[NFC][RemoveDIs] Prefer iterators over inst-pointers in InstCombine
[llvm-project.git] / llvm / lib / Transforms / InstCombine / InstCombineSelect.cpp
blob1fe28486c14aaa52e455b07746f147367885f2c6
1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/CmpInstAnalysis.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/OverflowInstAnalysis.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/KnownBits.h"
42 #include "llvm/Transforms/InstCombine/InstCombiner.h"
43 #include <cassert>
44 #include <utility>
46 #define DEBUG_TYPE "instcombine"
47 #include "llvm/Transforms/Utils/InstructionWorklist.h"
49 using namespace llvm;
50 using namespace PatternMatch;
53 /// Replace a select operand based on an equality comparison with the identity
54 /// constant of a binop.
55 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
56 const TargetLibraryInfo &TLI,
57 InstCombinerImpl &IC) {
58 // The select condition must be an equality compare with a constant operand.
59 Value *X;
60 Constant *C;
61 CmpInst::Predicate Pred;
62 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
63 return nullptr;
65 bool IsEq;
66 if (ICmpInst::isEquality(Pred))
67 IsEq = Pred == ICmpInst::ICMP_EQ;
68 else if (Pred == FCmpInst::FCMP_OEQ)
69 IsEq = true;
70 else if (Pred == FCmpInst::FCMP_UNE)
71 IsEq = false;
72 else
73 return nullptr;
75 // A select operand must be a binop.
76 BinaryOperator *BO;
77 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
78 return nullptr;
80 // The compare constant must be the identity constant for that binop.
81 // If this a floating-point compare with 0.0, any zero constant will do.
82 Type *Ty = BO->getType();
83 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
84 if (IdC != C) {
85 if (!IdC || !CmpInst::isFPPredicate(Pred))
86 return nullptr;
87 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
88 return nullptr;
91 // Last, match the compare variable operand with a binop operand.
92 Value *Y;
93 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
94 return nullptr;
95 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
96 return nullptr;
98 // +0.0 compares equal to -0.0, and so it does not behave as required for this
99 // transform. Bail out if we can not exclude that possibility.
100 if (isa<FPMathOperator>(BO))
101 if (!BO->hasNoSignedZeros() &&
102 !cannotBeNegativeZero(Y, IC.getDataLayout(), &TLI))
103 return nullptr;
105 // BO = binop Y, X
106 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
107 // =>
108 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y }
109 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
112 /// This folds:
113 /// select (icmp eq (and X, C1)), TC, FC
114 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
115 /// To something like:
116 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
117 /// Or:
118 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
119 /// With some variations depending if FC is larger than TC, or the shift
120 /// isn't needed, or the bit widths don't match.
121 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
122 InstCombiner::BuilderTy &Builder) {
123 const APInt *SelTC, *SelFC;
124 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
125 !match(Sel.getFalseValue(), m_APInt(SelFC)))
126 return nullptr;
128 // If this is a vector select, we need a vector compare.
129 Type *SelType = Sel.getType();
130 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
131 return nullptr;
133 Value *V;
134 APInt AndMask;
135 bool CreateAnd = false;
136 ICmpInst::Predicate Pred = Cmp->getPredicate();
137 if (ICmpInst::isEquality(Pred)) {
138 if (!match(Cmp->getOperand(1), m_Zero()))
139 return nullptr;
141 V = Cmp->getOperand(0);
142 const APInt *AndRHS;
143 if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
144 return nullptr;
146 AndMask = *AndRHS;
147 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
148 Pred, V, AndMask)) {
149 assert(ICmpInst::isEquality(Pred) && "Not equality test?");
150 if (!AndMask.isPowerOf2())
151 return nullptr;
153 CreateAnd = true;
154 } else {
155 return nullptr;
158 // In general, when both constants are non-zero, we would need an offset to
159 // replace the select. This would require more instructions than we started
160 // with. But there's one special-case that we handle here because it can
161 // simplify/reduce the instructions.
162 APInt TC = *SelTC;
163 APInt FC = *SelFC;
164 if (!TC.isZero() && !FC.isZero()) {
165 // If the select constants differ by exactly one bit and that's the same
166 // bit that is masked and checked by the select condition, the select can
167 // be replaced by bitwise logic to set/clear one bit of the constant result.
168 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
169 return nullptr;
170 if (CreateAnd) {
171 // If we have to create an 'and', then we must kill the cmp to not
172 // increase the instruction count.
173 if (!Cmp->hasOneUse())
174 return nullptr;
175 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
177 bool ExtraBitInTC = TC.ugt(FC);
178 if (Pred == ICmpInst::ICMP_EQ) {
179 // If the masked bit in V is clear, clear or set the bit in the result:
180 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
181 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
182 Constant *C = ConstantInt::get(SelType, TC);
183 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
185 if (Pred == ICmpInst::ICMP_NE) {
186 // If the masked bit in V is set, set or clear the bit in the result:
187 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
188 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
189 Constant *C = ConstantInt::get(SelType, FC);
190 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
192 llvm_unreachable("Only expecting equality predicates");
195 // Make sure one of the select arms is a power-of-2.
196 if (!TC.isPowerOf2() && !FC.isPowerOf2())
197 return nullptr;
199 // Determine which shift is needed to transform result of the 'and' into the
200 // desired result.
201 const APInt &ValC = !TC.isZero() ? TC : FC;
202 unsigned ValZeros = ValC.logBase2();
203 unsigned AndZeros = AndMask.logBase2();
205 // Insert the 'and' instruction on the input to the truncate.
206 if (CreateAnd)
207 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
209 // If types don't match, we can still convert the select by introducing a zext
210 // or a trunc of the 'and'.
211 if (ValZeros > AndZeros) {
212 V = Builder.CreateZExtOrTrunc(V, SelType);
213 V = Builder.CreateShl(V, ValZeros - AndZeros);
214 } else if (ValZeros < AndZeros) {
215 V = Builder.CreateLShr(V, AndZeros - ValZeros);
216 V = Builder.CreateZExtOrTrunc(V, SelType);
217 } else {
218 V = Builder.CreateZExtOrTrunc(V, SelType);
221 // Okay, now we know that everything is set up, we just don't know whether we
222 // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
223 bool ShouldNotVal = !TC.isZero();
224 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
225 if (ShouldNotVal)
226 V = Builder.CreateXor(V, ValC);
228 return V;
231 /// We want to turn code that looks like this:
232 /// %C = or %A, %B
233 /// %D = select %cond, %C, %A
234 /// into:
235 /// %C = select %cond, %B, 0
236 /// %D = or %A, %C
238 /// Assuming that the specified instruction is an operand to the select, return
239 /// a bitmask indicating which operands of this instruction are foldable if they
240 /// equal the other incoming value of the select.
241 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
242 switch (I->getOpcode()) {
243 case Instruction::Add:
244 case Instruction::FAdd:
245 case Instruction::Mul:
246 case Instruction::FMul:
247 case Instruction::And:
248 case Instruction::Or:
249 case Instruction::Xor:
250 return 3; // Can fold through either operand.
251 case Instruction::Sub: // Can only fold on the amount subtracted.
252 case Instruction::FSub:
253 case Instruction::FDiv: // Can only fold on the divisor amount.
254 case Instruction::Shl: // Can only fold on the shift amount.
255 case Instruction::LShr:
256 case Instruction::AShr:
257 return 1;
258 default:
259 return 0; // Cannot fold
263 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
264 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
265 Instruction *FI) {
266 // Don't break up min/max patterns. The hasOneUse checks below prevent that
267 // for most cases, but vector min/max with bitcasts can be transformed. If the
268 // one-use restrictions are eased for other patterns, we still don't want to
269 // obfuscate min/max.
270 if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
271 match(&SI, m_SMax(m_Value(), m_Value())) ||
272 match(&SI, m_UMin(m_Value(), m_Value())) ||
273 match(&SI, m_UMax(m_Value(), m_Value()))))
274 return nullptr;
276 // If this is a cast from the same type, merge.
277 Value *Cond = SI.getCondition();
278 Type *CondTy = Cond->getType();
279 if (TI->getNumOperands() == 1 && TI->isCast()) {
280 Type *FIOpndTy = FI->getOperand(0)->getType();
281 if (TI->getOperand(0)->getType() != FIOpndTy)
282 return nullptr;
284 // The select condition may be a vector. We may only change the operand
285 // type if the vector width remains the same (and matches the condition).
286 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
287 if (!FIOpndTy->isVectorTy() ||
288 CondVTy->getElementCount() !=
289 cast<VectorType>(FIOpndTy)->getElementCount())
290 return nullptr;
292 // TODO: If the backend knew how to deal with casts better, we could
293 // remove this limitation. For now, there's too much potential to create
294 // worse codegen by promoting the select ahead of size-altering casts
295 // (PR28160).
297 // Note that ValueTracking's matchSelectPattern() looks through casts
298 // without checking 'hasOneUse' when it matches min/max patterns, so this
299 // transform may end up happening anyway.
300 if (TI->getOpcode() != Instruction::BitCast &&
301 (!TI->hasOneUse() || !FI->hasOneUse()))
302 return nullptr;
303 } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
304 // TODO: The one-use restrictions for a scalar select could be eased if
305 // the fold of a select in visitLoadInst() was enhanced to match a pattern
306 // that includes a cast.
307 return nullptr;
310 // Fold this by inserting a select from the input values.
311 Value *NewSI =
312 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
313 SI.getName() + ".v", &SI);
314 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
315 TI->getType());
318 Value *OtherOpT, *OtherOpF;
319 bool MatchIsOpZero;
320 auto getCommonOp = [&](Instruction *TI, Instruction *FI, bool Commute,
321 bool Swapped = false) -> Value * {
322 assert(!(Commute && Swapped) &&
323 "Commute and Swapped can't set at the same time");
324 if (!Swapped) {
325 if (TI->getOperand(0) == FI->getOperand(0)) {
326 OtherOpT = TI->getOperand(1);
327 OtherOpF = FI->getOperand(1);
328 MatchIsOpZero = true;
329 return TI->getOperand(0);
330 } else if (TI->getOperand(1) == FI->getOperand(1)) {
331 OtherOpT = TI->getOperand(0);
332 OtherOpF = FI->getOperand(0);
333 MatchIsOpZero = false;
334 return TI->getOperand(1);
338 if (!Commute && !Swapped)
339 return nullptr;
341 // If we are allowing commute or swap of operands, then
342 // allow a cross-operand match. In that case, MatchIsOpZero
343 // means that TI's operand 0 (FI's operand 1) is the common op.
344 if (TI->getOperand(0) == FI->getOperand(1)) {
345 OtherOpT = TI->getOperand(1);
346 OtherOpF = FI->getOperand(0);
347 MatchIsOpZero = true;
348 return TI->getOperand(0);
349 } else if (TI->getOperand(1) == FI->getOperand(0)) {
350 OtherOpT = TI->getOperand(0);
351 OtherOpF = FI->getOperand(1);
352 MatchIsOpZero = false;
353 return TI->getOperand(1);
355 return nullptr;
358 if (TI->hasOneUse() || FI->hasOneUse()) {
359 // Cond ? -X : -Y --> -(Cond ? X : Y)
360 Value *X, *Y;
361 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y)))) {
362 // Intersect FMF from the fneg instructions and union those with the
363 // select.
364 FastMathFlags FMF = TI->getFastMathFlags();
365 FMF &= FI->getFastMathFlags();
366 FMF |= SI.getFastMathFlags();
367 Value *NewSel =
368 Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
369 if (auto *NewSelI = dyn_cast<Instruction>(NewSel))
370 NewSelI->setFastMathFlags(FMF);
371 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
372 NewFNeg->setFastMathFlags(FMF);
373 return NewFNeg;
376 // Min/max intrinsic with a common operand can have the common operand
377 // pulled after the select. This is the same transform as below for binops,
378 // but specialized for intrinsic matching and without the restrictive uses
379 // clause.
380 auto *TII = dyn_cast<IntrinsicInst>(TI);
381 auto *FII = dyn_cast<IntrinsicInst>(FI);
382 if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID()) {
383 if (match(TII, m_MaxOrMin(m_Value(), m_Value()))) {
384 if (Value *MatchOp = getCommonOp(TI, FI, true)) {
385 Value *NewSel =
386 Builder.CreateSelect(Cond, OtherOpT, OtherOpF, "minmaxop", &SI);
387 return CallInst::Create(TII->getCalledFunction(), {NewSel, MatchOp});
391 // select c, (ldexp v, e0), (ldexp v, e1) -> ldexp v, (select c, e0, e1)
392 // select c, (ldexp v0, e), (ldexp v1, e) -> ldexp (select c, v0, v1), e
394 // select c, (ldexp v0, e0), (ldexp v1, e1) ->
395 // ldexp (select c, v0, v1), (select c, e0, e1)
396 if (TII->getIntrinsicID() == Intrinsic::ldexp) {
397 Value *LdexpVal0 = TII->getArgOperand(0);
398 Value *LdexpExp0 = TII->getArgOperand(1);
399 Value *LdexpVal1 = FII->getArgOperand(0);
400 Value *LdexpExp1 = FII->getArgOperand(1);
401 if (LdexpExp0->getType() == LdexpExp1->getType()) {
402 FPMathOperator *SelectFPOp = cast<FPMathOperator>(&SI);
403 FastMathFlags FMF = cast<FPMathOperator>(TII)->getFastMathFlags();
404 FMF &= cast<FPMathOperator>(FII)->getFastMathFlags();
405 FMF |= SelectFPOp->getFastMathFlags();
407 Value *SelectVal = Builder.CreateSelect(Cond, LdexpVal0, LdexpVal1);
408 Value *SelectExp = Builder.CreateSelect(Cond, LdexpExp0, LdexpExp1);
410 CallInst *NewLdexp = Builder.CreateIntrinsic(
411 TII->getType(), Intrinsic::ldexp, {SelectVal, SelectExp});
412 NewLdexp->setFastMathFlags(FMF);
413 return replaceInstUsesWith(SI, NewLdexp);
418 // icmp with a common operand also can have the common operand
419 // pulled after the select.
420 ICmpInst::Predicate TPred, FPred;
421 if (match(TI, m_ICmp(TPred, m_Value(), m_Value())) &&
422 match(FI, m_ICmp(FPred, m_Value(), m_Value()))) {
423 if (TPred == FPred || TPred == CmpInst::getSwappedPredicate(FPred)) {
424 bool Swapped = TPred != FPred;
425 if (Value *MatchOp =
426 getCommonOp(TI, FI, ICmpInst::isEquality(TPred), Swapped)) {
427 Value *NewSel = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
428 SI.getName() + ".v", &SI);
429 return new ICmpInst(
430 MatchIsOpZero ? TPred : CmpInst::getSwappedPredicate(TPred),
431 MatchOp, NewSel);
437 // Only handle binary operators (including two-operand getelementptr) with
438 // one-use here. As with the cast case above, it may be possible to relax the
439 // one-use constraint, but that needs be examined carefully since it may not
440 // reduce the total number of instructions.
441 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
442 !TI->isSameOperationAs(FI) ||
443 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
444 !TI->hasOneUse() || !FI->hasOneUse())
445 return nullptr;
447 // Figure out if the operations have any operands in common.
448 Value *MatchOp = getCommonOp(TI, FI, TI->isCommutative());
449 if (!MatchOp)
450 return nullptr;
452 // If the select condition is a vector, the operands of the original select's
453 // operands also must be vectors. This may not be the case for getelementptr
454 // for example.
455 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
456 !OtherOpF->getType()->isVectorTy()))
457 return nullptr;
459 // If we are sinking div/rem after a select, we may need to freeze the
460 // condition because div/rem may induce immediate UB with a poison operand.
461 // For example, the following transform is not safe if Cond can ever be poison
462 // because we can replace poison with zero and then we have div-by-zero that
463 // didn't exist in the original code:
464 // Cond ? x/y : x/z --> x / (Cond ? y : z)
465 auto *BO = dyn_cast<BinaryOperator>(TI);
466 if (BO && BO->isIntDivRem() && !isGuaranteedNotToBePoison(Cond)) {
467 // A udiv/urem with a common divisor is safe because UB can only occur with
468 // div-by-zero, and that would be present in the original code.
469 if (BO->getOpcode() == Instruction::SDiv ||
470 BO->getOpcode() == Instruction::SRem || MatchIsOpZero)
471 Cond = Builder.CreateFreeze(Cond);
474 // If we reach here, they do have operations in common.
475 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
476 SI.getName() + ".v", &SI);
477 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
478 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
479 if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
480 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
481 NewBO->copyIRFlags(TI);
482 NewBO->andIRFlags(FI);
483 return NewBO;
485 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
486 auto *FGEP = cast<GetElementPtrInst>(FI);
487 Type *ElementType = TGEP->getResultElementType();
488 return TGEP->isInBounds() && FGEP->isInBounds()
489 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
490 : GetElementPtrInst::Create(ElementType, Op0, {Op1});
492 llvm_unreachable("Expected BinaryOperator or GEP");
493 return nullptr;
496 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
497 if (!C1I.isZero() && !C2I.isZero()) // One side must be zero.
498 return false;
499 return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes();
502 /// Try to fold the select into one of the operands to allow further
503 /// optimization.
504 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
505 Value *FalseVal) {
506 // See the comment above getSelectFoldableOperands for a description of the
507 // transformation we are doing here.
508 auto TryFoldSelectIntoOp = [&](SelectInst &SI, Value *TrueVal,
509 Value *FalseVal,
510 bool Swapped) -> Instruction * {
511 auto *TVI = dyn_cast<BinaryOperator>(TrueVal);
512 if (!TVI || !TVI->hasOneUse() || isa<Constant>(FalseVal))
513 return nullptr;
515 unsigned SFO = getSelectFoldableOperands(TVI);
516 unsigned OpToFold = 0;
517 if ((SFO & 1) && FalseVal == TVI->getOperand(0))
518 OpToFold = 1;
519 else if ((SFO & 2) && FalseVal == TVI->getOperand(1))
520 OpToFold = 2;
522 if (!OpToFold)
523 return nullptr;
525 // TODO: We probably ought to revisit cases where the select and FP
526 // instructions have different flags and add tests to ensure the
527 // behaviour is correct.
528 FastMathFlags FMF;
529 if (isa<FPMathOperator>(&SI))
530 FMF = SI.getFastMathFlags();
531 Constant *C = ConstantExpr::getBinOpIdentity(
532 TVI->getOpcode(), TVI->getType(), true, FMF.noSignedZeros());
533 Value *OOp = TVI->getOperand(2 - OpToFold);
534 // Avoid creating select between 2 constants unless it's selecting
535 // between 0, 1 and -1.
536 const APInt *OOpC;
537 bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
538 if (!isa<Constant>(OOp) ||
539 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
540 Value *NewSel = Builder.CreateSelect(SI.getCondition(), Swapped ? C : OOp,
541 Swapped ? OOp : C, "", &SI);
542 if (isa<FPMathOperator>(&SI))
543 cast<Instruction>(NewSel)->setFastMathFlags(FMF);
544 NewSel->takeName(TVI);
545 BinaryOperator *BO =
546 BinaryOperator::Create(TVI->getOpcode(), FalseVal, NewSel);
547 BO->copyIRFlags(TVI);
548 return BO;
550 return nullptr;
553 if (Instruction *R = TryFoldSelectIntoOp(SI, TrueVal, FalseVal, false))
554 return R;
556 if (Instruction *R = TryFoldSelectIntoOp(SI, FalseVal, TrueVal, true))
557 return R;
559 return nullptr;
562 /// We want to turn:
563 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
564 /// into:
565 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
566 /// Note:
567 /// Z may be 0 if lshr is missing.
568 /// Worst-case scenario is that we will replace 5 instructions with 5 different
569 /// instructions, but we got rid of select.
570 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
571 Value *TVal, Value *FVal,
572 InstCombiner::BuilderTy &Builder) {
573 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
574 Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
575 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
576 return nullptr;
578 // The TrueVal has general form of: and %B, 1
579 Value *B;
580 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
581 return nullptr;
583 // Where %B may be optionally shifted: lshr %X, %Z.
584 Value *X, *Z;
585 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
587 // The shift must be valid.
588 // TODO: This restricts the fold to constant shift amounts. Is there a way to
589 // handle variable shifts safely? PR47012
590 if (HasShift &&
591 !match(Z, m_SpecificInt_ICMP(CmpInst::ICMP_ULT,
592 APInt(SelType->getScalarSizeInBits(),
593 SelType->getScalarSizeInBits()))))
594 return nullptr;
596 if (!HasShift)
597 X = B;
599 Value *Y;
600 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
601 return nullptr;
603 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
604 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
605 Constant *One = ConstantInt::get(SelType, 1);
606 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
607 Value *FullMask = Builder.CreateOr(Y, MaskB);
608 Value *MaskedX = Builder.CreateAnd(X, FullMask);
609 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
610 return new ZExtInst(ICmpNeZero, SelType);
613 /// We want to turn:
614 /// (select (icmp eq (and X, C1), 0), 0, (shl [nsw/nuw] X, C2));
615 /// iff C1 is a mask and the number of its leading zeros is equal to C2
616 /// into:
617 /// shl X, C2
618 static Value *foldSelectICmpAndZeroShl(const ICmpInst *Cmp, Value *TVal,
619 Value *FVal,
620 InstCombiner::BuilderTy &Builder) {
621 ICmpInst::Predicate Pred;
622 Value *AndVal;
623 if (!match(Cmp, m_ICmp(Pred, m_Value(AndVal), m_Zero())))
624 return nullptr;
626 if (Pred == ICmpInst::ICMP_NE) {
627 Pred = ICmpInst::ICMP_EQ;
628 std::swap(TVal, FVal);
631 Value *X;
632 const APInt *C2, *C1;
633 if (Pred != ICmpInst::ICMP_EQ ||
634 !match(AndVal, m_And(m_Value(X), m_APInt(C1))) ||
635 !match(TVal, m_Zero()) || !match(FVal, m_Shl(m_Specific(X), m_APInt(C2))))
636 return nullptr;
638 if (!C1->isMask() ||
639 C1->countLeadingZeros() != static_cast<unsigned>(C2->getZExtValue()))
640 return nullptr;
642 auto *FI = dyn_cast<Instruction>(FVal);
643 if (!FI)
644 return nullptr;
646 FI->setHasNoSignedWrap(false);
647 FI->setHasNoUnsignedWrap(false);
648 return FVal;
651 /// We want to turn:
652 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
653 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
654 /// into:
655 /// ashr (X, Y)
656 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
657 Value *FalseVal,
658 InstCombiner::BuilderTy &Builder) {
659 ICmpInst::Predicate Pred = IC->getPredicate();
660 Value *CmpLHS = IC->getOperand(0);
661 Value *CmpRHS = IC->getOperand(1);
662 if (!CmpRHS->getType()->isIntOrIntVectorTy())
663 return nullptr;
665 Value *X, *Y;
666 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
667 if ((Pred != ICmpInst::ICMP_SGT ||
668 !match(CmpRHS,
669 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
670 (Pred != ICmpInst::ICMP_SLT ||
671 !match(CmpRHS,
672 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
673 return nullptr;
675 // Canonicalize so that ashr is in FalseVal.
676 if (Pred == ICmpInst::ICMP_SLT)
677 std::swap(TrueVal, FalseVal);
679 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
680 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
681 match(CmpLHS, m_Specific(X))) {
682 const auto *Ashr = cast<Instruction>(FalseVal);
683 // if lshr is not exact and ashr is, this new ashr must not be exact.
684 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
685 return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
688 return nullptr;
691 /// We want to turn:
692 /// (select (icmp eq (and X, C1), 0), Y, (BinOp Y, C2))
693 /// into:
694 /// IF C2 u>= C1
695 /// (BinOp Y, (shl (and X, C1), C3))
696 /// ELSE
697 /// (BinOp Y, (lshr (and X, C1), C3))
698 /// iff:
699 /// 0 on the RHS is the identity value (i.e add, xor, shl, etc...)
700 /// C1 and C2 are both powers of 2
701 /// where:
702 /// IF C2 u>= C1
703 /// C3 = Log(C2) - Log(C1)
704 /// ELSE
705 /// C3 = Log(C1) - Log(C2)
707 /// This transform handles cases where:
708 /// 1. The icmp predicate is inverted
709 /// 2. The select operands are reversed
710 /// 3. The magnitude of C2 and C1 are flipped
711 static Value *foldSelectICmpAndBinOp(const ICmpInst *IC, Value *TrueVal,
712 Value *FalseVal,
713 InstCombiner::BuilderTy &Builder) {
714 // Only handle integer compares. Also, if this is a vector select, we need a
715 // vector compare.
716 if (!TrueVal->getType()->isIntOrIntVectorTy() ||
717 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
718 return nullptr;
720 Value *CmpLHS = IC->getOperand(0);
721 Value *CmpRHS = IC->getOperand(1);
723 unsigned C1Log;
724 bool NeedAnd = false;
725 CmpInst::Predicate Pred = IC->getPredicate();
726 if (IC->isEquality()) {
727 if (!match(CmpRHS, m_Zero()))
728 return nullptr;
730 const APInt *C1;
731 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
732 return nullptr;
734 C1Log = C1->logBase2();
735 } else {
736 APInt C1;
737 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CmpLHS, C1) ||
738 !C1.isPowerOf2())
739 return nullptr;
741 C1Log = C1.logBase2();
742 NeedAnd = true;
745 Value *Y, *V = CmpLHS;
746 BinaryOperator *BinOp;
747 const APInt *C2;
748 bool NeedXor;
749 if (match(FalseVal, m_BinOp(m_Specific(TrueVal), m_Power2(C2)))) {
750 Y = TrueVal;
751 BinOp = cast<BinaryOperator>(FalseVal);
752 NeedXor = Pred == ICmpInst::ICMP_NE;
753 } else if (match(TrueVal, m_BinOp(m_Specific(FalseVal), m_Power2(C2)))) {
754 Y = FalseVal;
755 BinOp = cast<BinaryOperator>(TrueVal);
756 NeedXor = Pred == ICmpInst::ICMP_EQ;
757 } else {
758 return nullptr;
761 // Check that 0 on RHS is identity value for this binop.
762 auto *IdentityC =
763 ConstantExpr::getBinOpIdentity(BinOp->getOpcode(), BinOp->getType(),
764 /*AllowRHSConstant*/ true);
765 if (IdentityC == nullptr || !IdentityC->isNullValue())
766 return nullptr;
768 unsigned C2Log = C2->logBase2();
770 bool NeedShift = C1Log != C2Log;
771 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
772 V->getType()->getScalarSizeInBits();
774 // Make sure we don't create more instructions than we save.
775 if ((NeedShift + NeedXor + NeedZExtTrunc + NeedAnd) >
776 (IC->hasOneUse() + BinOp->hasOneUse()))
777 return nullptr;
779 if (NeedAnd) {
780 // Insert the AND instruction on the input to the truncate.
781 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
782 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
785 if (C2Log > C1Log) {
786 V = Builder.CreateZExtOrTrunc(V, Y->getType());
787 V = Builder.CreateShl(V, C2Log - C1Log);
788 } else if (C1Log > C2Log) {
789 V = Builder.CreateLShr(V, C1Log - C2Log);
790 V = Builder.CreateZExtOrTrunc(V, Y->getType());
791 } else
792 V = Builder.CreateZExtOrTrunc(V, Y->getType());
794 if (NeedXor)
795 V = Builder.CreateXor(V, *C2);
797 return Builder.CreateBinOp(BinOp->getOpcode(), Y, V);
800 /// Canonicalize a set or clear of a masked set of constant bits to
801 /// select-of-constants form.
802 static Instruction *foldSetClearBits(SelectInst &Sel,
803 InstCombiner::BuilderTy &Builder) {
804 Value *Cond = Sel.getCondition();
805 Value *T = Sel.getTrueValue();
806 Value *F = Sel.getFalseValue();
807 Type *Ty = Sel.getType();
808 Value *X;
809 const APInt *NotC, *C;
811 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
812 if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
813 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
814 Constant *Zero = ConstantInt::getNullValue(Ty);
815 Constant *OrC = ConstantInt::get(Ty, *C);
816 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
817 return BinaryOperator::CreateOr(T, NewSel);
820 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
821 if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
822 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
823 Constant *Zero = ConstantInt::getNullValue(Ty);
824 Constant *OrC = ConstantInt::get(Ty, *C);
825 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
826 return BinaryOperator::CreateOr(F, NewSel);
829 return nullptr;
832 // select (x == 0), 0, x * y --> freeze(y) * x
833 // select (y == 0), 0, x * y --> freeze(x) * y
834 // select (x == 0), undef, x * y --> freeze(y) * x
835 // select (x == undef), 0, x * y --> freeze(y) * x
836 // Usage of mul instead of 0 will make the result more poisonous,
837 // so the operand that was not checked in the condition should be frozen.
838 // The latter folding is applied only when a constant compared with x is
839 // is a vector consisting of 0 and undefs. If a constant compared with x
840 // is a scalar undefined value or undefined vector then an expression
841 // should be already folded into a constant.
842 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) {
843 auto *CondVal = SI.getCondition();
844 auto *TrueVal = SI.getTrueValue();
845 auto *FalseVal = SI.getFalseValue();
846 Value *X, *Y;
847 ICmpInst::Predicate Predicate;
849 // Assuming that constant compared with zero is not undef (but it may be
850 // a vector with some undef elements). Otherwise (when a constant is undef)
851 // the select expression should be already simplified.
852 if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) ||
853 !ICmpInst::isEquality(Predicate))
854 return nullptr;
856 if (Predicate == ICmpInst::ICMP_NE)
857 std::swap(TrueVal, FalseVal);
859 // Check that TrueVal is a constant instead of matching it with m_Zero()
860 // to handle the case when it is a scalar undef value or a vector containing
861 // non-zero elements that are masked by undef elements in the compare
862 // constant.
863 auto *TrueValC = dyn_cast<Constant>(TrueVal);
864 if (TrueValC == nullptr ||
865 !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) ||
866 !isa<Instruction>(FalseVal))
867 return nullptr;
869 auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
870 auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC);
871 // If X is compared with 0 then TrueVal could be either zero or undef.
872 // m_Zero match vectors containing some undef elements, but for scalars
873 // m_Undef should be used explicitly.
874 if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef()))
875 return nullptr;
877 auto *FalseValI = cast<Instruction>(FalseVal);
878 auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"),
879 FalseValI->getIterator());
880 IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY);
881 return IC.replaceInstUsesWith(SI, FalseValI);
884 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
885 /// There are 8 commuted/swapped variants of this pattern.
886 /// TODO: Also support a - UMIN(a,b) patterns.
887 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
888 const Value *TrueVal,
889 const Value *FalseVal,
890 InstCombiner::BuilderTy &Builder) {
891 ICmpInst::Predicate Pred = ICI->getPredicate();
892 Value *A = ICI->getOperand(0);
893 Value *B = ICI->getOperand(1);
895 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
896 // (a == 0) ? 0 : a - 1 -> (a != 0) ? a - 1 : 0
897 if (match(TrueVal, m_Zero())) {
898 Pred = ICmpInst::getInversePredicate(Pred);
899 std::swap(TrueVal, FalseVal);
902 if (!match(FalseVal, m_Zero()))
903 return nullptr;
905 // ugt 0 is canonicalized to ne 0 and requires special handling
906 // (a != 0) ? a + -1 : 0 -> usub.sat(a, 1)
907 if (Pred == ICmpInst::ICMP_NE) {
908 if (match(B, m_Zero()) && match(TrueVal, m_Add(m_Specific(A), m_AllOnes())))
909 return Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A,
910 ConstantInt::get(A->getType(), 1));
911 return nullptr;
914 if (!ICmpInst::isUnsigned(Pred))
915 return nullptr;
917 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
918 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
919 std::swap(A, B);
920 Pred = ICmpInst::getSwappedPredicate(Pred);
923 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
924 "Unexpected isUnsigned predicate!");
926 // Ensure the sub is of the form:
927 // (a > b) ? a - b : 0 -> usub.sat(a, b)
928 // (a > b) ? b - a : 0 -> -usub.sat(a, b)
929 // Checking for both a-b and a+(-b) as a constant.
930 bool IsNegative = false;
931 const APInt *C;
932 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
933 (match(A, m_APInt(C)) &&
934 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
935 IsNegative = true;
936 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
937 !(match(B, m_APInt(C)) &&
938 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
939 return nullptr;
941 // If we are adding a negate and the sub and icmp are used anywhere else, we
942 // would end up with more instructions.
943 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
944 return nullptr;
946 // (a > b) ? a - b : 0 -> usub.sat(a, b)
947 // (a > b) ? b - a : 0 -> -usub.sat(a, b)
948 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
949 if (IsNegative)
950 Result = Builder.CreateNeg(Result);
951 return Result;
954 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
955 InstCombiner::BuilderTy &Builder) {
956 if (!Cmp->hasOneUse())
957 return nullptr;
959 // Match unsigned saturated add with constant.
960 Value *Cmp0 = Cmp->getOperand(0);
961 Value *Cmp1 = Cmp->getOperand(1);
962 ICmpInst::Predicate Pred = Cmp->getPredicate();
963 Value *X;
964 const APInt *C, *CmpC;
965 if (Pred == ICmpInst::ICMP_ULT &&
966 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
967 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
968 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
969 return Builder.CreateBinaryIntrinsic(
970 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
973 // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
974 // There are 8 commuted variants.
975 // Canonicalize -1 (saturated result) to true value of the select.
976 if (match(FVal, m_AllOnes())) {
977 std::swap(TVal, FVal);
978 Pred = CmpInst::getInversePredicate(Pred);
980 if (!match(TVal, m_AllOnes()))
981 return nullptr;
983 // Canonicalize predicate to less-than or less-or-equal-than.
984 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
985 std::swap(Cmp0, Cmp1);
986 Pred = CmpInst::getSwappedPredicate(Pred);
988 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
989 return nullptr;
991 // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
992 // Strictness of the comparison is irrelevant.
993 Value *Y;
994 if (match(Cmp0, m_Not(m_Value(X))) &&
995 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
996 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
997 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
998 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
1000 // The 'not' op may be included in the sum but not the compare.
1001 // Strictness of the comparison is irrelevant.
1002 X = Cmp0;
1003 Y = Cmp1;
1004 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
1005 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
1006 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
1007 BinaryOperator *BO = cast<BinaryOperator>(FVal);
1008 return Builder.CreateBinaryIntrinsic(
1009 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
1011 // The overflow may be detected via the add wrapping round.
1012 // This is only valid for strict comparison!
1013 if (Pred == ICmpInst::ICMP_ULT &&
1014 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
1015 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
1016 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
1017 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
1018 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
1021 return nullptr;
1024 /// Try to match patterns with select and subtract as absolute difference.
1025 static Value *foldAbsDiff(ICmpInst *Cmp, Value *TVal, Value *FVal,
1026 InstCombiner::BuilderTy &Builder) {
1027 auto *TI = dyn_cast<Instruction>(TVal);
1028 auto *FI = dyn_cast<Instruction>(FVal);
1029 if (!TI || !FI)
1030 return nullptr;
1032 // Normalize predicate to gt/lt rather than ge/le.
1033 ICmpInst::Predicate Pred = Cmp->getStrictPredicate();
1034 Value *A = Cmp->getOperand(0);
1035 Value *B = Cmp->getOperand(1);
1037 // Normalize "A - B" as the true value of the select.
1038 if (match(FI, m_Sub(m_Specific(A), m_Specific(B)))) {
1039 std::swap(FI, TI);
1040 Pred = ICmpInst::getSwappedPredicate(Pred);
1043 // With any pair of no-wrap subtracts:
1044 // (A > B) ? (A - B) : (B - A) --> abs(A - B)
1045 if (Pred == CmpInst::ICMP_SGT &&
1046 match(TI, m_Sub(m_Specific(A), m_Specific(B))) &&
1047 match(FI, m_Sub(m_Specific(B), m_Specific(A))) &&
1048 (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap()) &&
1049 (FI->hasNoSignedWrap() || FI->hasNoUnsignedWrap())) {
1050 // The remaining subtract is not "nuw" any more.
1051 // If there's one use of the subtract (no other use than the use we are
1052 // about to replace), then we know that the sub is "nsw" in this context
1053 // even if it was only "nuw" before. If there's another use, then we can't
1054 // add "nsw" to the existing instruction because it may not be safe in the
1055 // other user's context.
1056 TI->setHasNoUnsignedWrap(false);
1057 if (!TI->hasNoSignedWrap())
1058 TI->setHasNoSignedWrap(TI->hasOneUse());
1059 return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI, Builder.getTrue());
1062 return nullptr;
1065 /// Fold the following code sequence:
1066 /// \code
1067 /// int a = ctlz(x & -x);
1068 // x ? 31 - a : a;
1069 // // or
1070 // x ? 31 - a : 32;
1071 /// \code
1073 /// into:
1074 /// cttz(x)
1075 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
1076 Value *FalseVal,
1077 InstCombiner::BuilderTy &Builder) {
1078 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
1079 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
1080 return nullptr;
1082 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
1083 std::swap(TrueVal, FalseVal);
1085 Value *Ctlz;
1086 if (!match(FalseVal,
1087 m_Xor(m_Value(Ctlz), m_SpecificInt(BitWidth - 1))))
1088 return nullptr;
1090 if (!match(Ctlz, m_Intrinsic<Intrinsic::ctlz>()))
1091 return nullptr;
1093 if (TrueVal != Ctlz && !match(TrueVal, m_SpecificInt(BitWidth)))
1094 return nullptr;
1096 Value *X = ICI->getOperand(0);
1097 auto *II = cast<IntrinsicInst>(Ctlz);
1098 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
1099 return nullptr;
1101 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
1102 II->getType());
1103 return CallInst::Create(F, {X, II->getArgOperand(1)});
1106 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
1107 /// call to cttz/ctlz with flag 'is_zero_poison' cleared.
1109 /// For example, we can fold the following code sequence:
1110 /// \code
1111 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
1112 /// %1 = icmp ne i32 %x, 0
1113 /// %2 = select i1 %1, i32 %0, i32 32
1114 /// \code
1116 /// into:
1117 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
1118 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
1119 InstCombiner::BuilderTy &Builder) {
1120 ICmpInst::Predicate Pred = ICI->getPredicate();
1121 Value *CmpLHS = ICI->getOperand(0);
1122 Value *CmpRHS = ICI->getOperand(1);
1124 // Check if the select condition compares a value for equality.
1125 if (!ICI->isEquality())
1126 return nullptr;
1128 Value *SelectArg = FalseVal;
1129 Value *ValueOnZero = TrueVal;
1130 if (Pred == ICmpInst::ICMP_NE)
1131 std::swap(SelectArg, ValueOnZero);
1133 // Skip zero extend/truncate.
1134 Value *Count = nullptr;
1135 if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
1136 !match(SelectArg, m_Trunc(m_Value(Count))))
1137 Count = SelectArg;
1139 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
1140 // input to the cttz/ctlz is used as LHS for the compare instruction.
1141 Value *X;
1142 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Value(X))) &&
1143 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Value(X))))
1144 return nullptr;
1146 // (X == 0) ? BitWidth : ctz(X)
1147 // (X == -1) ? BitWidth : ctz(~X)
1148 if ((X != CmpLHS || !match(CmpRHS, m_Zero())) &&
1149 (!match(X, m_Not(m_Specific(CmpLHS))) || !match(CmpRHS, m_AllOnes())))
1150 return nullptr;
1152 IntrinsicInst *II = cast<IntrinsicInst>(Count);
1154 // Check if the value propagated on zero is a constant number equal to the
1155 // sizeof in bits of 'Count'.
1156 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
1157 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
1158 // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from
1159 // true to false on this flag, so we can replace it for all users.
1160 II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
1161 return SelectArg;
1164 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
1165 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
1166 // not be used if the input is zero. Relax to 'zero is poison' for that case.
1167 if (II->hasOneUse() && SelectArg->hasOneUse() &&
1168 !match(II->getArgOperand(1), m_One()))
1169 II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
1171 return nullptr;
1174 static Instruction *canonicalizeSPF(SelectInst &Sel, ICmpInst &Cmp,
1175 InstCombinerImpl &IC) {
1176 Value *LHS, *RHS;
1177 // TODO: What to do with pointer min/max patterns?
1178 if (!Sel.getType()->isIntOrIntVectorTy())
1179 return nullptr;
1181 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1182 if (SPF == SelectPatternFlavor::SPF_ABS ||
1183 SPF == SelectPatternFlavor::SPF_NABS) {
1184 if (!Cmp.hasOneUse() && !RHS->hasOneUse())
1185 return nullptr; // TODO: Relax this restriction.
1187 // Note that NSW flag can only be propagated for normal, non-negated abs!
1188 bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
1189 match(RHS, m_NSWNeg(m_Specific(LHS)));
1190 Constant *IntMinIsPoisonC =
1191 ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison);
1192 Instruction *Abs =
1193 IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
1195 if (SPF == SelectPatternFlavor::SPF_NABS)
1196 return BinaryOperator::CreateNeg(Abs); // Always without NSW flag!
1197 return IC.replaceInstUsesWith(Sel, Abs);
1200 if (SelectPatternResult::isMinOrMax(SPF)) {
1201 Intrinsic::ID IntrinsicID;
1202 switch (SPF) {
1203 case SelectPatternFlavor::SPF_UMIN:
1204 IntrinsicID = Intrinsic::umin;
1205 break;
1206 case SelectPatternFlavor::SPF_UMAX:
1207 IntrinsicID = Intrinsic::umax;
1208 break;
1209 case SelectPatternFlavor::SPF_SMIN:
1210 IntrinsicID = Intrinsic::smin;
1211 break;
1212 case SelectPatternFlavor::SPF_SMAX:
1213 IntrinsicID = Intrinsic::smax;
1214 break;
1215 default:
1216 llvm_unreachable("Unexpected SPF");
1218 return IC.replaceInstUsesWith(
1219 Sel, IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS));
1222 return nullptr;
1225 bool InstCombinerImpl::replaceInInstruction(Value *V, Value *Old, Value *New,
1226 unsigned Depth) {
1227 // Conservatively limit replacement to two instructions upwards.
1228 if (Depth == 2)
1229 return false;
1231 auto *I = dyn_cast<Instruction>(V);
1232 if (!I || !I->hasOneUse() || !isSafeToSpeculativelyExecute(I))
1233 return false;
1235 bool Changed = false;
1236 for (Use &U : I->operands()) {
1237 if (U == Old) {
1238 replaceUse(U, New);
1239 Worklist.add(I);
1240 Changed = true;
1241 } else {
1242 Changed |= replaceInInstruction(U, Old, New, Depth + 1);
1245 return Changed;
1248 /// If we have a select with an equality comparison, then we know the value in
1249 /// one of the arms of the select. See if substituting this value into an arm
1250 /// and simplifying the result yields the same value as the other arm.
1252 /// To make this transform safe, we must drop poison-generating flags
1253 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1254 /// that poison from propagating. If the existing binop already had no
1255 /// poison-generating flags, then this transform can be done by instsimplify.
1257 /// Consider:
1258 /// %cmp = icmp eq i32 %x, 2147483647
1259 /// %add = add nsw i32 %x, 1
1260 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add
1262 /// We can't replace %sel with %add unless we strip away the flags.
1263 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
1264 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
1265 ICmpInst &Cmp) {
1266 if (!Cmp.isEquality())
1267 return nullptr;
1269 // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1270 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1271 bool Swapped = false;
1272 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
1273 std::swap(TrueVal, FalseVal);
1274 Swapped = true;
1277 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
1278 // Make sure Y cannot be undef though, as we might pick different values for
1279 // undef in the icmp and in f(Y). Additionally, take care to avoid replacing
1280 // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
1281 // replacement cycle.
1282 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1283 if (TrueVal != CmpLHS &&
1284 isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) {
1285 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ,
1286 /* AllowRefinement */ true))
1287 return replaceOperand(Sel, Swapped ? 2 : 1, V);
1289 // Even if TrueVal does not simplify, we can directly replace a use of
1290 // CmpLHS with CmpRHS, as long as the instruction is not used anywhere
1291 // else and is safe to speculatively execute (we may end up executing it
1292 // with different operands, which should not cause side-effects or trigger
1293 // undefined behavior). Only do this if CmpRHS is a constant, as
1294 // profitability is not clear for other cases.
1295 // FIXME: Support vectors.
1296 if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant()) &&
1297 !Cmp.getType()->isVectorTy())
1298 if (replaceInInstruction(TrueVal, CmpLHS, CmpRHS))
1299 return &Sel;
1301 if (TrueVal != CmpRHS &&
1302 isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT))
1303 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ,
1304 /* AllowRefinement */ true))
1305 return replaceOperand(Sel, Swapped ? 2 : 1, V);
1307 auto *FalseInst = dyn_cast<Instruction>(FalseVal);
1308 if (!FalseInst)
1309 return nullptr;
1311 // InstSimplify already performed this fold if it was possible subject to
1312 // current poison-generating flags. Try the transform again with
1313 // poison-generating flags temporarily dropped.
1314 bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false;
1315 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) {
1316 WasNUW = OBO->hasNoUnsignedWrap();
1317 WasNSW = OBO->hasNoSignedWrap();
1318 FalseInst->setHasNoUnsignedWrap(false);
1319 FalseInst->setHasNoSignedWrap(false);
1321 if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) {
1322 WasExact = PEO->isExact();
1323 FalseInst->setIsExact(false);
1325 if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) {
1326 WasInBounds = GEP->isInBounds();
1327 GEP->setIsInBounds(false);
1330 // Try each equivalence substitution possibility.
1331 // We have an 'EQ' comparison, so the select's false value will propagate.
1332 // Example:
1333 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1334 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
1335 /* AllowRefinement */ false) == TrueVal ||
1336 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
1337 /* AllowRefinement */ false) == TrueVal) {
1338 return replaceInstUsesWith(Sel, FalseVal);
1341 // Restore poison-generating flags if the transform did not apply.
1342 if (WasNUW)
1343 FalseInst->setHasNoUnsignedWrap();
1344 if (WasNSW)
1345 FalseInst->setHasNoSignedWrap();
1346 if (WasExact)
1347 FalseInst->setIsExact();
1348 if (WasInBounds)
1349 cast<GetElementPtrInst>(FalseInst)->setIsInBounds();
1351 return nullptr;
1354 // See if this is a pattern like:
1355 // %old_cmp1 = icmp slt i32 %x, C2
1356 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1357 // %old_x_offseted = add i32 %x, C1
1358 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1359 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1360 // This can be rewritten as more canonical pattern:
1361 // %new_cmp1 = icmp slt i32 %x, -C1
1362 // %new_cmp2 = icmp sge i32 %x, C0-C1
1363 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1364 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1365 // Iff -C1 s<= C2 s<= C0-C1
1366 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1367 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1368 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1369 InstCombiner::BuilderTy &Builder) {
1370 Value *X = Sel0.getTrueValue();
1371 Value *Sel1 = Sel0.getFalseValue();
1373 // First match the condition of the outermost select.
1374 // Said condition must be one-use.
1375 if (!Cmp0.hasOneUse())
1376 return nullptr;
1377 ICmpInst::Predicate Pred0 = Cmp0.getPredicate();
1378 Value *Cmp00 = Cmp0.getOperand(0);
1379 Constant *C0;
1380 if (!match(Cmp0.getOperand(1),
1381 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1382 return nullptr;
1384 if (!isa<SelectInst>(Sel1)) {
1385 Pred0 = ICmpInst::getInversePredicate(Pred0);
1386 std::swap(X, Sel1);
1389 // Canonicalize Cmp0 into ult or uge.
1390 // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1391 switch (Pred0) {
1392 case ICmpInst::Predicate::ICMP_ULT:
1393 case ICmpInst::Predicate::ICMP_UGE:
1394 // Although icmp ult %x, 0 is an unusual thing to try and should generally
1395 // have been simplified, it does not verify with undef inputs so ensure we
1396 // are not in a strange state.
1397 if (!match(C0, m_SpecificInt_ICMP(
1398 ICmpInst::Predicate::ICMP_NE,
1399 APInt::getZero(C0->getType()->getScalarSizeInBits()))))
1400 return nullptr;
1401 break; // Great!
1402 case ICmpInst::Predicate::ICMP_ULE:
1403 case ICmpInst::Predicate::ICMP_UGT:
1404 // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment
1405 // C0, which again means it must not have any all-ones elements.
1406 if (!match(C0,
1407 m_SpecificInt_ICMP(
1408 ICmpInst::Predicate::ICMP_NE,
1409 APInt::getAllOnes(C0->getType()->getScalarSizeInBits()))))
1410 return nullptr; // Can't do, have all-ones element[s].
1411 Pred0 = ICmpInst::getFlippedStrictnessPredicate(Pred0);
1412 C0 = InstCombiner::AddOne(C0);
1413 break;
1414 default:
1415 return nullptr; // Unknown predicate.
1418 // Now that we've canonicalized the ICmp, we know the X we expect;
1419 // the select in other hand should be one-use.
1420 if (!Sel1->hasOneUse())
1421 return nullptr;
1423 // If the types do not match, look through any truncs to the underlying
1424 // instruction.
1425 if (Cmp00->getType() != X->getType() && X->hasOneUse())
1426 match(X, m_TruncOrSelf(m_Value(X)));
1428 // We now can finish matching the condition of the outermost select:
1429 // it should either be the X itself, or an addition of some constant to X.
1430 Constant *C1;
1431 if (Cmp00 == X)
1432 C1 = ConstantInt::getNullValue(X->getType());
1433 else if (!match(Cmp00,
1434 m_Add(m_Specific(X),
1435 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1436 return nullptr;
1438 Value *Cmp1;
1439 ICmpInst::Predicate Pred1;
1440 Constant *C2;
1441 Value *ReplacementLow, *ReplacementHigh;
1442 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1443 m_Value(ReplacementHigh))) ||
1444 !match(Cmp1,
1445 m_ICmp(Pred1, m_Specific(X),
1446 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1447 return nullptr;
1449 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1450 return nullptr; // Not enough one-use instructions for the fold.
1451 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1452 // two comparisons we'll need to build.
1454 // Canonicalize Cmp1 into the form we expect.
1455 // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1456 switch (Pred1) {
1457 case ICmpInst::Predicate::ICMP_SLT:
1458 break;
1459 case ICmpInst::Predicate::ICMP_SLE:
1460 // We'd have to increment C2 by one, and for that it must not have signed
1461 // max element, but then it would have been canonicalized to 'slt' before
1462 // we get here. So we can't do anything useful with 'sle'.
1463 return nullptr;
1464 case ICmpInst::Predicate::ICMP_SGT:
1465 // We want to canonicalize it to 'slt', so we'll need to increment C2,
1466 // which again means it must not have any signed max elements.
1467 if (!match(C2,
1468 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1469 APInt::getSignedMaxValue(
1470 C2->getType()->getScalarSizeInBits()))))
1471 return nullptr; // Can't do, have signed max element[s].
1472 C2 = InstCombiner::AddOne(C2);
1473 [[fallthrough]];
1474 case ICmpInst::Predicate::ICMP_SGE:
1475 // Also non-canonical, but here we don't need to change C2,
1476 // so we don't have any restrictions on C2, so we can just handle it.
1477 Pred1 = ICmpInst::Predicate::ICMP_SLT;
1478 std::swap(ReplacementLow, ReplacementHigh);
1479 break;
1480 default:
1481 return nullptr; // Unknown predicate.
1483 assert(Pred1 == ICmpInst::Predicate::ICMP_SLT &&
1484 "Unexpected predicate type.");
1486 // The thresholds of this clamp-like pattern.
1487 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1488 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1490 assert((Pred0 == ICmpInst::Predicate::ICMP_ULT ||
1491 Pred0 == ICmpInst::Predicate::ICMP_UGE) &&
1492 "Unexpected predicate type.");
1493 if (Pred0 == ICmpInst::Predicate::ICMP_UGE)
1494 std::swap(ThresholdLowIncl, ThresholdHighExcl);
1496 // The fold has a precondition 1: C2 s>= ThresholdLow
1497 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1498 ThresholdLowIncl);
1499 if (!match(Precond1, m_One()))
1500 return nullptr;
1501 // The fold has a precondition 2: C2 s<= ThresholdHigh
1502 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1503 ThresholdHighExcl);
1504 if (!match(Precond2, m_One()))
1505 return nullptr;
1507 // If we are matching from a truncated input, we need to sext the
1508 // ReplacementLow and ReplacementHigh values. Only do the transform if they
1509 // are free to extend due to being constants.
1510 if (X->getType() != Sel0.getType()) {
1511 Constant *LowC, *HighC;
1512 if (!match(ReplacementLow, m_ImmConstant(LowC)) ||
1513 !match(ReplacementHigh, m_ImmConstant(HighC)))
1514 return nullptr;
1515 ReplacementLow = ConstantExpr::getSExt(LowC, X->getType());
1516 ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType());
1519 // All good, finally emit the new pattern.
1520 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1521 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1522 Value *MaybeReplacedLow =
1523 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1525 // Create the final select. If we looked through a truncate above, we will
1526 // need to retruncate the result.
1527 Value *MaybeReplacedHigh = Builder.CreateSelect(
1528 ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1529 return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType());
1532 // If we have
1533 // %cmp = icmp [canonical predicate] i32 %x, C0
1534 // %r = select i1 %cmp, i32 %y, i32 C1
1535 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1536 // will have if we flip the strictness of the predicate (i.e. without changing
1537 // the result) is identical to the C1 in select. If it matches we can change
1538 // original comparison to one with swapped predicate, reuse the constant,
1539 // and swap the hands of select.
1540 static Instruction *
1541 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1542 InstCombinerImpl &IC) {
1543 ICmpInst::Predicate Pred;
1544 Value *X;
1545 Constant *C0;
1546 if (!match(&Cmp, m_OneUse(m_ICmp(
1547 Pred, m_Value(X),
1548 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1549 return nullptr;
1551 // If comparison predicate is non-relational, we won't be able to do anything.
1552 if (ICmpInst::isEquality(Pred))
1553 return nullptr;
1555 // If comparison predicate is non-canonical, then we certainly won't be able
1556 // to make it canonical; canonicalizeCmpWithConstant() already tried.
1557 if (!InstCombiner::isCanonicalPredicate(Pred))
1558 return nullptr;
1560 // If the [input] type of comparison and select type are different, lets abort
1561 // for now. We could try to compare constants with trunc/[zs]ext though.
1562 if (C0->getType() != Sel.getType())
1563 return nullptr;
1565 // ULT with 'add' of a constant is canonical. See foldICmpAddConstant().
1566 // FIXME: Are there more magic icmp predicate+constant pairs we must avoid?
1567 // Or should we just abandon this transform entirely?
1568 if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant())))
1569 return nullptr;
1572 Value *SelVal0, *SelVal1; // We do not care which one is from where.
1573 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1574 // At least one of these values we are selecting between must be a constant
1575 // else we'll never succeed.
1576 if (!match(SelVal0, m_AnyIntegralConstant()) &&
1577 !match(SelVal1, m_AnyIntegralConstant()))
1578 return nullptr;
1580 // Does this constant C match any of the `select` values?
1581 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1582 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1585 // If C0 *already* matches true/false value of select, we are done.
1586 if (MatchesSelectValue(C0))
1587 return nullptr;
1589 // Check the constant we'd have with flipped-strictness predicate.
1590 auto FlippedStrictness =
1591 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
1592 if (!FlippedStrictness)
1593 return nullptr;
1595 // If said constant doesn't match either, then there is no hope,
1596 if (!MatchesSelectValue(FlippedStrictness->second))
1597 return nullptr;
1599 // It matched! Lets insert the new comparison just before select.
1600 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
1601 IC.Builder.SetInsertPoint(&Sel);
1603 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1604 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1605 Cmp.getName() + ".inv");
1606 IC.replaceOperand(Sel, 0, NewCmp);
1607 Sel.swapValues();
1608 Sel.swapProfMetadata();
1610 return &Sel;
1613 static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal,
1614 Value *FVal,
1615 InstCombiner::BuilderTy &Builder) {
1616 if (!Cmp->hasOneUse())
1617 return nullptr;
1619 const APInt *CmpC;
1620 if (!match(Cmp->getOperand(1), m_APIntAllowUndef(CmpC)))
1621 return nullptr;
1623 // (X u< 2) ? -X : -1 --> sext (X != 0)
1624 Value *X = Cmp->getOperand(0);
1625 if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 &&
1626 match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes()))
1627 return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1629 // (X u> 1) ? -1 : -X --> sext (X != 0)
1630 if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 &&
1631 match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes()))
1632 return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1634 return nullptr;
1637 static Value *foldSelectInstWithICmpConst(SelectInst &SI, ICmpInst *ICI,
1638 InstCombiner::BuilderTy &Builder) {
1639 const APInt *CmpC;
1640 Value *V;
1641 CmpInst::Predicate Pred;
1642 if (!match(ICI, m_ICmp(Pred, m_Value(V), m_APInt(CmpC))))
1643 return nullptr;
1645 // Match clamp away from min/max value as a max/min operation.
1646 Value *TVal = SI.getTrueValue();
1647 Value *FVal = SI.getFalseValue();
1648 if (Pred == ICmpInst::ICMP_EQ && V == FVal) {
1649 // (V == UMIN) ? UMIN+1 : V --> umax(V, UMIN+1)
1650 if (CmpC->isMinValue() && match(TVal, m_SpecificInt(*CmpC + 1)))
1651 return Builder.CreateBinaryIntrinsic(Intrinsic::umax, V, TVal);
1652 // (V == UMAX) ? UMAX-1 : V --> umin(V, UMAX-1)
1653 if (CmpC->isMaxValue() && match(TVal, m_SpecificInt(*CmpC - 1)))
1654 return Builder.CreateBinaryIntrinsic(Intrinsic::umin, V, TVal);
1655 // (V == SMIN) ? SMIN+1 : V --> smax(V, SMIN+1)
1656 if (CmpC->isMinSignedValue() && match(TVal, m_SpecificInt(*CmpC + 1)))
1657 return Builder.CreateBinaryIntrinsic(Intrinsic::smax, V, TVal);
1658 // (V == SMAX) ? SMAX-1 : V --> smin(V, SMAX-1)
1659 if (CmpC->isMaxSignedValue() && match(TVal, m_SpecificInt(*CmpC - 1)))
1660 return Builder.CreateBinaryIntrinsic(Intrinsic::smin, V, TVal);
1663 BinaryOperator *BO;
1664 const APInt *C;
1665 CmpInst::Predicate CPred;
1666 if (match(&SI, m_Select(m_Specific(ICI), m_APInt(C), m_BinOp(BO))))
1667 CPred = ICI->getPredicate();
1668 else if (match(&SI, m_Select(m_Specific(ICI), m_BinOp(BO), m_APInt(C))))
1669 CPred = ICI->getInversePredicate();
1670 else
1671 return nullptr;
1673 const APInt *BinOpC;
1674 if (!match(BO, m_BinOp(m_Specific(V), m_APInt(BinOpC))))
1675 return nullptr;
1677 ConstantRange R = ConstantRange::makeExactICmpRegion(CPred, *CmpC)
1678 .binaryOp(BO->getOpcode(), *BinOpC);
1679 if (R == *C) {
1680 BO->dropPoisonGeneratingFlags();
1681 return BO;
1683 return nullptr;
1686 /// Visit a SelectInst that has an ICmpInst as its first operand.
1687 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
1688 ICmpInst *ICI) {
1689 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
1690 return NewSel;
1692 if (Instruction *NewSPF = canonicalizeSPF(SI, *ICI, *this))
1693 return NewSPF;
1695 if (Value *V = foldSelectInstWithICmpConst(SI, ICI, Builder))
1696 return replaceInstUsesWith(SI, V);
1698 if (Value *V = canonicalizeClampLike(SI, *ICI, Builder))
1699 return replaceInstUsesWith(SI, V);
1701 if (Instruction *NewSel =
1702 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
1703 return NewSel;
1705 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1706 return replaceInstUsesWith(SI, V);
1708 // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1709 bool Changed = false;
1710 Value *TrueVal = SI.getTrueValue();
1711 Value *FalseVal = SI.getFalseValue();
1712 ICmpInst::Predicate Pred = ICI->getPredicate();
1713 Value *CmpLHS = ICI->getOperand(0);
1714 Value *CmpRHS = ICI->getOperand(1);
1715 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS) && !isa<Constant>(CmpLHS)) {
1716 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1717 // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1718 SI.setOperand(1, CmpRHS);
1719 Changed = true;
1720 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1721 // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1722 SI.setOperand(2, CmpRHS);
1723 Changed = true;
1727 // Canonicalize a signbit condition to use zero constant by swapping:
1728 // (CmpLHS > -1) ? TV : FV --> (CmpLHS < 0) ? FV : TV
1729 // To avoid conflicts (infinite loops) with other canonicalizations, this is
1730 // not applied with any constant select arm.
1731 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes()) &&
1732 !match(TrueVal, m_Constant()) && !match(FalseVal, m_Constant()) &&
1733 ICI->hasOneUse()) {
1734 InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
1735 Builder.SetInsertPoint(&SI);
1736 Value *IsNeg = Builder.CreateIsNeg(CmpLHS, ICI->getName());
1737 replaceOperand(SI, 0, IsNeg);
1738 SI.swapValues();
1739 SI.swapProfMetadata();
1740 return &SI;
1743 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1744 // decomposeBitTestICmp() might help.
1745 if (TrueVal->getType()->isIntOrIntVectorTy()) {
1746 unsigned BitWidth =
1747 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1748 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1749 Value *X;
1750 const APInt *Y, *C;
1751 bool TrueWhenUnset;
1752 bool IsBitTest = false;
1753 if (ICmpInst::isEquality(Pred) &&
1754 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1755 match(CmpRHS, m_Zero())) {
1756 IsBitTest = true;
1757 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1758 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1759 X = CmpLHS;
1760 Y = &MinSignedValue;
1761 IsBitTest = true;
1762 TrueWhenUnset = false;
1763 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1764 X = CmpLHS;
1765 Y = &MinSignedValue;
1766 IsBitTest = true;
1767 TrueWhenUnset = true;
1769 if (IsBitTest) {
1770 Value *V = nullptr;
1771 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y
1772 if (TrueWhenUnset && TrueVal == X &&
1773 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1774 V = Builder.CreateAnd(X, ~(*Y));
1775 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y
1776 else if (!TrueWhenUnset && FalseVal == X &&
1777 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1778 V = Builder.CreateAnd(X, ~(*Y));
1779 // (X & Y) == 0 ? X ^ Y : X --> X | Y
1780 else if (TrueWhenUnset && FalseVal == X &&
1781 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1782 V = Builder.CreateOr(X, *Y);
1783 // (X & Y) != 0 ? X : X ^ Y --> X | Y
1784 else if (!TrueWhenUnset && TrueVal == X &&
1785 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1786 V = Builder.CreateOr(X, *Y);
1788 if (V)
1789 return replaceInstUsesWith(SI, V);
1793 if (Instruction *V =
1794 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1795 return V;
1797 if (Value *V = foldSelectICmpAndZeroShl(ICI, TrueVal, FalseVal, Builder))
1798 return replaceInstUsesWith(SI, V);
1800 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1801 return V;
1803 if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder))
1804 return V;
1806 if (Value *V = foldSelectICmpAndBinOp(ICI, TrueVal, FalseVal, Builder))
1807 return replaceInstUsesWith(SI, V);
1809 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1810 return replaceInstUsesWith(SI, V);
1812 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1813 return replaceInstUsesWith(SI, V);
1815 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1816 return replaceInstUsesWith(SI, V);
1818 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1819 return replaceInstUsesWith(SI, V);
1821 if (Value *V = foldAbsDiff(ICI, TrueVal, FalseVal, Builder))
1822 return replaceInstUsesWith(SI, V);
1824 return Changed ? &SI : nullptr;
1827 /// SI is a select whose condition is a PHI node (but the two may be in
1828 /// different blocks). See if the true/false values (V) are live in all of the
1829 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1831 /// X = phi [ C1, BB1], [C2, BB2]
1832 /// Y = add
1833 /// Z = select X, Y, 0
1835 /// because Y is not live in BB1/BB2.
1836 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1837 const SelectInst &SI) {
1838 // If the value is a non-instruction value like a constant or argument, it
1839 // can always be mapped.
1840 const Instruction *I = dyn_cast<Instruction>(V);
1841 if (!I) return true;
1843 // If V is a PHI node defined in the same block as the condition PHI, we can
1844 // map the arguments.
1845 const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1847 if (const PHINode *VP = dyn_cast<PHINode>(I))
1848 if (VP->getParent() == CondPHI->getParent())
1849 return true;
1851 // Otherwise, if the PHI and select are defined in the same block and if V is
1852 // defined in a different block, then we can transform it.
1853 if (SI.getParent() == CondPHI->getParent() &&
1854 I->getParent() != CondPHI->getParent())
1855 return true;
1857 // Otherwise we have a 'hard' case and we can't tell without doing more
1858 // detailed dominator based analysis, punt.
1859 return false;
1862 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1863 /// SPF2(SPF1(A, B), C)
1864 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
1865 SelectPatternFlavor SPF1, Value *A,
1866 Value *B, Instruction &Outer,
1867 SelectPatternFlavor SPF2,
1868 Value *C) {
1869 if (Outer.getType() != Inner->getType())
1870 return nullptr;
1872 if (C == A || C == B) {
1873 // MAX(MAX(A, B), B) -> MAX(A, B)
1874 // MIN(MIN(a, b), a) -> MIN(a, b)
1875 // TODO: This could be done in instsimplify.
1876 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1877 return replaceInstUsesWith(Outer, Inner);
1880 return nullptr;
1883 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1884 /// This is even legal for FP.
1885 static Instruction *foldAddSubSelect(SelectInst &SI,
1886 InstCombiner::BuilderTy &Builder) {
1887 Value *CondVal = SI.getCondition();
1888 Value *TrueVal = SI.getTrueValue();
1889 Value *FalseVal = SI.getFalseValue();
1890 auto *TI = dyn_cast<Instruction>(TrueVal);
1891 auto *FI = dyn_cast<Instruction>(FalseVal);
1892 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1893 return nullptr;
1895 Instruction *AddOp = nullptr, *SubOp = nullptr;
1896 if ((TI->getOpcode() == Instruction::Sub &&
1897 FI->getOpcode() == Instruction::Add) ||
1898 (TI->getOpcode() == Instruction::FSub &&
1899 FI->getOpcode() == Instruction::FAdd)) {
1900 AddOp = FI;
1901 SubOp = TI;
1902 } else if ((FI->getOpcode() == Instruction::Sub &&
1903 TI->getOpcode() == Instruction::Add) ||
1904 (FI->getOpcode() == Instruction::FSub &&
1905 TI->getOpcode() == Instruction::FAdd)) {
1906 AddOp = TI;
1907 SubOp = FI;
1910 if (AddOp) {
1911 Value *OtherAddOp = nullptr;
1912 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1913 OtherAddOp = AddOp->getOperand(1);
1914 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1915 OtherAddOp = AddOp->getOperand(0);
1918 if (OtherAddOp) {
1919 // So at this point we know we have (Y -> OtherAddOp):
1920 // select C, (add X, Y), (sub X, Z)
1921 Value *NegVal; // Compute -Z
1922 if (SI.getType()->isFPOrFPVectorTy()) {
1923 NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1924 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1925 FastMathFlags Flags = AddOp->getFastMathFlags();
1926 Flags &= SubOp->getFastMathFlags();
1927 NegInst->setFastMathFlags(Flags);
1929 } else {
1930 NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1933 Value *NewTrueOp = OtherAddOp;
1934 Value *NewFalseOp = NegVal;
1935 if (AddOp != TI)
1936 std::swap(NewTrueOp, NewFalseOp);
1937 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1938 SI.getName() + ".p", &SI);
1940 if (SI.getType()->isFPOrFPVectorTy()) {
1941 Instruction *RI =
1942 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1944 FastMathFlags Flags = AddOp->getFastMathFlags();
1945 Flags &= SubOp->getFastMathFlags();
1946 RI->setFastMathFlags(Flags);
1947 return RI;
1948 } else
1949 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1952 return nullptr;
1955 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1956 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1957 /// Along with a number of patterns similar to:
1958 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1959 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1960 static Instruction *
1961 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1962 Value *CondVal = SI.getCondition();
1963 Value *TrueVal = SI.getTrueValue();
1964 Value *FalseVal = SI.getFalseValue();
1966 WithOverflowInst *II;
1967 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1968 !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1969 return nullptr;
1971 Value *X = II->getLHS();
1972 Value *Y = II->getRHS();
1974 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1975 Type *Ty = Limit->getType();
1977 ICmpInst::Predicate Pred;
1978 Value *TrueVal, *FalseVal, *Op;
1979 const APInt *C;
1980 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1981 m_Value(TrueVal), m_Value(FalseVal))))
1982 return false;
1984 auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); };
1985 auto IsMinMax = [&](Value *Min, Value *Max) {
1986 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1987 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1988 return match(Min, m_SpecificInt(MinVal)) &&
1989 match(Max, m_SpecificInt(MaxVal));
1992 if (Op != X && Op != Y)
1993 return false;
1995 if (IsAdd) {
1996 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1997 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1998 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1999 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2000 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
2001 IsMinMax(TrueVal, FalseVal))
2002 return true;
2003 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2004 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2005 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2006 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2007 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
2008 IsMinMax(FalseVal, TrueVal))
2009 return true;
2010 } else {
2011 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2012 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2013 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
2014 IsMinMax(TrueVal, FalseVal))
2015 return true;
2016 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2017 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2018 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
2019 IsMinMax(FalseVal, TrueVal))
2020 return true;
2021 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2022 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2023 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
2024 IsMinMax(FalseVal, TrueVal))
2025 return true;
2026 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2027 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2028 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
2029 IsMinMax(TrueVal, FalseVal))
2030 return true;
2033 return false;
2036 Intrinsic::ID NewIntrinsicID;
2037 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
2038 match(TrueVal, m_AllOnes()))
2039 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
2040 NewIntrinsicID = Intrinsic::uadd_sat;
2041 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
2042 match(TrueVal, m_Zero()))
2043 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
2044 NewIntrinsicID = Intrinsic::usub_sat;
2045 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
2046 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
2047 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2048 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2049 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2050 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2051 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2052 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
2053 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2054 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
2055 NewIntrinsicID = Intrinsic::sadd_sat;
2056 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
2057 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
2058 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2059 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2060 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2061 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2062 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2063 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
2064 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2065 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
2066 NewIntrinsicID = Intrinsic::ssub_sat;
2067 else
2068 return nullptr;
2070 Function *F =
2071 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
2072 return CallInst::Create(F, {X, Y});
2075 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
2076 Constant *C;
2077 if (!match(Sel.getTrueValue(), m_Constant(C)) &&
2078 !match(Sel.getFalseValue(), m_Constant(C)))
2079 return nullptr;
2081 Instruction *ExtInst;
2082 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
2083 !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
2084 return nullptr;
2086 auto ExtOpcode = ExtInst->getOpcode();
2087 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
2088 return nullptr;
2090 // If we are extending from a boolean type or if we can create a select that
2091 // has the same size operands as its condition, try to narrow the select.
2092 Value *X = ExtInst->getOperand(0);
2093 Type *SmallType = X->getType();
2094 Value *Cond = Sel.getCondition();
2095 auto *Cmp = dyn_cast<CmpInst>(Cond);
2096 if (!SmallType->isIntOrIntVectorTy(1) &&
2097 (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
2098 return nullptr;
2100 // If the constant is the same after truncation to the smaller type and
2101 // extension to the original type, we can narrow the select.
2102 Type *SelType = Sel.getType();
2103 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
2104 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
2105 if (ExtC == C && ExtInst->hasOneUse()) {
2106 Value *TruncCVal = cast<Value>(TruncC);
2107 if (ExtInst == Sel.getFalseValue())
2108 std::swap(X, TruncCVal);
2110 // select Cond, (ext X), C --> ext(select Cond, X, C')
2111 // select Cond, C, (ext X) --> ext(select Cond, C', X)
2112 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
2113 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
2116 // If one arm of the select is the extend of the condition, replace that arm
2117 // with the extension of the appropriate known bool value.
2118 if (Cond == X) {
2119 if (ExtInst == Sel.getTrueValue()) {
2120 // select X, (sext X), C --> select X, -1, C
2121 // select X, (zext X), C --> select X, 1, C
2122 Constant *One = ConstantInt::getTrue(SmallType);
2123 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
2124 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
2125 } else {
2126 // select X, C, (sext X) --> select X, C, 0
2127 // select X, C, (zext X) --> select X, C, 0
2128 Constant *Zero = ConstantInt::getNullValue(SelType);
2129 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
2133 return nullptr;
2136 /// Try to transform a vector select with a constant condition vector into a
2137 /// shuffle for easier combining with other shuffles and insert/extract.
2138 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
2139 Value *CondVal = SI.getCondition();
2140 Constant *CondC;
2141 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
2142 if (!CondValTy || !match(CondVal, m_Constant(CondC)))
2143 return nullptr;
2145 unsigned NumElts = CondValTy->getNumElements();
2146 SmallVector<int, 16> Mask;
2147 Mask.reserve(NumElts);
2148 for (unsigned i = 0; i != NumElts; ++i) {
2149 Constant *Elt = CondC->getAggregateElement(i);
2150 if (!Elt)
2151 return nullptr;
2153 if (Elt->isOneValue()) {
2154 // If the select condition element is true, choose from the 1st vector.
2155 Mask.push_back(i);
2156 } else if (Elt->isNullValue()) {
2157 // If the select condition element is false, choose from the 2nd vector.
2158 Mask.push_back(i + NumElts);
2159 } else if (isa<UndefValue>(Elt)) {
2160 // Undef in a select condition (choose one of the operands) does not mean
2161 // the same thing as undef in a shuffle mask (any value is acceptable), so
2162 // give up.
2163 return nullptr;
2164 } else {
2165 // Bail out on a constant expression.
2166 return nullptr;
2170 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
2173 /// If we have a select of vectors with a scalar condition, try to convert that
2174 /// to a vector select by splatting the condition. A splat may get folded with
2175 /// other operations in IR and having all operands of a select be vector types
2176 /// is likely better for vector codegen.
2177 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
2178 InstCombinerImpl &IC) {
2179 auto *Ty = dyn_cast<VectorType>(Sel.getType());
2180 if (!Ty)
2181 return nullptr;
2183 // We can replace a single-use extract with constant index.
2184 Value *Cond = Sel.getCondition();
2185 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
2186 return nullptr;
2188 // select (extelt V, Index), T, F --> select (splat V, Index), T, F
2189 // Splatting the extracted condition reduces code (we could directly create a
2190 // splat shuffle of the source vector to eliminate the intermediate step).
2191 return IC.replaceOperand(
2192 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
2195 /// Reuse bitcasted operands between a compare and select:
2196 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2197 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
2198 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
2199 InstCombiner::BuilderTy &Builder) {
2200 Value *Cond = Sel.getCondition();
2201 Value *TVal = Sel.getTrueValue();
2202 Value *FVal = Sel.getFalseValue();
2204 CmpInst::Predicate Pred;
2205 Value *A, *B;
2206 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2207 return nullptr;
2209 // The select condition is a compare instruction. If the select's true/false
2210 // values are already the same as the compare operands, there's nothing to do.
2211 if (TVal == A || TVal == B || FVal == A || FVal == B)
2212 return nullptr;
2214 Value *C, *D;
2215 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2216 return nullptr;
2218 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2219 Value *TSrc, *FSrc;
2220 if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2221 !match(FVal, m_BitCast(m_Value(FSrc))))
2222 return nullptr;
2224 // If the select true/false values are *different bitcasts* of the same source
2225 // operands, make the select operands the same as the compare operands and
2226 // cast the result. This is the canonical select form for min/max.
2227 Value *NewSel;
2228 if (TSrc == C && FSrc == D) {
2229 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2230 // bitcast (select (cmp A, B), A, B)
2231 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2232 } else if (TSrc == D && FSrc == C) {
2233 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2234 // bitcast (select (cmp A, B), B, A)
2235 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2236 } else {
2237 return nullptr;
2239 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2242 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2243 /// instructions.
2245 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2246 /// selects between the returned value of the cmpxchg instruction its compare
2247 /// operand, the result of the select will always be equal to its false value.
2248 /// For example:
2250 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2251 /// %1 = extractvalue { i64, i1 } %0, 1
2252 /// %2 = extractvalue { i64, i1 } %0, 0
2253 /// %3 = select i1 %1, i64 %compare, i64 %2
2254 /// ret i64 %3
2256 /// The returned value of the cmpxchg instruction (%2) is the original value
2257 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2258 /// must have been equal to %compare. Thus, the result of the select is always
2259 /// equal to %2, and the code can be simplified to:
2261 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2262 /// %1 = extractvalue { i64, i1 } %0, 0
2263 /// ret i64 %1
2265 static Value *foldSelectCmpXchg(SelectInst &SI) {
2266 // A helper that determines if V is an extractvalue instruction whose
2267 // aggregate operand is a cmpxchg instruction and whose single index is equal
2268 // to I. If such conditions are true, the helper returns the cmpxchg
2269 // instruction; otherwise, a nullptr is returned.
2270 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2271 auto *Extract = dyn_cast<ExtractValueInst>(V);
2272 if (!Extract)
2273 return nullptr;
2274 if (Extract->getIndices()[0] != I)
2275 return nullptr;
2276 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2279 // If the select has a single user, and this user is a select instruction that
2280 // we can simplify, skip the cmpxchg simplification for now.
2281 if (SI.hasOneUse())
2282 if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2283 if (Select->getCondition() == SI.getCondition())
2284 if (Select->getFalseValue() == SI.getTrueValue() ||
2285 Select->getTrueValue() == SI.getFalseValue())
2286 return nullptr;
2288 // Ensure the select condition is the returned flag of a cmpxchg instruction.
2289 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2290 if (!CmpXchg)
2291 return nullptr;
2293 // Check the true value case: The true value of the select is the returned
2294 // value of the same cmpxchg used by the condition, and the false value is the
2295 // cmpxchg instruction's compare operand.
2296 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2297 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
2298 return SI.getFalseValue();
2300 // Check the false value case: The false value of the select is the returned
2301 // value of the same cmpxchg used by the condition, and the true value is the
2302 // cmpxchg instruction's compare operand.
2303 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2304 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
2305 return SI.getFalseValue();
2307 return nullptr;
2310 /// Try to reduce a funnel/rotate pattern that includes a compare and select
2311 /// into a funnel shift intrinsic. Example:
2312 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2313 /// --> call llvm.fshl.i32(a, a, b)
2314 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
2315 /// --> call llvm.fshl.i32(a, b, c)
2316 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
2317 /// --> call llvm.fshr.i32(a, b, c)
2318 static Instruction *foldSelectFunnelShift(SelectInst &Sel,
2319 InstCombiner::BuilderTy &Builder) {
2320 // This must be a power-of-2 type for a bitmasking transform to be valid.
2321 unsigned Width = Sel.getType()->getScalarSizeInBits();
2322 if (!isPowerOf2_32(Width))
2323 return nullptr;
2325 BinaryOperator *Or0, *Or1;
2326 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
2327 return nullptr;
2329 Value *SV0, *SV1, *SA0, *SA1;
2330 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
2331 m_ZExtOrSelf(m_Value(SA0))))) ||
2332 !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
2333 m_ZExtOrSelf(m_Value(SA1))))) ||
2334 Or0->getOpcode() == Or1->getOpcode())
2335 return nullptr;
2337 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
2338 if (Or0->getOpcode() == BinaryOperator::LShr) {
2339 std::swap(Or0, Or1);
2340 std::swap(SV0, SV1);
2341 std::swap(SA0, SA1);
2343 assert(Or0->getOpcode() == BinaryOperator::Shl &&
2344 Or1->getOpcode() == BinaryOperator::LShr &&
2345 "Illegal or(shift,shift) pair");
2347 // Check the shift amounts to see if they are an opposite pair.
2348 Value *ShAmt;
2349 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2350 ShAmt = SA0;
2351 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2352 ShAmt = SA1;
2353 else
2354 return nullptr;
2356 // We should now have this pattern:
2357 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
2358 // The false value of the select must be a funnel-shift of the true value:
2359 // IsFShl -> TVal must be SV0 else TVal must be SV1.
2360 bool IsFshl = (ShAmt == SA0);
2361 Value *TVal = Sel.getTrueValue();
2362 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2363 return nullptr;
2365 // Finally, see if the select is filtering out a shift-by-zero.
2366 Value *Cond = Sel.getCondition();
2367 ICmpInst::Predicate Pred;
2368 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2369 Pred != ICmpInst::ICMP_EQ)
2370 return nullptr;
2372 // If this is not a rotate then the select was blocking poison from the
2373 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
2374 if (SV0 != SV1) {
2375 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
2376 SV1 = Builder.CreateFreeze(SV1);
2377 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
2378 SV0 = Builder.CreateFreeze(SV0);
2381 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2382 // Convert to funnel shift intrinsic.
2383 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2384 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2385 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
2386 return CallInst::Create(F, { SV0, SV1, ShAmt });
2389 static Instruction *foldSelectToCopysign(SelectInst &Sel,
2390 InstCombiner::BuilderTy &Builder) {
2391 Value *Cond = Sel.getCondition();
2392 Value *TVal = Sel.getTrueValue();
2393 Value *FVal = Sel.getFalseValue();
2394 Type *SelType = Sel.getType();
2396 // Match select ?, TC, FC where the constants are equal but negated.
2397 // TODO: Generalize to handle a negated variable operand?
2398 const APFloat *TC, *FC;
2399 if (!match(TVal, m_APFloatAllowUndef(TC)) ||
2400 !match(FVal, m_APFloatAllowUndef(FC)) ||
2401 !abs(*TC).bitwiseIsEqual(abs(*FC)))
2402 return nullptr;
2404 assert(TC != FC && "Expected equal select arms to simplify");
2406 Value *X;
2407 const APInt *C;
2408 bool IsTrueIfSignSet;
2409 ICmpInst::Predicate Pred;
2410 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
2411 !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
2412 X->getType() != SelType)
2413 return nullptr;
2415 // If needed, negate the value that will be the sign argument of the copysign:
2416 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X)
2417 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X)
2418 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X)
2419 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X)
2420 // Note: FMF from the select can not be propagated to the new instructions.
2421 if (IsTrueIfSignSet ^ TC->isNegative())
2422 X = Builder.CreateFNeg(X);
2424 // Canonicalize the magnitude argument as the positive constant since we do
2425 // not care about its sign.
2426 Value *MagArg = ConstantFP::get(SelType, abs(*TC));
2427 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
2428 Sel.getType());
2429 return CallInst::Create(F, { MagArg, X });
2432 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
2433 if (!isa<VectorType>(Sel.getType()))
2434 return nullptr;
2436 Value *Cond = Sel.getCondition();
2437 Value *TVal = Sel.getTrueValue();
2438 Value *FVal = Sel.getFalseValue();
2439 Value *C, *X, *Y;
2441 if (match(Cond, m_VecReverse(m_Value(C)))) {
2442 auto createSelReverse = [&](Value *C, Value *X, Value *Y) {
2443 Value *V = Builder.CreateSelect(C, X, Y, Sel.getName(), &Sel);
2444 if (auto *I = dyn_cast<Instruction>(V))
2445 I->copyIRFlags(&Sel);
2446 Module *M = Sel.getModule();
2447 Function *F = Intrinsic::getDeclaration(
2448 M, Intrinsic::experimental_vector_reverse, V->getType());
2449 return CallInst::Create(F, V);
2452 if (match(TVal, m_VecReverse(m_Value(X)))) {
2453 // select rev(C), rev(X), rev(Y) --> rev(select C, X, Y)
2454 if (match(FVal, m_VecReverse(m_Value(Y))) &&
2455 (Cond->hasOneUse() || TVal->hasOneUse() || FVal->hasOneUse()))
2456 return createSelReverse(C, X, Y);
2458 // select rev(C), rev(X), FValSplat --> rev(select C, X, FValSplat)
2459 if ((Cond->hasOneUse() || TVal->hasOneUse()) && isSplatValue(FVal))
2460 return createSelReverse(C, X, FVal);
2462 // select rev(C), TValSplat, rev(Y) --> rev(select C, TValSplat, Y)
2463 else if (isSplatValue(TVal) && match(FVal, m_VecReverse(m_Value(Y))) &&
2464 (Cond->hasOneUse() || FVal->hasOneUse()))
2465 return createSelReverse(C, TVal, Y);
2468 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
2469 if (!VecTy)
2470 return nullptr;
2472 unsigned NumElts = VecTy->getNumElements();
2473 APInt UndefElts(NumElts, 0);
2474 APInt AllOnesEltMask(APInt::getAllOnes(NumElts));
2475 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) {
2476 if (V != &Sel)
2477 return replaceInstUsesWith(Sel, V);
2478 return &Sel;
2481 // A select of a "select shuffle" with a common operand can be rearranged
2482 // to select followed by "select shuffle". Because of poison, this only works
2483 // in the case of a shuffle with no undefined mask elements.
2484 ArrayRef<int> Mask;
2485 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2486 !is_contained(Mask, PoisonMaskElem) &&
2487 cast<ShuffleVectorInst>(TVal)->isSelect()) {
2488 if (X == FVal) {
2489 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2490 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2491 return new ShuffleVectorInst(X, NewSel, Mask);
2493 if (Y == FVal) {
2494 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2495 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2496 return new ShuffleVectorInst(NewSel, Y, Mask);
2499 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2500 !is_contained(Mask, PoisonMaskElem) &&
2501 cast<ShuffleVectorInst>(FVal)->isSelect()) {
2502 if (X == TVal) {
2503 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2504 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2505 return new ShuffleVectorInst(X, NewSel, Mask);
2507 if (Y == TVal) {
2508 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2509 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2510 return new ShuffleVectorInst(NewSel, Y, Mask);
2514 return nullptr;
2517 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
2518 const DominatorTree &DT,
2519 InstCombiner::BuilderTy &Builder) {
2520 // Find the block's immediate dominator that ends with a conditional branch
2521 // that matches select's condition (maybe inverted).
2522 auto *IDomNode = DT[BB]->getIDom();
2523 if (!IDomNode)
2524 return nullptr;
2525 BasicBlock *IDom = IDomNode->getBlock();
2527 Value *Cond = Sel.getCondition();
2528 Value *IfTrue, *IfFalse;
2529 BasicBlock *TrueSucc, *FalseSucc;
2530 if (match(IDom->getTerminator(),
2531 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
2532 m_BasicBlock(FalseSucc)))) {
2533 IfTrue = Sel.getTrueValue();
2534 IfFalse = Sel.getFalseValue();
2535 } else if (match(IDom->getTerminator(),
2536 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
2537 m_BasicBlock(FalseSucc)))) {
2538 IfTrue = Sel.getFalseValue();
2539 IfFalse = Sel.getTrueValue();
2540 } else
2541 return nullptr;
2543 // Make sure the branches are actually different.
2544 if (TrueSucc == FalseSucc)
2545 return nullptr;
2547 // We want to replace select %cond, %a, %b with a phi that takes value %a
2548 // for all incoming edges that are dominated by condition `%cond == true`,
2549 // and value %b for edges dominated by condition `%cond == false`. If %a
2550 // or %b are also phis from the same basic block, we can go further and take
2551 // their incoming values from the corresponding blocks.
2552 BasicBlockEdge TrueEdge(IDom, TrueSucc);
2553 BasicBlockEdge FalseEdge(IDom, FalseSucc);
2554 DenseMap<BasicBlock *, Value *> Inputs;
2555 for (auto *Pred : predecessors(BB)) {
2556 // Check implication.
2557 BasicBlockEdge Incoming(Pred, BB);
2558 if (DT.dominates(TrueEdge, Incoming))
2559 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
2560 else if (DT.dominates(FalseEdge, Incoming))
2561 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
2562 else
2563 return nullptr;
2564 // Check availability.
2565 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2566 if (!DT.dominates(Insn, Pred->getTerminator()))
2567 return nullptr;
2570 Builder.SetInsertPoint(&*BB->begin());
2571 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
2572 for (auto *Pred : predecessors(BB))
2573 PN->addIncoming(Inputs[Pred], Pred);
2574 PN->takeName(&Sel);
2575 return PN;
2578 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
2579 InstCombiner::BuilderTy &Builder) {
2580 // Try to replace this select with Phi in one of these blocks.
2581 SmallSetVector<BasicBlock *, 4> CandidateBlocks;
2582 CandidateBlocks.insert(Sel.getParent());
2583 for (Value *V : Sel.operands())
2584 if (auto *I = dyn_cast<Instruction>(V))
2585 CandidateBlocks.insert(I->getParent());
2587 for (BasicBlock *BB : CandidateBlocks)
2588 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2589 return PN;
2590 return nullptr;
2593 /// Tries to reduce a pattern that arises when calculating the remainder of the
2594 /// Euclidean division. When the divisor is a power of two and is guaranteed not
2595 /// to be negative, a signed remainder can be folded with a bitwise and.
2597 /// (x % n) < 0 ? (x % n) + n : (x % n)
2598 /// -> x & (n - 1)
2599 static Instruction *foldSelectWithSRem(SelectInst &SI, InstCombinerImpl &IC,
2600 IRBuilderBase &Builder) {
2601 Value *CondVal = SI.getCondition();
2602 Value *TrueVal = SI.getTrueValue();
2603 Value *FalseVal = SI.getFalseValue();
2605 ICmpInst::Predicate Pred;
2606 Value *Op, *RemRes, *Remainder;
2607 const APInt *C;
2608 bool TrueIfSigned = false;
2610 if (!(match(CondVal, m_ICmp(Pred, m_Value(RemRes), m_APInt(C))) &&
2611 IC.isSignBitCheck(Pred, *C, TrueIfSigned)))
2612 return nullptr;
2614 // If the sign bit is not set, we have a SGE/SGT comparison, and the operands
2615 // of the select are inverted.
2616 if (!TrueIfSigned)
2617 std::swap(TrueVal, FalseVal);
2619 // We are matching a quite specific pattern here:
2620 // %rem = srem i32 %x, %n
2621 // %cnd = icmp slt i32 %rem, 0
2622 // %add = add i32 %rem, %n
2623 // %sel = select i1 %cnd, i32 %add, i32 %rem
2624 if (!(match(TrueVal, m_Add(m_Value(RemRes), m_Value(Remainder))) &&
2625 match(RemRes, m_SRem(m_Value(Op), m_Specific(Remainder))) &&
2626 IC.isKnownToBeAPowerOfTwo(Remainder, /*OrZero*/ true) &&
2627 FalseVal == RemRes))
2628 return nullptr;
2630 Value *Add = Builder.CreateAdd(Remainder,
2631 Constant::getAllOnesValue(RemRes->getType()));
2632 return BinaryOperator::CreateAnd(Op, Add);
2635 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
2636 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
2637 if (!FI)
2638 return nullptr;
2640 Value *Cond = FI->getOperand(0);
2641 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
2643 // select (freeze(x == y)), x, y --> y
2644 // select (freeze(x != y)), x, y --> x
2645 // The freeze should be only used by this select. Otherwise, remaining uses of
2646 // the freeze can observe a contradictory value.
2647 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1
2648 // a = select c, x, y ;
2649 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded
2650 // ; to y, this can happen.
2651 CmpInst::Predicate Pred;
2652 if (FI->hasOneUse() &&
2653 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
2654 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
2655 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
2658 return nullptr;
2661 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op,
2662 SelectInst &SI,
2663 bool IsAnd) {
2664 Value *CondVal = SI.getCondition();
2665 Value *A = SI.getTrueValue();
2666 Value *B = SI.getFalseValue();
2668 assert(Op->getType()->isIntOrIntVectorTy(1) &&
2669 "Op must be either i1 or vector of i1.");
2671 std::optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd);
2672 if (!Res)
2673 return nullptr;
2675 Value *Zero = Constant::getNullValue(A->getType());
2676 Value *One = Constant::getAllOnesValue(A->getType());
2678 if (*Res == true) {
2679 if (IsAnd)
2680 // select op, (select cond, A, B), false => select op, A, false
2681 // and op, (select cond, A, B) => select op, A, false
2682 // if op = true implies condval = true.
2683 return SelectInst::Create(Op, A, Zero);
2684 else
2685 // select op, true, (select cond, A, B) => select op, true, A
2686 // or op, (select cond, A, B) => select op, true, A
2687 // if op = false implies condval = true.
2688 return SelectInst::Create(Op, One, A);
2689 } else {
2690 if (IsAnd)
2691 // select op, (select cond, A, B), false => select op, B, false
2692 // and op, (select cond, A, B) => select op, B, false
2693 // if op = true implies condval = false.
2694 return SelectInst::Create(Op, B, Zero);
2695 else
2696 // select op, true, (select cond, A, B) => select op, true, B
2697 // or op, (select cond, A, B) => select op, true, B
2698 // if op = false implies condval = false.
2699 return SelectInst::Create(Op, One, B);
2703 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2704 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
2705 static Instruction *foldSelectWithFCmpToFabs(SelectInst &SI,
2706 InstCombinerImpl &IC) {
2707 Value *CondVal = SI.getCondition();
2709 bool ChangedFMF = false;
2710 for (bool Swap : {false, true}) {
2711 Value *TrueVal = SI.getTrueValue();
2712 Value *X = SI.getFalseValue();
2713 CmpInst::Predicate Pred;
2715 if (Swap)
2716 std::swap(TrueVal, X);
2718 if (!match(CondVal, m_FCmp(Pred, m_Specific(X), m_AnyZeroFP())))
2719 continue;
2721 // fold (X <= +/-0.0) ? (0.0 - X) : X to fabs(X), when 'Swap' is false
2722 // fold (X > +/-0.0) ? X : (0.0 - X) to fabs(X), when 'Swap' is true
2723 if (match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) {
2724 if (!Swap && (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2725 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2726 return IC.replaceInstUsesWith(SI, Fabs);
2728 if (Swap && (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2729 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2730 return IC.replaceInstUsesWith(SI, Fabs);
2734 if (!match(TrueVal, m_FNeg(m_Specific(X))))
2735 return nullptr;
2737 // Forward-propagate nnan and ninf from the fneg to the select.
2738 // If all inputs are not those values, then the select is not either.
2739 // Note: nsz is defined differently, so it may not be correct to propagate.
2740 FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags();
2741 if (FMF.noNaNs() && !SI.hasNoNaNs()) {
2742 SI.setHasNoNaNs(true);
2743 ChangedFMF = true;
2745 if (FMF.noInfs() && !SI.hasNoInfs()) {
2746 SI.setHasNoInfs(true);
2747 ChangedFMF = true;
2750 // With nsz, when 'Swap' is false:
2751 // fold (X < +/-0.0) ? -X : X or (X <= +/-0.0) ? -X : X to fabs(X)
2752 // fold (X > +/-0.0) ? -X : X or (X >= +/-0.0) ? -X : X to -fabs(x)
2753 // when 'Swap' is true:
2754 // fold (X > +/-0.0) ? X : -X or (X >= +/-0.0) ? X : -X to fabs(X)
2755 // fold (X < +/-0.0) ? X : -X or (X <= +/-0.0) ? X : -X to -fabs(X)
2757 // Note: We require "nnan" for this fold because fcmp ignores the signbit
2758 // of NAN, but IEEE-754 specifies the signbit of NAN values with
2759 // fneg/fabs operations.
2760 if (!SI.hasNoSignedZeros() || !SI.hasNoNaNs())
2761 return nullptr;
2763 if (Swap)
2764 Pred = FCmpInst::getSwappedPredicate(Pred);
2766 bool IsLTOrLE = Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2767 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE;
2768 bool IsGTOrGE = Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2769 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE;
2771 if (IsLTOrLE) {
2772 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2773 return IC.replaceInstUsesWith(SI, Fabs);
2775 if (IsGTOrGE) {
2776 Value *Fabs = IC.Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, &SI);
2777 Instruction *NewFNeg = UnaryOperator::CreateFNeg(Fabs);
2778 NewFNeg->setFastMathFlags(SI.getFastMathFlags());
2779 return NewFNeg;
2783 return ChangedFMF ? &SI : nullptr;
2786 // Match the following IR pattern:
2787 // %x.lowbits = and i8 %x, %lowbitmask
2788 // %x.lowbits.are.zero = icmp eq i8 %x.lowbits, 0
2789 // %x.biased = add i8 %x, %bias
2790 // %x.biased.highbits = and i8 %x.biased, %highbitmask
2791 // %x.roundedup = select i1 %x.lowbits.are.zero, i8 %x, i8 %x.biased.highbits
2792 // Define:
2793 // %alignment = add i8 %lowbitmask, 1
2794 // Iff 1. an %alignment is a power-of-two (aka, %lowbitmask is a low bit mask)
2795 // and 2. %bias is equal to either %lowbitmask or %alignment,
2796 // and 3. %highbitmask is equal to ~%lowbitmask (aka, to -%alignment)
2797 // then this pattern can be transformed into:
2798 // %x.offset = add i8 %x, %lowbitmask
2799 // %x.roundedup = and i8 %x.offset, %highbitmask
2800 static Value *
2801 foldRoundUpIntegerWithPow2Alignment(SelectInst &SI,
2802 InstCombiner::BuilderTy &Builder) {
2803 Value *Cond = SI.getCondition();
2804 Value *X = SI.getTrueValue();
2805 Value *XBiasedHighBits = SI.getFalseValue();
2807 ICmpInst::Predicate Pred;
2808 Value *XLowBits;
2809 if (!match(Cond, m_ICmp(Pred, m_Value(XLowBits), m_ZeroInt())) ||
2810 !ICmpInst::isEquality(Pred))
2811 return nullptr;
2813 if (Pred == ICmpInst::Predicate::ICMP_NE)
2814 std::swap(X, XBiasedHighBits);
2816 // FIXME: we could support non non-splats here.
2818 const APInt *LowBitMaskCst;
2819 if (!match(XLowBits, m_And(m_Specific(X), m_APIntAllowUndef(LowBitMaskCst))))
2820 return nullptr;
2822 // Match even if the AND and ADD are swapped.
2823 const APInt *BiasCst, *HighBitMaskCst;
2824 if (!match(XBiasedHighBits,
2825 m_And(m_Add(m_Specific(X), m_APIntAllowUndef(BiasCst)),
2826 m_APIntAllowUndef(HighBitMaskCst))) &&
2827 !match(XBiasedHighBits,
2828 m_Add(m_And(m_Specific(X), m_APIntAllowUndef(HighBitMaskCst)),
2829 m_APIntAllowUndef(BiasCst))))
2830 return nullptr;
2832 if (!LowBitMaskCst->isMask())
2833 return nullptr;
2835 APInt InvertedLowBitMaskCst = ~*LowBitMaskCst;
2836 if (InvertedLowBitMaskCst != *HighBitMaskCst)
2837 return nullptr;
2839 APInt AlignmentCst = *LowBitMaskCst + 1;
2841 if (*BiasCst != AlignmentCst && *BiasCst != *LowBitMaskCst)
2842 return nullptr;
2844 if (!XBiasedHighBits->hasOneUse()) {
2845 if (*BiasCst == *LowBitMaskCst)
2846 return XBiasedHighBits;
2847 return nullptr;
2850 // FIXME: could we preserve undef's here?
2851 Type *Ty = X->getType();
2852 Value *XOffset = Builder.CreateAdd(X, ConstantInt::get(Ty, *LowBitMaskCst),
2853 X->getName() + ".biased");
2854 Value *R = Builder.CreateAnd(XOffset, ConstantInt::get(Ty, *HighBitMaskCst));
2855 R->takeName(&SI);
2856 return R;
2859 namespace {
2860 struct DecomposedSelect {
2861 Value *Cond = nullptr;
2862 Value *TrueVal = nullptr;
2863 Value *FalseVal = nullptr;
2865 } // namespace
2867 /// Look for patterns like
2868 /// %outer.cond = select i1 %inner.cond, i1 %alt.cond, i1 false
2869 /// %inner.sel = select i1 %inner.cond, i8 %inner.sel.t, i8 %inner.sel.f
2870 /// %outer.sel = select i1 %outer.cond, i8 %outer.sel.t, i8 %inner.sel
2871 /// and rewrite it as
2872 /// %inner.sel = select i1 %cond.alternative, i8 %sel.outer.t, i8 %sel.inner.t
2873 /// %sel.outer = select i1 %cond.inner, i8 %inner.sel, i8 %sel.inner.f
2874 static Instruction *foldNestedSelects(SelectInst &OuterSelVal,
2875 InstCombiner::BuilderTy &Builder) {
2876 // We must start with a `select`.
2877 DecomposedSelect OuterSel;
2878 match(&OuterSelVal,
2879 m_Select(m_Value(OuterSel.Cond), m_Value(OuterSel.TrueVal),
2880 m_Value(OuterSel.FalseVal)));
2882 // Canonicalize inversion of the outermost `select`'s condition.
2883 if (match(OuterSel.Cond, m_Not(m_Value(OuterSel.Cond))))
2884 std::swap(OuterSel.TrueVal, OuterSel.FalseVal);
2886 // The condition of the outermost select must be an `and`/`or`.
2887 if (!match(OuterSel.Cond, m_c_LogicalOp(m_Value(), m_Value())))
2888 return nullptr;
2890 // Depending on the logical op, inner select might be in different hand.
2891 bool IsAndVariant = match(OuterSel.Cond, m_LogicalAnd());
2892 Value *InnerSelVal = IsAndVariant ? OuterSel.FalseVal : OuterSel.TrueVal;
2894 // Profitability check - avoid increasing instruction count.
2895 if (none_of(ArrayRef<Value *>({OuterSelVal.getCondition(), InnerSelVal}),
2896 [](Value *V) { return V->hasOneUse(); }))
2897 return nullptr;
2899 // The appropriate hand of the outermost `select` must be a select itself.
2900 DecomposedSelect InnerSel;
2901 if (!match(InnerSelVal,
2902 m_Select(m_Value(InnerSel.Cond), m_Value(InnerSel.TrueVal),
2903 m_Value(InnerSel.FalseVal))))
2904 return nullptr;
2906 // Canonicalize inversion of the innermost `select`'s condition.
2907 if (match(InnerSel.Cond, m_Not(m_Value(InnerSel.Cond))))
2908 std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
2910 Value *AltCond = nullptr;
2911 auto matchOuterCond = [OuterSel, &AltCond](auto m_InnerCond) {
2912 return match(OuterSel.Cond, m_c_LogicalOp(m_InnerCond, m_Value(AltCond)));
2915 // Finally, match the condition that was driving the outermost `select`,
2916 // it should be a logical operation between the condition that was driving
2917 // the innermost `select` (after accounting for the possible inversions
2918 // of the condition), and some other condition.
2919 if (matchOuterCond(m_Specific(InnerSel.Cond))) {
2920 // Done!
2921 } else if (Value * NotInnerCond; matchOuterCond(m_CombineAnd(
2922 m_Not(m_Specific(InnerSel.Cond)), m_Value(NotInnerCond)))) {
2923 // Done!
2924 std::swap(InnerSel.TrueVal, InnerSel.FalseVal);
2925 InnerSel.Cond = NotInnerCond;
2926 } else // Not the pattern we were looking for.
2927 return nullptr;
2929 Value *SelInner = Builder.CreateSelect(
2930 AltCond, IsAndVariant ? OuterSel.TrueVal : InnerSel.FalseVal,
2931 IsAndVariant ? InnerSel.TrueVal : OuterSel.FalseVal);
2932 SelInner->takeName(InnerSelVal);
2933 return SelectInst::Create(InnerSel.Cond,
2934 IsAndVariant ? SelInner : InnerSel.TrueVal,
2935 !IsAndVariant ? SelInner : InnerSel.FalseVal);
2938 Instruction *InstCombinerImpl::foldSelectOfBools(SelectInst &SI) {
2939 Value *CondVal = SI.getCondition();
2940 Value *TrueVal = SI.getTrueValue();
2941 Value *FalseVal = SI.getFalseValue();
2942 Type *SelType = SI.getType();
2944 // Avoid potential infinite loops by checking for non-constant condition.
2945 // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
2946 // Scalar select must have simplified?
2947 if (!SelType->isIntOrIntVectorTy(1) || isa<Constant>(CondVal) ||
2948 TrueVal->getType() != CondVal->getType())
2949 return nullptr;
2951 auto *One = ConstantInt::getTrue(SelType);
2952 auto *Zero = ConstantInt::getFalse(SelType);
2953 Value *A, *B, *C, *D;
2955 // Folding select to and/or i1 isn't poison safe in general. impliesPoison
2956 // checks whether folding it does not convert a well-defined value into
2957 // poison.
2958 if (match(TrueVal, m_One())) {
2959 if (impliesPoison(FalseVal, CondVal)) {
2960 // Change: A = select B, true, C --> A = or B, C
2961 return BinaryOperator::CreateOr(CondVal, FalseVal);
2964 if (auto *LHS = dyn_cast<FCmpInst>(CondVal))
2965 if (auto *RHS = dyn_cast<FCmpInst>(FalseVal))
2966 if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false,
2967 /*IsSelectLogical*/ true))
2968 return replaceInstUsesWith(SI, V);
2970 // (A && B) || (C && B) --> (A || C) && B
2971 if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) &&
2972 match(FalseVal, m_LogicalAnd(m_Value(C), m_Value(D))) &&
2973 (CondVal->hasOneUse() || FalseVal->hasOneUse())) {
2974 bool CondLogicAnd = isa<SelectInst>(CondVal);
2975 bool FalseLogicAnd = isa<SelectInst>(FalseVal);
2976 auto AndFactorization = [&](Value *Common, Value *InnerCond,
2977 Value *InnerVal,
2978 bool SelFirst = false) -> Instruction * {
2979 Value *InnerSel = Builder.CreateSelect(InnerCond, One, InnerVal);
2980 if (SelFirst)
2981 std::swap(Common, InnerSel);
2982 if (FalseLogicAnd || (CondLogicAnd && Common == A))
2983 return SelectInst::Create(Common, InnerSel, Zero);
2984 else
2985 return BinaryOperator::CreateAnd(Common, InnerSel);
2988 if (A == C)
2989 return AndFactorization(A, B, D);
2990 if (A == D)
2991 return AndFactorization(A, B, C);
2992 if (B == C)
2993 return AndFactorization(B, A, D);
2994 if (B == D)
2995 return AndFactorization(B, A, C, CondLogicAnd && FalseLogicAnd);
2999 if (match(FalseVal, m_Zero())) {
3000 if (impliesPoison(TrueVal, CondVal)) {
3001 // Change: A = select B, C, false --> A = and B, C
3002 return BinaryOperator::CreateAnd(CondVal, TrueVal);
3005 if (auto *LHS = dyn_cast<FCmpInst>(CondVal))
3006 if (auto *RHS = dyn_cast<FCmpInst>(TrueVal))
3007 if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true,
3008 /*IsSelectLogical*/ true))
3009 return replaceInstUsesWith(SI, V);
3011 // (A || B) && (C || B) --> (A && C) || B
3012 if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3013 match(TrueVal, m_LogicalOr(m_Value(C), m_Value(D))) &&
3014 (CondVal->hasOneUse() || TrueVal->hasOneUse())) {
3015 bool CondLogicOr = isa<SelectInst>(CondVal);
3016 bool TrueLogicOr = isa<SelectInst>(TrueVal);
3017 auto OrFactorization = [&](Value *Common, Value *InnerCond,
3018 Value *InnerVal,
3019 bool SelFirst = false) -> Instruction * {
3020 Value *InnerSel = Builder.CreateSelect(InnerCond, InnerVal, Zero);
3021 if (SelFirst)
3022 std::swap(Common, InnerSel);
3023 if (TrueLogicOr || (CondLogicOr && Common == A))
3024 return SelectInst::Create(Common, One, InnerSel);
3025 else
3026 return BinaryOperator::CreateOr(Common, InnerSel);
3029 if (A == C)
3030 return OrFactorization(A, B, D);
3031 if (A == D)
3032 return OrFactorization(A, B, C);
3033 if (B == C)
3034 return OrFactorization(B, A, D);
3035 if (B == D)
3036 return OrFactorization(B, A, C, CondLogicOr && TrueLogicOr);
3040 // We match the "full" 0 or 1 constant here to avoid a potential infinite
3041 // loop with vectors that may have undefined/poison elements.
3042 // select a, false, b -> select !a, b, false
3043 if (match(TrueVal, m_Specific(Zero))) {
3044 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3045 return SelectInst::Create(NotCond, FalseVal, Zero);
3047 // select a, b, true -> select !a, true, b
3048 if (match(FalseVal, m_Specific(One))) {
3049 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3050 return SelectInst::Create(NotCond, One, TrueVal);
3053 // DeMorgan in select form: !a && !b --> !(a || b)
3054 // select !a, !b, false --> not (select a, true, b)
3055 if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
3056 (CondVal->hasOneUse() || TrueVal->hasOneUse()) &&
3057 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
3058 return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B));
3060 // DeMorgan in select form: !a || !b --> !(a && b)
3061 // select !a, true, !b --> not (select a, b, false)
3062 if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
3063 (CondVal->hasOneUse() || FalseVal->hasOneUse()) &&
3064 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
3065 return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero));
3067 // select (select a, true, b), true, b -> select a, true, b
3068 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
3069 match(TrueVal, m_One()) && match(FalseVal, m_Specific(B)))
3070 return replaceOperand(SI, 0, A);
3071 // select (select a, b, false), b, false -> select a, b, false
3072 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
3073 match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero()))
3074 return replaceOperand(SI, 0, A);
3075 // select a, (select ~a, true, b), false -> select a, b, false
3076 if (match(TrueVal, m_c_LogicalOr(m_Not(m_Specific(CondVal)), m_Value(B))) &&
3077 match(FalseVal, m_Zero()))
3078 return replaceOperand(SI, 1, B);
3079 // select a, true, (select ~a, b, false) -> select a, true, b
3080 if (match(FalseVal, m_c_LogicalAnd(m_Not(m_Specific(CondVal)), m_Value(B))) &&
3081 match(TrueVal, m_One()))
3082 return replaceOperand(SI, 2, B);
3084 // ~(A & B) & (A | B) --> A ^ B
3085 if (match(&SI, m_c_LogicalAnd(m_Not(m_LogicalAnd(m_Value(A), m_Value(B))),
3086 m_c_LogicalOr(m_Deferred(A), m_Deferred(B)))))
3087 return BinaryOperator::CreateXor(A, B);
3089 // select (~a | c), a, b -> and a, (or c, freeze(b))
3090 if (match(CondVal, m_c_Or(m_Not(m_Specific(TrueVal)), m_Value(C))) &&
3091 CondVal->hasOneUse()) {
3092 FalseVal = Builder.CreateFreeze(FalseVal);
3093 return BinaryOperator::CreateAnd(TrueVal, Builder.CreateOr(C, FalseVal));
3095 // select (~c & b), a, b -> and b, (or freeze(a), c)
3096 if (match(CondVal, m_c_And(m_Not(m_Value(C)), m_Specific(FalseVal))) &&
3097 CondVal->hasOneUse()) {
3098 TrueVal = Builder.CreateFreeze(TrueVal);
3099 return BinaryOperator::CreateAnd(FalseVal, Builder.CreateOr(C, TrueVal));
3101 // select (a | c), a, b -> select a, true, (select ~c, b, false)
3102 if (match(CondVal, m_c_Or(m_Specific(TrueVal), m_Value(C))) &&
3103 CondVal->hasOneUse() && isFreeToInvert(C, C->hasOneUse())) {
3104 Value *NotC = Builder.CreateNot(C);
3105 Value *AndV = Builder.CreateSelect(NotC, FalseVal, Zero);
3106 return SelectInst::Create(TrueVal, One, AndV);
3108 // select (c & ~b), a, b -> select b, true, (select c, a, false)
3109 if (match(CondVal, m_c_And(m_Value(C), m_Not(m_Specific(FalseVal)))) &&
3110 CondVal->hasOneUse()) {
3111 Value *AndV = Builder.CreateSelect(C, TrueVal, Zero);
3112 return SelectInst::Create(FalseVal, One, AndV);
3115 if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
3116 Use *Y = nullptr;
3117 bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
3118 Value *Op1 = IsAnd ? TrueVal : FalseVal;
3119 if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
3120 auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
3121 InsertNewInstBefore(FI, cast<Instruction>(Y->getUser())->getIterator());
3122 replaceUse(*Y, FI);
3123 return replaceInstUsesWith(SI, Op1);
3126 if (auto *Op1SI = dyn_cast<SelectInst>(Op1))
3127 if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI,
3128 /* IsAnd */ IsAnd))
3129 return I;
3131 if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal))
3132 if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1))
3133 if (auto *V = foldAndOrOfICmps(ICmp0, ICmp1, SI, IsAnd,
3134 /* IsLogical */ true))
3135 return replaceInstUsesWith(SI, V);
3138 // select (a || b), c, false -> select a, c, false
3139 // select c, (a || b), false -> select c, a, false
3140 // if c implies that b is false.
3141 if (match(CondVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3142 match(FalseVal, m_Zero())) {
3143 std::optional<bool> Res = isImpliedCondition(TrueVal, B, DL);
3144 if (Res && *Res == false)
3145 return replaceOperand(SI, 0, A);
3147 if (match(TrueVal, m_LogicalOr(m_Value(A), m_Value(B))) &&
3148 match(FalseVal, m_Zero())) {
3149 std::optional<bool> Res = isImpliedCondition(CondVal, B, DL);
3150 if (Res && *Res == false)
3151 return replaceOperand(SI, 1, A);
3153 // select c, true, (a && b) -> select c, true, a
3154 // select (a && b), true, c -> select a, true, c
3155 // if c = false implies that b = true
3156 if (match(TrueVal, m_One()) &&
3157 match(FalseVal, m_LogicalAnd(m_Value(A), m_Value(B)))) {
3158 std::optional<bool> Res = isImpliedCondition(CondVal, B, DL, false);
3159 if (Res && *Res == true)
3160 return replaceOperand(SI, 2, A);
3162 if (match(CondVal, m_LogicalAnd(m_Value(A), m_Value(B))) &&
3163 match(TrueVal, m_One())) {
3164 std::optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false);
3165 if (Res && *Res == true)
3166 return replaceOperand(SI, 0, A);
3169 if (match(TrueVal, m_One())) {
3170 Value *C;
3172 // (C && A) || (!C && B) --> sel C, A, B
3173 // (A && C) || (!C && B) --> sel C, A, B
3174 // (C && A) || (B && !C) --> sel C, A, B
3175 // (A && C) || (B && !C) --> sel C, A, B (may require freeze)
3176 if (match(FalseVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(B))) &&
3177 match(CondVal, m_c_LogicalAnd(m_Specific(C), m_Value(A)))) {
3178 auto *SelCond = dyn_cast<SelectInst>(CondVal);
3179 auto *SelFVal = dyn_cast<SelectInst>(FalseVal);
3180 bool MayNeedFreeze = SelCond && SelFVal &&
3181 match(SelFVal->getTrueValue(),
3182 m_Not(m_Specific(SelCond->getTrueValue())));
3183 if (MayNeedFreeze)
3184 C = Builder.CreateFreeze(C);
3185 return SelectInst::Create(C, A, B);
3188 // (!C && A) || (C && B) --> sel C, B, A
3189 // (A && !C) || (C && B) --> sel C, B, A
3190 // (!C && A) || (B && C) --> sel C, B, A
3191 // (A && !C) || (B && C) --> sel C, B, A (may require freeze)
3192 if (match(CondVal, m_c_LogicalAnd(m_Not(m_Value(C)), m_Value(A))) &&
3193 match(FalseVal, m_c_LogicalAnd(m_Specific(C), m_Value(B)))) {
3194 auto *SelCond = dyn_cast<SelectInst>(CondVal);
3195 auto *SelFVal = dyn_cast<SelectInst>(FalseVal);
3196 bool MayNeedFreeze = SelCond && SelFVal &&
3197 match(SelCond->getTrueValue(),
3198 m_Not(m_Specific(SelFVal->getTrueValue())));
3199 if (MayNeedFreeze)
3200 C = Builder.CreateFreeze(C);
3201 return SelectInst::Create(C, B, A);
3205 return nullptr;
3208 // Return true if we can safely remove the select instruction for std::bit_ceil
3209 // pattern.
3210 static bool isSafeToRemoveBitCeilSelect(ICmpInst::Predicate Pred, Value *Cond0,
3211 const APInt *Cond1, Value *CtlzOp,
3212 unsigned BitWidth) {
3213 // The challenge in recognizing std::bit_ceil(X) is that the operand is used
3214 // for the CTLZ proper and select condition, each possibly with some
3215 // operation like add and sub.
3217 // Our aim is to make sure that -ctlz & (BitWidth - 1) == 0 even when the
3218 // select instruction would select 1, which allows us to get rid of the select
3219 // instruction.
3221 // To see if we can do so, we do some symbolic execution with ConstantRange.
3222 // Specifically, we compute the range of values that Cond0 could take when
3223 // Cond == false. Then we successively transform the range until we obtain
3224 // the range of values that CtlzOp could take.
3226 // Conceptually, we follow the def-use chain backward from Cond0 while
3227 // transforming the range for Cond0 until we meet the common ancestor of Cond0
3228 // and CtlzOp. Then we follow the def-use chain forward until we obtain the
3229 // range for CtlzOp. That said, we only follow at most one ancestor from
3230 // Cond0. Likewise, we only follow at most one ancestor from CtrlOp.
3232 ConstantRange CR = ConstantRange::makeExactICmpRegion(
3233 CmpInst::getInversePredicate(Pred), *Cond1);
3235 // Match the operation that's used to compute CtlzOp from CommonAncestor. If
3236 // CtlzOp == CommonAncestor, return true as no operation is needed. If a
3237 // match is found, execute the operation on CR, update CR, and return true.
3238 // Otherwise, return false.
3239 auto MatchForward = [&](Value *CommonAncestor) {
3240 const APInt *C = nullptr;
3241 if (CtlzOp == CommonAncestor)
3242 return true;
3243 if (match(CtlzOp, m_Add(m_Specific(CommonAncestor), m_APInt(C)))) {
3244 CR = CR.add(*C);
3245 return true;
3247 if (match(CtlzOp, m_Sub(m_APInt(C), m_Specific(CommonAncestor)))) {
3248 CR = ConstantRange(*C).sub(CR);
3249 return true;
3251 if (match(CtlzOp, m_Not(m_Specific(CommonAncestor)))) {
3252 CR = CR.binaryNot();
3253 return true;
3255 return false;
3258 const APInt *C = nullptr;
3259 Value *CommonAncestor;
3260 if (MatchForward(Cond0)) {
3261 // Cond0 is either CtlzOp or CtlzOp's parent. CR has been updated.
3262 } else if (match(Cond0, m_Add(m_Value(CommonAncestor), m_APInt(C)))) {
3263 CR = CR.sub(*C);
3264 if (!MatchForward(CommonAncestor))
3265 return false;
3266 // Cond0's parent is either CtlzOp or CtlzOp's parent. CR has been updated.
3267 } else {
3268 return false;
3271 // Return true if all the values in the range are either 0 or negative (if
3272 // treated as signed). We do so by evaluating:
3274 // CR - 1 u>= (1 << BitWidth) - 1.
3275 APInt IntMax = APInt::getSignMask(BitWidth) - 1;
3276 CR = CR.sub(APInt(BitWidth, 1));
3277 return CR.icmp(ICmpInst::ICMP_UGE, IntMax);
3280 // Transform the std::bit_ceil(X) pattern like:
3282 // %dec = add i32 %x, -1
3283 // %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false)
3284 // %sub = sub i32 32, %ctlz
3285 // %shl = shl i32 1, %sub
3286 // %ugt = icmp ugt i32 %x, 1
3287 // %sel = select i1 %ugt, i32 %shl, i32 1
3289 // into:
3291 // %dec = add i32 %x, -1
3292 // %ctlz = tail call i32 @llvm.ctlz.i32(i32 %dec, i1 false)
3293 // %neg = sub i32 0, %ctlz
3294 // %masked = and i32 %ctlz, 31
3295 // %shl = shl i32 1, %sub
3297 // Note that the select is optimized away while the shift count is masked with
3298 // 31. We handle some variations of the input operand like std::bit_ceil(X +
3299 // 1).
3300 static Instruction *foldBitCeil(SelectInst &SI, IRBuilderBase &Builder) {
3301 Type *SelType = SI.getType();
3302 unsigned BitWidth = SelType->getScalarSizeInBits();
3304 Value *FalseVal = SI.getFalseValue();
3305 Value *TrueVal = SI.getTrueValue();
3306 ICmpInst::Predicate Pred;
3307 const APInt *Cond1;
3308 Value *Cond0, *Ctlz, *CtlzOp;
3309 if (!match(SI.getCondition(), m_ICmp(Pred, m_Value(Cond0), m_APInt(Cond1))))
3310 return nullptr;
3312 if (match(TrueVal, m_One())) {
3313 std::swap(FalseVal, TrueVal);
3314 Pred = CmpInst::getInversePredicate(Pred);
3317 if (!match(FalseVal, m_One()) ||
3318 !match(TrueVal,
3319 m_OneUse(m_Shl(m_One(), m_OneUse(m_Sub(m_SpecificInt(BitWidth),
3320 m_Value(Ctlz)))))) ||
3321 !match(Ctlz, m_Intrinsic<Intrinsic::ctlz>(m_Value(CtlzOp), m_Zero())) ||
3322 !isSafeToRemoveBitCeilSelect(Pred, Cond0, Cond1, CtlzOp, BitWidth))
3323 return nullptr;
3325 // Build 1 << (-CTLZ & (BitWidth-1)). The negation likely corresponds to a
3326 // single hardware instruction as opposed to BitWidth - CTLZ, where BitWidth
3327 // is an integer constant. Masking with BitWidth-1 comes free on some
3328 // hardware as part of the shift instruction.
3329 Value *Neg = Builder.CreateNeg(Ctlz);
3330 Value *Masked =
3331 Builder.CreateAnd(Neg, ConstantInt::get(SelType, BitWidth - 1));
3332 return BinaryOperator::Create(Instruction::Shl, ConstantInt::get(SelType, 1),
3333 Masked);
3336 bool InstCombinerImpl::fmulByZeroIsZero(Value *MulVal, FastMathFlags FMF,
3337 const Instruction *CtxI) const {
3338 KnownFPClass Known = computeKnownFPClass(MulVal, FMF, fcNegative, CtxI);
3340 return Known.isKnownNeverNaN() && Known.isKnownNeverInfinity() &&
3341 (FMF.noSignedZeros() || Known.signBitIsZeroOrNaN());
3344 static bool matchFMulByZeroIfResultEqZero(InstCombinerImpl &IC, Value *Cmp0,
3345 Value *Cmp1, Value *TrueVal,
3346 Value *FalseVal, Instruction &CtxI,
3347 bool SelectIsNSZ) {
3348 Value *MulRHS;
3349 if (match(Cmp1, m_PosZeroFP()) &&
3350 match(TrueVal, m_c_FMul(m_Specific(Cmp0), m_Value(MulRHS)))) {
3351 FastMathFlags FMF = cast<FPMathOperator>(TrueVal)->getFastMathFlags();
3352 // nsz must be on the select, it must be ignored on the multiply. We
3353 // need nnan and ninf on the multiply for the other value.
3354 FMF.setNoSignedZeros(SelectIsNSZ);
3355 return IC.fmulByZeroIsZero(MulRHS, FMF, &CtxI);
3358 return false;
3361 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
3362 Value *CondVal = SI.getCondition();
3363 Value *TrueVal = SI.getTrueValue();
3364 Value *FalseVal = SI.getFalseValue();
3365 Type *SelType = SI.getType();
3367 if (Value *V = simplifySelectInst(CondVal, TrueVal, FalseVal,
3368 SQ.getWithInstruction(&SI)))
3369 return replaceInstUsesWith(SI, V);
3371 if (Instruction *I = canonicalizeSelectToShuffle(SI))
3372 return I;
3374 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
3375 return I;
3377 // If the type of select is not an integer type or if the condition and
3378 // the selection type are not both scalar nor both vector types, there is no
3379 // point in attempting to match these patterns.
3380 Type *CondType = CondVal->getType();
3381 if (!isa<Constant>(CondVal) && SelType->isIntOrIntVectorTy() &&
3382 CondType->isVectorTy() == SelType->isVectorTy()) {
3383 if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal,
3384 ConstantInt::getTrue(CondType), SQ,
3385 /* AllowRefinement */ true))
3386 return replaceOperand(SI, 1, S);
3388 if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal,
3389 ConstantInt::getFalse(CondType), SQ,
3390 /* AllowRefinement */ true))
3391 return replaceOperand(SI, 2, S);
3393 // Handle patterns involving sext/zext + not explicitly,
3394 // as simplifyWithOpReplaced() only looks past one instruction.
3395 Value *NotCond;
3397 // select a, sext(!a), b -> select !a, b, 0
3398 // select a, zext(!a), b -> select !a, b, 0
3399 if (match(TrueVal, m_ZExtOrSExt(m_CombineAnd(m_Value(NotCond),
3400 m_Not(m_Specific(CondVal))))))
3401 return SelectInst::Create(NotCond, FalseVal,
3402 Constant::getNullValue(SelType));
3404 // select a, b, zext(!a) -> select !a, 1, b
3405 if (match(FalseVal, m_ZExt(m_CombineAnd(m_Value(NotCond),
3406 m_Not(m_Specific(CondVal))))))
3407 return SelectInst::Create(NotCond, ConstantInt::get(SelType, 1), TrueVal);
3409 // select a, b, sext(!a) -> select !a, -1, b
3410 if (match(FalseVal, m_SExt(m_CombineAnd(m_Value(NotCond),
3411 m_Not(m_Specific(CondVal))))))
3412 return SelectInst::Create(NotCond, Constant::getAllOnesValue(SelType),
3413 TrueVal);
3416 if (Instruction *R = foldSelectOfBools(SI))
3417 return R;
3419 // Selecting between two integer or vector splat integer constants?
3421 // Note that we don't handle a scalar select of vectors:
3422 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
3423 // because that may need 3 instructions to splat the condition value:
3424 // extend, insertelement, shufflevector.
3426 // Do not handle i1 TrueVal and FalseVal otherwise would result in
3427 // zext/sext i1 to i1.
3428 if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
3429 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
3430 // select C, 1, 0 -> zext C to int
3431 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
3432 return new ZExtInst(CondVal, SelType);
3434 // select C, -1, 0 -> sext C to int
3435 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
3436 return new SExtInst(CondVal, SelType);
3438 // select C, 0, 1 -> zext !C to int
3439 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
3440 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3441 return new ZExtInst(NotCond, SelType);
3444 // select C, 0, -1 -> sext !C to int
3445 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
3446 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
3447 return new SExtInst(NotCond, SelType);
3451 auto *SIFPOp = dyn_cast<FPMathOperator>(&SI);
3453 if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
3454 FCmpInst::Predicate Pred = FCmp->getPredicate();
3455 Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
3456 // Are we selecting a value based on a comparison of the two values?
3457 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
3458 (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
3459 // Canonicalize to use ordered comparisons by swapping the select
3460 // operands.
3462 // e.g.
3463 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
3464 if (FCmp->hasOneUse() && FCmpInst::isUnordered(Pred)) {
3465 FCmpInst::Predicate InvPred = FCmp->getInversePredicate();
3466 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3467 // FIXME: The FMF should propagate from the select, not the fcmp.
3468 Builder.setFastMathFlags(FCmp->getFastMathFlags());
3469 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
3470 FCmp->getName() + ".inv");
3471 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
3472 return replaceInstUsesWith(SI, NewSel);
3476 if (SIFPOp) {
3477 // Fold out scale-if-equals-zero pattern.
3479 // This pattern appears in code with denormal range checks after it's
3480 // assumed denormals are treated as zero. This drops a canonicalization.
3482 // TODO: Could relax the signed zero logic. We just need to know the sign
3483 // of the result matches (fmul x, y has the same sign as x).
3485 // TODO: Handle always-canonicalizing variant that selects some value or 1
3486 // scaling factor in the fmul visitor.
3488 // TODO: Handle ldexp too
3490 Value *MatchCmp0 = nullptr;
3491 Value *MatchCmp1 = nullptr;
3493 // (select (fcmp [ou]eq x, 0.0), (fmul x, K), x => x
3494 // (select (fcmp [ou]ne x, 0.0), x, (fmul x, K) => x
3495 if (Pred == CmpInst::FCMP_OEQ || Pred == CmpInst::FCMP_UEQ) {
3496 MatchCmp0 = FalseVal;
3497 MatchCmp1 = TrueVal;
3498 } else if (Pred == CmpInst::FCMP_ONE || Pred == CmpInst::FCMP_UNE) {
3499 MatchCmp0 = TrueVal;
3500 MatchCmp1 = FalseVal;
3503 if (Cmp0 == MatchCmp0 &&
3504 matchFMulByZeroIfResultEqZero(*this, Cmp0, Cmp1, MatchCmp1, MatchCmp0,
3505 SI, SIFPOp->hasNoSignedZeros()))
3506 return replaceInstUsesWith(SI, Cmp0);
3510 if (SIFPOp) {
3511 // TODO: Try to forward-propagate FMF from select arms to the select.
3513 // Canonicalize select of FP values where NaN and -0.0 are not valid as
3514 // minnum/maxnum intrinsics.
3515 if (SIFPOp->hasNoNaNs() && SIFPOp->hasNoSignedZeros()) {
3516 Value *X, *Y;
3517 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
3518 return replaceInstUsesWith(
3519 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
3521 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
3522 return replaceInstUsesWith(
3523 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
3527 // Fold selecting to fabs.
3528 if (Instruction *Fabs = foldSelectWithFCmpToFabs(SI, *this))
3529 return Fabs;
3531 // See if we are selecting two values based on a comparison of the two values.
3532 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
3533 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
3534 return Result;
3536 if (Instruction *Add = foldAddSubSelect(SI, Builder))
3537 return Add;
3538 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
3539 return Add;
3540 if (Instruction *Or = foldSetClearBits(SI, Builder))
3541 return Or;
3542 if (Instruction *Mul = foldSelectZeroOrMul(SI, *this))
3543 return Mul;
3545 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
3546 auto *TI = dyn_cast<Instruction>(TrueVal);
3547 auto *FI = dyn_cast<Instruction>(FalseVal);
3548 if (TI && FI && TI->getOpcode() == FI->getOpcode())
3549 if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
3550 return IV;
3552 if (Instruction *I = foldSelectExtConst(SI))
3553 return I;
3555 if (Instruction *I = foldSelectWithSRem(SI, *this, Builder))
3556 return I;
3558 // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
3559 // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
3560 auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base,
3561 bool Swap) -> GetElementPtrInst * {
3562 Value *Ptr = Gep->getPointerOperand();
3563 if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base ||
3564 !Gep->hasOneUse())
3565 return nullptr;
3566 Value *Idx = Gep->getOperand(1);
3567 if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType()))
3568 return nullptr;
3569 Type *ElementType = Gep->getResultElementType();
3570 Value *NewT = Idx;
3571 Value *NewF = Constant::getNullValue(Idx->getType());
3572 if (Swap)
3573 std::swap(NewT, NewF);
3574 Value *NewSI =
3575 Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI);
3576 if (Gep->isInBounds())
3577 return GetElementPtrInst::CreateInBounds(ElementType, Ptr, {NewSI});
3578 return GetElementPtrInst::Create(ElementType, Ptr, {NewSI});
3580 if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
3581 if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false))
3582 return NewGep;
3583 if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
3584 if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true))
3585 return NewGep;
3587 // See if we can fold the select into one of our operands.
3588 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
3589 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
3590 return FoldI;
3592 Value *LHS, *RHS;
3593 Instruction::CastOps CastOp;
3594 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
3595 auto SPF = SPR.Flavor;
3596 if (SPF) {
3597 Value *LHS2, *RHS2;
3598 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
3599 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
3600 RHS2, SI, SPF, RHS))
3601 return R;
3602 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
3603 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
3604 RHS2, SI, SPF, LHS))
3605 return R;
3608 if (SelectPatternResult::isMinOrMax(SPF)) {
3609 // Canonicalize so that
3610 // - type casts are outside select patterns.
3611 // - float clamp is transformed to min/max pattern
3613 bool IsCastNeeded = LHS->getType() != SelType;
3614 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
3615 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
3616 if (IsCastNeeded ||
3617 (LHS->getType()->isFPOrFPVectorTy() &&
3618 ((CmpLHS != LHS && CmpLHS != RHS) ||
3619 (CmpRHS != LHS && CmpRHS != RHS)))) {
3620 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
3622 Value *Cmp;
3623 if (CmpInst::isIntPredicate(MinMaxPred)) {
3624 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
3625 } else {
3626 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3627 auto FMF =
3628 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
3629 Builder.setFastMathFlags(FMF);
3630 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
3633 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
3634 if (!IsCastNeeded)
3635 return replaceInstUsesWith(SI, NewSI);
3637 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
3638 return replaceInstUsesWith(SI, NewCast);
3643 // See if we can fold the select into a phi node if the condition is a select.
3644 if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
3645 // The true/false values have to be live in the PHI predecessor's blocks.
3646 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
3647 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
3648 if (Instruction *NV = foldOpIntoPhi(SI, PN))
3649 return NV;
3651 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
3652 if (TrueSI->getCondition()->getType() == CondVal->getType()) {
3653 // select(C, select(C, a, b), c) -> select(C, a, c)
3654 if (TrueSI->getCondition() == CondVal) {
3655 if (SI.getTrueValue() == TrueSI->getTrueValue())
3656 return nullptr;
3657 return replaceOperand(SI, 1, TrueSI->getTrueValue());
3659 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
3660 // We choose this as normal form to enable folding on the And and
3661 // shortening paths for the values (this helps getUnderlyingObjects() for
3662 // example).
3663 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
3664 Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
3665 replaceOperand(SI, 0, And);
3666 replaceOperand(SI, 1, TrueSI->getTrueValue());
3667 return &SI;
3671 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
3672 if (FalseSI->getCondition()->getType() == CondVal->getType()) {
3673 // select(C, a, select(C, b, c)) -> select(C, a, c)
3674 if (FalseSI->getCondition() == CondVal) {
3675 if (SI.getFalseValue() == FalseSI->getFalseValue())
3676 return nullptr;
3677 return replaceOperand(SI, 2, FalseSI->getFalseValue());
3679 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
3680 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
3681 Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
3682 replaceOperand(SI, 0, Or);
3683 replaceOperand(SI, 2, FalseSI->getFalseValue());
3684 return &SI;
3689 // Try to simplify a binop sandwiched between 2 selects with the same
3690 // condition. This is not valid for div/rem because the select might be
3691 // preventing a division-by-zero.
3692 // TODO: A div/rem restriction is conservative; use something like
3693 // isSafeToSpeculativelyExecute().
3694 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
3695 BinaryOperator *TrueBO;
3696 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && !TrueBO->isIntDivRem()) {
3697 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
3698 if (TrueBOSI->getCondition() == CondVal) {
3699 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
3700 Worklist.push(TrueBO);
3701 return &SI;
3704 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
3705 if (TrueBOSI->getCondition() == CondVal) {
3706 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
3707 Worklist.push(TrueBO);
3708 return &SI;
3713 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
3714 BinaryOperator *FalseBO;
3715 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && !FalseBO->isIntDivRem()) {
3716 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
3717 if (FalseBOSI->getCondition() == CondVal) {
3718 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
3719 Worklist.push(FalseBO);
3720 return &SI;
3723 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
3724 if (FalseBOSI->getCondition() == CondVal) {
3725 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
3726 Worklist.push(FalseBO);
3727 return &SI;
3732 Value *NotCond;
3733 if (match(CondVal, m_Not(m_Value(NotCond))) &&
3734 !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) {
3735 replaceOperand(SI, 0, NotCond);
3736 SI.swapValues();
3737 SI.swapProfMetadata();
3738 return &SI;
3741 if (Instruction *I = foldVectorSelect(SI))
3742 return I;
3744 // If we can compute the condition, there's no need for a select.
3745 // Like the above fold, we are attempting to reduce compile-time cost by
3746 // putting this fold here with limitations rather than in InstSimplify.
3747 // The motivation for this call into value tracking is to take advantage of
3748 // the assumption cache, so make sure that is populated.
3749 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
3750 KnownBits Known(1);
3751 computeKnownBits(CondVal, Known, 0, &SI);
3752 if (Known.One.isOne())
3753 return replaceInstUsesWith(SI, TrueVal);
3754 if (Known.Zero.isOne())
3755 return replaceInstUsesWith(SI, FalseVal);
3758 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
3759 return BitCastSel;
3761 // Simplify selects that test the returned flag of cmpxchg instructions.
3762 if (Value *V = foldSelectCmpXchg(SI))
3763 return replaceInstUsesWith(SI, V);
3765 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
3766 return Select;
3768 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
3769 return Funnel;
3771 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
3772 return Copysign;
3774 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
3775 return replaceInstUsesWith(SI, PN);
3777 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
3778 return replaceInstUsesWith(SI, Fr);
3780 if (Value *V = foldRoundUpIntegerWithPow2Alignment(SI, Builder))
3781 return replaceInstUsesWith(SI, V);
3783 // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
3784 // Load inst is intentionally not checked for hasOneUse()
3785 if (match(FalseVal, m_Zero()) &&
3786 (match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal),
3787 m_CombineOr(m_Undef(), m_Zero()))) ||
3788 match(TrueVal, m_MaskedGather(m_Value(), m_Value(), m_Specific(CondVal),
3789 m_CombineOr(m_Undef(), m_Zero()))))) {
3790 auto *MaskedInst = cast<IntrinsicInst>(TrueVal);
3791 if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
3792 MaskedInst->setArgOperand(3, FalseVal /* Zero */);
3793 return replaceInstUsesWith(SI, MaskedInst);
3796 Value *Mask;
3797 if (match(TrueVal, m_Zero()) &&
3798 (match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask),
3799 m_CombineOr(m_Undef(), m_Zero()))) ||
3800 match(FalseVal, m_MaskedGather(m_Value(), m_Value(), m_Value(Mask),
3801 m_CombineOr(m_Undef(), m_Zero())))) &&
3802 (CondVal->getType() == Mask->getType())) {
3803 // We can remove the select by ensuring the load zeros all lanes the
3804 // select would have. We determine this by proving there is no overlap
3805 // between the load and select masks.
3806 // (i.e (load_mask & select_mask) == 0 == no overlap)
3807 bool CanMergeSelectIntoLoad = false;
3808 if (Value *V = simplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI)))
3809 CanMergeSelectIntoLoad = match(V, m_Zero());
3811 if (CanMergeSelectIntoLoad) {
3812 auto *MaskedInst = cast<IntrinsicInst>(FalseVal);
3813 if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
3814 MaskedInst->setArgOperand(3, TrueVal /* Zero */);
3815 return replaceInstUsesWith(SI, MaskedInst);
3819 if (Instruction *I = foldNestedSelects(SI, Builder))
3820 return I;
3822 // Match logical variants of the pattern,
3823 // and transform them iff that gets rid of inversions.
3824 // (~x) | y --> ~(x & (~y))
3825 // (~x) & y --> ~(x | (~y))
3826 if (sinkNotIntoOtherHandOfLogicalOp(SI))
3827 return &SI;
3829 if (Instruction *I = foldBitCeil(SI, Builder))
3830 return I;
3832 return nullptr;