[NFC][RemoveDIs] Prefer iterators over inst-pointers in InstCombine
[llvm-project.git] / llvm / lib / Transforms / InstCombine / InstCombineAndOrXor.cpp
blobd8c2827d25831d3eab7c45b7d6fae530718f896d
1 //===- InstCombineAndOrXor.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitAnd, visitOr, and visitXor functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/CmpInstAnalysis.h"
15 #include "llvm/Analysis/InstructionSimplify.h"
16 #include "llvm/IR/ConstantRange.h"
17 #include "llvm/IR/Intrinsics.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Transforms/InstCombine/InstCombiner.h"
20 #include "llvm/Transforms/Utils/Local.h"
22 using namespace llvm;
23 using namespace PatternMatch;
25 #define DEBUG_TYPE "instcombine"
27 /// This is the complement of getICmpCode, which turns an opcode and two
28 /// operands into either a constant true or false, or a brand new ICmp
29 /// instruction. The sign is passed in to determine which kind of predicate to
30 /// use in the new icmp instruction.
31 static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS,
32 InstCombiner::BuilderTy &Builder) {
33 ICmpInst::Predicate NewPred;
34 if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred))
35 return TorF;
36 return Builder.CreateICmp(NewPred, LHS, RHS);
39 /// This is the complement of getFCmpCode, which turns an opcode and two
40 /// operands into either a FCmp instruction, or a true/false constant.
41 static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS,
42 InstCombiner::BuilderTy &Builder) {
43 FCmpInst::Predicate NewPred;
44 if (Constant *TorF = getPredForFCmpCode(Code, LHS->getType(), NewPred))
45 return TorF;
46 return Builder.CreateFCmp(NewPred, LHS, RHS);
49 /// Transform BITWISE_OP(BSWAP(A),BSWAP(B)) or
50 /// BITWISE_OP(BSWAP(A), Constant) to BSWAP(BITWISE_OP(A, B))
51 /// \param I Binary operator to transform.
52 /// \return Pointer to node that must replace the original binary operator, or
53 /// null pointer if no transformation was made.
54 static Value *SimplifyBSwap(BinaryOperator &I,
55 InstCombiner::BuilderTy &Builder) {
56 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bswap simplifying");
58 Value *OldLHS = I.getOperand(0);
59 Value *OldRHS = I.getOperand(1);
61 Value *NewLHS;
62 if (!match(OldLHS, m_BSwap(m_Value(NewLHS))))
63 return nullptr;
65 Value *NewRHS;
66 const APInt *C;
68 if (match(OldRHS, m_BSwap(m_Value(NewRHS)))) {
69 // OP( BSWAP(x), BSWAP(y) ) -> BSWAP( OP(x, y) )
70 if (!OldLHS->hasOneUse() && !OldRHS->hasOneUse())
71 return nullptr;
72 // NewRHS initialized by the matcher.
73 } else if (match(OldRHS, m_APInt(C))) {
74 // OP( BSWAP(x), CONSTANT ) -> BSWAP( OP(x, BSWAP(CONSTANT) ) )
75 if (!OldLHS->hasOneUse())
76 return nullptr;
77 NewRHS = ConstantInt::get(I.getType(), C->byteSwap());
78 } else
79 return nullptr;
81 Value *BinOp = Builder.CreateBinOp(I.getOpcode(), NewLHS, NewRHS);
82 Function *F = Intrinsic::getDeclaration(I.getModule(), Intrinsic::bswap,
83 I.getType());
84 return Builder.CreateCall(F, BinOp);
87 /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise
88 /// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates
89 /// whether to treat V, Lo, and Hi as signed or not.
90 Value *InstCombinerImpl::insertRangeTest(Value *V, const APInt &Lo,
91 const APInt &Hi, bool isSigned,
92 bool Inside) {
93 assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) &&
94 "Lo is not < Hi in range emission code!");
96 Type *Ty = V->getType();
98 // V >= Min && V < Hi --> V < Hi
99 // V < Min || V >= Hi --> V >= Hi
100 ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE;
101 if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) {
102 Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred;
103 return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi));
106 // V >= Lo && V < Hi --> V - Lo u< Hi - Lo
107 // V < Lo || V >= Hi --> V - Lo u>= Hi - Lo
108 Value *VMinusLo =
109 Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off");
110 Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo);
111 return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo);
114 /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns
115 /// that can be simplified.
116 /// One of A and B is considered the mask. The other is the value. This is
117 /// described as the "AMask" or "BMask" part of the enum. If the enum contains
118 /// only "Mask", then both A and B can be considered masks. If A is the mask,
119 /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0.
120 /// If both A and C are constants, this proof is also easy.
121 /// For the following explanations, we assume that A is the mask.
123 /// "AllOnes" declares that the comparison is true only if (A & B) == A or all
124 /// bits of A are set in B.
125 /// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes
127 /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all
128 /// bits of A are cleared in B.
129 /// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes
131 /// "Mixed" declares that (A & B) == C and C might or might not contain any
132 /// number of one bits and zero bits.
133 /// Example: (icmp eq (A & 3), 1) -> AMask_Mixed
135 /// "Not" means that in above descriptions "==" should be replaced by "!=".
136 /// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes
138 /// If the mask A contains a single bit, then the following is equivalent:
139 /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
140 /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
141 enum MaskedICmpType {
142 AMask_AllOnes = 1,
143 AMask_NotAllOnes = 2,
144 BMask_AllOnes = 4,
145 BMask_NotAllOnes = 8,
146 Mask_AllZeros = 16,
147 Mask_NotAllZeros = 32,
148 AMask_Mixed = 64,
149 AMask_NotMixed = 128,
150 BMask_Mixed = 256,
151 BMask_NotMixed = 512
154 /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C)
155 /// satisfies.
156 static unsigned getMaskedICmpType(Value *A, Value *B, Value *C,
157 ICmpInst::Predicate Pred) {
158 const APInt *ConstA = nullptr, *ConstB = nullptr, *ConstC = nullptr;
159 match(A, m_APInt(ConstA));
160 match(B, m_APInt(ConstB));
161 match(C, m_APInt(ConstC));
162 bool IsEq = (Pred == ICmpInst::ICMP_EQ);
163 bool IsAPow2 = ConstA && ConstA->isPowerOf2();
164 bool IsBPow2 = ConstB && ConstB->isPowerOf2();
165 unsigned MaskVal = 0;
166 if (ConstC && ConstC->isZero()) {
167 // if C is zero, then both A and B qualify as mask
168 MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed)
169 : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed));
170 if (IsAPow2)
171 MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed)
172 : (AMask_AllOnes | AMask_Mixed));
173 if (IsBPow2)
174 MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed)
175 : (BMask_AllOnes | BMask_Mixed));
176 return MaskVal;
179 if (A == C) {
180 MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed)
181 : (AMask_NotAllOnes | AMask_NotMixed));
182 if (IsAPow2)
183 MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed)
184 : (Mask_AllZeros | AMask_Mixed));
185 } else if (ConstA && ConstC && ConstC->isSubsetOf(*ConstA)) {
186 MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed);
189 if (B == C) {
190 MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed)
191 : (BMask_NotAllOnes | BMask_NotMixed));
192 if (IsBPow2)
193 MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed)
194 : (Mask_AllZeros | BMask_Mixed));
195 } else if (ConstB && ConstC && ConstC->isSubsetOf(*ConstB)) {
196 MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed);
199 return MaskVal;
202 /// Convert an analysis of a masked ICmp into its equivalent if all boolean
203 /// operations had the opposite sense. Since each "NotXXX" flag (recording !=)
204 /// is adjacent to the corresponding normal flag (recording ==), this just
205 /// involves swapping those bits over.
206 static unsigned conjugateICmpMask(unsigned Mask) {
207 unsigned NewMask;
208 NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros |
209 AMask_Mixed | BMask_Mixed))
210 << 1;
212 NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros |
213 AMask_NotMixed | BMask_NotMixed))
214 >> 1;
216 return NewMask;
219 // Adapts the external decomposeBitTestICmp for local use.
220 static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred,
221 Value *&X, Value *&Y, Value *&Z) {
222 APInt Mask;
223 if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask))
224 return false;
226 Y = ConstantInt::get(X->getType(), Mask);
227 Z = ConstantInt::get(X->getType(), 0);
228 return true;
231 /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E).
232 /// Return the pattern classes (from MaskedICmpType) for the left hand side and
233 /// the right hand side as a pair.
234 /// LHS and RHS are the left hand side and the right hand side ICmps and PredL
235 /// and PredR are their predicates, respectively.
236 static std::optional<std::pair<unsigned, unsigned>> getMaskedTypeForICmpPair(
237 Value *&A, Value *&B, Value *&C, Value *&D, Value *&E, ICmpInst *LHS,
238 ICmpInst *RHS, ICmpInst::Predicate &PredL, ICmpInst::Predicate &PredR) {
239 // Don't allow pointers. Splat vectors are fine.
240 if (!LHS->getOperand(0)->getType()->isIntOrIntVectorTy() ||
241 !RHS->getOperand(0)->getType()->isIntOrIntVectorTy())
242 return std::nullopt;
244 // Here comes the tricky part:
245 // LHS might be of the form L11 & L12 == X, X == L21 & L22,
246 // and L11 & L12 == L21 & L22. The same goes for RHS.
247 // Now we must find those components L** and R**, that are equal, so
248 // that we can extract the parameters A, B, C, D, and E for the canonical
249 // above.
250 Value *L1 = LHS->getOperand(0);
251 Value *L2 = LHS->getOperand(1);
252 Value *L11, *L12, *L21, *L22;
253 // Check whether the icmp can be decomposed into a bit test.
254 if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) {
255 L21 = L22 = L1 = nullptr;
256 } else {
257 // Look for ANDs in the LHS icmp.
258 if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) {
259 // Any icmp can be viewed as being trivially masked; if it allows us to
260 // remove one, it's worth it.
261 L11 = L1;
262 L12 = Constant::getAllOnesValue(L1->getType());
265 if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) {
266 L21 = L2;
267 L22 = Constant::getAllOnesValue(L2->getType());
271 // Bail if LHS was a icmp that can't be decomposed into an equality.
272 if (!ICmpInst::isEquality(PredL))
273 return std::nullopt;
275 Value *R1 = RHS->getOperand(0);
276 Value *R2 = RHS->getOperand(1);
277 Value *R11, *R12;
278 bool Ok = false;
279 if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) {
280 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
281 A = R11;
282 D = R12;
283 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
284 A = R12;
285 D = R11;
286 } else {
287 return std::nullopt;
289 E = R2;
290 R1 = nullptr;
291 Ok = true;
292 } else {
293 if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) {
294 // As before, model no mask as a trivial mask if it'll let us do an
295 // optimization.
296 R11 = R1;
297 R12 = Constant::getAllOnesValue(R1->getType());
300 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
301 A = R11;
302 D = R12;
303 E = R2;
304 Ok = true;
305 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
306 A = R12;
307 D = R11;
308 E = R2;
309 Ok = true;
313 // Bail if RHS was a icmp that can't be decomposed into an equality.
314 if (!ICmpInst::isEquality(PredR))
315 return std::nullopt;
317 // Look for ANDs on the right side of the RHS icmp.
318 if (!Ok) {
319 if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) {
320 R11 = R2;
321 R12 = Constant::getAllOnesValue(R2->getType());
324 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
325 A = R11;
326 D = R12;
327 E = R1;
328 Ok = true;
329 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
330 A = R12;
331 D = R11;
332 E = R1;
333 Ok = true;
334 } else {
335 return std::nullopt;
338 assert(Ok && "Failed to find AND on the right side of the RHS icmp.");
341 if (L11 == A) {
342 B = L12;
343 C = L2;
344 } else if (L12 == A) {
345 B = L11;
346 C = L2;
347 } else if (L21 == A) {
348 B = L22;
349 C = L1;
350 } else if (L22 == A) {
351 B = L21;
352 C = L1;
355 unsigned LeftType = getMaskedICmpType(A, B, C, PredL);
356 unsigned RightType = getMaskedICmpType(A, D, E, PredR);
357 return std::optional<std::pair<unsigned, unsigned>>(
358 std::make_pair(LeftType, RightType));
361 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single
362 /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros
363 /// and the right hand side is of type BMask_Mixed. For example,
364 /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8).
365 /// Also used for logical and/or, must be poison safe.
366 static Value *foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
367 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
368 Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
369 InstCombiner::BuilderTy &Builder) {
370 // We are given the canonical form:
371 // (icmp ne (A & B), 0) & (icmp eq (A & D), E).
372 // where D & E == E.
374 // If IsAnd is false, we get it in negated form:
375 // (icmp eq (A & B), 0) | (icmp ne (A & D), E) ->
376 // !((icmp ne (A & B), 0) & (icmp eq (A & D), E)).
378 // We currently handle the case of B, C, D, E are constant.
380 const APInt *BCst, *CCst, *DCst, *OrigECst;
381 if (!match(B, m_APInt(BCst)) || !match(C, m_APInt(CCst)) ||
382 !match(D, m_APInt(DCst)) || !match(E, m_APInt(OrigECst)))
383 return nullptr;
385 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
387 // Update E to the canonical form when D is a power of two and RHS is
388 // canonicalized as,
389 // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or
390 // (icmp ne (A & D), D) -> (icmp eq (A & D), 0).
391 APInt ECst = *OrigECst;
392 if (PredR != NewCC)
393 ECst ^= *DCst;
395 // If B or D is zero, skip because if LHS or RHS can be trivially folded by
396 // other folding rules and this pattern won't apply any more.
397 if (*BCst == 0 || *DCst == 0)
398 return nullptr;
400 // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't
401 // deduce anything from it.
402 // For example,
403 // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding.
404 if ((*BCst & *DCst) == 0)
405 return nullptr;
407 // If the following two conditions are met:
409 // 1. mask B covers only a single bit that's not covered by mask D, that is,
410 // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of
411 // B and D has only one bit set) and,
413 // 2. RHS (and E) indicates that the rest of B's bits are zero (in other
414 // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0
416 // then that single bit in B must be one and thus the whole expression can be
417 // folded to
418 // (A & (B | D)) == (B & (B ^ D)) | E.
420 // For example,
421 // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9)
422 // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8)
423 if ((((*BCst & *DCst) & ECst) == 0) &&
424 (*BCst & (*BCst ^ *DCst)).isPowerOf2()) {
425 APInt BorD = *BCst | *DCst;
426 APInt BandBxorDorE = (*BCst & (*BCst ^ *DCst)) | ECst;
427 Value *NewMask = ConstantInt::get(A->getType(), BorD);
428 Value *NewMaskedValue = ConstantInt::get(A->getType(), BandBxorDorE);
429 Value *NewAnd = Builder.CreateAnd(A, NewMask);
430 return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue);
433 auto IsSubSetOrEqual = [](const APInt *C1, const APInt *C2) {
434 return (*C1 & *C2) == *C1;
436 auto IsSuperSetOrEqual = [](const APInt *C1, const APInt *C2) {
437 return (*C1 & *C2) == *C2;
440 // In the following, we consider only the cases where B is a superset of D, B
441 // is a subset of D, or B == D because otherwise there's at least one bit
442 // covered by B but not D, in which case we can't deduce much from it, so
443 // no folding (aside from the single must-be-one bit case right above.)
444 // For example,
445 // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding.
446 if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst))
447 return nullptr;
449 // At this point, either B is a superset of D, B is a subset of D or B == D.
451 // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict
452 // and the whole expression becomes false (or true if negated), otherwise, no
453 // folding.
454 // For example,
455 // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false.
456 // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding.
457 if (ECst.isZero()) {
458 if (IsSubSetOrEqual(BCst, DCst))
459 return ConstantInt::get(LHS->getType(), !IsAnd);
460 return nullptr;
463 // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B ==
464 // D. If B is a superset of (or equal to) D, since E is not zero, LHS is
465 // subsumed by RHS (RHS implies LHS.) So the whole expression becomes
466 // RHS. For example,
467 // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
468 // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
469 if (IsSuperSetOrEqual(BCst, DCst))
470 return RHS;
471 // Otherwise, B is a subset of D. If B and E have a common bit set,
472 // ie. (B & E) != 0, then LHS is subsumed by RHS. For example.
473 // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8).
474 assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code");
475 if ((*BCst & ECst) != 0)
476 return RHS;
477 // Otherwise, LHS and RHS contradict and the whole expression becomes false
478 // (or true if negated.) For example,
479 // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false.
480 // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false.
481 return ConstantInt::get(LHS->getType(), !IsAnd);
484 /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single
485 /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side
486 /// aren't of the common mask pattern type.
487 /// Also used for logical and/or, must be poison safe.
488 static Value *foldLogOpOfMaskedICmpsAsymmetric(
489 ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C,
490 Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR,
491 unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder) {
492 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
493 "Expected equality predicates for masked type of icmps.");
494 // Handle Mask_NotAllZeros-BMask_Mixed cases.
495 // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or
496 // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E)
497 // which gets swapped to
498 // (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C).
499 if (!IsAnd) {
500 LHSMask = conjugateICmpMask(LHSMask);
501 RHSMask = conjugateICmpMask(RHSMask);
503 if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) {
504 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
505 LHS, RHS, IsAnd, A, B, C, D, E,
506 PredL, PredR, Builder)) {
507 return V;
509 } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) {
510 if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed(
511 RHS, LHS, IsAnd, A, D, E, B, C,
512 PredR, PredL, Builder)) {
513 return V;
516 return nullptr;
519 /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
520 /// into a single (icmp(A & X) ==/!= Y).
521 static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd,
522 bool IsLogical,
523 InstCombiner::BuilderTy &Builder) {
524 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
525 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
526 std::optional<std::pair<unsigned, unsigned>> MaskPair =
527 getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR);
528 if (!MaskPair)
529 return nullptr;
530 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
531 "Expected equality predicates for masked type of icmps.");
532 unsigned LHSMask = MaskPair->first;
533 unsigned RHSMask = MaskPair->second;
534 unsigned Mask = LHSMask & RHSMask;
535 if (Mask == 0) {
536 // Even if the two sides don't share a common pattern, check if folding can
537 // still happen.
538 if (Value *V = foldLogOpOfMaskedICmpsAsymmetric(
539 LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask,
540 Builder))
541 return V;
542 return nullptr;
545 // In full generality:
546 // (icmp (A & B) Op C) | (icmp (A & D) Op E)
547 // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ]
549 // If the latter can be converted into (icmp (A & X) Op Y) then the former is
550 // equivalent to (icmp (A & X) !Op Y).
552 // Therefore, we can pretend for the rest of this function that we're dealing
553 // with the conjunction, provided we flip the sense of any comparisons (both
554 // input and output).
556 // In most cases we're going to produce an EQ for the "&&" case.
557 ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
558 if (!IsAnd) {
559 // Convert the masking analysis into its equivalent with negated
560 // comparisons.
561 Mask = conjugateICmpMask(Mask);
564 if (Mask & Mask_AllZeros) {
565 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
566 // -> (icmp eq (A & (B|D)), 0)
567 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
568 return nullptr; // TODO: Use freeze?
569 Value *NewOr = Builder.CreateOr(B, D);
570 Value *NewAnd = Builder.CreateAnd(A, NewOr);
571 // We can't use C as zero because we might actually handle
572 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
573 // with B and D, having a single bit set.
574 Value *Zero = Constant::getNullValue(A->getType());
575 return Builder.CreateICmp(NewCC, NewAnd, Zero);
577 if (Mask & BMask_AllOnes) {
578 // (icmp eq (A & B), B) & (icmp eq (A & D), D)
579 // -> (icmp eq (A & (B|D)), (B|D))
580 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
581 return nullptr; // TODO: Use freeze?
582 Value *NewOr = Builder.CreateOr(B, D);
583 Value *NewAnd = Builder.CreateAnd(A, NewOr);
584 return Builder.CreateICmp(NewCC, NewAnd, NewOr);
586 if (Mask & AMask_AllOnes) {
587 // (icmp eq (A & B), A) & (icmp eq (A & D), A)
588 // -> (icmp eq (A & (B&D)), A)
589 if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D))
590 return nullptr; // TODO: Use freeze?
591 Value *NewAnd1 = Builder.CreateAnd(B, D);
592 Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1);
593 return Builder.CreateICmp(NewCC, NewAnd2, A);
596 // Remaining cases assume at least that B and D are constant, and depend on
597 // their actual values. This isn't strictly necessary, just a "handle the
598 // easy cases for now" decision.
599 const APInt *ConstB, *ConstD;
600 if (!match(B, m_APInt(ConstB)) || !match(D, m_APInt(ConstD)))
601 return nullptr;
603 if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) {
604 // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and
605 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
606 // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0)
607 // Only valid if one of the masks is a superset of the other (check "B&D" is
608 // the same as either B or D).
609 APInt NewMask = *ConstB & *ConstD;
610 if (NewMask == *ConstB)
611 return LHS;
612 else if (NewMask == *ConstD)
613 return RHS;
616 if (Mask & AMask_NotAllOnes) {
617 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
618 // -> (icmp ne (A & B), A) or (icmp ne (A & D), A)
619 // Only valid if one of the masks is a superset of the other (check "B|D" is
620 // the same as either B or D).
621 APInt NewMask = *ConstB | *ConstD;
622 if (NewMask == *ConstB)
623 return LHS;
624 else if (NewMask == *ConstD)
625 return RHS;
628 if (Mask & (BMask_Mixed | BMask_NotMixed)) {
629 // Mixed:
630 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
631 // We already know that B & C == C && D & E == E.
632 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
633 // C and E, which are shared by both the mask B and the mask D, don't
634 // contradict, then we can transform to
635 // -> (icmp eq (A & (B|D)), (C|E))
636 // Currently, we only handle the case of B, C, D, and E being constant.
637 // We can't simply use C and E because we might actually handle
638 // (icmp ne (A & B), B) & (icmp eq (A & D), D)
639 // with B and D, having a single bit set.
641 // NotMixed:
642 // (icmp ne (A & B), C) & (icmp ne (A & D), E)
643 // -> (icmp ne (A & (B & D)), (C & E))
644 // Check the intersection (B & D) for inequality.
645 // Assume that (B & D) == B || (B & D) == D, i.e B/D is a subset of D/B
646 // and (B & D) & (C ^ E) == 0, bits of C and E, which are shared by both the
647 // B and the D, don't contradict.
648 // Note that we can assume (~B & C) == 0 && (~D & E) == 0, previous
649 // operation should delete these icmps if it hadn't been met.
651 const APInt *OldConstC, *OldConstE;
652 if (!match(C, m_APInt(OldConstC)) || !match(E, m_APInt(OldConstE)))
653 return nullptr;
655 auto FoldBMixed = [&](ICmpInst::Predicate CC, bool IsNot) -> Value * {
656 CC = IsNot ? CmpInst::getInversePredicate(CC) : CC;
657 const APInt ConstC = PredL != CC ? *ConstB ^ *OldConstC : *OldConstC;
658 const APInt ConstE = PredR != CC ? *ConstD ^ *OldConstE : *OldConstE;
660 if (((*ConstB & *ConstD) & (ConstC ^ ConstE)).getBoolValue())
661 return IsNot ? nullptr : ConstantInt::get(LHS->getType(), !IsAnd);
663 if (IsNot && !ConstB->isSubsetOf(*ConstD) && !ConstD->isSubsetOf(*ConstB))
664 return nullptr;
666 APInt BD, CE;
667 if (IsNot) {
668 BD = *ConstB & *ConstD;
669 CE = ConstC & ConstE;
670 } else {
671 BD = *ConstB | *ConstD;
672 CE = ConstC | ConstE;
674 Value *NewAnd = Builder.CreateAnd(A, BD);
675 Value *CEVal = ConstantInt::get(A->getType(), CE);
676 return Builder.CreateICmp(CC, CEVal, NewAnd);
679 if (Mask & BMask_Mixed)
680 return FoldBMixed(NewCC, false);
681 if (Mask & BMask_NotMixed) // can be else also
682 return FoldBMixed(NewCC, true);
684 return nullptr;
687 /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp.
688 /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
689 /// If \p Inverted is true then the check is for the inverted range, e.g.
690 /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
691 Value *InstCombinerImpl::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1,
692 bool Inverted) {
693 // Check the lower range comparison, e.g. x >= 0
694 // InstCombine already ensured that if there is a constant it's on the RHS.
695 ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1));
696 if (!RangeStart)
697 return nullptr;
699 ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() :
700 Cmp0->getPredicate());
702 // Accept x > -1 or x >= 0 (after potentially inverting the predicate).
703 if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) ||
704 (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero())))
705 return nullptr;
707 ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() :
708 Cmp1->getPredicate());
710 Value *Input = Cmp0->getOperand(0);
711 Value *RangeEnd;
712 if (Cmp1->getOperand(0) == Input) {
713 // For the upper range compare we have: icmp x, n
714 RangeEnd = Cmp1->getOperand(1);
715 } else if (Cmp1->getOperand(1) == Input) {
716 // For the upper range compare we have: icmp n, x
717 RangeEnd = Cmp1->getOperand(0);
718 Pred1 = ICmpInst::getSwappedPredicate(Pred1);
719 } else {
720 return nullptr;
723 // Check the upper range comparison, e.g. x < n
724 ICmpInst::Predicate NewPred;
725 switch (Pred1) {
726 case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break;
727 case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break;
728 default: return nullptr;
731 // This simplification is only valid if the upper range is not negative.
732 KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1);
733 if (!Known.isNonNegative())
734 return nullptr;
736 if (Inverted)
737 NewPred = ICmpInst::getInversePredicate(NewPred);
739 return Builder.CreateICmp(NewPred, Input, RangeEnd);
742 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
743 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
744 Value *InstCombinerImpl::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS,
745 ICmpInst *RHS,
746 Instruction *CxtI,
747 bool IsAnd,
748 bool IsLogical) {
749 CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
750 if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred)
751 return nullptr;
753 if (!match(LHS->getOperand(1), m_Zero()) ||
754 !match(RHS->getOperand(1), m_Zero()))
755 return nullptr;
757 Value *L1, *L2, *R1, *R2;
758 if (match(LHS->getOperand(0), m_And(m_Value(L1), m_Value(L2))) &&
759 match(RHS->getOperand(0), m_And(m_Value(R1), m_Value(R2)))) {
760 if (L1 == R2 || L2 == R2)
761 std::swap(R1, R2);
762 if (L2 == R1)
763 std::swap(L1, L2);
765 if (L1 == R1 &&
766 isKnownToBeAPowerOfTwo(L2, false, 0, CxtI) &&
767 isKnownToBeAPowerOfTwo(R2, false, 0, CxtI)) {
768 // If this is a logical and/or, then we must prevent propagation of a
769 // poison value from the RHS by inserting freeze.
770 if (IsLogical)
771 R2 = Builder.CreateFreeze(R2);
772 Value *Mask = Builder.CreateOr(L2, R2);
773 Value *Masked = Builder.CreateAnd(L1, Mask);
774 auto NewPred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
775 return Builder.CreateICmp(NewPred, Masked, Mask);
779 return nullptr;
782 /// General pattern:
783 /// X & Y
785 /// Where Y is checking that all the high bits (covered by a mask 4294967168)
786 /// are uniform, i.e. %arg & 4294967168 can be either 4294967168 or 0
787 /// Pattern can be one of:
788 /// %t = add i32 %arg, 128
789 /// %r = icmp ult i32 %t, 256
790 /// Or
791 /// %t0 = shl i32 %arg, 24
792 /// %t1 = ashr i32 %t0, 24
793 /// %r = icmp eq i32 %t1, %arg
794 /// Or
795 /// %t0 = trunc i32 %arg to i8
796 /// %t1 = sext i8 %t0 to i32
797 /// %r = icmp eq i32 %t1, %arg
798 /// This pattern is a signed truncation check.
800 /// And X is checking that some bit in that same mask is zero.
801 /// I.e. can be one of:
802 /// %r = icmp sgt i32 %arg, -1
803 /// Or
804 /// %t = and i32 %arg, 2147483648
805 /// %r = icmp eq i32 %t, 0
807 /// Since we are checking that all the bits in that mask are the same,
808 /// and a particular bit is zero, what we are really checking is that all the
809 /// masked bits are zero.
810 /// So this should be transformed to:
811 /// %r = icmp ult i32 %arg, 128
812 static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1,
813 Instruction &CxtI,
814 InstCombiner::BuilderTy &Builder) {
815 assert(CxtI.getOpcode() == Instruction::And);
817 // Match icmp ult (add %arg, C01), C1 (C1 == C01 << 1; powers of two)
818 auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X,
819 APInt &SignBitMask) -> bool {
820 CmpInst::Predicate Pred;
821 const APInt *I01, *I1; // powers of two; I1 == I01 << 1
822 if (!(match(ICmp,
823 m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) &&
824 Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1))
825 return false;
826 // Which bit is the new sign bit as per the 'signed truncation' pattern?
827 SignBitMask = *I01;
828 return true;
831 // One icmp needs to be 'signed truncation check'.
832 // We need to match this first, else we will mismatch commutative cases.
833 Value *X1;
834 APInt HighestBit;
835 ICmpInst *OtherICmp;
836 if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit))
837 OtherICmp = ICmp0;
838 else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit))
839 OtherICmp = ICmp1;
840 else
841 return nullptr;
843 assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)");
845 // Try to match/decompose into: icmp eq (X & Mask), 0
846 auto tryToDecompose = [](ICmpInst *ICmp, Value *&X,
847 APInt &UnsetBitsMask) -> bool {
848 CmpInst::Predicate Pred = ICmp->getPredicate();
849 // Can it be decomposed into icmp eq (X & Mask), 0 ?
850 if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1),
851 Pred, X, UnsetBitsMask,
852 /*LookThroughTrunc=*/false) &&
853 Pred == ICmpInst::ICMP_EQ)
854 return true;
855 // Is it icmp eq (X & Mask), 0 already?
856 const APInt *Mask;
857 if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) &&
858 Pred == ICmpInst::ICMP_EQ) {
859 UnsetBitsMask = *Mask;
860 return true;
862 return false;
865 // And the other icmp needs to be decomposable into a bit test.
866 Value *X0;
867 APInt UnsetBitsMask;
868 if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask))
869 return nullptr;
871 assert(!UnsetBitsMask.isZero() && "empty mask makes no sense.");
873 // Are they working on the same value?
874 Value *X;
875 if (X1 == X0) {
876 // Ok as is.
877 X = X1;
878 } else if (match(X0, m_Trunc(m_Specific(X1)))) {
879 UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits());
880 X = X1;
881 } else
882 return nullptr;
884 // So which bits should be uniform as per the 'signed truncation check'?
885 // (all the bits starting with (i.e. including) HighestBit)
886 APInt SignBitsMask = ~(HighestBit - 1U);
888 // UnsetBitsMask must have some common bits with SignBitsMask,
889 if (!UnsetBitsMask.intersects(SignBitsMask))
890 return nullptr;
892 // Does UnsetBitsMask contain any bits outside of SignBitsMask?
893 if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) {
894 APInt OtherHighestBit = (~UnsetBitsMask) + 1U;
895 if (!OtherHighestBit.isPowerOf2())
896 return nullptr;
897 HighestBit = APIntOps::umin(HighestBit, OtherHighestBit);
899 // Else, if it does not, then all is ok as-is.
901 // %r = icmp ult %X, SignBit
902 return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit),
903 CxtI.getName() + ".simplified");
906 /// Fold (icmp eq ctpop(X) 1) | (icmp eq X 0) into (icmp ult ctpop(X) 2) and
907 /// fold (icmp ne ctpop(X) 1) & (icmp ne X 0) into (icmp ugt ctpop(X) 1).
908 /// Also used for logical and/or, must be poison safe.
909 static Value *foldIsPowerOf2OrZero(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd,
910 InstCombiner::BuilderTy &Builder) {
911 CmpInst::Predicate Pred0, Pred1;
912 Value *X;
913 if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)),
914 m_SpecificInt(1))) ||
915 !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())))
916 return nullptr;
918 Value *CtPop = Cmp0->getOperand(0);
919 if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_NE)
920 return Builder.CreateICmpUGT(CtPop, ConstantInt::get(CtPop->getType(), 1));
921 if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_EQ)
922 return Builder.CreateICmpULT(CtPop, ConstantInt::get(CtPop->getType(), 2));
924 return nullptr;
927 /// Reduce a pair of compares that check if a value has exactly 1 bit set.
928 /// Also used for logical and/or, must be poison safe.
929 static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd,
930 InstCombiner::BuilderTy &Builder) {
931 // Handle 'and' / 'or' commutation: make the equality check the first operand.
932 if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE)
933 std::swap(Cmp0, Cmp1);
934 else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ)
935 std::swap(Cmp0, Cmp1);
937 // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1
938 CmpInst::Predicate Pred0, Pred1;
939 Value *X;
940 if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
941 match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
942 m_SpecificInt(2))) &&
943 Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) {
944 Value *CtPop = Cmp1->getOperand(0);
945 return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1));
947 // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1
948 if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) &&
949 match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)),
950 m_SpecificInt(1))) &&
951 Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) {
952 Value *CtPop = Cmp1->getOperand(0);
953 return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1));
955 return nullptr;
958 /// Try to fold (icmp(A & B) == 0) & (icmp(A & D) != E) into (icmp A u< D) iff
959 /// B is a contiguous set of ones starting from the most significant bit
960 /// (negative power of 2), D and E are equal, and D is a contiguous set of ones
961 /// starting at the most significant zero bit in B. Parameter B supports masking
962 /// using undef/poison in either scalar or vector values.
963 static Value *foldNegativePower2AndShiftedMask(
964 Value *A, Value *B, Value *D, Value *E, ICmpInst::Predicate PredL,
965 ICmpInst::Predicate PredR, InstCombiner::BuilderTy &Builder) {
966 assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) &&
967 "Expected equality predicates for masked type of icmps.");
968 if (PredL != ICmpInst::ICMP_EQ || PredR != ICmpInst::ICMP_NE)
969 return nullptr;
971 if (!match(B, m_NegatedPower2()) || !match(D, m_ShiftedMask()) ||
972 !match(E, m_ShiftedMask()))
973 return nullptr;
975 // Test scalar arguments for conversion. B has been validated earlier to be a
976 // negative power of two and thus is guaranteed to have one or more contiguous
977 // ones starting from the MSB followed by zero or more contiguous zeros. D has
978 // been validated earlier to be a shifted set of one or more contiguous ones.
979 // In order to match, B leading ones and D leading zeros should be equal. The
980 // predicate that B be a negative power of 2 prevents the condition of there
981 // ever being zero leading ones. Thus 0 == 0 cannot occur. The predicate that
982 // D always be a shifted mask prevents the condition of D equaling 0. This
983 // prevents matching the condition where B contains the maximum number of
984 // leading one bits (-1) and D contains the maximum number of leading zero
985 // bits (0).
986 auto isReducible = [](const Value *B, const Value *D, const Value *E) {
987 const APInt *BCst, *DCst, *ECst;
988 return match(B, m_APIntAllowUndef(BCst)) && match(D, m_APInt(DCst)) &&
989 match(E, m_APInt(ECst)) && *DCst == *ECst &&
990 (isa<UndefValue>(B) ||
991 (BCst->countLeadingOnes() == DCst->countLeadingZeros()));
994 // Test vector type arguments for conversion.
995 if (const auto *BVTy = dyn_cast<VectorType>(B->getType())) {
996 const auto *BFVTy = dyn_cast<FixedVectorType>(BVTy);
997 const auto *BConst = dyn_cast<Constant>(B);
998 const auto *DConst = dyn_cast<Constant>(D);
999 const auto *EConst = dyn_cast<Constant>(E);
1001 if (!BFVTy || !BConst || !DConst || !EConst)
1002 return nullptr;
1004 for (unsigned I = 0; I != BFVTy->getNumElements(); ++I) {
1005 const auto *BElt = BConst->getAggregateElement(I);
1006 const auto *DElt = DConst->getAggregateElement(I);
1007 const auto *EElt = EConst->getAggregateElement(I);
1009 if (!BElt || !DElt || !EElt)
1010 return nullptr;
1011 if (!isReducible(BElt, DElt, EElt))
1012 return nullptr;
1014 } else {
1015 // Test scalar type arguments for conversion.
1016 if (!isReducible(B, D, E))
1017 return nullptr;
1019 return Builder.CreateICmp(ICmpInst::ICMP_ULT, A, D);
1022 /// Try to fold ((icmp X u< P) & (icmp(X & M) != M)) or ((icmp X s> -1) &
1023 /// (icmp(X & M) != M)) into (icmp X u< M). Where P is a power of 2, M < P, and
1024 /// M is a contiguous shifted mask starting at the right most significant zero
1025 /// bit in P. SGT is supported as when P is the largest representable power of
1026 /// 2, an earlier optimization converts the expression into (icmp X s> -1).
1027 /// Parameter P supports masking using undef/poison in either scalar or vector
1028 /// values.
1029 static Value *foldPowerOf2AndShiftedMask(ICmpInst *Cmp0, ICmpInst *Cmp1,
1030 bool JoinedByAnd,
1031 InstCombiner::BuilderTy &Builder) {
1032 if (!JoinedByAnd)
1033 return nullptr;
1034 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr;
1035 ICmpInst::Predicate CmpPred0 = Cmp0->getPredicate(),
1036 CmpPred1 = Cmp1->getPredicate();
1037 // Assuming P is a 2^n, getMaskedTypeForICmpPair will normalize (icmp X u<
1038 // 2^n) into (icmp (X & ~(2^n-1)) == 0) and (icmp X s> -1) into (icmp (X &
1039 // SignMask) == 0).
1040 std::optional<std::pair<unsigned, unsigned>> MaskPair =
1041 getMaskedTypeForICmpPair(A, B, C, D, E, Cmp0, Cmp1, CmpPred0, CmpPred1);
1042 if (!MaskPair)
1043 return nullptr;
1045 const auto compareBMask = BMask_NotMixed | BMask_NotAllOnes;
1046 unsigned CmpMask0 = MaskPair->first;
1047 unsigned CmpMask1 = MaskPair->second;
1048 if ((CmpMask0 & Mask_AllZeros) && (CmpMask1 == compareBMask)) {
1049 if (Value *V = foldNegativePower2AndShiftedMask(A, B, D, E, CmpPred0,
1050 CmpPred1, Builder))
1051 return V;
1052 } else if ((CmpMask0 == compareBMask) && (CmpMask1 & Mask_AllZeros)) {
1053 if (Value *V = foldNegativePower2AndShiftedMask(A, D, B, C, CmpPred1,
1054 CmpPred0, Builder))
1055 return V;
1057 return nullptr;
1060 /// Commuted variants are assumed to be handled by calling this function again
1061 /// with the parameters swapped.
1062 static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp,
1063 ICmpInst *UnsignedICmp, bool IsAnd,
1064 const SimplifyQuery &Q,
1065 InstCombiner::BuilderTy &Builder) {
1066 Value *ZeroCmpOp;
1067 ICmpInst::Predicate EqPred;
1068 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) ||
1069 !ICmpInst::isEquality(EqPred))
1070 return nullptr;
1072 auto IsKnownNonZero = [&](Value *V) {
1073 return isKnownNonZero(V, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1076 ICmpInst::Predicate UnsignedPred;
1078 Value *A, *B;
1079 if (match(UnsignedICmp,
1080 m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) &&
1081 match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) &&
1082 (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) {
1083 auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) {
1084 if (!IsKnownNonZero(NonZero))
1085 std::swap(NonZero, Other);
1086 return IsKnownNonZero(NonZero);
1089 // Given ZeroCmpOp = (A + B)
1090 // ZeroCmpOp < A && ZeroCmpOp != 0 --> (0-X) < Y iff
1091 // ZeroCmpOp >= A || ZeroCmpOp == 0 --> (0-X) >= Y iff
1092 // with X being the value (A/B) that is known to be non-zero,
1093 // and Y being remaining value.
1094 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE &&
1095 IsAnd && GetKnownNonZeroAndOther(B, A))
1096 return Builder.CreateICmpULT(Builder.CreateNeg(B), A);
1097 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ &&
1098 !IsAnd && GetKnownNonZeroAndOther(B, A))
1099 return Builder.CreateICmpUGE(Builder.CreateNeg(B), A);
1102 Value *Base, *Offset;
1103 if (!match(ZeroCmpOp, m_Sub(m_Value(Base), m_Value(Offset))))
1104 return nullptr;
1106 if (!match(UnsignedICmp,
1107 m_c_ICmp(UnsignedPred, m_Specific(Base), m_Specific(Offset))) ||
1108 !ICmpInst::isUnsigned(UnsignedPred))
1109 return nullptr;
1111 // Base >=/> Offset && (Base - Offset) != 0 <--> Base > Offset
1112 // (no overflow and not null)
1113 if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1114 UnsignedPred == ICmpInst::ICMP_UGT) &&
1115 EqPred == ICmpInst::ICMP_NE && IsAnd)
1116 return Builder.CreateICmpUGT(Base, Offset);
1118 // Base <=/< Offset || (Base - Offset) == 0 <--> Base <= Offset
1119 // (overflow or null)
1120 if ((UnsignedPred == ICmpInst::ICMP_ULE ||
1121 UnsignedPred == ICmpInst::ICMP_ULT) &&
1122 EqPred == ICmpInst::ICMP_EQ && !IsAnd)
1123 return Builder.CreateICmpULE(Base, Offset);
1125 // Base <= Offset && (Base - Offset) != 0 --> Base < Offset
1126 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1127 IsAnd)
1128 return Builder.CreateICmpULT(Base, Offset);
1130 // Base > Offset || (Base - Offset) == 0 --> Base >= Offset
1131 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1132 !IsAnd)
1133 return Builder.CreateICmpUGE(Base, Offset);
1135 return nullptr;
1138 struct IntPart {
1139 Value *From;
1140 unsigned StartBit;
1141 unsigned NumBits;
1144 /// Match an extraction of bits from an integer.
1145 static std::optional<IntPart> matchIntPart(Value *V) {
1146 Value *X;
1147 if (!match(V, m_OneUse(m_Trunc(m_Value(X)))))
1148 return std::nullopt;
1150 unsigned NumOriginalBits = X->getType()->getScalarSizeInBits();
1151 unsigned NumExtractedBits = V->getType()->getScalarSizeInBits();
1152 Value *Y;
1153 const APInt *Shift;
1154 // For a trunc(lshr Y, Shift) pattern, make sure we're only extracting bits
1155 // from Y, not any shifted-in zeroes.
1156 if (match(X, m_OneUse(m_LShr(m_Value(Y), m_APInt(Shift)))) &&
1157 Shift->ule(NumOriginalBits - NumExtractedBits))
1158 return {{Y, (unsigned)Shift->getZExtValue(), NumExtractedBits}};
1159 return {{X, 0, NumExtractedBits}};
1162 /// Materialize an extraction of bits from an integer in IR.
1163 static Value *extractIntPart(const IntPart &P, IRBuilderBase &Builder) {
1164 Value *V = P.From;
1165 if (P.StartBit)
1166 V = Builder.CreateLShr(V, P.StartBit);
1167 Type *TruncTy = V->getType()->getWithNewBitWidth(P.NumBits);
1168 if (TruncTy != V->getType())
1169 V = Builder.CreateTrunc(V, TruncTy);
1170 return V;
1173 /// (icmp eq X0, Y0) & (icmp eq X1, Y1) -> icmp eq X01, Y01
1174 /// (icmp ne X0, Y0) | (icmp ne X1, Y1) -> icmp ne X01, Y01
1175 /// where X0, X1 and Y0, Y1 are adjacent parts extracted from an integer.
1176 Value *InstCombinerImpl::foldEqOfParts(ICmpInst *Cmp0, ICmpInst *Cmp1,
1177 bool IsAnd) {
1178 if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse())
1179 return nullptr;
1181 CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1182 if (Cmp0->getPredicate() != Pred || Cmp1->getPredicate() != Pred)
1183 return nullptr;
1185 std::optional<IntPart> L0 = matchIntPart(Cmp0->getOperand(0));
1186 std::optional<IntPart> R0 = matchIntPart(Cmp0->getOperand(1));
1187 std::optional<IntPart> L1 = matchIntPart(Cmp1->getOperand(0));
1188 std::optional<IntPart> R1 = matchIntPart(Cmp1->getOperand(1));
1189 if (!L0 || !R0 || !L1 || !R1)
1190 return nullptr;
1192 // Make sure the LHS/RHS compare a part of the same value, possibly after
1193 // an operand swap.
1194 if (L0->From != L1->From || R0->From != R1->From) {
1195 if (L0->From != R1->From || R0->From != L1->From)
1196 return nullptr;
1197 std::swap(L1, R1);
1200 // Make sure the extracted parts are adjacent, canonicalizing to L0/R0 being
1201 // the low part and L1/R1 being the high part.
1202 if (L0->StartBit + L0->NumBits != L1->StartBit ||
1203 R0->StartBit + R0->NumBits != R1->StartBit) {
1204 if (L1->StartBit + L1->NumBits != L0->StartBit ||
1205 R1->StartBit + R1->NumBits != R0->StartBit)
1206 return nullptr;
1207 std::swap(L0, L1);
1208 std::swap(R0, R1);
1211 // We can simplify to a comparison of these larger parts of the integers.
1212 IntPart L = {L0->From, L0->StartBit, L0->NumBits + L1->NumBits};
1213 IntPart R = {R0->From, R0->StartBit, R0->NumBits + R1->NumBits};
1214 Value *LValue = extractIntPart(L, Builder);
1215 Value *RValue = extractIntPart(R, Builder);
1216 return Builder.CreateICmp(Pred, LValue, RValue);
1219 /// Reduce logic-of-compares with equality to a constant by substituting a
1220 /// common operand with the constant. Callers are expected to call this with
1221 /// Cmp0/Cmp1 switched to handle logic op commutativity.
1222 static Value *foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1,
1223 bool IsAnd, bool IsLogical,
1224 InstCombiner::BuilderTy &Builder,
1225 const SimplifyQuery &Q) {
1226 // Match an equality compare with a non-poison constant as Cmp0.
1227 // Also, give up if the compare can be constant-folded to avoid looping.
1228 ICmpInst::Predicate Pred0;
1229 Value *X;
1230 Constant *C;
1231 if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) ||
1232 !isGuaranteedNotToBeUndefOrPoison(C) || isa<Constant>(X))
1233 return nullptr;
1234 if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) ||
1235 (!IsAnd && Pred0 != ICmpInst::ICMP_NE))
1236 return nullptr;
1238 // The other compare must include a common operand (X). Canonicalize the
1239 // common operand as operand 1 (Pred1 is swapped if the common operand was
1240 // operand 0).
1241 Value *Y;
1242 ICmpInst::Predicate Pred1;
1243 if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Deferred(X))))
1244 return nullptr;
1246 // Replace variable with constant value equivalence to remove a variable use:
1247 // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C)
1248 // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C)
1249 // Can think of the 'or' substitution with the 'and' bool equivalent:
1250 // A || B --> A || (!A && B)
1251 Value *SubstituteCmp = simplifyICmpInst(Pred1, Y, C, Q);
1252 if (!SubstituteCmp) {
1253 // If we need to create a new instruction, require that the old compare can
1254 // be removed.
1255 if (!Cmp1->hasOneUse())
1256 return nullptr;
1257 SubstituteCmp = Builder.CreateICmp(Pred1, Y, C);
1259 if (IsLogical)
1260 return IsAnd ? Builder.CreateLogicalAnd(Cmp0, SubstituteCmp)
1261 : Builder.CreateLogicalOr(Cmp0, SubstituteCmp);
1262 return Builder.CreateBinOp(IsAnd ? Instruction::And : Instruction::Or, Cmp0,
1263 SubstituteCmp);
1266 /// Fold (icmp Pred1 V1, C1) & (icmp Pred2 V2, C2)
1267 /// or (icmp Pred1 V1, C1) | (icmp Pred2 V2, C2)
1268 /// into a single comparison using range-based reasoning.
1269 /// NOTE: This is also used for logical and/or, must be poison-safe!
1270 Value *InstCombinerImpl::foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1,
1271 ICmpInst *ICmp2,
1272 bool IsAnd) {
1273 ICmpInst::Predicate Pred1, Pred2;
1274 Value *V1, *V2;
1275 const APInt *C1, *C2;
1276 if (!match(ICmp1, m_ICmp(Pred1, m_Value(V1), m_APInt(C1))) ||
1277 !match(ICmp2, m_ICmp(Pred2, m_Value(V2), m_APInt(C2))))
1278 return nullptr;
1280 // Look through add of a constant offset on V1, V2, or both operands. This
1281 // allows us to interpret the V + C' < C'' range idiom into a proper range.
1282 const APInt *Offset1 = nullptr, *Offset2 = nullptr;
1283 if (V1 != V2) {
1284 Value *X;
1285 if (match(V1, m_Add(m_Value(X), m_APInt(Offset1))))
1286 V1 = X;
1287 if (match(V2, m_Add(m_Value(X), m_APInt(Offset2))))
1288 V2 = X;
1291 if (V1 != V2)
1292 return nullptr;
1294 ConstantRange CR1 = ConstantRange::makeExactICmpRegion(
1295 IsAnd ? ICmpInst::getInversePredicate(Pred1) : Pred1, *C1);
1296 if (Offset1)
1297 CR1 = CR1.subtract(*Offset1);
1299 ConstantRange CR2 = ConstantRange::makeExactICmpRegion(
1300 IsAnd ? ICmpInst::getInversePredicate(Pred2) : Pred2, *C2);
1301 if (Offset2)
1302 CR2 = CR2.subtract(*Offset2);
1304 Type *Ty = V1->getType();
1305 Value *NewV = V1;
1306 std::optional<ConstantRange> CR = CR1.exactUnionWith(CR2);
1307 if (!CR) {
1308 if (!(ICmp1->hasOneUse() && ICmp2->hasOneUse()) || CR1.isWrappedSet() ||
1309 CR2.isWrappedSet())
1310 return nullptr;
1312 // Check whether we have equal-size ranges that only differ by one bit.
1313 // In that case we can apply a mask to map one range onto the other.
1314 APInt LowerDiff = CR1.getLower() ^ CR2.getLower();
1315 APInt UpperDiff = (CR1.getUpper() - 1) ^ (CR2.getUpper() - 1);
1316 APInt CR1Size = CR1.getUpper() - CR1.getLower();
1317 if (!LowerDiff.isPowerOf2() || LowerDiff != UpperDiff ||
1318 CR1Size != CR2.getUpper() - CR2.getLower())
1319 return nullptr;
1321 CR = CR1.getLower().ult(CR2.getLower()) ? CR1 : CR2;
1322 NewV = Builder.CreateAnd(NewV, ConstantInt::get(Ty, ~LowerDiff));
1325 if (IsAnd)
1326 CR = CR->inverse();
1328 CmpInst::Predicate NewPred;
1329 APInt NewC, Offset;
1330 CR->getEquivalentICmp(NewPred, NewC, Offset);
1332 if (Offset != 0)
1333 NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset));
1334 return Builder.CreateICmp(NewPred, NewV, ConstantInt::get(Ty, NewC));
1337 /// Ignore all operations which only change the sign of a value, returning the
1338 /// underlying magnitude value.
1339 static Value *stripSignOnlyFPOps(Value *Val) {
1340 match(Val, m_FNeg(m_Value(Val)));
1341 match(Val, m_FAbs(m_Value(Val)));
1342 match(Val, m_CopySign(m_Value(Val), m_Value()));
1343 return Val;
1346 /// Matches canonical form of isnan, fcmp ord x, 0
1347 static bool matchIsNotNaN(FCmpInst::Predicate P, Value *LHS, Value *RHS) {
1348 return P == FCmpInst::FCMP_ORD && match(RHS, m_AnyZeroFP());
1351 /// Matches fcmp u__ x, +/-inf
1352 static bool matchUnorderedInfCompare(FCmpInst::Predicate P, Value *LHS,
1353 Value *RHS) {
1354 return FCmpInst::isUnordered(P) && match(RHS, m_Inf());
1357 /// and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf
1359 /// Clang emits this pattern for doing an isfinite check in __builtin_isnormal.
1360 static Value *matchIsFiniteTest(InstCombiner::BuilderTy &Builder, FCmpInst *LHS,
1361 FCmpInst *RHS) {
1362 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1363 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1364 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1366 if (!matchIsNotNaN(PredL, LHS0, LHS1) ||
1367 !matchUnorderedInfCompare(PredR, RHS0, RHS1))
1368 return nullptr;
1370 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1371 FastMathFlags FMF = LHS->getFastMathFlags();
1372 FMF &= RHS->getFastMathFlags();
1373 Builder.setFastMathFlags(FMF);
1375 return Builder.CreateFCmp(FCmpInst::getOrderedPredicate(PredR), RHS0, RHS1);
1378 Value *InstCombinerImpl::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS,
1379 bool IsAnd, bool IsLogicalSelect) {
1380 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1381 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1382 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1384 if (LHS0 == RHS1 && RHS0 == LHS1) {
1385 // Swap RHS operands to match LHS.
1386 PredR = FCmpInst::getSwappedPredicate(PredR);
1387 std::swap(RHS0, RHS1);
1390 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
1391 // Suppose the relation between x and y is R, where R is one of
1392 // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for
1393 // testing the desired relations.
1395 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1396 // bool(R & CC0) && bool(R & CC1)
1397 // = bool((R & CC0) & (R & CC1))
1398 // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency
1400 // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this:
1401 // bool(R & CC0) || bool(R & CC1)
1402 // = bool((R & CC0) | (R & CC1))
1403 // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;)
1404 if (LHS0 == RHS0 && LHS1 == RHS1) {
1405 unsigned FCmpCodeL = getFCmpCode(PredL);
1406 unsigned FCmpCodeR = getFCmpCode(PredR);
1407 unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR;
1409 // Intersect the fast math flags.
1410 // TODO: We can union the fast math flags unless this is a logical select.
1411 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1412 FastMathFlags FMF = LHS->getFastMathFlags();
1413 FMF &= RHS->getFastMathFlags();
1414 Builder.setFastMathFlags(FMF);
1416 return getFCmpValue(NewPred, LHS0, LHS1, Builder);
1419 // This transform is not valid for a logical select.
1420 if (!IsLogicalSelect &&
1421 ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1422 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO &&
1423 !IsAnd))) {
1424 if (LHS0->getType() != RHS0->getType())
1425 return nullptr;
1427 // FCmp canonicalization ensures that (fcmp ord/uno X, X) and
1428 // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0).
1429 if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP()))
1430 // Ignore the constants because they are obviously not NANs:
1431 // (fcmp ord x, 0.0) & (fcmp ord y, 0.0) -> (fcmp ord x, y)
1432 // (fcmp uno x, 0.0) | (fcmp uno y, 0.0) -> (fcmp uno x, y)
1433 return Builder.CreateFCmp(PredL, LHS0, RHS0);
1436 if (IsAnd && stripSignOnlyFPOps(LHS0) == stripSignOnlyFPOps(RHS0)) {
1437 // and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf
1438 // and (fcmp ord x, 0), (fcmp u* fabs(x), inf) -> fcmp o* x, inf
1439 if (Value *Left = matchIsFiniteTest(Builder, LHS, RHS))
1440 return Left;
1441 if (Value *Right = matchIsFiniteTest(Builder, RHS, LHS))
1442 return Right;
1445 // Turn at least two fcmps with constants into llvm.is.fpclass.
1447 // If we can represent a combined value test with one class call, we can
1448 // potentially eliminate 4-6 instructions. If we can represent a test with a
1449 // single fcmp with fneg and fabs, that's likely a better canonical form.
1450 if (LHS->hasOneUse() && RHS->hasOneUse()) {
1451 auto [ClassValRHS, ClassMaskRHS] =
1452 fcmpToClassTest(PredR, *RHS->getFunction(), RHS0, RHS1);
1453 if (ClassValRHS) {
1454 auto [ClassValLHS, ClassMaskLHS] =
1455 fcmpToClassTest(PredL, *LHS->getFunction(), LHS0, LHS1);
1456 if (ClassValLHS == ClassValRHS) {
1457 unsigned CombinedMask = IsAnd ? (ClassMaskLHS & ClassMaskRHS)
1458 : (ClassMaskLHS | ClassMaskRHS);
1459 return Builder.CreateIntrinsic(
1460 Intrinsic::is_fpclass, {ClassValLHS->getType()},
1461 {ClassValLHS, Builder.getInt32(CombinedMask)});
1466 return nullptr;
1469 /// Match an fcmp against a special value that performs a test possible by
1470 /// llvm.is.fpclass.
1471 static bool matchIsFPClassLikeFCmp(Value *Op, Value *&ClassVal,
1472 uint64_t &ClassMask) {
1473 auto *FCmp = dyn_cast<FCmpInst>(Op);
1474 if (!FCmp || !FCmp->hasOneUse())
1475 return false;
1477 std::tie(ClassVal, ClassMask) =
1478 fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(),
1479 FCmp->getOperand(0), FCmp->getOperand(1));
1480 return ClassVal != nullptr;
1483 /// or (is_fpclass x, mask0), (is_fpclass x, mask1)
1484 /// -> is_fpclass x, (mask0 | mask1)
1485 /// and (is_fpclass x, mask0), (is_fpclass x, mask1)
1486 /// -> is_fpclass x, (mask0 & mask1)
1487 /// xor (is_fpclass x, mask0), (is_fpclass x, mask1)
1488 /// -> is_fpclass x, (mask0 ^ mask1)
1489 Instruction *InstCombinerImpl::foldLogicOfIsFPClass(BinaryOperator &BO,
1490 Value *Op0, Value *Op1) {
1491 Value *ClassVal0 = nullptr;
1492 Value *ClassVal1 = nullptr;
1493 uint64_t ClassMask0, ClassMask1;
1495 // Restrict to folding one fcmp into one is.fpclass for now, don't introduce a
1496 // new class.
1498 // TODO: Support forming is.fpclass out of 2 separate fcmps when codegen is
1499 // better.
1501 bool IsLHSClass =
1502 match(Op0, m_OneUse(m_Intrinsic<Intrinsic::is_fpclass>(
1503 m_Value(ClassVal0), m_ConstantInt(ClassMask0))));
1504 bool IsRHSClass =
1505 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::is_fpclass>(
1506 m_Value(ClassVal1), m_ConstantInt(ClassMask1))));
1507 if ((((IsLHSClass || matchIsFPClassLikeFCmp(Op0, ClassVal0, ClassMask0)) &&
1508 (IsRHSClass || matchIsFPClassLikeFCmp(Op1, ClassVal1, ClassMask1)))) &&
1509 ClassVal0 == ClassVal1) {
1510 unsigned NewClassMask;
1511 switch (BO.getOpcode()) {
1512 case Instruction::And:
1513 NewClassMask = ClassMask0 & ClassMask1;
1514 break;
1515 case Instruction::Or:
1516 NewClassMask = ClassMask0 | ClassMask1;
1517 break;
1518 case Instruction::Xor:
1519 NewClassMask = ClassMask0 ^ ClassMask1;
1520 break;
1521 default:
1522 llvm_unreachable("not a binary logic operator");
1525 if (IsLHSClass) {
1526 auto *II = cast<IntrinsicInst>(Op0);
1527 II->setArgOperand(
1528 1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask));
1529 return replaceInstUsesWith(BO, II);
1532 if (IsRHSClass) {
1533 auto *II = cast<IntrinsicInst>(Op1);
1534 II->setArgOperand(
1535 1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask));
1536 return replaceInstUsesWith(BO, II);
1539 CallInst *NewClass =
1540 Builder.CreateIntrinsic(Intrinsic::is_fpclass, {ClassVal0->getType()},
1541 {ClassVal0, Builder.getInt32(NewClassMask)});
1542 return replaceInstUsesWith(BO, NewClass);
1545 return nullptr;
1548 /// Look for the pattern that conditionally negates a value via math operations:
1549 /// cond.splat = sext i1 cond
1550 /// sub = add cond.splat, x
1551 /// xor = xor sub, cond.splat
1552 /// and rewrite it to do the same, but via logical operations:
1553 /// value.neg = sub 0, value
1554 /// cond = select i1 neg, value.neg, value
1555 Instruction *InstCombinerImpl::canonicalizeConditionalNegationViaMathToSelect(
1556 BinaryOperator &I) {
1557 assert(I.getOpcode() == BinaryOperator::Xor && "Only for xor!");
1558 Value *Cond, *X;
1559 // As per complexity ordering, `xor` is not commutative here.
1560 if (!match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())) ||
1561 !match(I.getOperand(1), m_SExt(m_Value(Cond))) ||
1562 !Cond->getType()->isIntOrIntVectorTy(1) ||
1563 !match(I.getOperand(0), m_c_Add(m_SExt(m_Deferred(Cond)), m_Value(X))))
1564 return nullptr;
1565 return SelectInst::Create(Cond, Builder.CreateNeg(X, X->getName() + ".neg"),
1569 /// This a limited reassociation for a special case (see above) where we are
1570 /// checking if two values are either both NAN (unordered) or not-NAN (ordered).
1571 /// This could be handled more generally in '-reassociation', but it seems like
1572 /// an unlikely pattern for a large number of logic ops and fcmps.
1573 static Instruction *reassociateFCmps(BinaryOperator &BO,
1574 InstCombiner::BuilderTy &Builder) {
1575 Instruction::BinaryOps Opcode = BO.getOpcode();
1576 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1577 "Expecting and/or op for fcmp transform");
1579 // There are 4 commuted variants of the pattern. Canonicalize operands of this
1580 // logic op so an fcmp is operand 0 and a matching logic op is operand 1.
1581 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X;
1582 FCmpInst::Predicate Pred;
1583 if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP())))
1584 std::swap(Op0, Op1);
1586 // Match inner binop and the predicate for combining 2 NAN checks into 1.
1587 Value *BO10, *BO11;
1588 FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD
1589 : FCmpInst::FCMP_UNO;
1590 if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred ||
1591 !match(Op1, m_BinOp(Opcode, m_Value(BO10), m_Value(BO11))))
1592 return nullptr;
1594 // The inner logic op must have a matching fcmp operand.
1595 Value *Y;
1596 if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1597 Pred != NanPred || X->getType() != Y->getType())
1598 std::swap(BO10, BO11);
1600 if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) ||
1601 Pred != NanPred || X->getType() != Y->getType())
1602 return nullptr;
1604 // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z
1605 // or (fcmp uno X, 0), (or (fcmp uno Y, 0), Z) --> or (fcmp uno X, Y), Z
1606 Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y);
1607 if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) {
1608 // Intersect FMF from the 2 source fcmps.
1609 NewFCmpInst->copyIRFlags(Op0);
1610 NewFCmpInst->andIRFlags(BO10);
1612 return BinaryOperator::Create(Opcode, NewFCmp, BO11);
1615 /// Match variations of De Morgan's Laws:
1616 /// (~A & ~B) == (~(A | B))
1617 /// (~A | ~B) == (~(A & B))
1618 static Instruction *matchDeMorgansLaws(BinaryOperator &I,
1619 InstCombiner::BuilderTy &Builder) {
1620 const Instruction::BinaryOps Opcode = I.getOpcode();
1621 assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1622 "Trying to match De Morgan's Laws with something other than and/or");
1624 // Flip the logic operation.
1625 const Instruction::BinaryOps FlippedOpcode =
1626 (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1628 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1629 Value *A, *B;
1630 if (match(Op0, m_OneUse(m_Not(m_Value(A)))) &&
1631 match(Op1, m_OneUse(m_Not(m_Value(B)))) &&
1632 !InstCombiner::isFreeToInvert(A, A->hasOneUse()) &&
1633 !InstCombiner::isFreeToInvert(B, B->hasOneUse())) {
1634 Value *AndOr =
1635 Builder.CreateBinOp(FlippedOpcode, A, B, I.getName() + ".demorgan");
1636 return BinaryOperator::CreateNot(AndOr);
1639 // The 'not' ops may require reassociation.
1640 // (A & ~B) & ~C --> A & ~(B | C)
1641 // (~B & A) & ~C --> A & ~(B | C)
1642 // (A | ~B) | ~C --> A | ~(B & C)
1643 // (~B | A) | ~C --> A | ~(B & C)
1644 Value *C;
1645 if (match(Op0, m_OneUse(m_c_BinOp(Opcode, m_Value(A), m_Not(m_Value(B))))) &&
1646 match(Op1, m_Not(m_Value(C)))) {
1647 Value *FlippedBO = Builder.CreateBinOp(FlippedOpcode, B, C);
1648 return BinaryOperator::Create(Opcode, A, Builder.CreateNot(FlippedBO));
1651 return nullptr;
1654 bool InstCombinerImpl::shouldOptimizeCast(CastInst *CI) {
1655 Value *CastSrc = CI->getOperand(0);
1657 // Noop casts and casts of constants should be eliminated trivially.
1658 if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc))
1659 return false;
1661 // If this cast is paired with another cast that can be eliminated, we prefer
1662 // to have it eliminated.
1663 if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc))
1664 if (isEliminableCastPair(PrecedingCI, CI))
1665 return false;
1667 return true;
1670 /// Fold {and,or,xor} (cast X), C.
1671 static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast,
1672 InstCombiner::BuilderTy &Builder) {
1673 Constant *C = dyn_cast<Constant>(Logic.getOperand(1));
1674 if (!C)
1675 return nullptr;
1677 auto LogicOpc = Logic.getOpcode();
1678 Type *DestTy = Logic.getType();
1679 Type *SrcTy = Cast->getSrcTy();
1681 // Move the logic operation ahead of a zext or sext if the constant is
1682 // unchanged in the smaller source type. Performing the logic in a smaller
1683 // type may provide more information to later folds, and the smaller logic
1684 // instruction may be cheaper (particularly in the case of vectors).
1685 Value *X;
1686 if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) {
1687 Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1688 Constant *ZextTruncC = ConstantExpr::getZExt(TruncC, DestTy);
1689 if (ZextTruncC == C) {
1690 // LogicOpc (zext X), C --> zext (LogicOpc X, C)
1691 Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1692 return new ZExtInst(NewOp, DestTy);
1696 if (match(Cast, m_OneUse(m_SExt(m_Value(X))))) {
1697 Constant *TruncC = ConstantExpr::getTrunc(C, SrcTy);
1698 Constant *SextTruncC = ConstantExpr::getSExt(TruncC, DestTy);
1699 if (SextTruncC == C) {
1700 // LogicOpc (sext X), C --> sext (LogicOpc X, C)
1701 Value *NewOp = Builder.CreateBinOp(LogicOpc, X, TruncC);
1702 return new SExtInst(NewOp, DestTy);
1706 return nullptr;
1709 /// Fold {and,or,xor} (cast X), Y.
1710 Instruction *InstCombinerImpl::foldCastedBitwiseLogic(BinaryOperator &I) {
1711 auto LogicOpc = I.getOpcode();
1712 assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding");
1714 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1716 // fold bitwise(A >> BW - 1, zext(icmp)) (BW is the scalar bits of the
1717 // type of A)
1718 // -> bitwise(zext(A < 0), zext(icmp))
1719 // -> zext(bitwise(A < 0, icmp))
1720 auto FoldBitwiseICmpZeroWithICmp = [&](Value *Op0,
1721 Value *Op1) -> Instruction * {
1722 ICmpInst::Predicate Pred;
1723 Value *A;
1724 bool IsMatched =
1725 match(Op0,
1726 m_OneUse(m_LShr(
1727 m_Value(A),
1728 m_SpecificInt(Op0->getType()->getScalarSizeInBits() - 1)))) &&
1729 match(Op1, m_OneUse(m_ZExt(m_ICmp(Pred, m_Value(), m_Value()))));
1731 if (!IsMatched)
1732 return nullptr;
1734 auto *ICmpL =
1735 Builder.CreateICmpSLT(A, Constant::getNullValue(A->getType()));
1736 auto *ICmpR = cast<ZExtInst>(Op1)->getOperand(0);
1737 auto *BitwiseOp = Builder.CreateBinOp(LogicOpc, ICmpL, ICmpR);
1739 return new ZExtInst(BitwiseOp, Op0->getType());
1742 if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op0, Op1))
1743 return Ret;
1745 if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op1, Op0))
1746 return Ret;
1748 CastInst *Cast0 = dyn_cast<CastInst>(Op0);
1749 if (!Cast0)
1750 return nullptr;
1752 // This must be a cast from an integer or integer vector source type to allow
1753 // transformation of the logic operation to the source type.
1754 Type *DestTy = I.getType();
1755 Type *SrcTy = Cast0->getSrcTy();
1756 if (!SrcTy->isIntOrIntVectorTy())
1757 return nullptr;
1759 if (Instruction *Ret = foldLogicCastConstant(I, Cast0, Builder))
1760 return Ret;
1762 CastInst *Cast1 = dyn_cast<CastInst>(Op1);
1763 if (!Cast1)
1764 return nullptr;
1766 // Both operands of the logic operation are casts. The casts must be the
1767 // same kind for reduction.
1768 Instruction::CastOps CastOpcode = Cast0->getOpcode();
1769 if (CastOpcode != Cast1->getOpcode())
1770 return nullptr;
1772 // If the source types do not match, but the casts are matching extends, we
1773 // can still narrow the logic op.
1774 if (SrcTy != Cast1->getSrcTy()) {
1775 Value *X, *Y;
1776 if (match(Cast0, m_OneUse(m_ZExtOrSExt(m_Value(X)))) &&
1777 match(Cast1, m_OneUse(m_ZExtOrSExt(m_Value(Y))))) {
1778 // Cast the narrower source to the wider source type.
1779 unsigned XNumBits = X->getType()->getScalarSizeInBits();
1780 unsigned YNumBits = Y->getType()->getScalarSizeInBits();
1781 if (XNumBits < YNumBits)
1782 X = Builder.CreateCast(CastOpcode, X, Y->getType());
1783 else
1784 Y = Builder.CreateCast(CastOpcode, Y, X->getType());
1785 // Do the logic op in the intermediate width, then widen more.
1786 Value *NarrowLogic = Builder.CreateBinOp(LogicOpc, X, Y);
1787 return CastInst::Create(CastOpcode, NarrowLogic, DestTy);
1790 // Give up for other cast opcodes.
1791 return nullptr;
1794 Value *Cast0Src = Cast0->getOperand(0);
1795 Value *Cast1Src = Cast1->getOperand(0);
1797 // fold logic(cast(A), cast(B)) -> cast(logic(A, B))
1798 if ((Cast0->hasOneUse() || Cast1->hasOneUse()) &&
1799 shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) {
1800 Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src,
1801 I.getName());
1802 return CastInst::Create(CastOpcode, NewOp, DestTy);
1805 // For now, only 'and'/'or' have optimizations after this.
1806 if (LogicOpc == Instruction::Xor)
1807 return nullptr;
1809 // If this is logic(cast(icmp), cast(icmp)), try to fold this even if the
1810 // cast is otherwise not optimizable. This happens for vector sexts.
1811 ICmpInst *ICmp0 = dyn_cast<ICmpInst>(Cast0Src);
1812 ICmpInst *ICmp1 = dyn_cast<ICmpInst>(Cast1Src);
1813 if (ICmp0 && ICmp1) {
1814 if (Value *Res =
1815 foldAndOrOfICmps(ICmp0, ICmp1, I, LogicOpc == Instruction::And))
1816 return CastInst::Create(CastOpcode, Res, DestTy);
1817 return nullptr;
1820 // If this is logic(cast(fcmp), cast(fcmp)), try to fold this even if the
1821 // cast is otherwise not optimizable. This happens for vector sexts.
1822 FCmpInst *FCmp0 = dyn_cast<FCmpInst>(Cast0Src);
1823 FCmpInst *FCmp1 = dyn_cast<FCmpInst>(Cast1Src);
1824 if (FCmp0 && FCmp1)
1825 if (Value *R = foldLogicOfFCmps(FCmp0, FCmp1, LogicOpc == Instruction::And))
1826 return CastInst::Create(CastOpcode, R, DestTy);
1828 return nullptr;
1831 static Instruction *foldAndToXor(BinaryOperator &I,
1832 InstCombiner::BuilderTy &Builder) {
1833 assert(I.getOpcode() == Instruction::And);
1834 Value *Op0 = I.getOperand(0);
1835 Value *Op1 = I.getOperand(1);
1836 Value *A, *B;
1838 // Operand complexity canonicalization guarantees that the 'or' is Op0.
1839 // (A | B) & ~(A & B) --> A ^ B
1840 // (A | B) & ~(B & A) --> A ^ B
1841 if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)),
1842 m_Not(m_c_And(m_Deferred(A), m_Deferred(B))))))
1843 return BinaryOperator::CreateXor(A, B);
1845 // (A | ~B) & (~A | B) --> ~(A ^ B)
1846 // (A | ~B) & (B | ~A) --> ~(A ^ B)
1847 // (~B | A) & (~A | B) --> ~(A ^ B)
1848 // (~B | A) & (B | ~A) --> ~(A ^ B)
1849 if (Op0->hasOneUse() || Op1->hasOneUse())
1850 if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))),
1851 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
1852 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1854 return nullptr;
1857 static Instruction *foldOrToXor(BinaryOperator &I,
1858 InstCombiner::BuilderTy &Builder) {
1859 assert(I.getOpcode() == Instruction::Or);
1860 Value *Op0 = I.getOperand(0);
1861 Value *Op1 = I.getOperand(1);
1862 Value *A, *B;
1864 // Operand complexity canonicalization guarantees that the 'and' is Op0.
1865 // (A & B) | ~(A | B) --> ~(A ^ B)
1866 // (A & B) | ~(B | A) --> ~(A ^ B)
1867 if (Op0->hasOneUse() || Op1->hasOneUse())
1868 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1869 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1870 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
1872 // Operand complexity canonicalization guarantees that the 'xor' is Op0.
1873 // (A ^ B) | ~(A | B) --> ~(A & B)
1874 // (A ^ B) | ~(B | A) --> ~(A & B)
1875 if (Op0->hasOneUse() || Op1->hasOneUse())
1876 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1877 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
1878 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
1880 // (A & ~B) | (~A & B) --> A ^ B
1881 // (A & ~B) | (B & ~A) --> A ^ B
1882 // (~B & A) | (~A & B) --> A ^ B
1883 // (~B & A) | (B & ~A) --> A ^ B
1884 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
1885 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))
1886 return BinaryOperator::CreateXor(A, B);
1888 return nullptr;
1891 /// Return true if a constant shift amount is always less than the specified
1892 /// bit-width. If not, the shift could create poison in the narrower type.
1893 static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) {
1894 APInt Threshold(C->getType()->getScalarSizeInBits(), BitWidth);
1895 return match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
1898 /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and
1899 /// a common zext operand: and (binop (zext X), C), (zext X).
1900 Instruction *InstCombinerImpl::narrowMaskedBinOp(BinaryOperator &And) {
1901 // This transform could also apply to {or, and, xor}, but there are better
1902 // folds for those cases, so we don't expect those patterns here. AShr is not
1903 // handled because it should always be transformed to LShr in this sequence.
1904 // The subtract transform is different because it has a constant on the left.
1905 // Add/mul commute the constant to RHS; sub with constant RHS becomes add.
1906 Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1);
1907 Constant *C;
1908 if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) &&
1909 !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) &&
1910 !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) &&
1911 !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) &&
1912 !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1)))))
1913 return nullptr;
1915 Value *X;
1916 if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3))
1917 return nullptr;
1919 Type *Ty = And.getType();
1920 if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType()))
1921 return nullptr;
1923 // If we're narrowing a shift, the shift amount must be safe (less than the
1924 // width) in the narrower type. If the shift amount is greater, instsimplify
1925 // usually handles that case, but we can't guarantee/assert it.
1926 Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode();
1927 if (Opc == Instruction::LShr || Opc == Instruction::Shl)
1928 if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits()))
1929 return nullptr;
1931 // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X)
1932 // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X)
1933 Value *NewC = ConstantExpr::getTrunc(C, X->getType());
1934 Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X)
1935 : Builder.CreateBinOp(Opc, X, NewC);
1936 return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty);
1939 /// Try folding relatively complex patterns for both And and Or operations
1940 /// with all And and Or swapped.
1941 static Instruction *foldComplexAndOrPatterns(BinaryOperator &I,
1942 InstCombiner::BuilderTy &Builder) {
1943 const Instruction::BinaryOps Opcode = I.getOpcode();
1944 assert(Opcode == Instruction::And || Opcode == Instruction::Or);
1946 // Flip the logic operation.
1947 const Instruction::BinaryOps FlippedOpcode =
1948 (Opcode == Instruction::And) ? Instruction::Or : Instruction::And;
1950 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1951 Value *A, *B, *C, *X, *Y, *Dummy;
1953 // Match following expressions:
1954 // (~(A | B) & C)
1955 // (~(A & B) | C)
1956 // Captures X = ~(A | B) or ~(A & B)
1957 const auto matchNotOrAnd =
1958 [Opcode, FlippedOpcode](Value *Op, auto m_A, auto m_B, auto m_C,
1959 Value *&X, bool CountUses = false) -> bool {
1960 if (CountUses && !Op->hasOneUse())
1961 return false;
1963 if (match(Op, m_c_BinOp(FlippedOpcode,
1964 m_CombineAnd(m_Value(X),
1965 m_Not(m_c_BinOp(Opcode, m_A, m_B))),
1966 m_C)))
1967 return !CountUses || X->hasOneUse();
1969 return false;
1972 // (~(A | B) & C) | ... --> ...
1973 // (~(A & B) | C) & ... --> ...
1974 // TODO: One use checks are conservative. We just need to check that a total
1975 // number of multiple used values does not exceed reduction
1976 // in operations.
1977 if (matchNotOrAnd(Op0, m_Value(A), m_Value(B), m_Value(C), X)) {
1978 // (~(A | B) & C) | (~(A | C) & B) --> (B ^ C) & ~A
1979 // (~(A & B) | C) & (~(A & C) | B) --> ~((B ^ C) & A)
1980 if (matchNotOrAnd(Op1, m_Specific(A), m_Specific(C), m_Specific(B), Dummy,
1981 true)) {
1982 Value *Xor = Builder.CreateXor(B, C);
1983 return (Opcode == Instruction::Or)
1984 ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(A))
1985 : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, A));
1988 // (~(A | B) & C) | (~(B | C) & A) --> (A ^ C) & ~B
1989 // (~(A & B) | C) & (~(B & C) | A) --> ~((A ^ C) & B)
1990 if (matchNotOrAnd(Op1, m_Specific(B), m_Specific(C), m_Specific(A), Dummy,
1991 true)) {
1992 Value *Xor = Builder.CreateXor(A, C);
1993 return (Opcode == Instruction::Or)
1994 ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(B))
1995 : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, B));
1998 // (~(A | B) & C) | ~(A | C) --> ~((B & C) | A)
1999 // (~(A & B) | C) & ~(A & C) --> ~((B | C) & A)
2000 if (match(Op1, m_OneUse(m_Not(m_OneUse(
2001 m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
2002 return BinaryOperator::CreateNot(Builder.CreateBinOp(
2003 Opcode, Builder.CreateBinOp(FlippedOpcode, B, C), A));
2005 // (~(A | B) & C) | ~(B | C) --> ~((A & C) | B)
2006 // (~(A & B) | C) & ~(B & C) --> ~((A | C) & B)
2007 if (match(Op1, m_OneUse(m_Not(m_OneUse(
2008 m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)))))))
2009 return BinaryOperator::CreateNot(Builder.CreateBinOp(
2010 Opcode, Builder.CreateBinOp(FlippedOpcode, A, C), B));
2012 // (~(A | B) & C) | ~(C | (A ^ B)) --> ~((A | B) & (C | (A ^ B)))
2013 // Note, the pattern with swapped and/or is not handled because the
2014 // result is more undefined than a source:
2015 // (~(A & B) | C) & ~(C & (A ^ B)) --> (A ^ B ^ C) | ~(A | C) is invalid.
2016 if (Opcode == Instruction::Or && Op0->hasOneUse() &&
2017 match(Op1, m_OneUse(m_Not(m_CombineAnd(
2018 m_Value(Y),
2019 m_c_BinOp(Opcode, m_Specific(C),
2020 m_c_Xor(m_Specific(A), m_Specific(B)))))))) {
2021 // X = ~(A | B)
2022 // Y = (C | (A ^ B)
2023 Value *Or = cast<BinaryOperator>(X)->getOperand(0);
2024 return BinaryOperator::CreateNot(Builder.CreateAnd(Or, Y));
2028 // (~A & B & C) | ... --> ...
2029 // (~A | B | C) | ... --> ...
2030 // TODO: One use checks are conservative. We just need to check that a total
2031 // number of multiple used values does not exceed reduction
2032 // in operations.
2033 if (match(Op0,
2034 m_OneUse(m_c_BinOp(FlippedOpcode,
2035 m_BinOp(FlippedOpcode, m_Value(B), m_Value(C)),
2036 m_CombineAnd(m_Value(X), m_Not(m_Value(A)))))) ||
2037 match(Op0, m_OneUse(m_c_BinOp(
2038 FlippedOpcode,
2039 m_c_BinOp(FlippedOpcode, m_Value(C),
2040 m_CombineAnd(m_Value(X), m_Not(m_Value(A)))),
2041 m_Value(B))))) {
2042 // X = ~A
2043 // (~A & B & C) | ~(A | B | C) --> ~(A | (B ^ C))
2044 // (~A | B | C) & ~(A & B & C) --> (~A | (B ^ C))
2045 if (match(Op1, m_OneUse(m_Not(m_c_BinOp(
2046 Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)),
2047 m_Specific(C))))) ||
2048 match(Op1, m_OneUse(m_Not(m_c_BinOp(
2049 Opcode, m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)),
2050 m_Specific(A))))) ||
2051 match(Op1, m_OneUse(m_Not(m_c_BinOp(
2052 Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)),
2053 m_Specific(B)))))) {
2054 Value *Xor = Builder.CreateXor(B, C);
2055 return (Opcode == Instruction::Or)
2056 ? BinaryOperator::CreateNot(Builder.CreateOr(Xor, A))
2057 : BinaryOperator::CreateOr(Xor, X);
2060 // (~A & B & C) | ~(A | B) --> (C | ~B) & ~A
2061 // (~A | B | C) & ~(A & B) --> (C & ~B) | ~A
2062 if (match(Op1, m_OneUse(m_Not(m_OneUse(
2063 m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)))))))
2064 return BinaryOperator::Create(
2065 FlippedOpcode, Builder.CreateBinOp(Opcode, C, Builder.CreateNot(B)),
2068 // (~A & B & C) | ~(A | C) --> (B | ~C) & ~A
2069 // (~A | B | C) & ~(A & C) --> (B & ~C) | ~A
2070 if (match(Op1, m_OneUse(m_Not(m_OneUse(
2071 m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)))))))
2072 return BinaryOperator::Create(
2073 FlippedOpcode, Builder.CreateBinOp(Opcode, B, Builder.CreateNot(C)),
2077 return nullptr;
2080 /// Try to reassociate a pair of binops so that values with one use only are
2081 /// part of the same instruction. This may enable folds that are limited with
2082 /// multi-use restrictions and makes it more likely to match other patterns that
2083 /// are looking for a common operand.
2084 static Instruction *reassociateForUses(BinaryOperator &BO,
2085 InstCombinerImpl::BuilderTy &Builder) {
2086 Instruction::BinaryOps Opcode = BO.getOpcode();
2087 Value *X, *Y, *Z;
2088 if (match(&BO,
2089 m_c_BinOp(Opcode, m_OneUse(m_BinOp(Opcode, m_Value(X), m_Value(Y))),
2090 m_OneUse(m_Value(Z))))) {
2091 if (!isa<Constant>(X) && !isa<Constant>(Y) && !isa<Constant>(Z)) {
2092 // (X op Y) op Z --> (Y op Z) op X
2093 if (!X->hasOneUse()) {
2094 Value *YZ = Builder.CreateBinOp(Opcode, Y, Z);
2095 return BinaryOperator::Create(Opcode, YZ, X);
2097 // (X op Y) op Z --> (X op Z) op Y
2098 if (!Y->hasOneUse()) {
2099 Value *XZ = Builder.CreateBinOp(Opcode, X, Z);
2100 return BinaryOperator::Create(Opcode, XZ, Y);
2105 return nullptr;
2108 // Match
2109 // (X + C2) | C
2110 // (X + C2) ^ C
2111 // (X + C2) & C
2112 // and convert to do the bitwise logic first:
2113 // (X | C) + C2
2114 // (X ^ C) + C2
2115 // (X & C) + C2
2116 // iff bits affected by logic op are lower than last bit affected by math op
2117 static Instruction *canonicalizeLogicFirst(BinaryOperator &I,
2118 InstCombiner::BuilderTy &Builder) {
2119 Type *Ty = I.getType();
2120 Instruction::BinaryOps OpC = I.getOpcode();
2121 Value *Op0 = I.getOperand(0);
2122 Value *Op1 = I.getOperand(1);
2123 Value *X;
2124 const APInt *C, *C2;
2126 if (!(match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C2)))) &&
2127 match(Op1, m_APInt(C))))
2128 return nullptr;
2130 unsigned Width = Ty->getScalarSizeInBits();
2131 unsigned LastOneMath = Width - C2->countr_zero();
2133 switch (OpC) {
2134 case Instruction::And:
2135 if (C->countl_one() < LastOneMath)
2136 return nullptr;
2137 break;
2138 case Instruction::Xor:
2139 case Instruction::Or:
2140 if (C->countl_zero() < LastOneMath)
2141 return nullptr;
2142 break;
2143 default:
2144 llvm_unreachable("Unexpected BinaryOp!");
2147 Value *NewBinOp = Builder.CreateBinOp(OpC, X, ConstantInt::get(Ty, *C));
2148 return BinaryOperator::CreateWithCopiedFlags(Instruction::Add, NewBinOp,
2149 ConstantInt::get(Ty, *C2), Op0);
2152 // binop(shift(ShiftedC1, ShAmt), shift(ShiftedC2, add(ShAmt, AddC))) ->
2153 // shift(binop(ShiftedC1, shift(ShiftedC2, AddC)), ShAmt)
2154 // where both shifts are the same and AddC is a valid shift amount.
2155 Instruction *InstCombinerImpl::foldBinOpOfDisplacedShifts(BinaryOperator &I) {
2156 assert((I.isBitwiseLogicOp() || I.getOpcode() == Instruction::Add) &&
2157 "Unexpected opcode");
2159 Value *ShAmt;
2160 Constant *ShiftedC1, *ShiftedC2, *AddC;
2161 Type *Ty = I.getType();
2162 unsigned BitWidth = Ty->getScalarSizeInBits();
2163 if (!match(&I,
2164 m_c_BinOp(m_Shift(m_ImmConstant(ShiftedC1), m_Value(ShAmt)),
2165 m_Shift(m_ImmConstant(ShiftedC2),
2166 m_Add(m_Deferred(ShAmt), m_ImmConstant(AddC))))))
2167 return nullptr;
2169 // Make sure the add constant is a valid shift amount.
2170 if (!match(AddC,
2171 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(BitWidth, BitWidth))))
2172 return nullptr;
2174 // Avoid constant expressions.
2175 auto *Op0Inst = dyn_cast<Instruction>(I.getOperand(0));
2176 auto *Op1Inst = dyn_cast<Instruction>(I.getOperand(1));
2177 if (!Op0Inst || !Op1Inst)
2178 return nullptr;
2180 // Both shifts must be the same.
2181 Instruction::BinaryOps ShiftOp =
2182 static_cast<Instruction::BinaryOps>(Op0Inst->getOpcode());
2183 if (ShiftOp != Op1Inst->getOpcode())
2184 return nullptr;
2186 // For adds, only left shifts are supported.
2187 if (I.getOpcode() == Instruction::Add && ShiftOp != Instruction::Shl)
2188 return nullptr;
2190 Value *NewC = Builder.CreateBinOp(
2191 I.getOpcode(), ShiftedC1, Builder.CreateBinOp(ShiftOp, ShiftedC2, AddC));
2192 return BinaryOperator::Create(ShiftOp, NewC, ShAmt);
2195 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
2196 // here. We should standardize that construct where it is needed or choose some
2197 // other way to ensure that commutated variants of patterns are not missed.
2198 Instruction *InstCombinerImpl::visitAnd(BinaryOperator &I) {
2199 Type *Ty = I.getType();
2201 if (Value *V = simplifyAndInst(I.getOperand(0), I.getOperand(1),
2202 SQ.getWithInstruction(&I)))
2203 return replaceInstUsesWith(I, V);
2205 if (SimplifyAssociativeOrCommutative(I))
2206 return &I;
2208 if (Instruction *X = foldVectorBinop(I))
2209 return X;
2211 if (Instruction *Phi = foldBinopWithPhiOperands(I))
2212 return Phi;
2214 // See if we can simplify any instructions used by the instruction whose sole
2215 // purpose is to compute bits we don't care about.
2216 if (SimplifyDemandedInstructionBits(I))
2217 return &I;
2219 // Do this before using distributive laws to catch simple and/or/not patterns.
2220 if (Instruction *Xor = foldAndToXor(I, Builder))
2221 return Xor;
2223 if (Instruction *X = foldComplexAndOrPatterns(I, Builder))
2224 return X;
2226 // (A|B)&(A|C) -> A|(B&C) etc
2227 if (Value *V = foldUsingDistributiveLaws(I))
2228 return replaceInstUsesWith(I, V);
2230 if (Value *V = SimplifyBSwap(I, Builder))
2231 return replaceInstUsesWith(I, V);
2233 if (Instruction *R = foldBinOpShiftWithShift(I))
2234 return R;
2236 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2238 Value *X, *Y;
2239 if (match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) &&
2240 match(Op1, m_One())) {
2241 // (1 << X) & 1 --> zext(X == 0)
2242 // (1 >> X) & 1 --> zext(X == 0)
2243 Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, 0));
2244 return new ZExtInst(IsZero, Ty);
2247 // (-(X & 1)) & Y --> (X & 1) == 0 ? 0 : Y
2248 Value *Neg;
2249 if (match(&I,
2250 m_c_And(m_CombineAnd(m_Value(Neg),
2251 m_OneUse(m_Neg(m_And(m_Value(), m_One())))),
2252 m_Value(Y)))) {
2253 Value *Cmp = Builder.CreateIsNull(Neg);
2254 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Y);
2257 const APInt *C;
2258 if (match(Op1, m_APInt(C))) {
2259 const APInt *XorC;
2260 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) {
2261 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
2262 Constant *NewC = ConstantInt::get(Ty, *C & *XorC);
2263 Value *And = Builder.CreateAnd(X, Op1);
2264 And->takeName(Op0);
2265 return BinaryOperator::CreateXor(And, NewC);
2268 const APInt *OrC;
2269 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) {
2270 // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2)
2271 // NOTE: This reduces the number of bits set in the & mask, which
2272 // can expose opportunities for store narrowing for scalars.
2273 // NOTE: SimplifyDemandedBits should have already removed bits from C1
2274 // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in
2275 // above, but this feels safer.
2276 APInt Together = *C & *OrC;
2277 Value *And = Builder.CreateAnd(X, ConstantInt::get(Ty, Together ^ *C));
2278 And->takeName(Op0);
2279 return BinaryOperator::CreateOr(And, ConstantInt::get(Ty, Together));
2282 unsigned Width = Ty->getScalarSizeInBits();
2283 const APInt *ShiftC;
2284 if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC))))) &&
2285 ShiftC->ult(Width)) {
2286 if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) {
2287 // We are clearing high bits that were potentially set by sext+ashr:
2288 // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC
2289 Value *Sext = Builder.CreateSExt(X, Ty);
2290 Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->zext(Width));
2291 return BinaryOperator::CreateLShr(Sext, ShAmtC);
2295 // If this 'and' clears the sign-bits added by ashr, replace with lshr:
2296 // and (ashr X, ShiftC), C --> lshr X, ShiftC
2297 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShiftC))) && ShiftC->ult(Width) &&
2298 C->isMask(Width - ShiftC->getZExtValue()))
2299 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, *ShiftC));
2301 const APInt *AddC;
2302 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC)))) {
2303 // If we add zeros to every bit below a mask, the add has no effect:
2304 // (X + AddC) & LowMaskC --> X & LowMaskC
2305 unsigned Ctlz = C->countl_zero();
2306 APInt LowMask(APInt::getLowBitsSet(Width, Width - Ctlz));
2307 if ((*AddC & LowMask).isZero())
2308 return BinaryOperator::CreateAnd(X, Op1);
2310 // If we are masking the result of the add down to exactly one bit and
2311 // the constant we are adding has no bits set below that bit, then the
2312 // add is flipping a single bit. Example:
2313 // (X + 4) & 4 --> (X & 4) ^ 4
2314 if (Op0->hasOneUse() && C->isPowerOf2() && (*AddC & (*C - 1)) == 0) {
2315 assert((*C & *AddC) != 0 && "Expected common bit");
2316 Value *NewAnd = Builder.CreateAnd(X, Op1);
2317 return BinaryOperator::CreateXor(NewAnd, Op1);
2321 // ((C1 OP zext(X)) & C2) -> zext((C1 OP X) & C2) if C2 fits in the
2322 // bitwidth of X and OP behaves well when given trunc(C1) and X.
2323 auto isNarrowableBinOpcode = [](BinaryOperator *B) {
2324 switch (B->getOpcode()) {
2325 case Instruction::Xor:
2326 case Instruction::Or:
2327 case Instruction::Mul:
2328 case Instruction::Add:
2329 case Instruction::Sub:
2330 return true;
2331 default:
2332 return false;
2335 BinaryOperator *BO;
2336 if (match(Op0, m_OneUse(m_BinOp(BO))) && isNarrowableBinOpcode(BO)) {
2337 Instruction::BinaryOps BOpcode = BO->getOpcode();
2338 Value *X;
2339 const APInt *C1;
2340 // TODO: The one-use restrictions could be relaxed a little if the AND
2341 // is going to be removed.
2342 // Try to narrow the 'and' and a binop with constant operand:
2343 // and (bo (zext X), C1), C --> zext (and (bo X, TruncC1), TruncC)
2344 if (match(BO, m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))), m_APInt(C1))) &&
2345 C->isIntN(X->getType()->getScalarSizeInBits())) {
2346 unsigned XWidth = X->getType()->getScalarSizeInBits();
2347 Constant *TruncC1 = ConstantInt::get(X->getType(), C1->trunc(XWidth));
2348 Value *BinOp = isa<ZExtInst>(BO->getOperand(0))
2349 ? Builder.CreateBinOp(BOpcode, X, TruncC1)
2350 : Builder.CreateBinOp(BOpcode, TruncC1, X);
2351 Constant *TruncC = ConstantInt::get(X->getType(), C->trunc(XWidth));
2352 Value *And = Builder.CreateAnd(BinOp, TruncC);
2353 return new ZExtInst(And, Ty);
2356 // Similar to above: if the mask matches the zext input width, then the
2357 // 'and' can be eliminated, so we can truncate the other variable op:
2358 // and (bo (zext X), Y), C --> zext (bo X, (trunc Y))
2359 if (isa<Instruction>(BO->getOperand(0)) &&
2360 match(BO->getOperand(0), m_OneUse(m_ZExt(m_Value(X)))) &&
2361 C->isMask(X->getType()->getScalarSizeInBits())) {
2362 Y = BO->getOperand(1);
2363 Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr");
2364 Value *NewBO =
2365 Builder.CreateBinOp(BOpcode, X, TrY, BO->getName() + ".narrow");
2366 return new ZExtInst(NewBO, Ty);
2368 // and (bo Y, (zext X)), C --> zext (bo (trunc Y), X)
2369 if (isa<Instruction>(BO->getOperand(1)) &&
2370 match(BO->getOperand(1), m_OneUse(m_ZExt(m_Value(X)))) &&
2371 C->isMask(X->getType()->getScalarSizeInBits())) {
2372 Y = BO->getOperand(0);
2373 Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr");
2374 Value *NewBO =
2375 Builder.CreateBinOp(BOpcode, TrY, X, BO->getName() + ".narrow");
2376 return new ZExtInst(NewBO, Ty);
2380 // This is intentionally placed after the narrowing transforms for
2381 // efficiency (transform directly to the narrow logic op if possible).
2382 // If the mask is only needed on one incoming arm, push the 'and' op up.
2383 if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) ||
2384 match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) {
2385 APInt NotAndMask(~(*C));
2386 BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode();
2387 if (MaskedValueIsZero(X, NotAndMask, 0, &I)) {
2388 // Not masking anything out for the LHS, move mask to RHS.
2389 // and ({x}or X, Y), C --> {x}or X, (and Y, C)
2390 Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked");
2391 return BinaryOperator::Create(BinOp, X, NewRHS);
2393 if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) {
2394 // Not masking anything out for the RHS, move mask to LHS.
2395 // and ({x}or X, Y), C --> {x}or (and X, C), Y
2396 Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked");
2397 return BinaryOperator::Create(BinOp, NewLHS, Y);
2401 // When the mask is a power-of-2 constant and op0 is a shifted-power-of-2
2402 // constant, test if the shift amount equals the offset bit index:
2403 // (ShiftC << X) & C --> X == (log2(C) - log2(ShiftC)) ? C : 0
2404 // (ShiftC >> X) & C --> X == (log2(ShiftC) - log2(C)) ? C : 0
2405 if (C->isPowerOf2() &&
2406 match(Op0, m_OneUse(m_LogicalShift(m_Power2(ShiftC), m_Value(X))))) {
2407 int Log2ShiftC = ShiftC->exactLogBase2();
2408 int Log2C = C->exactLogBase2();
2409 bool IsShiftLeft =
2410 cast<BinaryOperator>(Op0)->getOpcode() == Instruction::Shl;
2411 int BitNum = IsShiftLeft ? Log2C - Log2ShiftC : Log2ShiftC - Log2C;
2412 assert(BitNum >= 0 && "Expected demanded bits to handle impossible mask");
2413 Value *Cmp = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, BitNum));
2414 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C),
2415 ConstantInt::getNullValue(Ty));
2418 Constant *C1, *C2;
2419 const APInt *C3 = C;
2420 Value *X;
2421 if (C3->isPowerOf2()) {
2422 Constant *Log2C3 = ConstantInt::get(Ty, C3->countr_zero());
2423 if (match(Op0, m_OneUse(m_LShr(m_Shl(m_ImmConstant(C1), m_Value(X)),
2424 m_ImmConstant(C2)))) &&
2425 match(C1, m_Power2())) {
2426 Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1);
2427 Constant *LshrC = ConstantExpr::getAdd(C2, Log2C3);
2428 KnownBits KnownLShrc = computeKnownBits(LshrC, 0, nullptr);
2429 if (KnownLShrc.getMaxValue().ult(Width)) {
2430 // iff C1,C3 is pow2 and C2 + cttz(C3) < BitWidth:
2431 // ((C1 << X) >> C2) & C3 -> X == (cttz(C3)+C2-cttz(C1)) ? C3 : 0
2432 Constant *CmpC = ConstantExpr::getSub(LshrC, Log2C1);
2433 Value *Cmp = Builder.CreateICmpEQ(X, CmpC);
2434 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3),
2435 ConstantInt::getNullValue(Ty));
2439 if (match(Op0, m_OneUse(m_Shl(m_LShr(m_ImmConstant(C1), m_Value(X)),
2440 m_ImmConstant(C2)))) &&
2441 match(C1, m_Power2())) {
2442 Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1);
2443 Constant *Cmp =
2444 ConstantExpr::getCompare(ICmpInst::ICMP_ULT, Log2C3, C2);
2445 if (Cmp->isZeroValue()) {
2446 // iff C1,C3 is pow2 and Log2(C3) >= C2:
2447 // ((C1 >> X) << C2) & C3 -> X == (cttz(C1)+C2-cttz(C3)) ? C3 : 0
2448 Constant *ShlC = ConstantExpr::getAdd(C2, Log2C1);
2449 Constant *CmpC = ConstantExpr::getSub(ShlC, Log2C3);
2450 Value *Cmp = Builder.CreateICmpEQ(X, CmpC);
2451 return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3),
2452 ConstantInt::getNullValue(Ty));
2458 // If we are clearing the sign bit of a floating-point value, convert this to
2459 // fabs, then cast back to integer.
2461 // This is a generous interpretation for noimplicitfloat, this is not a true
2462 // floating-point operation.
2464 // Assumes any IEEE-represented type has the sign bit in the high bit.
2465 // TODO: Unify with APInt matcher. This version allows undef unlike m_APInt
2466 Value *CastOp;
2467 if (match(Op0, m_BitCast(m_Value(CastOp))) &&
2468 match(Op1, m_MaxSignedValue()) &&
2469 !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
2470 Attribute::NoImplicitFloat)) {
2471 Type *EltTy = CastOp->getType()->getScalarType();
2472 if (EltTy->isFloatingPointTy() && EltTy->isIEEE() &&
2473 EltTy->getPrimitiveSizeInBits() ==
2474 I.getType()->getScalarType()->getPrimitiveSizeInBits()) {
2475 Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp);
2476 return new BitCastInst(FAbs, I.getType());
2480 if (match(&I, m_And(m_OneUse(m_Shl(m_ZExt(m_Value(X)), m_Value(Y))),
2481 m_SignMask())) &&
2482 match(Y, m_SpecificInt_ICMP(
2483 ICmpInst::Predicate::ICMP_EQ,
2484 APInt(Ty->getScalarSizeInBits(),
2485 Ty->getScalarSizeInBits() -
2486 X->getType()->getScalarSizeInBits())))) {
2487 auto *SExt = Builder.CreateSExt(X, Ty, X->getName() + ".signext");
2488 auto *SanitizedSignMask = cast<Constant>(Op1);
2489 // We must be careful with the undef elements of the sign bit mask, however:
2490 // the mask elt can be undef iff the shift amount for that lane was undef,
2491 // otherwise we need to sanitize undef masks to zero.
2492 SanitizedSignMask = Constant::replaceUndefsWith(
2493 SanitizedSignMask, ConstantInt::getNullValue(Ty->getScalarType()));
2494 SanitizedSignMask =
2495 Constant::mergeUndefsWith(SanitizedSignMask, cast<Constant>(Y));
2496 return BinaryOperator::CreateAnd(SExt, SanitizedSignMask);
2499 if (Instruction *Z = narrowMaskedBinOp(I))
2500 return Z;
2502 if (I.getType()->isIntOrIntVectorTy(1)) {
2503 if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
2504 if (auto *I =
2505 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ true))
2506 return I;
2508 if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
2509 if (auto *I =
2510 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ true))
2511 return I;
2515 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
2516 return FoldedLogic;
2518 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
2519 return DeMorgan;
2522 Value *A, *B, *C;
2523 // A & (A ^ B) --> A & ~B
2524 if (match(Op1, m_OneUse(m_c_Xor(m_Specific(Op0), m_Value(B)))))
2525 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(B));
2526 // (A ^ B) & A --> A & ~B
2527 if (match(Op0, m_OneUse(m_c_Xor(m_Specific(Op1), m_Value(B)))))
2528 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(B));
2530 // A & ~(A ^ B) --> A & B
2531 if (match(Op1, m_Not(m_c_Xor(m_Specific(Op0), m_Value(B)))))
2532 return BinaryOperator::CreateAnd(Op0, B);
2533 // ~(A ^ B) & A --> A & B
2534 if (match(Op0, m_Not(m_c_Xor(m_Specific(Op1), m_Value(B)))))
2535 return BinaryOperator::CreateAnd(Op1, B);
2537 // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C
2538 if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
2539 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
2540 if (Op1->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
2541 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(C));
2543 // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C
2544 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
2545 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
2546 if (Op0->hasOneUse() || isFreeToInvert(C, C->hasOneUse()))
2547 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C));
2549 // (A | B) & (~A ^ B) -> A & B
2550 // (A | B) & (B ^ ~A) -> A & B
2551 // (B | A) & (~A ^ B) -> A & B
2552 // (B | A) & (B ^ ~A) -> A & B
2553 if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2554 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2555 return BinaryOperator::CreateAnd(A, B);
2557 // (~A ^ B) & (A | B) -> A & B
2558 // (~A ^ B) & (B | A) -> A & B
2559 // (B ^ ~A) & (A | B) -> A & B
2560 // (B ^ ~A) & (B | A) -> A & B
2561 if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2562 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
2563 return BinaryOperator::CreateAnd(A, B);
2565 // (~A | B) & (A ^ B) -> ~A & B
2566 // (~A | B) & (B ^ A) -> ~A & B
2567 // (B | ~A) & (A ^ B) -> ~A & B
2568 // (B | ~A) & (B ^ A) -> ~A & B
2569 if (match(Op0, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2570 match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
2571 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
2573 // (A ^ B) & (~A | B) -> ~A & B
2574 // (B ^ A) & (~A | B) -> ~A & B
2575 // (A ^ B) & (B | ~A) -> ~A & B
2576 // (B ^ A) & (B | ~A) -> ~A & B
2577 if (match(Op1, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2578 match(Op0, m_c_Xor(m_Specific(A), m_Specific(B))))
2579 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
2583 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
2584 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
2585 if (LHS && RHS)
2586 if (Value *Res = foldAndOrOfICmps(LHS, RHS, I, /* IsAnd */ true))
2587 return replaceInstUsesWith(I, Res);
2589 // TODO: Make this recursive; it's a little tricky because an arbitrary
2590 // number of 'and' instructions might have to be created.
2591 if (LHS && match(Op1, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) {
2592 bool IsLogical = isa<SelectInst>(Op1);
2593 // LHS & (X && Y) --> (LHS && X) && Y
2594 if (auto *Cmp = dyn_cast<ICmpInst>(X))
2595 if (Value *Res =
2596 foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ true, IsLogical))
2597 return replaceInstUsesWith(I, IsLogical
2598 ? Builder.CreateLogicalAnd(Res, Y)
2599 : Builder.CreateAnd(Res, Y));
2600 // LHS & (X && Y) --> X && (LHS & Y)
2601 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2602 if (Value *Res = foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ true,
2603 /* IsLogical */ false))
2604 return replaceInstUsesWith(I, IsLogical
2605 ? Builder.CreateLogicalAnd(X, Res)
2606 : Builder.CreateAnd(X, Res));
2608 if (RHS && match(Op0, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) {
2609 bool IsLogical = isa<SelectInst>(Op0);
2610 // (X && Y) & RHS --> (X && RHS) && Y
2611 if (auto *Cmp = dyn_cast<ICmpInst>(X))
2612 if (Value *Res =
2613 foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ true, IsLogical))
2614 return replaceInstUsesWith(I, IsLogical
2615 ? Builder.CreateLogicalAnd(Res, Y)
2616 : Builder.CreateAnd(Res, Y));
2617 // (X && Y) & RHS --> X && (Y & RHS)
2618 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
2619 if (Value *Res = foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ true,
2620 /* IsLogical */ false))
2621 return replaceInstUsesWith(I, IsLogical
2622 ? Builder.CreateLogicalAnd(X, Res)
2623 : Builder.CreateAnd(X, Res));
2627 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
2628 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
2629 if (Value *Res = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true))
2630 return replaceInstUsesWith(I, Res);
2632 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
2633 return FoldedFCmps;
2635 if (Instruction *CastedAnd = foldCastedBitwiseLogic(I))
2636 return CastedAnd;
2638 if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
2639 return Sel;
2641 // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>.
2642 // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
2643 // with binop identity constant. But creating a select with non-constant
2644 // arm may not be reversible due to poison semantics. Is that a good
2645 // canonicalization?
2646 Value *A, *B;
2647 if (match(&I, m_c_And(m_OneUse(m_SExt(m_Value(A))), m_Value(B))) &&
2648 A->getType()->isIntOrIntVectorTy(1))
2649 return SelectInst::Create(A, B, Constant::getNullValue(Ty));
2651 // Similarly, a 'not' of the bool translates to a swap of the select arms:
2652 // ~sext(A) & B / B & ~sext(A) --> A ? 0 : B
2653 if (match(&I, m_c_And(m_Not(m_SExt(m_Value(A))), m_Value(B))) &&
2654 A->getType()->isIntOrIntVectorTy(1))
2655 return SelectInst::Create(A, Constant::getNullValue(Ty), B);
2657 // (iN X s>> (N-1)) & Y --> (X s< 0) ? Y : 0 -- with optional sext
2658 if (match(&I, m_c_And(m_OneUse(m_SExtOrSelf(
2659 m_AShr(m_Value(X), m_APIntAllowUndef(C)))),
2660 m_Value(Y))) &&
2661 *C == X->getType()->getScalarSizeInBits() - 1) {
2662 Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
2663 return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty));
2665 // If there's a 'not' of the shifted value, swap the select operands:
2666 // ~(iN X s>> (N-1)) & Y --> (X s< 0) ? 0 : Y -- with optional sext
2667 if (match(&I, m_c_And(m_OneUse(m_SExtOrSelf(
2668 m_Not(m_AShr(m_Value(X), m_APIntAllowUndef(C))))),
2669 m_Value(Y))) &&
2670 *C == X->getType()->getScalarSizeInBits() - 1) {
2671 Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
2672 return SelectInst::Create(IsNeg, ConstantInt::getNullValue(Ty), Y);
2675 // (~x) & y --> ~(x | (~y)) iff that gets rid of inversions
2676 if (sinkNotIntoOtherHandOfLogicalOp(I))
2677 return &I;
2679 // An and recurrence w/loop invariant step is equivelent to (and start, step)
2680 PHINode *PN = nullptr;
2681 Value *Start = nullptr, *Step = nullptr;
2682 if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
2683 return replaceInstUsesWith(I, Builder.CreateAnd(Start, Step));
2685 if (Instruction *R = reassociateForUses(I, Builder))
2686 return R;
2688 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
2689 return Canonicalized;
2691 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
2692 return Folded;
2694 if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
2695 return Res;
2697 return nullptr;
2700 Instruction *InstCombinerImpl::matchBSwapOrBitReverse(Instruction &I,
2701 bool MatchBSwaps,
2702 bool MatchBitReversals) {
2703 SmallVector<Instruction *, 4> Insts;
2704 if (!recognizeBSwapOrBitReverseIdiom(&I, MatchBSwaps, MatchBitReversals,
2705 Insts))
2706 return nullptr;
2707 Instruction *LastInst = Insts.pop_back_val();
2708 LastInst->removeFromParent();
2710 for (auto *Inst : Insts)
2711 Worklist.push(Inst);
2712 return LastInst;
2715 /// Match UB-safe variants of the funnel shift intrinsic.
2716 static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC) {
2717 // TODO: Can we reduce the code duplication between this and the related
2718 // rotate matching code under visitSelect and visitTrunc?
2719 unsigned Width = Or.getType()->getScalarSizeInBits();
2721 // First, find an or'd pair of opposite shifts:
2722 // or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1)
2723 BinaryOperator *Or0, *Or1;
2724 if (!match(Or.getOperand(0), m_BinOp(Or0)) ||
2725 !match(Or.getOperand(1), m_BinOp(Or1)))
2726 return nullptr;
2728 Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1;
2729 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) ||
2730 !match(Or1, m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) ||
2731 Or0->getOpcode() == Or1->getOpcode())
2732 return nullptr;
2734 // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)).
2735 if (Or0->getOpcode() == BinaryOperator::LShr) {
2736 std::swap(Or0, Or1);
2737 std::swap(ShVal0, ShVal1);
2738 std::swap(ShAmt0, ShAmt1);
2740 assert(Or0->getOpcode() == BinaryOperator::Shl &&
2741 Or1->getOpcode() == BinaryOperator::LShr &&
2742 "Illegal or(shift,shift) pair");
2744 // Match the shift amount operands for a funnel shift pattern. This always
2745 // matches a subtraction on the R operand.
2746 auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * {
2747 // Check for constant shift amounts that sum to the bitwidth.
2748 const APInt *LI, *RI;
2749 if (match(L, m_APIntAllowUndef(LI)) && match(R, m_APIntAllowUndef(RI)))
2750 if (LI->ult(Width) && RI->ult(Width) && (*LI + *RI) == Width)
2751 return ConstantInt::get(L->getType(), *LI);
2753 Constant *LC, *RC;
2754 if (match(L, m_Constant(LC)) && match(R, m_Constant(RC)) &&
2755 match(L, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2756 match(R, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) &&
2757 match(ConstantExpr::getAdd(LC, RC), m_SpecificIntAllowUndef(Width)))
2758 return ConstantExpr::mergeUndefsWith(LC, RC);
2760 // (shl ShVal, X) | (lshr ShVal, (Width - x)) iff X < Width.
2761 // We limit this to X < Width in case the backend re-expands the intrinsic,
2762 // and has to reintroduce a shift modulo operation (InstCombine might remove
2763 // it after this fold). This still doesn't guarantee that the final codegen
2764 // will match this original pattern.
2765 if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) {
2766 KnownBits KnownL = IC.computeKnownBits(L, /*Depth*/ 0, &Or);
2767 return KnownL.getMaxValue().ult(Width) ? L : nullptr;
2770 // For non-constant cases, the following patterns currently only work for
2771 // rotation patterns.
2772 // TODO: Add general funnel-shift compatible patterns.
2773 if (ShVal0 != ShVal1)
2774 return nullptr;
2776 // For non-constant cases we don't support non-pow2 shift masks.
2777 // TODO: Is it worth matching urem as well?
2778 if (!isPowerOf2_32(Width))
2779 return nullptr;
2781 // The shift amount may be masked with negation:
2782 // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1)))
2783 Value *X;
2784 unsigned Mask = Width - 1;
2785 if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) &&
2786 match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))
2787 return X;
2789 // Similar to above, but the shift amount may be extended after masking,
2790 // so return the extended value as the parameter for the intrinsic.
2791 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
2792 match(R, m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))),
2793 m_SpecificInt(Mask))))
2794 return L;
2796 if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) &&
2797 match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))))
2798 return L;
2800 return nullptr;
2803 Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width);
2804 bool IsFshl = true; // Sub on LSHR.
2805 if (!ShAmt) {
2806 ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width);
2807 IsFshl = false; // Sub on SHL.
2809 if (!ShAmt)
2810 return nullptr;
2812 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2813 Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType());
2814 return CallInst::Create(F, {ShVal0, ShVal1, ShAmt});
2817 /// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns.
2818 static Instruction *matchOrConcat(Instruction &Or,
2819 InstCombiner::BuilderTy &Builder) {
2820 assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'");
2821 Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1);
2822 Type *Ty = Or.getType();
2824 unsigned Width = Ty->getScalarSizeInBits();
2825 if ((Width & 1) != 0)
2826 return nullptr;
2827 unsigned HalfWidth = Width / 2;
2829 // Canonicalize zext (lower half) to LHS.
2830 if (!isa<ZExtInst>(Op0))
2831 std::swap(Op0, Op1);
2833 // Find lower/upper half.
2834 Value *LowerSrc, *ShlVal, *UpperSrc;
2835 const APInt *C;
2836 if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) ||
2837 !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) ||
2838 !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc)))))
2839 return nullptr;
2840 if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() ||
2841 LowerSrc->getType()->getScalarSizeInBits() != HalfWidth)
2842 return nullptr;
2844 auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) {
2845 Value *NewLower = Builder.CreateZExt(Lo, Ty);
2846 Value *NewUpper = Builder.CreateZExt(Hi, Ty);
2847 NewUpper = Builder.CreateShl(NewUpper, HalfWidth);
2848 Value *BinOp = Builder.CreateOr(NewLower, NewUpper);
2849 Function *F = Intrinsic::getDeclaration(Or.getModule(), id, Ty);
2850 return Builder.CreateCall(F, BinOp);
2853 // BSWAP: Push the concat down, swapping the lower/upper sources.
2854 // concat(bswap(x),bswap(y)) -> bswap(concat(x,y))
2855 Value *LowerBSwap, *UpperBSwap;
2856 if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) &&
2857 match(UpperSrc, m_BSwap(m_Value(UpperBSwap))))
2858 return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap);
2860 // BITREVERSE: Push the concat down, swapping the lower/upper sources.
2861 // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y))
2862 Value *LowerBRev, *UpperBRev;
2863 if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) &&
2864 match(UpperSrc, m_BitReverse(m_Value(UpperBRev))))
2865 return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev);
2867 return nullptr;
2870 /// If all elements of two constant vectors are 0/-1 and inverses, return true.
2871 static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) {
2872 unsigned NumElts = cast<FixedVectorType>(C1->getType())->getNumElements();
2873 for (unsigned i = 0; i != NumElts; ++i) {
2874 Constant *EltC1 = C1->getAggregateElement(i);
2875 Constant *EltC2 = C2->getAggregateElement(i);
2876 if (!EltC1 || !EltC2)
2877 return false;
2879 // One element must be all ones, and the other must be all zeros.
2880 if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) ||
2881 (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes()))))
2882 return false;
2884 return true;
2887 /// We have an expression of the form (A & C) | (B & D). If A is a scalar or
2888 /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of
2889 /// B, it can be used as the condition operand of a select instruction.
2890 /// We will detect (A & C) | ~(B | D) when the flag ABIsTheSame enabled.
2891 Value *InstCombinerImpl::getSelectCondition(Value *A, Value *B,
2892 bool ABIsTheSame) {
2893 // We may have peeked through bitcasts in the caller.
2894 // Exit immediately if we don't have (vector) integer types.
2895 Type *Ty = A->getType();
2896 if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy())
2897 return nullptr;
2899 // If A is the 'not' operand of B and has enough signbits, we have our answer.
2900 if (ABIsTheSame ? (A == B) : match(B, m_Not(m_Specific(A)))) {
2901 // If these are scalars or vectors of i1, A can be used directly.
2902 if (Ty->isIntOrIntVectorTy(1))
2903 return A;
2905 // If we look through a vector bitcast, the caller will bitcast the operands
2906 // to match the condition's number of bits (N x i1).
2907 // To make this poison-safe, disallow bitcast from wide element to narrow
2908 // element. That could allow poison in lanes where it was not present in the
2909 // original code.
2910 A = peekThroughBitcast(A);
2911 if (A->getType()->isIntOrIntVectorTy()) {
2912 unsigned NumSignBits = ComputeNumSignBits(A);
2913 if (NumSignBits == A->getType()->getScalarSizeInBits() &&
2914 NumSignBits <= Ty->getScalarSizeInBits())
2915 return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(A->getType()));
2917 return nullptr;
2920 // TODO: add support for sext and constant case
2921 if (ABIsTheSame)
2922 return nullptr;
2924 // If both operands are constants, see if the constants are inverse bitmasks.
2925 Constant *AConst, *BConst;
2926 if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst)))
2927 if (AConst == ConstantExpr::getNot(BConst) &&
2928 ComputeNumSignBits(A) == Ty->getScalarSizeInBits())
2929 return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty));
2931 // Look for more complex patterns. The 'not' op may be hidden behind various
2932 // casts. Look through sexts and bitcasts to find the booleans.
2933 Value *Cond;
2934 Value *NotB;
2935 if (match(A, m_SExt(m_Value(Cond))) &&
2936 Cond->getType()->isIntOrIntVectorTy(1)) {
2937 // A = sext i1 Cond; B = sext (not (i1 Cond))
2938 if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
2939 return Cond;
2941 // A = sext i1 Cond; B = not ({bitcast} (sext (i1 Cond)))
2942 // TODO: The one-use checks are unnecessary or misplaced. If the caller
2943 // checked for uses on logic ops/casts, that should be enough to
2944 // make this transform worthwhile.
2945 if (match(B, m_OneUse(m_Not(m_Value(NotB))))) {
2946 NotB = peekThroughBitcast(NotB, true);
2947 if (match(NotB, m_SExt(m_Specific(Cond))))
2948 return Cond;
2952 // All scalar (and most vector) possibilities should be handled now.
2953 // Try more matches that only apply to non-splat constant vectors.
2954 if (!Ty->isVectorTy())
2955 return nullptr;
2957 // If both operands are xor'd with constants using the same sexted boolean
2958 // operand, see if the constants are inverse bitmasks.
2959 // TODO: Use ConstantExpr::getNot()?
2960 if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) &&
2961 match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) &&
2962 Cond->getType()->isIntOrIntVectorTy(1) &&
2963 areInverseVectorBitmasks(AConst, BConst)) {
2964 AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty));
2965 return Builder.CreateXor(Cond, AConst);
2967 return nullptr;
2970 /// We have an expression of the form (A & C) | (B & D). Try to simplify this
2971 /// to "A' ? C : D", where A' is a boolean or vector of booleans.
2972 /// When InvertFalseVal is set to true, we try to match the pattern
2973 /// where we have peeked through a 'not' op and A and B are the same:
2974 /// (A & C) | ~(A | D) --> (A & C) | (~A & ~D) --> A' ? C : ~D
2975 Value *InstCombinerImpl::matchSelectFromAndOr(Value *A, Value *C, Value *B,
2976 Value *D, bool InvertFalseVal) {
2977 // The potential condition of the select may be bitcasted. In that case, look
2978 // through its bitcast and the corresponding bitcast of the 'not' condition.
2979 Type *OrigType = A->getType();
2980 A = peekThroughBitcast(A, true);
2981 B = peekThroughBitcast(B, true);
2982 if (Value *Cond = getSelectCondition(A, B, InvertFalseVal)) {
2983 // ((bc Cond) & C) | ((bc ~Cond) & D) --> bc (select Cond, (bc C), (bc D))
2984 // If this is a vector, we may need to cast to match the condition's length.
2985 // The bitcasts will either all exist or all not exist. The builder will
2986 // not create unnecessary casts if the types already match.
2987 Type *SelTy = A->getType();
2988 if (auto *VecTy = dyn_cast<VectorType>(Cond->getType())) {
2989 // For a fixed or scalable vector get N from <{vscale x} N x iM>
2990 unsigned Elts = VecTy->getElementCount().getKnownMinValue();
2991 // For a fixed or scalable vector, get the size in bits of N x iM; for a
2992 // scalar this is just M.
2993 unsigned SelEltSize = SelTy->getPrimitiveSizeInBits().getKnownMinValue();
2994 Type *EltTy = Builder.getIntNTy(SelEltSize / Elts);
2995 SelTy = VectorType::get(EltTy, VecTy->getElementCount());
2997 Value *BitcastC = Builder.CreateBitCast(C, SelTy);
2998 if (InvertFalseVal)
2999 D = Builder.CreateNot(D);
3000 Value *BitcastD = Builder.CreateBitCast(D, SelTy);
3001 Value *Select = Builder.CreateSelect(Cond, BitcastC, BitcastD);
3002 return Builder.CreateBitCast(Select, OrigType);
3005 return nullptr;
3008 // (icmp eq X, C) | (icmp ult Other, (X - C)) -> (icmp ule Other, (X - (C + 1)))
3009 // (icmp ne X, C) & (icmp uge Other, (X - C)) -> (icmp ugt Other, (X - (C + 1)))
3010 static Value *foldAndOrOfICmpEqConstantAndICmp(ICmpInst *LHS, ICmpInst *RHS,
3011 bool IsAnd, bool IsLogical,
3012 IRBuilderBase &Builder) {
3013 Value *LHS0 = LHS->getOperand(0);
3014 Value *RHS0 = RHS->getOperand(0);
3015 Value *RHS1 = RHS->getOperand(1);
3017 ICmpInst::Predicate LPred =
3018 IsAnd ? LHS->getInversePredicate() : LHS->getPredicate();
3019 ICmpInst::Predicate RPred =
3020 IsAnd ? RHS->getInversePredicate() : RHS->getPredicate();
3022 const APInt *CInt;
3023 if (LPred != ICmpInst::ICMP_EQ ||
3024 !match(LHS->getOperand(1), m_APIntAllowUndef(CInt)) ||
3025 !LHS0->getType()->isIntOrIntVectorTy() ||
3026 !(LHS->hasOneUse() || RHS->hasOneUse()))
3027 return nullptr;
3029 auto MatchRHSOp = [LHS0, CInt](const Value *RHSOp) {
3030 return match(RHSOp,
3031 m_Add(m_Specific(LHS0), m_SpecificIntAllowUndef(-*CInt))) ||
3032 (CInt->isZero() && RHSOp == LHS0);
3035 Value *Other;
3036 if (RPred == ICmpInst::ICMP_ULT && MatchRHSOp(RHS1))
3037 Other = RHS0;
3038 else if (RPred == ICmpInst::ICMP_UGT && MatchRHSOp(RHS0))
3039 Other = RHS1;
3040 else
3041 return nullptr;
3043 if (IsLogical)
3044 Other = Builder.CreateFreeze(Other);
3046 return Builder.CreateICmp(
3047 IsAnd ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE,
3048 Builder.CreateSub(LHS0, ConstantInt::get(LHS0->getType(), *CInt + 1)),
3049 Other);
3052 /// Fold (icmp)&(icmp) or (icmp)|(icmp) if possible.
3053 /// If IsLogical is true, then the and/or is in select form and the transform
3054 /// must be poison-safe.
3055 Value *InstCombinerImpl::foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS,
3056 Instruction &I, bool IsAnd,
3057 bool IsLogical) {
3058 const SimplifyQuery Q = SQ.getWithInstruction(&I);
3060 // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2)
3061 // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2)
3062 // if K1 and K2 are a one-bit mask.
3063 if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, &I, IsAnd, IsLogical))
3064 return V;
3066 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
3067 Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0);
3068 Value *LHS1 = LHS->getOperand(1), *RHS1 = RHS->getOperand(1);
3069 const APInt *LHSC = nullptr, *RHSC = nullptr;
3070 match(LHS1, m_APInt(LHSC));
3071 match(RHS1, m_APInt(RHSC));
3073 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
3074 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3075 if (predicatesFoldable(PredL, PredR)) {
3076 if (LHS0 == RHS1 && LHS1 == RHS0) {
3077 PredL = ICmpInst::getSwappedPredicate(PredL);
3078 std::swap(LHS0, LHS1);
3080 if (LHS0 == RHS0 && LHS1 == RHS1) {
3081 unsigned Code = IsAnd ? getICmpCode(PredL) & getICmpCode(PredR)
3082 : getICmpCode(PredL) | getICmpCode(PredR);
3083 bool IsSigned = LHS->isSigned() || RHS->isSigned();
3084 return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
3088 // handle (roughly):
3089 // (icmp ne (A & B), C) | (icmp ne (A & D), E)
3090 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
3091 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, IsAnd, IsLogical, Builder))
3092 return V;
3094 if (Value *V =
3095 foldAndOrOfICmpEqConstantAndICmp(LHS, RHS, IsAnd, IsLogical, Builder))
3096 return V;
3097 // We can treat logical like bitwise here, because both operands are used on
3098 // the LHS, and as such poison from both will propagate.
3099 if (Value *V = foldAndOrOfICmpEqConstantAndICmp(RHS, LHS, IsAnd,
3100 /*IsLogical*/ false, Builder))
3101 return V;
3103 if (Value *V =
3104 foldAndOrOfICmpsWithConstEq(LHS, RHS, IsAnd, IsLogical, Builder, Q))
3105 return V;
3106 // We can convert this case to bitwise and, because both operands are used
3107 // on the LHS, and as such poison from both will propagate.
3108 if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, IsAnd,
3109 /*IsLogical*/ false, Builder, Q))
3110 return V;
3112 if (Value *V = foldIsPowerOf2OrZero(LHS, RHS, IsAnd, Builder))
3113 return V;
3114 if (Value *V = foldIsPowerOf2OrZero(RHS, LHS, IsAnd, Builder))
3115 return V;
3117 // TODO: One of these directions is fine with logical and/or, the other could
3118 // be supported by inserting freeze.
3119 if (!IsLogical) {
3120 // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n
3121 // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n
3122 if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/!IsAnd))
3123 return V;
3125 // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n
3126 // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n
3127 if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/!IsAnd))
3128 return V;
3131 // TODO: Add conjugated or fold, check whether it is safe for logical and/or.
3132 if (IsAnd && !IsLogical)
3133 if (Value *V = foldSignedTruncationCheck(LHS, RHS, I, Builder))
3134 return V;
3136 if (Value *V = foldIsPowerOf2(LHS, RHS, IsAnd, Builder))
3137 return V;
3139 if (Value *V = foldPowerOf2AndShiftedMask(LHS, RHS, IsAnd, Builder))
3140 return V;
3142 // TODO: Verify whether this is safe for logical and/or.
3143 if (!IsLogical) {
3144 if (Value *X = foldUnsignedUnderflowCheck(LHS, RHS, IsAnd, Q, Builder))
3145 return X;
3146 if (Value *X = foldUnsignedUnderflowCheck(RHS, LHS, IsAnd, Q, Builder))
3147 return X;
3150 if (Value *X = foldEqOfParts(LHS, RHS, IsAnd))
3151 return X;
3153 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
3154 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
3155 // TODO: Remove this and below when foldLogOpOfMaskedICmps can handle undefs.
3156 if (!IsLogical && PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
3157 PredL == PredR && match(LHS1, m_ZeroInt()) && match(RHS1, m_ZeroInt()) &&
3158 LHS0->getType() == RHS0->getType()) {
3159 Value *NewOr = Builder.CreateOr(LHS0, RHS0);
3160 return Builder.CreateICmp(PredL, NewOr,
3161 Constant::getNullValue(NewOr->getType()));
3164 // (icmp ne A, -1) | (icmp ne B, -1) --> (icmp ne (A&B), -1)
3165 // (icmp eq A, -1) & (icmp eq B, -1) --> (icmp eq (A&B), -1)
3166 if (!IsLogical && PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
3167 PredL == PredR && match(LHS1, m_AllOnes()) && match(RHS1, m_AllOnes()) &&
3168 LHS0->getType() == RHS0->getType()) {
3169 Value *NewAnd = Builder.CreateAnd(LHS0, RHS0);
3170 return Builder.CreateICmp(PredL, NewAnd,
3171 Constant::getAllOnesValue(LHS0->getType()));
3174 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
3175 if (!LHSC || !RHSC)
3176 return nullptr;
3178 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
3179 // (trunc x) != C1 | (and x, CA) != C2 -> (and x, CA|CMAX) != C1|C2
3180 // where CMAX is the all ones value for the truncated type,
3181 // iff the lower bits of C2 and CA are zero.
3182 if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) &&
3183 PredL == PredR && LHS->hasOneUse() && RHS->hasOneUse()) {
3184 Value *V;
3185 const APInt *AndC, *SmallC = nullptr, *BigC = nullptr;
3187 // (trunc x) == C1 & (and x, CA) == C2
3188 // (and x, CA) == C2 & (trunc x) == C1
3189 if (match(RHS0, m_Trunc(m_Value(V))) &&
3190 match(LHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
3191 SmallC = RHSC;
3192 BigC = LHSC;
3193 } else if (match(LHS0, m_Trunc(m_Value(V))) &&
3194 match(RHS0, m_And(m_Specific(V), m_APInt(AndC)))) {
3195 SmallC = LHSC;
3196 BigC = RHSC;
3199 if (SmallC && BigC) {
3200 unsigned BigBitSize = BigC->getBitWidth();
3201 unsigned SmallBitSize = SmallC->getBitWidth();
3203 // Check that the low bits are zero.
3204 APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
3205 if ((Low & *AndC).isZero() && (Low & *BigC).isZero()) {
3206 Value *NewAnd = Builder.CreateAnd(V, Low | *AndC);
3207 APInt N = SmallC->zext(BigBitSize) | *BigC;
3208 Value *NewVal = ConstantInt::get(NewAnd->getType(), N);
3209 return Builder.CreateICmp(PredL, NewAnd, NewVal);
3214 // Match naive pattern (and its inverted form) for checking if two values
3215 // share same sign. An example of the pattern:
3216 // (icmp slt (X & Y), 0) | (icmp sgt (X | Y), -1) -> (icmp sgt (X ^ Y), -1)
3217 // Inverted form (example):
3218 // (icmp slt (X | Y), 0) & (icmp sgt (X & Y), -1) -> (icmp slt (X ^ Y), 0)
3219 bool TrueIfSignedL, TrueIfSignedR;
3220 if (isSignBitCheck(PredL, *LHSC, TrueIfSignedL) &&
3221 isSignBitCheck(PredR, *RHSC, TrueIfSignedR) &&
3222 (RHS->hasOneUse() || LHS->hasOneUse())) {
3223 Value *X, *Y;
3224 if (IsAnd) {
3225 if ((TrueIfSignedL && !TrueIfSignedR &&
3226 match(LHS0, m_Or(m_Value(X), m_Value(Y))) &&
3227 match(RHS0, m_c_And(m_Specific(X), m_Specific(Y)))) ||
3228 (!TrueIfSignedL && TrueIfSignedR &&
3229 match(LHS0, m_And(m_Value(X), m_Value(Y))) &&
3230 match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y))))) {
3231 Value *NewXor = Builder.CreateXor(X, Y);
3232 return Builder.CreateIsNeg(NewXor);
3234 } else {
3235 if ((TrueIfSignedL && !TrueIfSignedR &&
3236 match(LHS0, m_And(m_Value(X), m_Value(Y))) &&
3237 match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y)))) ||
3238 (!TrueIfSignedL && TrueIfSignedR &&
3239 match(LHS0, m_Or(m_Value(X), m_Value(Y))) &&
3240 match(RHS0, m_c_And(m_Specific(X), m_Specific(Y))))) {
3241 Value *NewXor = Builder.CreateXor(X, Y);
3242 return Builder.CreateIsNotNeg(NewXor);
3247 return foldAndOrOfICmpsUsingRanges(LHS, RHS, IsAnd);
3250 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
3251 // here. We should standardize that construct where it is needed or choose some
3252 // other way to ensure that commutated variants of patterns are not missed.
3253 Instruction *InstCombinerImpl::visitOr(BinaryOperator &I) {
3254 if (Value *V = simplifyOrInst(I.getOperand(0), I.getOperand(1),
3255 SQ.getWithInstruction(&I)))
3256 return replaceInstUsesWith(I, V);
3258 if (SimplifyAssociativeOrCommutative(I))
3259 return &I;
3261 if (Instruction *X = foldVectorBinop(I))
3262 return X;
3264 if (Instruction *Phi = foldBinopWithPhiOperands(I))
3265 return Phi;
3267 // See if we can simplify any instructions used by the instruction whose sole
3268 // purpose is to compute bits we don't care about.
3269 if (SimplifyDemandedInstructionBits(I))
3270 return &I;
3272 // Do this before using distributive laws to catch simple and/or/not patterns.
3273 if (Instruction *Xor = foldOrToXor(I, Builder))
3274 return Xor;
3276 if (Instruction *X = foldComplexAndOrPatterns(I, Builder))
3277 return X;
3279 // (A&B)|(A&C) -> A&(B|C) etc
3280 if (Value *V = foldUsingDistributiveLaws(I))
3281 return replaceInstUsesWith(I, V);
3283 if (Value *V = SimplifyBSwap(I, Builder))
3284 return replaceInstUsesWith(I, V);
3286 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3287 Type *Ty = I.getType();
3288 if (Ty->isIntOrIntVectorTy(1)) {
3289 if (auto *SI0 = dyn_cast<SelectInst>(Op0)) {
3290 if (auto *I =
3291 foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ false))
3292 return I;
3294 if (auto *SI1 = dyn_cast<SelectInst>(Op1)) {
3295 if (auto *I =
3296 foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ false))
3297 return I;
3301 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
3302 return FoldedLogic;
3304 if (Instruction *BitOp = matchBSwapOrBitReverse(I, /*MatchBSwaps*/ true,
3305 /*MatchBitReversals*/ true))
3306 return BitOp;
3308 if (Instruction *Funnel = matchFunnelShift(I, *this))
3309 return Funnel;
3311 if (Instruction *Concat = matchOrConcat(I, Builder))
3312 return replaceInstUsesWith(I, Concat);
3314 if (Instruction *R = foldBinOpShiftWithShift(I))
3315 return R;
3317 Value *X, *Y;
3318 const APInt *CV;
3319 if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) &&
3320 !CV->isAllOnes() && MaskedValueIsZero(Y, *CV, 0, &I)) {
3321 // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0
3322 // The check for a 'not' op is for efficiency (if Y is known zero --> ~X).
3323 Value *Or = Builder.CreateOr(X, Y);
3324 return BinaryOperator::CreateXor(Or, ConstantInt::get(Ty, *CV));
3327 // If the operands have no common bits set:
3328 // or (mul X, Y), X --> add (mul X, Y), X --> mul X, (Y + 1)
3329 if (match(&I,
3330 m_c_Or(m_OneUse(m_Mul(m_Value(X), m_Value(Y))), m_Deferred(X))) &&
3331 haveNoCommonBitsSet(Op0, Op1, DL)) {
3332 Value *IncrementY = Builder.CreateAdd(Y, ConstantInt::get(Ty, 1));
3333 return BinaryOperator::CreateMul(X, IncrementY);
3336 // X | (X ^ Y) --> X | Y (4 commuted patterns)
3337 if (match(&I, m_c_Or(m_Value(X), m_c_Xor(m_Deferred(X), m_Value(Y)))))
3338 return BinaryOperator::CreateOr(X, Y);
3340 // (A & C) | (B & D)
3341 Value *A, *B, *C, *D;
3342 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
3343 match(Op1, m_And(m_Value(B), m_Value(D)))) {
3345 // (A & C0) | (B & C1)
3346 const APInt *C0, *C1;
3347 if (match(C, m_APInt(C0)) && match(D, m_APInt(C1))) {
3348 Value *X;
3349 if (*C0 == ~*C1) {
3350 // ((X | B) & MaskC) | (B & ~MaskC) -> (X & MaskC) | B
3351 if (match(A, m_c_Or(m_Value(X), m_Specific(B))))
3352 return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C0), B);
3353 // (A & MaskC) | ((X | A) & ~MaskC) -> (X & ~MaskC) | A
3354 if (match(B, m_c_Or(m_Specific(A), m_Value(X))))
3355 return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C1), A);
3357 // ((X ^ B) & MaskC) | (B & ~MaskC) -> (X & MaskC) ^ B
3358 if (match(A, m_c_Xor(m_Value(X), m_Specific(B))))
3359 return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C0), B);
3360 // (A & MaskC) | ((X ^ A) & ~MaskC) -> (X & ~MaskC) ^ A
3361 if (match(B, m_c_Xor(m_Specific(A), m_Value(X))))
3362 return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C1), A);
3365 if ((*C0 & *C1).isZero()) {
3366 // ((X | B) & C0) | (B & C1) --> (X | B) & (C0 | C1)
3367 // iff (C0 & C1) == 0 and (X & ~C0) == 0
3368 if (match(A, m_c_Or(m_Value(X), m_Specific(B))) &&
3369 MaskedValueIsZero(X, ~*C0, 0, &I)) {
3370 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
3371 return BinaryOperator::CreateAnd(A, C01);
3373 // (A & C0) | ((X | A) & C1) --> (X | A) & (C0 | C1)
3374 // iff (C0 & C1) == 0 and (X & ~C1) == 0
3375 if (match(B, m_c_Or(m_Value(X), m_Specific(A))) &&
3376 MaskedValueIsZero(X, ~*C1, 0, &I)) {
3377 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
3378 return BinaryOperator::CreateAnd(B, C01);
3380 // ((X | C2) & C0) | ((X | C3) & C1) --> (X | C2 | C3) & (C0 | C1)
3381 // iff (C0 & C1) == 0 and (C2 & ~C0) == 0 and (C3 & ~C1) == 0.
3382 const APInt *C2, *C3;
3383 if (match(A, m_Or(m_Value(X), m_APInt(C2))) &&
3384 match(B, m_Or(m_Specific(X), m_APInt(C3))) &&
3385 (*C2 & ~*C0).isZero() && (*C3 & ~*C1).isZero()) {
3386 Value *Or = Builder.CreateOr(X, *C2 | *C3, "bitfield");
3387 Constant *C01 = ConstantInt::get(Ty, *C0 | *C1);
3388 return BinaryOperator::CreateAnd(Or, C01);
3393 // Don't try to form a select if it's unlikely that we'll get rid of at
3394 // least one of the operands. A select is generally more expensive than the
3395 // 'or' that it is replacing.
3396 if (Op0->hasOneUse() || Op1->hasOneUse()) {
3397 // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants.
3398 if (Value *V = matchSelectFromAndOr(A, C, B, D))
3399 return replaceInstUsesWith(I, V);
3400 if (Value *V = matchSelectFromAndOr(A, C, D, B))
3401 return replaceInstUsesWith(I, V);
3402 if (Value *V = matchSelectFromAndOr(C, A, B, D))
3403 return replaceInstUsesWith(I, V);
3404 if (Value *V = matchSelectFromAndOr(C, A, D, B))
3405 return replaceInstUsesWith(I, V);
3406 if (Value *V = matchSelectFromAndOr(B, D, A, C))
3407 return replaceInstUsesWith(I, V);
3408 if (Value *V = matchSelectFromAndOr(B, D, C, A))
3409 return replaceInstUsesWith(I, V);
3410 if (Value *V = matchSelectFromAndOr(D, B, A, C))
3411 return replaceInstUsesWith(I, V);
3412 if (Value *V = matchSelectFromAndOr(D, B, C, A))
3413 return replaceInstUsesWith(I, V);
3417 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
3418 match(Op1, m_Not(m_Or(m_Value(B), m_Value(D)))) &&
3419 (Op0->hasOneUse() || Op1->hasOneUse())) {
3420 // (Cond & C) | ~(Cond | D) -> Cond ? C : ~D
3421 if (Value *V = matchSelectFromAndOr(A, C, B, D, true))
3422 return replaceInstUsesWith(I, V);
3423 if (Value *V = matchSelectFromAndOr(A, C, D, B, true))
3424 return replaceInstUsesWith(I, V);
3425 if (Value *V = matchSelectFromAndOr(C, A, B, D, true))
3426 return replaceInstUsesWith(I, V);
3427 if (Value *V = matchSelectFromAndOr(C, A, D, B, true))
3428 return replaceInstUsesWith(I, V);
3431 // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C
3432 if (match(Op0, m_Xor(m_Value(A), m_Value(B))))
3433 if (match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A))))
3434 return BinaryOperator::CreateOr(Op0, C);
3436 // ((A ^ C) ^ B) | (B ^ A) -> (B ^ A) | C
3437 if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))))
3438 if (match(Op1, m_Xor(m_Specific(B), m_Specific(A))))
3439 return BinaryOperator::CreateOr(Op1, C);
3441 // ((A & B) ^ C) | B -> C | B
3442 if (match(Op0, m_c_Xor(m_c_And(m_Value(A), m_Specific(Op1)), m_Value(C))))
3443 return BinaryOperator::CreateOr(C, Op1);
3445 // B | ((A & B) ^ C) -> B | C
3446 if (match(Op1, m_c_Xor(m_c_And(m_Value(A), m_Specific(Op0)), m_Value(C))))
3447 return BinaryOperator::CreateOr(Op0, C);
3449 // ((B | C) & A) | B -> B | (A & C)
3450 if (match(Op0, m_And(m_Or(m_Specific(Op1), m_Value(C)), m_Value(A))))
3451 return BinaryOperator::CreateOr(Op1, Builder.CreateAnd(A, C));
3453 if (Instruction *DeMorgan = matchDeMorgansLaws(I, Builder))
3454 return DeMorgan;
3456 // Canonicalize xor to the RHS.
3457 bool SwappedForXor = false;
3458 if (match(Op0, m_Xor(m_Value(), m_Value()))) {
3459 std::swap(Op0, Op1);
3460 SwappedForXor = true;
3463 if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3464 // (A | ?) | (A ^ B) --> (A | ?) | B
3465 // (B | ?) | (A ^ B) --> (B | ?) | A
3466 if (match(Op0, m_c_Or(m_Specific(A), m_Value())))
3467 return BinaryOperator::CreateOr(Op0, B);
3468 if (match(Op0, m_c_Or(m_Specific(B), m_Value())))
3469 return BinaryOperator::CreateOr(Op0, A);
3471 // (A & B) | (A ^ B) --> A | B
3472 // (B & A) | (A ^ B) --> A | B
3473 if (match(Op0, m_And(m_Specific(A), m_Specific(B))) ||
3474 match(Op0, m_And(m_Specific(B), m_Specific(A))))
3475 return BinaryOperator::CreateOr(A, B);
3477 // ~A | (A ^ B) --> ~(A & B)
3478 // ~B | (A ^ B) --> ~(A & B)
3479 // The swap above should always make Op0 the 'not'.
3480 if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
3481 (match(Op0, m_Not(m_Specific(A))) || match(Op0, m_Not(m_Specific(B)))))
3482 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
3484 // Same as above, but peek through an 'and' to the common operand:
3485 // ~(A & ?) | (A ^ B) --> ~((A & ?) & B)
3486 // ~(B & ?) | (A ^ B) --> ~((B & ?) & A)
3487 Instruction *And;
3488 if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
3489 match(Op0, m_Not(m_CombineAnd(m_Instruction(And),
3490 m_c_And(m_Specific(A), m_Value())))))
3491 return BinaryOperator::CreateNot(Builder.CreateAnd(And, B));
3492 if ((Op0->hasOneUse() || Op1->hasOneUse()) &&
3493 match(Op0, m_Not(m_CombineAnd(m_Instruction(And),
3494 m_c_And(m_Specific(B), m_Value())))))
3495 return BinaryOperator::CreateNot(Builder.CreateAnd(And, A));
3497 // (~A | C) | (A ^ B) --> ~(A & B) | C
3498 // (~B | C) | (A ^ B) --> ~(A & B) | C
3499 if (Op0->hasOneUse() && Op1->hasOneUse() &&
3500 (match(Op0, m_c_Or(m_Not(m_Specific(A)), m_Value(C))) ||
3501 match(Op0, m_c_Or(m_Not(m_Specific(B)), m_Value(C))))) {
3502 Value *Nand = Builder.CreateNot(Builder.CreateAnd(A, B), "nand");
3503 return BinaryOperator::CreateOr(Nand, C);
3506 // A | (~A ^ B) --> ~B | A
3507 // B | (A ^ ~B) --> ~A | B
3508 if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
3509 Value *NotB = Builder.CreateNot(B, B->getName() + ".not");
3510 return BinaryOperator::CreateOr(NotB, Op0);
3512 if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
3513 Value *NotA = Builder.CreateNot(A, A->getName() + ".not");
3514 return BinaryOperator::CreateOr(NotA, Op0);
3518 // A | ~(A | B) -> A | ~B
3519 // A | ~(A ^ B) -> A | ~B
3520 if (match(Op1, m_Not(m_Value(A))))
3521 if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
3522 if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
3523 Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
3524 B->getOpcode() == Instruction::Xor)) {
3525 Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
3526 B->getOperand(0);
3527 Value *Not = Builder.CreateNot(NotOp, NotOp->getName() + ".not");
3528 return BinaryOperator::CreateOr(Not, Op0);
3531 if (SwappedForXor)
3532 std::swap(Op0, Op1);
3535 ICmpInst *LHS = dyn_cast<ICmpInst>(Op0);
3536 ICmpInst *RHS = dyn_cast<ICmpInst>(Op1);
3537 if (LHS && RHS)
3538 if (Value *Res = foldAndOrOfICmps(LHS, RHS, I, /* IsAnd */ false))
3539 return replaceInstUsesWith(I, Res);
3541 // TODO: Make this recursive; it's a little tricky because an arbitrary
3542 // number of 'or' instructions might have to be created.
3543 Value *X, *Y;
3544 if (LHS && match(Op1, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) {
3545 bool IsLogical = isa<SelectInst>(Op1);
3546 // LHS | (X || Y) --> (LHS || X) || Y
3547 if (auto *Cmp = dyn_cast<ICmpInst>(X))
3548 if (Value *Res =
3549 foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ false, IsLogical))
3550 return replaceInstUsesWith(I, IsLogical
3551 ? Builder.CreateLogicalOr(Res, Y)
3552 : Builder.CreateOr(Res, Y));
3553 // LHS | (X || Y) --> X || (LHS | Y)
3554 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
3555 if (Value *Res = foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ false,
3556 /* IsLogical */ false))
3557 return replaceInstUsesWith(I, IsLogical
3558 ? Builder.CreateLogicalOr(X, Res)
3559 : Builder.CreateOr(X, Res));
3561 if (RHS && match(Op0, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) {
3562 bool IsLogical = isa<SelectInst>(Op0);
3563 // (X || Y) | RHS --> (X || RHS) || Y
3564 if (auto *Cmp = dyn_cast<ICmpInst>(X))
3565 if (Value *Res =
3566 foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ false, IsLogical))
3567 return replaceInstUsesWith(I, IsLogical
3568 ? Builder.CreateLogicalOr(Res, Y)
3569 : Builder.CreateOr(Res, Y));
3570 // (X || Y) | RHS --> X || (Y | RHS)
3571 if (auto *Cmp = dyn_cast<ICmpInst>(Y))
3572 if (Value *Res = foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ false,
3573 /* IsLogical */ false))
3574 return replaceInstUsesWith(I, IsLogical
3575 ? Builder.CreateLogicalOr(X, Res)
3576 : Builder.CreateOr(X, Res));
3580 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
3581 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
3582 if (Value *Res = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false))
3583 return replaceInstUsesWith(I, Res);
3585 if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder))
3586 return FoldedFCmps;
3588 if (Instruction *CastedOr = foldCastedBitwiseLogic(I))
3589 return CastedOr;
3591 if (Instruction *Sel = foldBinopOfSextBoolToSelect(I))
3592 return Sel;
3594 // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>.
3595 // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold
3596 // with binop identity constant. But creating a select with non-constant
3597 // arm may not be reversible due to poison semantics. Is that a good
3598 // canonicalization?
3599 if (match(&I, m_c_Or(m_OneUse(m_SExt(m_Value(A))), m_Value(B))) &&
3600 A->getType()->isIntOrIntVectorTy(1))
3601 return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), B);
3603 // Note: If we've gotten to the point of visiting the outer OR, then the
3604 // inner one couldn't be simplified. If it was a constant, then it won't
3605 // be simplified by a later pass either, so we try swapping the inner/outer
3606 // ORs in the hopes that we'll be able to simplify it this way.
3607 // (X|C) | V --> (X|V) | C
3608 ConstantInt *CI;
3609 if (Op0->hasOneUse() && !match(Op1, m_ConstantInt()) &&
3610 match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) {
3611 Value *Inner = Builder.CreateOr(A, Op1);
3612 Inner->takeName(Op0);
3613 return BinaryOperator::CreateOr(Inner, CI);
3616 // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D))
3617 // Since this OR statement hasn't been optimized further yet, we hope
3618 // that this transformation will allow the new ORs to be optimized.
3620 Value *X = nullptr, *Y = nullptr;
3621 if (Op0->hasOneUse() && Op1->hasOneUse() &&
3622 match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) &&
3623 match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) {
3624 Value *orTrue = Builder.CreateOr(A, C);
3625 Value *orFalse = Builder.CreateOr(B, D);
3626 return SelectInst::Create(X, orTrue, orFalse);
3630 // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y) - 1), X) --> X s> Y ? -1 : X.
3632 Value *X, *Y;
3633 if (match(&I, m_c_Or(m_OneUse(m_AShr(
3634 m_NSWSub(m_Value(Y), m_Value(X)),
3635 m_SpecificInt(Ty->getScalarSizeInBits() - 1))),
3636 m_Deferred(X)))) {
3637 Value *NewICmpInst = Builder.CreateICmpSGT(X, Y);
3638 Value *AllOnes = ConstantInt::getAllOnesValue(Ty);
3639 return SelectInst::Create(NewICmpInst, AllOnes, X);
3644 // ((A & B) ^ A) | ((A & B) ^ B) -> A ^ B
3645 // (A ^ (A & B)) | (B ^ (A & B)) -> A ^ B
3646 // ((A & B) ^ B) | ((A & B) ^ A) -> A ^ B
3647 // (B ^ (A & B)) | (A ^ (A & B)) -> A ^ B
3648 const auto TryXorOpt = [&](Value *Lhs, Value *Rhs) -> Instruction * {
3649 if (match(Lhs, m_OneUse(m_c_Xor(m_And(m_Value(A), m_Value(B)),
3650 m_Deferred(A)))) &&
3651 match(Rhs, m_OneUse(m_c_Xor(m_And(m_Specific(A), m_Specific(B)),
3652 m_Deferred(B))))) {
3653 return BinaryOperator::CreateXor(A, B);
3655 return nullptr;
3658 if (Instruction *Result = TryXorOpt(Op0, Op1))
3659 return Result;
3660 if (Instruction *Result = TryXorOpt(Op1, Op0))
3661 return Result;
3664 if (Instruction *V =
3665 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
3666 return V;
3668 CmpInst::Predicate Pred;
3669 Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv;
3670 // Check if the OR weakens the overflow condition for umul.with.overflow by
3671 // treating any non-zero result as overflow. In that case, we overflow if both
3672 // umul.with.overflow operands are != 0, as in that case the result can only
3673 // be 0, iff the multiplication overflows.
3674 if (match(&I,
3675 m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_Value(UMulWithOv)),
3676 m_Value(Ov)),
3677 m_CombineAnd(m_ICmp(Pred,
3678 m_CombineAnd(m_ExtractValue<0>(
3679 m_Deferred(UMulWithOv)),
3680 m_Value(Mul)),
3681 m_ZeroInt()),
3682 m_Value(MulIsNotZero)))) &&
3683 (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse())) &&
3684 Pred == CmpInst::ICMP_NE) {
3685 Value *A, *B;
3686 if (match(UMulWithOv, m_Intrinsic<Intrinsic::umul_with_overflow>(
3687 m_Value(A), m_Value(B)))) {
3688 Value *NotNullA = Builder.CreateIsNotNull(A);
3689 Value *NotNullB = Builder.CreateIsNotNull(B);
3690 return BinaryOperator::CreateAnd(NotNullA, NotNullB);
3694 // (~x) | y --> ~(x & (~y)) iff that gets rid of inversions
3695 if (sinkNotIntoOtherHandOfLogicalOp(I))
3696 return &I;
3698 // Improve "get low bit mask up to and including bit X" pattern:
3699 // (1 << X) | ((1 << X) + -1) --> -1 l>> (bitwidth(x) - 1 - X)
3700 if (match(&I, m_c_Or(m_Add(m_Shl(m_One(), m_Value(X)), m_AllOnes()),
3701 m_Shl(m_One(), m_Deferred(X)))) &&
3702 match(&I, m_c_Or(m_OneUse(m_Value()), m_Value()))) {
3703 Value *Sub = Builder.CreateSub(
3704 ConstantInt::get(Ty, Ty->getScalarSizeInBits() - 1), X);
3705 return BinaryOperator::CreateLShr(Constant::getAllOnesValue(Ty), Sub);
3708 // An or recurrence w/loop invariant step is equivelent to (or start, step)
3709 PHINode *PN = nullptr;
3710 Value *Start = nullptr, *Step = nullptr;
3711 if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN))
3712 return replaceInstUsesWith(I, Builder.CreateOr(Start, Step));
3714 // (A & B) | (C | D) or (C | D) | (A & B)
3715 // Can be combined if C or D is of type (A/B & X)
3716 if (match(&I, m_c_Or(m_OneUse(m_And(m_Value(A), m_Value(B))),
3717 m_OneUse(m_Or(m_Value(C), m_Value(D)))))) {
3718 // (A & B) | (C | ?) -> C | (? | (A & B))
3719 // (A & B) | (C | ?) -> C | (? | (A & B))
3720 // (A & B) | (C | ?) -> C | (? | (A & B))
3721 // (A & B) | (C | ?) -> C | (? | (A & B))
3722 // (C | ?) | (A & B) -> C | (? | (A & B))
3723 // (C | ?) | (A & B) -> C | (? | (A & B))
3724 // (C | ?) | (A & B) -> C | (? | (A & B))
3725 // (C | ?) | (A & B) -> C | (? | (A & B))
3726 if (match(D, m_OneUse(m_c_And(m_Specific(A), m_Value()))) ||
3727 match(D, m_OneUse(m_c_And(m_Specific(B), m_Value()))))
3728 return BinaryOperator::CreateOr(
3729 C, Builder.CreateOr(D, Builder.CreateAnd(A, B)));
3730 // (A & B) | (? | D) -> (? | (A & B)) | D
3731 // (A & B) | (? | D) -> (? | (A & B)) | D
3732 // (A & B) | (? | D) -> (? | (A & B)) | D
3733 // (A & B) | (? | D) -> (? | (A & B)) | D
3734 // (? | D) | (A & B) -> (? | (A & B)) | D
3735 // (? | D) | (A & B) -> (? | (A & B)) | D
3736 // (? | D) | (A & B) -> (? | (A & B)) | D
3737 // (? | D) | (A & B) -> (? | (A & B)) | D
3738 if (match(C, m_OneUse(m_c_And(m_Specific(A), m_Value()))) ||
3739 match(C, m_OneUse(m_c_And(m_Specific(B), m_Value()))))
3740 return BinaryOperator::CreateOr(
3741 Builder.CreateOr(C, Builder.CreateAnd(A, B)), D);
3744 if (Instruction *R = reassociateForUses(I, Builder))
3745 return R;
3747 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
3748 return Canonicalized;
3750 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
3751 return Folded;
3753 if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
3754 return Res;
3756 // If we are setting the sign bit of a floating-point value, convert
3757 // this to fneg(fabs), then cast back to integer.
3759 // If the result isn't immediately cast back to a float, this will increase
3760 // the number of instructions. This is still probably a better canonical form
3761 // as it enables FP value tracking.
3763 // Assumes any IEEE-represented type has the sign bit in the high bit.
3765 // This is generous interpretation of noimplicitfloat, this is not a true
3766 // floating-point operation.
3767 Value *CastOp;
3768 if (match(Op0, m_BitCast(m_Value(CastOp))) && match(Op1, m_SignMask()) &&
3769 !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
3770 Attribute::NoImplicitFloat)) {
3771 Type *EltTy = CastOp->getType()->getScalarType();
3772 if (EltTy->isFloatingPointTy() && EltTy->isIEEE() &&
3773 EltTy->getPrimitiveSizeInBits() ==
3774 I.getType()->getScalarType()->getPrimitiveSizeInBits()) {
3775 Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp);
3776 Value *FNegFAbs = Builder.CreateFNeg(FAbs);
3777 return new BitCastInst(FNegFAbs, I.getType());
3781 return nullptr;
3784 /// A ^ B can be specified using other logic ops in a variety of patterns. We
3785 /// can fold these early and efficiently by morphing an existing instruction.
3786 static Instruction *foldXorToXor(BinaryOperator &I,
3787 InstCombiner::BuilderTy &Builder) {
3788 assert(I.getOpcode() == Instruction::Xor);
3789 Value *Op0 = I.getOperand(0);
3790 Value *Op1 = I.getOperand(1);
3791 Value *A, *B;
3793 // There are 4 commuted variants for each of the basic patterns.
3795 // (A & B) ^ (A | B) -> A ^ B
3796 // (A & B) ^ (B | A) -> A ^ B
3797 // (A | B) ^ (A & B) -> A ^ B
3798 // (A | B) ^ (B & A) -> A ^ B
3799 if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)),
3800 m_c_Or(m_Deferred(A), m_Deferred(B)))))
3801 return BinaryOperator::CreateXor(A, B);
3803 // (A | ~B) ^ (~A | B) -> A ^ B
3804 // (~B | A) ^ (~A | B) -> A ^ B
3805 // (~A | B) ^ (A | ~B) -> A ^ B
3806 // (B | ~A) ^ (A | ~B) -> A ^ B
3807 if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))),
3808 m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B)))))
3809 return BinaryOperator::CreateXor(A, B);
3811 // (A & ~B) ^ (~A & B) -> A ^ B
3812 // (~B & A) ^ (~A & B) -> A ^ B
3813 // (~A & B) ^ (A & ~B) -> A ^ B
3814 // (B & ~A) ^ (A & ~B) -> A ^ B
3815 if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))),
3816 m_c_And(m_Not(m_Deferred(A)), m_Deferred(B)))))
3817 return BinaryOperator::CreateXor(A, B);
3819 // For the remaining cases we need to get rid of one of the operands.
3820 if (!Op0->hasOneUse() && !Op1->hasOneUse())
3821 return nullptr;
3823 // (A | B) ^ ~(A & B) -> ~(A ^ B)
3824 // (A | B) ^ ~(B & A) -> ~(A ^ B)
3825 // (A & B) ^ ~(A | B) -> ~(A ^ B)
3826 // (A & B) ^ ~(B | A) -> ~(A ^ B)
3827 // Complexity sorting ensures the not will be on the right side.
3828 if ((match(Op0, m_Or(m_Value(A), m_Value(B))) &&
3829 match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) ||
3830 (match(Op0, m_And(m_Value(A), m_Value(B))) &&
3831 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))))
3832 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
3834 return nullptr;
3837 Value *InstCombinerImpl::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS,
3838 BinaryOperator &I) {
3839 assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS &&
3840 I.getOperand(1) == RHS && "Should be 'xor' with these operands");
3842 ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
3843 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
3844 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
3846 if (predicatesFoldable(PredL, PredR)) {
3847 if (LHS0 == RHS1 && LHS1 == RHS0) {
3848 std::swap(LHS0, LHS1);
3849 PredL = ICmpInst::getSwappedPredicate(PredL);
3851 if (LHS0 == RHS0 && LHS1 == RHS1) {
3852 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
3853 unsigned Code = getICmpCode(PredL) ^ getICmpCode(PredR);
3854 bool IsSigned = LHS->isSigned() || RHS->isSigned();
3855 return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder);
3859 // TODO: This can be generalized to compares of non-signbits using
3860 // decomposeBitTestICmp(). It could be enhanced more by using (something like)
3861 // foldLogOpOfMaskedICmps().
3862 const APInt *LC, *RC;
3863 if (match(LHS1, m_APInt(LC)) && match(RHS1, m_APInt(RC)) &&
3864 LHS0->getType() == RHS0->getType() &&
3865 LHS0->getType()->isIntOrIntVectorTy() &&
3866 (LHS->hasOneUse() || RHS->hasOneUse())) {
3867 // Convert xor of signbit tests to signbit test of xor'd values:
3868 // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0
3869 // (X < 0) ^ (Y < 0) --> (X ^ Y) < 0
3870 // (X > -1) ^ (Y < 0) --> (X ^ Y) > -1
3871 // (X < 0) ^ (Y > -1) --> (X ^ Y) > -1
3872 bool TrueIfSignedL, TrueIfSignedR;
3873 if (isSignBitCheck(PredL, *LC, TrueIfSignedL) &&
3874 isSignBitCheck(PredR, *RC, TrueIfSignedR)) {
3875 Value *XorLR = Builder.CreateXor(LHS0, RHS0);
3876 return TrueIfSignedL == TrueIfSignedR ? Builder.CreateIsNeg(XorLR) :
3877 Builder.CreateIsNotNeg(XorLR);
3880 // (X > C) ^ (X < C + 2) --> X != C + 1
3881 // (X < C + 2) ^ (X > C) --> X != C + 1
3882 // Considering the correctness of this pattern, we should avoid that C is
3883 // non-negative and C + 2 is negative, although it will be matched by other
3884 // patterns.
3885 const APInt *C1, *C2;
3886 if ((PredL == CmpInst::ICMP_SGT && match(LHS1, m_APInt(C1)) &&
3887 PredR == CmpInst::ICMP_SLT && match(RHS1, m_APInt(C2))) ||
3888 (PredL == CmpInst::ICMP_SLT && match(LHS1, m_APInt(C2)) &&
3889 PredR == CmpInst::ICMP_SGT && match(RHS1, m_APInt(C1))))
3890 if (LHS0 == RHS0 && *C1 + 2 == *C2 &&
3891 (C1->isNegative() || C2->isNonNegative()))
3892 return Builder.CreateICmpNE(LHS0,
3893 ConstantInt::get(LHS0->getType(), *C1 + 1));
3896 // Instead of trying to imitate the folds for and/or, decompose this 'xor'
3897 // into those logic ops. That is, try to turn this into an and-of-icmps
3898 // because we have many folds for that pattern.
3900 // This is based on a truth table definition of xor:
3901 // X ^ Y --> (X | Y) & !(X & Y)
3902 if (Value *OrICmp = simplifyBinOp(Instruction::Or, LHS, RHS, SQ)) {
3903 // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y).
3904 // TODO: If OrICmp is false, the whole thing is false (InstSimplify?).
3905 if (Value *AndICmp = simplifyBinOp(Instruction::And, LHS, RHS, SQ)) {
3906 // TODO: Independently handle cases where the 'and' side is a constant.
3907 ICmpInst *X = nullptr, *Y = nullptr;
3908 if (OrICmp == LHS && AndICmp == RHS) {
3909 // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS --> X & !Y
3910 X = LHS;
3911 Y = RHS;
3913 if (OrICmp == RHS && AndICmp == LHS) {
3914 // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS --> !Y & X
3915 X = RHS;
3916 Y = LHS;
3918 if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) {
3919 // Invert the predicate of 'Y', thus inverting its output.
3920 Y->setPredicate(Y->getInversePredicate());
3921 // So, are there other uses of Y?
3922 if (!Y->hasOneUse()) {
3923 // We need to adapt other uses of Y though. Get a value that matches
3924 // the original value of Y before inversion. While this increases
3925 // immediate instruction count, we have just ensured that all the
3926 // users are freely-invertible, so that 'not' *will* get folded away.
3927 BuilderTy::InsertPointGuard Guard(Builder);
3928 // Set insertion point to right after the Y.
3929 Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator()));
3930 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
3931 // Replace all uses of Y (excluding the one in NotY!) with NotY.
3932 Worklist.pushUsersToWorkList(*Y);
3933 Y->replaceUsesWithIf(NotY,
3934 [NotY](Use &U) { return U.getUser() != NotY; });
3936 // All done.
3937 return Builder.CreateAnd(LHS, RHS);
3942 return nullptr;
3945 /// If we have a masked merge, in the canonical form of:
3946 /// (assuming that A only has one use.)
3947 /// | A | |B|
3948 /// ((x ^ y) & M) ^ y
3949 /// | D |
3950 /// * If M is inverted:
3951 /// | D |
3952 /// ((x ^ y) & ~M) ^ y
3953 /// We can canonicalize by swapping the final xor operand
3954 /// to eliminate the 'not' of the mask.
3955 /// ((x ^ y) & M) ^ x
3956 /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops
3957 /// because that shortens the dependency chain and improves analysis:
3958 /// (x & M) | (y & ~M)
3959 static Instruction *visitMaskedMerge(BinaryOperator &I,
3960 InstCombiner::BuilderTy &Builder) {
3961 Value *B, *X, *D;
3962 Value *M;
3963 if (!match(&I, m_c_Xor(m_Value(B),
3964 m_OneUse(m_c_And(
3965 m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)),
3966 m_Value(D)),
3967 m_Value(M))))))
3968 return nullptr;
3970 Value *NotM;
3971 if (match(M, m_Not(m_Value(NotM)))) {
3972 // De-invert the mask and swap the value in B part.
3973 Value *NewA = Builder.CreateAnd(D, NotM);
3974 return BinaryOperator::CreateXor(NewA, X);
3977 Constant *C;
3978 if (D->hasOneUse() && match(M, m_Constant(C))) {
3979 // Propagating undef is unsafe. Clamp undef elements to -1.
3980 Type *EltTy = C->getType()->getScalarType();
3981 C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
3982 // Unfold.
3983 Value *LHS = Builder.CreateAnd(X, C);
3984 Value *NotC = Builder.CreateNot(C);
3985 Value *RHS = Builder.CreateAnd(B, NotC);
3986 return BinaryOperator::CreateOr(LHS, RHS);
3989 return nullptr;
3992 // Transform
3993 // ~(x ^ y)
3994 // into:
3995 // (~x) ^ y
3996 // or into
3997 // x ^ (~y)
3998 static Instruction *sinkNotIntoXor(BinaryOperator &I, Value *X, Value *Y,
3999 InstCombiner::BuilderTy &Builder) {
4000 // We only want to do the transform if it is free to do.
4001 if (InstCombiner::isFreeToInvert(X, X->hasOneUse())) {
4002 // Ok, good.
4003 } else if (InstCombiner::isFreeToInvert(Y, Y->hasOneUse())) {
4004 std::swap(X, Y);
4005 } else
4006 return nullptr;
4008 Value *NotX = Builder.CreateNot(X, X->getName() + ".not");
4009 return BinaryOperator::CreateXor(NotX, Y, I.getName() + ".demorgan");
4012 static Instruction *foldNotXor(BinaryOperator &I,
4013 InstCombiner::BuilderTy &Builder) {
4014 Value *X, *Y;
4015 // FIXME: one-use check is not needed in general, but currently we are unable
4016 // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182)
4017 if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y))))))
4018 return nullptr;
4020 if (Instruction *NewXor = sinkNotIntoXor(I, X, Y, Builder))
4021 return NewXor;
4023 auto hasCommonOperand = [](Value *A, Value *B, Value *C, Value *D) {
4024 return A == C || A == D || B == C || B == D;
4027 Value *A, *B, *C, *D;
4028 // Canonicalize ~((A & B) ^ (A | ?)) -> (A & B) | ~(A | ?)
4029 // 4 commuted variants
4030 if (match(X, m_And(m_Value(A), m_Value(B))) &&
4031 match(Y, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) {
4032 Value *NotY = Builder.CreateNot(Y);
4033 return BinaryOperator::CreateOr(X, NotY);
4036 // Canonicalize ~((A | ?) ^ (A & B)) -> (A & B) | ~(A | ?)
4037 // 4 commuted variants
4038 if (match(Y, m_And(m_Value(A), m_Value(B))) &&
4039 match(X, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) {
4040 Value *NotX = Builder.CreateNot(X);
4041 return BinaryOperator::CreateOr(Y, NotX);
4044 return nullptr;
4047 /// Canonicalize a shifty way to code absolute value to the more common pattern
4048 /// that uses negation and select.
4049 static Instruction *canonicalizeAbs(BinaryOperator &Xor,
4050 InstCombiner::BuilderTy &Builder) {
4051 assert(Xor.getOpcode() == Instruction::Xor && "Expected an xor instruction.");
4053 // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1.
4054 // We're relying on the fact that we only do this transform when the shift has
4055 // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase
4056 // instructions).
4057 Value *Op0 = Xor.getOperand(0), *Op1 = Xor.getOperand(1);
4058 if (Op0->hasNUses(2))
4059 std::swap(Op0, Op1);
4061 Type *Ty = Xor.getType();
4062 Value *A;
4063 const APInt *ShAmt;
4064 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
4065 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
4066 match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) {
4067 // Op1 = ashr i32 A, 31 ; smear the sign bit
4068 // xor (add A, Op1), Op1 ; add -1 and flip bits if negative
4069 // --> (A < 0) ? -A : A
4070 Value *IsNeg = Builder.CreateIsNeg(A);
4071 // Copy the nuw/nsw flags from the add to the negate.
4072 auto *Add = cast<BinaryOperator>(Op0);
4073 Value *NegA = Builder.CreateNeg(A, "", Add->hasNoUnsignedWrap(),
4074 Add->hasNoSignedWrap());
4075 return SelectInst::Create(IsNeg, NegA, A);
4077 return nullptr;
4080 static bool canFreelyInvert(InstCombiner &IC, Value *Op,
4081 Instruction *IgnoredUser) {
4082 auto *I = dyn_cast<Instruction>(Op);
4083 return I && IC.isFreeToInvert(I, /*WillInvertAllUses=*/true) &&
4084 InstCombiner::canFreelyInvertAllUsersOf(I, IgnoredUser);
4087 static Value *freelyInvert(InstCombinerImpl &IC, Value *Op,
4088 Instruction *IgnoredUser) {
4089 auto *I = cast<Instruction>(Op);
4090 IC.Builder.SetInsertPoint(&*I->getInsertionPointAfterDef());
4091 Value *NotOp = IC.Builder.CreateNot(Op, Op->getName() + ".not");
4092 Op->replaceUsesWithIf(NotOp,
4093 [NotOp](Use &U) { return U.getUser() != NotOp; });
4094 IC.freelyInvertAllUsersOf(NotOp, IgnoredUser);
4095 return NotOp;
4098 // Transform
4099 // z = ~(x &/| y)
4100 // into:
4101 // z = ((~x) |/& (~y))
4102 // iff both x and y are free to invert and all uses of z can be freely updated.
4103 bool InstCombinerImpl::sinkNotIntoLogicalOp(Instruction &I) {
4104 Value *Op0, *Op1;
4105 if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1))))
4106 return false;
4108 // If this logic op has not been simplified yet, just bail out and let that
4109 // happen first. Otherwise, the code below may wrongly invert.
4110 if (Op0 == Op1)
4111 return false;
4113 Instruction::BinaryOps NewOpc =
4114 match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And;
4115 bool IsBinaryOp = isa<BinaryOperator>(I);
4117 // Can our users be adapted?
4118 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
4119 return false;
4121 // And can the operands be adapted?
4122 if (!canFreelyInvert(*this, Op0, &I) || !canFreelyInvert(*this, Op1, &I))
4123 return false;
4125 Op0 = freelyInvert(*this, Op0, &I);
4126 Op1 = freelyInvert(*this, Op1, &I);
4128 Builder.SetInsertPoint(I.getInsertionPointAfterDef());
4129 Value *NewLogicOp;
4130 if (IsBinaryOp)
4131 NewLogicOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not");
4132 else
4133 NewLogicOp =
4134 Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not");
4136 replaceInstUsesWith(I, NewLogicOp);
4137 // We can not just create an outer `not`, it will most likely be immediately
4138 // folded back, reconstructing our initial pattern, and causing an
4139 // infinite combine loop, so immediately manually fold it away.
4140 freelyInvertAllUsersOf(NewLogicOp);
4141 return true;
4144 // Transform
4145 // z = (~x) &/| y
4146 // into:
4147 // z = ~(x |/& (~y))
4148 // iff y is free to invert and all uses of z can be freely updated.
4149 bool InstCombinerImpl::sinkNotIntoOtherHandOfLogicalOp(Instruction &I) {
4150 Value *Op0, *Op1;
4151 if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1))))
4152 return false;
4153 Instruction::BinaryOps NewOpc =
4154 match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And;
4155 bool IsBinaryOp = isa<BinaryOperator>(I);
4157 Value *NotOp0 = nullptr;
4158 Value *NotOp1 = nullptr;
4159 Value **OpToInvert = nullptr;
4160 if (match(Op0, m_Not(m_Value(NotOp0))) && canFreelyInvert(*this, Op1, &I)) {
4161 Op0 = NotOp0;
4162 OpToInvert = &Op1;
4163 } else if (match(Op1, m_Not(m_Value(NotOp1))) &&
4164 canFreelyInvert(*this, Op0, &I)) {
4165 Op1 = NotOp1;
4166 OpToInvert = &Op0;
4167 } else
4168 return false;
4170 // And can our users be adapted?
4171 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
4172 return false;
4174 *OpToInvert = freelyInvert(*this, *OpToInvert, &I);
4176 Builder.SetInsertPoint(&*I.getInsertionPointAfterDef());
4177 Value *NewBinOp;
4178 if (IsBinaryOp)
4179 NewBinOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not");
4180 else
4181 NewBinOp = Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not");
4182 replaceInstUsesWith(I, NewBinOp);
4183 // We can not just create an outer `not`, it will most likely be immediately
4184 // folded back, reconstructing our initial pattern, and causing an
4185 // infinite combine loop, so immediately manually fold it away.
4186 freelyInvertAllUsersOf(NewBinOp);
4187 return true;
4190 Instruction *InstCombinerImpl::foldNot(BinaryOperator &I) {
4191 Value *NotOp;
4192 if (!match(&I, m_Not(m_Value(NotOp))))
4193 return nullptr;
4195 // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand.
4196 // We must eliminate the and/or (one-use) for these transforms to not increase
4197 // the instruction count.
4199 // ~(~X & Y) --> (X | ~Y)
4200 // ~(Y & ~X) --> (X | ~Y)
4202 // Note: The logical matches do not check for the commuted patterns because
4203 // those are handled via SimplifySelectsFeedingBinaryOp().
4204 Type *Ty = I.getType();
4205 Value *X, *Y;
4206 if (match(NotOp, m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y))))) {
4207 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4208 return BinaryOperator::CreateOr(X, NotY);
4210 if (match(NotOp, m_OneUse(m_LogicalAnd(m_Not(m_Value(X)), m_Value(Y))))) {
4211 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4212 return SelectInst::Create(X, ConstantInt::getTrue(Ty), NotY);
4215 // ~(~X | Y) --> (X & ~Y)
4216 // ~(Y | ~X) --> (X & ~Y)
4217 if (match(NotOp, m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y))))) {
4218 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4219 return BinaryOperator::CreateAnd(X, NotY);
4221 if (match(NotOp, m_OneUse(m_LogicalOr(m_Not(m_Value(X)), m_Value(Y))))) {
4222 Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not");
4223 return SelectInst::Create(X, NotY, ConstantInt::getFalse(Ty));
4226 // Is this a 'not' (~) fed by a binary operator?
4227 BinaryOperator *NotVal;
4228 if (match(NotOp, m_BinOp(NotVal))) {
4229 // ~((-X) | Y) --> (X - 1) & (~Y)
4230 if (match(NotVal,
4231 m_OneUse(m_c_Or(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))) {
4232 Value *DecX = Builder.CreateAdd(X, ConstantInt::getAllOnesValue(Ty));
4233 Value *NotY = Builder.CreateNot(Y);
4234 return BinaryOperator::CreateAnd(DecX, NotY);
4237 // ~(~X >>s Y) --> (X >>s Y)
4238 if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y))))
4239 return BinaryOperator::CreateAShr(X, Y);
4241 // Bit-hack form of a signbit test for iN type:
4242 // ~(X >>s (N - 1)) --> sext i1 (X > -1) to iN
4243 unsigned FullShift = Ty->getScalarSizeInBits() - 1;
4244 if (match(NotVal, m_OneUse(m_AShr(m_Value(X), m_SpecificInt(FullShift))))) {
4245 Value *IsNotNeg = Builder.CreateIsNotNeg(X, "isnotneg");
4246 return new SExtInst(IsNotNeg, Ty);
4249 // If we are inverting a right-shifted constant, we may be able to eliminate
4250 // the 'not' by inverting the constant and using the opposite shift type.
4251 // Canonicalization rules ensure that only a negative constant uses 'ashr',
4252 // but we must check that in case that transform has not fired yet.
4254 // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits)
4255 Constant *C;
4256 if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) &&
4257 match(C, m_Negative())) {
4258 // We matched a negative constant, so propagating undef is unsafe.
4259 // Clamp undef elements to -1.
4260 Type *EltTy = Ty->getScalarType();
4261 C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy));
4262 return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y);
4265 // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits)
4266 if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) &&
4267 match(C, m_NonNegative())) {
4268 // We matched a non-negative constant, so propagating undef is unsafe.
4269 // Clamp undef elements to 0.
4270 Type *EltTy = Ty->getScalarType();
4271 C = Constant::replaceUndefsWith(C, ConstantInt::getNullValue(EltTy));
4272 return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y);
4275 // ~(X + C) --> ~C - X
4276 if (match(NotVal, m_c_Add(m_Value(X), m_ImmConstant(C))))
4277 return BinaryOperator::CreateSub(ConstantExpr::getNot(C), X);
4279 // ~(X - Y) --> ~X + Y
4280 // FIXME: is it really beneficial to sink the `not` here?
4281 if (match(NotVal, m_Sub(m_Value(X), m_Value(Y))))
4282 if (isa<Constant>(X) || NotVal->hasOneUse())
4283 return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y);
4285 // ~(~X + Y) --> X - Y
4286 if (match(NotVal, m_c_Add(m_Not(m_Value(X)), m_Value(Y))))
4287 return BinaryOperator::CreateWithCopiedFlags(Instruction::Sub, X, Y,
4288 NotVal);
4291 // not (cmp A, B) = !cmp A, B
4292 CmpInst::Predicate Pred;
4293 if (match(NotOp, m_Cmp(Pred, m_Value(), m_Value())) &&
4294 (NotOp->hasOneUse() ||
4295 InstCombiner::canFreelyInvertAllUsersOf(cast<Instruction>(NotOp),
4296 /*IgnoredUser=*/nullptr))) {
4297 cast<CmpInst>(NotOp)->setPredicate(CmpInst::getInversePredicate(Pred));
4298 freelyInvertAllUsersOf(NotOp);
4299 return &I;
4302 // Move a 'not' ahead of casts of a bool to enable logic reduction:
4303 // not (bitcast (sext i1 X)) --> bitcast (sext (not i1 X))
4304 if (match(NotOp, m_OneUse(m_BitCast(m_OneUse(m_SExt(m_Value(X)))))) && X->getType()->isIntOrIntVectorTy(1)) {
4305 Type *SextTy = cast<BitCastOperator>(NotOp)->getSrcTy();
4306 Value *NotX = Builder.CreateNot(X);
4307 Value *Sext = Builder.CreateSExt(NotX, SextTy);
4308 return CastInst::CreateBitOrPointerCast(Sext, Ty);
4311 if (auto *NotOpI = dyn_cast<Instruction>(NotOp))
4312 if (sinkNotIntoLogicalOp(*NotOpI))
4313 return &I;
4315 // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max:
4316 // ~min(~X, ~Y) --> max(X, Y)
4317 // ~max(~X, Y) --> min(X, ~Y)
4318 auto *II = dyn_cast<IntrinsicInst>(NotOp);
4319 if (II && II->hasOneUse()) {
4320 if (match(NotOp, m_MaxOrMin(m_Value(X), m_Value(Y))) &&
4321 isFreeToInvert(X, X->hasOneUse()) &&
4322 isFreeToInvert(Y, Y->hasOneUse())) {
4323 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
4324 Value *NotX = Builder.CreateNot(X);
4325 Value *NotY = Builder.CreateNot(Y);
4326 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, NotX, NotY);
4327 return replaceInstUsesWith(I, InvMaxMin);
4329 if (match(NotOp, m_c_MaxOrMin(m_Not(m_Value(X)), m_Value(Y)))) {
4330 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
4331 Value *NotY = Builder.CreateNot(Y);
4332 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotY);
4333 return replaceInstUsesWith(I, InvMaxMin);
4336 if (II->getIntrinsicID() == Intrinsic::is_fpclass) {
4337 ConstantInt *ClassMask = cast<ConstantInt>(II->getArgOperand(1));
4338 II->setArgOperand(
4339 1, ConstantInt::get(ClassMask->getType(),
4340 ~ClassMask->getZExtValue() & fcAllFlags));
4341 return replaceInstUsesWith(I, II);
4345 if (NotOp->hasOneUse()) {
4346 // Pull 'not' into operands of select if both operands are one-use compares
4347 // or one is one-use compare and the other one is a constant.
4348 // Inverting the predicates eliminates the 'not' operation.
4349 // Example:
4350 // not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) -->
4351 // select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?)
4352 // not (select ?, (cmp TPred, ?, ?), true -->
4353 // select ?, (cmp InvTPred, ?, ?), false
4354 if (auto *Sel = dyn_cast<SelectInst>(NotOp)) {
4355 Value *TV = Sel->getTrueValue();
4356 Value *FV = Sel->getFalseValue();
4357 auto *CmpT = dyn_cast<CmpInst>(TV);
4358 auto *CmpF = dyn_cast<CmpInst>(FV);
4359 bool InvertibleT = (CmpT && CmpT->hasOneUse()) || isa<Constant>(TV);
4360 bool InvertibleF = (CmpF && CmpF->hasOneUse()) || isa<Constant>(FV);
4361 if (InvertibleT && InvertibleF) {
4362 if (CmpT)
4363 CmpT->setPredicate(CmpT->getInversePredicate());
4364 else
4365 Sel->setTrueValue(ConstantExpr::getNot(cast<Constant>(TV)));
4366 if (CmpF)
4367 CmpF->setPredicate(CmpF->getInversePredicate());
4368 else
4369 Sel->setFalseValue(ConstantExpr::getNot(cast<Constant>(FV)));
4370 return replaceInstUsesWith(I, Sel);
4375 if (Instruction *NewXor = foldNotXor(I, Builder))
4376 return NewXor;
4378 return nullptr;
4381 // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches
4382 // here. We should standardize that construct where it is needed or choose some
4383 // other way to ensure that commutated variants of patterns are not missed.
4384 Instruction *InstCombinerImpl::visitXor(BinaryOperator &I) {
4385 if (Value *V = simplifyXorInst(I.getOperand(0), I.getOperand(1),
4386 SQ.getWithInstruction(&I)))
4387 return replaceInstUsesWith(I, V);
4389 if (SimplifyAssociativeOrCommutative(I))
4390 return &I;
4392 if (Instruction *X = foldVectorBinop(I))
4393 return X;
4395 if (Instruction *Phi = foldBinopWithPhiOperands(I))
4396 return Phi;
4398 if (Instruction *NewXor = foldXorToXor(I, Builder))
4399 return NewXor;
4401 // (A&B)^(A&C) -> A&(B^C) etc
4402 if (Value *V = foldUsingDistributiveLaws(I))
4403 return replaceInstUsesWith(I, V);
4405 // See if we can simplify any instructions used by the instruction whose sole
4406 // purpose is to compute bits we don't care about.
4407 if (SimplifyDemandedInstructionBits(I))
4408 return &I;
4410 if (Value *V = SimplifyBSwap(I, Builder))
4411 return replaceInstUsesWith(I, V);
4413 if (Instruction *R = foldNot(I))
4414 return R;
4416 if (Instruction *R = foldBinOpShiftWithShift(I))
4417 return R;
4419 // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M)
4420 // This it a special case in haveNoCommonBitsSet, but the computeKnownBits
4421 // calls in there are unnecessary as SimplifyDemandedInstructionBits should
4422 // have already taken care of those cases.
4423 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4424 Value *M;
4425 if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()),
4426 m_c_And(m_Deferred(M), m_Value()))))
4427 return BinaryOperator::CreateOr(Op0, Op1);
4429 if (Instruction *Xor = visitMaskedMerge(I, Builder))
4430 return Xor;
4432 Value *X, *Y;
4433 Constant *C1;
4434 if (match(Op1, m_Constant(C1))) {
4435 Constant *C2;
4437 if (match(Op0, m_OneUse(m_Or(m_Value(X), m_ImmConstant(C2)))) &&
4438 match(C1, m_ImmConstant())) {
4439 // (X | C2) ^ C1 --> (X & ~C2) ^ (C1^C2)
4440 C2 = Constant::replaceUndefsWith(
4441 C2, Constant::getAllOnesValue(C2->getType()->getScalarType()));
4442 Value *And = Builder.CreateAnd(
4443 X, Constant::mergeUndefsWith(ConstantExpr::getNot(C2), C1));
4444 return BinaryOperator::CreateXor(
4445 And, Constant::mergeUndefsWith(ConstantExpr::getXor(C1, C2), C1));
4448 // Use DeMorgan and reassociation to eliminate a 'not' op.
4449 if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) {
4450 // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1
4451 Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2));
4452 return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1));
4454 if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) {
4455 // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1
4456 Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2));
4457 return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1));
4460 // Convert xor ([trunc] (ashr X, BW-1)), C =>
4461 // select(X >s -1, C, ~C)
4462 // The ashr creates "AllZeroOrAllOne's", which then optionally inverses the
4463 // constant depending on whether this input is less than 0.
4464 const APInt *CA;
4465 if (match(Op0, m_OneUse(m_TruncOrSelf(
4466 m_AShr(m_Value(X), m_APIntAllowUndef(CA))))) &&
4467 *CA == X->getType()->getScalarSizeInBits() - 1 &&
4468 !match(C1, m_AllOnes())) {
4469 assert(!C1->isZeroValue() && "Unexpected xor with 0");
4470 Value *IsNotNeg = Builder.CreateIsNotNeg(X);
4471 return SelectInst::Create(IsNotNeg, Op1, Builder.CreateNot(Op1));
4475 Type *Ty = I.getType();
4477 const APInt *RHSC;
4478 if (match(Op1, m_APInt(RHSC))) {
4479 Value *X;
4480 const APInt *C;
4481 // (C - X) ^ signmaskC --> (C + signmaskC) - X
4482 if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X))))
4483 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C + *RHSC), X);
4485 // (X + C) ^ signmaskC --> X + (C + signmaskC)
4486 if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C))))
4487 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C + *RHSC));
4489 // (X | C) ^ RHSC --> X ^ (C ^ RHSC) iff X & C == 0
4490 if (match(Op0, m_Or(m_Value(X), m_APInt(C))) &&
4491 MaskedValueIsZero(X, *C, 0, &I))
4492 return BinaryOperator::CreateXor(X, ConstantInt::get(Ty, *C ^ *RHSC));
4494 // When X is a power-of-two or zero and zero input is poison:
4495 // ctlz(i32 X) ^ 31 --> cttz(X)
4496 // cttz(i32 X) ^ 31 --> ctlz(X)
4497 auto *II = dyn_cast<IntrinsicInst>(Op0);
4498 if (II && II->hasOneUse() && *RHSC == Ty->getScalarSizeInBits() - 1) {
4499 Intrinsic::ID IID = II->getIntrinsicID();
4500 if ((IID == Intrinsic::ctlz || IID == Intrinsic::cttz) &&
4501 match(II->getArgOperand(1), m_One()) &&
4502 isKnownToBeAPowerOfTwo(II->getArgOperand(0), /*OrZero */ true)) {
4503 IID = (IID == Intrinsic::ctlz) ? Intrinsic::cttz : Intrinsic::ctlz;
4504 Function *F = Intrinsic::getDeclaration(II->getModule(), IID, Ty);
4505 return CallInst::Create(F, {II->getArgOperand(0), Builder.getTrue()});
4509 // If RHSC is inverting the remaining bits of shifted X,
4510 // canonicalize to a 'not' before the shift to help SCEV and codegen:
4511 // (X << C) ^ RHSC --> ~X << C
4512 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_APInt(C)))) &&
4513 *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).shl(*C)) {
4514 Value *NotX = Builder.CreateNot(X);
4515 return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *C));
4517 // (X >>u C) ^ RHSC --> ~X >>u C
4518 if (match(Op0, m_OneUse(m_LShr(m_Value(X), m_APInt(C)))) &&
4519 *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).lshr(*C)) {
4520 Value *NotX = Builder.CreateNot(X);
4521 return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *C));
4523 // TODO: We could handle 'ashr' here as well. That would be matching
4524 // a 'not' op and moving it before the shift. Doing that requires
4525 // preventing the inverse fold in canShiftBinOpWithConstantRHS().
4528 // If we are XORing the sign bit of a floating-point value, convert
4529 // this to fneg, then cast back to integer.
4531 // This is generous interpretation of noimplicitfloat, this is not a true
4532 // floating-point operation.
4534 // Assumes any IEEE-represented type has the sign bit in the high bit.
4535 // TODO: Unify with APInt matcher. This version allows undef unlike m_APInt
4536 Value *CastOp;
4537 if (match(Op0, m_BitCast(m_Value(CastOp))) && match(Op1, m_SignMask()) &&
4538 !Builder.GetInsertBlock()->getParent()->hasFnAttribute(
4539 Attribute::NoImplicitFloat)) {
4540 Type *EltTy = CastOp->getType()->getScalarType();
4541 if (EltTy->isFloatingPointTy() && EltTy->isIEEE() &&
4542 EltTy->getPrimitiveSizeInBits() ==
4543 I.getType()->getScalarType()->getPrimitiveSizeInBits()) {
4544 Value *FNeg = Builder.CreateFNeg(CastOp);
4545 return new BitCastInst(FNeg, I.getType());
4550 // FIXME: This should not be limited to scalar (pull into APInt match above).
4552 Value *X;
4553 ConstantInt *C1, *C2, *C3;
4554 // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3)
4555 if (match(Op1, m_ConstantInt(C3)) &&
4556 match(Op0, m_LShr(m_Xor(m_Value(X), m_ConstantInt(C1)),
4557 m_ConstantInt(C2))) &&
4558 Op0->hasOneUse()) {
4559 // fold (C1 >> C2) ^ C3
4560 APInt FoldConst = C1->getValue().lshr(C2->getValue());
4561 FoldConst ^= C3->getValue();
4562 // Prepare the two operands.
4563 auto *Opnd0 = Builder.CreateLShr(X, C2);
4564 Opnd0->takeName(Op0);
4565 return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst));
4569 if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I))
4570 return FoldedLogic;
4572 // Y ^ (X | Y) --> X & ~Y
4573 // Y ^ (Y | X) --> X & ~Y
4574 if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0)))))
4575 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0));
4576 // (X | Y) ^ Y --> X & ~Y
4577 // (Y | X) ^ Y --> X & ~Y
4578 if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1)))))
4579 return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1));
4581 // Y ^ (X & Y) --> ~X & Y
4582 // Y ^ (Y & X) --> ~X & Y
4583 if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0)))))
4584 return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X));
4585 // (X & Y) ^ Y --> ~X & Y
4586 // (Y & X) ^ Y --> ~X & Y
4587 // Canonical form is (X & C) ^ C; don't touch that.
4588 // TODO: A 'not' op is better for analysis and codegen, but demanded bits must
4589 // be fixed to prefer that (otherwise we get infinite looping).
4590 if (!match(Op1, m_Constant()) &&
4591 match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1)))))
4592 return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X));
4594 Value *A, *B, *C;
4595 // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants.
4596 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
4597 m_OneUse(m_c_Or(m_Deferred(A), m_Value(C))))))
4598 return BinaryOperator::CreateXor(
4599 Builder.CreateAnd(Builder.CreateNot(A), C), B);
4601 // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants.
4602 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))),
4603 m_OneUse(m_c_Or(m_Deferred(B), m_Value(C))))))
4604 return BinaryOperator::CreateXor(
4605 Builder.CreateAnd(Builder.CreateNot(B), C), A);
4607 // (A & B) ^ (A ^ B) -> (A | B)
4608 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
4609 match(Op1, m_c_Xor(m_Specific(A), m_Specific(B))))
4610 return BinaryOperator::CreateOr(A, B);
4611 // (A ^ B) ^ (A & B) -> (A | B)
4612 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
4613 match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
4614 return BinaryOperator::CreateOr(A, B);
4616 // (A & ~B) ^ ~A -> ~(A & B)
4617 // (~B & A) ^ ~A -> ~(A & B)
4618 if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
4619 match(Op1, m_Not(m_Specific(A))))
4620 return BinaryOperator::CreateNot(Builder.CreateAnd(A, B));
4622 // (~A & B) ^ A --> A | B -- There are 4 commuted variants.
4623 if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(A)), m_Value(B)), m_Deferred(A))))
4624 return BinaryOperator::CreateOr(A, B);
4626 // (~A | B) ^ A --> ~(A & B)
4627 if (match(Op0, m_OneUse(m_c_Or(m_Not(m_Specific(Op1)), m_Value(B)))))
4628 return BinaryOperator::CreateNot(Builder.CreateAnd(Op1, B));
4630 // A ^ (~A | B) --> ~(A & B)
4631 if (match(Op1, m_OneUse(m_c_Or(m_Not(m_Specific(Op0)), m_Value(B)))))
4632 return BinaryOperator::CreateNot(Builder.CreateAnd(Op0, B));
4634 // (A | B) ^ (A | C) --> (B ^ C) & ~A -- There are 4 commuted variants.
4635 // TODO: Loosen one-use restriction if common operand is a constant.
4636 Value *D;
4637 if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B)))) &&
4638 match(Op1, m_OneUse(m_Or(m_Value(C), m_Value(D))))) {
4639 if (B == C || B == D)
4640 std::swap(A, B);
4641 if (A == C)
4642 std::swap(C, D);
4643 if (A == D) {
4644 Value *NotA = Builder.CreateNot(A);
4645 return BinaryOperator::CreateAnd(Builder.CreateXor(B, C), NotA);
4649 // (A & B) ^ (A | C) --> A ? ~B : C -- There are 4 commuted variants.
4650 if (I.getType()->isIntOrIntVectorTy(1) &&
4651 match(Op0, m_OneUse(m_LogicalAnd(m_Value(A), m_Value(B)))) &&
4652 match(Op1, m_OneUse(m_LogicalOr(m_Value(C), m_Value(D))))) {
4653 bool NeedFreeze = isa<SelectInst>(Op0) && isa<SelectInst>(Op1) && B == D;
4654 if (B == C || B == D)
4655 std::swap(A, B);
4656 if (A == C)
4657 std::swap(C, D);
4658 if (A == D) {
4659 if (NeedFreeze)
4660 A = Builder.CreateFreeze(A);
4661 Value *NotB = Builder.CreateNot(B);
4662 return SelectInst::Create(A, NotB, C);
4666 if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
4667 if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4668 if (Value *V = foldXorOfICmps(LHS, RHS, I))
4669 return replaceInstUsesWith(I, V);
4671 if (Instruction *CastedXor = foldCastedBitwiseLogic(I))
4672 return CastedXor;
4674 if (Instruction *Abs = canonicalizeAbs(I, Builder))
4675 return Abs;
4677 // Otherwise, if all else failed, try to hoist the xor-by-constant:
4678 // (X ^ C) ^ Y --> (X ^ Y) ^ C
4679 // Just like we do in other places, we completely avoid the fold
4680 // for constantexprs, at least to avoid endless combine loop.
4681 if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_CombineAnd(m_Value(X),
4682 m_Unless(m_ConstantExpr())),
4683 m_ImmConstant(C1))),
4684 m_Value(Y))))
4685 return BinaryOperator::CreateXor(Builder.CreateXor(X, Y), C1);
4687 if (Instruction *R = reassociateForUses(I, Builder))
4688 return R;
4690 if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder))
4691 return Canonicalized;
4693 if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1))
4694 return Folded;
4696 if (Instruction *Folded = canonicalizeConditionalNegationViaMathToSelect(I))
4697 return Folded;
4699 if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
4700 return Res;
4702 return nullptr;