[NFC][RemoveDIs] Prefer iterators over inst-pointers in InstCombine
[llvm-project.git] / lld / COFF / ICF.cpp
blob37f5e7549b7fc09bddcdfe5e2ff2c1bd74169858
1 //===- ICF.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // ICF is short for Identical Code Folding. That is a size optimization to
10 // identify and merge two or more read-only sections (typically functions)
11 // that happened to have the same contents. It usually reduces output size
12 // by a few percent.
14 // On Windows, ICF is enabled by default.
16 // See ELF/ICF.cpp for the details about the algorithm.
18 //===----------------------------------------------------------------------===//
20 #include "ICF.h"
21 #include "COFFLinkerContext.h"
22 #include "Chunks.h"
23 #include "Symbols.h"
24 #include "lld/Common/ErrorHandler.h"
25 #include "lld/Common/Timer.h"
26 #include "llvm/ADT/Hashing.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/Parallel.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Support/xxhash.h"
31 #include <algorithm>
32 #include <atomic>
33 #include <vector>
35 using namespace llvm;
37 namespace lld::coff {
39 class ICF {
40 public:
41 ICF(COFFLinkerContext &c) : ctx(c){};
42 void run();
44 private:
45 void segregate(size_t begin, size_t end, bool constant);
47 bool assocEquals(const SectionChunk *a, const SectionChunk *b);
49 bool equalsConstant(const SectionChunk *a, const SectionChunk *b);
50 bool equalsVariable(const SectionChunk *a, const SectionChunk *b);
52 bool isEligible(SectionChunk *c);
54 size_t findBoundary(size_t begin, size_t end);
56 void forEachClassRange(size_t begin, size_t end,
57 std::function<void(size_t, size_t)> fn);
59 void forEachClass(std::function<void(size_t, size_t)> fn);
61 std::vector<SectionChunk *> chunks;
62 int cnt = 0;
63 std::atomic<bool> repeat = {false};
65 COFFLinkerContext &ctx;
68 // Returns true if section S is subject of ICF.
70 // Microsoft's documentation
71 // (https://msdn.microsoft.com/en-us/library/bxwfs976.aspx; visited April
72 // 2017) says that /opt:icf folds both functions and read-only data.
73 // Despite that, the MSVC linker folds only functions. We found
74 // a few instances of programs that are not safe for data merging.
75 // Therefore, we merge only functions just like the MSVC tool. However, we also
76 // merge read-only sections in a couple of cases where the address of the
77 // section is insignificant to the user program and the behaviour matches that
78 // of the Visual C++ linker.
79 bool ICF::isEligible(SectionChunk *c) {
80 // Non-comdat chunks, dead chunks, and writable chunks are not eligible.
81 bool writable = c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_WRITE;
82 if (!c->isCOMDAT() || !c->live || writable)
83 return false;
85 // Under regular (not safe) ICF, all code sections are eligible.
86 if ((ctx.config.doICF == ICFLevel::All) &&
87 c->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_EXECUTE)
88 return true;
90 // .pdata and .xdata unwind info sections are eligible.
91 StringRef outSecName = c->getSectionName().split('$').first;
92 if (outSecName == ".pdata" || outSecName == ".xdata")
93 return true;
95 // So are vtables.
96 if (c->sym && c->sym->getName().starts_with("??_7"))
97 return true;
99 // Anything else not in an address-significance table is eligible.
100 return !c->keepUnique;
103 // Split an equivalence class into smaller classes.
104 void ICF::segregate(size_t begin, size_t end, bool constant) {
105 while (begin < end) {
106 // Divide [Begin, End) into two. Let Mid be the start index of the
107 // second group.
108 auto bound = std::stable_partition(
109 chunks.begin() + begin + 1, chunks.begin() + end, [&](SectionChunk *s) {
110 if (constant)
111 return equalsConstant(chunks[begin], s);
112 return equalsVariable(chunks[begin], s);
114 size_t mid = bound - chunks.begin();
116 // Split [Begin, End) into [Begin, Mid) and [Mid, End). We use Mid as an
117 // equivalence class ID because every group ends with a unique index.
118 for (size_t i = begin; i < mid; ++i)
119 chunks[i]->eqClass[(cnt + 1) % 2] = mid;
121 // If we created a group, we need to iterate the main loop again.
122 if (mid != end)
123 repeat = true;
125 begin = mid;
129 // Returns true if two sections' associative children are equal.
130 bool ICF::assocEquals(const SectionChunk *a, const SectionChunk *b) {
131 // Ignore associated metadata sections that don't participate in ICF, such as
132 // debug info and CFGuard metadata.
133 auto considerForICF = [](const SectionChunk &assoc) {
134 StringRef Name = assoc.getSectionName();
135 return !(Name.starts_with(".debug") || Name == ".gfids$y" ||
136 Name == ".giats$y" || Name == ".gljmp$y");
138 auto ra = make_filter_range(a->children(), considerForICF);
139 auto rb = make_filter_range(b->children(), considerForICF);
140 return std::equal(ra.begin(), ra.end(), rb.begin(), rb.end(),
141 [&](const SectionChunk &ia, const SectionChunk &ib) {
142 return ia.eqClass[cnt % 2] == ib.eqClass[cnt % 2];
146 // Compare "non-moving" part of two sections, namely everything
147 // except relocation targets.
148 bool ICF::equalsConstant(const SectionChunk *a, const SectionChunk *b) {
149 if (a->relocsSize != b->relocsSize)
150 return false;
152 // Compare relocations.
153 auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
154 if (r1.Type != r2.Type ||
155 r1.VirtualAddress != r2.VirtualAddress) {
156 return false;
158 Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
159 Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
160 if (b1 == b2)
161 return true;
162 if (auto *d1 = dyn_cast<DefinedRegular>(b1))
163 if (auto *d2 = dyn_cast<DefinedRegular>(b2))
164 return d1->getValue() == d2->getValue() &&
165 d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
166 return false;
168 if (!std::equal(a->getRelocs().begin(), a->getRelocs().end(),
169 b->getRelocs().begin(), eq))
170 return false;
172 // Compare section attributes and contents.
173 return a->getOutputCharacteristics() == b->getOutputCharacteristics() &&
174 a->getSectionName() == b->getSectionName() &&
175 a->header->SizeOfRawData == b->header->SizeOfRawData &&
176 a->checksum == b->checksum && a->getContents() == b->getContents() &&
177 assocEquals(a, b);
180 // Compare "moving" part of two sections, namely relocation targets.
181 bool ICF::equalsVariable(const SectionChunk *a, const SectionChunk *b) {
182 // Compare relocations.
183 auto eq = [&](const coff_relocation &r1, const coff_relocation &r2) {
184 Symbol *b1 = a->file->getSymbol(r1.SymbolTableIndex);
185 Symbol *b2 = b->file->getSymbol(r2.SymbolTableIndex);
186 if (b1 == b2)
187 return true;
188 if (auto *d1 = dyn_cast<DefinedRegular>(b1))
189 if (auto *d2 = dyn_cast<DefinedRegular>(b2))
190 return d1->getChunk()->eqClass[cnt % 2] == d2->getChunk()->eqClass[cnt % 2];
191 return false;
193 return std::equal(a->getRelocs().begin(), a->getRelocs().end(),
194 b->getRelocs().begin(), eq) &&
195 assocEquals(a, b);
198 // Find the first Chunk after Begin that has a different class from Begin.
199 size_t ICF::findBoundary(size_t begin, size_t end) {
200 for (size_t i = begin + 1; i < end; ++i)
201 if (chunks[begin]->eqClass[cnt % 2] != chunks[i]->eqClass[cnt % 2])
202 return i;
203 return end;
206 void ICF::forEachClassRange(size_t begin, size_t end,
207 std::function<void(size_t, size_t)> fn) {
208 while (begin < end) {
209 size_t mid = findBoundary(begin, end);
210 fn(begin, mid);
211 begin = mid;
215 // Call Fn on each class group.
216 void ICF::forEachClass(std::function<void(size_t, size_t)> fn) {
217 // If the number of sections are too small to use threading,
218 // call Fn sequentially.
219 if (chunks.size() < 1024) {
220 forEachClassRange(0, chunks.size(), fn);
221 ++cnt;
222 return;
225 // Shard into non-overlapping intervals, and call Fn in parallel.
226 // The sharding must be completed before any calls to Fn are made
227 // so that Fn can modify the Chunks in its shard without causing data
228 // races.
229 const size_t numShards = 256;
230 size_t step = chunks.size() / numShards;
231 size_t boundaries[numShards + 1];
232 boundaries[0] = 0;
233 boundaries[numShards] = chunks.size();
234 parallelFor(1, numShards, [&](size_t i) {
235 boundaries[i] = findBoundary((i - 1) * step, chunks.size());
237 parallelFor(1, numShards + 1, [&](size_t i) {
238 if (boundaries[i - 1] < boundaries[i]) {
239 forEachClassRange(boundaries[i - 1], boundaries[i], fn);
242 ++cnt;
245 // Merge identical COMDAT sections.
246 // Two sections are considered the same if their section headers,
247 // contents and relocations are all the same.
248 void ICF::run() {
249 ScopedTimer t(ctx.icfTimer);
251 // Collect only mergeable sections and group by hash value.
252 uint32_t nextId = 1;
253 for (Chunk *c : ctx.symtab.getChunks()) {
254 if (auto *sc = dyn_cast<SectionChunk>(c)) {
255 if (isEligible(sc))
256 chunks.push_back(sc);
257 else
258 sc->eqClass[0] = nextId++;
262 // Make sure that ICF doesn't merge sections that are being handled by string
263 // tail merging.
264 for (MergeChunk *mc : ctx.mergeChunkInstances)
265 if (mc)
266 for (SectionChunk *sc : mc->sections)
267 sc->eqClass[0] = nextId++;
269 // Initially, we use hash values to partition sections.
270 parallelForEach(chunks, [&](SectionChunk *sc) {
271 sc->eqClass[0] = xxh3_64bits(sc->getContents());
274 // Combine the hashes of the sections referenced by each section into its
275 // hash.
276 for (unsigned cnt = 0; cnt != 2; ++cnt) {
277 parallelForEach(chunks, [&](SectionChunk *sc) {
278 uint32_t hash = sc->eqClass[cnt % 2];
279 for (Symbol *b : sc->symbols())
280 if (auto *sym = dyn_cast_or_null<DefinedRegular>(b))
281 hash += sym->getChunk()->eqClass[cnt % 2];
282 // Set MSB to 1 to avoid collisions with non-hash classes.
283 sc->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
287 // From now on, sections in Chunks are ordered so that sections in
288 // the same group are consecutive in the vector.
289 llvm::stable_sort(chunks, [](const SectionChunk *a, const SectionChunk *b) {
290 return a->eqClass[0] < b->eqClass[0];
293 // Compare static contents and assign unique IDs for each static content.
294 forEachClass([&](size_t begin, size_t end) { segregate(begin, end, true); });
296 // Split groups by comparing relocations until convergence is obtained.
297 do {
298 repeat = false;
299 forEachClass(
300 [&](size_t begin, size_t end) { segregate(begin, end, false); });
301 } while (repeat);
303 log("ICF needed " + Twine(cnt) + " iterations");
305 // Merge sections in the same classes.
306 forEachClass([&](size_t begin, size_t end) {
307 if (end - begin == 1)
308 return;
310 log("Selected " + chunks[begin]->getDebugName());
311 for (size_t i = begin + 1; i < end; ++i) {
312 log(" Removed " + chunks[i]->getDebugName());
313 chunks[begin]->replace(chunks[i]);
318 // Entry point to ICF.
319 void doICF(COFFLinkerContext &ctx) { ICF(ctx).run(); }
321 } // namespace lld::coff