, 4> Fixups;
113 CodeEmitter->encodeInstruction(Inst, Code, Fixups, STI);
114 CurrentShadowSize += Code.size();
115 if (CurrentShadowSize >= RequiredShadowSize)
116 InShadow = false; // The shadow is big enough. Stop counting.
120 void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding(
121 MCStreamer &OutStreamer, const MCSubtargetInfo &STI) {
122 if (InShadow && CurrentShadowSize < RequiredShadowSize) {
123 InShadow = false;
124 emitX86Nops(OutStreamer, RequiredShadowSize - CurrentShadowSize,
125 &MF->getSubtarget<X86Subtarget>());
129 void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) {
130 OutStreamer->emitInstruction(Inst, getSubtargetInfo());
131 SMShadowTracker.count(Inst, getSubtargetInfo(), CodeEmitter.get());
134 X86MCInstLower::X86MCInstLower(const MachineFunction &mf,
135 X86AsmPrinter &asmprinter)
136 : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()),
137 AsmPrinter(asmprinter) {}
139 MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
140 return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
143 /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
144 /// operand to an MCSymbol.
145 MCSymbol *X86MCInstLower::GetSymbolFromOperand(const MachineOperand &MO) const {
146 const Triple &TT = TM.getTargetTriple();
147 if (MO.isGlobal() && TT.isOSBinFormatELF())
148 return AsmPrinter.getSymbolPreferLocal(*MO.getGlobal());
150 const DataLayout &DL = MF.getDataLayout();
151 assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) &&
152 "Isn't a symbol reference");
154 MCSymbol *Sym = nullptr;
155 SmallString<128> Name;
156 StringRef Suffix;
158 switch (MO.getTargetFlags()) {
159 case X86II::MO_DLLIMPORT:
160 // Handle dllimport linkage.
161 Name += "__imp_";
162 break;
163 case X86II::MO_COFFSTUB:
164 Name += ".refptr.";
165 break;
166 case X86II::MO_DARWIN_NONLAZY:
167 case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
168 Suffix = "$non_lazy_ptr";
169 break;
172 if (!Suffix.empty())
173 Name += DL.getPrivateGlobalPrefix();
175 if (MO.isGlobal()) {
176 const GlobalValue *GV = MO.getGlobal();
177 AsmPrinter.getNameWithPrefix(Name, GV);
178 } else if (MO.isSymbol()) {
179 Mangler::getNameWithPrefix(Name, MO.getSymbolName(), DL);
180 } else if (MO.isMBB()) {
181 assert(Suffix.empty());
182 Sym = MO.getMBB()->getSymbol();
185 Name += Suffix;
186 if (!Sym)
187 Sym = Ctx.getOrCreateSymbol(Name);
189 // If the target flags on the operand changes the name of the symbol, do that
190 // before we return the symbol.
191 switch (MO.getTargetFlags()) {
192 default:
193 break;
194 case X86II::MO_COFFSTUB: {
195 MachineModuleInfoCOFF &MMICOFF =
196 MF.getMMI().getObjFileInfo<MachineModuleInfoCOFF>();
197 MachineModuleInfoImpl::StubValueTy &StubSym = MMICOFF.getGVStubEntry(Sym);
198 if (!StubSym.getPointer()) {
199 assert(MO.isGlobal() && "Extern symbol not handled yet");
200 StubSym = MachineModuleInfoImpl::StubValueTy(
201 AsmPrinter.getSymbol(MO.getGlobal()), true);
203 break;
205 case X86II::MO_DARWIN_NONLAZY:
206 case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
207 MachineModuleInfoImpl::StubValueTy &StubSym =
208 getMachOMMI().getGVStubEntry(Sym);
209 if (!StubSym.getPointer()) {
210 assert(MO.isGlobal() && "Extern symbol not handled yet");
211 StubSym = MachineModuleInfoImpl::StubValueTy(
212 AsmPrinter.getSymbol(MO.getGlobal()),
213 !MO.getGlobal()->hasInternalLinkage());
215 break;
219 return Sym;
222 MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
223 MCSymbol *Sym) const {
224 // FIXME: We would like an efficient form for this, so we don't have to do a
225 // lot of extra uniquing.
226 const MCExpr *Expr = nullptr;
227 MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
229 switch (MO.getTargetFlags()) {
230 default:
231 llvm_unreachable("Unknown target flag on GV operand");
232 case X86II::MO_NO_FLAG: // No flag.
233 // These affect the name of the symbol, not any suffix.
234 case X86II::MO_DARWIN_NONLAZY:
235 case X86II::MO_DLLIMPORT:
236 case X86II::MO_COFFSTUB:
237 break;
239 case X86II::MO_TLVP:
240 RefKind = MCSymbolRefExpr::VK_TLVP;
241 break;
242 case X86II::MO_TLVP_PIC_BASE:
243 Expr = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
244 // Subtract the pic base.
245 Expr = MCBinaryExpr::createSub(
246 Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
247 break;
248 case X86II::MO_SECREL:
249 RefKind = MCSymbolRefExpr::VK_SECREL;
250 break;
251 case X86II::MO_TLSGD:
252 RefKind = MCSymbolRefExpr::VK_TLSGD;
253 break;
254 case X86II::MO_TLSLD:
255 RefKind = MCSymbolRefExpr::VK_TLSLD;
256 break;
257 case X86II::MO_TLSLDM:
258 RefKind = MCSymbolRefExpr::VK_TLSLDM;
259 break;
260 case X86II::MO_GOTTPOFF:
261 RefKind = MCSymbolRefExpr::VK_GOTTPOFF;
262 break;
263 case X86II::MO_INDNTPOFF:
264 RefKind = MCSymbolRefExpr::VK_INDNTPOFF;
265 break;
266 case X86II::MO_TPOFF:
267 RefKind = MCSymbolRefExpr::VK_TPOFF;
268 break;
269 case X86II::MO_DTPOFF:
270 RefKind = MCSymbolRefExpr::VK_DTPOFF;
271 break;
272 case X86II::MO_NTPOFF:
273 RefKind = MCSymbolRefExpr::VK_NTPOFF;
274 break;
275 case X86II::MO_GOTNTPOFF:
276 RefKind = MCSymbolRefExpr::VK_GOTNTPOFF;
277 break;
278 case X86II::MO_GOTPCREL:
279 RefKind = MCSymbolRefExpr::VK_GOTPCREL;
280 break;
281 case X86II::MO_GOTPCREL_NORELAX:
282 RefKind = MCSymbolRefExpr::VK_GOTPCREL_NORELAX;
283 break;
284 case X86II::MO_GOT:
285 RefKind = MCSymbolRefExpr::VK_GOT;
286 break;
287 case X86II::MO_GOTOFF:
288 RefKind = MCSymbolRefExpr::VK_GOTOFF;
289 break;
290 case X86II::MO_PLT:
291 RefKind = MCSymbolRefExpr::VK_PLT;
292 break;
293 case X86II::MO_ABS8:
294 RefKind = MCSymbolRefExpr::VK_X86_ABS8;
295 break;
296 case X86II::MO_PIC_BASE_OFFSET:
297 case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
298 Expr = MCSymbolRefExpr::create(Sym, Ctx);
299 // Subtract the pic base.
300 Expr = MCBinaryExpr::createSub(
301 Expr, MCSymbolRefExpr::create(MF.getPICBaseSymbol(), Ctx), Ctx);
302 if (MO.isJTI()) {
303 assert(MAI.doesSetDirectiveSuppressReloc());
304 // If .set directive is supported, use it to reduce the number of
305 // relocations the assembler will generate for differences between
306 // local labels. This is only safe when the symbols are in the same
307 // section so we are restricting it to jumptable references.
308 MCSymbol *Label = Ctx.createTempSymbol();
309 AsmPrinter.OutStreamer->emitAssignment(Label, Expr);
310 Expr = MCSymbolRefExpr::create(Label, Ctx);
312 break;
315 if (!Expr)
316 Expr = MCSymbolRefExpr::create(Sym, RefKind, Ctx);
318 if (!MO.isJTI() && !MO.isMBB() && MO.getOffset())
319 Expr = MCBinaryExpr::createAdd(
320 Expr, MCConstantExpr::create(MO.getOffset(), Ctx), Ctx);
321 return MCOperand::createExpr(Expr);
324 static unsigned getRetOpcode(const X86Subtarget &Subtarget) {
325 return Subtarget.is64Bit() ? X86::RET64 : X86::RET32;
328 std::optional<MCOperand>
329 X86MCInstLower::LowerMachineOperand(const MachineInstr *MI,
330 const MachineOperand &MO) const {
331 switch (MO.getType()) {
332 default:
333 MI->print(errs());
334 llvm_unreachable("unknown operand type");
335 case MachineOperand::MO_Register:
336 // Ignore all implicit register operands.
337 if (MO.isImplicit())
338 return std::nullopt;
339 return MCOperand::createReg(MO.getReg());
340 case MachineOperand::MO_Immediate:
341 return MCOperand::createImm(MO.getImm());
342 case MachineOperand::MO_MachineBasicBlock:
343 case MachineOperand::MO_GlobalAddress:
344 case MachineOperand::MO_ExternalSymbol:
345 return LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
346 case MachineOperand::MO_MCSymbol:
347 return LowerSymbolOperand(MO, MO.getMCSymbol());
348 case MachineOperand::MO_JumpTableIndex:
349 return LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
350 case MachineOperand::MO_ConstantPoolIndex:
351 return LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
352 case MachineOperand::MO_BlockAddress:
353 return LowerSymbolOperand(
354 MO, AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
355 case MachineOperand::MO_RegisterMask:
356 // Ignore call clobbers.
357 return std::nullopt;
361 // Replace TAILJMP opcodes with their equivalent opcodes that have encoding
362 // information.
363 static unsigned convertTailJumpOpcode(unsigned Opcode) {
364 switch (Opcode) {
365 case X86::TAILJMPr:
366 Opcode = X86::JMP32r;
367 break;
368 case X86::TAILJMPm:
369 Opcode = X86::JMP32m;
370 break;
371 case X86::TAILJMPr64:
372 Opcode = X86::JMP64r;
373 break;
374 case X86::TAILJMPm64:
375 Opcode = X86::JMP64m;
376 break;
377 case X86::TAILJMPr64_REX:
378 Opcode = X86::JMP64r_REX;
379 break;
380 case X86::TAILJMPm64_REX:
381 Opcode = X86::JMP64m_REX;
382 break;
383 case X86::TAILJMPd:
384 case X86::TAILJMPd64:
385 Opcode = X86::JMP_1;
386 break;
387 case X86::TAILJMPd_CC:
388 case X86::TAILJMPd64_CC:
389 Opcode = X86::JCC_1;
390 break;
393 return Opcode;
396 void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
397 OutMI.setOpcode(MI->getOpcode());
399 for (const MachineOperand &MO : MI->operands())
400 if (auto MaybeMCOp = LowerMachineOperand(MI, MO))
401 OutMI.addOperand(*MaybeMCOp);
403 bool In64BitMode = AsmPrinter.getSubtarget().is64Bit();
404 if (X86::optimizeInstFromVEX3ToVEX2(OutMI, MI->getDesc()) ||
405 X86::optimizeShiftRotateWithImmediateOne(OutMI) ||
406 X86::optimizeVPCMPWithImmediateOneOrSix(OutMI) ||
407 X86::optimizeMOVSX(OutMI) || X86::optimizeINCDEC(OutMI, In64BitMode) ||
408 X86::optimizeMOV(OutMI, In64BitMode) ||
409 X86::optimizeToFixedRegisterOrShortImmediateForm(OutMI))
410 return;
412 // Handle a few special cases to eliminate operand modifiers.
413 switch (OutMI.getOpcode()) {
414 case X86::LEA64_32r:
415 case X86::LEA64r:
416 case X86::LEA16r:
417 case X86::LEA32r:
418 // LEA should have a segment register, but it must be empty.
419 assert(OutMI.getNumOperands() == 1 + X86::AddrNumOperands &&
420 "Unexpected # of LEA operands");
421 assert(OutMI.getOperand(1 + X86::AddrSegmentReg).getReg() == 0 &&
422 "LEA has segment specified!");
423 break;
424 case X86::MULX32Hrr:
425 case X86::MULX32Hrm:
426 case X86::MULX64Hrr:
427 case X86::MULX64Hrm: {
428 // Turn into regular MULX by duplicating the destination.
429 unsigned NewOpc;
430 switch (OutMI.getOpcode()) {
431 default: llvm_unreachable("Invalid opcode");
432 case X86::MULX32Hrr: NewOpc = X86::MULX32rr; break;
433 case X86::MULX32Hrm: NewOpc = X86::MULX32rm; break;
434 case X86::MULX64Hrr: NewOpc = X86::MULX64rr; break;
435 case X86::MULX64Hrm: NewOpc = X86::MULX64rm; break;
437 OutMI.setOpcode(NewOpc);
438 // Duplicate the destination.
439 unsigned DestReg = OutMI.getOperand(0).getReg();
440 OutMI.insert(OutMI.begin(), MCOperand::createReg(DestReg));
441 break;
443 // CALL64r, CALL64pcrel32 - These instructions used to have
444 // register inputs modeled as normal uses instead of implicit uses. As such,
445 // they we used to truncate off all but the first operand (the callee). This
446 // issue seems to have been fixed at some point. This assert verifies that.
447 case X86::CALL64r:
448 case X86::CALL64pcrel32:
449 assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!");
450 break;
451 case X86::EH_RETURN:
452 case X86::EH_RETURN64: {
453 OutMI = MCInst();
454 OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
455 break;
457 case X86::CLEANUPRET: {
458 // Replace CLEANUPRET with the appropriate RET.
459 OutMI = MCInst();
460 OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
461 break;
463 case X86::CATCHRET: {
464 // Replace CATCHRET with the appropriate RET.
465 const X86Subtarget &Subtarget = AsmPrinter.getSubtarget();
466 unsigned ReturnReg = In64BitMode ? X86::RAX : X86::EAX;
467 OutMI = MCInst();
468 OutMI.setOpcode(getRetOpcode(Subtarget));
469 OutMI.addOperand(MCOperand::createReg(ReturnReg));
470 break;
472 // TAILJMPd, TAILJMPd64, TailJMPd_cc - Lower to the correct jump
473 // instruction.
474 case X86::TAILJMPr:
475 case X86::TAILJMPr64:
476 case X86::TAILJMPr64_REX:
477 case X86::TAILJMPd:
478 case X86::TAILJMPd64:
479 assert(OutMI.getNumOperands() == 1 && "Unexpected number of operands!");
480 OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
481 break;
482 case X86::TAILJMPd_CC:
483 case X86::TAILJMPd64_CC:
484 assert(OutMI.getNumOperands() == 2 && "Unexpected number of operands!");
485 OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
486 break;
487 case X86::TAILJMPm:
488 case X86::TAILJMPm64:
489 case X86::TAILJMPm64_REX:
490 assert(OutMI.getNumOperands() == X86::AddrNumOperands &&
491 "Unexpected number of operands!");
492 OutMI.setOpcode(convertTailJumpOpcode(OutMI.getOpcode()));
493 break;
494 case X86::MASKMOVDQU:
495 case X86::VMASKMOVDQU:
496 if (In64BitMode)
497 OutMI.setFlags(X86::IP_HAS_AD_SIZE);
498 break;
499 case X86::BSF16rm:
500 case X86::BSF16rr:
501 case X86::BSF32rm:
502 case X86::BSF32rr:
503 case X86::BSF64rm:
504 case X86::BSF64rr: {
505 // Add an REP prefix to BSF instructions so that new processors can
506 // recognize as TZCNT, which has better performance than BSF.
507 // BSF and TZCNT have different interpretations on ZF bit. So make sure
508 // it won't be used later.
509 const MachineOperand *FlagDef = MI->findRegisterDefOperand(X86::EFLAGS);
510 if (!MF.getFunction().hasOptSize() && FlagDef && FlagDef->isDead())
511 OutMI.setFlags(X86::IP_HAS_REPEAT);
512 break;
514 default:
515 break;
519 void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering,
520 const MachineInstr &MI) {
521 NoAutoPaddingScope NoPadScope(*OutStreamer);
522 bool Is64Bits = MI.getOpcode() != X86::TLS_addr32 &&
523 MI.getOpcode() != X86::TLS_base_addr32;
524 bool Is64BitsLP64 = MI.getOpcode() == X86::TLS_addr64 ||
525 MI.getOpcode() == X86::TLS_base_addr64;
526 MCContext &Ctx = OutStreamer->getContext();
528 MCSymbolRefExpr::VariantKind SRVK;
529 switch (MI.getOpcode()) {
530 case X86::TLS_addr32:
531 case X86::TLS_addr64:
532 case X86::TLS_addrX32:
533 SRVK = MCSymbolRefExpr::VK_TLSGD;
534 break;
535 case X86::TLS_base_addr32:
536 SRVK = MCSymbolRefExpr::VK_TLSLDM;
537 break;
538 case X86::TLS_base_addr64:
539 case X86::TLS_base_addrX32:
540 SRVK = MCSymbolRefExpr::VK_TLSLD;
541 break;
542 default:
543 llvm_unreachable("unexpected opcode");
546 const MCSymbolRefExpr *Sym = MCSymbolRefExpr::create(
547 MCInstLowering.GetSymbolFromOperand(MI.getOperand(3)), SRVK, Ctx);
549 // As of binutils 2.32, ld has a bogus TLS relaxation error when the GD/LD
550 // code sequence using R_X86_64_GOTPCREL (instead of R_X86_64_GOTPCRELX) is
551 // attempted to be relaxed to IE/LE (binutils PR24784). Work around the bug by
552 // only using GOT when GOTPCRELX is enabled.
553 // TODO Delete the workaround when GOTPCRELX becomes commonplace.
554 bool UseGot = MMI->getModule()->getRtLibUseGOT() &&
555 Ctx.getAsmInfo()->canRelaxRelocations();
557 if (Is64Bits) {
558 bool NeedsPadding = SRVK == MCSymbolRefExpr::VK_TLSGD;
559 if (NeedsPadding && Is64BitsLP64)
560 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
561 EmitAndCountInstruction(MCInstBuilder(X86::LEA64r)
562 .addReg(X86::RDI)
563 .addReg(X86::RIP)
564 .addImm(1)
565 .addReg(0)
566 .addExpr(Sym)
567 .addReg(0));
568 const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("__tls_get_addr");
569 if (NeedsPadding) {
570 if (!UseGot)
571 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
572 EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
573 EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX));
575 if (UseGot) {
576 const MCExpr *Expr = MCSymbolRefExpr::create(
577 TlsGetAddr, MCSymbolRefExpr::VK_GOTPCREL, Ctx);
578 EmitAndCountInstruction(MCInstBuilder(X86::CALL64m)
579 .addReg(X86::RIP)
580 .addImm(1)
581 .addReg(0)
582 .addExpr(Expr)
583 .addReg(0));
584 } else {
585 EmitAndCountInstruction(
586 MCInstBuilder(X86::CALL64pcrel32)
587 .addExpr(MCSymbolRefExpr::create(TlsGetAddr,
588 MCSymbolRefExpr::VK_PLT, Ctx)));
590 } else {
591 if (SRVK == MCSymbolRefExpr::VK_TLSGD && !UseGot) {
592 EmitAndCountInstruction(MCInstBuilder(X86::LEA32r)
593 .addReg(X86::EAX)
594 .addReg(0)
595 .addImm(1)
596 .addReg(X86::EBX)
597 .addExpr(Sym)
598 .addReg(0));
599 } else {
600 EmitAndCountInstruction(MCInstBuilder(X86::LEA32r)
601 .addReg(X86::EAX)
602 .addReg(X86::EBX)
603 .addImm(1)
604 .addReg(0)
605 .addExpr(Sym)
606 .addReg(0));
609 const MCSymbol *TlsGetAddr = Ctx.getOrCreateSymbol("___tls_get_addr");
610 if (UseGot) {
611 const MCExpr *Expr =
612 MCSymbolRefExpr::create(TlsGetAddr, MCSymbolRefExpr::VK_GOT, Ctx);
613 EmitAndCountInstruction(MCInstBuilder(X86::CALL32m)
614 .addReg(X86::EBX)
615 .addImm(1)
616 .addReg(0)
617 .addExpr(Expr)
618 .addReg(0));
619 } else {
620 EmitAndCountInstruction(
621 MCInstBuilder(X86::CALLpcrel32)
622 .addExpr(MCSymbolRefExpr::create(TlsGetAddr,
623 MCSymbolRefExpr::VK_PLT, Ctx)));
628 /// Emit the largest nop instruction smaller than or equal to \p NumBytes
629 /// bytes. Return the size of nop emitted.
630 static unsigned emitNop(MCStreamer &OS, unsigned NumBytes,
631 const X86Subtarget *Subtarget) {
632 // Determine the longest nop which can be efficiently decoded for the given
633 // target cpu. 15-bytes is the longest single NOP instruction, but some
634 // platforms can't decode the longest forms efficiently.
635 unsigned MaxNopLength = 1;
636 if (Subtarget->is64Bit()) {
637 // FIXME: We can use NOOPL on 32-bit targets with FeatureNOPL, but the
638 // IndexReg/BaseReg below need to be updated.
639 if (Subtarget->hasFeature(X86::TuningFast7ByteNOP))
640 MaxNopLength = 7;
641 else if (Subtarget->hasFeature(X86::TuningFast15ByteNOP))
642 MaxNopLength = 15;
643 else if (Subtarget->hasFeature(X86::TuningFast11ByteNOP))
644 MaxNopLength = 11;
645 else
646 MaxNopLength = 10;
647 } if (Subtarget->is32Bit())
648 MaxNopLength = 2;
650 // Cap a single nop emission at the profitable value for the target
651 NumBytes = std::min(NumBytes, MaxNopLength);
653 unsigned NopSize;
654 unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg;
655 IndexReg = Displacement = SegmentReg = 0;
656 BaseReg = X86::RAX;
657 ScaleVal = 1;
658 switch (NumBytes) {
659 case 0:
660 llvm_unreachable("Zero nops?");
661 break;
662 case 1:
663 NopSize = 1;
664 Opc = X86::NOOP;
665 break;
666 case 2:
667 NopSize = 2;
668 Opc = X86::XCHG16ar;
669 break;
670 case 3:
671 NopSize = 3;
672 Opc = X86::NOOPL;
673 break;
674 case 4:
675 NopSize = 4;
676 Opc = X86::NOOPL;
677 Displacement = 8;
678 break;
679 case 5:
680 NopSize = 5;
681 Opc = X86::NOOPL;
682 Displacement = 8;
683 IndexReg = X86::RAX;
684 break;
685 case 6:
686 NopSize = 6;
687 Opc = X86::NOOPW;
688 Displacement = 8;
689 IndexReg = X86::RAX;
690 break;
691 case 7:
692 NopSize = 7;
693 Opc = X86::NOOPL;
694 Displacement = 512;
695 break;
696 case 8:
697 NopSize = 8;
698 Opc = X86::NOOPL;
699 Displacement = 512;
700 IndexReg = X86::RAX;
701 break;
702 case 9:
703 NopSize = 9;
704 Opc = X86::NOOPW;
705 Displacement = 512;
706 IndexReg = X86::RAX;
707 break;
708 default:
709 NopSize = 10;
710 Opc = X86::NOOPW;
711 Displacement = 512;
712 IndexReg = X86::RAX;
713 SegmentReg = X86::CS;
714 break;
717 unsigned NumPrefixes = std::min(NumBytes - NopSize, 5U);
718 NopSize += NumPrefixes;
719 for (unsigned i = 0; i != NumPrefixes; ++i)
720 OS.emitBytes("\x66");
722 switch (Opc) {
723 default: llvm_unreachable("Unexpected opcode");
724 case X86::NOOP:
725 OS.emitInstruction(MCInstBuilder(Opc), *Subtarget);
726 break;
727 case X86::XCHG16ar:
728 OS.emitInstruction(MCInstBuilder(Opc).addReg(X86::AX).addReg(X86::AX),
729 *Subtarget);
730 break;
731 case X86::NOOPL:
732 case X86::NOOPW:
733 OS.emitInstruction(MCInstBuilder(Opc)
734 .addReg(BaseReg)
735 .addImm(ScaleVal)
736 .addReg(IndexReg)
737 .addImm(Displacement)
738 .addReg(SegmentReg),
739 *Subtarget);
740 break;
742 assert(NopSize <= NumBytes && "We overemitted?");
743 return NopSize;
746 /// Emit the optimal amount of multi-byte nops on X86.
747 static void emitX86Nops(MCStreamer &OS, unsigned NumBytes,
748 const X86Subtarget *Subtarget) {
749 unsigned NopsToEmit = NumBytes;
750 (void)NopsToEmit;
751 while (NumBytes) {
752 NumBytes -= emitNop(OS, NumBytes, Subtarget);
753 assert(NopsToEmit >= NumBytes && "Emitted more than I asked for!");
757 void X86AsmPrinter::LowerSTATEPOINT(const MachineInstr &MI,
758 X86MCInstLower &MCIL) {
759 assert(Subtarget->is64Bit() && "Statepoint currently only supports X86-64");
761 NoAutoPaddingScope NoPadScope(*OutStreamer);
763 StatepointOpers SOpers(&MI);
764 if (unsigned PatchBytes = SOpers.getNumPatchBytes()) {
765 emitX86Nops(*OutStreamer, PatchBytes, Subtarget);
766 } else {
767 // Lower call target and choose correct opcode
768 const MachineOperand &CallTarget = SOpers.getCallTarget();
769 MCOperand CallTargetMCOp;
770 unsigned CallOpcode;
771 switch (CallTarget.getType()) {
772 case MachineOperand::MO_GlobalAddress:
773 case MachineOperand::MO_ExternalSymbol:
774 CallTargetMCOp = MCIL.LowerSymbolOperand(
775 CallTarget, MCIL.GetSymbolFromOperand(CallTarget));
776 CallOpcode = X86::CALL64pcrel32;
777 // Currently, we only support relative addressing with statepoints.
778 // Otherwise, we'll need a scratch register to hold the target
779 // address. You'll fail asserts during load & relocation if this
780 // symbol is to far away. (TODO: support non-relative addressing)
781 break;
782 case MachineOperand::MO_Immediate:
783 CallTargetMCOp = MCOperand::createImm(CallTarget.getImm());
784 CallOpcode = X86::CALL64pcrel32;
785 // Currently, we only support relative addressing with statepoints.
786 // Otherwise, we'll need a scratch register to hold the target
787 // immediate. You'll fail asserts during load & relocation if this
788 // address is to far away. (TODO: support non-relative addressing)
789 break;
790 case MachineOperand::MO_Register:
791 // FIXME: Add retpoline support and remove this.
792 if (Subtarget->useIndirectThunkCalls())
793 report_fatal_error("Lowering register statepoints with thunks not "
794 "yet implemented.");
795 CallTargetMCOp = MCOperand::createReg(CallTarget.getReg());
796 CallOpcode = X86::CALL64r;
797 break;
798 default:
799 llvm_unreachable("Unsupported operand type in statepoint call target");
800 break;
803 // Emit call
804 MCInst CallInst;
805 CallInst.setOpcode(CallOpcode);
806 CallInst.addOperand(CallTargetMCOp);
807 OutStreamer->emitInstruction(CallInst, getSubtargetInfo());
810 // Record our statepoint node in the same section used by STACKMAP
811 // and PATCHPOINT
812 auto &Ctx = OutStreamer->getContext();
813 MCSymbol *MILabel = Ctx.createTempSymbol();
814 OutStreamer->emitLabel(MILabel);
815 SM.recordStatepoint(*MILabel, MI);
818 void X86AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI,
819 X86MCInstLower &MCIL) {
820 // FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>,
821 // <opcode>, <operands>
823 NoAutoPaddingScope NoPadScope(*OutStreamer);
825 Register DefRegister = FaultingMI.getOperand(0).getReg();
826 FaultMaps::FaultKind FK =
827 static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(1).getImm());
828 MCSymbol *HandlerLabel = FaultingMI.getOperand(2).getMBB()->getSymbol();
829 unsigned Opcode = FaultingMI.getOperand(3).getImm();
830 unsigned OperandsBeginIdx = 4;
832 auto &Ctx = OutStreamer->getContext();
833 MCSymbol *FaultingLabel = Ctx.createTempSymbol();
834 OutStreamer->emitLabel(FaultingLabel);
836 assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!");
837 FM.recordFaultingOp(FK, FaultingLabel, HandlerLabel);
839 MCInst MI;
840 MI.setOpcode(Opcode);
842 if (DefRegister != X86::NoRegister)
843 MI.addOperand(MCOperand::createReg(DefRegister));
845 for (const MachineOperand &MO :
846 llvm::drop_begin(FaultingMI.operands(), OperandsBeginIdx))
847 if (auto MaybeOperand = MCIL.LowerMachineOperand(&FaultingMI, MO))
848 MI.addOperand(*MaybeOperand);
850 OutStreamer->AddComment("on-fault: " + HandlerLabel->getName());
851 OutStreamer->emitInstruction(MI, getSubtargetInfo());
854 void X86AsmPrinter::LowerFENTRY_CALL(const MachineInstr &MI,
855 X86MCInstLower &MCIL) {
856 bool Is64Bits = Subtarget->is64Bit();
857 MCContext &Ctx = OutStreamer->getContext();
858 MCSymbol *fentry = Ctx.getOrCreateSymbol("__fentry__");
859 const MCSymbolRefExpr *Op =
860 MCSymbolRefExpr::create(fentry, MCSymbolRefExpr::VK_None, Ctx);
862 EmitAndCountInstruction(
863 MCInstBuilder(Is64Bits ? X86::CALL64pcrel32 : X86::CALLpcrel32)
864 .addExpr(Op));
867 void X86AsmPrinter::LowerKCFI_CHECK(const MachineInstr &MI) {
868 assert(std::next(MI.getIterator())->isCall() &&
869 "KCFI_CHECK not followed by a call instruction");
871 // Adjust the offset for patchable-function-prefix. X86InstrInfo::getNop()
872 // returns a 1-byte X86::NOOP, which means the offset is the same in
873 // bytes. This assumes that patchable-function-prefix is the same for all
874 // functions.
875 const MachineFunction &MF = *MI.getMF();
876 int64_t PrefixNops = 0;
877 (void)MF.getFunction()
878 .getFnAttribute("patchable-function-prefix")
879 .getValueAsString()
880 .getAsInteger(10, PrefixNops);
882 // KCFI allows indirect calls to any location that's preceded by a valid
883 // type identifier. To avoid encoding the full constant into an instruction,
884 // and thus emitting potential call target gadgets at each indirect call
885 // site, load a negated constant to a register and compare that to the
886 // expected value at the call target.
887 const Register AddrReg = MI.getOperand(0).getReg();
888 const uint32_t Type = MI.getOperand(1).getImm();
889 // The check is immediately before the call. If the call target is in R10,
890 // we can clobber R11 for the check instead.
891 unsigned TempReg = AddrReg == X86::R10 ? X86::R11D : X86::R10D;
892 EmitAndCountInstruction(
893 MCInstBuilder(X86::MOV32ri).addReg(TempReg).addImm(-MaskKCFIType(Type)));
894 EmitAndCountInstruction(MCInstBuilder(X86::ADD32rm)
895 .addReg(X86::NoRegister)
896 .addReg(TempReg)
897 .addReg(AddrReg)
898 .addImm(1)
899 .addReg(X86::NoRegister)
900 .addImm(-(PrefixNops + 4))
901 .addReg(X86::NoRegister));
903 MCSymbol *Pass = OutContext.createTempSymbol();
904 EmitAndCountInstruction(
905 MCInstBuilder(X86::JCC_1)
906 .addExpr(MCSymbolRefExpr::create(Pass, OutContext))
907 .addImm(X86::COND_E));
909 MCSymbol *Trap = OutContext.createTempSymbol();
910 OutStreamer->emitLabel(Trap);
911 EmitAndCountInstruction(MCInstBuilder(X86::TRAP));
912 emitKCFITrapEntry(MF, Trap);
913 OutStreamer->emitLabel(Pass);
916 void X86AsmPrinter::LowerASAN_CHECK_MEMACCESS(const MachineInstr &MI) {
917 // FIXME: Make this work on non-ELF.
918 if (!TM.getTargetTriple().isOSBinFormatELF()) {
919 report_fatal_error("llvm.asan.check.memaccess only supported on ELF");
920 return;
923 const auto &Reg = MI.getOperand(0).getReg();
924 ASanAccessInfo AccessInfo(MI.getOperand(1).getImm());
926 uint64_t ShadowBase;
927 int MappingScale;
928 bool OrShadowOffset;
929 getAddressSanitizerParams(Triple(TM.getTargetTriple()), 64,
930 AccessInfo.CompileKernel, &ShadowBase,
931 &MappingScale, &OrShadowOffset);
933 StringRef Name = AccessInfo.IsWrite ? "store" : "load";
934 StringRef Op = OrShadowOffset ? "or" : "add";
935 std::string SymName = ("__asan_check_" + Name + "_" + Op + "_" +
936 Twine(1ULL << AccessInfo.AccessSizeIndex) + "_" +
937 TM.getMCRegisterInfo()->getName(Reg.asMCReg()))
938 .str();
939 if (OrShadowOffset)
940 report_fatal_error(
941 "OrShadowOffset is not supported with optimized callbacks");
943 EmitAndCountInstruction(
944 MCInstBuilder(X86::CALL64pcrel32)
945 .addExpr(MCSymbolRefExpr::create(
946 OutContext.getOrCreateSymbol(SymName), OutContext)));
949 void X86AsmPrinter::LowerPATCHABLE_OP(const MachineInstr &MI,
950 X86MCInstLower &MCIL) {
951 // PATCHABLE_OP minsize, opcode, operands
953 NoAutoPaddingScope NoPadScope(*OutStreamer);
955 unsigned MinSize = MI.getOperand(0).getImm();
956 unsigned Opcode = MI.getOperand(1).getImm();
957 // Opcode PATCHABLE_OP is a special case: there is no instruction to wrap,
958 // simply emit a nop of size MinSize.
959 bool EmptyInst = (Opcode == TargetOpcode::PATCHABLE_OP);
961 MCInst MCI;
962 MCI.setOpcode(Opcode);
963 for (auto &MO : drop_begin(MI.operands(), 2))
964 if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
965 MCI.addOperand(*MaybeOperand);
967 SmallString<256> Code;
968 if (!EmptyInst) {
969 SmallVector<MCFixup, 4> Fixups;
970 CodeEmitter->encodeInstruction(MCI, Code, Fixups, getSubtargetInfo());
973 if (Code.size() < MinSize) {
974 if (MinSize == 2 && Subtarget->is32Bit() &&
975 Subtarget->isTargetWindowsMSVC() &&
976 (Subtarget->getCPU().empty() || Subtarget->getCPU() == "pentium3")) {
977 // For compatibility reasons, when targetting MSVC, it is important to
978 // generate a 'legacy' NOP in the form of a 8B FF MOV EDI, EDI. Some tools
979 // rely specifically on this pattern to be able to patch a function.
980 // This is only for 32-bit targets, when using /arch:IA32 or /arch:SSE.
981 OutStreamer->emitInstruction(
982 MCInstBuilder(X86::MOV32rr_REV).addReg(X86::EDI).addReg(X86::EDI),
983 *Subtarget);
984 } else if (MinSize == 2 && Opcode == X86::PUSH64r) {
985 // This is an optimization that lets us get away without emitting a nop in
986 // many cases.
988 // NB! In some cases the encoding for PUSH64r (e.g. PUSH64r %r9) takes two
989 // bytes too, so the check on MinSize is important.
990 MCI.setOpcode(X86::PUSH64rmr);
991 } else {
992 unsigned NopSize = emitNop(*OutStreamer, MinSize, Subtarget);
993 assert(NopSize == MinSize && "Could not implement MinSize!");
994 (void)NopSize;
997 if (!EmptyInst)
998 OutStreamer->emitInstruction(MCI, getSubtargetInfo());
1001 // Lower a stackmap of the form:
1002 // <id>, <shadowBytes>, ...
1003 void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) {
1004 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
1006 auto &Ctx = OutStreamer->getContext();
1007 MCSymbol *MILabel = Ctx.createTempSymbol();
1008 OutStreamer->emitLabel(MILabel);
1010 SM.recordStackMap(*MILabel, MI);
1011 unsigned NumShadowBytes = MI.getOperand(1).getImm();
1012 SMShadowTracker.reset(NumShadowBytes);
1015 // Lower a patchpoint of the form:
1016 // [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
1017 void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI,
1018 X86MCInstLower &MCIL) {
1019 assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64");
1021 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
1023 NoAutoPaddingScope NoPadScope(*OutStreamer);
1025 auto &Ctx = OutStreamer->getContext();
1026 MCSymbol *MILabel = Ctx.createTempSymbol();
1027 OutStreamer->emitLabel(MILabel);
1028 SM.recordPatchPoint(*MILabel, MI);
1030 PatchPointOpers opers(&MI);
1031 unsigned ScratchIdx = opers.getNextScratchIdx();
1032 unsigned EncodedBytes = 0;
1033 const MachineOperand &CalleeMO = opers.getCallTarget();
1035 // Check for null target. If target is non-null (i.e. is non-zero or is
1036 // symbolic) then emit a call.
1037 if (!(CalleeMO.isImm() && !CalleeMO.getImm())) {
1038 MCOperand CalleeMCOp;
1039 switch (CalleeMO.getType()) {
1040 default:
1041 /// FIXME: Add a verifier check for bad callee types.
1042 llvm_unreachable("Unrecognized callee operand type.");
1043 case MachineOperand::MO_Immediate:
1044 if (CalleeMO.getImm())
1045 CalleeMCOp = MCOperand::createImm(CalleeMO.getImm());
1046 break;
1047 case MachineOperand::MO_ExternalSymbol:
1048 case MachineOperand::MO_GlobalAddress:
1049 CalleeMCOp = MCIL.LowerSymbolOperand(CalleeMO,
1050 MCIL.GetSymbolFromOperand(CalleeMO));
1051 break;
1054 // Emit MOV to materialize the target address and the CALL to target.
1055 // This is encoded with 12-13 bytes, depending on which register is used.
1056 Register ScratchReg = MI.getOperand(ScratchIdx).getReg();
1057 if (X86II::isX86_64ExtendedReg(ScratchReg))
1058 EncodedBytes = 13;
1059 else
1060 EncodedBytes = 12;
1062 EmitAndCountInstruction(
1063 MCInstBuilder(X86::MOV64ri).addReg(ScratchReg).addOperand(CalleeMCOp));
1064 // FIXME: Add retpoline support and remove this.
1065 if (Subtarget->useIndirectThunkCalls())
1066 report_fatal_error(
1067 "Lowering patchpoint with thunks not yet implemented.");
1068 EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg));
1071 // Emit padding.
1072 unsigned NumBytes = opers.getNumPatchBytes();
1073 assert(NumBytes >= EncodedBytes &&
1074 "Patchpoint can't request size less than the length of a call.");
1076 emitX86Nops(*OutStreamer, NumBytes - EncodedBytes, Subtarget);
1079 void X86AsmPrinter::LowerPATCHABLE_EVENT_CALL(const MachineInstr &MI,
1080 X86MCInstLower &MCIL) {
1081 assert(Subtarget->is64Bit() && "XRay custom events only supports X86-64");
1083 NoAutoPaddingScope NoPadScope(*OutStreamer);
1085 // We want to emit the following pattern, which follows the x86 calling
1086 // convention to prepare for the trampoline call to be patched in.
1088 // .p2align 1, ...
1089 // .Lxray_event_sled_N:
1090 // jmp +N // jump across the instrumentation sled
1091 // ... // set up arguments in register
1092 // callq __xray_CustomEvent@plt // force dependency to symbol
1093 // ...
1094 // <jump here>
1096 // After patching, it would look something like:
1098 // nopw (2-byte nop)
1099 // ...
1100 // callq __xrayCustomEvent // already lowered
1101 // ...
1103 // ---
1104 // First we emit the label and the jump.
1105 auto CurSled = OutContext.createTempSymbol("xray_event_sled_", true);
1106 OutStreamer->AddComment("# XRay Custom Event Log");
1107 OutStreamer->emitCodeAlignment(Align(2), &getSubtargetInfo());
1108 OutStreamer->emitLabel(CurSled);
1110 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1111 // an operand (computed as an offset from the jmp instruction).
1112 // FIXME: Find another less hacky way do force the relative jump.
1113 OutStreamer->emitBinaryData("\xeb\x0f");
1115 // The default C calling convention will place two arguments into %rcx and
1116 // %rdx -- so we only work with those.
1117 const Register DestRegs[] = {X86::RDI, X86::RSI};
1118 bool UsedMask[] = {false, false};
1119 // Filled out in loop.
1120 Register SrcRegs[] = {0, 0};
1122 // Then we put the operands in the %rdi and %rsi registers. We spill the
1123 // values in the register before we clobber them, and mark them as used in
1124 // UsedMask. In case the arguments are already in the correct register, we use
1125 // emit nops appropriately sized to keep the sled the same size in every
1126 // situation.
1127 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1128 if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
1129 assert(Op->isReg() && "Only support arguments in registers");
1130 SrcRegs[I] = getX86SubSuperRegister(Op->getReg(), 64);
1131 assert(SrcRegs[I].isValid() && "Invalid operand");
1132 if (SrcRegs[I] != DestRegs[I]) {
1133 UsedMask[I] = true;
1134 EmitAndCountInstruction(
1135 MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
1136 } else {
1137 emitX86Nops(*OutStreamer, 4, Subtarget);
1141 // Now that the register values are stashed, mov arguments into place.
1142 // FIXME: This doesn't work if one of the later SrcRegs is equal to an
1143 // earlier DestReg. We will have already overwritten over the register before
1144 // we can copy from it.
1145 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1146 if (SrcRegs[I] != DestRegs[I])
1147 EmitAndCountInstruction(
1148 MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
1150 // We emit a hard dependency on the __xray_CustomEvent symbol, which is the
1151 // name of the trampoline to be implemented by the XRay runtime.
1152 auto TSym = OutContext.getOrCreateSymbol("__xray_CustomEvent");
1153 MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
1154 if (isPositionIndependent())
1155 TOp.setTargetFlags(X86II::MO_PLT);
1157 // Emit the call instruction.
1158 EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
1159 .addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
1161 // Restore caller-saved and used registers.
1162 for (unsigned I = sizeof UsedMask; I-- > 0;)
1163 if (UsedMask[I])
1164 EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
1165 else
1166 emitX86Nops(*OutStreamer, 1, Subtarget);
1168 OutStreamer->AddComment("xray custom event end.");
1170 // Record the sled version. Version 0 of this sled was spelled differently, so
1171 // we let the runtime handle the different offsets we're using. Version 2
1172 // changed the absolute address to a PC-relative address.
1173 recordSled(CurSled, MI, SledKind::CUSTOM_EVENT, 2);
1176 void X86AsmPrinter::LowerPATCHABLE_TYPED_EVENT_CALL(const MachineInstr &MI,
1177 X86MCInstLower &MCIL) {
1178 assert(Subtarget->is64Bit() && "XRay typed events only supports X86-64");
1180 NoAutoPaddingScope NoPadScope(*OutStreamer);
1182 // We want to emit the following pattern, which follows the x86 calling
1183 // convention to prepare for the trampoline call to be patched in.
1185 // .p2align 1, ...
1186 // .Lxray_event_sled_N:
1187 // jmp +N // jump across the instrumentation sled
1188 // ... // set up arguments in register
1189 // callq __xray_TypedEvent@plt // force dependency to symbol
1190 // ...
1191 // <jump here>
1193 // After patching, it would look something like:
1195 // nopw (2-byte nop)
1196 // ...
1197 // callq __xrayTypedEvent // already lowered
1198 // ...
1200 // ---
1201 // First we emit the label and the jump.
1202 auto CurSled = OutContext.createTempSymbol("xray_typed_event_sled_", true);
1203 OutStreamer->AddComment("# XRay Typed Event Log");
1204 OutStreamer->emitCodeAlignment(Align(2), &getSubtargetInfo());
1205 OutStreamer->emitLabel(CurSled);
1207 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1208 // an operand (computed as an offset from the jmp instruction).
1209 // FIXME: Find another less hacky way do force the relative jump.
1210 OutStreamer->emitBinaryData("\xeb\x14");
1212 // An x86-64 convention may place three arguments into %rcx, %rdx, and R8,
1213 // so we'll work with those. Or we may be called via SystemV, in which case
1214 // we don't have to do any translation.
1215 const Register DestRegs[] = {X86::RDI, X86::RSI, X86::RDX};
1216 bool UsedMask[] = {false, false, false};
1218 // Will fill out src regs in the loop.
1219 Register SrcRegs[] = {0, 0, 0};
1221 // Then we put the operands in the SystemV registers. We spill the values in
1222 // the registers before we clobber them, and mark them as used in UsedMask.
1223 // In case the arguments are already in the correct register, we emit nops
1224 // appropriately sized to keep the sled the same size in every situation.
1225 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1226 if (auto Op = MCIL.LowerMachineOperand(&MI, MI.getOperand(I))) {
1227 // TODO: Is register only support adequate?
1228 assert(Op->isReg() && "Only supports arguments in registers");
1229 SrcRegs[I] = getX86SubSuperRegister(Op->getReg(), 64);
1230 assert(SrcRegs[I].isValid() && "Invalid operand");
1231 if (SrcRegs[I] != DestRegs[I]) {
1232 UsedMask[I] = true;
1233 EmitAndCountInstruction(
1234 MCInstBuilder(X86::PUSH64r).addReg(DestRegs[I]));
1235 } else {
1236 emitX86Nops(*OutStreamer, 4, Subtarget);
1240 // In the above loop we only stash all of the destination registers or emit
1241 // nops if the arguments are already in the right place. Doing the actually
1242 // moving is postponed until after all the registers are stashed so nothing
1243 // is clobbers. We've already added nops to account for the size of mov and
1244 // push if the register is in the right place, so we only have to worry about
1245 // emitting movs.
1246 // FIXME: This doesn't work if one of the later SrcRegs is equal to an
1247 // earlier DestReg. We will have already overwritten over the register before
1248 // we can copy from it.
1249 for (unsigned I = 0; I < MI.getNumOperands(); ++I)
1250 if (UsedMask[I])
1251 EmitAndCountInstruction(
1252 MCInstBuilder(X86::MOV64rr).addReg(DestRegs[I]).addReg(SrcRegs[I]));
1254 // We emit a hard dependency on the __xray_TypedEvent symbol, which is the
1255 // name of the trampoline to be implemented by the XRay runtime.
1256 auto TSym = OutContext.getOrCreateSymbol("__xray_TypedEvent");
1257 MachineOperand TOp = MachineOperand::CreateMCSymbol(TSym);
1258 if (isPositionIndependent())
1259 TOp.setTargetFlags(X86II::MO_PLT);
1261 // Emit the call instruction.
1262 EmitAndCountInstruction(MCInstBuilder(X86::CALL64pcrel32)
1263 .addOperand(MCIL.LowerSymbolOperand(TOp, TSym)));
1265 // Restore caller-saved and used registers.
1266 for (unsigned I = sizeof UsedMask; I-- > 0;)
1267 if (UsedMask[I])
1268 EmitAndCountInstruction(MCInstBuilder(X86::POP64r).addReg(DestRegs[I]));
1269 else
1270 emitX86Nops(*OutStreamer, 1, Subtarget);
1272 OutStreamer->AddComment("xray typed event end.");
1274 // Record the sled version.
1275 recordSled(CurSled, MI, SledKind::TYPED_EVENT, 2);
1278 void X86AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI,
1279 X86MCInstLower &MCIL) {
1281 NoAutoPaddingScope NoPadScope(*OutStreamer);
1283 const Function &F = MF->getFunction();
1284 if (F.hasFnAttribute("patchable-function-entry")) {
1285 unsigned Num;
1286 if (F.getFnAttribute("patchable-function-entry")
1287 .getValueAsString()
1288 .getAsInteger(10, Num))
1289 return;
1290 emitX86Nops(*OutStreamer, Num, Subtarget);
1291 return;
1293 // We want to emit the following pattern:
1295 // .p2align 1, ...
1296 // .Lxray_sled_N:
1297 // jmp .tmpN
1298 // # 9 bytes worth of noops
1300 // We need the 9 bytes because at runtime, we'd be patching over the full 11
1301 // bytes with the following pattern:
1303 // mov %r10, <function id, 32-bit> // 6 bytes
1304 // call <relative offset, 32-bits> // 5 bytes
1306 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1307 OutStreamer->emitCodeAlignment(Align(2), &getSubtargetInfo());
1308 OutStreamer->emitLabel(CurSled);
1310 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1311 // an operand (computed as an offset from the jmp instruction).
1312 // FIXME: Find another less hacky way do force the relative jump.
1313 OutStreamer->emitBytes("\xeb\x09");
1314 emitX86Nops(*OutStreamer, 9, Subtarget);
1315 recordSled(CurSled, MI, SledKind::FUNCTION_ENTER, 2);
1318 void X86AsmPrinter::LowerPATCHABLE_RET(const MachineInstr &MI,
1319 X86MCInstLower &MCIL) {
1320 NoAutoPaddingScope NoPadScope(*OutStreamer);
1322 // Since PATCHABLE_RET takes the opcode of the return statement as an
1323 // argument, we use that to emit the correct form of the RET that we want.
1324 // i.e. when we see this:
1326 // PATCHABLE_RET X86::RET ...
1328 // We should emit the RET followed by sleds.
1330 // .p2align 1, ...
1331 // .Lxray_sled_N:
1332 // ret # or equivalent instruction
1333 // # 10 bytes worth of noops
1335 // This just makes sure that the alignment for the next instruction is 2.
1336 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1337 OutStreamer->emitCodeAlignment(Align(2), &getSubtargetInfo());
1338 OutStreamer->emitLabel(CurSled);
1339 unsigned OpCode = MI.getOperand(0).getImm();
1340 MCInst Ret;
1341 Ret.setOpcode(OpCode);
1342 for (auto &MO : drop_begin(MI.operands()))
1343 if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1344 Ret.addOperand(*MaybeOperand);
1345 OutStreamer->emitInstruction(Ret, getSubtargetInfo());
1346 emitX86Nops(*OutStreamer, 10, Subtarget);
1347 recordSled(CurSled, MI, SledKind::FUNCTION_EXIT, 2);
1350 void X86AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI,
1351 X86MCInstLower &MCIL) {
1352 NoAutoPaddingScope NoPadScope(*OutStreamer);
1354 // Like PATCHABLE_RET, we have the actual instruction in the operands to this
1355 // instruction so we lower that particular instruction and its operands.
1356 // Unlike PATCHABLE_RET though, we put the sled before the JMP, much like how
1357 // we do it for PATCHABLE_FUNCTION_ENTER. The sled should be very similar to
1358 // the PATCHABLE_FUNCTION_ENTER case, followed by the lowering of the actual
1359 // tail call much like how we have it in PATCHABLE_RET.
1360 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
1361 OutStreamer->emitCodeAlignment(Align(2), &getSubtargetInfo());
1362 OutStreamer->emitLabel(CurSled);
1363 auto Target = OutContext.createTempSymbol();
1365 // Use a two-byte `jmp`. This version of JMP takes an 8-bit relative offset as
1366 // an operand (computed as an offset from the jmp instruction).
1367 // FIXME: Find another less hacky way do force the relative jump.
1368 OutStreamer->emitBytes("\xeb\x09");
1369 emitX86Nops(*OutStreamer, 9, Subtarget);
1370 OutStreamer->emitLabel(Target);
1371 recordSled(CurSled, MI, SledKind::TAIL_CALL, 2);
1373 unsigned OpCode = MI.getOperand(0).getImm();
1374 OpCode = convertTailJumpOpcode(OpCode);
1375 MCInst TC;
1376 TC.setOpcode(OpCode);
1378 // Before emitting the instruction, add a comment to indicate that this is
1379 // indeed a tail call.
1380 OutStreamer->AddComment("TAILCALL");
1381 for (auto &MO : drop_begin(MI.operands()))
1382 if (auto MaybeOperand = MCIL.LowerMachineOperand(&MI, MO))
1383 TC.addOperand(*MaybeOperand);
1384 OutStreamer->emitInstruction(TC, getSubtargetInfo());
1387 // Returns instruction preceding MBBI in MachineFunction.
1388 // If MBBI is the first instruction of the first basic block, returns null.
1389 static MachineBasicBlock::const_iterator
1390 PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) {
1391 const MachineBasicBlock *MBB = MBBI->getParent();
1392 while (MBBI == MBB->begin()) {
1393 if (MBB == &MBB->getParent()->front())
1394 return MachineBasicBlock::const_iterator();
1395 MBB = MBB->getPrevNode();
1396 MBBI = MBB->end();
1398 --MBBI;
1399 return MBBI;
1402 static const Constant *getConstantFromPool(const MachineInstr &MI,
1403 const MachineOperand &Op) {
1404 if (!Op.isCPI() || Op.getOffset() != 0)
1405 return nullptr;
1407 ArrayRef<MachineConstantPoolEntry> Constants =
1408 MI.getParent()->getParent()->getConstantPool()->getConstants();
1409 const MachineConstantPoolEntry &ConstantEntry = Constants[Op.getIndex()];
1411 // Bail if this is a machine constant pool entry, we won't be able to dig out
1412 // anything useful.
1413 if (ConstantEntry.isMachineConstantPoolEntry())
1414 return nullptr;
1416 return ConstantEntry.Val.ConstVal;
1419 static std::string getShuffleComment(const MachineInstr *MI, unsigned SrcOp1Idx,
1420 unsigned SrcOp2Idx, ArrayRef<int> Mask) {
1421 std::string Comment;
1423 // Compute the name for a register. This is really goofy because we have
1424 // multiple instruction printers that could (in theory) use different
1425 // names. Fortunately most people use the ATT style (outside of Windows)
1426 // and they actually agree on register naming here. Ultimately, this is
1427 // a comment, and so its OK if it isn't perfect.
1428 auto GetRegisterName = [](MCRegister Reg) -> StringRef {
1429 return X86ATTInstPrinter::getRegisterName(Reg);
1432 const MachineOperand &DstOp = MI->getOperand(0);
1433 const MachineOperand &SrcOp1 = MI->getOperand(SrcOp1Idx);
1434 const MachineOperand &SrcOp2 = MI->getOperand(SrcOp2Idx);
1436 StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem";
1437 StringRef Src1Name =
1438 SrcOp1.isReg() ? GetRegisterName(SrcOp1.getReg()) : "mem";
1439 StringRef Src2Name =
1440 SrcOp2.isReg() ? GetRegisterName(SrcOp2.getReg()) : "mem";
1442 // One source operand, fix the mask to print all elements in one span.
1443 SmallVector<int, 8> ShuffleMask(Mask);
1444 if (Src1Name == Src2Name)
1445 for (int i = 0, e = ShuffleMask.size(); i != e; ++i)
1446 if (ShuffleMask[i] >= e)
1447 ShuffleMask[i] -= e;
1449 raw_string_ostream CS(Comment);
1450 CS << DstName;
1452 // Handle AVX512 MASK/MASXZ write mask comments.
1453 // MASK: zmmX {%kY}
1454 // MASKZ: zmmX {%kY} {z}
1455 if (SrcOp1Idx > 1) {
1456 assert((SrcOp1Idx == 2 || SrcOp1Idx == 3) && "Unexpected writemask");
1458 const MachineOperand &WriteMaskOp = MI->getOperand(SrcOp1Idx - 1);
1459 if (WriteMaskOp.isReg()) {
1460 CS << " {%" << GetRegisterName(WriteMaskOp.getReg()) << "}";
1462 if (SrcOp1Idx == 2) {
1463 CS << " {z}";
1468 CS << " = ";
1470 for (int i = 0, e = ShuffleMask.size(); i != e; ++i) {
1471 if (i != 0)
1472 CS << ",";
1473 if (ShuffleMask[i] == SM_SentinelZero) {
1474 CS << "zero";
1475 continue;
1478 // Otherwise, it must come from src1 or src2. Print the span of elements
1479 // that comes from this src.
1480 bool isSrc1 = ShuffleMask[i] < (int)e;
1481 CS << (isSrc1 ? Src1Name : Src2Name) << '[';
1483 bool IsFirst = true;
1484 while (i != e && ShuffleMask[i] != SM_SentinelZero &&
1485 (ShuffleMask[i] < (int)e) == isSrc1) {
1486 if (!IsFirst)
1487 CS << ',';
1488 else
1489 IsFirst = false;
1490 if (ShuffleMask[i] == SM_SentinelUndef)
1491 CS << "u";
1492 else
1493 CS << ShuffleMask[i] % (int)e;
1494 ++i;
1496 CS << ']';
1497 --i; // For loop increments element #.
1499 CS.flush();
1501 return Comment;
1504 static void printConstant(const APInt &Val, raw_ostream &CS) {
1505 if (Val.getBitWidth() <= 64) {
1506 CS << Val.getZExtValue();
1507 } else {
1508 // print multi-word constant as (w0,w1)
1509 CS << "(";
1510 for (int i = 0, N = Val.getNumWords(); i < N; ++i) {
1511 if (i > 0)
1512 CS << ",";
1513 CS << Val.getRawData()[i];
1515 CS << ")";
1519 static void printConstant(const APFloat &Flt, raw_ostream &CS) {
1520 SmallString<32> Str;
1521 // Force scientific notation to distinquish from integers.
1522 Flt.toString(Str, 0, 0);
1523 CS << Str;
1526 static void printConstant(const Constant *COp, unsigned BitWidth,
1527 raw_ostream &CS) {
1528 if (isa<UndefValue>(COp)) {
1529 CS << "u";
1530 } else if (auto *CI = dyn_cast<ConstantInt>(COp)) {
1531 printConstant(CI->getValue(), CS);
1532 } else if (auto *CF = dyn_cast<ConstantFP>(COp)) {
1533 printConstant(CF->getValueAPF(), CS);
1534 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(COp)) {
1535 Type *EltTy = CDS->getElementType();
1536 bool IsInteger = EltTy->isIntegerTy();
1537 bool IsFP = EltTy->isHalfTy() || EltTy->isFloatTy() || EltTy->isDoubleTy();
1538 unsigned EltBits = EltTy->getPrimitiveSizeInBits();
1539 unsigned E = std::min(BitWidth / EltBits, CDS->getNumElements());
1540 assert((BitWidth % EltBits) == 0 && "Broadcast element size mismatch");
1541 for (unsigned I = 0; I != E; ++I) {
1542 if (I != 0)
1543 CS << ",";
1544 if (IsInteger)
1545 printConstant(CDS->getElementAsAPInt(I), CS);
1546 else if (IsFP)
1547 printConstant(CDS->getElementAsAPFloat(I), CS);
1548 else
1549 CS << "?";
1551 } else {
1552 CS << "?";
1556 void X86AsmPrinter::EmitSEHInstruction(const MachineInstr *MI) {
1557 assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
1558 assert((getSubtarget().isOSWindows() || TM.getTargetTriple().isUEFI()) &&
1559 "SEH_ instruction Windows and UEFI only");
1561 // Use the .cv_fpo directives if we're emitting CodeView on 32-bit x86.
1562 if (EmitFPOData) {
1563 X86TargetStreamer *XTS =
1564 static_cast<X86TargetStreamer *>(OutStreamer->getTargetStreamer());
1565 switch (MI->getOpcode()) {
1566 case X86::SEH_PushReg:
1567 XTS->emitFPOPushReg(MI->getOperand(0).getImm());
1568 break;
1569 case X86::SEH_StackAlloc:
1570 XTS->emitFPOStackAlloc(MI->getOperand(0).getImm());
1571 break;
1572 case X86::SEH_StackAlign:
1573 XTS->emitFPOStackAlign(MI->getOperand(0).getImm());
1574 break;
1575 case X86::SEH_SetFrame:
1576 assert(MI->getOperand(1).getImm() == 0 &&
1577 ".cv_fpo_setframe takes no offset");
1578 XTS->emitFPOSetFrame(MI->getOperand(0).getImm());
1579 break;
1580 case X86::SEH_EndPrologue:
1581 XTS->emitFPOEndPrologue();
1582 break;
1583 case X86::SEH_SaveReg:
1584 case X86::SEH_SaveXMM:
1585 case X86::SEH_PushFrame:
1586 llvm_unreachable("SEH_ directive incompatible with FPO");
1587 break;
1588 default:
1589 llvm_unreachable("expected SEH_ instruction");
1591 return;
1594 // Otherwise, use the .seh_ directives for all other Windows platforms.
1595 switch (MI->getOpcode()) {
1596 case X86::SEH_PushReg:
1597 OutStreamer->emitWinCFIPushReg(MI->getOperand(0).getImm());
1598 break;
1600 case X86::SEH_SaveReg:
1601 OutStreamer->emitWinCFISaveReg(MI->getOperand(0).getImm(),
1602 MI->getOperand(1).getImm());
1603 break;
1605 case X86::SEH_SaveXMM:
1606 OutStreamer->emitWinCFISaveXMM(MI->getOperand(0).getImm(),
1607 MI->getOperand(1).getImm());
1608 break;
1610 case X86::SEH_StackAlloc:
1611 OutStreamer->emitWinCFIAllocStack(MI->getOperand(0).getImm());
1612 break;
1614 case X86::SEH_SetFrame:
1615 OutStreamer->emitWinCFISetFrame(MI->getOperand(0).getImm(),
1616 MI->getOperand(1).getImm());
1617 break;
1619 case X86::SEH_PushFrame:
1620 OutStreamer->emitWinCFIPushFrame(MI->getOperand(0).getImm());
1621 break;
1623 case X86::SEH_EndPrologue:
1624 OutStreamer->emitWinCFIEndProlog();
1625 break;
1627 default:
1628 llvm_unreachable("expected SEH_ instruction");
1632 static unsigned getRegisterWidth(const MCOperandInfo &Info) {
1633 if (Info.RegClass == X86::VR128RegClassID ||
1634 Info.RegClass == X86::VR128XRegClassID)
1635 return 128;
1636 if (Info.RegClass == X86::VR256RegClassID ||
1637 Info.RegClass == X86::VR256XRegClassID)
1638 return 256;
1639 if (Info.RegClass == X86::VR512RegClassID)
1640 return 512;
1641 llvm_unreachable("Unknown register class!");
1644 static void addConstantComments(const MachineInstr *MI,
1645 MCStreamer &OutStreamer) {
1646 switch (MI->getOpcode()) {
1647 // Lower PSHUFB and VPERMILP normally but add a comment if we can find
1648 // a constant shuffle mask. We won't be able to do this at the MC layer
1649 // because the mask isn't an immediate.
1650 case X86::PSHUFBrm:
1651 case X86::VPSHUFBrm:
1652 case X86::VPSHUFBYrm:
1653 case X86::VPSHUFBZ128rm:
1654 case X86::VPSHUFBZ128rmk:
1655 case X86::VPSHUFBZ128rmkz:
1656 case X86::VPSHUFBZ256rm:
1657 case X86::VPSHUFBZ256rmk:
1658 case X86::VPSHUFBZ256rmkz:
1659 case X86::VPSHUFBZrm:
1660 case X86::VPSHUFBZrmk:
1661 case X86::VPSHUFBZrmkz: {
1662 unsigned SrcIdx = 1;
1663 if (X86II::isKMasked(MI->getDesc().TSFlags)) {
1664 // Skip mask operand.
1665 ++SrcIdx;
1666 if (X86II::isKMergeMasked(MI->getDesc().TSFlags)) {
1667 // Skip passthru operand.
1668 ++SrcIdx;
1671 unsigned MaskIdx = SrcIdx + 1 + X86::AddrDisp;
1673 assert(MI->getNumOperands() >= (SrcIdx + 1 + X86::AddrNumOperands) &&
1674 "Unexpected number of operands!");
1676 const MachineOperand &MaskOp = MI->getOperand(MaskIdx);
1677 if (auto *C = getConstantFromPool(*MI, MaskOp)) {
1678 unsigned Width = getRegisterWidth(MI->getDesc().operands()[0]);
1679 SmallVector<int, 64> Mask;
1680 DecodePSHUFBMask(C, Width, Mask);
1681 if (!Mask.empty())
1682 OutStreamer.AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
1684 break;
1687 case X86::VPERMILPSrm:
1688 case X86::VPERMILPSYrm:
1689 case X86::VPERMILPSZ128rm:
1690 case X86::VPERMILPSZ128rmk:
1691 case X86::VPERMILPSZ128rmkz:
1692 case X86::VPERMILPSZ256rm:
1693 case X86::VPERMILPSZ256rmk:
1694 case X86::VPERMILPSZ256rmkz:
1695 case X86::VPERMILPSZrm:
1696 case X86::VPERMILPSZrmk:
1697 case X86::VPERMILPSZrmkz:
1698 case X86::VPERMILPDrm:
1699 case X86::VPERMILPDYrm:
1700 case X86::VPERMILPDZ128rm:
1701 case X86::VPERMILPDZ128rmk:
1702 case X86::VPERMILPDZ128rmkz:
1703 case X86::VPERMILPDZ256rm:
1704 case X86::VPERMILPDZ256rmk:
1705 case X86::VPERMILPDZ256rmkz:
1706 case X86::VPERMILPDZrm:
1707 case X86::VPERMILPDZrmk:
1708 case X86::VPERMILPDZrmkz: {
1709 unsigned ElSize;
1710 switch (MI->getOpcode()) {
1711 default: llvm_unreachable("Invalid opcode");
1712 case X86::VPERMILPSrm:
1713 case X86::VPERMILPSYrm:
1714 case X86::VPERMILPSZ128rm:
1715 case X86::VPERMILPSZ256rm:
1716 case X86::VPERMILPSZrm:
1717 case X86::VPERMILPSZ128rmkz:
1718 case X86::VPERMILPSZ256rmkz:
1719 case X86::VPERMILPSZrmkz:
1720 case X86::VPERMILPSZ128rmk:
1721 case X86::VPERMILPSZ256rmk:
1722 case X86::VPERMILPSZrmk:
1723 ElSize = 32;
1724 break;
1725 case X86::VPERMILPDrm:
1726 case X86::VPERMILPDYrm:
1727 case X86::VPERMILPDZ128rm:
1728 case X86::VPERMILPDZ256rm:
1729 case X86::VPERMILPDZrm:
1730 case X86::VPERMILPDZ128rmkz:
1731 case X86::VPERMILPDZ256rmkz:
1732 case X86::VPERMILPDZrmkz:
1733 case X86::VPERMILPDZ128rmk:
1734 case X86::VPERMILPDZ256rmk:
1735 case X86::VPERMILPDZrmk:
1736 ElSize = 64;
1737 break;
1740 unsigned SrcIdx = 1;
1741 if (X86II::isKMasked(MI->getDesc().TSFlags)) {
1742 // Skip mask operand.
1743 ++SrcIdx;
1744 if (X86II::isKMergeMasked(MI->getDesc().TSFlags)) {
1745 // Skip passthru operand.
1746 ++SrcIdx;
1749 unsigned MaskIdx = SrcIdx + 1 + X86::AddrDisp;
1751 assert(MI->getNumOperands() >= (SrcIdx + 1 + X86::AddrNumOperands) &&
1752 "Unexpected number of operands!");
1754 const MachineOperand &MaskOp = MI->getOperand(MaskIdx);
1755 if (auto *C = getConstantFromPool(*MI, MaskOp)) {
1756 unsigned Width = getRegisterWidth(MI->getDesc().operands()[0]);
1757 SmallVector<int, 16> Mask;
1758 DecodeVPERMILPMask(C, ElSize, Width, Mask);
1759 if (!Mask.empty())
1760 OutStreamer.AddComment(getShuffleComment(MI, SrcIdx, SrcIdx, Mask));
1762 break;
1765 case X86::VPERMIL2PDrm:
1766 case X86::VPERMIL2PSrm:
1767 case X86::VPERMIL2PDYrm:
1768 case X86::VPERMIL2PSYrm: {
1769 assert(MI->getNumOperands() >= (3 + X86::AddrNumOperands + 1) &&
1770 "Unexpected number of operands!");
1772 const MachineOperand &CtrlOp = MI->getOperand(MI->getNumOperands() - 1);
1773 if (!CtrlOp.isImm())
1774 break;
1776 unsigned ElSize;
1777 switch (MI->getOpcode()) {
1778 default: llvm_unreachable("Invalid opcode");
1779 case X86::VPERMIL2PSrm: case X86::VPERMIL2PSYrm: ElSize = 32; break;
1780 case X86::VPERMIL2PDrm: case X86::VPERMIL2PDYrm: ElSize = 64; break;
1783 const MachineOperand &MaskOp = MI->getOperand(3 + X86::AddrDisp);
1784 if (auto *C = getConstantFromPool(*MI, MaskOp)) {
1785 unsigned Width = getRegisterWidth(MI->getDesc().operands()[0]);
1786 SmallVector<int, 16> Mask;
1787 DecodeVPERMIL2PMask(C, (unsigned)CtrlOp.getImm(), ElSize, Width, Mask);
1788 if (!Mask.empty())
1789 OutStreamer.AddComment(getShuffleComment(MI, 1, 2, Mask));
1791 break;
1794 case X86::VPPERMrrm: {
1795 assert(MI->getNumOperands() >= (3 + X86::AddrNumOperands) &&
1796 "Unexpected number of operands!");
1798 const MachineOperand &MaskOp = MI->getOperand(3 + X86::AddrDisp);
1799 if (auto *C = getConstantFromPool(*MI, MaskOp)) {
1800 unsigned Width = getRegisterWidth(MI->getDesc().operands()[0]);
1801 SmallVector<int, 16> Mask;
1802 DecodeVPPERMMask(C, Width, Mask);
1803 if (!Mask.empty())
1804 OutStreamer.AddComment(getShuffleComment(MI, 1, 2, Mask));
1806 break;
1809 case X86::MMX_MOVQ64rm: {
1810 assert(MI->getNumOperands() == (1 + X86::AddrNumOperands) &&
1811 "Unexpected number of operands!");
1812 if (auto *C = getConstantFromPool(*MI, MI->getOperand(1 + X86::AddrDisp))) {
1813 std::string Comment;
1814 raw_string_ostream CS(Comment);
1815 const MachineOperand &DstOp = MI->getOperand(0);
1816 CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
1817 if (auto *CF = dyn_cast<ConstantFP>(C)) {
1818 CS << "0x" << toString(CF->getValueAPF().bitcastToAPInt(), 16, false);
1819 OutStreamer.AddComment(CS.str());
1822 break;
1825 #define MOV_CASE(Prefix, Suffix) \
1826 case X86::Prefix##MOVAPD##Suffix##rm: \
1827 case X86::Prefix##MOVAPS##Suffix##rm: \
1828 case X86::Prefix##MOVUPD##Suffix##rm: \
1829 case X86::Prefix##MOVUPS##Suffix##rm: \
1830 case X86::Prefix##MOVDQA##Suffix##rm: \
1831 case X86::Prefix##MOVDQU##Suffix##rm:
1833 #define MOV_AVX512_CASE(Suffix) \
1834 case X86::VMOVDQA64##Suffix##rm: \
1835 case X86::VMOVDQA32##Suffix##rm: \
1836 case X86::VMOVDQU64##Suffix##rm: \
1837 case X86::VMOVDQU32##Suffix##rm: \
1838 case X86::VMOVDQU16##Suffix##rm: \
1839 case X86::VMOVDQU8##Suffix##rm: \
1840 case X86::VMOVAPS##Suffix##rm: \
1841 case X86::VMOVAPD##Suffix##rm: \
1842 case X86::VMOVUPS##Suffix##rm: \
1843 case X86::VMOVUPD##Suffix##rm:
1845 #define CASE_ALL_MOV_RM() \
1846 MOV_CASE(, ) /* SSE */ \
1847 MOV_CASE(V, ) /* AVX-128 */ \
1848 MOV_CASE(V, Y) /* AVX-256 */ \
1849 MOV_AVX512_CASE(Z) \
1850 MOV_AVX512_CASE(Z256) \
1851 MOV_AVX512_CASE(Z128)
1853 // For loads from a constant pool to a vector register, print the constant
1854 // loaded.
1855 CASE_ALL_MOV_RM()
1856 case X86::VBROADCASTF128:
1857 case X86::VBROADCASTI128:
1858 case X86::VBROADCASTF32X4Z256rm:
1859 case X86::VBROADCASTF32X4rm:
1860 case X86::VBROADCASTF32X8rm:
1861 case X86::VBROADCASTF64X2Z128rm:
1862 case X86::VBROADCASTF64X2rm:
1863 case X86::VBROADCASTF64X4rm:
1864 case X86::VBROADCASTI32X4Z256rm:
1865 case X86::VBROADCASTI32X4rm:
1866 case X86::VBROADCASTI32X8rm:
1867 case X86::VBROADCASTI64X2Z128rm:
1868 case X86::VBROADCASTI64X2rm:
1869 case X86::VBROADCASTI64X4rm:
1870 assert(MI->getNumOperands() >= (1 + X86::AddrNumOperands) &&
1871 "Unexpected number of operands!");
1872 if (auto *C = getConstantFromPool(*MI, MI->getOperand(1 + X86::AddrDisp))) {
1873 int NumLanes = 1;
1874 // Override NumLanes for the broadcast instructions.
1875 switch (MI->getOpcode()) {
1876 case X86::VBROADCASTF128: NumLanes = 2; break;
1877 case X86::VBROADCASTI128: NumLanes = 2; break;
1878 case X86::VBROADCASTF32X4Z256rm: NumLanes = 2; break;
1879 case X86::VBROADCASTF32X4rm: NumLanes = 4; break;
1880 case X86::VBROADCASTF32X8rm: NumLanes = 2; break;
1881 case X86::VBROADCASTF64X2Z128rm: NumLanes = 2; break;
1882 case X86::VBROADCASTF64X2rm: NumLanes = 4; break;
1883 case X86::VBROADCASTF64X4rm: NumLanes = 2; break;
1884 case X86::VBROADCASTI32X4Z256rm: NumLanes = 2; break;
1885 case X86::VBROADCASTI32X4rm: NumLanes = 4; break;
1886 case X86::VBROADCASTI32X8rm: NumLanes = 2; break;
1887 case X86::VBROADCASTI64X2Z128rm: NumLanes = 2; break;
1888 case X86::VBROADCASTI64X2rm: NumLanes = 4; break;
1889 case X86::VBROADCASTI64X4rm: NumLanes = 2; break;
1892 std::string Comment;
1893 raw_string_ostream CS(Comment);
1894 const MachineOperand &DstOp = MI->getOperand(0);
1895 CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
1896 if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
1897 CS << "[";
1898 for (int l = 0; l != NumLanes; ++l) {
1899 for (int i = 0, NumElements = CDS->getNumElements(); i < NumElements;
1900 ++i) {
1901 if (i != 0 || l != 0)
1902 CS << ",";
1903 if (CDS->getElementType()->isIntegerTy())
1904 printConstant(CDS->getElementAsAPInt(i), CS);
1905 else if (CDS->getElementType()->isHalfTy() ||
1906 CDS->getElementType()->isFloatTy() ||
1907 CDS->getElementType()->isDoubleTy())
1908 printConstant(CDS->getElementAsAPFloat(i), CS);
1909 else
1910 CS << "?";
1913 CS << "]";
1914 OutStreamer.AddComment(CS.str());
1915 } else if (auto *CV = dyn_cast<ConstantVector>(C)) {
1916 CS << "<";
1917 for (int l = 0; l != NumLanes; ++l) {
1918 for (int i = 0, NumOperands = CV->getNumOperands(); i < NumOperands;
1919 ++i) {
1920 if (i != 0 || l != 0)
1921 CS << ",";
1922 printConstant(CV->getOperand(i),
1923 CV->getType()->getPrimitiveSizeInBits(), CS);
1926 CS << ">";
1927 OutStreamer.AddComment(CS.str());
1930 break;
1932 case X86::MOVDDUPrm:
1933 case X86::VMOVDDUPrm:
1934 case X86::VMOVDDUPZ128rm:
1935 case X86::VBROADCASTSSrm:
1936 case X86::VBROADCASTSSYrm:
1937 case X86::VBROADCASTSSZ128rm:
1938 case X86::VBROADCASTSSZ256rm:
1939 case X86::VBROADCASTSSZrm:
1940 case X86::VBROADCASTSDYrm:
1941 case X86::VBROADCASTSDZ256rm:
1942 case X86::VBROADCASTSDZrm:
1943 case X86::VPBROADCASTBrm:
1944 case X86::VPBROADCASTBYrm:
1945 case X86::VPBROADCASTBZ128rm:
1946 case X86::VPBROADCASTBZ256rm:
1947 case X86::VPBROADCASTBZrm:
1948 case X86::VPBROADCASTDrm:
1949 case X86::VPBROADCASTDYrm:
1950 case X86::VPBROADCASTDZ128rm:
1951 case X86::VPBROADCASTDZ256rm:
1952 case X86::VPBROADCASTDZrm:
1953 case X86::VPBROADCASTQrm:
1954 case X86::VPBROADCASTQYrm:
1955 case X86::VPBROADCASTQZ128rm:
1956 case X86::VPBROADCASTQZ256rm:
1957 case X86::VPBROADCASTQZrm:
1958 case X86::VPBROADCASTWrm:
1959 case X86::VPBROADCASTWYrm:
1960 case X86::VPBROADCASTWZ128rm:
1961 case X86::VPBROADCASTWZ256rm:
1962 case X86::VPBROADCASTWZrm:
1963 assert(MI->getNumOperands() >= (1 + X86::AddrNumOperands) &&
1964 "Unexpected number of operands!");
1965 if (auto *C = getConstantFromPool(*MI, MI->getOperand(1 + X86::AddrDisp))) {
1966 int NumElts, EltBits;
1967 switch (MI->getOpcode()) {
1968 default: llvm_unreachable("Invalid opcode");
1969 case X86::MOVDDUPrm: NumElts = 2; EltBits = 64; break;
1970 case X86::VMOVDDUPrm: NumElts = 2; EltBits = 64; break;
1971 case X86::VMOVDDUPZ128rm: NumElts = 2; EltBits = 64; break;
1972 case X86::VBROADCASTSSrm: NumElts = 4; EltBits = 32; break;
1973 case X86::VBROADCASTSSYrm: NumElts = 8; EltBits = 32; break;
1974 case X86::VBROADCASTSSZ128rm: NumElts = 4; EltBits = 32; break;
1975 case X86::VBROADCASTSSZ256rm: NumElts = 8; EltBits = 32; break;
1976 case X86::VBROADCASTSSZrm: NumElts = 16; EltBits = 32; break;
1977 case X86::VBROADCASTSDYrm: NumElts = 4; EltBits = 64; break;
1978 case X86::VBROADCASTSDZ256rm: NumElts = 4; EltBits = 64; break;
1979 case X86::VBROADCASTSDZrm: NumElts = 8; EltBits = 64; break;
1980 case X86::VPBROADCASTBrm: NumElts = 16; EltBits = 8; break;
1981 case X86::VPBROADCASTBYrm: NumElts = 32; EltBits = 8; break;
1982 case X86::VPBROADCASTBZ128rm: NumElts = 16; EltBits = 8; break;
1983 case X86::VPBROADCASTBZ256rm: NumElts = 32; EltBits = 8; break;
1984 case X86::VPBROADCASTBZrm: NumElts = 64; EltBits = 8; break;
1985 case X86::VPBROADCASTDrm: NumElts = 4; EltBits = 32; break;
1986 case X86::VPBROADCASTDYrm: NumElts = 8; EltBits = 32; break;
1987 case X86::VPBROADCASTDZ128rm: NumElts = 4; EltBits = 32; break;
1988 case X86::VPBROADCASTDZ256rm: NumElts = 8; EltBits = 32; break;
1989 case X86::VPBROADCASTDZrm: NumElts = 16; EltBits = 32; break;
1990 case X86::VPBROADCASTQrm: NumElts = 2; EltBits = 64; break;
1991 case X86::VPBROADCASTQYrm: NumElts = 4; EltBits = 64; break;
1992 case X86::VPBROADCASTQZ128rm: NumElts = 2; EltBits = 64; break;
1993 case X86::VPBROADCASTQZ256rm: NumElts = 4; EltBits = 64; break;
1994 case X86::VPBROADCASTQZrm: NumElts = 8; EltBits = 64; break;
1995 case X86::VPBROADCASTWrm: NumElts = 8; EltBits = 16; break;
1996 case X86::VPBROADCASTWYrm: NumElts = 16; EltBits = 16; break;
1997 case X86::VPBROADCASTWZ128rm: NumElts = 8; EltBits = 16; break;
1998 case X86::VPBROADCASTWZ256rm: NumElts = 16; EltBits = 16; break;
1999 case X86::VPBROADCASTWZrm: NumElts = 32; EltBits = 16; break;
2002 std::string Comment;
2003 raw_string_ostream CS(Comment);
2004 const MachineOperand &DstOp = MI->getOperand(0);
2005 CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
2006 CS << "[";
2007 for (int i = 0; i != NumElts; ++i) {
2008 if (i != 0)
2009 CS << ",";
2010 printConstant(C, EltBits, CS);
2012 CS << "]";
2013 OutStreamer.AddComment(CS.str());
2018 void X86AsmPrinter::emitInstruction(const MachineInstr *MI) {
2019 // FIXME: Enable feature predicate checks once all the test pass.
2020 // X86_MC::verifyInstructionPredicates(MI->getOpcode(),
2021 // Subtarget->getFeatureBits());
2023 X86MCInstLower MCInstLowering(*MF, *this);
2024 const X86RegisterInfo *RI =
2025 MF->getSubtarget<X86Subtarget>().getRegisterInfo();
2027 if (MI->getOpcode() == X86::OR64rm) {
2028 for (auto &Opd : MI->operands()) {
2029 if (Opd.isSymbol() && StringRef(Opd.getSymbolName()) ==
2030 "swift_async_extendedFramePointerFlags") {
2031 ShouldEmitWeakSwiftAsyncExtendedFramePointerFlags = true;
2036 // Add a comment about EVEX-2-VEX compression for AVX-512 instrs that
2037 // are compressed from EVEX encoding to VEX encoding.
2038 if (TM.Options.MCOptions.ShowMCEncoding) {
2039 if (MI->getAsmPrinterFlags() & X86::AC_EVEX_2_VEX)
2040 OutStreamer->AddComment("EVEX TO VEX Compression ", false);
2043 // Add comments for values loaded from constant pool.
2044 if (OutStreamer->isVerboseAsm())
2045 addConstantComments(MI, *OutStreamer);
2047 switch (MI->getOpcode()) {
2048 case TargetOpcode::DBG_VALUE:
2049 llvm_unreachable("Should be handled target independently");
2051 case X86::EH_RETURN:
2052 case X86::EH_RETURN64: {
2053 // Lower these as normal, but add some comments.
2054 Register Reg = MI->getOperand(0).getReg();
2055 OutStreamer->AddComment(StringRef("eh_return, addr: %") +
2056 X86ATTInstPrinter::getRegisterName(Reg));
2057 break;
2059 case X86::CLEANUPRET: {
2060 // Lower these as normal, but add some comments.
2061 OutStreamer->AddComment("CLEANUPRET");
2062 break;
2065 case X86::CATCHRET: {
2066 // Lower these as normal, but add some comments.
2067 OutStreamer->AddComment("CATCHRET");
2068 break;
2071 case X86::ENDBR32:
2072 case X86::ENDBR64: {
2073 // CurrentPatchableFunctionEntrySym can be CurrentFnBegin only for
2074 // -fpatchable-function-entry=N,0. The entry MBB is guaranteed to be
2075 // non-empty. If MI is the initial ENDBR, place the
2076 // __patchable_function_entries label after ENDBR.
2077 if (CurrentPatchableFunctionEntrySym &&
2078 CurrentPatchableFunctionEntrySym == CurrentFnBegin &&
2079 MI == &MF->front().front()) {
2080 MCInst Inst;
2081 MCInstLowering.Lower(MI, Inst);
2082 EmitAndCountInstruction(Inst);
2083 CurrentPatchableFunctionEntrySym = createTempSymbol("patch");
2084 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
2085 return;
2087 break;
2090 case X86::TAILJMPd64:
2091 if (IndCSPrefix && MI->hasRegisterImplicitUseOperand(X86::R11))
2092 EmitAndCountInstruction(MCInstBuilder(X86::CS_PREFIX));
2093 [[fallthrough]];
2094 case X86::TAILJMPr:
2095 case X86::TAILJMPm:
2096 case X86::TAILJMPd:
2097 case X86::TAILJMPd_CC:
2098 case X86::TAILJMPr64:
2099 case X86::TAILJMPm64:
2100 case X86::TAILJMPd64_CC:
2101 case X86::TAILJMPr64_REX:
2102 case X86::TAILJMPm64_REX:
2103 // Lower these as normal, but add some comments.
2104 OutStreamer->AddComment("TAILCALL");
2105 break;
2107 case X86::TLS_addr32:
2108 case X86::TLS_addr64:
2109 case X86::TLS_addrX32:
2110 case X86::TLS_base_addr32:
2111 case X86::TLS_base_addr64:
2112 case X86::TLS_base_addrX32:
2113 return LowerTlsAddr(MCInstLowering, *MI);
2115 case X86::MOVPC32r: {
2116 // This is a pseudo op for a two instruction sequence with a label, which
2117 // looks like:
2118 // call "L1$pb"
2119 // "L1$pb":
2120 // popl %esi
2122 // Emit the call.
2123 MCSymbol *PICBase = MF->getPICBaseSymbol();
2124 // FIXME: We would like an efficient form for this, so we don't have to do a
2125 // lot of extra uniquing.
2126 EmitAndCountInstruction(
2127 MCInstBuilder(X86::CALLpcrel32)
2128 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
2130 const X86FrameLowering *FrameLowering =
2131 MF->getSubtarget<X86Subtarget>().getFrameLowering();
2132 bool hasFP = FrameLowering->hasFP(*MF);
2134 // TODO: This is needed only if we require precise CFA.
2135 bool HasActiveDwarfFrame = OutStreamer->getNumFrameInfos() &&
2136 !OutStreamer->getDwarfFrameInfos().back().End;
2138 int stackGrowth = -RI->getSlotSize();
2140 if (HasActiveDwarfFrame && !hasFP) {
2141 OutStreamer->emitCFIAdjustCfaOffset(-stackGrowth);
2142 MF->getInfo<X86MachineFunctionInfo>()->setHasCFIAdjustCfa(true);
2145 // Emit the label.
2146 OutStreamer->emitLabel(PICBase);
2148 // popl $reg
2149 EmitAndCountInstruction(
2150 MCInstBuilder(X86::POP32r).addReg(MI->getOperand(0).getReg()));
2152 if (HasActiveDwarfFrame && !hasFP) {
2153 OutStreamer->emitCFIAdjustCfaOffset(stackGrowth);
2155 return;
2158 case X86::ADD32ri: {
2159 // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
2160 if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
2161 break;
2163 // Okay, we have something like:
2164 // EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
2166 // For this, we want to print something like:
2167 // MYGLOBAL + (. - PICBASE)
2168 // However, we can't generate a ".", so just emit a new label here and refer
2169 // to it.
2170 MCSymbol *DotSym = OutContext.createTempSymbol();
2171 OutStreamer->emitLabel(DotSym);
2173 // Now that we have emitted the label, lower the complex operand expression.
2174 MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
2176 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
2177 const MCExpr *PICBase =
2178 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
2179 DotExpr = MCBinaryExpr::createSub(DotExpr, PICBase, OutContext);
2181 DotExpr = MCBinaryExpr::createAdd(
2182 MCSymbolRefExpr::create(OpSym, OutContext), DotExpr, OutContext);
2184 EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri)
2185 .addReg(MI->getOperand(0).getReg())
2186 .addReg(MI->getOperand(1).getReg())
2187 .addExpr(DotExpr));
2188 return;
2190 case TargetOpcode::STATEPOINT:
2191 return LowerSTATEPOINT(*MI, MCInstLowering);
2193 case TargetOpcode::FAULTING_OP:
2194 return LowerFAULTING_OP(*MI, MCInstLowering);
2196 case TargetOpcode::FENTRY_CALL:
2197 return LowerFENTRY_CALL(*MI, MCInstLowering);
2199 case TargetOpcode::PATCHABLE_OP:
2200 return LowerPATCHABLE_OP(*MI, MCInstLowering);
2202 case TargetOpcode::STACKMAP:
2203 return LowerSTACKMAP(*MI);
2205 case TargetOpcode::PATCHPOINT:
2206 return LowerPATCHPOINT(*MI, MCInstLowering);
2208 case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
2209 return LowerPATCHABLE_FUNCTION_ENTER(*MI, MCInstLowering);
2211 case TargetOpcode::PATCHABLE_RET:
2212 return LowerPATCHABLE_RET(*MI, MCInstLowering);
2214 case TargetOpcode::PATCHABLE_TAIL_CALL:
2215 return LowerPATCHABLE_TAIL_CALL(*MI, MCInstLowering);
2217 case TargetOpcode::PATCHABLE_EVENT_CALL:
2218 return LowerPATCHABLE_EVENT_CALL(*MI, MCInstLowering);
2220 case TargetOpcode::PATCHABLE_TYPED_EVENT_CALL:
2221 return LowerPATCHABLE_TYPED_EVENT_CALL(*MI, MCInstLowering);
2223 case X86::MORESTACK_RET:
2224 EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
2225 return;
2227 case X86::KCFI_CHECK:
2228 return LowerKCFI_CHECK(*MI);
2230 case X86::ASAN_CHECK_MEMACCESS:
2231 return LowerASAN_CHECK_MEMACCESS(*MI);
2233 case X86::MORESTACK_RET_RESTORE_R10:
2234 // Return, then restore R10.
2235 EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
2236 EmitAndCountInstruction(
2237 MCInstBuilder(X86::MOV64rr).addReg(X86::R10).addReg(X86::RAX));
2238 return;
2240 case X86::SEH_PushReg:
2241 case X86::SEH_SaveReg:
2242 case X86::SEH_SaveXMM:
2243 case X86::SEH_StackAlloc:
2244 case X86::SEH_StackAlign:
2245 case X86::SEH_SetFrame:
2246 case X86::SEH_PushFrame:
2247 case X86::SEH_EndPrologue:
2248 EmitSEHInstruction(MI);
2249 return;
2251 case X86::SEH_Epilogue: {
2252 assert(MF->hasWinCFI() && "SEH_ instruction in function without WinCFI?");
2253 MachineBasicBlock::const_iterator MBBI(MI);
2254 // Check if preceded by a call and emit nop if so.
2255 for (MBBI = PrevCrossBBInst(MBBI);
2256 MBBI != MachineBasicBlock::const_iterator();
2257 MBBI = PrevCrossBBInst(MBBI)) {
2258 // Pseudo instructions that aren't a call are assumed to not emit any
2259 // code. If they do, we worst case generate unnecessary noops after a
2260 // call.
2261 if (MBBI->isCall() || !MBBI->isPseudo()) {
2262 if (MBBI->isCall())
2263 EmitAndCountInstruction(MCInstBuilder(X86::NOOP));
2264 break;
2267 return;
2269 case X86::UBSAN_UD1:
2270 EmitAndCountInstruction(MCInstBuilder(X86::UD1Lm)
2271 .addReg(X86::EAX)
2272 .addReg(X86::EAX)
2273 .addImm(1)
2274 .addReg(X86::NoRegister)
2275 .addImm(MI->getOperand(0).getImm())
2276 .addReg(X86::NoRegister));
2277 return;
2278 case X86::CALL64pcrel32:
2279 if (IndCSPrefix && MI->hasRegisterImplicitUseOperand(X86::R11))
2280 EmitAndCountInstruction(MCInstBuilder(X86::CS_PREFIX));
2281 break;
2284 MCInst TmpInst;
2285 MCInstLowering.Lower(MI, TmpInst);
2287 // Stackmap shadows cannot include branch targets, so we can count the bytes
2288 // in a call towards the shadow, but must ensure that the no thread returns
2289 // in to the stackmap shadow. The only way to achieve this is if the call
2290 // is at the end of the shadow.
2291 if (MI->isCall()) {
2292 // Count then size of the call towards the shadow
2293 SMShadowTracker.count(TmpInst, getSubtargetInfo(), CodeEmitter.get());
2294 // Then flush the shadow so that we fill with nops before the call, not
2295 // after it.
2296 SMShadowTracker.emitShadowPadding(*OutStreamer, getSubtargetInfo());
2297 // Then emit the call
2298 OutStreamer->emitInstruction(TmpInst, getSubtargetInfo());
2299 return;
2302 EmitAndCountInstruction(TmpInst);