[NFC][RemoveDIs] Prefer iterators over inst-pointers in InstCombine
[llvm-project.git] / llvm / lib / Transforms / Instrumentation / PGOInstrumentation.cpp
blob1fe9c57e550a412d12d2fafa8e4e8514e838848a
1 //===- PGOInstrumentation.cpp - MST-based PGO Instrumentation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements PGO instrumentation using a minimum spanning tree based
10 // on the following paper:
11 // [1] Donald E. Knuth, Francis R. Stevenson. Optimal measurement of points
12 // for program frequency counts. BIT Numerical Mathematics 1973, Volume 13,
13 // Issue 3, pp 313-322
14 // The idea of the algorithm based on the fact that for each node (except for
15 // the entry and exit), the sum of incoming edge counts equals the sum of
16 // outgoing edge counts. The count of edge on spanning tree can be derived from
17 // those edges not on the spanning tree. Knuth proves this method instruments
18 // the minimum number of edges.
20 // The minimal spanning tree here is actually a maximum weight tree -- on-tree
21 // edges have higher frequencies (more likely to execute). The idea is to
22 // instrument those less frequently executed edges to reduce the runtime
23 // overhead of instrumented binaries.
25 // This file contains two passes:
26 // (1) Pass PGOInstrumentationGen which instruments the IR to generate edge
27 // count profile, and generates the instrumentation for indirect call
28 // profiling.
29 // (2) Pass PGOInstrumentationUse which reads the edge count profile and
30 // annotates the branch weights. It also reads the indirect call value
31 // profiling records and annotate the indirect call instructions.
33 // To get the precise counter information, These two passes need to invoke at
34 // the same compilation point (so they see the same IR). For pass
35 // PGOInstrumentationGen, the real work is done in instrumentOneFunc(). For
36 // pass PGOInstrumentationUse, the real work in done in class PGOUseFunc and
37 // the profile is opened in module level and passed to each PGOUseFunc instance.
38 // The shared code for PGOInstrumentationGen and PGOInstrumentationUse is put
39 // in class FuncPGOInstrumentation.
41 // Class PGOEdge represents a CFG edge and some auxiliary information. Class
42 // BBInfo contains auxiliary information for each BB. These two classes are used
43 // in pass PGOInstrumentationGen. Class PGOUseEdge and UseBBInfo are the derived
44 // class of PGOEdge and BBInfo, respectively. They contains extra data structure
45 // used in populating profile counters.
46 // The MST implementation is in Class CFGMST (CFGMST.h).
48 //===----------------------------------------------------------------------===//
50 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
51 #include "ValueProfileCollector.h"
52 #include "llvm/ADT/APInt.h"
53 #include "llvm/ADT/ArrayRef.h"
54 #include "llvm/ADT/STLExtras.h"
55 #include "llvm/ADT/SmallVector.h"
56 #include "llvm/ADT/Statistic.h"
57 #include "llvm/ADT/StringRef.h"
58 #include "llvm/ADT/Twine.h"
59 #include "llvm/ADT/iterator.h"
60 #include "llvm/ADT/iterator_range.h"
61 #include "llvm/Analysis/BlockFrequencyInfo.h"
62 #include "llvm/Analysis/BranchProbabilityInfo.h"
63 #include "llvm/Analysis/CFG.h"
64 #include "llvm/Analysis/LoopInfo.h"
65 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
66 #include "llvm/Analysis/ProfileSummaryInfo.h"
67 #include "llvm/Analysis/TargetLibraryInfo.h"
68 #include "llvm/IR/Attributes.h"
69 #include "llvm/IR/BasicBlock.h"
70 #include "llvm/IR/CFG.h"
71 #include "llvm/IR/Comdat.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DiagnosticInfo.h"
75 #include "llvm/IR/Dominators.h"
76 #include "llvm/IR/EHPersonalities.h"
77 #include "llvm/IR/Function.h"
78 #include "llvm/IR/GlobalAlias.h"
79 #include "llvm/IR/GlobalValue.h"
80 #include "llvm/IR/GlobalVariable.h"
81 #include "llvm/IR/IRBuilder.h"
82 #include "llvm/IR/InstVisitor.h"
83 #include "llvm/IR/InstrTypes.h"
84 #include "llvm/IR/Instruction.h"
85 #include "llvm/IR/Instructions.h"
86 #include "llvm/IR/IntrinsicInst.h"
87 #include "llvm/IR/Intrinsics.h"
88 #include "llvm/IR/LLVMContext.h"
89 #include "llvm/IR/MDBuilder.h"
90 #include "llvm/IR/Module.h"
91 #include "llvm/IR/PassManager.h"
92 #include "llvm/IR/ProfDataUtils.h"
93 #include "llvm/IR/ProfileSummary.h"
94 #include "llvm/IR/Type.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/ProfileData/InstrProf.h"
97 #include "llvm/ProfileData/InstrProfReader.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/CRC.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/DOTGraphTraits.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/Error.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/GraphWriter.h"
107 #include "llvm/Support/VirtualFileSystem.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include "llvm/TargetParser/Triple.h"
110 #include "llvm/Transforms/Instrumentation.h"
111 #include "llvm/Transforms/Instrumentation/BlockCoverageInference.h"
112 #include "llvm/Transforms/Instrumentation/CFGMST.h"
113 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
114 #include "llvm/Transforms/Utils/MisExpect.h"
115 #include "llvm/Transforms/Utils/ModuleUtils.h"
116 #include <algorithm>
117 #include <cassert>
118 #include <cstdint>
119 #include <memory>
120 #include <numeric>
121 #include <optional>
122 #include <string>
123 #include <unordered_map>
124 #include <utility>
125 #include <vector>
127 using namespace llvm;
128 using ProfileCount = Function::ProfileCount;
129 using VPCandidateInfo = ValueProfileCollector::CandidateInfo;
131 #define DEBUG_TYPE "pgo-instrumentation"
133 STATISTIC(NumOfPGOInstrument, "Number of edges instrumented.");
134 STATISTIC(NumOfPGOSelectInsts, "Number of select instruction instrumented.");
135 STATISTIC(NumOfPGOMemIntrinsics, "Number of mem intrinsics instrumented.");
136 STATISTIC(NumOfPGOEdge, "Number of edges.");
137 STATISTIC(NumOfPGOBB, "Number of basic-blocks.");
138 STATISTIC(NumOfPGOSplit, "Number of critical edge splits.");
139 STATISTIC(NumOfPGOFunc, "Number of functions having valid profile counts.");
140 STATISTIC(NumOfPGOMismatch, "Number of functions having mismatch profile.");
141 STATISTIC(NumOfPGOMissing, "Number of functions without profile.");
142 STATISTIC(NumOfPGOICall, "Number of indirect call value instrumentations.");
143 STATISTIC(NumOfCSPGOInstrument, "Number of edges instrumented in CSPGO.");
144 STATISTIC(NumOfCSPGOSelectInsts,
145 "Number of select instruction instrumented in CSPGO.");
146 STATISTIC(NumOfCSPGOMemIntrinsics,
147 "Number of mem intrinsics instrumented in CSPGO.");
148 STATISTIC(NumOfCSPGOEdge, "Number of edges in CSPGO.");
149 STATISTIC(NumOfCSPGOBB, "Number of basic-blocks in CSPGO.");
150 STATISTIC(NumOfCSPGOSplit, "Number of critical edge splits in CSPGO.");
151 STATISTIC(NumOfCSPGOFunc,
152 "Number of functions having valid profile counts in CSPGO.");
153 STATISTIC(NumOfCSPGOMismatch,
154 "Number of functions having mismatch profile in CSPGO.");
155 STATISTIC(NumOfCSPGOMissing, "Number of functions without profile in CSPGO.");
156 STATISTIC(NumCoveredBlocks, "Number of basic blocks that were executed");
158 // Command line option to specify the file to read profile from. This is
159 // mainly used for testing.
160 static cl::opt<std::string>
161 PGOTestProfileFile("pgo-test-profile-file", cl::init(""), cl::Hidden,
162 cl::value_desc("filename"),
163 cl::desc("Specify the path of profile data file. This is"
164 "mainly for test purpose."));
165 static cl::opt<std::string> PGOTestProfileRemappingFile(
166 "pgo-test-profile-remapping-file", cl::init(""), cl::Hidden,
167 cl::value_desc("filename"),
168 cl::desc("Specify the path of profile remapping file. This is mainly for "
169 "test purpose."));
171 // Command line option to disable value profiling. The default is false:
172 // i.e. value profiling is enabled by default. This is for debug purpose.
173 static cl::opt<bool> DisableValueProfiling("disable-vp", cl::init(false),
174 cl::Hidden,
175 cl::desc("Disable Value Profiling"));
177 // Command line option to set the maximum number of VP annotations to write to
178 // the metadata for a single indirect call callsite.
179 static cl::opt<unsigned> MaxNumAnnotations(
180 "icp-max-annotations", cl::init(3), cl::Hidden,
181 cl::desc("Max number of annotations for a single indirect "
182 "call callsite"));
184 // Command line option to set the maximum number of value annotations
185 // to write to the metadata for a single memop intrinsic.
186 static cl::opt<unsigned> MaxNumMemOPAnnotations(
187 "memop-max-annotations", cl::init(4), cl::Hidden,
188 cl::desc("Max number of preicise value annotations for a single memop"
189 "intrinsic"));
191 // Command line option to control appending FunctionHash to the name of a COMDAT
192 // function. This is to avoid the hash mismatch caused by the preinliner.
193 static cl::opt<bool> DoComdatRenaming(
194 "do-comdat-renaming", cl::init(false), cl::Hidden,
195 cl::desc("Append function hash to the name of COMDAT function to avoid "
196 "function hash mismatch due to the preinliner"));
198 namespace llvm {
199 // Command line option to enable/disable the warning about missing profile
200 // information.
201 cl::opt<bool> PGOWarnMissing("pgo-warn-missing-function", cl::init(false),
202 cl::Hidden,
203 cl::desc("Use this option to turn on/off "
204 "warnings about missing profile data for "
205 "functions."));
207 // Command line option to enable/disable the warning about a hash mismatch in
208 // the profile data.
209 cl::opt<bool>
210 NoPGOWarnMismatch("no-pgo-warn-mismatch", cl::init(false), cl::Hidden,
211 cl::desc("Use this option to turn off/on "
212 "warnings about profile cfg mismatch."));
214 // Command line option to enable/disable the warning about a hash mismatch in
215 // the profile data for Comdat functions, which often turns out to be false
216 // positive due to the pre-instrumentation inline.
217 cl::opt<bool> NoPGOWarnMismatchComdatWeak(
218 "no-pgo-warn-mismatch-comdat-weak", cl::init(true), cl::Hidden,
219 cl::desc("The option is used to turn on/off "
220 "warnings about hash mismatch for comdat "
221 "or weak functions."));
222 } // namespace llvm
224 // Command line option to enable/disable select instruction instrumentation.
225 static cl::opt<bool>
226 PGOInstrSelect("pgo-instr-select", cl::init(true), cl::Hidden,
227 cl::desc("Use this option to turn on/off SELECT "
228 "instruction instrumentation. "));
230 // Command line option to turn on CFG dot or text dump of raw profile counts
231 static cl::opt<PGOViewCountsType> PGOViewRawCounts(
232 "pgo-view-raw-counts", cl::Hidden,
233 cl::desc("A boolean option to show CFG dag or text "
234 "with raw profile counts from "
235 "profile data. See also option "
236 "-pgo-view-counts. To limit graph "
237 "display to only one function, use "
238 "filtering option -view-bfi-func-name."),
239 cl::values(clEnumValN(PGOVCT_None, "none", "do not show."),
240 clEnumValN(PGOVCT_Graph, "graph", "show a graph."),
241 clEnumValN(PGOVCT_Text, "text", "show in text.")));
243 // Command line option to enable/disable memop intrinsic call.size profiling.
244 static cl::opt<bool>
245 PGOInstrMemOP("pgo-instr-memop", cl::init(true), cl::Hidden,
246 cl::desc("Use this option to turn on/off "
247 "memory intrinsic size profiling."));
249 // Emit branch probability as optimization remarks.
250 static cl::opt<bool>
251 EmitBranchProbability("pgo-emit-branch-prob", cl::init(false), cl::Hidden,
252 cl::desc("When this option is on, the annotated "
253 "branch probability will be emitted as "
254 "optimization remarks: -{Rpass|"
255 "pass-remarks}=pgo-instrumentation"));
257 static cl::opt<bool> PGOInstrumentEntry(
258 "pgo-instrument-entry", cl::init(false), cl::Hidden,
259 cl::desc("Force to instrument function entry basicblock."));
261 static cl::opt<bool> PGOFunctionEntryCoverage(
262 "pgo-function-entry-coverage", cl::Hidden,
263 cl::desc(
264 "Use this option to enable function entry coverage instrumentation."));
266 static cl::opt<bool> PGOBlockCoverage(
267 "pgo-block-coverage",
268 cl::desc("Use this option to enable basic block coverage instrumentation"));
270 static cl::opt<bool>
271 PGOViewBlockCoverageGraph("pgo-view-block-coverage-graph",
272 cl::desc("Create a dot file of CFGs with block "
273 "coverage inference information"));
275 static cl::opt<bool> PGOTemporalInstrumentation(
276 "pgo-temporal-instrumentation",
277 cl::desc("Use this option to enable temporal instrumentation"));
279 static cl::opt<bool>
280 PGOFixEntryCount("pgo-fix-entry-count", cl::init(true), cl::Hidden,
281 cl::desc("Fix function entry count in profile use."));
283 static cl::opt<bool> PGOVerifyHotBFI(
284 "pgo-verify-hot-bfi", cl::init(false), cl::Hidden,
285 cl::desc("Print out the non-match BFI count if a hot raw profile count "
286 "becomes non-hot, or a cold raw profile count becomes hot. "
287 "The print is enabled under -Rpass-analysis=pgo, or "
288 "internal option -pass-remakrs-analysis=pgo."));
290 static cl::opt<bool> PGOVerifyBFI(
291 "pgo-verify-bfi", cl::init(false), cl::Hidden,
292 cl::desc("Print out mismatched BFI counts after setting profile metadata "
293 "The print is enabled under -Rpass-analysis=pgo, or "
294 "internal option -pass-remakrs-analysis=pgo."));
296 static cl::opt<unsigned> PGOVerifyBFIRatio(
297 "pgo-verify-bfi-ratio", cl::init(2), cl::Hidden,
298 cl::desc("Set the threshold for pgo-verify-bfi: only print out "
299 "mismatched BFI if the difference percentage is greater than "
300 "this value (in percentage)."));
302 static cl::opt<unsigned> PGOVerifyBFICutoff(
303 "pgo-verify-bfi-cutoff", cl::init(5), cl::Hidden,
304 cl::desc("Set the threshold for pgo-verify-bfi: skip the counts whose "
305 "profile count value is below."));
307 static cl::opt<std::string> PGOTraceFuncHash(
308 "pgo-trace-func-hash", cl::init("-"), cl::Hidden,
309 cl::value_desc("function name"),
310 cl::desc("Trace the hash of the function with this name."));
312 static cl::opt<unsigned> PGOFunctionSizeThreshold(
313 "pgo-function-size-threshold", cl::Hidden,
314 cl::desc("Do not instrument functions smaller than this threshold."));
316 static cl::opt<unsigned> PGOFunctionCriticalEdgeThreshold(
317 "pgo-critical-edge-threshold", cl::init(20000), cl::Hidden,
318 cl::desc("Do not instrument functions with the number of critical edges "
319 " greater than this threshold."));
321 namespace llvm {
322 // Command line option to turn on CFG dot dump after profile annotation.
323 // Defined in Analysis/BlockFrequencyInfo.cpp: -pgo-view-counts
324 extern cl::opt<PGOViewCountsType> PGOViewCounts;
326 // Command line option to specify the name of the function for CFG dump
327 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
328 extern cl::opt<std::string> ViewBlockFreqFuncName;
330 extern cl::opt<bool> DebugInfoCorrelate;
331 } // namespace llvm
333 static cl::opt<bool>
334 PGOOldCFGHashing("pgo-instr-old-cfg-hashing", cl::init(false), cl::Hidden,
335 cl::desc("Use the old CFG function hashing"));
337 // Return a string describing the branch condition that can be
338 // used in static branch probability heuristics:
339 static std::string getBranchCondString(Instruction *TI) {
340 BranchInst *BI = dyn_cast<BranchInst>(TI);
341 if (!BI || !BI->isConditional())
342 return std::string();
344 Value *Cond = BI->getCondition();
345 ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
346 if (!CI)
347 return std::string();
349 std::string result;
350 raw_string_ostream OS(result);
351 OS << CI->getPredicate() << "_";
352 CI->getOperand(0)->getType()->print(OS, true);
354 Value *RHS = CI->getOperand(1);
355 ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
356 if (CV) {
357 if (CV->isZero())
358 OS << "_Zero";
359 else if (CV->isOne())
360 OS << "_One";
361 else if (CV->isMinusOne())
362 OS << "_MinusOne";
363 else
364 OS << "_Const";
366 OS.flush();
367 return result;
370 static const char *ValueProfKindDescr[] = {
371 #define VALUE_PROF_KIND(Enumerator, Value, Descr) Descr,
372 #include "llvm/ProfileData/InstrProfData.inc"
375 // Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime
376 // aware this is an ir_level profile so it can set the version flag.
377 static GlobalVariable *createIRLevelProfileFlagVar(Module &M, bool IsCS) {
378 const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
379 Type *IntTy64 = Type::getInt64Ty(M.getContext());
380 uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF);
381 if (IsCS)
382 ProfileVersion |= VARIANT_MASK_CSIR_PROF;
383 if (PGOInstrumentEntry)
384 ProfileVersion |= VARIANT_MASK_INSTR_ENTRY;
385 if (DebugInfoCorrelate)
386 ProfileVersion |= VARIANT_MASK_DBG_CORRELATE;
387 if (PGOFunctionEntryCoverage)
388 ProfileVersion |=
389 VARIANT_MASK_BYTE_COVERAGE | VARIANT_MASK_FUNCTION_ENTRY_ONLY;
390 if (PGOBlockCoverage)
391 ProfileVersion |= VARIANT_MASK_BYTE_COVERAGE;
392 if (PGOTemporalInstrumentation)
393 ProfileVersion |= VARIANT_MASK_TEMPORAL_PROF;
394 auto IRLevelVersionVariable = new GlobalVariable(
395 M, IntTy64, true, GlobalValue::WeakAnyLinkage,
396 Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), VarName);
397 IRLevelVersionVariable->setVisibility(GlobalValue::HiddenVisibility);
398 Triple TT(M.getTargetTriple());
399 if (TT.supportsCOMDAT()) {
400 IRLevelVersionVariable->setLinkage(GlobalValue::ExternalLinkage);
401 IRLevelVersionVariable->setComdat(M.getOrInsertComdat(VarName));
403 return IRLevelVersionVariable;
406 namespace {
408 /// The select instruction visitor plays three roles specified
409 /// by the mode. In \c VM_counting mode, it simply counts the number of
410 /// select instructions. In \c VM_instrument mode, it inserts code to count
411 /// the number times TrueValue of select is taken. In \c VM_annotate mode,
412 /// it reads the profile data and annotate the select instruction with metadata.
413 enum VisitMode { VM_counting, VM_instrument, VM_annotate };
414 class PGOUseFunc;
416 /// Instruction Visitor class to visit select instructions.
417 struct SelectInstVisitor : public InstVisitor<SelectInstVisitor> {
418 Function &F;
419 unsigned NSIs = 0; // Number of select instructions instrumented.
420 VisitMode Mode = VM_counting; // Visiting mode.
421 unsigned *CurCtrIdx = nullptr; // Pointer to current counter index.
422 unsigned TotalNumCtrs = 0; // Total number of counters
423 GlobalVariable *FuncNameVar = nullptr;
424 uint64_t FuncHash = 0;
425 PGOUseFunc *UseFunc = nullptr;
426 bool HasSingleByteCoverage;
428 SelectInstVisitor(Function &Func, bool HasSingleByteCoverage)
429 : F(Func), HasSingleByteCoverage(HasSingleByteCoverage) {}
431 void countSelects() {
432 NSIs = 0;
433 Mode = VM_counting;
434 visit(F);
437 // Visit the IR stream and instrument all select instructions. \p
438 // Ind is a pointer to the counter index variable; \p TotalNC
439 // is the total number of counters; \p FNV is the pointer to the
440 // PGO function name var; \p FHash is the function hash.
441 void instrumentSelects(unsigned *Ind, unsigned TotalNC, GlobalVariable *FNV,
442 uint64_t FHash) {
443 Mode = VM_instrument;
444 CurCtrIdx = Ind;
445 TotalNumCtrs = TotalNC;
446 FuncHash = FHash;
447 FuncNameVar = FNV;
448 visit(F);
451 // Visit the IR stream and annotate all select instructions.
452 void annotateSelects(PGOUseFunc *UF, unsigned *Ind) {
453 Mode = VM_annotate;
454 UseFunc = UF;
455 CurCtrIdx = Ind;
456 visit(F);
459 void instrumentOneSelectInst(SelectInst &SI);
460 void annotateOneSelectInst(SelectInst &SI);
462 // Visit \p SI instruction and perform tasks according to visit mode.
463 void visitSelectInst(SelectInst &SI);
465 // Return the number of select instructions. This needs be called after
466 // countSelects().
467 unsigned getNumOfSelectInsts() const { return NSIs; }
470 /// This class implements the CFG edges for the Minimum Spanning Tree (MST)
471 /// based instrumentation.
472 /// Note that the CFG can be a multi-graph. So there might be multiple edges
473 /// with the same SrcBB and DestBB.
474 struct PGOEdge {
475 BasicBlock *SrcBB;
476 BasicBlock *DestBB;
477 uint64_t Weight;
478 bool InMST = false;
479 bool Removed = false;
480 bool IsCritical = false;
482 PGOEdge(BasicBlock *Src, BasicBlock *Dest, uint64_t W = 1)
483 : SrcBB(Src), DestBB(Dest), Weight(W) {}
485 /// Return the information string of an edge.
486 std::string infoString() const {
487 return (Twine(Removed ? "-" : " ") + (InMST ? " " : "*") +
488 (IsCritical ? "c" : " ") + " W=" + Twine(Weight))
489 .str();
493 /// This class stores the auxiliary information for each BB in the MST.
494 struct PGOBBInfo {
495 PGOBBInfo *Group;
496 uint32_t Index;
497 uint32_t Rank = 0;
499 PGOBBInfo(unsigned IX) : Group(this), Index(IX) {}
501 /// Return the information string of this object.
502 std::string infoString() const {
503 return (Twine("Index=") + Twine(Index)).str();
507 // This class implements the CFG edges. Note the CFG can be a multi-graph.
508 template <class Edge, class BBInfo> class FuncPGOInstrumentation {
509 private:
510 Function &F;
512 // Is this is context-sensitive instrumentation.
513 bool IsCS;
515 // A map that stores the Comdat group in function F.
516 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers;
518 ValueProfileCollector VPC;
520 void computeCFGHash();
521 void renameComdatFunction();
523 public:
524 const TargetLibraryInfo &TLI;
525 std::vector<std::vector<VPCandidateInfo>> ValueSites;
526 SelectInstVisitor SIVisitor;
527 std::string FuncName;
528 std::string DeprecatedFuncName;
529 GlobalVariable *FuncNameVar;
531 // CFG hash value for this function.
532 uint64_t FunctionHash = 0;
534 // The Minimum Spanning Tree of function CFG.
535 CFGMST<Edge, BBInfo> MST;
537 const std::optional<BlockCoverageInference> BCI;
539 static std::optional<BlockCoverageInference>
540 constructBCI(Function &Func, bool HasSingleByteCoverage,
541 bool InstrumentFuncEntry) {
542 if (HasSingleByteCoverage)
543 return BlockCoverageInference(Func, InstrumentFuncEntry);
544 return {};
547 // Collect all the BBs that will be instrumented, and store them in
548 // InstrumentBBs.
549 void getInstrumentBBs(std::vector<BasicBlock *> &InstrumentBBs);
551 // Give an edge, find the BB that will be instrumented.
552 // Return nullptr if there is no BB to be instrumented.
553 BasicBlock *getInstrBB(Edge *E);
555 // Return the auxiliary BB information.
556 BBInfo &getBBInfo(const BasicBlock *BB) const { return MST.getBBInfo(BB); }
558 // Return the auxiliary BB information if available.
559 BBInfo *findBBInfo(const BasicBlock *BB) const { return MST.findBBInfo(BB); }
561 // Dump edges and BB information.
562 void dumpInfo(StringRef Str = "") const {
563 MST.dumpEdges(dbgs(), Twine("Dump Function ") + FuncName +
564 " Hash: " + Twine(FunctionHash) + "\t" + Str);
567 FuncPGOInstrumentation(
568 Function &Func, TargetLibraryInfo &TLI,
569 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
570 bool CreateGlobalVar = false, BranchProbabilityInfo *BPI = nullptr,
571 BlockFrequencyInfo *BFI = nullptr, bool IsCS = false,
572 bool InstrumentFuncEntry = true, bool HasSingleByteCoverage = false)
573 : F(Func), IsCS(IsCS), ComdatMembers(ComdatMembers), VPC(Func, TLI),
574 TLI(TLI), ValueSites(IPVK_Last + 1),
575 SIVisitor(Func, HasSingleByteCoverage),
576 MST(F, InstrumentFuncEntry, BPI, BFI),
577 BCI(constructBCI(Func, HasSingleByteCoverage, InstrumentFuncEntry)) {
578 if (BCI && PGOViewBlockCoverageGraph)
579 BCI->viewBlockCoverageGraph();
580 // This should be done before CFG hash computation.
581 SIVisitor.countSelects();
582 ValueSites[IPVK_MemOPSize] = VPC.get(IPVK_MemOPSize);
583 if (!IsCS) {
584 NumOfPGOSelectInsts += SIVisitor.getNumOfSelectInsts();
585 NumOfPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size();
586 NumOfPGOBB += MST.BBInfos.size();
587 ValueSites[IPVK_IndirectCallTarget] = VPC.get(IPVK_IndirectCallTarget);
588 } else {
589 NumOfCSPGOSelectInsts += SIVisitor.getNumOfSelectInsts();
590 NumOfCSPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size();
591 NumOfCSPGOBB += MST.BBInfos.size();
594 FuncName = getIRPGOFuncName(F);
595 DeprecatedFuncName = getPGOFuncName(F);
596 computeCFGHash();
597 if (!ComdatMembers.empty())
598 renameComdatFunction();
599 LLVM_DEBUG(dumpInfo("after CFGMST"));
601 for (auto &E : MST.AllEdges) {
602 if (E->Removed)
603 continue;
604 IsCS ? NumOfCSPGOEdge++ : NumOfPGOEdge++;
605 if (!E->InMST)
606 IsCS ? NumOfCSPGOInstrument++ : NumOfPGOInstrument++;
609 if (CreateGlobalVar)
610 FuncNameVar = createPGOFuncNameVar(F, FuncName);
614 } // end anonymous namespace
616 // Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
617 // value of each BB in the CFG. The higher 32 bits are the CRC32 of the numbers
618 // of selects, indirect calls, mem ops and edges.
619 template <class Edge, class BBInfo>
620 void FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash() {
621 std::vector<uint8_t> Indexes;
622 JamCRC JC;
623 for (auto &BB : F) {
624 const Instruction *TI = BB.getTerminator();
625 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
626 BasicBlock *Succ = TI->getSuccessor(I);
627 auto BI = findBBInfo(Succ);
628 if (BI == nullptr)
629 continue;
630 uint32_t Index = BI->Index;
631 for (int J = 0; J < 4; J++)
632 Indexes.push_back((uint8_t)(Index >> (J * 8)));
635 JC.update(Indexes);
637 JamCRC JCH;
638 if (PGOOldCFGHashing) {
639 // Hash format for context sensitive profile. Reserve 4 bits for other
640 // information.
641 FunctionHash = (uint64_t)SIVisitor.getNumOfSelectInsts() << 56 |
642 (uint64_t)ValueSites[IPVK_IndirectCallTarget].size() << 48 |
643 //(uint64_t)ValueSites[IPVK_MemOPSize].size() << 40 |
644 (uint64_t)MST.AllEdges.size() << 32 | JC.getCRC();
645 } else {
646 // The higher 32 bits.
647 auto updateJCH = [&JCH](uint64_t Num) {
648 uint8_t Data[8];
649 support::endian::write64le(Data, Num);
650 JCH.update(Data);
652 updateJCH((uint64_t)SIVisitor.getNumOfSelectInsts());
653 updateJCH((uint64_t)ValueSites[IPVK_IndirectCallTarget].size());
654 updateJCH((uint64_t)ValueSites[IPVK_MemOPSize].size());
655 if (BCI) {
656 updateJCH(BCI->getInstrumentedBlocksHash());
657 } else {
658 updateJCH((uint64_t)MST.AllEdges.size());
661 // Hash format for context sensitive profile. Reserve 4 bits for other
662 // information.
663 FunctionHash = (((uint64_t)JCH.getCRC()) << 28) + JC.getCRC();
666 // Reserve bit 60-63 for other information purpose.
667 FunctionHash &= 0x0FFFFFFFFFFFFFFF;
668 if (IsCS)
669 NamedInstrProfRecord::setCSFlagInHash(FunctionHash);
670 LLVM_DEBUG(dbgs() << "Function Hash Computation for " << F.getName() << ":\n"
671 << " CRC = " << JC.getCRC()
672 << ", Selects = " << SIVisitor.getNumOfSelectInsts()
673 << ", Edges = " << MST.AllEdges.size() << ", ICSites = "
674 << ValueSites[IPVK_IndirectCallTarget].size());
675 if (!PGOOldCFGHashing) {
676 LLVM_DEBUG(dbgs() << ", Memops = " << ValueSites[IPVK_MemOPSize].size()
677 << ", High32 CRC = " << JCH.getCRC());
679 LLVM_DEBUG(dbgs() << ", Hash = " << FunctionHash << "\n";);
681 if (PGOTraceFuncHash != "-" && F.getName().contains(PGOTraceFuncHash))
682 dbgs() << "Funcname=" << F.getName() << ", Hash=" << FunctionHash
683 << " in building " << F.getParent()->getSourceFileName() << "\n";
686 // Check if we can safely rename this Comdat function.
687 static bool canRenameComdat(
688 Function &F,
689 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) {
690 if (!DoComdatRenaming || !canRenameComdatFunc(F, true))
691 return false;
693 // FIXME: Current only handle those Comdat groups that only containing one
694 // function.
695 // (1) For a Comdat group containing multiple functions, we need to have a
696 // unique postfix based on the hashes for each function. There is a
697 // non-trivial code refactoring to do this efficiently.
698 // (2) Variables can not be renamed, so we can not rename Comdat function in a
699 // group including global vars.
700 Comdat *C = F.getComdat();
701 for (auto &&CM : make_range(ComdatMembers.equal_range(C))) {
702 assert(!isa<GlobalAlias>(CM.second));
703 Function *FM = dyn_cast<Function>(CM.second);
704 if (FM != &F)
705 return false;
707 return true;
710 // Append the CFGHash to the Comdat function name.
711 template <class Edge, class BBInfo>
712 void FuncPGOInstrumentation<Edge, BBInfo>::renameComdatFunction() {
713 if (!canRenameComdat(F, ComdatMembers))
714 return;
715 std::string OrigName = F.getName().str();
716 std::string NewFuncName =
717 Twine(F.getName() + "." + Twine(FunctionHash)).str();
718 F.setName(Twine(NewFuncName));
719 GlobalAlias::create(GlobalValue::WeakAnyLinkage, OrigName, &F);
720 FuncName = Twine(FuncName + "." + Twine(FunctionHash)).str();
721 Comdat *NewComdat;
722 Module *M = F.getParent();
723 // For AvailableExternallyLinkage functions, change the linkage to
724 // LinkOnceODR and put them into comdat. This is because after renaming, there
725 // is no backup external copy available for the function.
726 if (!F.hasComdat()) {
727 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
728 NewComdat = M->getOrInsertComdat(StringRef(NewFuncName));
729 F.setLinkage(GlobalValue::LinkOnceODRLinkage);
730 F.setComdat(NewComdat);
731 return;
734 // This function belongs to a single function Comdat group.
735 Comdat *OrigComdat = F.getComdat();
736 std::string NewComdatName =
737 Twine(OrigComdat->getName() + "." + Twine(FunctionHash)).str();
738 NewComdat = M->getOrInsertComdat(StringRef(NewComdatName));
739 NewComdat->setSelectionKind(OrigComdat->getSelectionKind());
741 for (auto &&CM : make_range(ComdatMembers.equal_range(OrigComdat))) {
742 // Must be a function.
743 cast<Function>(CM.second)->setComdat(NewComdat);
747 /// Collect all the BBs that will be instruments and add them to
748 /// `InstrumentBBs`.
749 template <class Edge, class BBInfo>
750 void FuncPGOInstrumentation<Edge, BBInfo>::getInstrumentBBs(
751 std::vector<BasicBlock *> &InstrumentBBs) {
752 if (BCI) {
753 for (auto &BB : F)
754 if (BCI->shouldInstrumentBlock(BB))
755 InstrumentBBs.push_back(&BB);
756 return;
759 // Use a worklist as we will update the vector during the iteration.
760 std::vector<Edge *> EdgeList;
761 EdgeList.reserve(MST.AllEdges.size());
762 for (auto &E : MST.AllEdges)
763 EdgeList.push_back(E.get());
765 for (auto &E : EdgeList) {
766 BasicBlock *InstrBB = getInstrBB(E);
767 if (InstrBB)
768 InstrumentBBs.push_back(InstrBB);
772 // Given a CFG E to be instrumented, find which BB to place the instrumented
773 // code. The function will split the critical edge if necessary.
774 template <class Edge, class BBInfo>
775 BasicBlock *FuncPGOInstrumentation<Edge, BBInfo>::getInstrBB(Edge *E) {
776 if (E->InMST || E->Removed)
777 return nullptr;
779 BasicBlock *SrcBB = E->SrcBB;
780 BasicBlock *DestBB = E->DestBB;
781 // For a fake edge, instrument the real BB.
782 if (SrcBB == nullptr)
783 return DestBB;
784 if (DestBB == nullptr)
785 return SrcBB;
787 auto canInstrument = [](BasicBlock *BB) -> BasicBlock * {
788 // There are basic blocks (such as catchswitch) cannot be instrumented.
789 // If the returned first insertion point is the end of BB, skip this BB.
790 if (BB->getFirstInsertionPt() == BB->end())
791 return nullptr;
792 return BB;
795 // Instrument the SrcBB if it has a single successor,
796 // otherwise, the DestBB if this is not a critical edge.
797 Instruction *TI = SrcBB->getTerminator();
798 if (TI->getNumSuccessors() <= 1)
799 return canInstrument(SrcBB);
800 if (!E->IsCritical)
801 return canInstrument(DestBB);
803 // Some IndirectBr critical edges cannot be split by the previous
804 // SplitIndirectBrCriticalEdges call. Bail out.
805 unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
806 BasicBlock *InstrBB =
807 isa<IndirectBrInst>(TI) ? nullptr : SplitCriticalEdge(TI, SuccNum);
808 if (!InstrBB) {
809 LLVM_DEBUG(
810 dbgs() << "Fail to split critical edge: not instrument this edge.\n");
811 return nullptr;
813 // For a critical edge, we have to split. Instrument the newly
814 // created BB.
815 IsCS ? NumOfCSPGOSplit++ : NumOfPGOSplit++;
816 LLVM_DEBUG(dbgs() << "Split critical edge: " << getBBInfo(SrcBB).Index
817 << " --> " << getBBInfo(DestBB).Index << "\n");
818 // Need to add two new edges. First one: Add new edge of SrcBB->InstrBB.
819 MST.addEdge(SrcBB, InstrBB, 0);
820 // Second one: Add new edge of InstrBB->DestBB.
821 Edge &NewEdge1 = MST.addEdge(InstrBB, DestBB, 0);
822 NewEdge1.InMST = true;
823 E->Removed = true;
825 return canInstrument(InstrBB);
828 // When generating value profiling calls on Windows routines that make use of
829 // handler funclets for exception processing an operand bundle needs to attached
830 // to the called function. This routine will set \p OpBundles to contain the
831 // funclet information, if any is needed, that should be placed on the generated
832 // value profiling call for the value profile candidate call.
833 static void
834 populateEHOperandBundle(VPCandidateInfo &Cand,
835 DenseMap<BasicBlock *, ColorVector> &BlockColors,
836 SmallVectorImpl<OperandBundleDef> &OpBundles) {
837 auto *OrigCall = dyn_cast<CallBase>(Cand.AnnotatedInst);
838 if (!OrigCall)
839 return;
841 if (!isa<IntrinsicInst>(OrigCall)) {
842 // The instrumentation call should belong to the same funclet as a
843 // non-intrinsic call, so just copy the operand bundle, if any exists.
844 std::optional<OperandBundleUse> ParentFunclet =
845 OrigCall->getOperandBundle(LLVMContext::OB_funclet);
846 if (ParentFunclet)
847 OpBundles.emplace_back(OperandBundleDef(*ParentFunclet));
848 } else {
849 // Intrinsics or other instructions do not get funclet information from the
850 // front-end. Need to use the BlockColors that was computed by the routine
851 // colorEHFunclets to determine whether a funclet is needed.
852 if (!BlockColors.empty()) {
853 const ColorVector &CV = BlockColors.find(OrigCall->getParent())->second;
854 assert(CV.size() == 1 && "non-unique color for block!");
855 Instruction *EHPad = CV.front()->getFirstNonPHI();
856 if (EHPad->isEHPad())
857 OpBundles.emplace_back("funclet", EHPad);
862 // Visit all edge and instrument the edges not in MST, and do value profiling.
863 // Critical edges will be split.
864 static void instrumentOneFunc(
865 Function &F, Module *M, TargetLibraryInfo &TLI, BranchProbabilityInfo *BPI,
866 BlockFrequencyInfo *BFI,
867 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
868 bool IsCS) {
869 if (!PGOBlockCoverage) {
870 // Split indirectbr critical edges here before computing the MST rather than
871 // later in getInstrBB() to avoid invalidating it.
872 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/false, BPI, BFI);
875 FuncPGOInstrumentation<PGOEdge, PGOBBInfo> FuncInfo(
876 F, TLI, ComdatMembers, true, BPI, BFI, IsCS, PGOInstrumentEntry,
877 PGOBlockCoverage);
879 Type *I8PtrTy = Type::getInt8PtrTy(M->getContext());
880 auto Name = ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy);
881 auto CFGHash = ConstantInt::get(Type::getInt64Ty(M->getContext()),
882 FuncInfo.FunctionHash);
883 if (PGOFunctionEntryCoverage) {
884 auto &EntryBB = F.getEntryBlock();
885 IRBuilder<> Builder(&EntryBB, EntryBB.getFirstInsertionPt());
886 // llvm.instrprof.cover(i8* <name>, i64 <hash>, i32 <num-counters>,
887 // i32 <index>)
888 Builder.CreateCall(
889 Intrinsic::getDeclaration(M, Intrinsic::instrprof_cover),
890 {Name, CFGHash, Builder.getInt32(1), Builder.getInt32(0)});
891 return;
894 std::vector<BasicBlock *> InstrumentBBs;
895 FuncInfo.getInstrumentBBs(InstrumentBBs);
896 unsigned NumCounters =
897 InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts();
899 uint32_t I = 0;
900 if (PGOTemporalInstrumentation) {
901 NumCounters += PGOBlockCoverage ? 8 : 1;
902 auto &EntryBB = F.getEntryBlock();
903 IRBuilder<> Builder(&EntryBB, EntryBB.getFirstInsertionPt());
904 // llvm.instrprof.timestamp(i8* <name>, i64 <hash>, i32 <num-counters>,
905 // i32 <index>)
906 Builder.CreateCall(
907 Intrinsic::getDeclaration(M, Intrinsic::instrprof_timestamp),
908 {Name, CFGHash, Builder.getInt32(NumCounters), Builder.getInt32(I)});
909 I += PGOBlockCoverage ? 8 : 1;
912 for (auto *InstrBB : InstrumentBBs) {
913 IRBuilder<> Builder(InstrBB, InstrBB->getFirstInsertionPt());
914 assert(Builder.GetInsertPoint() != InstrBB->end() &&
915 "Cannot get the Instrumentation point");
916 // llvm.instrprof.increment(i8* <name>, i64 <hash>, i32 <num-counters>,
917 // i32 <index>)
918 Builder.CreateCall(
919 Intrinsic::getDeclaration(M, PGOBlockCoverage
920 ? Intrinsic::instrprof_cover
921 : Intrinsic::instrprof_increment),
922 {Name, CFGHash, Builder.getInt32(NumCounters), Builder.getInt32(I++)});
925 // Now instrument select instructions:
926 FuncInfo.SIVisitor.instrumentSelects(&I, NumCounters, FuncInfo.FuncNameVar,
927 FuncInfo.FunctionHash);
928 assert(I == NumCounters);
930 if (DisableValueProfiling)
931 return;
933 NumOfPGOICall += FuncInfo.ValueSites[IPVK_IndirectCallTarget].size();
935 // Intrinsic function calls do not have funclet operand bundles needed for
936 // Windows exception handling attached to them. However, if value profiling is
937 // inserted for one of these calls, then a funclet value will need to be set
938 // on the instrumentation call based on the funclet coloring.
939 DenseMap<BasicBlock *, ColorVector> BlockColors;
940 if (F.hasPersonalityFn() &&
941 isFuncletEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
942 BlockColors = colorEHFunclets(F);
944 // For each VP Kind, walk the VP candidates and instrument each one.
945 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
946 unsigned SiteIndex = 0;
947 if (Kind == IPVK_MemOPSize && !PGOInstrMemOP)
948 continue;
950 for (VPCandidateInfo Cand : FuncInfo.ValueSites[Kind]) {
951 LLVM_DEBUG(dbgs() << "Instrument one VP " << ValueProfKindDescr[Kind]
952 << " site: CallSite Index = " << SiteIndex << "\n");
954 IRBuilder<> Builder(Cand.InsertPt);
955 assert(Builder.GetInsertPoint() != Cand.InsertPt->getParent()->end() &&
956 "Cannot get the Instrumentation point");
958 Value *ToProfile = nullptr;
959 if (Cand.V->getType()->isIntegerTy())
960 ToProfile = Builder.CreateZExtOrTrunc(Cand.V, Builder.getInt64Ty());
961 else if (Cand.V->getType()->isPointerTy())
962 ToProfile = Builder.CreatePtrToInt(Cand.V, Builder.getInt64Ty());
963 assert(ToProfile && "value profiling Value is of unexpected type");
965 SmallVector<OperandBundleDef, 1> OpBundles;
966 populateEHOperandBundle(Cand, BlockColors, OpBundles);
967 Builder.CreateCall(
968 Intrinsic::getDeclaration(M, Intrinsic::instrprof_value_profile),
969 {ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy),
970 Builder.getInt64(FuncInfo.FunctionHash), ToProfile,
971 Builder.getInt32(Kind), Builder.getInt32(SiteIndex++)},
972 OpBundles);
974 } // IPVK_First <= Kind <= IPVK_Last
977 namespace {
979 // This class represents a CFG edge in profile use compilation.
980 struct PGOUseEdge : public PGOEdge {
981 using PGOEdge::PGOEdge;
983 bool CountValid = false;
984 uint64_t CountValue = 0;
986 // Set edge count value
987 void setEdgeCount(uint64_t Value) {
988 CountValue = Value;
989 CountValid = true;
992 // Return the information string for this object.
993 std::string infoString() const {
994 if (!CountValid)
995 return PGOEdge::infoString();
996 return (Twine(PGOEdge::infoString()) + " Count=" + Twine(CountValue))
997 .str();
1001 using DirectEdges = SmallVector<PGOUseEdge *, 2>;
1003 // This class stores the auxiliary information for each BB.
1004 struct PGOUseBBInfo : public PGOBBInfo {
1005 uint64_t CountValue = 0;
1006 bool CountValid;
1007 int32_t UnknownCountInEdge = 0;
1008 int32_t UnknownCountOutEdge = 0;
1009 DirectEdges InEdges;
1010 DirectEdges OutEdges;
1012 PGOUseBBInfo(unsigned IX) : PGOBBInfo(IX), CountValid(false) {}
1014 // Set the profile count value for this BB.
1015 void setBBInfoCount(uint64_t Value) {
1016 CountValue = Value;
1017 CountValid = true;
1020 // Return the information string of this object.
1021 std::string infoString() const {
1022 if (!CountValid)
1023 return PGOBBInfo::infoString();
1024 return (Twine(PGOBBInfo::infoString()) + " Count=" + Twine(CountValue))
1025 .str();
1028 // Add an OutEdge and update the edge count.
1029 void addOutEdge(PGOUseEdge *E) {
1030 OutEdges.push_back(E);
1031 UnknownCountOutEdge++;
1034 // Add an InEdge and update the edge count.
1035 void addInEdge(PGOUseEdge *E) {
1036 InEdges.push_back(E);
1037 UnknownCountInEdge++;
1041 } // end anonymous namespace
1043 // Sum up the count values for all the edges.
1044 static uint64_t sumEdgeCount(const ArrayRef<PGOUseEdge *> Edges) {
1045 uint64_t Total = 0;
1046 for (const auto &E : Edges) {
1047 if (E->Removed)
1048 continue;
1049 Total += E->CountValue;
1051 return Total;
1054 namespace {
1056 class PGOUseFunc {
1057 public:
1058 PGOUseFunc(Function &Func, Module *Modu, TargetLibraryInfo &TLI,
1059 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers,
1060 BranchProbabilityInfo *BPI, BlockFrequencyInfo *BFIin,
1061 ProfileSummaryInfo *PSI, bool IsCS, bool InstrumentFuncEntry,
1062 bool HasSingleByteCoverage)
1063 : F(Func), M(Modu), BFI(BFIin), PSI(PSI),
1064 FuncInfo(Func, TLI, ComdatMembers, false, BPI, BFIin, IsCS,
1065 InstrumentFuncEntry, HasSingleByteCoverage),
1066 FreqAttr(FFA_Normal), IsCS(IsCS) {}
1068 void handleInstrProfError(Error Err, uint64_t MismatchedFuncSum);
1070 // Read counts for the instrumented BB from profile.
1071 bool readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros,
1072 InstrProfRecord::CountPseudoKind &PseudoKind);
1074 // Populate the counts for all BBs.
1075 void populateCounters();
1077 // Set block coverage based on profile coverage values.
1078 void populateCoverage(IndexedInstrProfReader *PGOReader);
1080 // Set the branch weights based on the count values.
1081 void setBranchWeights();
1083 // Annotate the value profile call sites for all value kind.
1084 void annotateValueSites();
1086 // Annotate the value profile call sites for one value kind.
1087 void annotateValueSites(uint32_t Kind);
1089 // Annotate the irreducible loop header weights.
1090 void annotateIrrLoopHeaderWeights();
1092 // The hotness of the function from the profile count.
1093 enum FuncFreqAttr { FFA_Normal, FFA_Cold, FFA_Hot };
1095 // Return the function hotness from the profile.
1096 FuncFreqAttr getFuncFreqAttr() const { return FreqAttr; }
1098 // Return the function hash.
1099 uint64_t getFuncHash() const { return FuncInfo.FunctionHash; }
1101 // Return the profile record for this function;
1102 InstrProfRecord &getProfileRecord() { return ProfileRecord; }
1104 // Return the auxiliary BB information.
1105 PGOUseBBInfo &getBBInfo(const BasicBlock *BB) const {
1106 return FuncInfo.getBBInfo(BB);
1109 // Return the auxiliary BB information if available.
1110 PGOUseBBInfo *findBBInfo(const BasicBlock *BB) const {
1111 return FuncInfo.findBBInfo(BB);
1114 Function &getFunc() const { return F; }
1116 void dumpInfo(StringRef Str = "") const { FuncInfo.dumpInfo(Str); }
1118 uint64_t getProgramMaxCount() const { return ProgramMaxCount; }
1120 private:
1121 Function &F;
1122 Module *M;
1123 BlockFrequencyInfo *BFI;
1124 ProfileSummaryInfo *PSI;
1126 // This member stores the shared information with class PGOGenFunc.
1127 FuncPGOInstrumentation<PGOUseEdge, PGOUseBBInfo> FuncInfo;
1129 // The maximum count value in the profile. This is only used in PGO use
1130 // compilation.
1131 uint64_t ProgramMaxCount;
1133 // Position of counter that remains to be read.
1134 uint32_t CountPosition = 0;
1136 // Total size of the profile count for this function.
1137 uint32_t ProfileCountSize = 0;
1139 // ProfileRecord for this function.
1140 InstrProfRecord ProfileRecord;
1142 // Function hotness info derived from profile.
1143 FuncFreqAttr FreqAttr;
1145 // Is to use the context sensitive profile.
1146 bool IsCS;
1148 // Find the Instrumented BB and set the value. Return false on error.
1149 bool setInstrumentedCounts(const std::vector<uint64_t> &CountFromProfile);
1151 // Set the edge counter value for the unknown edge -- there should be only
1152 // one unknown edge.
1153 void setEdgeCount(DirectEdges &Edges, uint64_t Value);
1155 // Set the hot/cold inline hints based on the count values.
1156 // FIXME: This function should be removed once the functionality in
1157 // the inliner is implemented.
1158 void markFunctionAttributes(uint64_t EntryCount, uint64_t MaxCount) {
1159 if (PSI->isHotCount(EntryCount))
1160 FreqAttr = FFA_Hot;
1161 else if (PSI->isColdCount(MaxCount))
1162 FreqAttr = FFA_Cold;
1166 } // end anonymous namespace
1168 /// Set up InEdges/OutEdges for all BBs in the MST.
1169 static void
1170 setupBBInfoEdges(FuncPGOInstrumentation<PGOUseEdge, PGOUseBBInfo> &FuncInfo) {
1171 // This is not required when there is block coverage inference.
1172 if (FuncInfo.BCI)
1173 return;
1174 for (auto &E : FuncInfo.MST.AllEdges) {
1175 if (E->Removed)
1176 continue;
1177 const BasicBlock *SrcBB = E->SrcBB;
1178 const BasicBlock *DestBB = E->DestBB;
1179 PGOUseBBInfo &SrcInfo = FuncInfo.getBBInfo(SrcBB);
1180 PGOUseBBInfo &DestInfo = FuncInfo.getBBInfo(DestBB);
1181 SrcInfo.addOutEdge(E.get());
1182 DestInfo.addInEdge(E.get());
1186 // Visit all the edges and assign the count value for the instrumented
1187 // edges and the BB. Return false on error.
1188 bool PGOUseFunc::setInstrumentedCounts(
1189 const std::vector<uint64_t> &CountFromProfile) {
1191 std::vector<BasicBlock *> InstrumentBBs;
1192 FuncInfo.getInstrumentBBs(InstrumentBBs);
1194 setupBBInfoEdges(FuncInfo);
1196 unsigned NumCounters =
1197 InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts();
1198 // The number of counters here should match the number of counters
1199 // in profile. Return if they mismatch.
1200 if (NumCounters != CountFromProfile.size()) {
1201 return false;
1203 auto *FuncEntry = &*F.begin();
1205 // Set the profile count to the Instrumented BBs.
1206 uint32_t I = 0;
1207 for (BasicBlock *InstrBB : InstrumentBBs) {
1208 uint64_t CountValue = CountFromProfile[I++];
1209 PGOUseBBInfo &Info = getBBInfo(InstrBB);
1210 // If we reach here, we know that we have some nonzero count
1211 // values in this function. The entry count should not be 0.
1212 // Fix it if necessary.
1213 if (InstrBB == FuncEntry && CountValue == 0)
1214 CountValue = 1;
1215 Info.setBBInfoCount(CountValue);
1217 ProfileCountSize = CountFromProfile.size();
1218 CountPosition = I;
1220 // Set the edge count and update the count of unknown edges for BBs.
1221 auto setEdgeCount = [this](PGOUseEdge *E, uint64_t Value) -> void {
1222 E->setEdgeCount(Value);
1223 this->getBBInfo(E->SrcBB).UnknownCountOutEdge--;
1224 this->getBBInfo(E->DestBB).UnknownCountInEdge--;
1227 // Set the profile count the Instrumented edges. There are BBs that not in
1228 // MST but not instrumented. Need to set the edge count value so that we can
1229 // populate the profile counts later.
1230 for (auto &E : FuncInfo.MST.AllEdges) {
1231 if (E->Removed || E->InMST)
1232 continue;
1233 const BasicBlock *SrcBB = E->SrcBB;
1234 PGOUseBBInfo &SrcInfo = getBBInfo(SrcBB);
1236 // If only one out-edge, the edge profile count should be the same as BB
1237 // profile count.
1238 if (SrcInfo.CountValid && SrcInfo.OutEdges.size() == 1)
1239 setEdgeCount(E.get(), SrcInfo.CountValue);
1240 else {
1241 const BasicBlock *DestBB = E->DestBB;
1242 PGOUseBBInfo &DestInfo = getBBInfo(DestBB);
1243 // If only one in-edge, the edge profile count should be the same as BB
1244 // profile count.
1245 if (DestInfo.CountValid && DestInfo.InEdges.size() == 1)
1246 setEdgeCount(E.get(), DestInfo.CountValue);
1248 if (E->CountValid)
1249 continue;
1250 // E's count should have been set from profile. If not, this meenas E skips
1251 // the instrumentation. We set the count to 0.
1252 setEdgeCount(E.get(), 0);
1254 return true;
1257 // Set the count value for the unknown edge. There should be one and only one
1258 // unknown edge in Edges vector.
1259 void PGOUseFunc::setEdgeCount(DirectEdges &Edges, uint64_t Value) {
1260 for (auto &E : Edges) {
1261 if (E->CountValid)
1262 continue;
1263 E->setEdgeCount(Value);
1265 getBBInfo(E->SrcBB).UnknownCountOutEdge--;
1266 getBBInfo(E->DestBB).UnknownCountInEdge--;
1267 return;
1269 llvm_unreachable("Cannot find the unknown count edge");
1272 // Emit function metadata indicating PGO profile mismatch.
1273 static void annotateFunctionWithHashMismatch(Function &F, LLVMContext &ctx) {
1274 const char MetadataName[] = "instr_prof_hash_mismatch";
1275 SmallVector<Metadata *, 2> Names;
1276 // If this metadata already exists, ignore.
1277 auto *Existing = F.getMetadata(LLVMContext::MD_annotation);
1278 if (Existing) {
1279 MDTuple *Tuple = cast<MDTuple>(Existing);
1280 for (const auto &N : Tuple->operands()) {
1281 if (N.equalsStr(MetadataName))
1282 return;
1283 Names.push_back(N.get());
1287 MDBuilder MDB(ctx);
1288 Names.push_back(MDB.createString(MetadataName));
1289 MDNode *MD = MDTuple::get(ctx, Names);
1290 F.setMetadata(LLVMContext::MD_annotation, MD);
1293 void PGOUseFunc::handleInstrProfError(Error Err, uint64_t MismatchedFuncSum) {
1294 handleAllErrors(std::move(Err), [&](const InstrProfError &IPE) {
1295 auto &Ctx = M->getContext();
1296 auto Err = IPE.get();
1297 bool SkipWarning = false;
1298 LLVM_DEBUG(dbgs() << "Error in reading profile for Func "
1299 << FuncInfo.FuncName << ": ");
1300 if (Err == instrprof_error::unknown_function) {
1301 IsCS ? NumOfCSPGOMissing++ : NumOfPGOMissing++;
1302 SkipWarning = !PGOWarnMissing;
1303 LLVM_DEBUG(dbgs() << "unknown function");
1304 } else if (Err == instrprof_error::hash_mismatch ||
1305 Err == instrprof_error::malformed) {
1306 IsCS ? NumOfCSPGOMismatch++ : NumOfPGOMismatch++;
1307 SkipWarning =
1308 NoPGOWarnMismatch ||
1309 (NoPGOWarnMismatchComdatWeak &&
1310 (F.hasComdat() || F.getLinkage() == GlobalValue::WeakAnyLinkage ||
1311 F.getLinkage() == GlobalValue::AvailableExternallyLinkage));
1312 LLVM_DEBUG(dbgs() << "hash mismatch (hash= " << FuncInfo.FunctionHash
1313 << " skip=" << SkipWarning << ")");
1314 // Emit function metadata indicating PGO profile mismatch.
1315 annotateFunctionWithHashMismatch(F, M->getContext());
1318 LLVM_DEBUG(dbgs() << " IsCS=" << IsCS << "\n");
1319 if (SkipWarning)
1320 return;
1322 std::string Msg =
1323 IPE.message() + std::string(" ") + F.getName().str() +
1324 std::string(" Hash = ") + std::to_string(FuncInfo.FunctionHash) +
1325 std::string(" up to ") + std::to_string(MismatchedFuncSum) +
1326 std::string(" count discarded");
1328 Ctx.diagnose(
1329 DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning));
1333 // Read the profile from ProfileFileName and assign the value to the
1334 // instrumented BB and the edges. This function also updates ProgramMaxCount.
1335 // Return true if the profile are successfully read, and false on errors.
1336 bool PGOUseFunc::readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros,
1337 InstrProfRecord::CountPseudoKind &PseudoKind) {
1338 auto &Ctx = M->getContext();
1339 uint64_t MismatchedFuncSum = 0;
1340 Expected<InstrProfRecord> Result = PGOReader->getInstrProfRecord(
1341 FuncInfo.FuncName, FuncInfo.FunctionHash, FuncInfo.DeprecatedFuncName,
1342 &MismatchedFuncSum);
1343 if (Error E = Result.takeError()) {
1344 handleInstrProfError(std::move(E), MismatchedFuncSum);
1345 return false;
1347 ProfileRecord = std::move(Result.get());
1348 PseudoKind = ProfileRecord.getCountPseudoKind();
1349 if (PseudoKind != InstrProfRecord::NotPseudo) {
1350 return true;
1352 std::vector<uint64_t> &CountFromProfile = ProfileRecord.Counts;
1354 IsCS ? NumOfCSPGOFunc++ : NumOfPGOFunc++;
1355 LLVM_DEBUG(dbgs() << CountFromProfile.size() << " counts\n");
1357 uint64_t ValueSum = 0;
1358 for (unsigned I = 0, S = CountFromProfile.size(); I < S; I++) {
1359 LLVM_DEBUG(dbgs() << " " << I << ": " << CountFromProfile[I] << "\n");
1360 ValueSum += CountFromProfile[I];
1362 AllZeros = (ValueSum == 0);
1364 LLVM_DEBUG(dbgs() << "SUM = " << ValueSum << "\n");
1366 getBBInfo(nullptr).UnknownCountOutEdge = 2;
1367 getBBInfo(nullptr).UnknownCountInEdge = 2;
1369 if (!setInstrumentedCounts(CountFromProfile)) {
1370 LLVM_DEBUG(
1371 dbgs() << "Inconsistent number of counts, skipping this function");
1372 Ctx.diagnose(DiagnosticInfoPGOProfile(
1373 M->getName().data(),
1374 Twine("Inconsistent number of counts in ") + F.getName().str() +
1375 Twine(": the profile may be stale or there is a function name "
1376 "collision."),
1377 DS_Warning));
1378 return false;
1380 ProgramMaxCount = PGOReader->getMaximumFunctionCount(IsCS);
1381 return true;
1384 void PGOUseFunc::populateCoverage(IndexedInstrProfReader *PGOReader) {
1385 uint64_t MismatchedFuncSum = 0;
1386 Expected<InstrProfRecord> Result = PGOReader->getInstrProfRecord(
1387 FuncInfo.FuncName, FuncInfo.FunctionHash, FuncInfo.DeprecatedFuncName,
1388 &MismatchedFuncSum);
1389 if (auto Err = Result.takeError()) {
1390 handleInstrProfError(std::move(Err), MismatchedFuncSum);
1391 return;
1394 std::vector<uint64_t> &CountsFromProfile = Result.get().Counts;
1395 DenseMap<const BasicBlock *, bool> Coverage;
1396 unsigned Index = 0;
1397 for (auto &BB : F)
1398 if (FuncInfo.BCI->shouldInstrumentBlock(BB))
1399 Coverage[&BB] = (CountsFromProfile[Index++] != 0);
1400 assert(Index == CountsFromProfile.size());
1402 // For each B in InverseDependencies[A], if A is covered then B is covered.
1403 DenseMap<const BasicBlock *, DenseSet<const BasicBlock *>>
1404 InverseDependencies;
1405 for (auto &BB : F) {
1406 for (auto *Dep : FuncInfo.BCI->getDependencies(BB)) {
1407 // If Dep is covered then BB is covered.
1408 InverseDependencies[Dep].insert(&BB);
1412 // Infer coverage of the non-instrumented blocks using a flood-fill algorithm.
1413 std::stack<const BasicBlock *> CoveredBlocksToProcess;
1414 for (auto &[BB, IsCovered] : Coverage)
1415 if (IsCovered)
1416 CoveredBlocksToProcess.push(BB);
1418 while (!CoveredBlocksToProcess.empty()) {
1419 auto *CoveredBlock = CoveredBlocksToProcess.top();
1420 assert(Coverage[CoveredBlock]);
1421 CoveredBlocksToProcess.pop();
1422 for (auto *BB : InverseDependencies[CoveredBlock]) {
1423 // If CoveredBlock is covered then BB is covered.
1424 if (Coverage[BB])
1425 continue;
1426 Coverage[BB] = true;
1427 CoveredBlocksToProcess.push(BB);
1431 // Annotate block coverage.
1432 MDBuilder MDB(F.getContext());
1433 // We set the entry count to 10000 if the entry block is covered so that BFI
1434 // can propagate a fraction of this count to the other covered blocks.
1435 F.setEntryCount(Coverage[&F.getEntryBlock()] ? 10000 : 0);
1436 for (auto &BB : F) {
1437 // For a block A and its successor B, we set the edge weight as follows:
1438 // If A is covered and B is covered, set weight=1.
1439 // If A is covered and B is uncovered, set weight=0.
1440 // If A is uncovered, set weight=1.
1441 // This setup will allow BFI to give nonzero profile counts to only covered
1442 // blocks.
1443 SmallVector<unsigned, 4> Weights;
1444 for (auto *Succ : successors(&BB))
1445 Weights.push_back((Coverage[Succ] || !Coverage[&BB]) ? 1 : 0);
1446 if (Weights.size() >= 2)
1447 BB.getTerminator()->setMetadata(LLVMContext::MD_prof,
1448 MDB.createBranchWeights(Weights));
1451 unsigned NumCorruptCoverage = 0;
1452 DominatorTree DT(F);
1453 LoopInfo LI(DT);
1454 BranchProbabilityInfo BPI(F, LI);
1455 BlockFrequencyInfo BFI(F, BPI, LI);
1456 auto IsBlockDead = [&](const BasicBlock &BB) -> std::optional<bool> {
1457 if (auto C = BFI.getBlockProfileCount(&BB))
1458 return C == 0;
1459 return {};
1461 LLVM_DEBUG(dbgs() << "Block Coverage: (Instrumented=*, Covered=X)\n");
1462 for (auto &BB : F) {
1463 LLVM_DEBUG(dbgs() << (FuncInfo.BCI->shouldInstrumentBlock(BB) ? "* " : " ")
1464 << (Coverage[&BB] ? "X " : " ") << " " << BB.getName()
1465 << "\n");
1466 // In some cases it is possible to find a covered block that has no covered
1467 // successors, e.g., when a block calls a function that may call exit(). In
1468 // those cases, BFI could find its successor to be covered while BCI could
1469 // find its successor to be dead.
1470 if (Coverage[&BB] == IsBlockDead(BB).value_or(false)) {
1471 LLVM_DEBUG(
1472 dbgs() << "Found inconsistent block covearge for " << BB.getName()
1473 << ": BCI=" << (Coverage[&BB] ? "Covered" : "Dead") << " BFI="
1474 << (IsBlockDead(BB).value() ? "Dead" : "Covered") << "\n");
1475 ++NumCorruptCoverage;
1477 if (Coverage[&BB])
1478 ++NumCoveredBlocks;
1480 if (PGOVerifyBFI && NumCorruptCoverage) {
1481 auto &Ctx = M->getContext();
1482 Ctx.diagnose(DiagnosticInfoPGOProfile(
1483 M->getName().data(),
1484 Twine("Found inconsistent block coverage for function ") + F.getName() +
1485 " in " + Twine(NumCorruptCoverage) + " blocks.",
1486 DS_Warning));
1488 if (PGOViewBlockCoverageGraph)
1489 FuncInfo.BCI->viewBlockCoverageGraph(&Coverage);
1492 // Populate the counters from instrumented BBs to all BBs.
1493 // In the end of this operation, all BBs should have a valid count value.
1494 void PGOUseFunc::populateCounters() {
1495 bool Changes = true;
1496 unsigned NumPasses = 0;
1497 while (Changes) {
1498 NumPasses++;
1499 Changes = false;
1501 // For efficient traversal, it's better to start from the end as most
1502 // of the instrumented edges are at the end.
1503 for (auto &BB : reverse(F)) {
1504 PGOUseBBInfo *Count = findBBInfo(&BB);
1505 if (Count == nullptr)
1506 continue;
1507 if (!Count->CountValid) {
1508 if (Count->UnknownCountOutEdge == 0) {
1509 Count->CountValue = sumEdgeCount(Count->OutEdges);
1510 Count->CountValid = true;
1511 Changes = true;
1512 } else if (Count->UnknownCountInEdge == 0) {
1513 Count->CountValue = sumEdgeCount(Count->InEdges);
1514 Count->CountValid = true;
1515 Changes = true;
1518 if (Count->CountValid) {
1519 if (Count->UnknownCountOutEdge == 1) {
1520 uint64_t Total = 0;
1521 uint64_t OutSum = sumEdgeCount(Count->OutEdges);
1522 // If the one of the successor block can early terminate (no-return),
1523 // we can end up with situation where out edge sum count is larger as
1524 // the source BB's count is collected by a post-dominated block.
1525 if (Count->CountValue > OutSum)
1526 Total = Count->CountValue - OutSum;
1527 setEdgeCount(Count->OutEdges, Total);
1528 Changes = true;
1530 if (Count->UnknownCountInEdge == 1) {
1531 uint64_t Total = 0;
1532 uint64_t InSum = sumEdgeCount(Count->InEdges);
1533 if (Count->CountValue > InSum)
1534 Total = Count->CountValue - InSum;
1535 setEdgeCount(Count->InEdges, Total);
1536 Changes = true;
1542 LLVM_DEBUG(dbgs() << "Populate counts in " << NumPasses << " passes.\n");
1543 (void)NumPasses;
1544 #ifndef NDEBUG
1545 // Assert every BB has a valid counter.
1546 for (auto &BB : F) {
1547 auto BI = findBBInfo(&BB);
1548 if (BI == nullptr)
1549 continue;
1550 assert(BI->CountValid && "BB count is not valid");
1552 #endif
1553 uint64_t FuncEntryCount = getBBInfo(&*F.begin()).CountValue;
1554 uint64_t FuncMaxCount = FuncEntryCount;
1555 for (auto &BB : F) {
1556 auto BI = findBBInfo(&BB);
1557 if (BI == nullptr)
1558 continue;
1559 FuncMaxCount = std::max(FuncMaxCount, BI->CountValue);
1562 // Fix the obviously inconsistent entry count.
1563 if (FuncMaxCount > 0 && FuncEntryCount == 0)
1564 FuncEntryCount = 1;
1565 F.setEntryCount(ProfileCount(FuncEntryCount, Function::PCT_Real));
1566 markFunctionAttributes(FuncEntryCount, FuncMaxCount);
1568 // Now annotate select instructions
1569 FuncInfo.SIVisitor.annotateSelects(this, &CountPosition);
1570 assert(CountPosition == ProfileCountSize);
1572 LLVM_DEBUG(FuncInfo.dumpInfo("after reading profile."));
1575 // Assign the scaled count values to the BB with multiple out edges.
1576 void PGOUseFunc::setBranchWeights() {
1577 // Generate MD_prof metadata for every branch instruction.
1578 LLVM_DEBUG(dbgs() << "\nSetting branch weights for func " << F.getName()
1579 << " IsCS=" << IsCS << "\n");
1580 for (auto &BB : F) {
1581 Instruction *TI = BB.getTerminator();
1582 if (TI->getNumSuccessors() < 2)
1583 continue;
1584 if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
1585 isa<IndirectBrInst>(TI) || isa<InvokeInst>(TI) ||
1586 isa<CallBrInst>(TI)))
1587 continue;
1589 if (getBBInfo(&BB).CountValue == 0)
1590 continue;
1592 // We have a non-zero Branch BB.
1593 const PGOUseBBInfo &BBCountInfo = getBBInfo(&BB);
1594 unsigned Size = BBCountInfo.OutEdges.size();
1595 SmallVector<uint64_t, 2> EdgeCounts(Size, 0);
1596 uint64_t MaxCount = 0;
1597 for (unsigned s = 0; s < Size; s++) {
1598 const PGOUseEdge *E = BBCountInfo.OutEdges[s];
1599 const BasicBlock *SrcBB = E->SrcBB;
1600 const BasicBlock *DestBB = E->DestBB;
1601 if (DestBB == nullptr)
1602 continue;
1603 unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB);
1604 uint64_t EdgeCount = E->CountValue;
1605 if (EdgeCount > MaxCount)
1606 MaxCount = EdgeCount;
1607 EdgeCounts[SuccNum] = EdgeCount;
1610 if (MaxCount)
1611 setProfMetadata(M, TI, EdgeCounts, MaxCount);
1612 else {
1613 // A zero MaxCount can come about when we have a BB with a positive
1614 // count, and whose successor blocks all have 0 count. This can happen
1615 // when there is no exit block and the code exits via a noreturn function.
1616 auto &Ctx = M->getContext();
1617 Ctx.diagnose(DiagnosticInfoPGOProfile(
1618 M->getName().data(),
1619 Twine("Profile in ") + F.getName().str() +
1620 Twine(" partially ignored") +
1621 Twine(", possibly due to the lack of a return path."),
1622 DS_Warning));
1627 static bool isIndirectBrTarget(BasicBlock *BB) {
1628 for (BasicBlock *Pred : predecessors(BB)) {
1629 if (isa<IndirectBrInst>(Pred->getTerminator()))
1630 return true;
1632 return false;
1635 void PGOUseFunc::annotateIrrLoopHeaderWeights() {
1636 LLVM_DEBUG(dbgs() << "\nAnnotating irreducible loop header weights.\n");
1637 // Find irr loop headers
1638 for (auto &BB : F) {
1639 // As a heuristic also annotate indrectbr targets as they have a high chance
1640 // to become an irreducible loop header after the indirectbr tail
1641 // duplication.
1642 if (BFI->isIrrLoopHeader(&BB) || isIndirectBrTarget(&BB)) {
1643 Instruction *TI = BB.getTerminator();
1644 const PGOUseBBInfo &BBCountInfo = getBBInfo(&BB);
1645 setIrrLoopHeaderMetadata(M, TI, BBCountInfo.CountValue);
1650 void SelectInstVisitor::instrumentOneSelectInst(SelectInst &SI) {
1651 Module *M = F.getParent();
1652 IRBuilder<> Builder(&SI);
1653 Type *Int64Ty = Builder.getInt64Ty();
1654 Type *I8PtrTy = Builder.getInt8PtrTy();
1655 auto *Step = Builder.CreateZExt(SI.getCondition(), Int64Ty);
1656 Builder.CreateCall(
1657 Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment_step),
1658 {ConstantExpr::getBitCast(FuncNameVar, I8PtrTy),
1659 Builder.getInt64(FuncHash), Builder.getInt32(TotalNumCtrs),
1660 Builder.getInt32(*CurCtrIdx), Step});
1661 ++(*CurCtrIdx);
1664 void SelectInstVisitor::annotateOneSelectInst(SelectInst &SI) {
1665 std::vector<uint64_t> &CountFromProfile = UseFunc->getProfileRecord().Counts;
1666 assert(*CurCtrIdx < CountFromProfile.size() &&
1667 "Out of bound access of counters");
1668 uint64_t SCounts[2];
1669 SCounts[0] = CountFromProfile[*CurCtrIdx]; // True count
1670 ++(*CurCtrIdx);
1671 uint64_t TotalCount = 0;
1672 auto BI = UseFunc->findBBInfo(SI.getParent());
1673 if (BI != nullptr)
1674 TotalCount = BI->CountValue;
1675 // False Count
1676 SCounts[1] = (TotalCount > SCounts[0] ? TotalCount - SCounts[0] : 0);
1677 uint64_t MaxCount = std::max(SCounts[0], SCounts[1]);
1678 if (MaxCount)
1679 setProfMetadata(F.getParent(), &SI, SCounts, MaxCount);
1682 void SelectInstVisitor::visitSelectInst(SelectInst &SI) {
1683 if (!PGOInstrSelect || PGOFunctionEntryCoverage || HasSingleByteCoverage)
1684 return;
1685 // FIXME: do not handle this yet.
1686 if (SI.getCondition()->getType()->isVectorTy())
1687 return;
1689 switch (Mode) {
1690 case VM_counting:
1691 NSIs++;
1692 return;
1693 case VM_instrument:
1694 instrumentOneSelectInst(SI);
1695 return;
1696 case VM_annotate:
1697 annotateOneSelectInst(SI);
1698 return;
1701 llvm_unreachable("Unknown visiting mode");
1704 // Traverse all valuesites and annotate the instructions for all value kind.
1705 void PGOUseFunc::annotateValueSites() {
1706 if (DisableValueProfiling)
1707 return;
1709 // Create the PGOFuncName meta data.
1710 createPGOFuncNameMetadata(F, FuncInfo.FuncName);
1712 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
1713 annotateValueSites(Kind);
1716 // Annotate the instructions for a specific value kind.
1717 void PGOUseFunc::annotateValueSites(uint32_t Kind) {
1718 assert(Kind <= IPVK_Last);
1719 unsigned ValueSiteIndex = 0;
1720 auto &ValueSites = FuncInfo.ValueSites[Kind];
1721 unsigned NumValueSites = ProfileRecord.getNumValueSites(Kind);
1722 if (NumValueSites != ValueSites.size()) {
1723 auto &Ctx = M->getContext();
1724 Ctx.diagnose(DiagnosticInfoPGOProfile(
1725 M->getName().data(),
1726 Twine("Inconsistent number of value sites for ") +
1727 Twine(ValueProfKindDescr[Kind]) + Twine(" profiling in \"") +
1728 F.getName().str() +
1729 Twine("\", possibly due to the use of a stale profile."),
1730 DS_Warning));
1731 return;
1734 for (VPCandidateInfo &I : ValueSites) {
1735 LLVM_DEBUG(dbgs() << "Read one value site profile (kind = " << Kind
1736 << "): Index = " << ValueSiteIndex << " out of "
1737 << NumValueSites << "\n");
1738 annotateValueSite(*M, *I.AnnotatedInst, ProfileRecord,
1739 static_cast<InstrProfValueKind>(Kind), ValueSiteIndex,
1740 Kind == IPVK_MemOPSize ? MaxNumMemOPAnnotations
1741 : MaxNumAnnotations);
1742 ValueSiteIndex++;
1746 // Collect the set of members for each Comdat in module M and store
1747 // in ComdatMembers.
1748 static void collectComdatMembers(
1749 Module &M,
1750 std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) {
1751 if (!DoComdatRenaming)
1752 return;
1753 for (Function &F : M)
1754 if (Comdat *C = F.getComdat())
1755 ComdatMembers.insert(std::make_pair(C, &F));
1756 for (GlobalVariable &GV : M.globals())
1757 if (Comdat *C = GV.getComdat())
1758 ComdatMembers.insert(std::make_pair(C, &GV));
1759 for (GlobalAlias &GA : M.aliases())
1760 if (Comdat *C = GA.getComdat())
1761 ComdatMembers.insert(std::make_pair(C, &GA));
1764 // Don't perform PGO instrumeatnion / profile-use.
1765 static bool skipPGO(const Function &F) {
1766 if (F.isDeclaration())
1767 return true;
1768 if (F.hasFnAttribute(llvm::Attribute::NoProfile))
1769 return true;
1770 if (F.hasFnAttribute(llvm::Attribute::SkipProfile))
1771 return true;
1772 if (F.getInstructionCount() < PGOFunctionSizeThreshold)
1773 return true;
1775 // If there are too many critical edges, PGO might cause
1776 // compiler time problem. Skip PGO if the number of
1777 // critical edges execeed the threshold.
1778 unsigned NumCriticalEdges = 0;
1779 for (auto &BB : F) {
1780 const Instruction *TI = BB.getTerminator();
1781 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
1782 if (isCriticalEdge(TI, I))
1783 NumCriticalEdges++;
1786 if (NumCriticalEdges > PGOFunctionCriticalEdgeThreshold) {
1787 LLVM_DEBUG(dbgs() << "In func " << F.getName()
1788 << ", NumCriticalEdges=" << NumCriticalEdges
1789 << " exceed the threshold. Skip PGO.\n");
1790 return true;
1793 return false;
1796 static bool InstrumentAllFunctions(
1797 Module &M, function_ref<TargetLibraryInfo &(Function &)> LookupTLI,
1798 function_ref<BranchProbabilityInfo *(Function &)> LookupBPI,
1799 function_ref<BlockFrequencyInfo *(Function &)> LookupBFI, bool IsCS) {
1800 // For the context-sensitve instrumentation, we should have a separated pass
1801 // (before LTO/ThinLTO linking) to create these variables.
1802 if (!IsCS)
1803 createIRLevelProfileFlagVar(M, /*IsCS=*/false);
1804 std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers;
1805 collectComdatMembers(M, ComdatMembers);
1807 for (auto &F : M) {
1808 if (skipPGO(F))
1809 continue;
1810 auto &TLI = LookupTLI(F);
1811 auto *BPI = LookupBPI(F);
1812 auto *BFI = LookupBFI(F);
1813 instrumentOneFunc(F, &M, TLI, BPI, BFI, ComdatMembers, IsCS);
1815 return true;
1818 PreservedAnalyses
1819 PGOInstrumentationGenCreateVar::run(Module &M, ModuleAnalysisManager &MAM) {
1820 createProfileFileNameVar(M, CSInstrName);
1821 // The variable in a comdat may be discarded by LTO. Ensure the declaration
1822 // will be retained.
1823 appendToCompilerUsed(M, createIRLevelProfileFlagVar(M, /*IsCS=*/true));
1824 PreservedAnalyses PA;
1825 PA.preserve<FunctionAnalysisManagerModuleProxy>();
1826 PA.preserveSet<AllAnalysesOn<Function>>();
1827 return PA;
1830 PreservedAnalyses PGOInstrumentationGen::run(Module &M,
1831 ModuleAnalysisManager &MAM) {
1832 auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1833 auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
1834 return FAM.getResult<TargetLibraryAnalysis>(F);
1836 auto LookupBPI = [&FAM](Function &F) {
1837 return &FAM.getResult<BranchProbabilityAnalysis>(F);
1839 auto LookupBFI = [&FAM](Function &F) {
1840 return &FAM.getResult<BlockFrequencyAnalysis>(F);
1843 if (!InstrumentAllFunctions(M, LookupTLI, LookupBPI, LookupBFI, IsCS))
1844 return PreservedAnalyses::all();
1846 return PreservedAnalyses::none();
1849 // Using the ratio b/w sums of profile count values and BFI count values to
1850 // adjust the func entry count.
1851 static void fixFuncEntryCount(PGOUseFunc &Func, LoopInfo &LI,
1852 BranchProbabilityInfo &NBPI) {
1853 Function &F = Func.getFunc();
1854 BlockFrequencyInfo NBFI(F, NBPI, LI);
1855 #ifndef NDEBUG
1856 auto BFIEntryCount = F.getEntryCount();
1857 assert(BFIEntryCount && (BFIEntryCount->getCount() > 0) &&
1858 "Invalid BFI Entrycount");
1859 #endif
1860 auto SumCount = APFloat::getZero(APFloat::IEEEdouble());
1861 auto SumBFICount = APFloat::getZero(APFloat::IEEEdouble());
1862 for (auto &BBI : F) {
1863 uint64_t CountValue = 0;
1864 uint64_t BFICountValue = 0;
1865 if (!Func.findBBInfo(&BBI))
1866 continue;
1867 auto BFICount = NBFI.getBlockProfileCount(&BBI);
1868 CountValue = Func.getBBInfo(&BBI).CountValue;
1869 BFICountValue = *BFICount;
1870 SumCount.add(APFloat(CountValue * 1.0), APFloat::rmNearestTiesToEven);
1871 SumBFICount.add(APFloat(BFICountValue * 1.0), APFloat::rmNearestTiesToEven);
1873 if (SumCount.isZero())
1874 return;
1876 assert(SumBFICount.compare(APFloat(0.0)) == APFloat::cmpGreaterThan &&
1877 "Incorrect sum of BFI counts");
1878 if (SumBFICount.compare(SumCount) == APFloat::cmpEqual)
1879 return;
1880 double Scale = (SumCount / SumBFICount).convertToDouble();
1881 if (Scale < 1.001 && Scale > 0.999)
1882 return;
1884 uint64_t FuncEntryCount = Func.getBBInfo(&*F.begin()).CountValue;
1885 uint64_t NewEntryCount = 0.5 + FuncEntryCount * Scale;
1886 if (NewEntryCount == 0)
1887 NewEntryCount = 1;
1888 if (NewEntryCount != FuncEntryCount) {
1889 F.setEntryCount(ProfileCount(NewEntryCount, Function::PCT_Real));
1890 LLVM_DEBUG(dbgs() << "FixFuncEntryCount: in " << F.getName()
1891 << ", entry_count " << FuncEntryCount << " --> "
1892 << NewEntryCount << "\n");
1896 // Compare the profile count values with BFI count values, and print out
1897 // the non-matching ones.
1898 static void verifyFuncBFI(PGOUseFunc &Func, LoopInfo &LI,
1899 BranchProbabilityInfo &NBPI,
1900 uint64_t HotCountThreshold,
1901 uint64_t ColdCountThreshold) {
1902 Function &F = Func.getFunc();
1903 BlockFrequencyInfo NBFI(F, NBPI, LI);
1904 // bool PrintFunc = false;
1905 bool HotBBOnly = PGOVerifyHotBFI;
1906 StringRef Msg;
1907 OptimizationRemarkEmitter ORE(&F);
1909 unsigned BBNum = 0, BBMisMatchNum = 0, NonZeroBBNum = 0;
1910 for (auto &BBI : F) {
1911 uint64_t CountValue = 0;
1912 uint64_t BFICountValue = 0;
1914 if (Func.getBBInfo(&BBI).CountValid)
1915 CountValue = Func.getBBInfo(&BBI).CountValue;
1917 BBNum++;
1918 if (CountValue)
1919 NonZeroBBNum++;
1920 auto BFICount = NBFI.getBlockProfileCount(&BBI);
1921 if (BFICount)
1922 BFICountValue = *BFICount;
1924 if (HotBBOnly) {
1925 bool rawIsHot = CountValue >= HotCountThreshold;
1926 bool BFIIsHot = BFICountValue >= HotCountThreshold;
1927 bool rawIsCold = CountValue <= ColdCountThreshold;
1928 bool ShowCount = false;
1929 if (rawIsHot && !BFIIsHot) {
1930 Msg = "raw-Hot to BFI-nonHot";
1931 ShowCount = true;
1932 } else if (rawIsCold && BFIIsHot) {
1933 Msg = "raw-Cold to BFI-Hot";
1934 ShowCount = true;
1936 if (!ShowCount)
1937 continue;
1938 } else {
1939 if ((CountValue < PGOVerifyBFICutoff) &&
1940 (BFICountValue < PGOVerifyBFICutoff))
1941 continue;
1942 uint64_t Diff = (BFICountValue >= CountValue)
1943 ? BFICountValue - CountValue
1944 : CountValue - BFICountValue;
1945 if (Diff <= CountValue / 100 * PGOVerifyBFIRatio)
1946 continue;
1948 BBMisMatchNum++;
1950 ORE.emit([&]() {
1951 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "bfi-verify",
1952 F.getSubprogram(), &BBI);
1953 Remark << "BB " << ore::NV("Block", BBI.getName())
1954 << " Count=" << ore::NV("Count", CountValue)
1955 << " BFI_Count=" << ore::NV("Count", BFICountValue);
1956 if (!Msg.empty())
1957 Remark << " (" << Msg << ")";
1958 return Remark;
1961 if (BBMisMatchNum)
1962 ORE.emit([&]() {
1963 return OptimizationRemarkAnalysis(DEBUG_TYPE, "bfi-verify",
1964 F.getSubprogram(), &F.getEntryBlock())
1965 << "In Func " << ore::NV("Function", F.getName())
1966 << ": Num_of_BB=" << ore::NV("Count", BBNum)
1967 << ", Num_of_non_zerovalue_BB=" << ore::NV("Count", NonZeroBBNum)
1968 << ", Num_of_mis_matching_BB=" << ore::NV("Count", BBMisMatchNum);
1972 static bool annotateAllFunctions(
1973 Module &M, StringRef ProfileFileName, StringRef ProfileRemappingFileName,
1974 vfs::FileSystem &FS,
1975 function_ref<TargetLibraryInfo &(Function &)> LookupTLI,
1976 function_ref<BranchProbabilityInfo *(Function &)> LookupBPI,
1977 function_ref<BlockFrequencyInfo *(Function &)> LookupBFI,
1978 ProfileSummaryInfo *PSI, bool IsCS) {
1979 LLVM_DEBUG(dbgs() << "Read in profile counters: ");
1980 auto &Ctx = M.getContext();
1981 // Read the counter array from file.
1982 auto ReaderOrErr = IndexedInstrProfReader::create(ProfileFileName, FS,
1983 ProfileRemappingFileName);
1984 if (Error E = ReaderOrErr.takeError()) {
1985 handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) {
1986 Ctx.diagnose(
1987 DiagnosticInfoPGOProfile(ProfileFileName.data(), EI.message()));
1989 return false;
1992 std::unique_ptr<IndexedInstrProfReader> PGOReader =
1993 std::move(ReaderOrErr.get());
1994 if (!PGOReader) {
1995 Ctx.diagnose(DiagnosticInfoPGOProfile(ProfileFileName.data(),
1996 StringRef("Cannot get PGOReader")));
1997 return false;
1999 if (!PGOReader->hasCSIRLevelProfile() && IsCS)
2000 return false;
2002 // TODO: might need to change the warning once the clang option is finalized.
2003 if (!PGOReader->isIRLevelProfile()) {
2004 Ctx.diagnose(DiagnosticInfoPGOProfile(
2005 ProfileFileName.data(), "Not an IR level instrumentation profile"));
2006 return false;
2008 if (PGOReader->functionEntryOnly()) {
2009 Ctx.diagnose(DiagnosticInfoPGOProfile(
2010 ProfileFileName.data(),
2011 "Function entry profiles are not yet supported for optimization"));
2012 return false;
2015 // Add the profile summary (read from the header of the indexed summary) here
2016 // so that we can use it below when reading counters (which checks if the
2017 // function should be marked with a cold or inlinehint attribute).
2018 M.setProfileSummary(PGOReader->getSummary(IsCS).getMD(M.getContext()),
2019 IsCS ? ProfileSummary::PSK_CSInstr
2020 : ProfileSummary::PSK_Instr);
2021 PSI->refresh();
2023 std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers;
2024 collectComdatMembers(M, ComdatMembers);
2025 std::vector<Function *> HotFunctions;
2026 std::vector<Function *> ColdFunctions;
2028 // If the profile marked as always instrument the entry BB, do the
2029 // same. Note this can be overwritten by the internal option in CFGMST.h
2030 bool InstrumentFuncEntry = PGOReader->instrEntryBBEnabled();
2031 if (PGOInstrumentEntry.getNumOccurrences() > 0)
2032 InstrumentFuncEntry = PGOInstrumentEntry;
2033 bool HasSingleByteCoverage = PGOReader->hasSingleByteCoverage();
2034 for (auto &F : M) {
2035 if (skipPGO(F))
2036 continue;
2037 auto &TLI = LookupTLI(F);
2038 auto *BPI = LookupBPI(F);
2039 auto *BFI = LookupBFI(F);
2040 if (!HasSingleByteCoverage) {
2041 // Split indirectbr critical edges here before computing the MST rather
2042 // than later in getInstrBB() to avoid invalidating it.
2043 SplitIndirectBrCriticalEdges(F, /*IgnoreBlocksWithoutPHI=*/false, BPI,
2044 BFI);
2046 PGOUseFunc Func(F, &M, TLI, ComdatMembers, BPI, BFI, PSI, IsCS,
2047 InstrumentFuncEntry, HasSingleByteCoverage);
2048 if (HasSingleByteCoverage) {
2049 Func.populateCoverage(PGOReader.get());
2050 continue;
2052 // When PseudoKind is set to a vaule other than InstrProfRecord::NotPseudo,
2053 // it means the profile for the function is unrepresentative and this
2054 // function is actually hot / warm. We will reset the function hot / cold
2055 // attribute and drop all the profile counters.
2056 InstrProfRecord::CountPseudoKind PseudoKind = InstrProfRecord::NotPseudo;
2057 bool AllZeros = false;
2058 if (!Func.readCounters(PGOReader.get(), AllZeros, PseudoKind))
2059 continue;
2060 if (AllZeros) {
2061 F.setEntryCount(ProfileCount(0, Function::PCT_Real));
2062 if (Func.getProgramMaxCount() != 0)
2063 ColdFunctions.push_back(&F);
2064 continue;
2066 if (PseudoKind != InstrProfRecord::NotPseudo) {
2067 // Clear function attribute cold.
2068 if (F.hasFnAttribute(Attribute::Cold))
2069 F.removeFnAttr(Attribute::Cold);
2070 // Set function attribute as hot.
2071 if (PseudoKind == InstrProfRecord::PseudoHot)
2072 F.addFnAttr(Attribute::Hot);
2073 continue;
2075 Func.populateCounters();
2076 Func.setBranchWeights();
2077 Func.annotateValueSites();
2078 Func.annotateIrrLoopHeaderWeights();
2079 PGOUseFunc::FuncFreqAttr FreqAttr = Func.getFuncFreqAttr();
2080 if (FreqAttr == PGOUseFunc::FFA_Cold)
2081 ColdFunctions.push_back(&F);
2082 else if (FreqAttr == PGOUseFunc::FFA_Hot)
2083 HotFunctions.push_back(&F);
2084 if (PGOViewCounts != PGOVCT_None &&
2085 (ViewBlockFreqFuncName.empty() ||
2086 F.getName().equals(ViewBlockFreqFuncName))) {
2087 LoopInfo LI{DominatorTree(F)};
2088 std::unique_ptr<BranchProbabilityInfo> NewBPI =
2089 std::make_unique<BranchProbabilityInfo>(F, LI);
2090 std::unique_ptr<BlockFrequencyInfo> NewBFI =
2091 std::make_unique<BlockFrequencyInfo>(F, *NewBPI, LI);
2092 if (PGOViewCounts == PGOVCT_Graph)
2093 NewBFI->view();
2094 else if (PGOViewCounts == PGOVCT_Text) {
2095 dbgs() << "pgo-view-counts: " << Func.getFunc().getName() << "\n";
2096 NewBFI->print(dbgs());
2099 if (PGOViewRawCounts != PGOVCT_None &&
2100 (ViewBlockFreqFuncName.empty() ||
2101 F.getName().equals(ViewBlockFreqFuncName))) {
2102 if (PGOViewRawCounts == PGOVCT_Graph)
2103 if (ViewBlockFreqFuncName.empty())
2104 WriteGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName());
2105 else
2106 ViewGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName());
2107 else if (PGOViewRawCounts == PGOVCT_Text) {
2108 dbgs() << "pgo-view-raw-counts: " << Func.getFunc().getName() << "\n";
2109 Func.dumpInfo();
2113 if (PGOVerifyBFI || PGOVerifyHotBFI || PGOFixEntryCount) {
2114 LoopInfo LI{DominatorTree(F)};
2115 BranchProbabilityInfo NBPI(F, LI);
2117 // Fix func entry count.
2118 if (PGOFixEntryCount)
2119 fixFuncEntryCount(Func, LI, NBPI);
2121 // Verify BlockFrequency information.
2122 uint64_t HotCountThreshold = 0, ColdCountThreshold = 0;
2123 if (PGOVerifyHotBFI) {
2124 HotCountThreshold = PSI->getOrCompHotCountThreshold();
2125 ColdCountThreshold = PSI->getOrCompColdCountThreshold();
2127 verifyFuncBFI(Func, LI, NBPI, HotCountThreshold, ColdCountThreshold);
2131 // Set function hotness attribute from the profile.
2132 // We have to apply these attributes at the end because their presence
2133 // can affect the BranchProbabilityInfo of any callers, resulting in an
2134 // inconsistent MST between prof-gen and prof-use.
2135 for (auto &F : HotFunctions) {
2136 F->addFnAttr(Attribute::InlineHint);
2137 LLVM_DEBUG(dbgs() << "Set inline attribute to function: " << F->getName()
2138 << "\n");
2140 for (auto &F : ColdFunctions) {
2141 // Only set when there is no Attribute::Hot set by the user. For Hot
2142 // attribute, user's annotation has the precedence over the profile.
2143 if (F->hasFnAttribute(Attribute::Hot)) {
2144 auto &Ctx = M.getContext();
2145 std::string Msg = std::string("Function ") + F->getName().str() +
2146 std::string(" is annotated as a hot function but"
2147 " the profile is cold");
2148 Ctx.diagnose(
2149 DiagnosticInfoPGOProfile(M.getName().data(), Msg, DS_Warning));
2150 continue;
2152 F->addFnAttr(Attribute::Cold);
2153 LLVM_DEBUG(dbgs() << "Set cold attribute to function: " << F->getName()
2154 << "\n");
2156 return true;
2159 PGOInstrumentationUse::PGOInstrumentationUse(
2160 std::string Filename, std::string RemappingFilename, bool IsCS,
2161 IntrusiveRefCntPtr<vfs::FileSystem> VFS)
2162 : ProfileFileName(std::move(Filename)),
2163 ProfileRemappingFileName(std::move(RemappingFilename)), IsCS(IsCS),
2164 FS(std::move(VFS)) {
2165 if (!PGOTestProfileFile.empty())
2166 ProfileFileName = PGOTestProfileFile;
2167 if (!PGOTestProfileRemappingFile.empty())
2168 ProfileRemappingFileName = PGOTestProfileRemappingFile;
2169 if (!FS)
2170 FS = vfs::getRealFileSystem();
2173 PreservedAnalyses PGOInstrumentationUse::run(Module &M,
2174 ModuleAnalysisManager &MAM) {
2176 auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2177 auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2178 return FAM.getResult<TargetLibraryAnalysis>(F);
2180 auto LookupBPI = [&FAM](Function &F) {
2181 return &FAM.getResult<BranchProbabilityAnalysis>(F);
2183 auto LookupBFI = [&FAM](Function &F) {
2184 return &FAM.getResult<BlockFrequencyAnalysis>(F);
2187 auto *PSI = &MAM.getResult<ProfileSummaryAnalysis>(M);
2189 if (!annotateAllFunctions(M, ProfileFileName, ProfileRemappingFileName, *FS,
2190 LookupTLI, LookupBPI, LookupBFI, PSI, IsCS))
2191 return PreservedAnalyses::all();
2193 return PreservedAnalyses::none();
2196 static std::string getSimpleNodeName(const BasicBlock *Node) {
2197 if (!Node->getName().empty())
2198 return Node->getName().str();
2200 std::string SimpleNodeName;
2201 raw_string_ostream OS(SimpleNodeName);
2202 Node->printAsOperand(OS, false);
2203 return OS.str();
2206 void llvm::setProfMetadata(Module *M, Instruction *TI,
2207 ArrayRef<uint64_t> EdgeCounts, uint64_t MaxCount) {
2208 MDBuilder MDB(M->getContext());
2209 assert(MaxCount > 0 && "Bad max count");
2210 uint64_t Scale = calculateCountScale(MaxCount);
2211 SmallVector<unsigned, 4> Weights;
2212 for (const auto &ECI : EdgeCounts)
2213 Weights.push_back(scaleBranchCount(ECI, Scale));
2215 LLVM_DEBUG(dbgs() << "Weight is: "; for (const auto &W
2216 : Weights) {
2217 dbgs() << W << " ";
2218 } dbgs() << "\n";);
2220 misexpect::checkExpectAnnotations(*TI, Weights, /*IsFrontend=*/false);
2222 TI->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
2223 if (EmitBranchProbability) {
2224 std::string BrCondStr = getBranchCondString(TI);
2225 if (BrCondStr.empty())
2226 return;
2228 uint64_t WSum =
2229 std::accumulate(Weights.begin(), Weights.end(), (uint64_t)0,
2230 [](uint64_t w1, uint64_t w2) { return w1 + w2; });
2231 uint64_t TotalCount =
2232 std::accumulate(EdgeCounts.begin(), EdgeCounts.end(), (uint64_t)0,
2233 [](uint64_t c1, uint64_t c2) { return c1 + c2; });
2234 Scale = calculateCountScale(WSum);
2235 BranchProbability BP(scaleBranchCount(Weights[0], Scale),
2236 scaleBranchCount(WSum, Scale));
2237 std::string BranchProbStr;
2238 raw_string_ostream OS(BranchProbStr);
2239 OS << BP;
2240 OS << " (total count : " << TotalCount << ")";
2241 OS.flush();
2242 Function *F = TI->getParent()->getParent();
2243 OptimizationRemarkEmitter ORE(F);
2244 ORE.emit([&]() {
2245 return OptimizationRemark(DEBUG_TYPE, "pgo-instrumentation", TI)
2246 << BrCondStr << " is true with probability : " << BranchProbStr;
2251 namespace llvm {
2253 void setIrrLoopHeaderMetadata(Module *M, Instruction *TI, uint64_t Count) {
2254 MDBuilder MDB(M->getContext());
2255 TI->setMetadata(llvm::LLVMContext::MD_irr_loop,
2256 MDB.createIrrLoopHeaderWeight(Count));
2259 template <> struct GraphTraits<PGOUseFunc *> {
2260 using NodeRef = const BasicBlock *;
2261 using ChildIteratorType = const_succ_iterator;
2262 using nodes_iterator = pointer_iterator<Function::const_iterator>;
2264 static NodeRef getEntryNode(const PGOUseFunc *G) {
2265 return &G->getFunc().front();
2268 static ChildIteratorType child_begin(const NodeRef N) {
2269 return succ_begin(N);
2272 static ChildIteratorType child_end(const NodeRef N) { return succ_end(N); }
2274 static nodes_iterator nodes_begin(const PGOUseFunc *G) {
2275 return nodes_iterator(G->getFunc().begin());
2278 static nodes_iterator nodes_end(const PGOUseFunc *G) {
2279 return nodes_iterator(G->getFunc().end());
2283 template <> struct DOTGraphTraits<PGOUseFunc *> : DefaultDOTGraphTraits {
2284 explicit DOTGraphTraits(bool isSimple = false)
2285 : DefaultDOTGraphTraits(isSimple) {}
2287 static std::string getGraphName(const PGOUseFunc *G) {
2288 return std::string(G->getFunc().getName());
2291 std::string getNodeLabel(const BasicBlock *Node, const PGOUseFunc *Graph) {
2292 std::string Result;
2293 raw_string_ostream OS(Result);
2295 OS << getSimpleNodeName(Node) << ":\\l";
2296 PGOUseBBInfo *BI = Graph->findBBInfo(Node);
2297 OS << "Count : ";
2298 if (BI && BI->CountValid)
2299 OS << BI->CountValue << "\\l";
2300 else
2301 OS << "Unknown\\l";
2303 if (!PGOInstrSelect)
2304 return Result;
2306 for (const Instruction &I : *Node) {
2307 if (!isa<SelectInst>(&I))
2308 continue;
2309 // Display scaled counts for SELECT instruction:
2310 OS << "SELECT : { T = ";
2311 uint64_t TC, FC;
2312 bool HasProf = extractBranchWeights(I, TC, FC);
2313 if (!HasProf)
2314 OS << "Unknown, F = Unknown }\\l";
2315 else
2316 OS << TC << ", F = " << FC << " }\\l";
2318 return Result;
2322 } // end namespace llvm