[NFC][Coroutines] Use structured binding with llvm::enumerate in CoroSplit (#116879)
[llvm-project.git] / offload / DeviceRTL / src / Synchronization.cpp
blob9ea8d171cc830e78ba21722577fbc9a3f6c7fdc4
1 //===- Synchronization.cpp - OpenMP Device synchronization API ---- c++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Include all synchronization.
11 //===----------------------------------------------------------------------===//
13 #include "Synchronization.h"
15 #include "Debug.h"
16 #include "DeviceTypes.h"
17 #include "DeviceUtils.h"
18 #include "Interface.h"
19 #include "Mapping.h"
20 #include "State.h"
22 #pragma omp begin declare target device_type(nohost)
24 using namespace ompx;
26 namespace impl {
28 /// Atomics
29 ///
30 ///{
31 /// NOTE: This function needs to be implemented by every target.
32 uint32_t atomicInc(uint32_t *Address, uint32_t Val, atomic::OrderingTy Ordering,
33 atomic::MemScopeTy MemScope);
35 template <typename Ty>
36 Ty atomicAdd(Ty *Address, Ty Val, atomic::OrderingTy Ordering) {
37 return __scoped_atomic_fetch_add(Address, Val, Ordering,
38 __MEMORY_SCOPE_DEVICE);
41 template <typename Ty>
42 Ty atomicMul(Ty *Address, Ty V, atomic::OrderingTy Ordering) {
43 Ty TypedCurrentVal, TypedResultVal, TypedNewVal;
44 bool Success;
45 do {
46 TypedCurrentVal = atomic::load(Address, Ordering);
47 TypedNewVal = TypedCurrentVal * V;
48 Success = atomic::cas(Address, TypedCurrentVal, TypedNewVal, Ordering,
49 atomic::relaxed);
50 } while (!Success);
51 return TypedResultVal;
54 template <typename Ty> Ty atomicLoad(Ty *Address, atomic::OrderingTy Ordering) {
55 return atomicAdd(Address, Ty(0), Ordering);
58 template <typename Ty>
59 void atomicStore(Ty *Address, Ty Val, atomic::OrderingTy Ordering) {
60 __scoped_atomic_store_n(Address, Val, Ordering, __MEMORY_SCOPE_DEVICE);
63 template <typename Ty>
64 bool atomicCAS(Ty *Address, Ty ExpectedV, Ty DesiredV,
65 atomic::OrderingTy OrderingSucc,
66 atomic::OrderingTy OrderingFail) {
67 return __scoped_atomic_compare_exchange(Address, &ExpectedV, &DesiredV, false,
68 OrderingSucc, OrderingFail,
69 __MEMORY_SCOPE_DEVICE);
72 template <typename Ty>
73 Ty atomicMin(Ty *Address, Ty Val, atomic::OrderingTy Ordering) {
74 return __scoped_atomic_fetch_min(Address, Val, Ordering,
75 __MEMORY_SCOPE_DEVICE);
78 template <typename Ty>
79 Ty atomicMax(Ty *Address, Ty Val, atomic::OrderingTy Ordering) {
80 return __scoped_atomic_fetch_max(Address, Val, Ordering,
81 __MEMORY_SCOPE_DEVICE);
84 // TODO: Implement this with __atomic_fetch_max and remove the duplication.
85 template <typename Ty, typename STy, typename UTy>
86 Ty atomicMinFP(Ty *Address, Ty Val, atomic::OrderingTy Ordering) {
87 if (Val >= 0)
88 return atomicMin((STy *)Address, utils::convertViaPun<STy>(Val), Ordering);
89 return atomicMax((UTy *)Address, utils::convertViaPun<UTy>(Val), Ordering);
92 template <typename Ty, typename STy, typename UTy>
93 Ty atomicMaxFP(Ty *Address, Ty Val, atomic::OrderingTy Ordering) {
94 if (Val >= 0)
95 return atomicMax((STy *)Address, utils::convertViaPun<STy>(Val), Ordering);
96 return atomicMin((UTy *)Address, utils::convertViaPun<UTy>(Val), Ordering);
99 template <typename Ty>
100 Ty atomicOr(Ty *Address, Ty Val, atomic::OrderingTy Ordering) {
101 return __scoped_atomic_fetch_or(Address, Val, Ordering,
102 __MEMORY_SCOPE_DEVICE);
105 template <typename Ty>
106 Ty atomicAnd(Ty *Address, Ty Val, atomic::OrderingTy Ordering) {
107 return __scoped_atomic_fetch_and(Address, Val, Ordering,
108 __MEMORY_SCOPE_DEVICE);
111 template <typename Ty>
112 Ty atomicXOr(Ty *Address, Ty Val, atomic::OrderingTy Ordering) {
113 return __scoped_atomic_fetch_xor(Address, Val, Ordering,
114 __MEMORY_SCOPE_DEVICE);
117 uint32_t atomicExchange(uint32_t *Address, uint32_t Val,
118 atomic::OrderingTy Ordering) {
119 uint32_t R;
120 __scoped_atomic_exchange(Address, &Val, &R, Ordering, __MEMORY_SCOPE_DEVICE);
121 return R;
123 ///}
125 // Forward declarations defined to be defined for AMDGCN and NVPTX.
126 uint32_t atomicInc(uint32_t *A, uint32_t V, atomic::OrderingTy Ordering,
127 atomic::MemScopeTy MemScope);
128 void namedBarrierInit();
129 void namedBarrier();
130 void fenceTeam(atomic::OrderingTy Ordering);
131 void fenceKernel(atomic::OrderingTy Ordering);
132 void fenceSystem(atomic::OrderingTy Ordering);
133 void syncWarp(__kmpc_impl_lanemask_t);
134 void syncThreads(atomic::OrderingTy Ordering);
135 void syncThreadsAligned(atomic::OrderingTy Ordering) { syncThreads(Ordering); }
136 void unsetLock(omp_lock_t *);
137 int testLock(omp_lock_t *);
138 void initLock(omp_lock_t *);
139 void destroyLock(omp_lock_t *);
140 void setLock(omp_lock_t *);
141 void unsetCriticalLock(omp_lock_t *);
142 void setCriticalLock(omp_lock_t *);
144 /// AMDGCN Implementation
146 ///{
147 #pragma omp begin declare variant match(device = {arch(amdgcn)})
149 uint32_t atomicInc(uint32_t *A, uint32_t V, atomic::OrderingTy Ordering,
150 atomic::MemScopeTy MemScope) {
151 // builtin_amdgcn_atomic_inc32 should expand to this switch when
152 // passed a runtime value, but does not do so yet. Workaround here.
154 #define ScopeSwitch(ORDER) \
155 switch (MemScope) { \
156 case atomic::MemScopeTy::all: \
157 return __builtin_amdgcn_atomic_inc32(A, V, ORDER, ""); \
158 case atomic::MemScopeTy::device: \
159 return __builtin_amdgcn_atomic_inc32(A, V, ORDER, "agent"); \
160 case atomic::MemScopeTy::cgroup: \
161 return __builtin_amdgcn_atomic_inc32(A, V, ORDER, "workgroup"); \
164 #define Case(ORDER) \
165 case ORDER: \
166 ScopeSwitch(ORDER)
168 switch (Ordering) {
169 default:
170 __builtin_unreachable();
171 Case(atomic::relaxed);
172 Case(atomic::aquire);
173 Case(atomic::release);
174 Case(atomic::acq_rel);
175 Case(atomic::seq_cst);
176 #undef Case
177 #undef ScopeSwitch
181 uint32_t SHARED(namedBarrierTracker);
183 void namedBarrierInit() {
184 // Don't have global ctors, and shared memory is not zero init
185 atomic::store(&namedBarrierTracker, 0u, atomic::release);
188 void namedBarrier() {
189 uint32_t NumThreads = omp_get_num_threads();
190 // assert(NumThreads % 32 == 0);
192 uint32_t WarpSize = mapping::getWarpSize();
193 uint32_t NumWaves = NumThreads / WarpSize;
195 fence::team(atomic::aquire);
197 // named barrier implementation for amdgcn.
198 // Uses two 16 bit unsigned counters. One for the number of waves to have
199 // reached the barrier, and one to count how many times the barrier has been
200 // passed. These are packed in a single atomically accessed 32 bit integer.
201 // Low bits for the number of waves, assumed zero before this call.
202 // High bits to count the number of times the barrier has been passed.
204 // precondition: NumWaves != 0;
205 // invariant: NumWaves * WarpSize == NumThreads;
206 // precondition: NumWaves < 0xffffu;
208 // Increment the low 16 bits once, using the lowest active thread.
209 if (mapping::isLeaderInWarp()) {
210 uint32_t load = atomic::add(&namedBarrierTracker, 1,
211 atomic::relaxed); // commutative
213 // Record the number of times the barrier has been passed
214 uint32_t generation = load & 0xffff0000u;
216 if ((load & 0x0000ffffu) == (NumWaves - 1)) {
217 // Reached NumWaves in low bits so this is the last wave.
218 // Set low bits to zero and increment high bits
219 load += 0x00010000u; // wrap is safe
220 load &= 0xffff0000u; // because bits zeroed second
222 // Reset the wave counter and release the waiting waves
223 atomic::store(&namedBarrierTracker, load, atomic::relaxed);
224 } else {
225 // more waves still to go, spin until generation counter changes
226 do {
227 __builtin_amdgcn_s_sleep(0);
228 load = atomic::load(&namedBarrierTracker, atomic::relaxed);
229 } while ((load & 0xffff0000u) == generation);
232 fence::team(atomic::release);
235 // sema checking of amdgcn_fence is aggressive. Intention is to patch clang
236 // so that it is usable within a template environment and so that a runtime
237 // value of the memory order is expanded to this switch within clang/llvm.
238 void fenceTeam(atomic::OrderingTy Ordering) {
239 switch (Ordering) {
240 default:
241 __builtin_unreachable();
242 case atomic::aquire:
243 return __builtin_amdgcn_fence(atomic::aquire, "workgroup");
244 case atomic::release:
245 return __builtin_amdgcn_fence(atomic::release, "workgroup");
246 case atomic::acq_rel:
247 return __builtin_amdgcn_fence(atomic::acq_rel, "workgroup");
248 case atomic::seq_cst:
249 return __builtin_amdgcn_fence(atomic::seq_cst, "workgroup");
252 void fenceKernel(atomic::OrderingTy Ordering) {
253 switch (Ordering) {
254 default:
255 __builtin_unreachable();
256 case atomic::aquire:
257 return __builtin_amdgcn_fence(atomic::aquire, "agent");
258 case atomic::release:
259 return __builtin_amdgcn_fence(atomic::release, "agent");
260 case atomic::acq_rel:
261 return __builtin_amdgcn_fence(atomic::acq_rel, "agent");
262 case atomic::seq_cst:
263 return __builtin_amdgcn_fence(atomic::seq_cst, "agent");
266 void fenceSystem(atomic::OrderingTy Ordering) {
267 switch (Ordering) {
268 default:
269 __builtin_unreachable();
270 case atomic::aquire:
271 return __builtin_amdgcn_fence(atomic::aquire, "");
272 case atomic::release:
273 return __builtin_amdgcn_fence(atomic::release, "");
274 case atomic::acq_rel:
275 return __builtin_amdgcn_fence(atomic::acq_rel, "");
276 case atomic::seq_cst:
277 return __builtin_amdgcn_fence(atomic::seq_cst, "");
281 void syncWarp(__kmpc_impl_lanemask_t) {
282 // This is a no-op on current AMDGPU hardware but it is used by the optimizer
283 // to enforce convergent behaviour between control flow graphs.
284 __builtin_amdgcn_wave_barrier();
287 void syncThreads(atomic::OrderingTy Ordering) {
288 if (Ordering != atomic::relaxed)
289 fenceTeam(Ordering == atomic::acq_rel ? atomic::release : atomic::seq_cst);
291 __builtin_amdgcn_s_barrier();
293 if (Ordering != atomic::relaxed)
294 fenceTeam(Ordering == atomic::acq_rel ? atomic::aquire : atomic::seq_cst);
296 void syncThreadsAligned(atomic::OrderingTy Ordering) { syncThreads(Ordering); }
298 // TODO: Don't have wavefront lane locks. Possibly can't have them.
299 void unsetLock(omp_lock_t *) { __builtin_trap(); }
300 int testLock(omp_lock_t *) { __builtin_trap(); }
301 void initLock(omp_lock_t *) { __builtin_trap(); }
302 void destroyLock(omp_lock_t *) { __builtin_trap(); }
303 void setLock(omp_lock_t *) { __builtin_trap(); }
305 constexpr uint32_t UNSET = 0;
306 constexpr uint32_t SET = 1;
308 void unsetCriticalLock(omp_lock_t *Lock) {
309 (void)atomicExchange((uint32_t *)Lock, UNSET, atomic::acq_rel);
312 void setCriticalLock(omp_lock_t *Lock) {
313 uint64_t LowestActiveThread = utils::ffs(mapping::activemask()) - 1;
314 if (mapping::getThreadIdInWarp() == LowestActiveThread) {
315 fenceKernel(atomic::release);
316 while (!atomicCAS((uint32_t *)Lock, UNSET, SET, atomic::relaxed,
317 atomic::relaxed)) {
318 __builtin_amdgcn_s_sleep(32);
320 fenceKernel(atomic::aquire);
324 #pragma omp end declare variant
325 ///}
327 /// NVPTX Implementation
329 ///{
330 #pragma omp begin declare variant match( \
331 device = {arch(nvptx, nvptx64)}, \
332 implementation = {extension(match_any)})
334 uint32_t atomicInc(uint32_t *Address, uint32_t Val, atomic::OrderingTy Ordering,
335 atomic::MemScopeTy MemScope) {
336 return __nvvm_atom_inc_gen_ui(Address, Val);
339 void namedBarrierInit() {}
341 void namedBarrier() {
342 uint32_t NumThreads = omp_get_num_threads();
343 ASSERT(NumThreads % 32 == 0, nullptr);
345 // The named barrier for active parallel threads of a team in an L1 parallel
346 // region to synchronize with each other.
347 constexpr int BarrierNo = 7;
348 __nvvm_barrier_sync_cnt(BarrierNo, NumThreads);
351 void fenceTeam(atomic::OrderingTy) { __nvvm_membar_cta(); }
353 void fenceKernel(atomic::OrderingTy) { __nvvm_membar_gl(); }
355 void fenceSystem(atomic::OrderingTy) { __nvvm_membar_sys(); }
357 void syncWarp(__kmpc_impl_lanemask_t Mask) { __nvvm_bar_warp_sync(Mask); }
359 void syncThreads(atomic::OrderingTy Ordering) {
360 constexpr int BarrierNo = 8;
361 __nvvm_barrier_sync(BarrierNo);
364 void syncThreadsAligned(atomic::OrderingTy Ordering) { __syncthreads(); }
366 constexpr uint32_t OMP_SPIN = 1000;
367 constexpr uint32_t UNSET = 0;
368 constexpr uint32_t SET = 1;
370 // TODO: This seems to hide a bug in the declare variant handling. If it is
371 // called before it is defined
372 // here the overload won't happen. Investigate lalter!
373 void unsetLock(omp_lock_t *Lock) {
374 (void)atomicExchange((uint32_t *)Lock, UNSET, atomic::seq_cst);
377 int testLock(omp_lock_t *Lock) {
378 return atomicAdd((uint32_t *)Lock, 0u, atomic::seq_cst);
381 void initLock(omp_lock_t *Lock) { unsetLock(Lock); }
383 void destroyLock(omp_lock_t *Lock) { unsetLock(Lock); }
385 void setLock(omp_lock_t *Lock) {
386 // TODO: not sure spinning is a good idea here..
387 while (atomicCAS((uint32_t *)Lock, UNSET, SET, atomic::seq_cst,
388 atomic::seq_cst) != UNSET) {
389 int32_t start = __nvvm_read_ptx_sreg_clock();
390 int32_t now;
391 for (;;) {
392 now = __nvvm_read_ptx_sreg_clock();
393 int32_t cycles = now > start ? now - start : now + (0xffffffff - start);
394 if (cycles >= OMP_SPIN * mapping::getBlockIdInKernel()) {
395 break;
398 } // wait for 0 to be the read value
401 void unsetCriticalLock(omp_lock_t *Lock) { unsetLock(Lock); }
403 void setCriticalLock(omp_lock_t *Lock) { setLock(Lock); }
405 #pragma omp end declare variant
406 ///}
408 } // namespace impl
410 void synchronize::init(bool IsSPMD) {
411 if (!IsSPMD)
412 impl::namedBarrierInit();
415 void synchronize::warp(LaneMaskTy Mask) { impl::syncWarp(Mask); }
417 void synchronize::threads(atomic::OrderingTy Ordering) {
418 impl::syncThreads(Ordering);
421 void synchronize::threadsAligned(atomic::OrderingTy Ordering) {
422 impl::syncThreadsAligned(Ordering);
425 void fence::team(atomic::OrderingTy Ordering) { impl::fenceTeam(Ordering); }
427 void fence::kernel(atomic::OrderingTy Ordering) { impl::fenceKernel(Ordering); }
429 void fence::system(atomic::OrderingTy Ordering) { impl::fenceSystem(Ordering); }
431 #define ATOMIC_COMMON_OP(TY) \
432 TY atomic::add(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
433 return impl::atomicAdd(Addr, V, Ordering); \
435 TY atomic::mul(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
436 return impl::atomicMul(Addr, V, Ordering); \
438 TY atomic::load(TY *Addr, atomic::OrderingTy Ordering) { \
439 return impl::atomicLoad(Addr, Ordering); \
441 bool atomic::cas(TY *Addr, TY ExpectedV, TY DesiredV, \
442 atomic::OrderingTy OrderingSucc, \
443 atomic::OrderingTy OrderingFail) { \
444 return impl::atomicCAS(Addr, ExpectedV, DesiredV, OrderingSucc, \
445 OrderingFail); \
448 #define ATOMIC_FP_ONLY_OP(TY, STY, UTY) \
449 TY atomic::min(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
450 return impl::atomicMinFP<TY, STY, UTY>(Addr, V, Ordering); \
452 TY atomic::max(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
453 return impl::atomicMaxFP<TY, STY, UTY>(Addr, V, Ordering); \
455 void atomic::store(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
456 impl::atomicStore(reinterpret_cast<UTY *>(Addr), \
457 utils::convertViaPun<UTY>(V), Ordering); \
460 #define ATOMIC_INT_ONLY_OP(TY) \
461 TY atomic::min(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
462 return impl::atomicMin<TY>(Addr, V, Ordering); \
464 TY atomic::max(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
465 return impl::atomicMax<TY>(Addr, V, Ordering); \
467 TY atomic::bit_or(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
468 return impl::atomicOr(Addr, V, Ordering); \
470 TY atomic::bit_and(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
471 return impl::atomicAnd(Addr, V, Ordering); \
473 TY atomic::bit_xor(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
474 return impl::atomicXOr(Addr, V, Ordering); \
476 void atomic::store(TY *Addr, TY V, atomic::OrderingTy Ordering) { \
477 impl::atomicStore(Addr, V, Ordering); \
480 #define ATOMIC_FP_OP(TY, STY, UTY) \
481 ATOMIC_FP_ONLY_OP(TY, STY, UTY) \
482 ATOMIC_COMMON_OP(TY)
484 #define ATOMIC_INT_OP(TY) \
485 ATOMIC_INT_ONLY_OP(TY) \
486 ATOMIC_COMMON_OP(TY)
488 // This needs to be kept in sync with the header. Also the reason we don't use
489 // templates here.
490 ATOMIC_INT_OP(int8_t)
491 ATOMIC_INT_OP(int16_t)
492 ATOMIC_INT_OP(int32_t)
493 ATOMIC_INT_OP(int64_t)
494 ATOMIC_INT_OP(uint8_t)
495 ATOMIC_INT_OP(uint16_t)
496 ATOMIC_INT_OP(uint32_t)
497 ATOMIC_INT_OP(uint64_t)
498 ATOMIC_FP_OP(float, int32_t, uint32_t)
499 ATOMIC_FP_OP(double, int64_t, uint64_t)
501 #undef ATOMIC_INT_ONLY_OP
502 #undef ATOMIC_FP_ONLY_OP
503 #undef ATOMIC_COMMON_OP
504 #undef ATOMIC_INT_OP
505 #undef ATOMIC_FP_OP
507 uint32_t atomic::inc(uint32_t *Addr, uint32_t V, atomic::OrderingTy Ordering,
508 atomic::MemScopeTy MemScope) {
509 return impl::atomicInc(Addr, V, Ordering, MemScope);
512 void unsetCriticalLock(omp_lock_t *Lock) { impl::unsetLock(Lock); }
514 void setCriticalLock(omp_lock_t *Lock) { impl::setLock(Lock); }
516 extern "C" {
517 void __kmpc_ordered(IdentTy *Loc, int32_t TId) {}
519 void __kmpc_end_ordered(IdentTy *Loc, int32_t TId) {}
521 int32_t __kmpc_cancel_barrier(IdentTy *Loc, int32_t TId) {
522 __kmpc_barrier(Loc, TId);
523 return 0;
526 void __kmpc_barrier(IdentTy *Loc, int32_t TId) {
527 if (mapping::isMainThreadInGenericMode())
528 return __kmpc_flush(Loc);
530 if (mapping::isSPMDMode())
531 return __kmpc_barrier_simple_spmd(Loc, TId);
533 impl::namedBarrier();
536 [[clang::noinline]] void __kmpc_barrier_simple_spmd(IdentTy *Loc, int32_t TId) {
537 synchronize::threadsAligned(atomic::OrderingTy::seq_cst);
540 [[clang::noinline]] void __kmpc_barrier_simple_generic(IdentTy *Loc,
541 int32_t TId) {
542 synchronize::threads(atomic::OrderingTy::seq_cst);
545 int32_t __kmpc_master(IdentTy *Loc, int32_t TId) {
546 return omp_get_thread_num() == 0;
549 void __kmpc_end_master(IdentTy *Loc, int32_t TId) {}
551 int32_t __kmpc_masked(IdentTy *Loc, int32_t TId, int32_t Filter) {
552 return omp_get_thread_num() == Filter;
555 void __kmpc_end_masked(IdentTy *Loc, int32_t TId) {}
557 int32_t __kmpc_single(IdentTy *Loc, int32_t TId) {
558 return __kmpc_master(Loc, TId);
561 void __kmpc_end_single(IdentTy *Loc, int32_t TId) {
562 // The barrier is explicitly called.
565 void __kmpc_flush(IdentTy *Loc) { fence::kernel(atomic::seq_cst); }
567 uint64_t __kmpc_warp_active_thread_mask(void) { return mapping::activemask(); }
569 void __kmpc_syncwarp(uint64_t Mask) { synchronize::warp(Mask); }
571 void __kmpc_critical(IdentTy *Loc, int32_t TId, CriticalNameTy *Name) {
572 impl::setCriticalLock(reinterpret_cast<omp_lock_t *>(Name));
575 void __kmpc_end_critical(IdentTy *Loc, int32_t TId, CriticalNameTy *Name) {
576 impl::unsetCriticalLock(reinterpret_cast<omp_lock_t *>(Name));
579 void omp_init_lock(omp_lock_t *Lock) { impl::initLock(Lock); }
581 void omp_destroy_lock(omp_lock_t *Lock) { impl::destroyLock(Lock); }
583 void omp_set_lock(omp_lock_t *Lock) { impl::setLock(Lock); }
585 void omp_unset_lock(omp_lock_t *Lock) { impl::unsetLock(Lock); }
587 int omp_test_lock(omp_lock_t *Lock) { return impl::testLock(Lock); }
589 void ompx_sync_block(int Ordering) {
590 impl::syncThreadsAligned(atomic::OrderingTy(Ordering));
592 void ompx_sync_block_acq_rel() {
593 impl::syncThreadsAligned(atomic::OrderingTy::acq_rel);
595 void ompx_sync_block_divergent(int Ordering) {
596 impl::syncThreads(atomic::OrderingTy(Ordering));
598 } // extern "C"
600 #pragma omp end declare target