11 The term ``modules`` has a lot of meanings. For the users of Clang, modules may
12 refer to ``Objective-C Modules``, ``Clang C++ Modules`` (or ``Clang Header Modules``,
13 etc.) or ``Standard C++ Modules``. The implementation of all these kinds of modules in Clang
14 has a lot of shared code, but from the perspective of users, their semantics and
15 command line interfaces are very different. This document focuses on
16 an introduction of how to use standard C++ modules in Clang.
18 There is already a detailed document about `Clang modules <Modules.html>`_, it
19 should be helpful to read `Clang modules <Modules.html>`_ if you want to know
20 more about the general idea of modules. Since standard C++ modules have different semantics
21 (and work flows) from `Clang modules`, this page describes the background and use of
22 Clang with standard C++ modules.
24 Modules exist in two forms in the C++ Language Specification. They can refer to
25 either "Named Modules" or to "Header Units". This document covers both forms.
27 Standard C++ Named modules
28 ==========================
30 This document was intended to be a manual first and foremost, however, we consider it helpful to
31 introduce some language background here for readers who are not familiar with
32 the new language feature. This document is not intended to be a language
33 tutorial; it will only introduce necessary concepts about the
34 structure and building of the project.
36 Background and terminology
37 --------------------------
42 In this document, the term ``Modules``/``modules`` refers to standard C++ modules
43 feature if it is not decorated by ``Clang``.
48 In this document, the term ``Clang Modules``/``Clang modules`` refer to Clang
49 c++ modules extension. These are also known as ``Clang header modules``,
50 ``Clang module map modules`` or ``Clang c++ modules``.
52 Module and module unit
53 ~~~~~~~~~~~~~~~~~~~~~~
55 A module consists of one or more module units. A module unit is a special
56 translation unit. Every module unit must have a module declaration. The syntax
57 of the module declaration is:
61 [export] module module_name[:partition_name];
63 Terms enclosed in ``[]`` are optional. The syntax of ``module_name`` and ``partition_name``
64 in regex form corresponds to ``[a-zA-Z_][a-zA-Z_0-9\.]*``. In particular, a literal dot ``.``
65 in the name has no semantic meaning (e.g. implying a hierarchy).
67 In this document, module units are classified into:
69 * Primary module interface unit.
71 * Module implementation unit.
73 * Module interface partition unit.
75 * Internal module partition unit.
77 A primary module interface unit is a module unit whose module declaration is
78 ``export module module_name;``. The ``module_name`` here denotes the name of the
79 module. A module should have one and only one primary module interface unit.
81 A module implementation unit is a module unit whose module declaration is
82 ``module module_name;``. A module could have multiple module implementation
83 units with the same declaration.
85 A module interface partition unit is a module unit whose module declaration is
86 ``export module module_name:partition_name;``. The ``partition_name`` should be
87 unique within any given module.
89 An internal module partition unit is a module unit whose module declaration
90 is ``module module_name:partition_name;``. The ``partition_name`` should be
91 unique within any given module.
93 In this document, we use the following umbrella terms:
95 * A ``module interface unit`` refers to either a ``primary module interface unit``
96 or a ``module interface partition unit``.
98 * An ``importable module unit`` refers to either a ``module interface unit``
99 or a ``internal module partition unit``.
101 * A ``module partition unit`` refers to either a ``module interface partition unit``
102 or a ``internal module partition unit``.
104 Built Module Interface file
105 ~~~~~~~~~~~~~~~~~~~~~~~~~~~
107 A ``Built Module Interface file`` stands for the precompiled result of an importable module unit.
108 It is also called the acronym ``BMI`` generally.
110 Global module fragment
111 ~~~~~~~~~~~~~~~~~~~~~~
113 In a module unit, the section from ``module;`` to the module declaration is called the global module fragment.
116 How to build projects using modules
117 -----------------------------------
122 Let's see a "hello world" example that uses modules.
130 export void hello() {
131 std::cout << "Hello World!\n";
143 .. code-block:: console
145 $ clang++ -std=c++20 Hello.cppm --precompile -o Hello.pcm
146 $ clang++ -std=c++20 use.cpp -fprebuilt-module-path=. Hello.pcm -o Hello.out
150 In this example, we make and use a simple module ``Hello`` which contains only a
151 primary module interface unit ``Hello.cppm``.
153 Then let's see a little bit more complex "hello world" example which uses the 4 kinds of module units.
159 export import :interface_part;
163 // interface_part.cppm
164 export module M:interface_part;
172 import :interface_part;
174 std::string W = "World.";
176 std::cout << W << std::endl;
184 std::cout << "Hello ";
195 Then we are able to compile the example by the following command:
197 .. code-block:: console
199 # Precompiling the module
200 $ clang++ -std=c++20 interface_part.cppm --precompile -o M-interface_part.pcm
201 $ clang++ -std=c++20 impl_part.cppm --precompile -fprebuilt-module-path=. -o M-impl_part.pcm
202 $ clang++ -std=c++20 M.cppm --precompile -fprebuilt-module-path=. -o M.pcm
203 $ clang++ -std=c++20 Impl.cpp -fmodule-file=M=M.pcm -c -o Impl.o
206 $ clang++ -std=c++20 User.cpp -fprebuilt-module-path=. -c -o User.o
208 # Compiling the module and linking it together
209 $ clang++ -std=c++20 M-interface_part.pcm -c -o M-interface_part.o
210 $ clang++ -std=c++20 M-impl_part.pcm -c -o M-impl_part.o
211 $ clang++ -std=c++20 M.pcm -c -o M.o
212 $ clang++ User.o M-interface_part.o M-impl_part.o M.o Impl.o -o a.out
214 We explain the options in the following sections.
216 How to enable standard C++ modules
217 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
219 Currently, standard C++ modules are enabled automatically
220 if the language standard is ``-std=c++20`` or newer.
221 The ``-fmodules-ts`` option is deprecated and is planned to be removed.
226 We can generate a BMI for an importable module unit by either ``--precompile``
227 or ``-fmodule-output`` flags.
229 The ``--precompile`` option generates the BMI as the output of the compilation and the output path
230 can be specified using the ``-o`` option.
232 The ``-fmodule-output`` option generates the BMI as a by-product of the compilation.
233 If ``-fmodule-output=`` is specified, the BMI will be emitted the specified location. Then if
234 ``-fmodule-output`` and ``-c`` are specified, the BMI will be emitted in the directory of the
235 output file with the name of the input file with the new extension ``.pcm``. Otherwise, the BMI
236 will be emitted in the working directory with the name of the input file with the new extension
239 The style to generate BMIs by ``--precompile`` is called two-phase compilation since it takes
240 2 steps to compile a source file to an object file. The style to generate BMIs by ``-fmodule-output``
241 is called one-phase compilation respectively. The one-phase compilation model is simpler
242 for build systems to implement and the two-phase compilation has the potential to compile faster due
243 to higher parallelism. As an example, if there are two module units A and B, and B depends on A, the
244 one-phase compilation model would need to compile them serially, whereas the two-phase compilation
245 model may be able to compile them simultaneously if the compilation from A.pcm to A.o takes a long
248 File name requirement
249 ~~~~~~~~~~~~~~~~~~~~~
251 The file name of an ``importable module unit`` should end with ``.cppm``
252 (or ``.ccm``, ``.cxxm``, ``.c++m``). The file name of a ``module implementation unit``
253 should end with ``.cpp`` (or ``.cc``, ``.cxx``, ``.c++``).
255 The file name of BMIs should end with ``.pcm``.
256 The file name of the BMI of a ``primary module interface unit`` should be ``module_name.pcm``.
257 The file name of BMIs of ``module partition unit`` should be ``module_name-partition_name.pcm``.
259 If the file names use different extensions, Clang may fail to build the module.
260 For example, if the filename of an ``importable module unit`` ends with ``.cpp`` instead of ``.cppm``,
261 then we can't generate a BMI for the ``importable module unit`` by ``--precompile`` option
262 since ``--precompile`` option now would only run preprocessor, which is equal to `-E` now.
263 If we want the filename of an ``importable module unit`` ends with other suffixes instead of ``.cppm``,
264 we could put ``-x c++-module`` in front of the file. For example,
272 export void hello() {
273 std::cout << "Hello World!\n";
283 Now the filename of the ``module interface`` ends with ``.cpp`` instead of ``.cppm``,
284 we can't compile them by the original command lines. But we are still able to do it by:
286 .. code-block:: console
288 $ clang++ -std=c++20 -x c++-module Hello.cpp --precompile -o Hello.pcm
289 $ clang++ -std=c++20 use.cpp -fprebuilt-module-path=. Hello.pcm -o Hello.out
293 Module name requirement
294 ~~~~~~~~~~~~~~~~~~~~~~~
296 [module.unit]p1 says:
300 All module-names either beginning with an identifier consisting of std followed by zero
301 or more digits or containing a reserved identifier ([lex.name]) are reserved and shall not
302 be specified in a module-declaration; no diagnostic is required. If any identifier in a reserved
303 module-name is a reserved identifier, the module name is reserved for use by C++ implementations;
304 otherwise it is reserved for future standardization.
306 So all of the following name is not valid by default:
316 If you still want to use the reserved module names for any reason, use
317 ``-Wno-reserved-module-identifier`` to suppress the warning.
319 How to specify the dependent BMIs
320 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
322 There are 3 methods to specify the dependent BMIs:
324 * (1) ``-fprebuilt-module-path=<path/to/directory>``.
325 * (2) ``-fmodule-file=<path/to/BMI>`` (Deprecated).
326 * (3) ``-fmodule-file=<module-name>=<path/to/BMI>``.
328 The option ``-fprebuilt-module-path`` tells the compiler the path where to search for dependent BMIs.
329 It may be used multiple times just like ``-I`` for specifying paths for header files. The look up rule here is:
331 * (1) When we import module M. The compiler would look up M.pcm in the directories specified
332 by ``-fprebuilt-module-path``.
333 * (2) When we import partition module unit M:P. The compiler would look up M-P.pcm in the
334 directories specified by ``-fprebuilt-module-path``.
336 The option ``-fmodule-file=<path/to/BMI>`` tells the compiler to load the specified BMI directly.
337 The option ``-fmodule-file=<module-name>=<path/to/BMI>`` tells the compiler to load the specified BMI
338 for the module specified by ``<module-name>`` when necessary. The main difference is that
339 ``-fmodule-file=<path/to/BMI>`` will load the BMI eagerly, whereas
340 ``-fmodule-file=<module-name>=<path/to/BMI>`` will only load the BMI lazily, which is similar
341 with ``-fprebuilt-module-path``. The option ``-fmodule-file=<path/to/BMI>`` for named modules is deprecated
342 and is planning to be removed in future versions.
344 In case all ``-fprebuilt-module-path=<path/to/directory>``, ``-fmodule-file=<path/to/BMI>`` and
345 ``-fmodule-file=<module-name>=<path/to/BMI>`` exist, the ``-fmodule-file=<path/to/BMI>`` option
346 takes highest precedence and ``-fmodule-file=<module-name>=<path/to/BMI>`` will take the second
349 When we compile a ``module implementation unit``, we must specify the BMI of the corresponding
350 ``primary module interface unit``.
351 Since the language specification says a module implementation unit implicitly imports
352 the primary module interface unit.
356 A module-declaration that contains neither an export-keyword nor a module-partition implicitly
357 imports the primary module interface unit of the module as if by a module-import-declaration.
359 All of the 3 options ``-fprebuilt-module-path=<path/to/directory>``, ``-fmodule-file=<path/to/BMI>``
360 and ``-fmodule-file=<module-name>=<path/to/BMI>`` may occur multiple times.
361 For example, the command line to compile ``M.cppm`` in
362 the above example could be rewritten into:
364 .. code-block:: console
366 $ clang++ -std=c++20 M.cppm --precompile -fmodule-file=M:interface_part=M-interface_part.pcm -fmodule-file=M:impl_part=M-impl_part.pcm -o M.pcm
368 ``-fprebuilt-module-path`` is more convenient and ``-fmodule-file`` is faster since
369 it saves time for file lookup.
371 Remember that module units still have an object counterpart to the BMI
372 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
374 It is easy to forget to compile BMIs at first since we may envision module interfaces like headers.
375 However, this is not true.
376 Module units are translation units. We need to compile them to object files
377 and link the object files like the example shows.
379 For example, the traditional compilation processes for headers are like:
383 src1.cpp -+> clang++ src1.cpp --> src1.o ---,
384 hdr1.h --' +-> clang++ src1.o src2.o -> executable
386 src2.cpp -+> clang++ src2.cpp --> src2.o ---'
388 And the compilation process for module units are like:
392 src1.cpp ----------------------------------------+> clang++ src1.cpp -------> src1.o -,
393 (header unit) hdr1.h -> clang++ hdr1.h ... -> hdr1.pcm --' +-> clang++ src1.o mod1.o src2.o -> executable
394 mod1.cppm -> clang++ mod1.cppm ... -> mod1.pcm --,--> clang++ mod1.pcm ... -> mod1.o -+
395 src2.cpp ----------------------------------------+> clang++ src2.cpp -------> src2.o -'
397 As the diagrams show, we need to compile the BMI from module units to object files and link the object files.
398 (But we can't do this for the BMI from header units. See the later section for the definition of header units)
400 If we want to create a module library, we can't just ship the BMIs in an archive.
401 We must compile these BMIs(``*.pcm``) into object files(``*.o``) and add those object files to the archive instead.
403 Consistency Requirement
404 ~~~~~~~~~~~~~~~~~~~~~~~
406 If we envision modules as a cache to speed up compilation, then - as with other caching techniques -
407 it is important to keep cache consistency.
408 So **currently** Clang will do very strict check for consistency.
413 The language option of module units and their non-module-unit users should be consistent.
414 The following example is not allowed:
424 .. code-block:: console
426 $ clang++ -std=c++20 M.cppm --precompile -o M.pcm
427 $ clang++ -std=c++23 Use.cpp -fprebuilt-module-path=.
429 The compiler would reject the example due to the inconsistent language options.
430 Not all options are language options.
431 For example, the following example is allowed:
433 .. code-block:: console
435 $ clang++ -std=c++20 M.cppm --precompile -o M.pcm
436 # Inconsistent optimization level.
437 $ clang++ -std=c++20 -O3 Use.cpp -fprebuilt-module-path=.
438 # Inconsistent debugging level.
439 $ clang++ -std=c++20 -g Use.cpp -fprebuilt-module-path=.
441 Although the two examples have inconsistent optimization and debugging level, both of them are accepted.
443 Note that **currently** the compiler doesn't consider inconsistent macro definition a problem. For example:
445 .. code-block:: console
447 $ clang++ -std=c++20 M.cppm --precompile -o M.pcm
448 # Inconsistent optimization level.
449 $ clang++ -std=c++20 -O3 -DNDEBUG Use.cpp -fprebuilt-module-path=.
451 Currently Clang would accept the above example. But it may produce surprising results if the
452 debugging code depends on consistent use of ``NDEBUG`` also in other translation units.
457 The declarations in a module unit which are not in the global module fragment have new linkage names.
468 The linkage name of ``NS::foo()`` would be ``_ZN2NSW1M3fooEv``.
469 This couldn't be demangled by previous versions of the debugger or demangler.
470 As of LLVM 15.x, users can utilize ``llvm-cxxfilt`` to demangle this:
472 .. code-block:: console
474 $ llvm-cxxfilt _ZN2NSW1M3fooEv
476 The result would be ``NS::foo@M()``, which reads as ``NS::foo()`` in module ``M``.
478 The ABI implies that we can't declare something in a module unit and define it in a non-module unit (or vice-versa),
479 as this would result in linking errors.
481 If we still want to implement declarations within the compatible ABI in module unit,
482 we can use the language-linkage specifier. Since the declarations in the language-linkage specifier
483 is attached to the global module fragments. For example:
489 export extern "C++" int foo();
492 Now the linkage name of ``NS::foo()`` will be ``_ZN2NS3fooEv``.
500 While it is legal to have duplicated declarations in the global module fragments
501 of different module units, it is not free for clang to deal with the duplicated
502 declarations. In other word, for a translation unit, it will compile slower if the
503 translation unit itself and its importing module units contains a lot duplicated
512 #include "big.header.h"
513 export module M:partA;
518 #include "big.header.h"
519 export module M:partB;
527 #include "big.header.h"
528 export module M:partZ;
533 export import :partA;
534 export import :partB;
536 export import :partZ;
540 ... // use declarations from module M.
542 When ``big.header.h`` is big enough and there are a lot of partitions,
543 the compilation of ``use.cpp`` may be slower than
544 the following style significantly:
549 #include "big.header.h"
550 export module m:big.header.wrapper;
551 export ... // export the needed declarations
554 export module M:partA;
555 import :big.header.wrapper;
559 export module M:partB;
560 import :big.header.wrapper;
567 export module M:partZ;
568 import :big.header.wrapper;
573 export import :partA;
574 export import :partB;
576 export import :partZ;
580 ... // use declarations from module M.
582 The key part of the tip is to reduce the duplications from the text includes.
587 The following describes issues in the current implementation of modules.
588 Please see https://github.com/llvm/llvm-project/labels/clang%3Amodules for more issues
589 or file a new issue if you don't find an existing one.
590 If you're going to create a new issue for standard C++ modules,
591 please start the title with ``[C++20] [Modules]`` (or ``[C++23] [Modules]``, etc)
592 and add the label ``clang:modules`` (if you have permissions for that).
594 For higher level support for proposals, you could visit https://clang.llvm.org/cxx_status.html.
596 Including headers after import is problematic
597 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
599 For example, the following example can be accept:
604 import foo; // assume module 'foo' contain the declarations from `<iostream>`
606 int main(int argc, char *argv[])
608 std::cout << "Test\n";
612 but it will get rejected if we reverse the order of ``#include <iostream>`` and
617 import foo; // assume module 'foo' contain the declarations from `<iostream>`
620 int main(int argc, char *argv[])
622 std::cout << "Test\n";
626 Both of the above examples should be accepted.
628 This is a limitation in the implementation. In the first example,
629 the compiler will see and parse <iostream> first then the compiler will see the import.
630 So the ODR Checking and declarations merging will happen in the deserializer.
631 In the second example, the compiler will see the import first and the include second.
632 As a result, the ODR Checking and declarations merging will happen in the semantic analyzer.
634 So there is divergence in the implementation path. It might be understandable that why
635 the orders matter here in the case.
636 (Note that "understandable" is different from "makes sense").
638 This is tracked in: https://github.com/llvm/llvm-project/issues/61465
640 Ignored PreferredName Attribute
641 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
643 Due to a tricky problem, when Clang writes BMIs, Clang will ignore the ``preferred_name`` attribute, if any.
644 This implies that the ``preferred_name`` wouldn't show in debugger or dumping.
646 This is tracked in: https://github.com/llvm/llvm-project/issues/56490
648 Don't emit macros about module declaration
649 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
651 This is covered by P1857R3. We mention it again here since users may abuse it before we implement it.
653 Someone may want to write code which could be compiled both by modules or non-modules.
654 A direct idea would be use macros like:
660 EXPORT_MODULE MODULE_NAME;
664 So this file could be triggered like a module unit or a non-module unit depending on the definition
666 However, this kind of usage is forbidden by P1857R3 but we haven't implemented P1857R3 yet.
667 This means that is possible to write illegal modules code now, and obviously this will stop working
668 once P1857R3 is implemented.
669 A simple suggestion would be "Don't play macro tricks with module declarations".
671 This is tracked in: https://github.com/llvm/llvm-project/issues/56917
673 In consistent filename suffix requirement for importable module units
674 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
676 Currently, clang requires the file name of an ``importable module unit`` should end with ``.cppm``
677 (or ``.ccm``, ``.cxxm``, ``.c++m``). However, the behavior is inconsistent with other compilers.
679 This is tracked in: https://github.com/llvm/llvm-project/issues/57416
681 clang-cl is not compatible with the standard C++ modules
682 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
684 Now we can't use the `/clang:-fmodule-file` or `/clang:-fprebuilt-module-path` to specify
685 the BMI within ``clang-cl.exe``.
687 This is tracked in: https://github.com/llvm/llvm-project/issues/64118
692 How to build projects using header unit
693 ---------------------------------------
697 The user interfaces of header units is highly experimental. There are still
698 many unanswered question about how tools should interact with header units.
699 The user interfaces described here may change after we have progress on how
700 tools should support for header units.
705 For the following example,
711 std::cout << "Hello World.\n";
714 we could compile it as
716 .. code-block:: console
718 $ clang++ -std=c++20 -xc++-system-header --precompile iostream -o iostream.pcm
719 $ clang++ -std=c++20 -fmodule-file=iostream.pcm main.cpp
724 Similar to named modules, we could use ``--precompile`` to produce the BMI.
725 But we need to specify that the input file is a header by ``-xc++-system-header`` or ``-xc++-user-header``.
727 Also we could use `-fmodule-header={user,system}` option to produce the BMI for header units
728 which has suffix like `.h` or `.hh`.
729 The value of `-fmodule-header` means the user search path or the system search path.
730 The default value for `-fmodule-header` is `user`.
738 std::cout << "Hello World.\n";
747 We could compile it as:
749 .. code-block:: console
751 $ clang++ -std=c++20 -fmodule-header foo.h -o foo.pcm
752 $ clang++ -std=c++20 -fmodule-file=foo.pcm use.cpp
754 For headers which don't have a suffix, we need to pass ``-xc++-header``
755 (or ``-xc++-system-header`` or ``-xc++-user-header``) to mark it as a header.
766 .. code-block:: console
768 $ clang++ -std=c++20 -fmodule-header=system -xc++-header iostream -o iostream.pcm
769 $ clang++ -std=c++20 -fmodule-file=iostream.pcm use.cpp
771 How to specify the dependent BMIs
772 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
774 We could use ``-fmodule-file`` to specify the BMIs, and this option may occur multiple times as well.
776 With the existing implementation ``-fprebuilt-module-path`` cannot be used for header units
777 (since they are nominally anonymous).
778 For header units, use ``-fmodule-file`` to include the relevant PCM file for each header unit.
780 This is expect to be solved in future editions of the compiler either by the tooling finding and specifying
781 the -fmodule-file or by the use of a module-mapper that understands how to map the header name to their PCMs.
783 Don't compile the BMI
784 ~~~~~~~~~~~~~~~~~~~~~
786 Another difference with modules is that we can't compile the BMI from a header unit.
789 .. code-block:: console
791 $ clang++ -std=c++20 -xc++-system-header --precompile iostream -o iostream.pcm
792 # This is not allowed!
793 $ clang++ iostream.pcm -c -o iostream.o
795 It makes sense due to the semantics of header units, which are just like headers.
800 The C++ spec allows the vendors to convert ``#include header-name`` to ``import header-name;`` when possible.
801 Currently, Clang would do this translation for the ``#include`` in the global module fragment.
803 For example, the following two examples are the same:
810 export void Hello() {
811 std::cout << "Hello.\n";
814 with the following one:
821 export void Hello() {
822 std::cout << "Hello.\n";
825 .. code-block:: console
827 $ clang++ -std=c++20 -xc++-system-header --precompile iostream -o iostream.pcm
828 $ clang++ -std=c++20 -fmodule-file=iostream.pcm --precompile M.cppm -o M.cpp
830 In the latter example, the Clang could find the BMI for the ``<iostream>``
831 so it would try to replace the ``#include <iostream>`` to ``import <iostream>;`` automatically.
834 Relationships between Clang modules
835 -----------------------------------
837 Header units have pretty similar semantics with Clang modules.
838 The semantics of both of them are like headers.
840 In fact, we could even "mimic" the sytle of header units by Clang modules:
846 header "/path/to/libstdcxx/iostream"
849 .. code-block:: console
851 $ clang++ -std=c++20 -fimplicit-modules -fmodule-map-file=.modulemap main.cpp
853 It would be simpler if we are using libcxx:
855 .. code-block:: console
857 $ clang++ -std=c++20 main.cpp -fimplicit-modules -fimplicit-module-maps
859 Since there is already one
860 `module map <https://github.com/llvm/llvm-project/blob/main/libcxx/include/module.modulemap.in>`_
861 in the source of libcxx.
863 Then immediately leads to the question: why don't we implement header units through Clang header modules?
865 The main reason for this is that Clang modules have more semantics like hierarchy or
866 wrapping multiple headers together as a big module.
867 However, these things are not part of Standard C++ Header units,
868 and we want to avoid the impression that these additional semantics get interpreted as Standard C++ behavior.
870 Another reason is that there are proposals to introduce module mappers to the C++ standard
871 (for example, https://wg21.link/p1184r2).
872 If we decide to reuse Clang's modulemap, we may get in trouble once we need to introduce another module mapper.
874 So the final answer for why we don't reuse the interface of Clang modules for header units is that
875 there are some differences between header units and Clang modules and that ignoring those
876 differences now would likely become a problem in the future.
878 Discover Dependencies
879 =====================
881 Prior to modules, all the translation units can be compiled parallelly.
882 But it is not true for the module units. The presence of module units requires
883 us to compile the translation units in a (topological) order.
885 The clang-scan-deps scanner implemented
886 `P1689 paper <https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1689r5.html>`_
887 to describe the order. Only named modules are supported now.
889 We need a compilation database to use clang-scan-deps. See
890 `JSON Compilation Database Format Specification <JSONCompilationDatabase.html>`_
891 for example. Note that the ``output`` entry is necessary for clang-scan-deps
892 to scan P1689 format. Here is an example:
898 export import :interface_part;
902 //--- interface_part.cppm
903 export module M:interface_part;
911 std::cout << "Hello ";
919 import :interface_part;
921 std::string W = "World.";
923 std::cout << W << std::endl;
928 import third_party_module;
935 And here is the compilation database:
942 "command": "<path-to-compiler-executable>/clang++ -std=c++20 M.cppm -c -o M.o",
948 "command": "<path-to-compiler-executable>/clang++ -std=c++20 Impl.cpp -c -o Impl.o",
954 "command": "<path-to-compiler-executable>/clang++ -std=c++20 impl_part.cppm -c -o impl_part.o",
955 "file": "impl_part.cppm",
956 "output": "impl_part.o"
960 "command": "<path-to-compiler-executable>/clang++ -std=c++20 interface_part.cppm -c -o interface_part.o",
961 "file": "interface_part.cppm",
962 "output": "interface_part.o"
966 "command": "<path-to-compiler-executable>/clang++ -std=c++20 User.cpp -c -o User.o",
972 And we can get the dependency information in P1689 format by:
974 .. code-block:: console
976 $ clang-scan-deps -format=p1689 -compilation-database P1689.json
986 "primary-output": "Impl.o",
990 "source-path": "M.cppm"
995 "primary-output": "M.o",
998 "is-interface": true,
1000 "source-path": "M.cppm"
1005 "logical-name": "M:interface_part",
1006 "source-path": "interface_part.cppm"
1009 "logical-name": "M:impl_part",
1010 "source-path": "impl_part.cppm"
1015 "primary-output": "User.o",
1018 "logical-name": "M",
1019 "source-path": "M.cppm"
1022 "logical-name": "third_party_module"
1027 "primary-output": "impl_part.o",
1030 "is-interface": false,
1031 "logical-name": "M:impl_part",
1032 "source-path": "impl_part.cppm"
1037 "logical-name": "M:interface_part",
1038 "source-path": "interface_part.cppm"
1043 "primary-output": "interface_part.o",
1046 "is-interface": true,
1047 "logical-name": "M:interface_part",
1048 "source-path": "interface_part.cppm"
1056 See the P1689 paper for the meaning of the fields.
1058 And if the user want a finer-grained control for any reason, e.g., to scan the generated source files,
1059 the user can choose to get the dependency information per file. For example:
1061 .. code-block:: console
1063 $ clang-scan-deps -format=p1689 -- <path-to-compiler-executable>/clang++ -std=c++20 impl_part.cppm -c -o impl_part.o
1067 .. code-block:: text
1073 "primary-output": "impl_part.o",
1076 "is-interface": false,
1077 "logical-name": "M:impl_part",
1078 "source-path": "impl_part.cppm"
1083 "logical-name": "M:interface_part"
1091 In this way, we can pass the single command line options after the ``--``.
1092 Then clang-scan-deps will extract the necessary information from the options.
1093 Note that we need to specify the path to the compiler executable instead of saying
1096 The users may want the scanner to get the transitional dependency information for headers.
1097 Otherwise, the users have to scan twice for the project, once for headers and once for modules.
1098 To address the requirement, clang-scan-deps will recognize the specified preprocessor options
1099 in the given command line and generate the corresponding dependency information. For example,
1101 .. code-block:: console
1103 $ clang-scan-deps -format=p1689 -- ../bin/clang++ -std=c++20 impl_part.cppm -c -o impl_part.o -MD -MT impl_part.ddi -MF impl_part.dep
1108 .. code-block:: text
1111 /usr/include/bits/wchar.h /usr/include/bits/types/wint_t.h \
1112 /usr/include/bits/types/mbstate_t.h \
1113 /usr/include/bits/types/__mbstate_t.h /usr/include/bits/types/__FILE.h \
1114 /usr/include/bits/types/FILE.h /usr/include/bits/types/locale_t.h \
1115 /usr/include/bits/types/__locale_t.h \
1118 When clang-scan-deps detects ``-MF`` option, clang-scan-deps will try to write the
1119 dependency information for headers to the file specified by ``-MF``.
1121 Possible Issues: Failed to find system headers
1122 ----------------------------------------------
1124 In case the users encounter errors like ``fatal error: 'stddef.h' file not found``,
1125 probably the specified ``<path-to-compiler-executable>/clang++`` refers to a symlink
1126 instead a real binary. There are 4 potential solutions to the problem:
1128 * (1) End users can resolve the issue by pointing the specified compiler executable to
1129 the real binary instead of the symlink.
1130 * (2) End users can invoke ``<path-to-compiler-executable>/clang++ -print-resource-dir``
1131 to get the corresponding resource directory for your compiler and add that directory
1132 to the include search paths manually in the build scripts.
1133 * (3) Build systems that use a compilation database as the input for clang-scan-deps
1134 scanner, the build system can add the flag ``--resource-dir-recipe invoke-compiler`` to
1135 the clang-scan-deps scanner to calculate the resources directory dynamically.
1136 The calculation happens only once for a unique ``<path-to-compiler-executable>/clang++``.
1137 * (4) For build systems that invokes the clang-scan-deps scanner per file, repeatedly
1138 calculating the resource directory may be inefficient. In such cases, the build
1139 system can cache the resource directory by itself and pass ``-resource-dir <resource-dir>``
1140 explicitly in the command line options:
1142 .. code-block:: console
1144 $ clang-scan-deps -format=p1689 -- <path-to-compiler-executable>/clang++ -std=c++20 -resource-dir <resource-dir> mod.cppm -c -o mod.o
1150 How modules speed up compilation
1151 --------------------------------
1153 A classic theory for the reason why modules speed up the compilation is:
1154 if there are ``n`` headers and ``m`` source files and each header is included by each source file,
1155 then the complexity of the compilation is ``O(n*m)``;
1156 But if there are ``n`` module interfaces and ``m`` source files, the complexity of the compilation is
1157 ``O(n+m)``. So, using modules would be a big win when scaling.
1158 In a simpler word, we could get rid of many redundant compilations by using modules.
1160 Roughly, this theory is correct. But the problem is that it is too rough.
1161 The behavior depends on the optimization level, as we will illustrate below.
1163 First is ``O0``. The compilation process is described in the following graph.
1165 .. code-block:: none
1167 ├-------------frontend----------┼-------------middle end----------------┼----backend----┤
1169 └---parsing----sema----codegen--┴----- transformations ---- codegen ----┴---- codegen --┘
1171 ┌---------------------------------------------------------------------------------------┐
1175 └---------------------------------------------------------------------------------------┘
1185 Here we can see that the source file (could be a non-module unit or a module unit) would get processed by the
1187 But the imported code would only get involved in semantic analysis, which is mainly about name lookup,
1188 overload resolution and template instantiation.
1189 All of these processes are fast relative to the whole compilation process.
1190 More importantly, the imported code only needs to be processed once in frontend code generation,
1191 as well as the whole middle end and backend.
1192 So we could get a big win for the compilation time in O0.
1194 But with optimizations, things are different:
1196 (we omit ``code generation`` part for each end due to the limited space)
1198 .. code-block:: none
1200 ├-------- frontend ---------┼--------------- middle end --------------------┼------ backend ----┤
1202 └--- parsing ---- sema -----┴--- optimizations --- IPO ---- optimizations---┴--- optimizations -┘
1204 ┌-----------------------------------------------------------------------------------------------┐
1208 └-----------------------------------------------------------------------------------------------┘
1209 ┌---------------------------------------┐
1215 └---------------------------------------┘
1217 It would be very unfortunate if we end up with worse performance after using modules.
1218 The main concern is that when we compile a source file, the compiler needs to see the function body
1219 of imported module units so that it can perform IPO (InterProcedural Optimization, primarily inlining
1220 in practice) to optimize functions in current source file with the help of the information provided by
1221 the imported module units.
1222 In other words, the imported code would be processed again and again in importee units
1223 by optimizations (including IPO itself).
1224 The optimizations before IPO and the IPO itself are the most time-consuming part in whole compilation process.
1225 So from this perspective, we might not be able to get the improvements described in the theory.
1226 But we could still save the time for optimizations after IPO and the whole backend.
1228 Overall, at ``O0`` the implementations of functions defined in a module will not impact module users,
1229 but at higher optimization levels the definitions of such functions are provided to user compilations for the
1230 purposes of optimization (but definitions of these functions are still not included in the use's object file)-
1231 this means the build speedup at higher optimization levels may be lower than expected given ``O0`` experience,
1232 but does provide by more optimization opportunities.
1234 Interoperability with Clang Modules
1235 -----------------------------------
1237 We **wish** to support clang modules and standard c++ modules at the same time,
1238 but the mixed using form is not well used/tested yet.
1240 Please file new github issues as you find interoperability problems.