[NFC][Coroutines] Use structured binding with llvm::enumerate in CoroSplit (#116879)
[llvm-project.git] / bolt / unittests / Core / BinaryContext.cpp
blob05b898d34af56c1cb00f36a9a7bfefd1adf01923
1 //===- bolt/unittest/Core/BinaryContext.cpp -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "bolt/Core/BinaryContext.h"
10 #include "llvm/BinaryFormat/ELF.h"
11 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
12 #include "llvm/Support/TargetSelect.h"
13 #include "gtest/gtest.h"
15 using namespace llvm;
16 using namespace llvm::object;
17 using namespace llvm::ELF;
18 using namespace bolt;
20 namespace {
21 struct BinaryContextTester : public testing::TestWithParam<Triple::ArchType> {
22 void SetUp() override {
23 initalizeLLVM();
24 prepareElf();
25 initializeBOLT();
28 protected:
29 void initalizeLLVM() {
30 llvm::InitializeAllTargetInfos();
31 llvm::InitializeAllTargetMCs();
32 llvm::InitializeAllAsmParsers();
33 llvm::InitializeAllDisassemblers();
34 llvm::InitializeAllTargets();
35 llvm::InitializeAllAsmPrinters();
38 void prepareElf() {
39 memcpy(ElfBuf, "\177ELF", 4);
40 ELF64LE::Ehdr *EHdr = reinterpret_cast<typename ELF64LE::Ehdr *>(ElfBuf);
41 EHdr->e_ident[llvm::ELF::EI_CLASS] = llvm::ELF::ELFCLASS64;
42 EHdr->e_ident[llvm::ELF::EI_DATA] = llvm::ELF::ELFDATA2LSB;
43 EHdr->e_machine = GetParam() == Triple::aarch64 ? EM_AARCH64 : EM_X86_64;
44 MemoryBufferRef Source(StringRef(ElfBuf, sizeof(ElfBuf)), "ELF");
45 ObjFile = cantFail(ObjectFile::createObjectFile(Source));
48 void initializeBOLT() {
49 Relocation::Arch = ObjFile->makeTriple().getArch();
50 BC = cantFail(BinaryContext::createBinaryContext(
51 ObjFile->makeTriple(), ObjFile->getFileName(), nullptr, true,
52 DWARFContext::create(*ObjFile.get()), {llvm::outs(), llvm::errs()}));
53 ASSERT_FALSE(!BC);
56 char ElfBuf[sizeof(typename ELF64LE::Ehdr)] = {};
57 std::unique_ptr<ObjectFile> ObjFile;
58 std::unique_ptr<BinaryContext> BC;
60 } // namespace
62 #ifdef X86_AVAILABLE
64 INSTANTIATE_TEST_SUITE_P(X86, BinaryContextTester,
65 ::testing::Values(Triple::x86_64));
67 #endif
69 #ifdef AARCH64_AVAILABLE
71 INSTANTIATE_TEST_SUITE_P(AArch64, BinaryContextTester,
72 ::testing::Values(Triple::aarch64));
74 TEST_P(BinaryContextTester, FlushPendingRelocCALL26) {
75 if (GetParam() != Triple::aarch64)
76 GTEST_SKIP();
78 // This test checks that encodeValueAArch64 used by flushPendingRelocations
79 // returns correctly encoded values for CALL26 relocation for both backward
80 // and forward branches.
82 // The offsets layout is:
83 // 4: func1
84 // 8: bl func1
85 // 12: bl func2
86 // 16: func2
88 constexpr size_t DataSize = 20;
89 uint8_t *Data = new uint8_t[DataSize];
90 BinarySection &BS = BC->registerOrUpdateSection(
91 ".text", ELF::SHT_PROGBITS, ELF::SHF_EXECINSTR | ELF::SHF_ALLOC, Data,
92 DataSize, 4);
93 MCSymbol *RelSymbol1 = BC->getOrCreateGlobalSymbol(4, "Func1");
94 ASSERT_TRUE(RelSymbol1);
95 BS.addRelocation(8, RelSymbol1, ELF::R_AARCH64_CALL26, 0, 0, true);
96 MCSymbol *RelSymbol2 = BC->getOrCreateGlobalSymbol(16, "Func2");
97 ASSERT_TRUE(RelSymbol2);
98 BS.addRelocation(12, RelSymbol2, ELF::R_AARCH64_CALL26, 0, 0, true);
100 std::error_code EC;
101 SmallVector<char> Vect(DataSize);
102 raw_svector_ostream OS(Vect);
104 BS.flushPendingRelocations(OS, [&](const MCSymbol *S) {
105 return S == RelSymbol1 ? 4 : S == RelSymbol2 ? 16 : 0;
108 const uint8_t Func1Call[4] = {255, 255, 255, 151};
109 const uint8_t Func2Call[4] = {1, 0, 0, 148};
111 EXPECT_FALSE(memcmp(Func1Call, &Vect[8], 4)) << "Wrong backward call value\n";
112 EXPECT_FALSE(memcmp(Func2Call, &Vect[12], 4)) << "Wrong forward call value\n";
115 TEST_P(BinaryContextTester, FlushPendingRelocJUMP26) {
116 if (GetParam() != Triple::aarch64)
117 GTEST_SKIP();
119 // This test checks that encodeValueAArch64 used by flushPendingRelocations
120 // returns correctly encoded values for R_AARCH64_JUMP26 relocation for both
121 // backward and forward branches.
123 // The offsets layout is:
124 // 4: func1
125 // 8: b func1
126 // 12: b func2
127 // 16: func2
129 const uint64_t Size = 20;
130 char *Data = new char[Size];
131 BinarySection &BS = BC->registerOrUpdateSection(
132 ".text", ELF::SHT_PROGBITS, ELF::SHF_EXECINSTR | ELF::SHF_ALLOC,
133 (uint8_t *)Data, Size, 4);
134 MCSymbol *RelSymbol1 = BC->getOrCreateGlobalSymbol(4, "Func1");
135 ASSERT_TRUE(RelSymbol1);
136 BS.addRelocation(8, RelSymbol1, ELF::R_AARCH64_JUMP26, 0, 0, true);
137 MCSymbol *RelSymbol2 = BC->getOrCreateGlobalSymbol(16, "Func2");
138 ASSERT_TRUE(RelSymbol2);
139 BS.addRelocation(12, RelSymbol2, ELF::R_AARCH64_JUMP26, 0, 0, true);
141 std::error_code EC;
142 SmallVector<char> Vect(Size);
143 raw_svector_ostream OS(Vect);
145 BS.flushPendingRelocations(OS, [&](const MCSymbol *S) {
146 return S == RelSymbol1 ? 4 : S == RelSymbol2 ? 16 : 0;
149 const uint8_t Func1Call[4] = {255, 255, 255, 23};
150 const uint8_t Func2Call[4] = {1, 0, 0, 20};
152 EXPECT_FALSE(memcmp(Func1Call, &Vect[8], 4))
153 << "Wrong backward branch value\n";
154 EXPECT_FALSE(memcmp(Func2Call, &Vect[12], 4))
155 << "Wrong forward branch value\n";
158 #endif
160 TEST_P(BinaryContextTester, BaseAddress) {
161 // Check that base address calculation is correct for a binary with the
162 // following segment layout:
163 BC->SegmentMapInfo[0] =
164 SegmentInfo{0, 0x10e8c2b4, 0, 0x10e8c2b4, 0x1000, true};
165 BC->SegmentMapInfo[0x10e8d2b4] =
166 SegmentInfo{0x10e8d2b4, 0x3952faec, 0x10e8c2b4, 0x3952faec, 0x1000, true};
167 BC->SegmentMapInfo[0x4a3bddc0] =
168 SegmentInfo{0x4a3bddc0, 0x148e828, 0x4a3bbdc0, 0x148e828, 0x1000, true};
169 BC->SegmentMapInfo[0x4b84d5e8] =
170 SegmentInfo{0x4b84d5e8, 0x294f830, 0x4b84a5e8, 0x3d3820, 0x1000, true};
172 std::optional<uint64_t> BaseAddress =
173 BC->getBaseAddressForMapping(0x7f13f5556000, 0x10e8c000);
174 ASSERT_TRUE(BaseAddress.has_value());
175 ASSERT_EQ(*BaseAddress, 0x7f13e46c9000ULL);
177 BaseAddress = BC->getBaseAddressForMapping(0x7f13f5556000, 0x137a000);
178 ASSERT_FALSE(BaseAddress.has_value());
181 TEST_P(BinaryContextTester, BaseAddress2) {
182 // Check that base address calculation is correct for a binary if the
183 // alignment in ELF file are different from pagesize.
184 // The segment layout is as follows:
185 BC->SegmentMapInfo[0] = SegmentInfo{0, 0x2177c, 0, 0x2177c, 0x10000, true};
186 BC->SegmentMapInfo[0x31860] =
187 SegmentInfo{0x31860, 0x370, 0x21860, 0x370, 0x10000, true};
188 BC->SegmentMapInfo[0x41c20] =
189 SegmentInfo{0x41c20, 0x1f8, 0x21c20, 0x1f8, 0x10000, true};
190 BC->SegmentMapInfo[0x54e18] =
191 SegmentInfo{0x54e18, 0x51, 0x24e18, 0x51, 0x10000, true};
193 std::optional<uint64_t> BaseAddress =
194 BC->getBaseAddressForMapping(0xaaaaea444000, 0x21000);
195 ASSERT_TRUE(BaseAddress.has_value());
196 ASSERT_EQ(*BaseAddress, 0xaaaaea413000ULL);
198 BaseAddress = BC->getBaseAddressForMapping(0xaaaaea444000, 0x11000);
199 ASSERT_FALSE(BaseAddress.has_value());
202 TEST_P(BinaryContextTester, BaseAddressSegmentsSmallerThanAlignment) {
203 // Check that the correct segment is used to compute the base address
204 // when multiple segments are close together in the ELF file (closer
205 // than the required alignment in the process space).
206 // See https://github.com/llvm/llvm-project/issues/109384
207 BC->SegmentMapInfo[0] = SegmentInfo{0, 0x1d1c, 0, 0x1d1c, 0x10000, false};
208 BC->SegmentMapInfo[0x11d40] =
209 SegmentInfo{0x11d40, 0x11e0, 0x1d40, 0x11e0, 0x10000, true};
210 BC->SegmentMapInfo[0x22f20] =
211 SegmentInfo{0x22f20, 0x10e0, 0x2f20, 0x1f0, 0x10000, false};
212 BC->SegmentMapInfo[0x33110] =
213 SegmentInfo{0x33110, 0x89, 0x3110, 0x88, 0x10000, false};
215 std::optional<uint64_t> BaseAddress =
216 BC->getBaseAddressForMapping(0xaaaaaaab1000, 0x1000);
217 ASSERT_TRUE(BaseAddress.has_value());
218 ASSERT_EQ(*BaseAddress, 0xaaaaaaaa0000ULL);