1 //===-- ConvertExpr.cpp ---------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
11 //===----------------------------------------------------------------------===//
13 #include "flang/Lower/ConvertExpr.h"
14 #include "flang/Common/default-kinds.h"
15 #include "flang/Common/unwrap.h"
16 #include "flang/Evaluate/fold.h"
17 #include "flang/Evaluate/real.h"
18 #include "flang/Evaluate/traverse.h"
19 #include "flang/Lower/Allocatable.h"
20 #include "flang/Lower/Bridge.h"
21 #include "flang/Lower/BuiltinModules.h"
22 #include "flang/Lower/CallInterface.h"
23 #include "flang/Lower/Coarray.h"
24 #include "flang/Lower/ComponentPath.h"
25 #include "flang/Lower/ConvertCall.h"
26 #include "flang/Lower/ConvertConstant.h"
27 #include "flang/Lower/ConvertProcedureDesignator.h"
28 #include "flang/Lower/ConvertType.h"
29 #include "flang/Lower/ConvertVariable.h"
30 #include "flang/Lower/CustomIntrinsicCall.h"
31 #include "flang/Lower/DumpEvaluateExpr.h"
32 #include "flang/Lower/Mangler.h"
33 #include "flang/Lower/Runtime.h"
34 #include "flang/Lower/Support/Utils.h"
35 #include "flang/Optimizer/Builder/Character.h"
36 #include "flang/Optimizer/Builder/Complex.h"
37 #include "flang/Optimizer/Builder/Factory.h"
38 #include "flang/Optimizer/Builder/IntrinsicCall.h"
39 #include "flang/Optimizer/Builder/Runtime/Assign.h"
40 #include "flang/Optimizer/Builder/Runtime/Character.h"
41 #include "flang/Optimizer/Builder/Runtime/Derived.h"
42 #include "flang/Optimizer/Builder/Runtime/Inquiry.h"
43 #include "flang/Optimizer/Builder/Runtime/RTBuilder.h"
44 #include "flang/Optimizer/Builder/Runtime/Ragged.h"
45 #include "flang/Optimizer/Builder/Todo.h"
46 #include "flang/Optimizer/Dialect/FIRAttr.h"
47 #include "flang/Optimizer/Dialect/FIRDialect.h"
48 #include "flang/Optimizer/Dialect/FIROpsSupport.h"
49 #include "flang/Optimizer/Support/FatalError.h"
50 #include "flang/Runtime/support.h"
51 #include "flang/Semantics/expression.h"
52 #include "flang/Semantics/symbol.h"
53 #include "flang/Semantics/tools.h"
54 #include "flang/Semantics/type.h"
55 #include "mlir/Dialect/Func/IR/FuncOps.h"
56 #include "llvm/ADT/TypeSwitch.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
64 #define DEBUG_TYPE "flang-lower-expr"
66 using namespace Fortran::runtime
;
68 //===----------------------------------------------------------------------===//
69 // The composition and structure of Fortran::evaluate::Expr is defined in
70 // the various header files in include/flang/Evaluate. You are referred
71 // there for more information on these data structures. Generally speaking,
72 // these data structures are a strongly typed family of abstract data types
73 // that, composed as trees, describe the syntax of Fortran expressions.
75 // This part of the bridge can traverse these tree structures and lower them
76 // to the correct FIR representation in SSA form.
77 //===----------------------------------------------------------------------===//
79 static llvm::cl::opt
<bool> generateArrayCoordinate(
81 llvm::cl::desc("in lowering create ArrayCoorOp instead of CoordinateOp"),
82 llvm::cl::init(false));
84 // The default attempts to balance a modest allocation size with expected user
85 // input to minimize bounds checks and reallocations during dynamic array
86 // construction. Some user codes may have very large array constructors for
87 // which the default can be increased.
88 static llvm::cl::opt
<unsigned> clInitialBufferSize(
89 "array-constructor-initial-buffer-size",
91 "set the incremental array construction buffer size (default=32)"),
94 // Lower TRANSPOSE as an "elemental" function that swaps the array
95 // expression's iteration space, so that no runtime call is needed.
96 // This lowering may help get rid of unnecessary creation of temporary
97 // arrays. Note that the runtime TRANSPOSE implementation may be different
98 // from the "inline" FIR, e.g. it may diagnose out-of-memory conditions
99 // during the temporary allocation whereas the inline implementation
100 // relies on AllocMemOp that will silently return null in case
101 // there is not enough memory.
103 // If it is set to false, then TRANSPOSE will be lowered using
104 // a runtime call. If it is set to true, then the lowering is controlled
105 // by LoweringOptions::optimizeTranspose bit (see isTransposeOptEnabled
106 // function in this file).
107 static llvm::cl::opt
<bool> optimizeTranspose(
109 llvm::cl::desc("lower transpose without using a runtime call"),
110 llvm::cl::init(true));
112 // When copy-in/copy-out is generated for a boxed object we may
113 // either produce loops to copy the data or call the Fortran runtime's
114 // Assign function. Since the data copy happens under a runtime check
115 // (for IsContiguous) the copy loops can hardly provide any value
116 // to optimizations, instead, the optimizer just wastes compilation
117 // time on these loops.
119 // This internal option will force the loops generation, when set
120 // to true. It is false by default.
122 // Note that for copy-in/copy-out of non-boxed objects (e.g. for passing
123 // arguments by value) we always generate loops. Since the memory for
124 // such objects is contiguous, it may be better to expose them
126 static llvm::cl::opt
<bool> inlineCopyInOutForBoxes(
127 "inline-copyinout-for-boxes",
129 "generate loops for copy-in/copy-out of objects with descriptors"),
130 llvm::cl::init(false));
132 /// The various semantics of a program constituent (or a part thereof) as it may
133 /// appear in an expression.
135 /// Given the following Fortran declarations.
137 /// REAL :: v1, v2, v3
138 /// REAL, POINTER :: vp1
139 /// REAL :: a1(c), a2(c)
140 /// REAL ELEMENTAL FUNCTION f1(arg) ! array -> array
141 /// FUNCTION f2(arg) ! array -> array
143 /// v1 = v2 * vp1 ! 2
149 /// In line 1, `vp1` is a BoxAddr to copy a box value into. The box value is
150 /// constructed from the DataAddr of `v3`.
151 /// In line 2, `v1` is a DataAddr to copy a value into. The value is constructed
152 /// from the DataValue of `v2` and `vp1`. DataValue is implicitly a double
153 /// dereference in the `vp1` case.
154 /// In line 3, `a1` and `a2` on the rhs are RefTransparent. The `a1` on the lhs
155 /// is CopyInCopyOut as `a1` is replaced elementally by the additions.
156 /// In line 4, `a2` can be RefTransparent, ByValueArg, RefOpaque, or BoxAddr if
157 /// `arg` is declared as C-like pass-by-value, VALUE, INTENT(?), or ALLOCATABLE/
158 /// POINTER, respectively. `a1` on the lhs is CopyInCopyOut.
159 /// In line 5, `a2` may be DataAddr or BoxAddr assuming f2 is transformational.
160 /// `a1` on the lhs is again CopyInCopyOut.
161 enum class ConstituentSemantics
{
162 // Scalar data reference semantics.
164 // For these let `v` be the location in memory of a variable with value `x`
165 DataValue
, // refers to the value `x`
166 DataAddr
, // refers to the address `v`
167 BoxValue
, // refers to a box value containing `v`
168 BoxAddr
, // refers to the address of a box value containing `v`
170 // Array data reference semantics.
172 // For these let `a` be the location in memory of a sequence of value `[xs]`.
173 // Let `x_i` be the `i`-th value in the sequence `[xs]`.
175 // Referentially transparent. Refers to the array's value, `[xs]`.
177 // Refers to an ephemeral address `tmp` containing value `x_i` (15.5.2.3.p7
178 // note 2). (Passing a copy by reference to simulate pass-by-value.)
180 // Refers to the merge of array value `[xs]` with another array value `[ys]`.
181 // This merged array value will be written into memory location `a`.
183 // Similar to CopyInCopyOut but `a` may be a transient projection (rather than
185 ProjectedCopyInCopyOut
,
186 // Similar to ProjectedCopyInCopyOut, except the merge value is not assigned
187 // automatically by the framework. Instead, and address for `[xs]` is made
188 // accessible so that custom assignments to `[xs]` can be implemented.
190 // Referentially opaque. Refers to the address of `x_i`.
194 /// Convert parser's INTEGER relational operators to MLIR. TODO: using
195 /// unordered, but we may want to cons ordered in certain situation.
196 static mlir::arith::CmpIPredicate
197 translateRelational(Fortran::common::RelationalOperator rop
) {
199 case Fortran::common::RelationalOperator::LT
:
200 return mlir::arith::CmpIPredicate::slt
;
201 case Fortran::common::RelationalOperator::LE
:
202 return mlir::arith::CmpIPredicate::sle
;
203 case Fortran::common::RelationalOperator::EQ
:
204 return mlir::arith::CmpIPredicate::eq
;
205 case Fortran::common::RelationalOperator::NE
:
206 return mlir::arith::CmpIPredicate::ne
;
207 case Fortran::common::RelationalOperator::GT
:
208 return mlir::arith::CmpIPredicate::sgt
;
209 case Fortran::common::RelationalOperator::GE
:
210 return mlir::arith::CmpIPredicate::sge
;
212 llvm_unreachable("unhandled INTEGER relational operator");
215 /// Convert parser's REAL relational operators to MLIR.
216 /// The choice of order (O prefix) vs unorder (U prefix) follows Fortran 2018
217 /// requirements in the IEEE context (table 17.1 of F2018). This choice is
218 /// also applied in other contexts because it is easier and in line with
219 /// other Fortran compilers.
220 /// FIXME: The signaling/quiet aspect of the table 17.1 requirement is not
221 /// fully enforced. FIR and LLVM `fcmp` instructions do not give any guarantee
222 /// whether the comparison will signal or not in case of quiet NaN argument.
223 static mlir::arith::CmpFPredicate
224 translateFloatRelational(Fortran::common::RelationalOperator rop
) {
226 case Fortran::common::RelationalOperator::LT
:
227 return mlir::arith::CmpFPredicate::OLT
;
228 case Fortran::common::RelationalOperator::LE
:
229 return mlir::arith::CmpFPredicate::OLE
;
230 case Fortran::common::RelationalOperator::EQ
:
231 return mlir::arith::CmpFPredicate::OEQ
;
232 case Fortran::common::RelationalOperator::NE
:
233 return mlir::arith::CmpFPredicate::UNE
;
234 case Fortran::common::RelationalOperator::GT
:
235 return mlir::arith::CmpFPredicate::OGT
;
236 case Fortran::common::RelationalOperator::GE
:
237 return mlir::arith::CmpFPredicate::OGE
;
239 llvm_unreachable("unhandled REAL relational operator");
242 static mlir::Value
genActualIsPresentTest(fir::FirOpBuilder
&builder
,
244 fir::ExtendedValue actual
) {
245 if (const auto *ptrOrAlloc
= actual
.getBoxOf
<fir::MutableBoxValue
>())
246 return fir::factory::genIsAllocatedOrAssociatedTest(builder
, loc
,
248 // Optional case (not that optional allocatable/pointer cannot be absent
249 // when passed to CMPLX as per 15.5.2.12 point 3 (7) and (8)). It is
250 // therefore possible to catch them in the `then` case above.
251 return builder
.create
<fir::IsPresentOp
>(loc
, builder
.getI1Type(),
252 fir::getBase(actual
));
255 /// Convert the array_load, `load`, to an extended value. If `path` is not
256 /// empty, then traverse through the components designated. The base value is
257 /// `newBase`. This does not accept an array_load with a slice operand.
258 static fir::ExtendedValue
259 arrayLoadExtValue(fir::FirOpBuilder
&builder
, mlir::Location loc
,
260 fir::ArrayLoadOp load
, llvm::ArrayRef
<mlir::Value
> path
,
261 mlir::Value newBase
, mlir::Value newLen
= {}) {
262 // Recover the extended value from the load.
264 fir::emitFatalError(loc
, "array_load with slice is not allowed");
265 mlir::Type arrTy
= load
.getType();
267 mlir::Type ty
= fir::applyPathToType(arrTy
, path
);
269 fir::emitFatalError(loc
, "path does not apply to type");
270 if (!mlir::isa
<fir::SequenceType
>(ty
)) {
271 if (fir::isa_char(ty
)) {
272 mlir::Value len
= newLen
;
274 len
= fir::factory::CharacterExprHelper
{builder
, loc
}.getLength(
277 assert(load
.getTypeparams().size() == 1 &&
278 "length must be in array_load");
279 len
= load
.getTypeparams()[0];
281 return fir::CharBoxValue
{newBase
, len
};
285 arrTy
= mlir::cast
<fir::SequenceType
>(ty
);
288 auto arrayToExtendedValue
=
289 [&](const llvm::SmallVector
<mlir::Value
> &extents
,
290 const llvm::SmallVector
<mlir::Value
> &origins
) -> fir::ExtendedValue
{
291 mlir::Type eleTy
= fir::unwrapSequenceType(arrTy
);
292 if (fir::isa_char(eleTy
)) {
293 mlir::Value len
= newLen
;
295 len
= fir::factory::CharacterExprHelper
{builder
, loc
}.getLength(
298 assert(load
.getTypeparams().size() == 1 &&
299 "length must be in array_load");
300 len
= load
.getTypeparams()[0];
302 return fir::CharArrayBoxValue(newBase
, len
, extents
, origins
);
304 return fir::ArrayBoxValue(newBase
, extents
, origins
);
306 // Use the shape op, if there is one.
307 mlir::Value shapeVal
= load
.getShape();
309 if (!mlir::isa
<fir::ShiftOp
>(shapeVal
.getDefiningOp())) {
310 auto extents
= fir::factory::getExtents(shapeVal
);
311 auto origins
= fir::factory::getOrigins(shapeVal
);
312 return arrayToExtendedValue(extents
, origins
);
314 if (!fir::isa_box_type(load
.getMemref().getType()))
315 fir::emitFatalError(loc
, "shift op is invalid in this context");
318 // If we're dealing with the array_load op (not a subobject) and the load does
319 // not have any type parameters, then read the extents from the original box.
320 // The origin may be either from the box or a shift operation. Create and
321 // return the array extended value.
322 if (path
.empty() && load
.getTypeparams().empty()) {
323 auto oldBox
= load
.getMemref();
324 fir::ExtendedValue exv
= fir::factory::readBoxValue(builder
, loc
, oldBox
);
325 auto extents
= fir::factory::getExtents(loc
, builder
, exv
);
326 auto origins
= fir::factory::getNonDefaultLowerBounds(builder
, loc
, exv
);
328 // shapeVal is a ShiftOp and load.memref() is a boxed value.
329 newBase
= builder
.create
<fir::ReboxOp
>(loc
, oldBox
.getType(), oldBox
,
330 shapeVal
, /*slice=*/mlir::Value
{});
331 origins
= fir::factory::getOrigins(shapeVal
);
333 return fir::substBase(arrayToExtendedValue(extents
, origins
), newBase
);
335 TODO(loc
, "path to a POINTER, ALLOCATABLE, or other component that requires "
336 "dereferencing; generating the type parameters is a hard "
337 "requirement for correctness.");
340 /// Place \p exv in memory if it is not already a memory reference. If
341 /// \p forceValueType is provided, the value is first casted to the provided
342 /// type before being stored (this is mainly intended for logicals whose value
343 /// may be `i1` but needed to be stored as Fortran logicals).
344 static fir::ExtendedValue
345 placeScalarValueInMemory(fir::FirOpBuilder
&builder
, mlir::Location loc
,
346 const fir::ExtendedValue
&exv
,
347 mlir::Type storageType
) {
348 mlir::Value valBase
= fir::getBase(exv
);
349 if (fir::conformsWithPassByRef(valBase
.getType()))
352 assert(!fir::hasDynamicSize(storageType
) &&
353 "only expect statically sized scalars to be by value");
355 // Since `a` is not itself a valid referent, determine its value and
356 // create a temporary location at the beginning of the function for
358 mlir::Value val
= builder
.createConvert(loc
, storageType
, valBase
);
359 mlir::Value temp
= builder
.createTemporary(
361 llvm::ArrayRef
<mlir::NamedAttribute
>{fir::getAdaptToByRefAttr(builder
)});
362 builder
.create
<fir::StoreOp
>(loc
, val
, temp
);
363 return fir::substBase(exv
, temp
);
366 // Copy a copy of scalar \p exv in a new temporary.
367 static fir::ExtendedValue
368 createInMemoryScalarCopy(fir::FirOpBuilder
&builder
, mlir::Location loc
,
369 const fir::ExtendedValue
&exv
) {
370 assert(exv
.rank() == 0 && "input to scalar memory copy must be a scalar");
371 if (exv
.getCharBox() != nullptr)
372 return fir::factory::CharacterExprHelper
{builder
, loc
}.createTempFrom(exv
);
373 if (fir::isDerivedWithLenParameters(exv
))
374 TODO(loc
, "copy derived type with length parameters");
375 mlir::Type type
= fir::unwrapPassByRefType(fir::getBase(exv
).getType());
376 fir::ExtendedValue temp
= builder
.createTemporary(loc
, type
);
377 fir::factory::genScalarAssignment(builder
, loc
, temp
, exv
);
381 // An expression with non-zero rank is an array expression.
382 template <typename A
>
383 static bool isArray(const A
&x
) {
384 return x
.Rank() != 0;
387 /// Is this a variable wrapped in parentheses?
388 template <typename A
>
389 static bool isParenthesizedVariable(const A
&) {
392 template <typename T
>
393 static bool isParenthesizedVariable(const Fortran::evaluate::Expr
<T
> &expr
) {
394 using ExprVariant
= decltype(Fortran::evaluate::Expr
<T
>::u
);
395 using Parentheses
= Fortran::evaluate::Parentheses
<T
>;
396 if constexpr (Fortran::common::HasMember
<Parentheses
, ExprVariant
>) {
397 if (const auto *parentheses
= std::get_if
<Parentheses
>(&expr
.u
))
398 return Fortran::evaluate::IsVariable(parentheses
->left());
401 return Fortran::common::visit(
402 [&](const auto &x
) { return isParenthesizedVariable(x
); }, expr
.u
);
406 /// Generate a load of a value from an address. Beware that this will lose
407 /// any dynamic type information for polymorphic entities (note that unlimited
408 /// polymorphic cannot be loaded and must not be provided here).
409 static fir::ExtendedValue
genLoad(fir::FirOpBuilder
&builder
,
411 const fir::ExtendedValue
&addr
) {
413 [](const fir::CharBoxValue
&box
) -> fir::ExtendedValue
{ return box
; },
414 [&](const fir::PolymorphicValue
&p
) -> fir::ExtendedValue
{
415 if (mlir::isa
<fir::RecordType
>(
416 fir::unwrapRefType(fir::getBase(p
).getType())))
418 mlir::Value load
= builder
.create
<fir::LoadOp
>(loc
, fir::getBase(p
));
419 return fir::PolymorphicValue(load
, p
.getSourceBox());
421 [&](const fir::UnboxedValue
&v
) -> fir::ExtendedValue
{
422 if (mlir::isa
<fir::RecordType
>(
423 fir::unwrapRefType(fir::getBase(v
).getType())))
425 return builder
.create
<fir::LoadOp
>(loc
, fir::getBase(v
));
427 [&](const fir::MutableBoxValue
&box
) -> fir::ExtendedValue
{
428 return genLoad(builder
, loc
,
429 fir::factory::genMutableBoxRead(builder
, loc
, box
));
431 [&](const fir::BoxValue
&box
) -> fir::ExtendedValue
{
432 return genLoad(builder
, loc
,
433 fir::factory::readBoxValue(builder
, loc
, box
));
435 [&](const auto &) -> fir::ExtendedValue
{
437 loc
, "attempting to load whole array or procedure address");
441 /// Create an optional dummy argument value from entity \p exv that may be
442 /// absent. This can only be called with numerical or logical scalar \p exv.
443 /// If \p exv is considered absent according to 15.5.2.12 point 1., the returned
444 /// value is zero (or false), otherwise it is the value of \p exv.
445 static fir::ExtendedValue
genOptionalValue(fir::FirOpBuilder
&builder
,
447 const fir::ExtendedValue
&exv
,
448 mlir::Value isPresent
) {
449 mlir::Type eleType
= fir::getBaseTypeOf(exv
);
450 assert(exv
.rank() == 0 && fir::isa_trivial(eleType
) &&
451 "must be a numerical or logical scalar");
453 .genIfOp(loc
, {eleType
}, isPresent
,
454 /*withElseRegion=*/true)
456 mlir::Value val
= fir::getBase(genLoad(builder
, loc
, exv
));
457 builder
.create
<fir::ResultOp
>(loc
, val
);
460 mlir::Value zero
= fir::factory::createZeroValue(builder
, loc
, eleType
);
461 builder
.create
<fir::ResultOp
>(loc
, zero
);
466 /// Create an optional dummy argument address from entity \p exv that may be
467 /// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the
468 /// returned value is a null pointer, otherwise it is the address of \p exv.
469 static fir::ExtendedValue
genOptionalAddr(fir::FirOpBuilder
&builder
,
471 const fir::ExtendedValue
&exv
,
472 mlir::Value isPresent
) {
473 // If it is an exv pointer/allocatable, then it cannot be absent
474 // because it is passed to a non-pointer/non-allocatable.
475 if (const auto *box
= exv
.getBoxOf
<fir::MutableBoxValue
>())
476 return fir::factory::genMutableBoxRead(builder
, loc
, *box
);
477 // If this is not a POINTER or ALLOCATABLE, then it is already an OPTIONAL
478 // address and can be passed directly.
482 /// Create an optional dummy argument address from entity \p exv that may be
483 /// absent. If \p exv is considered absent according to 15.5.2.12 point 1., the
484 /// returned value is an absent fir.box, otherwise it is a fir.box describing \p
486 static fir::ExtendedValue
genOptionalBox(fir::FirOpBuilder
&builder
,
488 const fir::ExtendedValue
&exv
,
489 mlir::Value isPresent
) {
490 // Non allocatable/pointer optional box -> simply forward
491 if (exv
.getBoxOf
<fir::BoxValue
>())
494 fir::ExtendedValue newExv
= exv
;
495 // Optional allocatable/pointer -> Cannot be absent, but need to translate
496 // unallocated/diassociated into absent fir.box.
497 if (const auto *box
= exv
.getBoxOf
<fir::MutableBoxValue
>())
498 newExv
= fir::factory::genMutableBoxRead(builder
, loc
, *box
);
500 // createBox will not do create any invalid memory dereferences if exv is
501 // absent. The created fir.box will not be usable, but the SelectOp below
502 // ensures it won't be.
503 mlir::Value box
= builder
.createBox(loc
, newExv
);
504 mlir::Type boxType
= box
.getType();
505 auto absent
= builder
.create
<fir::AbsentOp
>(loc
, boxType
);
506 auto boxOrAbsent
= builder
.create
<mlir::arith::SelectOp
>(
507 loc
, boxType
, isPresent
, box
, absent
);
508 return fir::BoxValue(boxOrAbsent
);
511 /// Is this a call to an elemental procedure with at least one array argument?
513 isElementalProcWithArrayArgs(const Fortran::evaluate::ProcedureRef
&procRef
) {
514 if (procRef
.IsElemental())
515 for (const std::optional
<Fortran::evaluate::ActualArgument
> &arg
:
517 if (arg
&& arg
->Rank() != 0)
521 template <typename T
>
522 static bool isElementalProcWithArrayArgs(const Fortran::evaluate::Expr
<T
> &) {
526 bool isElementalProcWithArrayArgs(const Fortran::lower::SomeExpr
&x
) {
527 if (const auto *procRef
= std::get_if
<Fortran::evaluate::ProcedureRef
>(&x
.u
))
528 return isElementalProcWithArrayArgs(*procRef
);
532 /// \p argTy must be a tuple (pair) of boxproc and integral types. Convert the
533 /// \p funcAddr argument to a boxproc value, with the host-association as
534 /// required. Call the factory function to finish creating the tuple value.
536 createBoxProcCharTuple(Fortran::lower::AbstractConverter
&converter
,
537 mlir::Type argTy
, mlir::Value funcAddr
,
538 mlir::Value charLen
) {
539 auto boxTy
= mlir::cast
<fir::BoxProcType
>(
540 mlir::cast
<mlir::TupleType
>(argTy
).getType(0));
541 mlir::Location loc
= converter
.getCurrentLocation();
542 auto &builder
= converter
.getFirOpBuilder();
544 // While character procedure arguments are expected here, Fortran allows
545 // actual arguments of other types to be passed instead.
546 // To support this, we cast any reference to the expected type or extract
547 // procedures from their boxes if needed.
548 mlir::Type fromTy
= funcAddr
.getType();
549 mlir::Type toTy
= boxTy
.getEleTy();
550 if (fir::isa_ref_type(fromTy
))
551 funcAddr
= builder
.createConvert(loc
, toTy
, funcAddr
);
552 else if (mlir::isa
<fir::BoxProcType
>(fromTy
))
553 funcAddr
= builder
.create
<fir::BoxAddrOp
>(loc
, toTy
, funcAddr
);
555 auto boxProc
= [&]() -> mlir::Value
{
556 if (auto host
= Fortran::lower::argumentHostAssocs(converter
, funcAddr
))
557 return builder
.create
<fir::EmboxProcOp
>(
558 loc
, boxTy
, llvm::ArrayRef
<mlir::Value
>{funcAddr
, host
});
559 return builder
.create
<fir::EmboxProcOp
>(loc
, boxTy
, funcAddr
);
561 return fir::factory::createCharacterProcedureTuple(builder
, loc
, argTy
,
565 /// Given an optional fir.box, returns an fir.box that is the original one if
566 /// it is present and it otherwise an unallocated box.
567 /// Absent fir.box are implemented as a null pointer descriptor. Generated
568 /// code may need to unconditionally read a fir.box that can be absent.
569 /// This helper allows creating a fir.box that can be read in all cases
570 /// outside of a fir.if (isPresent) region. However, the usages of the value
571 /// read from such box should still only be done in a fir.if(isPresent).
572 static fir::ExtendedValue
573 absentBoxToUnallocatedBox(fir::FirOpBuilder
&builder
, mlir::Location loc
,
574 const fir::ExtendedValue
&exv
,
575 mlir::Value isPresent
) {
576 mlir::Value box
= fir::getBase(exv
);
577 mlir::Type boxType
= box
.getType();
578 assert(mlir::isa
<fir::BoxType
>(boxType
) && "argument must be a fir.box");
579 mlir::Value emptyBox
=
580 fir::factory::createUnallocatedBox(builder
, loc
, boxType
, std::nullopt
);
582 builder
.create
<mlir::arith::SelectOp
>(loc
, isPresent
, box
, emptyBox
);
583 return fir::substBase(exv
, safeToReadBox
);
586 // Helper to get the ultimate first symbol. This works around the fact that
587 // symbol resolution in the front end doesn't always resolve a symbol to its
588 // ultimate symbol but may leave placeholder indirections for use and host
590 template <typename A
>
591 const Fortran::semantics::Symbol
&getFirstSym(const A
&obj
) {
592 const Fortran::semantics::Symbol
&sym
= obj
.GetFirstSymbol();
593 return sym
.HasLocalLocality() ? sym
: sym
.GetUltimate();
596 // Helper to get the ultimate last symbol.
597 template <typename A
>
598 const Fortran::semantics::Symbol
&getLastSym(const A
&obj
) {
599 const Fortran::semantics::Symbol
&sym
= obj
.GetLastSymbol();
600 return sym
.HasLocalLocality() ? sym
: sym
.GetUltimate();
603 // Return true if TRANSPOSE should be lowered without a runtime call.
605 isTransposeOptEnabled(const Fortran::lower::AbstractConverter
&converter
) {
606 return optimizeTranspose
&&
607 converter
.getLoweringOptions().getOptimizeTranspose();
610 // A set of visitors to detect if the given expression
611 // is a TRANSPOSE call that should be lowered without using
612 // runtime TRANSPOSE implementation.
613 template <typename T
>
614 static bool isOptimizableTranspose(const T
&,
615 const Fortran::lower::AbstractConverter
&) {
620 isOptimizableTranspose(const Fortran::evaluate::ProcedureRef
&procRef
,
621 const Fortran::lower::AbstractConverter
&converter
) {
622 const Fortran::evaluate::SpecificIntrinsic
*intrin
=
623 procRef
.proc().GetSpecificIntrinsic();
624 if (isTransposeOptEnabled(converter
) && intrin
&&
625 intrin
->name
== "transpose") {
626 const std::optional
<Fortran::evaluate::ActualArgument
> matrix
=
627 procRef
.arguments().at(0);
628 return !(matrix
&& matrix
->GetType() && matrix
->GetType()->IsPolymorphic());
633 template <typename T
>
635 isOptimizableTranspose(const Fortran::evaluate::FunctionRef
<T
> &funcRef
,
636 const Fortran::lower::AbstractConverter
&converter
) {
637 return isOptimizableTranspose(
638 static_cast<const Fortran::evaluate::ProcedureRef
&>(funcRef
), converter
);
641 template <typename T
>
643 isOptimizableTranspose(Fortran::evaluate::Expr
<T
> expr
,
644 const Fortran::lower::AbstractConverter
&converter
) {
645 // If optimizeTranspose is not enabled, return false right away.
646 if (!isTransposeOptEnabled(converter
))
649 return Fortran::common::visit(
650 [&](const auto &e
) { return isOptimizableTranspose(e
, converter
); },
656 /// Lowering of Fortran::evaluate::Expr<T> expressions
657 class ScalarExprLowering
{
659 using ExtValue
= fir::ExtendedValue
;
661 explicit ScalarExprLowering(mlir::Location loc
,
662 Fortran::lower::AbstractConverter
&converter
,
663 Fortran::lower::SymMap
&symMap
,
664 Fortran::lower::StatementContext
&stmtCtx
,
665 bool inInitializer
= false)
666 : location
{loc
}, converter
{converter
},
667 builder
{converter
.getFirOpBuilder()}, stmtCtx
{stmtCtx
}, symMap
{symMap
},
668 inInitializer
{inInitializer
} {}
670 ExtValue
genExtAddr(const Fortran::lower::SomeExpr
&expr
) {
674 /// Lower `expr` to be passed as a fir.box argument. Do not create a temp
675 /// for the expr if it is a variable that can be described as a fir.box.
676 ExtValue
genBoxArg(const Fortran::lower::SomeExpr
&expr
) {
677 bool saveUseBoxArg
= useBoxArg
;
679 ExtValue result
= gen(expr
);
680 useBoxArg
= saveUseBoxArg
;
684 ExtValue
genExtValue(const Fortran::lower::SomeExpr
&expr
) {
688 /// Lower an expression that is a pointer or an allocatable to a
691 genMutableBoxValue(const Fortran::lower::SomeExpr
&expr
) {
692 // Pointers and allocatables can only be:
693 // - a simple designator "x"
694 // - a component designator "a%b(i,j)%x"
695 // - a function reference "foo()"
696 // - result of NULL() or NULL(MOLD) intrinsic.
697 // NULL() requires some context to be lowered, so it is not handled
698 // here and must be lowered according to the context where it appears.
699 ExtValue exv
= Fortran::common::visit(
700 [&](const auto &x
) { return genMutableBoxValueImpl(x
); }, expr
.u
);
701 const fir::MutableBoxValue
*mutableBox
=
702 exv
.getBoxOf
<fir::MutableBoxValue
>();
704 fir::emitFatalError(getLoc(), "expr was not lowered to MutableBoxValue");
708 template <typename T
>
709 ExtValue
genMutableBoxValueImpl(const T
&) {
710 // NULL() case should not be handled here.
711 fir::emitFatalError(getLoc(), "NULL() must be lowered in its context");
714 /// A `NULL()` in a position where a mutable box is expected has the same
715 /// semantics as an absent optional box value. Note: this code should
716 /// be depreciated because the rank information is not known here. A
717 /// scalar fir.box is created: it should not be cast to an array box type
718 /// later, but there is no way to enforce that here.
719 ExtValue
genMutableBoxValueImpl(const Fortran::evaluate::NullPointer
&) {
720 mlir::Location loc
= getLoc();
721 mlir::Type noneTy
= mlir::NoneType::get(builder
.getContext());
722 mlir::Type polyRefTy
= fir::PointerType::get(noneTy
);
723 mlir::Type boxType
= fir::BoxType::get(polyRefTy
);
724 mlir::Value tempBox
=
725 fir::factory::genNullBoxStorage(builder
, loc
, boxType
);
726 return fir::MutableBoxValue(tempBox
,
727 /*lenParameters=*/mlir::ValueRange
{},
728 /*mutableProperties=*/{});
731 template <typename T
>
733 genMutableBoxValueImpl(const Fortran::evaluate::FunctionRef
<T
> &funRef
) {
734 return genRawProcedureRef(funRef
, converter
.genType(toEvExpr(funRef
)));
737 template <typename T
>
739 genMutableBoxValueImpl(const Fortran::evaluate::Designator
<T
> &designator
) {
740 return Fortran::common::visit(
741 Fortran::common::visitors
{
742 [&](const Fortran::evaluate::SymbolRef
&sym
) -> ExtValue
{
743 return converter
.getSymbolExtendedValue(*sym
, &symMap
);
745 [&](const Fortran::evaluate::Component
&comp
) -> ExtValue
{
746 return genComponent(comp
);
748 [&](const auto &) -> ExtValue
{
749 fir::emitFatalError(getLoc(),
750 "not an allocatable or pointer designator");
755 template <typename T
>
756 ExtValue
genMutableBoxValueImpl(const Fortran::evaluate::Expr
<T
> &expr
) {
757 return Fortran::common::visit(
758 [&](const auto &x
) { return genMutableBoxValueImpl(x
); }, expr
.u
);
761 mlir::Location
getLoc() { return location
; }
763 template <typename A
>
764 mlir::Value
genunbox(const A
&expr
) {
765 ExtValue e
= genval(expr
);
766 if (const fir::UnboxedValue
*r
= e
.getUnboxed())
768 fir::emitFatalError(getLoc(), "unboxed expression expected");
771 /// Generate an integral constant of `value`
773 mlir::Value
genIntegerConstant(mlir::MLIRContext
*context
,
774 std::int64_t value
) {
776 converter
.genType(Fortran::common::TypeCategory::Integer
, KIND
);
777 return builder
.createIntegerConstant(getLoc(), type
, value
);
780 /// Generate a logical/boolean constant of `value`
781 mlir::Value
genBoolConstant(bool value
) {
782 return builder
.createBool(getLoc(), value
);
785 mlir::Type
getSomeKindInteger() { return builder
.getIndexType(); }
787 mlir::func::FuncOp
getFunction(llvm::StringRef name
,
788 mlir::FunctionType funTy
) {
789 if (mlir::func::FuncOp func
= builder
.getNamedFunction(name
))
791 return builder
.createFunction(getLoc(), name
, funTy
);
794 template <typename OpTy
>
795 mlir::Value
createCompareOp(mlir::arith::CmpIPredicate pred
,
796 const ExtValue
&left
, const ExtValue
&right
) {
797 if (const fir::UnboxedValue
*lhs
= left
.getUnboxed())
798 if (const fir::UnboxedValue
*rhs
= right
.getUnboxed())
799 return builder
.create
<OpTy
>(getLoc(), pred
, *lhs
, *rhs
);
800 fir::emitFatalError(getLoc(), "array compare should be handled in genarr");
802 template <typename OpTy
, typename A
>
803 mlir::Value
createCompareOp(const A
&ex
, mlir::arith::CmpIPredicate pred
) {
804 ExtValue left
= genval(ex
.left());
805 return createCompareOp
<OpTy
>(pred
, left
, genval(ex
.right()));
808 template <typename OpTy
>
809 mlir::Value
createFltCmpOp(mlir::arith::CmpFPredicate pred
,
810 const ExtValue
&left
, const ExtValue
&right
) {
811 if (const fir::UnboxedValue
*lhs
= left
.getUnboxed())
812 if (const fir::UnboxedValue
*rhs
= right
.getUnboxed())
813 return builder
.create
<OpTy
>(getLoc(), pred
, *lhs
, *rhs
);
814 fir::emitFatalError(getLoc(), "array compare should be handled in genarr");
816 template <typename OpTy
, typename A
>
817 mlir::Value
createFltCmpOp(const A
&ex
, mlir::arith::CmpFPredicate pred
) {
818 ExtValue left
= genval(ex
.left());
819 return createFltCmpOp
<OpTy
>(pred
, left
, genval(ex
.right()));
822 /// Create a call to the runtime to compare two CHARACTER values.
823 /// Precondition: This assumes that the two values have `fir.boxchar` type.
824 mlir::Value
createCharCompare(mlir::arith::CmpIPredicate pred
,
825 const ExtValue
&left
, const ExtValue
&right
) {
826 return fir::runtime::genCharCompare(builder
, getLoc(), pred
, left
, right
);
829 template <typename A
>
830 mlir::Value
createCharCompare(const A
&ex
, mlir::arith::CmpIPredicate pred
) {
831 ExtValue left
= genval(ex
.left());
832 return createCharCompare(pred
, left
, genval(ex
.right()));
835 /// Returns a reference to a symbol or its box/boxChar descriptor if it has
837 ExtValue
gen(Fortran::semantics::SymbolRef sym
) {
838 fir::ExtendedValue exv
= converter
.getSymbolExtendedValue(sym
, &symMap
);
839 if (const auto *box
= exv
.getBoxOf
<fir::MutableBoxValue
>())
840 return fir::factory::genMutableBoxRead(builder
, getLoc(), *box
);
844 ExtValue
genLoad(const ExtValue
&exv
) {
845 return ::genLoad(builder
, getLoc(), exv
);
848 ExtValue
genval(Fortran::semantics::SymbolRef sym
) {
849 mlir::Location loc
= getLoc();
850 ExtValue var
= gen(sym
);
851 if (const fir::UnboxedValue
*s
= var
.getUnboxed()) {
852 if (fir::isa_ref_type(s
->getType())) {
853 // A function with multiple entry points returning different types
854 // tags all result variables with one of the largest types to allow
855 // them to share the same storage. A reference to a result variable
856 // of one of the other types requires conversion to the actual type.
857 fir::UnboxedValue addr
= *s
;
858 if (Fortran::semantics::IsFunctionResult(sym
)) {
859 mlir::Type resultType
= converter
.genType(*sym
);
860 if (addr
.getType() != resultType
)
861 addr
= builder
.createConvert(loc
, builder
.getRefType(resultType
),
863 } else if (sym
->test(Fortran::semantics::Symbol::Flag::CrayPointee
)) {
864 // get the corresponding Cray pointer
865 Fortran::semantics::SymbolRef ptrSym
{
866 Fortran::semantics::GetCrayPointer(sym
)};
867 ExtValue ptr
= gen(ptrSym
);
868 mlir::Value ptrVal
= fir::getBase(ptr
);
869 mlir::Type ptrTy
= converter
.genType(*ptrSym
);
871 ExtValue pte
= gen(sym
);
872 mlir::Value pteVal
= fir::getBase(pte
);
874 mlir::Value cnvrt
= Fortran::lower::addCrayPointerInst(
875 loc
, builder
, ptrVal
, ptrTy
, pteVal
.getType());
876 addr
= builder
.create
<fir::LoadOp
>(loc
, cnvrt
);
878 return genLoad(addr
);
884 ExtValue
genval(const Fortran::evaluate::BOZLiteralConstant
&) {
885 TODO(getLoc(), "BOZ");
888 /// Return indirection to function designated in ProcedureDesignator.
889 /// The type of the function indirection is not guaranteed to match the one
890 /// of the ProcedureDesignator due to Fortran implicit typing rules.
891 ExtValue
genval(const Fortran::evaluate::ProcedureDesignator
&proc
) {
892 return Fortran::lower::convertProcedureDesignator(getLoc(), converter
, proc
,
895 ExtValue
genval(const Fortran::evaluate::NullPointer
&) {
896 return builder
.createNullConstant(getLoc());
900 isDerivedTypeWithLenParameters(const Fortran::semantics::Symbol
&sym
) {
901 if (const Fortran::semantics::DeclTypeSpec
*declTy
= sym
.GetType())
902 if (const Fortran::semantics::DerivedTypeSpec
*derived
=
904 return Fortran::semantics::CountLenParameters(*derived
) > 0;
908 /// A structure constructor is lowered two ways. In an initializer context,
909 /// the entire structure must be constant, so the aggregate value is
910 /// constructed inline. This allows it to be the body of a GlobalOp.
911 /// Otherwise, the structure constructor is in an expression. In that case, a
912 /// temporary object is constructed in the stack frame of the procedure.
913 ExtValue
genval(const Fortran::evaluate::StructureConstructor
&ctor
) {
914 mlir::Location loc
= getLoc();
916 return Fortran::lower::genInlinedStructureCtorLit(converter
, loc
, ctor
);
917 mlir::Type ty
= translateSomeExprToFIRType(converter
, toEvExpr(ctor
));
918 auto recTy
= mlir::cast
<fir::RecordType
>(ty
);
919 auto fieldTy
= fir::FieldType::get(ty
.getContext());
920 mlir::Value res
= builder
.createTemporary(loc
, recTy
);
921 mlir::Value box
= builder
.createBox(loc
, fir::ExtendedValue
{res
});
922 fir::runtime::genDerivedTypeInitialize(builder
, loc
, box
);
924 for (const auto &value
: ctor
.values()) {
925 const Fortran::semantics::Symbol
&sym
= *value
.first
;
926 const Fortran::lower::SomeExpr
&expr
= value
.second
.value();
927 if (sym
.test(Fortran::semantics::Symbol::Flag::ParentComp
)) {
928 ExtValue from
= gen(expr
);
929 mlir::Type fromTy
= fir::unwrapPassByRefType(
930 fir::unwrapRefType(fir::getBase(from
).getType()));
931 mlir::Value resCast
=
932 builder
.createConvert(loc
, builder
.getRefType(fromTy
), res
);
933 fir::factory::genRecordAssignment(builder
, loc
, resCast
, from
);
937 if (isDerivedTypeWithLenParameters(sym
))
938 TODO(loc
, "component with length parameters in structure constructor");
940 std::string name
= converter
.getRecordTypeFieldName(sym
);
941 // FIXME: type parameters must come from the derived-type-spec
942 mlir::Value field
= builder
.create
<fir::FieldIndexOp
>(
943 loc
, fieldTy
, name
, ty
,
944 /*typeParams=*/mlir::ValueRange
{} /*TODO*/);
945 mlir::Type coorTy
= builder
.getRefType(recTy
.getType(name
));
946 auto coor
= builder
.create
<fir::CoordinateOp
>(loc
, coorTy
,
947 fir::getBase(res
), field
);
948 ExtValue to
= fir::factory::componentToExtendedValue(builder
, loc
, coor
);
950 [&](const fir::UnboxedValue
&toPtr
) {
951 ExtValue value
= genval(expr
);
952 fir::factory::genScalarAssignment(builder
, loc
, to
, value
);
954 [&](const fir::CharBoxValue
&) {
955 ExtValue value
= genval(expr
);
956 fir::factory::genScalarAssignment(builder
, loc
, to
, value
);
958 [&](const fir::ArrayBoxValue
&) {
959 Fortran::lower::createSomeArrayAssignment(converter
, to
, expr
,
962 [&](const fir::CharArrayBoxValue
&) {
963 Fortran::lower::createSomeArrayAssignment(converter
, to
, expr
,
966 [&](const fir::BoxValue
&toBox
) {
967 fir::emitFatalError(loc
, "derived type components must not be "
968 "represented by fir::BoxValue");
970 [&](const fir::PolymorphicValue
&) {
971 TODO(loc
, "polymorphic component in derived type assignment");
973 [&](const fir::MutableBoxValue
&toBox
) {
974 if (toBox
.isPointer()) {
975 Fortran::lower::associateMutableBox(converter
, loc
, toBox
, expr
,
976 /*lbounds=*/std::nullopt
,
980 // For allocatable components, a deep copy is needed.
981 TODO(loc
, "allocatable components in derived type assignment");
983 [&](const fir::ProcBoxValue
&toBox
) {
984 TODO(loc
, "procedure pointer component in derived type assignment");
990 /// Lowering of an <i>ac-do-variable</i>, which is not a Symbol.
991 ExtValue
genval(const Fortran::evaluate::ImpliedDoIndex
&var
) {
992 mlir::Value value
= converter
.impliedDoBinding(toStringRef(var
.name
));
993 // The index value generated by the implied-do has Index type,
994 // while computations based on it inside the loop body are using
995 // the original data type. So we need to cast it appropriately.
996 mlir::Type varTy
= converter
.genType(toEvExpr(var
));
997 return builder
.createConvert(getLoc(), varTy
, value
);
1000 ExtValue
genval(const Fortran::evaluate::DescriptorInquiry
&desc
) {
1001 ExtValue exv
= desc
.base().IsSymbol() ? gen(getLastSym(desc
.base()))
1002 : gen(desc
.base().GetComponent());
1003 mlir::IndexType idxTy
= builder
.getIndexType();
1004 mlir::Location loc
= getLoc();
1005 auto castResult
= [&](mlir::Value v
) {
1006 using ResTy
= Fortran::evaluate::DescriptorInquiry::Result
;
1007 return builder
.createConvert(
1008 loc
, converter
.genType(ResTy::category
, ResTy::kind
), v
);
1010 switch (desc
.field()) {
1011 case Fortran::evaluate::DescriptorInquiry::Field::Len
:
1012 return castResult(fir::factory::readCharLen(builder
, loc
, exv
));
1013 case Fortran::evaluate::DescriptorInquiry::Field::LowerBound
:
1014 return castResult(fir::factory::readLowerBound(
1015 builder
, loc
, exv
, desc
.dimension(),
1016 builder
.createIntegerConstant(loc
, idxTy
, 1)));
1017 case Fortran::evaluate::DescriptorInquiry::Field::Extent
:
1019 fir::factory::readExtent(builder
, loc
, exv
, desc
.dimension()));
1020 case Fortran::evaluate::DescriptorInquiry::Field::Rank
:
1021 TODO(loc
, "rank inquiry on assumed rank");
1022 case Fortran::evaluate::DescriptorInquiry::Field::Stride
:
1023 // So far the front end does not generate this inquiry.
1024 TODO(loc
, "stride inquiry");
1026 llvm_unreachable("unknown descriptor inquiry");
1029 ExtValue
genval(const Fortran::evaluate::TypeParamInquiry
&) {
1030 TODO(getLoc(), "type parameter inquiry");
1033 mlir::Value
extractComplexPart(mlir::Value cplx
, bool isImagPart
) {
1034 return fir::factory::Complex
{builder
, getLoc()}.extractComplexPart(
1039 ExtValue
genval(const Fortran::evaluate::ComplexComponent
<KIND
> &part
) {
1040 return extractComplexPart(genunbox(part
.left()), part
.isImaginaryPart
);
1044 ExtValue
genval(const Fortran::evaluate::Negate
<Fortran::evaluate::Type
<
1045 Fortran::common::TypeCategory::Integer
, KIND
>> &op
) {
1046 mlir::Value input
= genunbox(op
.left());
1047 // Like LLVM, integer negation is the binary op "0 - value"
1048 mlir::Value zero
= genIntegerConstant
<KIND
>(builder
.getContext(), 0);
1049 return builder
.create
<mlir::arith::SubIOp
>(getLoc(), zero
, input
);
1052 ExtValue
genval(const Fortran::evaluate::Negate
<Fortran::evaluate::Type
<
1053 Fortran::common::TypeCategory::Real
, KIND
>> &op
) {
1054 return builder
.create
<mlir::arith::NegFOp
>(getLoc(), genunbox(op
.left()));
1057 ExtValue
genval(const Fortran::evaluate::Negate
<Fortran::evaluate::Type
<
1058 Fortran::common::TypeCategory::Complex
, KIND
>> &op
) {
1059 return builder
.create
<fir::NegcOp
>(getLoc(), genunbox(op
.left()));
1062 template <typename OpTy
>
1063 mlir::Value
createBinaryOp(const ExtValue
&left
, const ExtValue
&right
) {
1064 assert(fir::isUnboxedValue(left
) && fir::isUnboxedValue(right
));
1065 mlir::Value lhs
= fir::getBase(left
);
1066 mlir::Value rhs
= fir::getBase(right
);
1067 assert(lhs
.getType() == rhs
.getType() && "types must be the same");
1068 return builder
.create
<OpTy
>(getLoc(), lhs
, rhs
);
1071 template <typename OpTy
, typename A
>
1072 mlir::Value
createBinaryOp(const A
&ex
) {
1073 ExtValue left
= genval(ex
.left());
1074 return createBinaryOp
<OpTy
>(left
, genval(ex
.right()));
1078 #define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \
1079 template <int KIND> \
1080 ExtValue genval(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \
1081 Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \
1082 return createBinaryOp<GenBinFirOp>(x); \
1085 GENBIN(Add
, Integer
, mlir::arith::AddIOp
)
1086 GENBIN(Add
, Real
, mlir::arith::AddFOp
)
1087 GENBIN(Add
, Complex
, fir::AddcOp
)
1088 GENBIN(Subtract
, Integer
, mlir::arith::SubIOp
)
1089 GENBIN(Subtract
, Real
, mlir::arith::SubFOp
)
1090 GENBIN(Subtract
, Complex
, fir::SubcOp
)
1091 GENBIN(Multiply
, Integer
, mlir::arith::MulIOp
)
1092 GENBIN(Multiply
, Real
, mlir::arith::MulFOp
)
1093 GENBIN(Multiply
, Complex
, fir::MulcOp
)
1094 GENBIN(Divide
, Integer
, mlir::arith::DivSIOp
)
1095 GENBIN(Divide
, Real
, mlir::arith::DivFOp
)
1098 ExtValue
genval(const Fortran::evaluate::Divide
<Fortran::evaluate::Type
<
1099 Fortran::common::TypeCategory::Complex
, KIND
>> &op
) {
1101 converter
.genType(Fortran::common::TypeCategory::Complex
, KIND
);
1102 mlir::Value lhs
= genunbox(op
.left());
1103 mlir::Value rhs
= genunbox(op
.right());
1104 return fir::genDivC(builder
, getLoc(), ty
, lhs
, rhs
);
1107 template <Fortran::common::TypeCategory TC
, int KIND
>
1109 const Fortran::evaluate::Power
<Fortran::evaluate::Type
<TC
, KIND
>> &op
) {
1110 mlir::Type ty
= converter
.genType(TC
, KIND
);
1111 mlir::Value lhs
= genunbox(op
.left());
1112 mlir::Value rhs
= genunbox(op
.right());
1113 return fir::genPow(builder
, getLoc(), ty
, lhs
, rhs
);
1116 template <Fortran::common::TypeCategory TC
, int KIND
>
1118 const Fortran::evaluate::RealToIntPower
<Fortran::evaluate::Type
<TC
, KIND
>>
1120 mlir::Type ty
= converter
.genType(TC
, KIND
);
1121 mlir::Value lhs
= genunbox(op
.left());
1122 mlir::Value rhs
= genunbox(op
.right());
1123 return fir::genPow(builder
, getLoc(), ty
, lhs
, rhs
);
1127 ExtValue
genval(const Fortran::evaluate::ComplexConstructor
<KIND
> &op
) {
1128 mlir::Value realPartValue
= genunbox(op
.left());
1129 return fir::factory::Complex
{builder
, getLoc()}.createComplex(
1130 KIND
, realPartValue
, genunbox(op
.right()));
1134 ExtValue
genval(const Fortran::evaluate::Concat
<KIND
> &op
) {
1135 ExtValue lhs
= genval(op
.left());
1136 ExtValue rhs
= genval(op
.right());
1137 const fir::CharBoxValue
*lhsChar
= lhs
.getCharBox();
1138 const fir::CharBoxValue
*rhsChar
= rhs
.getCharBox();
1139 if (lhsChar
&& rhsChar
)
1140 return fir::factory::CharacterExprHelper
{builder
, getLoc()}
1141 .createConcatenate(*lhsChar
, *rhsChar
);
1142 TODO(getLoc(), "character array concatenate");
1145 /// MIN and MAX operations
1146 template <Fortran::common::TypeCategory TC
, int KIND
>
1148 genval(const Fortran::evaluate::Extremum
<Fortran::evaluate::Type
<TC
, KIND
>>
1150 mlir::Value lhs
= genunbox(op
.left());
1151 mlir::Value rhs
= genunbox(op
.right());
1152 switch (op
.ordering
) {
1153 case Fortran::evaluate::Ordering::Greater
:
1154 return fir::genMax(builder
, getLoc(),
1155 llvm::ArrayRef
<mlir::Value
>{lhs
, rhs
});
1156 case Fortran::evaluate::Ordering::Less
:
1157 return fir::genMin(builder
, getLoc(),
1158 llvm::ArrayRef
<mlir::Value
>{lhs
, rhs
});
1159 case Fortran::evaluate::Ordering::Equal
:
1160 llvm_unreachable("Equal is not a valid ordering in this context");
1162 llvm_unreachable("unknown ordering");
1165 // Change the dynamic length information without actually changing the
1166 // underlying character storage.
1168 replaceScalarCharacterLength(const fir::ExtendedValue
&scalarChar
,
1169 mlir::Value newLenValue
) {
1170 mlir::Location loc
= getLoc();
1171 const fir::CharBoxValue
*charBox
= scalarChar
.getCharBox();
1173 fir::emitFatalError(loc
, "expected scalar character");
1174 mlir::Value charAddr
= charBox
->getAddr();
1175 auto charType
= mlir::cast
<fir::CharacterType
>(
1176 fir::unwrapPassByRefType(charAddr
.getType()));
1177 if (charType
.hasConstantLen()) {
1178 // Erase previous constant length from the base type.
1179 fir::CharacterType::LenType newLen
= fir::CharacterType::unknownLen();
1180 mlir::Type newCharTy
= fir::CharacterType::get(
1181 builder
.getContext(), charType
.getFKind(), newLen
);
1182 mlir::Type newType
= fir::ReferenceType::get(newCharTy
);
1183 charAddr
= builder
.createConvert(loc
, newType
, charAddr
);
1184 return fir::CharBoxValue
{charAddr
, newLenValue
};
1186 return fir::CharBoxValue
{charAddr
, newLenValue
};
1190 ExtValue
genval(const Fortran::evaluate::SetLength
<KIND
> &x
) {
1191 mlir::Value newLenValue
= genunbox(x
.right());
1192 fir::ExtendedValue lhs
= gen(x
.left());
1193 fir::factory::CharacterExprHelper
charHelper(builder
, getLoc());
1194 fir::CharBoxValue temp
= charHelper
.createCharacterTemp(
1195 charHelper
.getCharacterType(fir::getBase(lhs
).getType()), newLenValue
);
1196 charHelper
.createAssign(temp
, lhs
);
1197 return fir::ExtendedValue
{temp
};
1201 ExtValue
genval(const Fortran::evaluate::Relational
<Fortran::evaluate::Type
<
1202 Fortran::common::TypeCategory::Integer
, KIND
>> &op
) {
1203 return createCompareOp
<mlir::arith::CmpIOp
>(op
,
1204 translateRelational(op
.opr
));
1207 ExtValue
genval(const Fortran::evaluate::Relational
<Fortran::evaluate::Type
<
1208 Fortran::common::TypeCategory::Real
, KIND
>> &op
) {
1209 return createFltCmpOp
<mlir::arith::CmpFOp
>(
1210 op
, translateFloatRelational(op
.opr
));
1213 ExtValue
genval(const Fortran::evaluate::Relational
<Fortran::evaluate::Type
<
1214 Fortran::common::TypeCategory::Complex
, KIND
>> &op
) {
1215 return createFltCmpOp
<fir::CmpcOp
>(op
, translateFloatRelational(op
.opr
));
1218 ExtValue
genval(const Fortran::evaluate::Relational
<Fortran::evaluate::Type
<
1219 Fortran::common::TypeCategory::Character
, KIND
>> &op
) {
1220 return createCharCompare(op
, translateRelational(op
.opr
));
1224 genval(const Fortran::evaluate::Relational
<Fortran::evaluate::SomeType
> &op
) {
1225 return Fortran::common::visit([&](const auto &x
) { return genval(x
); },
1229 template <Fortran::common::TypeCategory TC1
, int KIND
,
1230 Fortran::common::TypeCategory TC2
>
1232 genval(const Fortran::evaluate::Convert
<Fortran::evaluate::Type
<TC1
, KIND
>,
1234 mlir::Type ty
= converter
.genType(TC1
, KIND
);
1235 auto fromExpr
= genval(convert
.left());
1236 auto loc
= getLoc();
1237 return fromExpr
.match(
1238 [&](const fir::CharBoxValue
&boxchar
) -> ExtValue
{
1239 if constexpr (TC1
== Fortran::common::TypeCategory::Character
&&
1241 return fir::factory::convertCharacterKind(builder
, loc
, boxchar
,
1244 fir::emitFatalError(
1245 loc
, "unsupported evaluate::Convert between CHARACTER type "
1246 "category and non-CHARACTER category");
1249 [&](const fir::UnboxedValue
&value
) -> ExtValue
{
1250 return builder
.convertWithSemantics(loc
, ty
, value
);
1252 [&](auto &) -> ExtValue
{
1253 fir::emitFatalError(loc
, "unsupported evaluate::Convert");
1257 template <typename A
>
1258 ExtValue
genval(const Fortran::evaluate::Parentheses
<A
> &op
) {
1259 ExtValue input
= genval(op
.left());
1260 mlir::Value base
= fir::getBase(input
);
1261 mlir::Value newBase
=
1262 builder
.create
<fir::NoReassocOp
>(getLoc(), base
.getType(), base
);
1263 return fir::substBase(input
, newBase
);
1267 ExtValue
genval(const Fortran::evaluate::Not
<KIND
> &op
) {
1268 mlir::Value logical
= genunbox(op
.left());
1269 mlir::Value one
= genBoolConstant(true);
1271 builder
.createConvert(getLoc(), builder
.getI1Type(), logical
);
1272 return builder
.create
<mlir::arith::XOrIOp
>(getLoc(), val
, one
);
1276 ExtValue
genval(const Fortran::evaluate::LogicalOperation
<KIND
> &op
) {
1277 mlir::IntegerType i1Type
= builder
.getI1Type();
1278 mlir::Value slhs
= genunbox(op
.left());
1279 mlir::Value srhs
= genunbox(op
.right());
1280 mlir::Value lhs
= builder
.createConvert(getLoc(), i1Type
, slhs
);
1281 mlir::Value rhs
= builder
.createConvert(getLoc(), i1Type
, srhs
);
1282 switch (op
.logicalOperator
) {
1283 case Fortran::evaluate::LogicalOperator::And
:
1284 return createBinaryOp
<mlir::arith::AndIOp
>(lhs
, rhs
);
1285 case Fortran::evaluate::LogicalOperator::Or
:
1286 return createBinaryOp
<mlir::arith::OrIOp
>(lhs
, rhs
);
1287 case Fortran::evaluate::LogicalOperator::Eqv
:
1288 return createCompareOp
<mlir::arith::CmpIOp
>(
1289 mlir::arith::CmpIPredicate::eq
, lhs
, rhs
);
1290 case Fortran::evaluate::LogicalOperator::Neqv
:
1291 return createCompareOp
<mlir::arith::CmpIOp
>(
1292 mlir::arith::CmpIPredicate::ne
, lhs
, rhs
);
1293 case Fortran::evaluate::LogicalOperator::Not
:
1294 // lib/evaluate expression for .NOT. is Fortran::evaluate::Not<KIND>.
1295 llvm_unreachable(".NOT. is not a binary operator");
1297 llvm_unreachable("unhandled logical operation");
1300 template <Fortran::common::TypeCategory TC
, int KIND
>
1302 genval(const Fortran::evaluate::Constant
<Fortran::evaluate::Type
<TC
, KIND
>>
1304 return Fortran::lower::convertConstant(
1305 converter
, getLoc(), con
,
1306 /*outlineBigConstantsInReadOnlyMemory=*/!inInitializer
);
1309 fir::ExtendedValue
genval(
1310 const Fortran::evaluate::Constant
<Fortran::evaluate::SomeDerived
> &con
) {
1311 if (auto ctor
= con
.GetScalarValue())
1312 return genval(*ctor
);
1313 return Fortran::lower::convertConstant(
1314 converter
, getLoc(), con
,
1315 /*outlineBigConstantsInReadOnlyMemory=*/false);
1318 template <typename A
>
1319 ExtValue
genval(const Fortran::evaluate::ArrayConstructor
<A
> &) {
1320 fir::emitFatalError(getLoc(), "array constructor: should not reach here");
1323 ExtValue
gen(const Fortran::evaluate::ComplexPart
&x
) {
1324 mlir::Location loc
= getLoc();
1325 auto idxTy
= builder
.getI32Type();
1326 ExtValue exv
= gen(x
.complex());
1327 mlir::Value base
= fir::getBase(exv
);
1328 fir::factory::Complex helper
{builder
, loc
};
1330 helper
.getComplexPartType(fir::dyn_cast_ptrEleTy(base
.getType()));
1331 mlir::Value offset
= builder
.createIntegerConstant(
1333 x
.part() == Fortran::evaluate::ComplexPart::Part::RE
? 0 : 1);
1334 mlir::Value result
= builder
.create
<fir::CoordinateOp
>(
1335 loc
, builder
.getRefType(eleTy
), base
, mlir::ValueRange
{offset
});
1338 ExtValue
genval(const Fortran::evaluate::ComplexPart
&x
) {
1339 return genLoad(gen(x
));
1342 /// Reference to a substring.
1343 ExtValue
gen(const Fortran::evaluate::Substring
&s
) {
1345 auto baseString
= Fortran::common::visit(
1346 Fortran::common::visitors
{
1347 [&](const Fortran::evaluate::DataRef
&x
) { return gen(x
); },
1348 [&](const Fortran::evaluate::StaticDataObject::Pointer
&p
)
1350 if (std::optional
<std::string
> str
= p
->AsString())
1351 return fir::factory::createStringLiteral(builder
, getLoc(),
1353 // TODO: convert StaticDataObject to Constant<T> and use normal
1354 // constant path. Beware that StaticDataObject data() takes into
1355 // account build machine endianness.
1357 "StaticDataObject::Pointer substring with kind > 1");
1361 llvm::SmallVector
<mlir::Value
> bounds
;
1362 mlir::Value lower
= genunbox(s
.lower());
1363 bounds
.push_back(lower
);
1364 if (Fortran::evaluate::MaybeExtentExpr upperBound
= s
.upper()) {
1365 mlir::Value upper
= genunbox(*upperBound
);
1366 bounds
.push_back(upper
);
1368 fir::factory::CharacterExprHelper charHelper
{builder
, getLoc()};
1369 return baseString
.match(
1370 [&](const fir::CharBoxValue
&x
) -> ExtValue
{
1371 return charHelper
.createSubstring(x
, bounds
);
1373 [&](const fir::CharArrayBoxValue
&) -> ExtValue
{
1374 fir::emitFatalError(
1376 "array substring should be handled in array expression");
1378 [&](const auto &) -> ExtValue
{
1379 fir::emitFatalError(getLoc(), "substring base is not a CharBox");
1383 /// The value of a substring.
1384 ExtValue
genval(const Fortran::evaluate::Substring
&ss
) {
1385 // FIXME: why is the value of a substring being lowered the same as the
1386 // address of a substring?
1390 ExtValue
genval(const Fortran::evaluate::Subscript
&subs
) {
1391 if (auto *s
= std::get_if
<Fortran::evaluate::IndirectSubscriptIntegerExpr
>(
1393 if (s
->value().Rank() > 0)
1394 fir::emitFatalError(getLoc(), "vector subscript is not scalar");
1395 return {genval(s
->value())};
1397 fir::emitFatalError(getLoc(), "subscript triple notation is not scalar");
1399 ExtValue
genSubscript(const Fortran::evaluate::Subscript
&subs
) {
1400 return genval(subs
);
1403 ExtValue
gen(const Fortran::evaluate::DataRef
&dref
) {
1404 return Fortran::common::visit([&](const auto &x
) { return gen(x
); },
1407 ExtValue
genval(const Fortran::evaluate::DataRef
&dref
) {
1408 return Fortran::common::visit([&](const auto &x
) { return genval(x
); },
1412 // Helper function to turn the Component structure into a list of nested
1413 // components, ordered from largest/leftmost to smallest/rightmost:
1414 // - where only the smallest/rightmost item may be allocatable or a pointer
1415 // (nested allocatable/pointer components require nested coordinate_of ops)
1416 // - that does not contain any parent components
1417 // (the front end places parent components directly in the object)
1418 // Return the object used as the base coordinate for the component chain.
1419 static Fortran::evaluate::DataRef
const *
1420 reverseComponents(const Fortran::evaluate::Component
&cmpt
,
1421 std::list
<const Fortran::evaluate::Component
*> &list
) {
1422 if (!getLastSym(cmpt
).test(Fortran::semantics::Symbol::Flag::ParentComp
))
1423 list
.push_front(&cmpt
);
1424 return Fortran::common::visit(
1425 Fortran::common::visitors
{
1426 [&](const Fortran::evaluate::Component
&x
) {
1427 if (Fortran::semantics::IsAllocatableOrPointer(getLastSym(x
)))
1428 return &cmpt
.base();
1429 return reverseComponents(x
, list
);
1431 [&](auto &) { return &cmpt
.base(); },
1436 // Return the coordinate of the component reference
1437 ExtValue
genComponent(const Fortran::evaluate::Component
&cmpt
) {
1438 std::list
<const Fortran::evaluate::Component
*> list
;
1439 const Fortran::evaluate::DataRef
*base
= reverseComponents(cmpt
, list
);
1440 llvm::SmallVector
<mlir::Value
> coorArgs
;
1441 ExtValue obj
= gen(*base
);
1442 mlir::Type ty
= fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(obj
).getType());
1443 mlir::Location loc
= getLoc();
1444 auto fldTy
= fir::FieldType::get(&converter
.getMLIRContext());
1445 // FIXME: need to thread the LEN type parameters here.
1446 for (const Fortran::evaluate::Component
*field
: list
) {
1447 auto recTy
= mlir::cast
<fir::RecordType
>(ty
);
1448 const Fortran::semantics::Symbol
&sym
= getLastSym(*field
);
1449 std::string name
= converter
.getRecordTypeFieldName(sym
);
1450 coorArgs
.push_back(builder
.create
<fir::FieldIndexOp
>(
1451 loc
, fldTy
, name
, recTy
, fir::getTypeParams(obj
)));
1452 ty
= recTy
.getType(name
);
1454 // If parent component is referred then it has no coordinate argument.
1455 if (coorArgs
.size() == 0)
1457 ty
= builder
.getRefType(ty
);
1458 return fir::factory::componentToExtendedValue(
1460 builder
.create
<fir::CoordinateOp
>(loc
, ty
, fir::getBase(obj
),
1464 ExtValue
gen(const Fortran::evaluate::Component
&cmpt
) {
1465 // Components may be pointer or allocatable. In the gen() path, the mutable
1466 // aspect is lost to simplify handling on the client side. To retain the
1467 // mutable aspect, genMutableBoxValue should be used.
1468 return genComponent(cmpt
).match(
1469 [&](const fir::MutableBoxValue
&mutableBox
) {
1470 return fir::factory::genMutableBoxRead(builder
, getLoc(), mutableBox
);
1472 [](auto &box
) -> ExtValue
{ return box
; });
1475 ExtValue
genval(const Fortran::evaluate::Component
&cmpt
) {
1476 return genLoad(gen(cmpt
));
1479 // Determine the result type after removing `dims` dimensions from the array
1481 mlir::Type
genSubType(mlir::Type arrTy
, unsigned dims
) {
1482 mlir::Type unwrapTy
= fir::dyn_cast_ptrOrBoxEleTy(arrTy
);
1483 assert(unwrapTy
&& "must be a pointer or box type");
1484 auto seqTy
= mlir::cast
<fir::SequenceType
>(unwrapTy
);
1485 llvm::ArrayRef
<int64_t> shape
= seqTy
.getShape();
1486 assert(shape
.size() > 0 && "removing columns for sequence sans shape");
1487 assert(dims
<= shape
.size() && "removing more columns than exist");
1488 fir::SequenceType::Shape newBnds
;
1489 // follow Fortran semantics and remove columns (from right)
1490 std::size_t e
= shape
.size() - dims
;
1491 for (decltype(e
) i
= 0; i
< e
; ++i
)
1492 newBnds
.push_back(shape
[i
]);
1493 if (!newBnds
.empty())
1494 return fir::SequenceType::get(newBnds
, seqTy
.getEleTy());
1495 return seqTy
.getEleTy();
1498 // Generate the code for a Bound value.
1499 ExtValue
genval(const Fortran::semantics::Bound
&bound
) {
1500 if (bound
.isExplicit()) {
1501 Fortran::semantics::MaybeSubscriptIntExpr sub
= bound
.GetExplicit();
1502 if (sub
.has_value())
1503 return genval(*sub
);
1504 return genIntegerConstant
<8>(builder
.getContext(), 1);
1506 TODO(getLoc(), "non explicit semantics::Bound implementation");
1509 static bool isSlice(const Fortran::evaluate::ArrayRef
&aref
) {
1510 for (const Fortran::evaluate::Subscript
&sub
: aref
.subscript())
1511 if (std::holds_alternative
<Fortran::evaluate::Triplet
>(sub
.u
))
1516 /// Lower an ArrayRef to a fir.coordinate_of given its lowered base.
1517 ExtValue
genCoordinateOp(const ExtValue
&array
,
1518 const Fortran::evaluate::ArrayRef
&aref
) {
1519 mlir::Location loc
= getLoc();
1520 // References to array of rank > 1 with non constant shape that are not
1521 // fir.box must be collapsed into an offset computation in lowering already.
1522 // The same is needed with dynamic length character arrays of all ranks.
1523 mlir::Type baseType
=
1524 fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(array
).getType());
1525 if ((array
.rank() > 1 && fir::hasDynamicSize(baseType
)) ||
1526 fir::characterWithDynamicLen(fir::unwrapSequenceType(baseType
)))
1527 if (!array
.getBoxOf
<fir::BoxValue
>())
1528 return genOffsetAndCoordinateOp(array
, aref
);
1529 // Generate a fir.coordinate_of with zero based array indexes.
1530 llvm::SmallVector
<mlir::Value
> args
;
1531 for (const auto &subsc
: llvm::enumerate(aref
.subscript())) {
1532 ExtValue subVal
= genSubscript(subsc
.value());
1533 assert(fir::isUnboxedValue(subVal
) && "subscript must be simple scalar");
1534 mlir::Value val
= fir::getBase(subVal
);
1535 mlir::Type ty
= val
.getType();
1536 mlir::Value lb
= getLBound(array
, subsc
.index(), ty
);
1537 args
.push_back(builder
.create
<mlir::arith::SubIOp
>(loc
, ty
, val
, lb
));
1539 mlir::Value base
= fir::getBase(array
);
1541 auto baseSym
= getFirstSym(aref
);
1542 if (baseSym
.test(Fortran::semantics::Symbol::Flag::CrayPointee
)) {
1543 // get the corresponding Cray pointer
1544 Fortran::semantics::SymbolRef ptrSym
{
1545 Fortran::semantics::GetCrayPointer(baseSym
)};
1546 fir::ExtendedValue ptr
= gen(ptrSym
);
1547 mlir::Value ptrVal
= fir::getBase(ptr
);
1548 mlir::Type ptrTy
= ptrVal
.getType();
1550 mlir::Value cnvrt
= Fortran::lower::addCrayPointerInst(
1551 loc
, builder
, ptrVal
, ptrTy
, base
.getType());
1552 base
= builder
.create
<fir::LoadOp
>(loc
, cnvrt
);
1555 mlir::Type eleTy
= fir::dyn_cast_ptrOrBoxEleTy(base
.getType());
1556 if (auto classTy
= mlir::dyn_cast
<fir::ClassType
>(eleTy
))
1557 eleTy
= classTy
.getEleTy();
1558 auto seqTy
= mlir::cast
<fir::SequenceType
>(eleTy
);
1559 assert(args
.size() == seqTy
.getDimension());
1560 mlir::Type ty
= builder
.getRefType(seqTy
.getEleTy());
1561 auto addr
= builder
.create
<fir::CoordinateOp
>(loc
, ty
, base
, args
);
1562 return fir::factory::arrayElementToExtendedValue(builder
, loc
, array
, addr
);
1565 /// Lower an ArrayRef to a fir.coordinate_of using an element offset instead
1566 /// of array indexes.
1567 /// This generates offset computation from the indexes and length parameters,
1568 /// and use the offset to access the element with a fir.coordinate_of. This
1569 /// must only be used if it is not possible to generate a normal
1570 /// fir.coordinate_of using array indexes (i.e. when the shape information is
1571 /// unavailable in the IR).
1572 ExtValue
genOffsetAndCoordinateOp(const ExtValue
&array
,
1573 const Fortran::evaluate::ArrayRef
&aref
) {
1574 mlir::Location loc
= getLoc();
1575 mlir::Value addr
= fir::getBase(array
);
1576 mlir::Type arrTy
= fir::dyn_cast_ptrEleTy(addr
.getType());
1577 auto eleTy
= mlir::cast
<fir::SequenceType
>(arrTy
).getEleTy();
1578 mlir::Type seqTy
= builder
.getRefType(builder
.getVarLenSeqTy(eleTy
));
1579 mlir::Type refTy
= builder
.getRefType(eleTy
);
1580 mlir::Value base
= builder
.createConvert(loc
, seqTy
, addr
);
1581 mlir::IndexType idxTy
= builder
.getIndexType();
1582 mlir::Value one
= builder
.createIntegerConstant(loc
, idxTy
, 1);
1583 mlir::Value zero
= builder
.createIntegerConstant(loc
, idxTy
, 0);
1584 auto getLB
= [&](const auto &arr
, unsigned dim
) -> mlir::Value
{
1585 return arr
.getLBounds().empty() ? one
: arr
.getLBounds()[dim
];
1587 auto genFullDim
= [&](const auto &arr
, mlir::Value delta
) -> mlir::Value
{
1588 mlir::Value total
= zero
;
1589 assert(arr
.getExtents().size() == aref
.subscript().size());
1590 delta
= builder
.createConvert(loc
, idxTy
, delta
);
1592 for (auto [ext
, sub
] : llvm::zip(arr
.getExtents(), aref
.subscript())) {
1593 ExtValue subVal
= genSubscript(sub
);
1594 assert(fir::isUnboxedValue(subVal
));
1596 builder
.createConvert(loc
, idxTy
, fir::getBase(subVal
));
1597 mlir::Value lb
= builder
.createConvert(loc
, idxTy
, getLB(arr
, dim
));
1598 mlir::Value diff
= builder
.create
<mlir::arith::SubIOp
>(loc
, val
, lb
);
1600 builder
.create
<mlir::arith::MulIOp
>(loc
, delta
, diff
);
1601 total
= builder
.create
<mlir::arith::AddIOp
>(loc
, prod
, total
);
1603 delta
= builder
.create
<mlir::arith::MulIOp
>(loc
, delta
, ext
);
1606 mlir::Type origRefTy
= refTy
;
1607 if (fir::factory::CharacterExprHelper::isCharacterScalar(refTy
)) {
1608 fir::CharacterType chTy
=
1609 fir::factory::CharacterExprHelper::getCharacterType(refTy
);
1610 if (fir::characterWithDynamicLen(chTy
)) {
1611 mlir::MLIRContext
*ctx
= builder
.getContext();
1613 fir::factory::CharacterExprHelper::getCharacterKind(chTy
);
1614 fir::CharacterType singleTy
=
1615 fir::CharacterType::getSingleton(ctx
, kind
);
1616 refTy
= builder
.getRefType(singleTy
);
1617 mlir::Type seqRefTy
=
1618 builder
.getRefType(builder
.getVarLenSeqTy(singleTy
));
1619 base
= builder
.createConvert(loc
, seqRefTy
, base
);
1622 auto coor
= builder
.create
<fir::CoordinateOp
>(
1623 loc
, refTy
, base
, llvm::ArrayRef
<mlir::Value
>{total
});
1624 // Convert to expected, original type after address arithmetic.
1625 return builder
.createConvert(loc
, origRefTy
, coor
);
1628 [&](const fir::ArrayBoxValue
&arr
) -> ExtValue
{
1629 // FIXME: this check can be removed when slicing is implemented
1631 fir::emitFatalError(
1633 "slice should be handled in array expression context");
1634 return genFullDim(arr
, one
);
1636 [&](const fir::CharArrayBoxValue
&arr
) -> ExtValue
{
1637 mlir::Value delta
= arr
.getLen();
1638 // If the length is known in the type, fir.coordinate_of will
1639 // already take the length into account.
1640 if (fir::factory::CharacterExprHelper::hasConstantLengthInType(arr
))
1642 return fir::CharBoxValue(genFullDim(arr
, delta
), arr
.getLen());
1644 [&](const fir::BoxValue
&arr
) -> ExtValue
{
1645 // CoordinateOp for BoxValue is not generated here. The dimensions
1646 // must be kept in the fir.coordinate_op so that potential fir.box
1647 // strides can be applied by codegen.
1648 fir::emitFatalError(
1649 loc
, "internal: BoxValue in dim-collapsed fir.coordinate_of");
1651 [&](const auto &) -> ExtValue
{
1652 fir::emitFatalError(loc
, "internal: array processing failed");
1656 /// Lower an ArrayRef to a fir.array_coor.
1657 ExtValue
genArrayCoorOp(const ExtValue
&exv
,
1658 const Fortran::evaluate::ArrayRef
&aref
) {
1659 mlir::Location loc
= getLoc();
1660 mlir::Value addr
= fir::getBase(exv
);
1661 mlir::Type arrTy
= fir::dyn_cast_ptrOrBoxEleTy(addr
.getType());
1662 mlir::Type eleTy
= mlir::cast
<fir::SequenceType
>(arrTy
).getEleTy();
1663 mlir::Type refTy
= builder
.getRefType(eleTy
);
1664 mlir::IndexType idxTy
= builder
.getIndexType();
1665 llvm::SmallVector
<mlir::Value
> arrayCoorArgs
;
1666 // The ArrayRef is expected to be scalar here, arrays are handled in array
1667 // expression lowering. So no vector subscript or triplet is expected here.
1668 for (const auto &sub
: aref
.subscript()) {
1669 ExtValue subVal
= genSubscript(sub
);
1670 assert(fir::isUnboxedValue(subVal
));
1671 arrayCoorArgs
.push_back(
1672 builder
.createConvert(loc
, idxTy
, fir::getBase(subVal
)));
1674 mlir::Value shape
= builder
.createShape(loc
, exv
);
1675 mlir::Value elementAddr
= builder
.create
<fir::ArrayCoorOp
>(
1676 loc
, refTy
, addr
, shape
, /*slice=*/mlir::Value
{}, arrayCoorArgs
,
1677 fir::getTypeParams(exv
));
1678 return fir::factory::arrayElementToExtendedValue(builder
, loc
, exv
,
1682 /// Return the coordinate of the array reference.
1683 ExtValue
gen(const Fortran::evaluate::ArrayRef
&aref
) {
1684 ExtValue base
= aref
.base().IsSymbol() ? gen(getFirstSym(aref
.base()))
1685 : gen(aref
.base().GetComponent());
1686 // Check for command-line override to use array_coor op.
1687 if (generateArrayCoordinate
)
1688 return genArrayCoorOp(base
, aref
);
1689 // Otherwise, use coordinate_of op.
1690 return genCoordinateOp(base
, aref
);
1693 /// Return lower bounds of \p box in dimension \p dim. The returned value
1695 mlir::Value
getLBound(const ExtValue
&box
, unsigned dim
, mlir::Type ty
) {
1696 assert(box
.rank() > 0 && "must be an array");
1697 mlir::Location loc
= getLoc();
1698 mlir::Value one
= builder
.createIntegerConstant(loc
, ty
, 1);
1699 mlir::Value lb
= fir::factory::readLowerBound(builder
, loc
, box
, dim
, one
);
1700 return builder
.createConvert(loc
, ty
, lb
);
1703 ExtValue
genval(const Fortran::evaluate::ArrayRef
&aref
) {
1704 return genLoad(gen(aref
));
1707 ExtValue
gen(const Fortran::evaluate::CoarrayRef
&coref
) {
1708 return Fortran::lower::CoarrayExprHelper
{converter
, getLoc(), symMap
}
1712 ExtValue
genval(const Fortran::evaluate::CoarrayRef
&coref
) {
1713 return Fortran::lower::CoarrayExprHelper
{converter
, getLoc(), symMap
}
1717 template <typename A
>
1718 ExtValue
gen(const Fortran::evaluate::Designator
<A
> &des
) {
1719 return Fortran::common::visit([&](const auto &x
) { return gen(x
); }, des
.u
);
1721 template <typename A
>
1722 ExtValue
genval(const Fortran::evaluate::Designator
<A
> &des
) {
1723 return Fortran::common::visit([&](const auto &x
) { return genval(x
); },
1727 mlir::Type
genType(const Fortran::evaluate::DynamicType
&dt
) {
1728 if (dt
.category() != Fortran::common::TypeCategory::Derived
)
1729 return converter
.genType(dt
.category(), dt
.kind());
1730 if (dt
.IsUnlimitedPolymorphic())
1731 return mlir::NoneType::get(&converter
.getMLIRContext());
1732 return converter
.genType(dt
.GetDerivedTypeSpec());
1735 /// Lower a function reference
1736 template <typename A
>
1737 ExtValue
genFunctionRef(const Fortran::evaluate::FunctionRef
<A
> &funcRef
) {
1738 if (!funcRef
.GetType().has_value())
1739 fir::emitFatalError(getLoc(), "a function must have a type");
1740 mlir::Type resTy
= genType(*funcRef
.GetType());
1741 return genProcedureRef(funcRef
, {resTy
});
1744 /// Lower function call `funcRef` and return a reference to the resultant
1745 /// value. This is required for lowering expressions such as `f1(f2(v))`.
1746 template <typename A
>
1747 ExtValue
gen(const Fortran::evaluate::FunctionRef
<A
> &funcRef
) {
1748 ExtValue retVal
= genFunctionRef(funcRef
);
1749 mlir::Type resultType
= converter
.genType(toEvExpr(funcRef
));
1750 return placeScalarValueInMemory(builder
, getLoc(), retVal
, resultType
);
1753 /// Helper to lower intrinsic arguments for inquiry intrinsic.
1755 lowerIntrinsicArgumentAsInquired(const Fortran::lower::SomeExpr
&expr
) {
1756 if (Fortran::evaluate::IsAllocatableOrPointerObject(expr
))
1757 return genMutableBoxValue(expr
);
1758 /// Do not create temps for array sections whose properties only need to be
1759 /// inquired: create a descriptor that will be inquired.
1760 if (Fortran::evaluate::IsVariable(expr
) && isArray(expr
) &&
1761 !Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(expr
))
1762 return lowerIntrinsicArgumentAsBox(expr
);
1766 /// Helper to lower intrinsic arguments to a fir::BoxValue.
1767 /// It preserves all the non default lower bounds/non deferred length
1768 /// parameter information.
1769 ExtValue
lowerIntrinsicArgumentAsBox(const Fortran::lower::SomeExpr
&expr
) {
1770 mlir::Location loc
= getLoc();
1771 ExtValue exv
= genBoxArg(expr
);
1772 auto exvTy
= fir::getBase(exv
).getType();
1773 if (mlir::isa
<mlir::FunctionType
>(exvTy
)) {
1775 builder
.getBoxProcType(mlir::cast
<mlir::FunctionType
>(exvTy
));
1776 return builder
.create
<fir::EmboxProcOp
>(loc
, boxProcTy
,
1779 mlir::Value box
= builder
.createBox(loc
, exv
, exv
.isPolymorphic());
1780 if (Fortran::lower::isParentComponent(expr
)) {
1781 fir::ExtendedValue newExv
=
1782 Fortran::lower::updateBoxForParentComponent(converter
, box
, expr
);
1783 box
= fir::getBase(newExv
);
1785 return fir::BoxValue(
1786 box
, fir::factory::getNonDefaultLowerBounds(builder
, loc
, exv
),
1787 fir::factory::getNonDeferredLenParams(exv
));
1790 /// Generate a call to a Fortran intrinsic or intrinsic module procedure.
1791 ExtValue
genIntrinsicRef(
1792 const Fortran::evaluate::ProcedureRef
&procRef
,
1793 std::optional
<mlir::Type
> resultType
,
1794 std::optional
<const Fortran::evaluate::SpecificIntrinsic
> intrinsic
=
1796 llvm::SmallVector
<ExtValue
> operands
;
1799 intrinsic
? intrinsic
->name
1800 : procRef
.proc().GetSymbol()->GetUltimate().name().ToString();
1801 mlir::Location loc
= getLoc();
1802 if (intrinsic
&& Fortran::lower::intrinsicRequiresCustomOptionalHandling(
1803 procRef
, *intrinsic
, converter
)) {
1804 using ExvAndPresence
= std::pair
<ExtValue
, std::optional
<mlir::Value
>>;
1805 llvm::SmallVector
<ExvAndPresence
, 4> operands
;
1806 auto prepareOptionalArg
= [&](const Fortran::lower::SomeExpr
&expr
) {
1807 ExtValue optionalArg
= lowerIntrinsicArgumentAsInquired(expr
);
1808 mlir::Value isPresent
=
1809 genActualIsPresentTest(builder
, loc
, optionalArg
);
1810 operands
.emplace_back(optionalArg
, isPresent
);
1812 auto prepareOtherArg
= [&](const Fortran::lower::SomeExpr
&expr
,
1813 fir::LowerIntrinsicArgAs lowerAs
) {
1815 case fir::LowerIntrinsicArgAs::Value
:
1816 operands
.emplace_back(genval(expr
), std::nullopt
);
1818 case fir::LowerIntrinsicArgAs::Addr
:
1819 operands
.emplace_back(gen(expr
), std::nullopt
);
1821 case fir::LowerIntrinsicArgAs::Box
:
1822 operands
.emplace_back(lowerIntrinsicArgumentAsBox(expr
),
1825 case fir::LowerIntrinsicArgAs::Inquired
:
1826 operands
.emplace_back(lowerIntrinsicArgumentAsInquired(expr
),
1831 Fortran::lower::prepareCustomIntrinsicArgument(
1832 procRef
, *intrinsic
, resultType
, prepareOptionalArg
, prepareOtherArg
,
1835 auto getArgument
= [&](std::size_t i
, bool loadArg
) -> ExtValue
{
1836 if (loadArg
&& fir::conformsWithPassByRef(
1837 fir::getBase(operands
[i
].first
).getType()))
1838 return genLoad(operands
[i
].first
);
1839 return operands
[i
].first
;
1841 auto isPresent
= [&](std::size_t i
) -> std::optional
<mlir::Value
> {
1842 return operands
[i
].second
;
1844 return Fortran::lower::lowerCustomIntrinsic(
1845 builder
, loc
, name
, resultType
, isPresent
, getArgument
,
1846 operands
.size(), stmtCtx
);
1849 const fir::IntrinsicArgumentLoweringRules
*argLowering
=
1850 fir::getIntrinsicArgumentLowering(name
);
1851 for (const auto &arg
: llvm::enumerate(procRef
.arguments())) {
1853 Fortran::evaluate::UnwrapExpr
<Fortran::lower::SomeExpr
>(arg
.value());
1855 if (!expr
&& arg
.value() && arg
.value()->GetAssumedTypeDummy()) {
1856 // Assumed type optional.
1857 const Fortran::evaluate::Symbol
*assumedTypeSym
=
1858 arg
.value()->GetAssumedTypeDummy();
1859 auto symBox
= symMap
.lookupSymbol(*assumedTypeSym
);
1861 converter
.getSymbolExtendedValue(*assumedTypeSym
, &symMap
);
1863 fir::ArgLoweringRule argRules
=
1864 fir::lowerIntrinsicArgumentAs(*argLowering
, arg
.index());
1865 // Note: usages of TYPE(*) is limited by C710 but C_LOC and
1866 // IS_CONTIGUOUS may require an assumed size TYPE(*) to be passed to
1867 // the intrinsic library utility as a fir.box.
1868 if (argRules
.lowerAs
== fir::LowerIntrinsicArgAs::Box
&&
1869 !mlir::isa
<fir::BaseBoxType
>(fir::getBase(exv
).getType())) {
1870 operands
.emplace_back(
1871 fir::factory::createBoxValue(builder
, loc
, exv
));
1875 operands
.emplace_back(std::move(exv
));
1880 operands
.emplace_back(fir::getAbsentIntrinsicArgument());
1884 // No argument lowering instruction, lower by value.
1885 operands
.emplace_back(genval(*expr
));
1888 // Ad-hoc argument lowering handling.
1889 fir::ArgLoweringRule argRules
=
1890 fir::lowerIntrinsicArgumentAs(*argLowering
, arg
.index());
1891 if (argRules
.handleDynamicOptional
&&
1892 Fortran::evaluate::MayBePassedAsAbsentOptional(*expr
)) {
1893 ExtValue optional
= lowerIntrinsicArgumentAsInquired(*expr
);
1894 mlir::Value isPresent
= genActualIsPresentTest(builder
, loc
, optional
);
1895 switch (argRules
.lowerAs
) {
1896 case fir::LowerIntrinsicArgAs::Value
:
1897 operands
.emplace_back(
1898 genOptionalValue(builder
, loc
, optional
, isPresent
));
1900 case fir::LowerIntrinsicArgAs::Addr
:
1901 operands
.emplace_back(
1902 genOptionalAddr(builder
, loc
, optional
, isPresent
));
1904 case fir::LowerIntrinsicArgAs::Box
:
1905 operands
.emplace_back(
1906 genOptionalBox(builder
, loc
, optional
, isPresent
));
1908 case fir::LowerIntrinsicArgAs::Inquired
:
1909 operands
.emplace_back(optional
);
1912 llvm_unreachable("bad switch");
1914 switch (argRules
.lowerAs
) {
1915 case fir::LowerIntrinsicArgAs::Value
:
1916 operands
.emplace_back(genval(*expr
));
1918 case fir::LowerIntrinsicArgAs::Addr
:
1919 operands
.emplace_back(gen(*expr
));
1921 case fir::LowerIntrinsicArgAs::Box
:
1922 operands
.emplace_back(lowerIntrinsicArgumentAsBox(*expr
));
1924 case fir::LowerIntrinsicArgAs::Inquired
:
1925 operands
.emplace_back(lowerIntrinsicArgumentAsInquired(*expr
));
1928 llvm_unreachable("bad switch");
1930 // Let the intrinsic library lower the intrinsic procedure call
1931 return Fortran::lower::genIntrinsicCall(builder
, getLoc(), name
, resultType
,
1932 operands
, stmtCtx
, &converter
);
1935 /// helper to detect statement functions
1937 isStatementFunctionCall(const Fortran::evaluate::ProcedureRef
&procRef
) {
1938 if (const Fortran::semantics::Symbol
*symbol
= procRef
.proc().GetSymbol())
1939 if (const auto *details
=
1940 symbol
->detailsIf
<Fortran::semantics::SubprogramDetails
>())
1941 return details
->stmtFunction().has_value();
1945 /// Generate Statement function calls
1946 ExtValue
genStmtFunctionRef(const Fortran::evaluate::ProcedureRef
&procRef
) {
1947 const Fortran::semantics::Symbol
*symbol
= procRef
.proc().GetSymbol();
1948 assert(symbol
&& "expected symbol in ProcedureRef of statement functions");
1949 const auto &details
= symbol
->get
<Fortran::semantics::SubprogramDetails
>();
1951 // Statement functions have their own scope, we just need to associate
1952 // the dummy symbols to argument expressions. They are no
1953 // optional/alternate return arguments. Statement functions cannot be
1954 // recursive (directly or indirectly) so it is safe to add dummy symbols to
1955 // the local map here.
1957 for (auto [arg
, bind
] :
1958 llvm::zip(details
.dummyArgs(), procRef
.arguments())) {
1959 assert(arg
&& "alternate return in statement function");
1960 assert(bind
&& "optional argument in statement function");
1961 const auto *expr
= bind
->UnwrapExpr();
1962 // TODO: assumed type in statement function, that surprisingly seems
1963 // allowed, probably because nobody thought of restricting this usage.
1964 // gfortran/ifort compiles this.
1965 assert(expr
&& "assumed type used as statement function argument");
1966 // As per Fortran 2018 C1580, statement function arguments can only be
1967 // scalars, so just pass the box with the address. The only care is to
1968 // to use the dummy character explicit length if any instead of the
1969 // actual argument length (that can be bigger).
1970 if (const Fortran::semantics::DeclTypeSpec
*type
= arg
->GetType())
1971 if (type
->category() == Fortran::semantics::DeclTypeSpec::Character
)
1972 if (const Fortran::semantics::MaybeIntExpr
&lenExpr
=
1973 type
->characterTypeSpec().length().GetExplicit()) {
1974 mlir::Value len
= fir::getBase(genval(*lenExpr
));
1975 // F2018 7.4.4.2 point 5.
1976 len
= fir::factory::genMaxWithZero(builder
, getLoc(), len
);
1977 symMap
.addSymbol(*arg
,
1978 replaceScalarCharacterLength(gen(*expr
), len
));
1981 symMap
.addSymbol(*arg
, gen(*expr
));
1984 // Explicitly map statement function host associated symbols to their
1985 // parent scope lowered symbol box.
1986 for (const Fortran::semantics::SymbolRef
&sym
:
1987 Fortran::evaluate::CollectSymbols(*details
.stmtFunction()))
1988 if (const auto *details
=
1989 sym
->detailsIf
<Fortran::semantics::HostAssocDetails
>())
1990 if (!symMap
.lookupSymbol(*sym
))
1991 symMap
.addSymbol(*sym
, gen(details
->symbol()));
1993 ExtValue result
= genval(details
.stmtFunction().value());
1994 LLVM_DEBUG(llvm::dbgs() << "stmt-function: " << result
<< '\n');
1999 /// Create a contiguous temporary array with the same shape,
2000 /// length parameters and type as mold. It is up to the caller to deallocate
2002 ExtValue
genArrayTempFromMold(const ExtValue
&mold
,
2003 llvm::StringRef tempName
) {
2004 mlir::Type type
= fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(mold
).getType());
2005 assert(type
&& "expected descriptor or memory type");
2006 mlir::Location loc
= getLoc();
2007 llvm::SmallVector
<mlir::Value
> extents
=
2008 fir::factory::getExtents(loc
, builder
, mold
);
2009 llvm::SmallVector
<mlir::Value
> allocMemTypeParams
=
2010 fir::getTypeParams(mold
);
2011 mlir::Value charLen
;
2012 mlir::Type elementType
= fir::unwrapSequenceType(type
);
2013 if (auto charType
= mlir::dyn_cast
<fir::CharacterType
>(elementType
)) {
2014 charLen
= allocMemTypeParams
.empty()
2015 ? fir::factory::readCharLen(builder
, loc
, mold
)
2016 : allocMemTypeParams
[0];
2017 if (charType
.hasDynamicLen() && allocMemTypeParams
.empty())
2018 allocMemTypeParams
.push_back(charLen
);
2019 } else if (fir::hasDynamicSize(elementType
)) {
2020 TODO(loc
, "creating temporary for derived type with length parameters");
2023 mlir::Value temp
= builder
.create
<fir::AllocMemOp
>(
2024 loc
, type
, tempName
, allocMemTypeParams
, extents
);
2025 if (mlir::isa
<fir::CharacterType
>(fir::unwrapSequenceType(type
)))
2026 return fir::CharArrayBoxValue
{temp
, charLen
, extents
};
2027 return fir::ArrayBoxValue
{temp
, extents
};
2030 /// Copy \p source array into \p dest array. Both arrays must be
2031 /// conforming, but neither array must be contiguous.
2032 void genArrayCopy(ExtValue dest
, ExtValue source
) {
2033 return createSomeArrayAssignment(converter
, dest
, source
, symMap
, stmtCtx
);
2036 /// Lower a non-elemental procedure reference and read allocatable and pointer
2037 /// results into normal values.
2038 ExtValue
genProcedureRef(const Fortran::evaluate::ProcedureRef
&procRef
,
2039 std::optional
<mlir::Type
> resultType
) {
2040 ExtValue res
= genRawProcedureRef(procRef
, resultType
);
2041 // In most contexts, pointers and allocatable do not appear as allocatable
2042 // or pointer variable on the caller side (see 8.5.3 note 1 for
2043 // allocatables). The few context where this can happen must call
2044 // genRawProcedureRef directly.
2045 if (const auto *box
= res
.getBoxOf
<fir::MutableBoxValue
>())
2046 return fir::factory::genMutableBoxRead(builder
, getLoc(), *box
);
2050 /// Like genExtAddr, but ensure the address returned is a temporary even if \p
2051 /// expr is variable inside parentheses.
2052 ExtValue
genTempExtAddr(const Fortran::lower::SomeExpr
&expr
) {
2053 // In general, genExtAddr might not create a temp for variable inside
2054 // parentheses to avoid creating array temporary in sub-expressions. It only
2055 // ensures the sub-expression is not re-associated with other parts of the
2056 // expression. In the call semantics, there is a difference between expr and
2057 // variable (see R1524). For expressions, a variable storage must not be
2058 // argument associated since it could be modified inside the call, or the
2059 // variable could also be modified by other means during the call.
2060 if (!isParenthesizedVariable(expr
))
2061 return genExtAddr(expr
);
2062 if (expr
.Rank() > 0)
2063 return asArray(expr
);
2064 mlir::Location loc
= getLoc();
2065 return genExtValue(expr
).match(
2066 [&](const fir::CharBoxValue
&boxChar
) -> ExtValue
{
2067 return fir::factory::CharacterExprHelper
{builder
, loc
}.createTempFrom(
2070 [&](const fir::UnboxedValue
&v
) -> ExtValue
{
2071 mlir::Type type
= v
.getType();
2072 mlir::Value value
= v
;
2073 if (fir::isa_ref_type(type
))
2074 value
= builder
.create
<fir::LoadOp
>(loc
, value
);
2075 mlir::Value temp
= builder
.createTemporary(loc
, value
.getType());
2076 builder
.create
<fir::StoreOp
>(loc
, value
, temp
);
2079 [&](const fir::BoxValue
&x
) -> ExtValue
{
2080 // Derived type scalar that may be polymorphic.
2081 if (fir::isPolymorphicType(fir::getBase(x
).getType()))
2082 TODO(loc
, "polymorphic array temporary");
2083 assert(!x
.hasRank() && x
.isDerived());
2084 if (x
.isDerivedWithLenParameters())
2085 fir::emitFatalError(
2086 loc
, "making temps for derived type with length parameters");
2087 // TODO: polymorphic aspects should be kept but for now the temp
2088 // created always has the declared type.
2090 fir::getBase(fir::factory::readBoxValue(builder
, loc
, x
));
2091 auto value
= builder
.create
<fir::LoadOp
>(loc
, var
);
2092 mlir::Value temp
= builder
.createTemporary(loc
, value
.getType());
2093 builder
.create
<fir::StoreOp
>(loc
, value
, temp
);
2096 [&](const fir::PolymorphicValue
&p
) -> ExtValue
{
2097 TODO(loc
, "creating polymorphic temporary");
2099 [&](const auto &) -> ExtValue
{
2100 fir::emitFatalError(loc
, "expr is not a scalar value");
2104 /// Helper structure to track potential copy-in of non contiguous variable
2105 /// argument into a contiguous temp. It is used to deallocate the temp that
2106 /// may have been created as well as to the copy-out from the temp to the
2107 /// variable after the call.
2108 struct CopyOutPair
{
2111 // Flag to indicate if the argument may have been modified by the
2112 // callee, in which case it must be copied-out to the variable.
2113 bool argMayBeModifiedByCall
;
2114 // Optional boolean value that, if present and false, prevents
2115 // the copy-out and temp deallocation.
2116 std::optional
<mlir::Value
> restrictCopyAndFreeAtRuntime
;
2118 using CopyOutPairs
= llvm::SmallVector
<CopyOutPair
, 4>;
2120 /// Helper to read any fir::BoxValue into other fir::ExtendedValue categories
2121 /// not based on fir.box.
2122 /// This will lose any non contiguous stride information and dynamic type and
2123 /// should only be called if \p exv is known to be contiguous or if its base
2124 /// address will be replaced by a contiguous one. If \p exv is not a
2125 /// fir::BoxValue, this is a no-op.
2126 ExtValue
readIfBoxValue(const ExtValue
&exv
) {
2127 if (const auto *box
= exv
.getBoxOf
<fir::BoxValue
>())
2128 return fir::factory::readBoxValue(builder
, getLoc(), *box
);
2132 /// Generate a contiguous temp to pass \p actualArg as argument \p arg. The
2133 /// creation of the temp and copy-in can be made conditional at runtime by
2134 /// providing a runtime boolean flag \p restrictCopyAtRuntime (in which case
2135 /// the temp and copy will only be made if the value is true at runtime).
2136 ExtValue
genCopyIn(const ExtValue
&actualArg
,
2137 const Fortran::lower::CallerInterface::PassedEntity
&arg
,
2138 CopyOutPairs
©OutPairs
,
2139 std::optional
<mlir::Value
> restrictCopyAtRuntime
,
2141 const bool doCopyOut
= !byValue
&& arg
.mayBeModifiedByCall();
2142 llvm::StringRef tempName
= byValue
? ".copy" : ".copyinout";
2143 mlir::Location loc
= getLoc();
2144 bool isActualArgBox
= fir::isa_box_type(fir::getBase(actualArg
).getType());
2145 mlir::Value isContiguousResult
;
2146 mlir::Type addrType
= fir::HeapType::get(
2147 fir::unwrapPassByRefType(fir::getBase(actualArg
).getType()));
2149 if (isActualArgBox
) {
2150 // Check at runtime if the argument is contiguous so no copy is needed.
2151 isContiguousResult
=
2152 fir::runtime::genIsContiguous(builder
, loc
, fir::getBase(actualArg
));
2155 auto doCopyIn
= [&]() -> ExtValue
{
2156 ExtValue temp
= genArrayTempFromMold(actualArg
, tempName
);
2157 if (!arg
.mayBeReadByCall() &&
2158 // INTENT(OUT) dummy argument finalization, automatically
2159 // done when the procedure is invoked, may imply reading
2160 // the argument value in the finalization routine.
2161 // So we need to make a copy, if finalization may occur.
2162 // TODO: do we have to avoid the copying for an actual
2163 // argument of type that does not require finalization?
2164 !arg
.mayRequireIntentoutFinalization() &&
2165 // ALLOCATABLE dummy argument may require finalization.
2166 // If it has to be automatically deallocated at the end
2167 // of the procedure invocation (9.7.3.2 p. 2),
2168 // then the finalization may happen if the actual argument
2169 // is allocated (7.5.6.3 p. 2).
2170 !arg
.hasAllocatableAttribute()) {
2171 // We have to initialize the temp if it may have components
2172 // that need initialization. If there are no components
2173 // requiring initialization, then the call is a no-op.
2174 if (mlir::isa
<fir::RecordType
>(getElementTypeOf(temp
))) {
2175 mlir::Value tempBox
= fir::getBase(builder
.createBox(loc
, temp
));
2176 fir::runtime::genDerivedTypeInitialize(builder
, loc
, tempBox
);
2180 if (!isActualArgBox
|| inlineCopyInOutForBoxes
) {
2181 genArrayCopy(temp
, actualArg
);
2185 // Generate AssignTemporary() call to copy data from the actualArg
2186 // to a temporary. AssignTemporary() will initialize the temporary,
2187 // if needed, before doing the assignment, which is required
2188 // since the temporary's components (if any) are uninitialized
2190 mlir::Value destBox
= fir::getBase(builder
.createBox(loc
, temp
));
2191 mlir::Value boxRef
= builder
.createTemporary(loc
, destBox
.getType());
2192 builder
.create
<fir::StoreOp
>(loc
, destBox
, boxRef
);
2193 fir::runtime::genAssignTemporary(builder
, loc
, boxRef
,
2194 fir::getBase(actualArg
));
2198 auto noCopy
= [&]() {
2199 mlir::Value box
= fir::getBase(actualArg
);
2200 mlir::Value boxAddr
= builder
.create
<fir::BoxAddrOp
>(loc
, addrType
, box
);
2201 builder
.create
<fir::ResultOp
>(loc
, boxAddr
);
2204 auto combinedCondition
= [&]() {
2205 if (isActualArgBox
) {
2207 builder
.createIntegerConstant(loc
, builder
.getI1Type(), 0);
2208 mlir::Value notContiguous
= builder
.create
<mlir::arith::CmpIOp
>(
2209 loc
, mlir::arith::CmpIPredicate::eq
, isContiguousResult
, zero
);
2210 if (!restrictCopyAtRuntime
) {
2211 restrictCopyAtRuntime
= notContiguous
;
2213 mlir::Value cond
= builder
.create
<mlir::arith::AndIOp
>(
2214 loc
, *restrictCopyAtRuntime
, notContiguous
);
2215 restrictCopyAtRuntime
= cond
;
2220 if (!restrictCopyAtRuntime
) {
2221 if (isActualArgBox
) {
2222 // isContiguousResult = genIsContiguousCall();
2225 .genIfOp(loc
, {addrType
}, isContiguousResult
,
2226 /*withElseRegion=*/true)
2227 .genThen([&]() { noCopy(); })
2229 ExtValue temp
= doCopyIn();
2230 builder
.create
<fir::ResultOp
>(loc
, fir::getBase(temp
));
2233 fir::ExtendedValue temp
=
2234 fir::substBase(readIfBoxValue(actualArg
), addr
);
2235 combinedCondition();
2236 copyOutPairs
.emplace_back(
2237 CopyOutPair
{actualArg
, temp
, doCopyOut
, restrictCopyAtRuntime
});
2241 ExtValue temp
= doCopyIn();
2242 copyOutPairs
.emplace_back(CopyOutPair
{actualArg
, temp
, doCopyOut
, {}});
2246 // Otherwise, need to be careful to only copy-in if allowed at runtime.
2249 .genIfOp(loc
, {addrType
}, *restrictCopyAtRuntime
,
2250 /*withElseRegion=*/true)
2252 if (isActualArgBox
) {
2253 // isContiguousResult = genIsContiguousCall();
2254 // Avoid copyin if the argument is contiguous at runtime.
2257 .genIfOp(loc
, {addrType
}, isContiguousResult
,
2258 /*withElseRegion=*/true)
2259 .genThen([&]() { noCopy(); })
2261 ExtValue temp
= doCopyIn();
2262 builder
.create
<fir::ResultOp
>(loc
,
2263 fir::getBase(temp
));
2266 builder
.create
<fir::ResultOp
>(loc
, addr1
);
2268 ExtValue temp
= doCopyIn();
2269 builder
.create
<fir::ResultOp
>(loc
, fir::getBase(temp
));
2273 mlir::Value nullPtr
= builder
.createNullConstant(loc
, addrType
);
2274 builder
.create
<fir::ResultOp
>(loc
, nullPtr
);
2277 // Associate the temp address with actualArg lengths and extents if a
2278 // temporary is generated. Otherwise the same address is associated.
2279 fir::ExtendedValue temp
= fir::substBase(readIfBoxValue(actualArg
), addr
);
2280 combinedCondition();
2281 copyOutPairs
.emplace_back(
2282 CopyOutPair
{actualArg
, temp
, doCopyOut
, restrictCopyAtRuntime
});
2286 /// Generate copy-out if needed and free the temporary for an argument that
2287 /// has been copied-in into a contiguous temp.
2288 void genCopyOut(const CopyOutPair
©OutPair
) {
2289 mlir::Location loc
= getLoc();
2290 bool isActualArgBox
=
2291 fir::isa_box_type(fir::getBase(copyOutPair
.var
).getType());
2292 auto doCopyOut
= [&]() {
2293 if (!isActualArgBox
|| inlineCopyInOutForBoxes
) {
2294 if (copyOutPair
.argMayBeModifiedByCall
)
2295 genArrayCopy(copyOutPair
.var
, copyOutPair
.temp
);
2296 if (mlir::isa
<fir::RecordType
>(
2297 fir::getElementTypeOf(copyOutPair
.temp
))) {
2298 // Destroy components of the temporary (if any).
2299 // If there are no components requiring destruction, then the call
2301 mlir::Value tempBox
=
2302 fir::getBase(builder
.createBox(loc
, copyOutPair
.temp
));
2303 fir::runtime::genDerivedTypeDestroyWithoutFinalization(builder
, loc
,
2306 // Deallocate the top-level entity of the temporary.
2307 builder
.create
<fir::FreeMemOp
>(loc
, fir::getBase(copyOutPair
.temp
));
2310 // Generate CopyOutAssign() call to copy data from the temporary
2311 // to the actualArg. Note that in case the actual argument
2312 // is ALLOCATABLE/POINTER the CopyOutAssign() implementation
2313 // should not engage its reallocation, because the temporary
2314 // is rank, shape and type compatible with it.
2315 // Moreover, CopyOutAssign() guarantees that there will be no
2316 // finalization for the LHS even if it is of a derived type
2317 // with finalization.
2319 // Create allocatable descriptor for the temp so that the runtime may
2321 mlir::Value srcBox
=
2322 fir::getBase(builder
.createBox(loc
, copyOutPair
.temp
));
2323 mlir::Type allocBoxTy
=
2324 mlir::cast
<fir::BaseBoxType
>(srcBox
.getType())
2325 .getBoxTypeWithNewAttr(fir::BaseBoxType::Attribute::Allocatable
);
2326 srcBox
= builder
.create
<fir::ReboxOp
>(loc
, allocBoxTy
, srcBox
,
2327 /*shift=*/mlir::Value
{},
2328 /*slice=*/mlir::Value
{});
2329 mlir::Value srcBoxRef
= builder
.createTemporary(loc
, srcBox
.getType());
2330 builder
.create
<fir::StoreOp
>(loc
, srcBox
, srcBoxRef
);
2331 // Create descriptor pointer to variable descriptor if copy out is needed,
2332 // and nullptr otherwise.
2333 mlir::Value destBoxRef
;
2334 if (copyOutPair
.argMayBeModifiedByCall
) {
2335 mlir::Value destBox
=
2336 fir::getBase(builder
.createBox(loc
, copyOutPair
.var
));
2337 destBoxRef
= builder
.createTemporary(loc
, destBox
.getType());
2338 builder
.create
<fir::StoreOp
>(loc
, destBox
, destBoxRef
);
2340 destBoxRef
= builder
.create
<fir::ZeroOp
>(loc
, srcBoxRef
.getType());
2342 fir::runtime::genCopyOutAssign(builder
, loc
, destBoxRef
, srcBoxRef
);
2345 if (!copyOutPair
.restrictCopyAndFreeAtRuntime
)
2348 builder
.genIfThen(loc
, *copyOutPair
.restrictCopyAndFreeAtRuntime
)
2349 .genThen([&]() { doCopyOut(); })
2353 /// Lower a designator to a variable that may be absent at runtime into an
2354 /// ExtendedValue where all the properties (base address, shape and length
2355 /// parameters) can be safely read (set to zero if not present). It also
2356 /// returns a boolean mlir::Value telling if the variable is present at
2358 /// This is useful to later be able to do conditional copy-in/copy-out
2359 /// or to retrieve the base address without having to deal with the case
2360 /// where the actual may be an absent fir.box.
2361 std::pair
<ExtValue
, mlir::Value
>
2362 prepareActualThatMayBeAbsent(const Fortran::lower::SomeExpr
&expr
) {
2363 mlir::Location loc
= getLoc();
2364 if (Fortran::evaluate::IsAllocatableOrPointerObject(expr
)) {
2365 // Fortran 2018 15.5.2.12 point 1: If unallocated/disassociated,
2366 // it is as if the argument was absent. The main care here is to
2367 // not do a copy-in/copy-out because the temp address, even though
2368 // pointing to a null size storage, would not be a nullptr and
2369 // therefore the argument would not be considered absent on the
2370 // callee side. Note: if wholeSymbol is optional, it cannot be
2371 // absent as per 15.5.2.12 point 7. and 8. We rely on this to
2372 // un-conditionally read the allocatable/pointer descriptor here.
2373 fir::MutableBoxValue mutableBox
= genMutableBoxValue(expr
);
2374 mlir::Value isPresent
= fir::factory::genIsAllocatedOrAssociatedTest(
2375 builder
, loc
, mutableBox
);
2376 fir::ExtendedValue actualArg
=
2377 fir::factory::genMutableBoxRead(builder
, loc
, mutableBox
);
2378 return {actualArg
, isPresent
};
2380 // Absent descriptor cannot be read. To avoid any issue in
2381 // copy-in/copy-out, and when retrieving the address/length
2382 // create an descriptor pointing to a null address here if the
2383 // fir.box is absent.
2384 ExtValue actualArg
= gen(expr
);
2385 mlir::Value actualArgBase
= fir::getBase(actualArg
);
2386 mlir::Value isPresent
= builder
.create
<fir::IsPresentOp
>(
2387 loc
, builder
.getI1Type(), actualArgBase
);
2388 if (!mlir::isa
<fir::BoxType
>(actualArgBase
.getType()))
2389 return {actualArg
, isPresent
};
2390 ExtValue safeToReadBox
=
2391 absentBoxToUnallocatedBox(builder
, loc
, actualArg
, isPresent
);
2392 return {safeToReadBox
, isPresent
};
2395 /// Create a temp on the stack for scalar actual arguments that may be absent
2396 /// at runtime, but must be passed via a temp if they are presents.
2398 createScalarTempForArgThatMayBeAbsent(ExtValue actualArg
,
2399 mlir::Value isPresent
) {
2400 mlir::Location loc
= getLoc();
2401 mlir::Type type
= fir::unwrapRefType(fir::getBase(actualArg
).getType());
2402 if (fir::isDerivedWithLenParameters(actualArg
))
2403 TODO(loc
, "parametrized derived type optional scalar argument copy-in");
2404 if (const fir::CharBoxValue
*charBox
= actualArg
.getCharBox()) {
2405 mlir::Value len
= charBox
->getLen();
2406 mlir::Value zero
= builder
.createIntegerConstant(loc
, len
.getType(), 0);
2407 len
= builder
.create
<mlir::arith::SelectOp
>(loc
, isPresent
, len
, zero
);
2409 builder
.createTemporary(loc
, type
, /*name=*/{},
2410 /*shape=*/{}, mlir::ValueRange
{len
},
2411 llvm::ArrayRef
<mlir::NamedAttribute
>{
2412 fir::getAdaptToByRefAttr(builder
)});
2413 return fir::CharBoxValue
{temp
, len
};
2415 assert((fir::isa_trivial(type
) || mlir::isa
<fir::RecordType
>(type
)) &&
2416 "must be simple scalar");
2417 return builder
.createTemporary(loc
, type
,
2418 llvm::ArrayRef
<mlir::NamedAttribute
>{
2419 fir::getAdaptToByRefAttr(builder
)});
2422 template <typename A
>
2423 bool isCharacterType(const A
&exp
) {
2424 if (auto type
= exp
.GetType())
2425 return type
->category() == Fortran::common::TypeCategory::Character
;
2429 /// Lower an actual argument that must be passed via an address.
2430 /// This generates of the copy-in/copy-out if the actual is not contiguous, or
2431 /// the creation of the temp if the actual is a variable and \p byValue is
2432 /// true. It handles the cases where the actual may be absent, and all of the
2433 /// copying has to be conditional at runtime.
2434 /// If the actual argument may be dynamically absent, return an additional
2435 /// boolean mlir::Value that if true means that the actual argument is
2437 std::pair
<ExtValue
, std::optional
<mlir::Value
>>
2438 prepareActualToBaseAddressLike(
2439 const Fortran::lower::SomeExpr
&expr
,
2440 const Fortran::lower::CallerInterface::PassedEntity
&arg
,
2441 CopyOutPairs
©OutPairs
, bool byValue
) {
2442 mlir::Location loc
= getLoc();
2443 const bool isArray
= expr
.Rank() > 0;
2444 const bool actualArgIsVariable
= Fortran::evaluate::IsVariable(expr
);
2445 // It must be possible to modify VALUE arguments on the callee side, even
2446 // if the actual argument is a literal or named constant. Hence, the
2447 // address of static storage must not be passed in that case, and a copy
2448 // must be made even if this is not a variable.
2449 // Note: isArray should be used here, but genBoxArg already creates copies
2450 // for it, so do not duplicate the copy until genBoxArg behavior is changed.
2451 const bool isStaticConstantByValue
=
2452 byValue
&& Fortran::evaluate::IsActuallyConstant(expr
) &&
2453 (isCharacterType(expr
));
2454 const bool variableNeedsCopy
=
2455 actualArgIsVariable
&&
2456 (byValue
|| (isArray
&& !Fortran::evaluate::IsSimplyContiguous(
2457 expr
, converter
.getFoldingContext())));
2458 const bool needsCopy
= isStaticConstantByValue
|| variableNeedsCopy
;
2459 auto [argAddr
, isPresent
] =
2460 [&]() -> std::pair
<ExtValue
, std::optional
<mlir::Value
>> {
2461 if (!actualArgIsVariable
&& !needsCopy
)
2462 // Actual argument is not a variable. Make sure a variable address is
2464 return {genTempExtAddr(expr
), std::nullopt
};
2466 if (arg
.isOptional() &&
2467 Fortran::evaluate::MayBePassedAsAbsentOptional(expr
)) {
2468 auto [actualArgBind
, isPresent
] = prepareActualThatMayBeAbsent(expr
);
2469 const ExtValue
&actualArg
= actualArgBind
;
2471 return {actualArg
, isPresent
};
2474 return {genCopyIn(actualArg
, arg
, copyOutPairs
, isPresent
, byValue
),
2476 // Scalars, create a temp, and use it conditionally at runtime if
2477 // the argument is present.
2479 createScalarTempForArgThatMayBeAbsent(actualArg
, isPresent
);
2480 mlir::Type tempAddrTy
= fir::getBase(temp
).getType();
2481 mlir::Value selectAddr
=
2483 .genIfOp(loc
, {tempAddrTy
}, isPresent
,
2484 /*withElseRegion=*/true)
2486 fir::factory::genScalarAssignment(builder
, loc
, temp
,
2488 builder
.create
<fir::ResultOp
>(loc
, fir::getBase(temp
));
2491 mlir::Value absent
=
2492 builder
.create
<fir::AbsentOp
>(loc
, tempAddrTy
);
2493 builder
.create
<fir::ResultOp
>(loc
, absent
);
2496 return {fir::substBase(temp
, selectAddr
), isPresent
};
2498 // Actual cannot be absent, the actual argument can safely be
2499 // copied-in/copied-out without any care if needed.
2501 ExtValue box
= genBoxArg(expr
);
2503 return {genCopyIn(box
, arg
, copyOutPairs
,
2504 /*restrictCopyAtRuntime=*/std::nullopt
, byValue
),
2506 // Contiguous: just use the box we created above!
2507 // This gets "unboxed" below, if needed.
2508 return {box
, std::nullopt
};
2510 // Actual argument is a non-optional, non-pointer, non-allocatable
2512 ExtValue actualArg
= genExtAddr(expr
);
2514 return {createInMemoryScalarCopy(builder
, loc
, actualArg
),
2516 return {actualArg
, std::nullopt
};
2518 // Scalar and contiguous expressions may be lowered to a fir.box,
2519 // either to account for potential polymorphism, or because lowering
2520 // did not account for some contiguity hints.
2521 // Here, polymorphism does not matter (an entity of the declared type
2522 // is passed, not one of the dynamic type), and the expr is known to
2523 // be simply contiguous, so it is safe to unbox it and pass the
2524 // address without making a copy.
2525 return {readIfBoxValue(argAddr
), isPresent
};
2528 /// Lower a non-elemental procedure reference.
2529 ExtValue
genRawProcedureRef(const Fortran::evaluate::ProcedureRef
&procRef
,
2530 std::optional
<mlir::Type
> resultType
) {
2531 mlir::Location loc
= getLoc();
2532 if (isElementalProcWithArrayArgs(procRef
))
2533 fir::emitFatalError(loc
, "trying to lower elemental procedure with array "
2534 "arguments as normal procedure");
2536 if (const Fortran::evaluate::SpecificIntrinsic
*intrinsic
=
2537 procRef
.proc().GetSpecificIntrinsic())
2538 return genIntrinsicRef(procRef
, resultType
, *intrinsic
);
2540 if (Fortran::lower::isIntrinsicModuleProcRef(procRef
) &&
2541 !Fortran::semantics::IsBindCProcedure(*procRef
.proc().GetSymbol()))
2542 return genIntrinsicRef(procRef
, resultType
);
2544 if (isStatementFunctionCall(procRef
))
2545 return genStmtFunctionRef(procRef
);
2547 Fortran::lower::CallerInterface
caller(procRef
, converter
);
2548 using PassBy
= Fortran::lower::CallerInterface::PassEntityBy
;
2550 llvm::SmallVector
<fir::MutableBoxValue
> mutableModifiedByCall
;
2551 // List of <var, temp> where temp must be copied into var after the call.
2552 CopyOutPairs copyOutPairs
;
2554 mlir::FunctionType callSiteType
= caller
.genFunctionType();
2556 // Lower the actual arguments and map the lowered values to the dummy
2558 for (const Fortran::lower::CallInterface
<
2559 Fortran::lower::CallerInterface
>::PassedEntity
&arg
:
2560 caller
.getPassedArguments()) {
2561 const auto *actual
= arg
.entity
;
2562 mlir::Type argTy
= callSiteType
.getInput(arg
.firArgument
);
2564 // Optional dummy argument for which there is no actual argument.
2565 caller
.placeInput(arg
, builder
.genAbsentOp(loc
, argTy
));
2568 const auto *expr
= actual
->UnwrapExpr();
2570 TODO(loc
, "assumed type actual argument");
2572 if (arg
.passBy
== PassBy::Value
) {
2573 ExtValue argVal
= genval(*expr
);
2574 if (!fir::isUnboxedValue(argVal
))
2575 fir::emitFatalError(
2576 loc
, "internal error: passing non trivial value by value");
2577 caller
.placeInput(arg
, fir::getBase(argVal
));
2581 if (arg
.passBy
== PassBy::MutableBox
) {
2582 if (Fortran::evaluate::UnwrapExpr
<Fortran::evaluate::NullPointer
>(
2584 // If expr is NULL(), the mutableBox created must be a deallocated
2585 // pointer with the dummy argument characteristics (see table 16.5
2586 // in Fortran 2018 standard).
2587 // No length parameters are set for the created box because any non
2588 // deferred type parameters of the dummy will be evaluated on the
2589 // callee side, and it is illegal to use NULL without a MOLD if any
2590 // dummy length parameters are assumed.
2591 mlir::Type boxTy
= fir::dyn_cast_ptrEleTy(argTy
);
2592 assert(boxTy
&& mlir::isa
<fir::BaseBoxType
>(boxTy
) &&
2593 "must be a fir.box type");
2594 mlir::Value boxStorage
= builder
.createTemporary(loc
, boxTy
);
2595 mlir::Value nullBox
= fir::factory::createUnallocatedBox(
2596 builder
, loc
, boxTy
, /*nonDeferredParams=*/{});
2597 builder
.create
<fir::StoreOp
>(loc
, nullBox
, boxStorage
);
2598 caller
.placeInput(arg
, boxStorage
);
2601 if (fir::isPointerType(argTy
) &&
2602 !Fortran::evaluate::IsObjectPointer(*expr
)) {
2603 // Passing a non POINTER actual argument to a POINTER dummy argument.
2604 // Create a pointer of the dummy argument type and assign the actual
2607 builder
.createTemporary(loc
, fir::unwrapRefType(argTy
));
2608 // Non deferred parameters will be evaluated on the callee side.
2609 fir::MutableBoxValue
pointer(irBox
,
2610 /*nonDeferredParams=*/mlir::ValueRange
{},
2611 /*mutableProperties=*/{});
2612 Fortran::lower::associateMutableBox(converter
, loc
, pointer
, *expr
,
2613 /*lbounds=*/std::nullopt
,
2615 caller
.placeInput(arg
, irBox
);
2618 // Passing a POINTER to a POINTER, or an ALLOCATABLE to an ALLOCATABLE.
2619 fir::MutableBoxValue mutableBox
= genMutableBoxValue(*expr
);
2620 if (fir::isAllocatableType(argTy
) && arg
.isIntentOut() &&
2621 Fortran::semantics::IsBindCProcedure(*procRef
.proc().GetSymbol()))
2622 Fortran::lower::genDeallocateIfAllocated(converter
, mutableBox
, loc
);
2624 fir::factory::getMutableIRBox(builder
, loc
, mutableBox
);
2625 caller
.placeInput(arg
, irBox
);
2626 if (arg
.mayBeModifiedByCall())
2627 mutableModifiedByCall
.emplace_back(std::move(mutableBox
));
2630 if (arg
.passBy
== PassBy::BaseAddress
|| arg
.passBy
== PassBy::BoxChar
||
2631 arg
.passBy
== PassBy::BaseAddressValueAttribute
||
2632 arg
.passBy
== PassBy::CharBoxValueAttribute
) {
2633 const bool byValue
= arg
.passBy
== PassBy::BaseAddressValueAttribute
||
2634 arg
.passBy
== PassBy::CharBoxValueAttribute
;
2636 prepareActualToBaseAddressLike(*expr
, arg
, copyOutPairs
, byValue
)
2638 if (arg
.passBy
== PassBy::BaseAddress
||
2639 arg
.passBy
== PassBy::BaseAddressValueAttribute
) {
2640 caller
.placeInput(arg
, fir::getBase(argAddr
));
2642 assert(arg
.passBy
== PassBy::BoxChar
||
2643 arg
.passBy
== PassBy::CharBoxValueAttribute
);
2644 auto helper
= fir::factory::CharacterExprHelper
{builder
, loc
};
2645 auto boxChar
= argAddr
.match(
2646 [&](const fir::CharBoxValue
&x
) -> mlir::Value
{
2647 // If a character procedure was passed instead, handle the
2650 mlir::dyn_cast
<mlir::FunctionType
>(x
.getAddr().getType());
2651 if (funcTy
&& funcTy
.getNumResults() == 1 &&
2652 mlir::isa
<fir::BoxCharType
>(funcTy
.getResult(0))) {
2654 mlir::cast
<fir::BoxCharType
>(funcTy
.getResult(0));
2655 mlir::Value ref
= builder
.createConvert(
2656 loc
, builder
.getRefType(boxTy
.getEleTy()), x
.getAddr());
2657 auto len
= builder
.create
<fir::UndefOp
>(
2658 loc
, builder
.getCharacterLengthType());
2659 return builder
.create
<fir::EmboxCharOp
>(loc
, boxTy
, ref
, len
);
2661 return helper
.createEmbox(x
);
2663 [&](const fir::CharArrayBoxValue
&x
) {
2664 return helper
.createEmbox(x
);
2666 [&](const auto &x
) -> mlir::Value
{
2667 // Fortran allows an actual argument of a completely different
2668 // type to be passed to a procedure expecting a CHARACTER in the
2669 // dummy argument position. When this happens, the data pointer
2670 // argument is simply assumed to point to CHARACTER data and the
2671 // LEN argument used is garbage. Simulate this behavior by
2672 // free-casting the base address to be a !fir.char reference and
2673 // setting the LEN argument to undefined. What could go wrong?
2674 auto dataPtr
= fir::getBase(x
);
2675 assert(!mlir::isa
<fir::BoxType
>(dataPtr
.getType()));
2676 return builder
.convertWithSemantics(
2677 loc
, argTy
, dataPtr
,
2678 /*allowCharacterConversion=*/true);
2680 caller
.placeInput(arg
, boxChar
);
2682 } else if (arg
.passBy
== PassBy::Box
) {
2683 if (arg
.mustBeMadeContiguous() &&
2684 !Fortran::evaluate::IsSimplyContiguous(
2685 *expr
, converter
.getFoldingContext())) {
2686 // If the expression is a PDT, or a polymorphic entity, or an assumed
2687 // rank, it cannot currently be safely handled by
2688 // prepareActualToBaseAddressLike that is intended to prepare
2689 // arguments that can be passed as simple base address.
2690 if (auto dynamicType
= expr
->GetType())
2691 if (dynamicType
->IsPolymorphic())
2692 TODO(loc
, "passing a polymorphic entity to an OPTIONAL "
2693 "CONTIGUOUS argument");
2694 if (fir::isRecordWithTypeParameters(
2695 fir::unwrapSequenceType(fir::unwrapPassByRefType(argTy
))))
2696 TODO(loc
, "passing to an OPTIONAL CONTIGUOUS derived type argument "
2697 "with length parameters");
2698 if (Fortran::evaluate::IsAssumedRank(*expr
))
2699 TODO(loc
, "passing an assumed rank entity to an OPTIONAL "
2700 "CONTIGUOUS argument");
2701 // Assumed shape VALUE are currently TODO in the call interface
2703 const bool byValue
= false;
2704 auto [argAddr
, isPresentValue
] =
2705 prepareActualToBaseAddressLike(*expr
, arg
, copyOutPairs
, byValue
);
2706 mlir::Value box
= builder
.createBox(loc
, argAddr
);
2707 if (isPresentValue
) {
2708 mlir::Value convertedBox
= builder
.createConvert(loc
, argTy
, box
);
2709 auto absent
= builder
.create
<fir::AbsentOp
>(loc
, argTy
);
2710 caller
.placeInput(arg
,
2711 builder
.create
<mlir::arith::SelectOp
>(
2712 loc
, *isPresentValue
, convertedBox
, absent
));
2714 caller
.placeInput(arg
, builder
.createBox(loc
, argAddr
));
2717 } else if (arg
.isOptional() &&
2718 Fortran::evaluate::IsAllocatableOrPointerObject(*expr
)) {
2719 // Before lowering to an address, handle the allocatable/pointer
2720 // actual argument to optional fir.box dummy. It is legal to pass
2721 // unallocated/disassociated entity to an optional. In this case, an
2722 // absent fir.box must be created instead of a fir.box with a null
2723 // value (Fortran 2018 15.5.2.12 point 1).
2725 // Note that passing an absent allocatable to a non-allocatable
2726 // optional dummy argument is illegal (15.5.2.12 point 3 (8)). So
2727 // nothing has to be done to generate an absent argument in this case,
2728 // and it is OK to unconditionally read the mutable box here.
2729 fir::MutableBoxValue mutableBox
= genMutableBoxValue(*expr
);
2730 mlir::Value isAllocated
=
2731 fir::factory::genIsAllocatedOrAssociatedTest(builder
, loc
,
2733 auto absent
= builder
.create
<fir::AbsentOp
>(loc
, argTy
);
2734 /// For now, assume it is not OK to pass the allocatable/pointer
2735 /// descriptor to a non pointer/allocatable dummy. That is a strict
2736 /// interpretation of 18.3.6 point 4 that stipulates the descriptor
2737 /// has the dummy attributes in BIND(C) contexts.
2738 mlir::Value box
= builder
.createBox(
2739 loc
, fir::factory::genMutableBoxRead(builder
, loc
, mutableBox
));
2741 // NULL() passed as argument is passed as a !fir.box<none>. Since
2742 // select op requires the same type for its two argument, convert
2743 // !fir.box<none> to !fir.class<none> when the argument is
2745 if (fir::isBoxNone(box
.getType()) && fir::isPolymorphicType(argTy
)) {
2746 box
= builder
.createConvert(
2748 fir::ClassType::get(mlir::NoneType::get(builder
.getContext())),
2750 } else if (mlir::isa
<fir::BoxType
>(box
.getType()) &&
2751 fir::isPolymorphicType(argTy
)) {
2752 box
= builder
.create
<fir::ReboxOp
>(loc
, argTy
, box
, mlir::Value
{},
2753 /*slice=*/mlir::Value
{});
2756 // Need the box types to be exactly similar for the selectOp.
2757 mlir::Value convertedBox
= builder
.createConvert(loc
, argTy
, box
);
2758 caller
.placeInput(arg
, builder
.create
<mlir::arith::SelectOp
>(
2759 loc
, isAllocated
, convertedBox
, absent
));
2761 auto dynamicType
= expr
->GetType();
2764 // Special case when an intrinsic scalar variable is passed to a
2765 // function expecting an optional unlimited polymorphic dummy
2767 // The presence test needs to be performed before emboxing otherwise
2768 // the program will crash.
2769 if (dynamicType
->category() !=
2770 Fortran::common::TypeCategory::Derived
&&
2771 expr
->Rank() == 0 && fir::isUnlimitedPolymorphicType(argTy
) &&
2773 ExtValue opt
= lowerIntrinsicArgumentAsInquired(*expr
);
2774 mlir::Value isPresent
= genActualIsPresentTest(builder
, loc
, opt
);
2777 .genIfOp(loc
, {argTy
}, isPresent
, /*withElseRegion=*/true)
2779 auto boxed
= builder
.createBox(
2780 loc
, genBoxArg(*expr
), fir::isPolymorphicType(argTy
));
2781 builder
.create
<fir::ResultOp
>(loc
, boxed
);
2785 builder
.create
<fir::AbsentOp
>(loc
, argTy
).getResult();
2786 builder
.create
<fir::ResultOp
>(loc
, absent
);
2790 // Make sure a variable address is only passed if the expression is
2791 // actually a variable.
2792 box
= Fortran::evaluate::IsVariable(*expr
)
2793 ? builder
.createBox(loc
, genBoxArg(*expr
),
2794 fir::isPolymorphicType(argTy
),
2795 fir::isAssumedType(argTy
))
2796 : builder
.createBox(getLoc(), genTempExtAddr(*expr
),
2797 fir::isPolymorphicType(argTy
),
2798 fir::isAssumedType(argTy
));
2799 if (mlir::isa
<fir::BoxType
>(box
.getType()) &&
2800 fir::isPolymorphicType(argTy
) && !fir::isAssumedType(argTy
)) {
2801 mlir::Type actualTy
= argTy
;
2802 if (Fortran::lower::isParentComponent(*expr
))
2803 actualTy
= fir::BoxType::get(converter
.genType(*expr
));
2804 // Rebox can only be performed on a present argument.
2805 if (arg
.isOptional()) {
2806 mlir::Value isPresent
=
2807 genActualIsPresentTest(builder
, loc
, box
);
2809 .genIfOp(loc
, {actualTy
}, isPresent
,
2810 /*withElseRegion=*/true)
2814 .create
<fir::ReboxOp
>(
2815 loc
, actualTy
, box
, mlir::Value
{},
2816 /*slice=*/mlir::Value
{})
2818 builder
.create
<fir::ResultOp
>(loc
, rebox
);
2822 builder
.create
<fir::AbsentOp
>(loc
, actualTy
)
2824 builder
.create
<fir::ResultOp
>(loc
, absent
);
2828 box
= builder
.create
<fir::ReboxOp
>(loc
, actualTy
, box
,
2830 /*slice=*/mlir::Value
{});
2832 } else if (Fortran::lower::isParentComponent(*expr
)) {
2833 fir::ExtendedValue newExv
=
2834 Fortran::lower::updateBoxForParentComponent(converter
, box
,
2836 box
= fir::getBase(newExv
);
2839 caller
.placeInput(arg
, box
);
2841 } else if (arg
.passBy
== PassBy::AddressAndLength
) {
2842 ExtValue argRef
= genExtAddr(*expr
);
2843 caller
.placeAddressAndLengthInput(arg
, fir::getBase(argRef
),
2844 fir::getLen(argRef
));
2845 } else if (arg
.passBy
== PassBy::CharProcTuple
) {
2846 ExtValue argRef
= genExtAddr(*expr
);
2847 mlir::Value tuple
= createBoxProcCharTuple(
2848 converter
, argTy
, fir::getBase(argRef
), fir::getLen(argRef
));
2849 caller
.placeInput(arg
, tuple
);
2851 TODO(loc
, "pass by value in non elemental function call");
2856 Fortran::lower::genCallOpAndResult(loc
, converter
, symMap
, stmtCtx
,
2857 caller
, callSiteType
, resultType
)
2860 // Sync pointers and allocatables that may have been modified during the
2862 for (const auto &mutableBox
: mutableModifiedByCall
)
2863 fir::factory::syncMutableBoxFromIRBox(builder
, loc
, mutableBox
);
2864 // Handle case where result was passed as argument
2866 // Copy-out temps that were created for non contiguous variable arguments if
2868 for (const auto ©OutPair
: copyOutPairs
)
2869 genCopyOut(copyOutPair
);
2874 template <typename A
>
2875 ExtValue
genval(const Fortran::evaluate::FunctionRef
<A
> &funcRef
) {
2876 ExtValue result
= genFunctionRef(funcRef
);
2877 if (result
.rank() == 0 && fir::isa_ref_type(fir::getBase(result
).getType()))
2878 return genLoad(result
);
2882 ExtValue
genval(const Fortran::evaluate::ProcedureRef
&procRef
) {
2883 std::optional
<mlir::Type
> resTy
;
2884 if (procRef
.hasAlternateReturns())
2885 resTy
= builder
.getIndexType();
2886 return genProcedureRef(procRef
, resTy
);
2889 template <typename A
>
2890 bool isScalar(const A
&x
) {
2891 return x
.Rank() == 0;
2894 /// Helper to detect Transformational function reference.
2895 template <typename T
>
2896 bool isTransformationalRef(const T
&) {
2899 template <typename T
>
2900 bool isTransformationalRef(const Fortran::evaluate::FunctionRef
<T
> &funcRef
) {
2901 return !funcRef
.IsElemental() && funcRef
.Rank();
2903 template <typename T
>
2904 bool isTransformationalRef(Fortran::evaluate::Expr
<T
> expr
) {
2905 return Fortran::common::visit(
2906 [&](const auto &e
) { return isTransformationalRef(e
); }, expr
.u
);
2909 template <typename A
>
2910 ExtValue
asArray(const A
&x
) {
2911 return Fortran::lower::createSomeArrayTempValue(converter
, toEvExpr(x
),
2915 /// Lower an array value as an argument. This argument can be passed as a box
2916 /// value, so it may be possible to avoid making a temporary.
2917 template <typename A
>
2918 ExtValue
asArrayArg(const Fortran::evaluate::Expr
<A
> &x
) {
2919 return Fortran::common::visit(
2920 [&](const auto &e
) { return asArrayArg(e
, x
); }, x
.u
);
2922 template <typename A
, typename B
>
2923 ExtValue
asArrayArg(const Fortran::evaluate::Expr
<A
> &x
, const B
&y
) {
2924 return Fortran::common::visit(
2925 [&](const auto &e
) { return asArrayArg(e
, y
); }, x
.u
);
2927 template <typename A
, typename B
>
2928 ExtValue
asArrayArg(const Fortran::evaluate::Designator
<A
> &, const B
&x
) {
2929 // Designator is being passed as an argument to a procedure. Lower the
2930 // expression to a boxed value.
2931 auto someExpr
= toEvExpr(x
);
2932 return Fortran::lower::createBoxValue(getLoc(), converter
, someExpr
, symMap
,
2935 template <typename A
, typename B
>
2936 ExtValue
asArrayArg(const A
&, const B
&x
) {
2937 // If the expression to pass as an argument is not a designator, then create
2942 template <typename A
>
2943 mlir::Value
getIfOverridenExpr(const Fortran::evaluate::Expr
<A
> &x
) {
2944 if (const Fortran::lower::ExprToValueMap
*map
=
2945 converter
.getExprOverrides()) {
2946 Fortran::lower::SomeExpr someExpr
= toEvExpr(x
);
2947 if (auto match
= map
->find(&someExpr
); match
!= map
->end())
2948 return match
->second
;
2950 return mlir::Value
{};
2953 template <typename A
>
2954 ExtValue
gen(const Fortran::evaluate::Expr
<A
> &x
) {
2955 if (mlir::Value val
= getIfOverridenExpr(x
))
2957 // Whole array symbols or components, and results of transformational
2958 // functions already have a storage and the scalar expression lowering path
2959 // is used to not create a new temporary storage.
2961 Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(x
) ||
2962 (isTransformationalRef(x
) && !isOptimizableTranspose(x
, converter
)))
2963 return Fortran::common::visit([&](const auto &e
) { return genref(e
); },
2966 return asArrayArg(x
);
2969 template <typename A
>
2970 ExtValue
genval(const Fortran::evaluate::Expr
<A
> &x
) {
2971 if (mlir::Value val
= getIfOverridenExpr(x
))
2973 if (isScalar(x
) || Fortran::evaluate::UnwrapWholeSymbolDataRef(x
) ||
2975 return Fortran::common::visit([&](const auto &e
) { return genval(e
); },
2981 ExtValue
genval(const Fortran::evaluate::Expr
<Fortran::evaluate::Type
<
2982 Fortran::common::TypeCategory::Logical
, KIND
>> &exp
) {
2983 if (mlir::Value val
= getIfOverridenExpr(exp
))
2985 return Fortran::common::visit([&](const auto &e
) { return genval(e
); },
2990 std::tuple
<Fortran::evaluate::ComplexPart
, Fortran::evaluate::Substring
,
2991 Fortran::evaluate::DataRef
, Fortran::evaluate::Component
,
2992 Fortran::evaluate::ArrayRef
, Fortran::evaluate::CoarrayRef
,
2993 Fortran::semantics::SymbolRef
>;
2994 template <typename A
>
2995 static constexpr bool inRefSet
= Fortran::common::HasMember
<A
, RefSet
>;
2997 template <typename A
, typename
= std::enable_if_t
<inRefSet
<A
>>>
2998 ExtValue
genref(const A
&a
) {
3001 template <typename A
>
3002 ExtValue
genref(const A
&a
) {
3003 if (inInitializer
) {
3004 // Initialization expressions can never allocate memory.
3007 mlir::Type storageType
= converter
.genType(toEvExpr(a
));
3008 return placeScalarValueInMemory(builder
, getLoc(), genval(a
), storageType
);
3011 template <typename A
, template <typename
> typename T
,
3012 typename B
= std::decay_t
<T
<A
>>,
3014 std::is_same_v
<B
, Fortran::evaluate::Expr
<A
>> ||
3015 std::is_same_v
<B
, Fortran::evaluate::Designator
<A
>> ||
3016 std::is_same_v
<B
, Fortran::evaluate::FunctionRef
<A
>>,
3018 ExtValue
genref(const T
<A
> &x
) {
3023 mlir::Location location
;
3024 Fortran::lower::AbstractConverter
&converter
;
3025 fir::FirOpBuilder
&builder
;
3026 Fortran::lower::StatementContext
&stmtCtx
;
3027 Fortran::lower::SymMap
&symMap
;
3028 bool inInitializer
= false;
3029 bool useBoxArg
= false; // expression lowered as argument
3033 #define CONCAT(x, y) CONCAT2(x, y)
3034 #define CONCAT2(x, y) x##y
3036 // Helper for changing the semantics in a given context. Preserves the current
3037 // semantics which is resumed when the "push" goes out of scope.
3038 #define PushSemantics(PushVal) \
3039 [[maybe_unused]] auto CONCAT(pushSemanticsLocalVariable, __LINE__) = \
3040 Fortran::common::ScopedSet(semant, PushVal);
3042 static bool isAdjustedArrayElementType(mlir::Type t
) {
3043 return fir::isa_char(t
) || fir::isa_derived(t
) ||
3044 mlir::isa
<fir::SequenceType
>(t
);
3046 static bool elementTypeWasAdjusted(mlir::Type t
) {
3047 if (auto ty
= mlir::dyn_cast
<fir::ReferenceType
>(t
))
3048 return isAdjustedArrayElementType(ty
.getEleTy());
3051 static mlir::Type
adjustedArrayElementType(mlir::Type t
) {
3052 return isAdjustedArrayElementType(t
) ? fir::ReferenceType::get(t
) : t
;
3055 /// Helper to generate calls to scalar user defined assignment procedures.
3056 static void genScalarUserDefinedAssignmentCall(fir::FirOpBuilder
&builder
,
3058 mlir::func::FuncOp func
,
3059 const fir::ExtendedValue
&lhs
,
3060 const fir::ExtendedValue
&rhs
) {
3061 auto prepareUserDefinedArg
=
3062 [](fir::FirOpBuilder
&builder
, mlir::Location loc
,
3063 const fir::ExtendedValue
&value
, mlir::Type argType
) -> mlir::Value
{
3064 if (mlir::isa
<fir::BoxCharType
>(argType
)) {
3065 const fir::CharBoxValue
*charBox
= value
.getCharBox();
3066 assert(charBox
&& "argument type mismatch in elemental user assignment");
3067 return fir::factory::CharacterExprHelper
{builder
, loc
}.createEmbox(
3070 if (mlir::isa
<fir::BaseBoxType
>(argType
)) {
3072 builder
.createBox(loc
, value
, mlir::isa
<fir::ClassType
>(argType
));
3073 return builder
.createConvert(loc
, argType
, box
);
3075 // Simple pass by address.
3076 mlir::Type argBaseType
= fir::unwrapRefType(argType
);
3077 assert(!fir::hasDynamicSize(argBaseType
));
3078 mlir::Value from
= fir::getBase(value
);
3079 if (argBaseType
!= fir::unwrapRefType(from
.getType())) {
3080 // With logicals, it is possible that from is i1 here.
3081 if (fir::isa_ref_type(from
.getType()))
3082 from
= builder
.create
<fir::LoadOp
>(loc
, from
);
3083 from
= builder
.createConvert(loc
, argBaseType
, from
);
3085 if (!fir::isa_ref_type(from
.getType())) {
3086 mlir::Value temp
= builder
.createTemporary(loc
, argBaseType
);
3087 builder
.create
<fir::StoreOp
>(loc
, from
, temp
);
3090 return builder
.createConvert(loc
, argType
, from
);
3092 assert(func
.getNumArguments() == 2);
3093 mlir::Type lhsType
= func
.getFunctionType().getInput(0);
3094 mlir::Type rhsType
= func
.getFunctionType().getInput(1);
3095 mlir::Value lhsArg
= prepareUserDefinedArg(builder
, loc
, lhs
, lhsType
);
3096 mlir::Value rhsArg
= prepareUserDefinedArg(builder
, loc
, rhs
, rhsType
);
3097 builder
.create
<fir::CallOp
>(loc
, func
, mlir::ValueRange
{lhsArg
, rhsArg
});
3100 /// Convert the result of a fir.array_modify to an ExtendedValue given the
3101 /// related fir.array_load.
3102 static fir::ExtendedValue
arrayModifyToExv(fir::FirOpBuilder
&builder
,
3104 fir::ArrayLoadOp load
,
3105 mlir::Value elementAddr
) {
3106 mlir::Type eleTy
= fir::unwrapPassByRefType(elementAddr
.getType());
3107 if (fir::isa_char(eleTy
)) {
3108 auto len
= fir::factory::CharacterExprHelper
{builder
, loc
}.getLength(
3111 assert(load
.getTypeparams().size() == 1 &&
3112 "length must be in array_load");
3113 len
= load
.getTypeparams()[0];
3115 return fir::CharBoxValue
{elementAddr
, len
};
3120 //===----------------------------------------------------------------------===//
3122 // Lowering of scalar expressions in an explicit iteration space context.
3124 //===----------------------------------------------------------------------===//
3126 // Shared code for creating a copy of a derived type element. This function is
3127 // called from a continuation.
3128 inline static fir::ArrayAmendOp
3129 createDerivedArrayAmend(mlir::Location loc
, fir::ArrayLoadOp destLoad
,
3130 fir::FirOpBuilder
&builder
, fir::ArrayAccessOp destAcc
,
3131 const fir::ExtendedValue
&elementExv
, mlir::Type eleTy
,
3132 mlir::Value innerArg
) {
3133 if (destLoad
.getTypeparams().empty()) {
3134 fir::factory::genRecordAssignment(builder
, loc
, destAcc
, elementExv
);
3136 auto boxTy
= fir::BoxType::get(eleTy
);
3137 auto toBox
= builder
.create
<fir::EmboxOp
>(loc
, boxTy
, destAcc
.getResult(),
3138 mlir::Value
{}, mlir::Value
{},
3139 destLoad
.getTypeparams());
3140 auto fromBox
= builder
.create
<fir::EmboxOp
>(
3141 loc
, boxTy
, fir::getBase(elementExv
), mlir::Value
{}, mlir::Value
{},
3142 destLoad
.getTypeparams());
3143 fir::factory::genRecordAssignment(builder
, loc
, fir::BoxValue(toBox
),
3144 fir::BoxValue(fromBox
));
3146 return builder
.create
<fir::ArrayAmendOp
>(loc
, innerArg
.getType(), innerArg
,
3150 inline static fir::ArrayAmendOp
3151 createCharArrayAmend(mlir::Location loc
, fir::FirOpBuilder
&builder
,
3152 fir::ArrayAccessOp dstOp
, mlir::Value
&dstLen
,
3153 const fir::ExtendedValue
&srcExv
, mlir::Value innerArg
,
3154 llvm::ArrayRef
<mlir::Value
> bounds
) {
3155 fir::CharBoxValue
dstChar(dstOp
, dstLen
);
3156 fir::factory::CharacterExprHelper helper
{builder
, loc
};
3157 if (!bounds
.empty()) {
3158 dstChar
= helper
.createSubstring(dstChar
, bounds
);
3159 fir::factory::genCharacterCopy(fir::getBase(srcExv
), fir::getLen(srcExv
),
3160 dstChar
.getAddr(), dstChar
.getLen(), builder
,
3162 // Update the LEN to the substring's LEN.
3163 dstLen
= dstChar
.getLen();
3165 // For a CHARACTER, we generate the element assignment loops inline.
3166 helper
.createAssign(fir::ExtendedValue
{dstChar
}, srcExv
);
3167 // Mark this array element as amended.
3168 mlir::Type ty
= innerArg
.getType();
3169 auto amend
= builder
.create
<fir::ArrayAmendOp
>(loc
, ty
, innerArg
, dstOp
);
3173 /// Build an ExtendedValue from a fir.array<?x...?xT> without actually setting
3174 /// the actual extents and lengths. This is only to allow their propagation as
3175 /// ExtendedValue without triggering verifier failures when propagating
3176 /// character/arrays as unboxed values. Only the base of the resulting
3177 /// ExtendedValue should be used, it is undefined to use the length or extents
3178 /// of the extended value returned,
3179 inline static fir::ExtendedValue
3180 convertToArrayBoxValue(mlir::Location loc
, fir::FirOpBuilder
&builder
,
3181 mlir::Value val
, mlir::Value len
) {
3182 mlir::Type ty
= fir::unwrapRefType(val
.getType());
3183 mlir::IndexType idxTy
= builder
.getIndexType();
3184 auto seqTy
= mlir::cast
<fir::SequenceType
>(ty
);
3185 auto undef
= builder
.create
<fir::UndefOp
>(loc
, idxTy
);
3186 llvm::SmallVector
<mlir::Value
> extents(seqTy
.getDimension(), undef
);
3187 if (fir::isa_char(seqTy
.getEleTy()))
3188 return fir::CharArrayBoxValue(val
, len
? len
: undef
, extents
);
3189 return fir::ArrayBoxValue(val
, extents
);
3192 //===----------------------------------------------------------------------===//
3194 // Lowering of array expressions.
3196 //===----------------------------------------------------------------------===//
3199 class ArrayExprLowering
{
3200 using ExtValue
= fir::ExtendedValue
;
3202 /// Structure to keep track of lowered array operands in the
3203 /// array expression. Useful to later deduce the shape of the
3204 /// array expression.
3205 struct ArrayOperand
{
3206 /// Array base (can be a fir.box).
3208 /// ShapeOp, ShapeShiftOp or ShiftOp
3212 /// Can this operand be absent ?
3213 bool mayBeAbsent
= false;
3216 using ImplicitSubscripts
= Fortran::lower::details::ImplicitSubscripts
;
3217 using PathComponent
= Fortran::lower::PathComponent
;
3219 /// Active iteration space.
3220 using IterationSpace
= Fortran::lower::IterationSpace
;
3221 using IterSpace
= const Fortran::lower::IterationSpace
&;
3223 /// Current continuation. Function that will generate IR for a single
3224 /// iteration of the pending iterative loop structure.
3225 using CC
= Fortran::lower::GenerateElementalArrayFunc
;
3227 /// Projection continuation. Function that will project one iteration space
3229 using PC
= std::function
<IterationSpace(IterSpace
)>;
3231 std::variant
<std::monostate
, const Fortran::evaluate::ArrayRef
*,
3232 const Fortran::evaluate::DataRef
*>;
3233 using ComponentPath
= Fortran::lower::ComponentPath
;
3236 //===--------------------------------------------------------------------===//
3237 // Regular array assignment
3238 //===--------------------------------------------------------------------===//
3240 /// Entry point for array assignments. Both the left-hand and right-hand sides
3241 /// can either be ExtendedValue or evaluate::Expr.
3242 template <typename TL
, typename TR
>
3243 static void lowerArrayAssignment(Fortran::lower::AbstractConverter
&converter
,
3244 Fortran::lower::SymMap
&symMap
,
3245 Fortran::lower::StatementContext
&stmtCtx
,
3246 const TL
&lhs
, const TR
&rhs
) {
3247 ArrayExprLowering
ael(converter
, stmtCtx
, symMap
,
3248 ConstituentSemantics::CopyInCopyOut
);
3249 ael
.lowerArrayAssignment(lhs
, rhs
);
3252 template <typename TL
, typename TR
>
3253 void lowerArrayAssignment(const TL
&lhs
, const TR
&rhs
) {
3254 mlir::Location loc
= getLoc();
3255 /// Here the target subspace is not necessarily contiguous. The ArrayUpdate
3256 /// continuation is implicitly returned in `ccStoreToDest` and the ArrayLoad
3257 /// in `destination`.
3258 PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut
);
3259 ccStoreToDest
= genarr(lhs
);
3260 determineShapeOfDest(lhs
);
3261 semant
= ConstituentSemantics::RefTransparent
;
3262 ExtValue exv
= lowerArrayExpression(rhs
);
3263 if (explicitSpaceIsActive()) {
3264 explicitSpace
->finalizeContext();
3265 builder
.create
<fir::ResultOp
>(loc
, fir::getBase(exv
));
3267 builder
.create
<fir::ArrayMergeStoreOp
>(
3268 loc
, destination
, fir::getBase(exv
), destination
.getMemref(),
3269 destination
.getSlice(), destination
.getTypeparams());
3273 //===--------------------------------------------------------------------===//
3274 // WHERE array assignment, FORALL assignment, and FORALL+WHERE array
3276 //===--------------------------------------------------------------------===//
3278 /// Entry point for array assignment when the iteration space is explicitly
3279 /// defined (Fortran's FORALL) with or without masks, and/or the implied
3280 /// iteration space involves masks (Fortran's WHERE). Both contexts (explicit
3281 /// space and implicit space with masks) may be present.
3282 static void lowerAnyMaskedArrayAssignment(
3283 Fortran::lower::AbstractConverter
&converter
,
3284 Fortran::lower::SymMap
&symMap
, Fortran::lower::StatementContext
&stmtCtx
,
3285 const Fortran::lower::SomeExpr
&lhs
, const Fortran::lower::SomeExpr
&rhs
,
3286 Fortran::lower::ExplicitIterSpace
&explicitSpace
,
3287 Fortran::lower::ImplicitIterSpace
&implicitSpace
) {
3288 if (explicitSpace
.isActive() && lhs
.Rank() == 0) {
3289 // Scalar assignment expression in a FORALL context.
3290 ArrayExprLowering
ael(converter
, stmtCtx
, symMap
,
3291 ConstituentSemantics::RefTransparent
,
3292 &explicitSpace
, &implicitSpace
);
3293 ael
.lowerScalarAssignment(lhs
, rhs
);
3296 // Array assignment expression in a FORALL and/or WHERE context.
3297 ArrayExprLowering
ael(converter
, stmtCtx
, symMap
,
3298 ConstituentSemantics::CopyInCopyOut
, &explicitSpace
,
3300 ael
.lowerArrayAssignment(lhs
, rhs
);
3303 //===--------------------------------------------------------------------===//
3304 // Array assignment to array of pointer box values.
3305 //===--------------------------------------------------------------------===//
3307 /// Entry point for assignment to pointer in an array of pointers.
3308 static void lowerArrayOfPointerAssignment(
3309 Fortran::lower::AbstractConverter
&converter
,
3310 Fortran::lower::SymMap
&symMap
, Fortran::lower::StatementContext
&stmtCtx
,
3311 const Fortran::lower::SomeExpr
&lhs
, const Fortran::lower::SomeExpr
&rhs
,
3312 Fortran::lower::ExplicitIterSpace
&explicitSpace
,
3313 Fortran::lower::ImplicitIterSpace
&implicitSpace
,
3314 const llvm::SmallVector
<mlir::Value
> &lbounds
,
3315 std::optional
<llvm::SmallVector
<mlir::Value
>> ubounds
) {
3316 ArrayExprLowering
ael(converter
, stmtCtx
, symMap
,
3317 ConstituentSemantics::CopyInCopyOut
, &explicitSpace
,
3319 ael
.lowerArrayOfPointerAssignment(lhs
, rhs
, lbounds
, ubounds
);
3322 /// Scalar pointer assignment in an explicit iteration space.
3324 /// Pointers may be bound to targets in a FORALL context. This is a scalar
3325 /// assignment in the sense there is never an implied iteration space, even if
3326 /// the pointer is to a target with non-zero rank. Since the pointer
3327 /// assignment must appear in a FORALL construct, correctness may require that
3328 /// the array of pointers follow copy-in/copy-out semantics. The pointer
3329 /// assignment may include a bounds-spec (lower bounds), a bounds-remapping
3330 /// (lower and upper bounds), or neither.
3331 void lowerArrayOfPointerAssignment(
3332 const Fortran::lower::SomeExpr
&lhs
, const Fortran::lower::SomeExpr
&rhs
,
3333 const llvm::SmallVector
<mlir::Value
> &lbounds
,
3334 std::optional
<llvm::SmallVector
<mlir::Value
>> ubounds
) {
3335 setPointerAssignmentBounds(lbounds
, ubounds
);
3336 if (rhs
.Rank() == 0 ||
3337 (Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs
) &&
3338 Fortran::evaluate::IsAllocatableOrPointerObject(rhs
))) {
3339 lowerScalarAssignment(lhs
, rhs
);
3343 "auto boxing of a ranked expression on RHS for pointer assignment");
3346 //===--------------------------------------------------------------------===//
3347 // Array assignment to allocatable array
3348 //===--------------------------------------------------------------------===//
3350 /// Entry point for assignment to allocatable array.
3351 static void lowerAllocatableArrayAssignment(
3352 Fortran::lower::AbstractConverter
&converter
,
3353 Fortran::lower::SymMap
&symMap
, Fortran::lower::StatementContext
&stmtCtx
,
3354 const Fortran::lower::SomeExpr
&lhs
, const Fortran::lower::SomeExpr
&rhs
,
3355 Fortran::lower::ExplicitIterSpace
&explicitSpace
,
3356 Fortran::lower::ImplicitIterSpace
&implicitSpace
) {
3357 ArrayExprLowering
ael(converter
, stmtCtx
, symMap
,
3358 ConstituentSemantics::CopyInCopyOut
, &explicitSpace
,
3360 ael
.lowerAllocatableArrayAssignment(lhs
, rhs
);
3363 /// Lower an assignment to allocatable array, where the LHS array
3364 /// is represented with \p lhs extended value produced in different
3365 /// branches created in genReallocIfNeeded(). The RHS lowering
3366 /// is provided via \p rhsCC continuation.
3367 void lowerAllocatableArrayAssignment(ExtValue lhs
, CC rhsCC
) {
3368 mlir::Location loc
= getLoc();
3369 // Check if the initial destShape is null, which means
3370 // it has not been computed from rhs (e.g. rhs is scalar).
3371 bool destShapeIsEmpty
= destShape
.empty();
3372 // Create ArrayLoad for the mutable box and save it into `destination`.
3373 PushSemantics(ConstituentSemantics::ProjectedCopyInCopyOut
);
3374 ccStoreToDest
= genarr(lhs
);
3375 // destShape is either non-null on entry to this function,
3376 // or has been just set by lhs lowering.
3377 assert(!destShape
.empty() && "destShape must have been set.");
3378 // Finish lowering the loop nest.
3379 assert(destination
&& "destination must have been set");
3380 ExtValue exv
= lowerArrayExpression(rhsCC
, destination
.getType());
3381 if (!explicitSpaceIsActive())
3382 builder
.create
<fir::ArrayMergeStoreOp
>(
3383 loc
, destination
, fir::getBase(exv
), destination
.getMemref(),
3384 destination
.getSlice(), destination
.getTypeparams());
3385 // destShape may originally be null, if rhs did not define a shape.
3386 // In this case the destShape is computed from lhs, and we may have
3387 // multiple different lhs values for different branches created
3388 // in genReallocIfNeeded(). We cannot reuse destShape computed
3389 // in different branches, so we have to reset it,
3390 // so that it is recomputed for the next branch FIR generation.
3391 if (destShapeIsEmpty
)
3395 /// Assignment to allocatable array.
3397 /// The semantics are reverse that of a "regular" array assignment. The rhs
3398 /// defines the iteration space of the computation and the lhs is
3399 /// resized/reallocated to fit if necessary.
3400 void lowerAllocatableArrayAssignment(const Fortran::lower::SomeExpr
&lhs
,
3401 const Fortran::lower::SomeExpr
&rhs
) {
3402 // With assignment to allocatable, we want to lower the rhs first and use
3403 // its shape to determine if we need to reallocate, etc.
3404 mlir::Location loc
= getLoc();
3405 // FIXME: If the lhs is in an explicit iteration space, the assignment may
3406 // be to an array of allocatable arrays rather than a single allocatable
3408 if (explicitSpaceIsActive() && lhs
.Rank() > 0)
3409 TODO(loc
, "assignment to whole allocatable array inside FORALL");
3411 fir::MutableBoxValue mutableBox
=
3412 Fortran::lower::createMutableBox(loc
, converter
, lhs
, symMap
);
3414 determineShapeOfDest(rhs
);
3415 auto rhsCC
= [&]() {
3416 PushSemantics(ConstituentSemantics::RefTransparent
);
3420 llvm::SmallVector
<mlir::Value
> lengthParams
;
3421 // Currently no safe way to gather length from rhs (at least for
3422 // character, it cannot be taken from array_loads since it may be
3423 // changed by concatenations).
3424 if ((mutableBox
.isCharacter() && !mutableBox
.hasNonDeferredLenParams()) ||
3425 mutableBox
.isDerivedWithLenParameters())
3426 TODO(loc
, "gather rhs LEN parameters in assignment to allocatable");
3428 // The allocatable must take lower bounds from the expr if it is
3429 // reallocated and the right hand side is not a scalar.
3430 const bool takeLboundsIfRealloc
= rhs
.Rank() > 0;
3431 llvm::SmallVector
<mlir::Value
> lbounds
;
3432 // When the reallocated LHS takes its lower bounds from the RHS,
3433 // they will be non default only if the RHS is a whole array
3434 // variable. Otherwise, lbounds is left empty and default lower bounds
3436 if (takeLboundsIfRealloc
&&
3437 Fortran::evaluate::UnwrapWholeSymbolOrComponentDataRef(rhs
)) {
3438 assert(arrayOperands
.size() == 1 &&
3439 "lbounds can only come from one array");
3440 auto lbs
= fir::factory::getOrigins(arrayOperands
[0].shape
);
3441 lbounds
.append(lbs
.begin(), lbs
.end());
3443 auto assignToStorage
= [&](fir::ExtendedValue newLhs
) {
3444 // The lambda will be called repeatedly by genReallocIfNeeded().
3445 lowerAllocatableArrayAssignment(newLhs
, rhsCC
);
3447 fir::factory::MutableBoxReallocation realloc
=
3448 fir::factory::genReallocIfNeeded(builder
, loc
, mutableBox
, destShape
,
3449 lengthParams
, assignToStorage
);
3450 if (explicitSpaceIsActive()) {
3451 explicitSpace
->finalizeContext();
3452 builder
.create
<fir::ResultOp
>(loc
, fir::getBase(realloc
.newValue
));
3454 fir::factory::finalizeRealloc(builder
, loc
, mutableBox
, lbounds
,
3455 takeLboundsIfRealloc
, realloc
);
3458 /// Entry point for when an array expression appears in a context where the
3459 /// result must be boxed. (BoxValue semantics.)
3461 lowerBoxedArrayExpression(Fortran::lower::AbstractConverter
&converter
,
3462 Fortran::lower::SymMap
&symMap
,
3463 Fortran::lower::StatementContext
&stmtCtx
,
3464 const Fortran::lower::SomeExpr
&expr
) {
3465 ArrayExprLowering ael
{converter
, stmtCtx
, symMap
,
3466 ConstituentSemantics::BoxValue
};
3467 return ael
.lowerBoxedArrayExpr(expr
);
3470 ExtValue
lowerBoxedArrayExpr(const Fortran::lower::SomeExpr
&exp
) {
3471 PushSemantics(ConstituentSemantics::BoxValue
);
3472 return Fortran::common::visit(
3473 [&](const auto &e
) {
3475 ExtValue exv
= f(IterationSpace
{});
3476 if (mlir::isa
<fir::BaseBoxType
>(fir::getBase(exv
).getType()))
3478 fir::emitFatalError(getLoc(), "array must be emboxed");
3483 /// Entry point into lowering an expression with rank. This entry point is for
3484 /// lowering a rhs expression, for example. (RefTransparent semantics.)
3486 lowerNewArrayExpression(Fortran::lower::AbstractConverter
&converter
,
3487 Fortran::lower::SymMap
&symMap
,
3488 Fortran::lower::StatementContext
&stmtCtx
,
3489 const Fortran::lower::SomeExpr
&expr
) {
3490 ArrayExprLowering ael
{converter
, stmtCtx
, symMap
};
3491 ael
.determineShapeOfDest(expr
);
3492 ExtValue loopRes
= ael
.lowerArrayExpression(expr
);
3493 fir::ArrayLoadOp dest
= ael
.destination
;
3494 mlir::Value tempRes
= dest
.getMemref();
3495 fir::FirOpBuilder
&builder
= converter
.getFirOpBuilder();
3496 mlir::Location loc
= converter
.getCurrentLocation();
3497 builder
.create
<fir::ArrayMergeStoreOp
>(loc
, dest
, fir::getBase(loopRes
),
3498 tempRes
, dest
.getSlice(),
3499 dest
.getTypeparams());
3501 auto arrTy
= mlir::cast
<fir::SequenceType
>(
3502 fir::dyn_cast_ptrEleTy(tempRes
.getType()));
3503 if (auto charTy
= mlir::dyn_cast
<fir::CharacterType
>(arrTy
.getEleTy())) {
3504 if (fir::characterWithDynamicLen(charTy
))
3505 TODO(loc
, "CHARACTER does not have constant LEN");
3506 mlir::Value len
= builder
.createIntegerConstant(
3507 loc
, builder
.getCharacterLengthType(), charTy
.getLen());
3508 return fir::CharArrayBoxValue(tempRes
, len
, dest
.getExtents());
3510 return fir::ArrayBoxValue(tempRes
, dest
.getExtents());
3513 static void lowerLazyArrayExpression(
3514 Fortran::lower::AbstractConverter
&converter
,
3515 Fortran::lower::SymMap
&symMap
, Fortran::lower::StatementContext
&stmtCtx
,
3516 const Fortran::lower::SomeExpr
&expr
, mlir::Value raggedHeader
) {
3517 ArrayExprLowering
ael(converter
, stmtCtx
, symMap
);
3518 ael
.lowerLazyArrayExpression(expr
, raggedHeader
);
3521 /// Lower the expression \p expr into a buffer that is created on demand. The
3522 /// variable containing the pointer to the buffer is \p var and the variable
3523 /// containing the shape of the buffer is \p shapeBuffer.
3524 void lowerLazyArrayExpression(const Fortran::lower::SomeExpr
&expr
,
3525 mlir::Value header
) {
3526 mlir::Location loc
= getLoc();
3527 mlir::TupleType hdrTy
= fir::factory::getRaggedArrayHeaderType(builder
);
3528 mlir::IntegerType i32Ty
= builder
.getIntegerType(32);
3530 // Once the loop extents have been computed, which may require being inside
3531 // some explicit loops, lazily allocate the expression on the heap. The
3532 // following continuation creates the buffer as needed.
3533 ccPrelude
= [=](llvm::ArrayRef
<mlir::Value
> shape
) {
3534 mlir::IntegerType i64Ty
= builder
.getIntegerType(64);
3535 mlir::Value byteSize
= builder
.createIntegerConstant(loc
, i64Ty
, 1);
3536 fir::runtime::genRaggedArrayAllocate(
3537 loc
, builder
, header
, /*asHeaders=*/false, byteSize
, shape
);
3540 // Create a dummy array_load before the loop. We're storing to a lazy
3541 // temporary, so there will be no conflict and no copy-in. TODO: skip this
3542 // as there isn't any necessity for it.
3543 ccLoadDest
= [=](llvm::ArrayRef
<mlir::Value
> shape
) -> fir::ArrayLoadOp
{
3544 mlir::Value one
= builder
.createIntegerConstant(loc
, i32Ty
, 1);
3545 auto var
= builder
.create
<fir::CoordinateOp
>(
3546 loc
, builder
.getRefType(hdrTy
.getType(1)), header
, one
);
3547 auto load
= builder
.create
<fir::LoadOp
>(loc
, var
);
3549 fir::unwrapSequenceType(fir::unwrapRefType(load
.getType()));
3550 auto seqTy
= fir::SequenceType::get(eleTy
, shape
.size());
3551 mlir::Value castTo
=
3552 builder
.createConvert(loc
, fir::HeapType::get(seqTy
), load
);
3553 mlir::Value shapeOp
= builder
.genShape(loc
, shape
);
3554 return builder
.create
<fir::ArrayLoadOp
>(
3555 loc
, seqTy
, castTo
, shapeOp
, /*slice=*/mlir::Value
{}, std::nullopt
);
3557 // Custom lowering of the element store to deal with the extra indirection
3558 // to the lazy allocated buffer.
3559 ccStoreToDest
= [=](IterSpace iters
) {
3560 mlir::Value one
= builder
.createIntegerConstant(loc
, i32Ty
, 1);
3561 auto var
= builder
.create
<fir::CoordinateOp
>(
3562 loc
, builder
.getRefType(hdrTy
.getType(1)), header
, one
);
3563 auto load
= builder
.create
<fir::LoadOp
>(loc
, var
);
3565 fir::unwrapSequenceType(fir::unwrapRefType(load
.getType()));
3566 auto seqTy
= fir::SequenceType::get(eleTy
, iters
.iterVec().size());
3567 auto toTy
= fir::HeapType::get(seqTy
);
3568 mlir::Value castTo
= builder
.createConvert(loc
, toTy
, load
);
3569 mlir::Value shape
= builder
.genShape(loc
, genIterationShape());
3570 llvm::SmallVector
<mlir::Value
> indices
= fir::factory::originateIndices(
3571 loc
, builder
, castTo
.getType(), shape
, iters
.iterVec());
3572 auto eleAddr
= builder
.create
<fir::ArrayCoorOp
>(
3573 loc
, builder
.getRefType(eleTy
), castTo
, shape
,
3574 /*slice=*/mlir::Value
{}, indices
, destination
.getTypeparams());
3575 mlir::Value eleVal
=
3576 builder
.createConvert(loc
, eleTy
, iters
.getElement());
3577 builder
.create
<fir::StoreOp
>(loc
, eleVal
, eleAddr
);
3578 return iters
.innerArgument();
3581 // Lower the array expression now. Clean-up any temps that may have
3582 // been generated when lowering `expr` right after the lowered value
3583 // was stored to the ragged array temporary. The local temps will not
3584 // be needed afterwards.
3585 stmtCtx
.pushScope();
3586 [[maybe_unused
]] ExtValue loopRes
= lowerArrayExpression(expr
);
3587 stmtCtx
.finalizeAndPop();
3588 assert(fir::getBase(loopRes
));
3592 lowerElementalUserAssignment(Fortran::lower::AbstractConverter
&converter
,
3593 Fortran::lower::SymMap
&symMap
,
3594 Fortran::lower::StatementContext
&stmtCtx
,
3595 Fortran::lower::ExplicitIterSpace
&explicitSpace
,
3596 Fortran::lower::ImplicitIterSpace
&implicitSpace
,
3597 const Fortran::evaluate::ProcedureRef
&procRef
) {
3598 ArrayExprLowering
ael(converter
, stmtCtx
, symMap
,
3599 ConstituentSemantics::CustomCopyInCopyOut
,
3600 &explicitSpace
, &implicitSpace
);
3601 assert(procRef
.arguments().size() == 2);
3602 const auto *lhs
= procRef
.arguments()[0].value().UnwrapExpr();
3603 const auto *rhs
= procRef
.arguments()[1].value().UnwrapExpr();
3604 assert(lhs
&& rhs
&&
3605 "user defined assignment arguments must be expressions");
3606 mlir::func::FuncOp func
=
3607 Fortran::lower::CallerInterface(procRef
, converter
).getFuncOp();
3608 ael
.lowerElementalUserAssignment(func
, *lhs
, *rhs
);
3611 void lowerElementalUserAssignment(mlir::func::FuncOp userAssignment
,
3612 const Fortran::lower::SomeExpr
&lhs
,
3613 const Fortran::lower::SomeExpr
&rhs
) {
3614 mlir::Location loc
= getLoc();
3615 PushSemantics(ConstituentSemantics::CustomCopyInCopyOut
);
3616 auto genArrayModify
= genarr(lhs
);
3617 ccStoreToDest
= [=](IterSpace iters
) -> ExtValue
{
3618 auto modifiedArray
= genArrayModify(iters
);
3619 auto arrayModify
= mlir::dyn_cast_or_null
<fir::ArrayModifyOp
>(
3620 fir::getBase(modifiedArray
).getDefiningOp());
3621 assert(arrayModify
&& "must be created by ArrayModifyOp");
3622 fir::ExtendedValue lhs
=
3623 arrayModifyToExv(builder
, loc
, destination
, arrayModify
.getResult(0));
3624 genScalarUserDefinedAssignmentCall(builder
, loc
, userAssignment
, lhs
,
3625 iters
.elementExv());
3626 return modifiedArray
;
3628 determineShapeOfDest(lhs
);
3629 semant
= ConstituentSemantics::RefTransparent
;
3630 auto exv
= lowerArrayExpression(rhs
);
3631 if (explicitSpaceIsActive()) {
3632 explicitSpace
->finalizeContext();
3633 builder
.create
<fir::ResultOp
>(loc
, fir::getBase(exv
));
3635 builder
.create
<fir::ArrayMergeStoreOp
>(
3636 loc
, destination
, fir::getBase(exv
), destination
.getMemref(),
3637 destination
.getSlice(), destination
.getTypeparams());
3641 /// Lower an elemental subroutine call with at least one array argument.
3642 /// An elemental subroutine is an exception and does not have copy-in/copy-out
3643 /// semantics. See 15.8.3.
3644 /// Do NOT use this for user defined assignments.
3646 lowerElementalSubroutine(Fortran::lower::AbstractConverter
&converter
,
3647 Fortran::lower::SymMap
&symMap
,
3648 Fortran::lower::StatementContext
&stmtCtx
,
3649 const Fortran::lower::SomeExpr
&call
) {
3650 ArrayExprLowering
ael(converter
, stmtCtx
, symMap
,
3651 ConstituentSemantics::RefTransparent
);
3652 ael
.lowerElementalSubroutine(call
);
3655 static const std::optional
<Fortran::evaluate::ActualArgument
>
3656 extractPassedArgFromProcRef(const Fortran::evaluate::ProcedureRef
&procRef
,
3657 Fortran::lower::AbstractConverter
&converter
) {
3658 // First look for passed object in actual arguments.
3659 for (const std::optional
<Fortran::evaluate::ActualArgument
> &arg
:
3660 procRef
.arguments())
3661 if (arg
&& arg
->isPassedObject())
3664 // If passed object is not found by here, it means the call was fully
3665 // resolved to the correct procedure. Look for the pass object in the
3666 // dummy arguments. Pick the first polymorphic one.
3667 Fortran::lower::CallerInterface
caller(procRef
, converter
);
3669 for (const auto &arg
: caller
.characterize().dummyArguments
) {
3670 if (const auto *dummy
=
3671 std::get_if
<Fortran::evaluate::characteristics::DummyDataObject
>(
3673 if (dummy
->type
.type().IsPolymorphic())
3674 return procRef
.arguments()[idx
];
3677 return std::nullopt
;
3680 // TODO: See the comment in genarr(const Fortran::lower::Parentheses<T>&).
3681 // This is skipping generation of copy-in/copy-out code for analysis that is
3682 // required when arguments are in parentheses.
3683 void lowerElementalSubroutine(const Fortran::lower::SomeExpr
&call
) {
3684 if (const auto *procRef
=
3685 std::get_if
<Fortran::evaluate::ProcedureRef
>(&call
.u
))
3686 setLoweredProcRef(procRef
);
3687 auto f
= genarr(call
);
3688 llvm::SmallVector
<mlir::Value
> shape
= genIterationShape();
3689 auto [iterSpace
, insPt
] = genImplicitLoops(shape
, /*innerArg=*/{});
3691 finalizeElementCtx();
3692 builder
.restoreInsertionPoint(insPt
);
3695 ExtValue
lowerScalarAssignment(const Fortran::lower::SomeExpr
&lhs
,
3696 const Fortran::lower::SomeExpr
&rhs
) {
3697 PushSemantics(ConstituentSemantics::RefTransparent
);
3698 // 1) Lower the rhs expression with array_fetch op(s).
3699 IterationSpace iters
;
3700 iters
.setElement(genarr(rhs
)(iters
));
3701 // 2) Lower the lhs expression to an array_update.
3702 semant
= ConstituentSemantics::ProjectedCopyInCopyOut
;
3703 auto lexv
= genarr(lhs
)(iters
);
3704 // 3) Finalize the inner context.
3705 explicitSpace
->finalizeContext();
3706 // 4) Thread the array value updated forward. Note: the lhs might be
3707 // ill-formed (performing scalar assignment in an array context),
3708 // in which case there is no array to thread.
3709 auto loc
= getLoc();
3710 auto createResult
= [&](auto op
) {
3711 mlir::Value oldInnerArg
= op
.getSequence();
3712 std::size_t offset
= explicitSpace
->argPosition(oldInnerArg
);
3713 explicitSpace
->setInnerArg(offset
, fir::getBase(lexv
));
3714 finalizeElementCtx();
3715 builder
.create
<fir::ResultOp
>(loc
, fir::getBase(lexv
));
3717 if (mlir::Operation
*defOp
= fir::getBase(lexv
).getDefiningOp()) {
3718 llvm::TypeSwitch
<mlir::Operation
*>(defOp
)
3719 .Case([&](fir::ArrayUpdateOp op
) { createResult(op
); })
3720 .Case([&](fir::ArrayAmendOp op
) { createResult(op
); })
3721 .Case([&](fir::ArrayModifyOp op
) { createResult(op
); })
3722 .Default([&](mlir::Operation
*) { finalizeElementCtx(); });
3724 // `lhs` isn't from a `fir.array_load`, so there is no array modifications
3725 // to thread through the iteration space.
3726 finalizeElementCtx();
3731 static ExtValue
lowerScalarUserAssignment(
3732 Fortran::lower::AbstractConverter
&converter
,
3733 Fortran::lower::SymMap
&symMap
, Fortran::lower::StatementContext
&stmtCtx
,
3734 Fortran::lower::ExplicitIterSpace
&explicitIterSpace
,
3735 mlir::func::FuncOp userAssignmentFunction
,
3736 const Fortran::lower::SomeExpr
&lhs
,
3737 const Fortran::lower::SomeExpr
&rhs
) {
3738 Fortran::lower::ImplicitIterSpace implicit
;
3739 ArrayExprLowering
ael(converter
, stmtCtx
, symMap
,
3740 ConstituentSemantics::RefTransparent
,
3741 &explicitIterSpace
, &implicit
);
3742 return ael
.lowerScalarUserAssignment(userAssignmentFunction
, lhs
, rhs
);
3745 ExtValue
lowerScalarUserAssignment(mlir::func::FuncOp userAssignment
,
3746 const Fortran::lower::SomeExpr
&lhs
,
3747 const Fortran::lower::SomeExpr
&rhs
) {
3748 mlir::Location loc
= getLoc();
3750 TODO(loc
, "user-defined elemental assigment from expression with rank");
3751 // 1) Lower the rhs expression with array_fetch op(s).
3752 IterationSpace iters
;
3753 iters
.setElement(genarr(rhs
)(iters
));
3754 fir::ExtendedValue elementalExv
= iters
.elementExv();
3755 // 2) Lower the lhs expression to an array_modify.
3756 semant
= ConstituentSemantics::CustomCopyInCopyOut
;
3757 auto lexv
= genarr(lhs
)(iters
);
3758 bool isIllFormedLHS
= false;
3759 // 3) Insert the call
3760 if (auto modifyOp
= mlir::dyn_cast
<fir::ArrayModifyOp
>(
3761 fir::getBase(lexv
).getDefiningOp())) {
3762 mlir::Value oldInnerArg
= modifyOp
.getSequence();
3763 std::size_t offset
= explicitSpace
->argPosition(oldInnerArg
);
3764 explicitSpace
->setInnerArg(offset
, fir::getBase(lexv
));
3765 auto lhsLoad
= explicitSpace
->getLhsLoad(0);
3766 assert(lhsLoad
.has_value());
3767 fir::ExtendedValue exv
=
3768 arrayModifyToExv(builder
, loc
, *lhsLoad
, modifyOp
.getResult(0));
3769 genScalarUserDefinedAssignmentCall(builder
, loc
, userAssignment
, exv
,
3772 // LHS is ill formed, it is a scalar with no references to FORALL
3773 // subscripts, so there is actually no array assignment here. The user
3774 // code is probably bad, but still insert user assignment call since it
3775 // was not rejected by semantics (a warning was emitted).
3776 isIllFormedLHS
= true;
3777 genScalarUserDefinedAssignmentCall(builder
, getLoc(), userAssignment
,
3778 lexv
, elementalExv
);
3780 // 4) Finalize the inner context.
3781 explicitSpace
->finalizeContext();
3782 // 5). Thread the array value updated forward.
3783 if (!isIllFormedLHS
) {
3784 finalizeElementCtx();
3785 builder
.create
<fir::ResultOp
>(getLoc(), fir::getBase(lexv
));
3791 void determineShapeOfDest(const fir::ExtendedValue
&lhs
) {
3792 destShape
= fir::factory::getExtents(getLoc(), builder
, lhs
);
3795 void determineShapeOfDest(const Fortran::lower::SomeExpr
&lhs
) {
3796 if (!destShape
.empty())
3798 if (explicitSpaceIsActive() && determineShapeWithSlice(lhs
))
3800 mlir::Type idxTy
= builder
.getIndexType();
3801 mlir::Location loc
= getLoc();
3802 if (std::optional
<Fortran::evaluate::ConstantSubscripts
> constantShape
=
3803 Fortran::evaluate::GetConstantExtents(converter
.getFoldingContext(),
3805 for (Fortran::common::ConstantSubscript extent
: *constantShape
)
3806 destShape
.push_back(builder
.createIntegerConstant(loc
, idxTy
, extent
));
3809 bool genShapeFromDataRef(const Fortran::semantics::Symbol
&x
) {
3812 bool genShapeFromDataRef(const Fortran::evaluate::CoarrayRef
&) {
3813 TODO(getLoc(), "coarray: reference to a coarray in an expression");
3816 bool genShapeFromDataRef(const Fortran::evaluate::Component
&x
) {
3817 return x
.base().Rank() > 0 ? genShapeFromDataRef(x
.base()) : false;
3819 bool genShapeFromDataRef(const Fortran::evaluate::ArrayRef
&x
) {
3822 if (x
.base().Rank() > 0)
3823 if (genShapeFromDataRef(x
.base()))
3825 // x has rank and x.base did not produce a shape.
3826 ExtValue exv
= x
.base().IsSymbol() ? asScalarRef(getFirstSym(x
.base()))
3827 : asScalarRef(x
.base().GetComponent());
3828 mlir::Location loc
= getLoc();
3829 mlir::IndexType idxTy
= builder
.getIndexType();
3830 llvm::SmallVector
<mlir::Value
> definedShape
=
3831 fir::factory::getExtents(loc
, builder
, exv
);
3832 mlir::Value one
= builder
.createIntegerConstant(loc
, idxTy
, 1);
3833 for (auto ss
: llvm::enumerate(x
.subscript())) {
3834 Fortran::common::visit(
3835 Fortran::common::visitors
{
3836 [&](const Fortran::evaluate::Triplet
&trip
) {
3837 // For a subscript of triple notation, we compute the
3838 // range of this dimension of the iteration space.
3840 if (auto optLo
= trip
.lower())
3841 return fir::getBase(asScalar(*optLo
));
3842 return getLBound(exv
, ss
.index(), one
);
3845 if (auto optHi
= trip
.upper())
3846 return fir::getBase(asScalar(*optHi
));
3847 return getUBound(exv
, ss
.index(), one
);
3849 auto step
= builder
.createConvert(
3850 loc
, idxTy
, fir::getBase(asScalar(trip
.stride())));
3852 builder
.genExtentFromTriplet(loc
, lo
, hi
, step
, idxTy
);
3853 destShape
.push_back(extent
);
3860 bool genShapeFromDataRef(const Fortran::evaluate::NamedEntity
&x
) {
3862 return genShapeFromDataRef(getFirstSym(x
));
3863 return genShapeFromDataRef(x
.GetComponent());
3865 bool genShapeFromDataRef(const Fortran::evaluate::DataRef
&x
) {
3866 return Fortran::common::visit(
3867 [&](const auto &v
) { return genShapeFromDataRef(v
); }, x
.u
);
3870 /// When in an explicit space, the ranked component must be evaluated to
3871 /// determine the actual number of iterations when slicing triples are
3872 /// present. Lower these expressions here.
3873 bool determineShapeWithSlice(const Fortran::lower::SomeExpr
&lhs
) {
3874 LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump(
3875 llvm::dbgs() << "determine shape of:\n", lhs
));
3876 // FIXME: We may not want to use ExtractDataRef here since it doesn't deal
3877 // with substrings, etc.
3878 std::optional
<Fortran::evaluate::DataRef
> dref
=
3879 Fortran::evaluate::ExtractDataRef(lhs
);
3880 return dref
.has_value() ? genShapeFromDataRef(*dref
) : false;
3883 /// CHARACTER and derived type elements are treated as memory references. The
3884 /// numeric types are treated as values.
3885 static mlir::Type
adjustedArraySubtype(mlir::Type ty
,
3886 mlir::ValueRange indices
) {
3887 mlir::Type pathTy
= fir::applyPathToType(ty
, indices
);
3888 assert(pathTy
&& "indices failed to apply to type");
3889 return adjustedArrayElementType(pathTy
);
3892 /// Lower rhs of an array expression.
3893 ExtValue
lowerArrayExpression(const Fortran::lower::SomeExpr
&exp
) {
3894 mlir::Type resTy
= converter
.genType(exp
);
3896 if (fir::isPolymorphicType(resTy
) &&
3897 Fortran::evaluate::HasVectorSubscript(exp
))
3899 "polymorphic array expression lowering with vector subscript");
3901 return Fortran::common::visit(
3902 [&](const auto &e
) { return lowerArrayExpression(genarr(e
), resTy
); },
3905 ExtValue
lowerArrayExpression(const ExtValue
&exv
) {
3906 assert(!explicitSpace
);
3907 mlir::Type resTy
= fir::unwrapPassByRefType(fir::getBase(exv
).getType());
3908 return lowerArrayExpression(genarr(exv
), resTy
);
3911 void populateBounds(llvm::SmallVectorImpl
<mlir::Value
> &bounds
,
3912 const Fortran::evaluate::Substring
*substring
) {
3915 bounds
.push_back(fir::getBase(asScalar(substring
->lower())));
3916 if (auto upper
= substring
->upper())
3917 bounds
.push_back(fir::getBase(asScalar(*upper
)));
3920 /// Convert the original value, \p origVal, to type \p eleTy. When in a
3921 /// pointer assignment context, generate an appropriate `fir.rebox` for
3922 /// dealing with any bounds parameters on the pointer assignment.
3923 mlir::Value
convertElementForUpdate(mlir::Location loc
, mlir::Type eleTy
,
3924 mlir::Value origVal
) {
3925 if (auto origEleTy
= fir::dyn_cast_ptrEleTy(origVal
.getType()))
3926 if (mlir::isa
<fir::BaseBoxType
>(origEleTy
)) {
3927 // If origVal is a box variable, load it so it is in the value domain.
3928 origVal
= builder
.create
<fir::LoadOp
>(loc
, origVal
);
3930 if (mlir::isa
<fir::BoxType
>(origVal
.getType()) &&
3931 !mlir::isa
<fir::BoxType
>(eleTy
)) {
3932 if (isPointerAssignment())
3933 TODO(loc
, "lhs of pointer assignment returned unexpected value");
3934 TODO(loc
, "invalid box conversion in elemental computation");
3936 if (isPointerAssignment() && mlir::isa
<fir::BoxType
>(eleTy
) &&
3937 !mlir::isa
<fir::BoxType
>(origVal
.getType())) {
3938 // This is a pointer assignment and the rhs is a raw reference to a TARGET
3939 // in memory. Embox the reference so it can be stored to the boxed
3940 // POINTER variable.
3941 assert(fir::isa_ref_type(origVal
.getType()));
3942 if (auto eleTy
= fir::dyn_cast_ptrEleTy(origVal
.getType());
3943 fir::hasDynamicSize(eleTy
))
3944 TODO(loc
, "TARGET of pointer assignment with runtime size/shape");
3945 auto memrefTy
= fir::boxMemRefType(mlir::cast
<fir::BoxType
>(eleTy
));
3946 auto castTo
= builder
.createConvert(loc
, memrefTy
, origVal
);
3947 origVal
= builder
.create
<fir::EmboxOp
>(loc
, eleTy
, castTo
);
3949 mlir::Value val
= builder
.convertWithSemantics(loc
, eleTy
, origVal
);
3950 if (isBoundsSpec()) {
3951 assert(lbounds
.has_value());
3952 auto lbs
= *lbounds
;
3953 if (lbs
.size() > 0) {
3954 // Rebox the value with user-specified shift.
3955 auto shiftTy
= fir::ShiftType::get(eleTy
.getContext(), lbs
.size());
3956 mlir::Value shiftOp
= builder
.create
<fir::ShiftOp
>(loc
, shiftTy
, lbs
);
3957 val
= builder
.create
<fir::ReboxOp
>(loc
, eleTy
, val
, shiftOp
,
3960 } else if (isBoundsRemap()) {
3961 assert(lbounds
.has_value());
3962 auto lbs
= *lbounds
;
3963 if (lbs
.size() > 0) {
3964 // Rebox the value with user-specified shift and shape.
3965 assert(ubounds
.has_value());
3966 auto shapeShiftArgs
= flatZip(lbs
, *ubounds
);
3967 auto shapeTy
= fir::ShapeShiftType::get(eleTy
.getContext(), lbs
.size());
3968 mlir::Value shapeShift
=
3969 builder
.create
<fir::ShapeShiftOp
>(loc
, shapeTy
, shapeShiftArgs
);
3970 val
= builder
.create
<fir::ReboxOp
>(loc
, eleTy
, val
, shapeShift
,
3977 /// Default store to destination implementation.
3978 /// This implements the default case, which is to assign the value in
3979 /// `iters.element` into the destination array, `iters.innerArgument`. Handles
3980 /// by value and by reference assignment.
3981 CC
defaultStoreToDestination(const Fortran::evaluate::Substring
*substring
) {
3982 return [=](IterSpace iterSpace
) -> ExtValue
{
3983 mlir::Location loc
= getLoc();
3984 mlir::Value innerArg
= iterSpace
.innerArgument();
3985 fir::ExtendedValue exv
= iterSpace
.elementExv();
3986 mlir::Type arrTy
= innerArg
.getType();
3987 mlir::Type eleTy
= fir::applyPathToType(arrTy
, iterSpace
.iterVec());
3988 if (isAdjustedArrayElementType(eleTy
)) {
3989 // The elemental update is in the memref domain. Under this semantics,
3990 // we must always copy the computed new element from its location in
3991 // memory into the destination array.
3992 mlir::Type resRefTy
= builder
.getRefType(eleTy
);
3993 // Get a reference to the array element to be amended.
3994 auto arrayOp
= builder
.create
<fir::ArrayAccessOp
>(
3995 loc
, resRefTy
, innerArg
, iterSpace
.iterVec(),
3996 fir::factory::getTypeParams(loc
, builder
, destination
));
3997 if (auto charTy
= mlir::dyn_cast
<fir::CharacterType
>(eleTy
)) {
3998 llvm::SmallVector
<mlir::Value
> substringBounds
;
3999 populateBounds(substringBounds
, substring
);
4000 mlir::Value dstLen
= fir::factory::genLenOfCharacter(
4001 builder
, loc
, destination
, iterSpace
.iterVec(), substringBounds
);
4002 fir::ArrayAmendOp amend
= createCharArrayAmend(
4003 loc
, builder
, arrayOp
, dstLen
, exv
, innerArg
, substringBounds
);
4004 return abstractArrayExtValue(amend
, dstLen
);
4006 if (fir::isa_derived(eleTy
)) {
4007 fir::ArrayAmendOp amend
= createDerivedArrayAmend(
4008 loc
, destination
, builder
, arrayOp
, exv
, eleTy
, innerArg
);
4009 return abstractArrayExtValue(amend
/*FIXME: typeparams?*/);
4011 assert(mlir::isa
<fir::SequenceType
>(eleTy
) && "must be an array");
4012 TODO(loc
, "array (as element) assignment");
4014 // By value semantics. The element is being assigned by value.
4015 auto ele
= convertElementForUpdate(loc
, eleTy
, fir::getBase(exv
));
4016 auto update
= builder
.create
<fir::ArrayUpdateOp
>(
4017 loc
, arrTy
, innerArg
, ele
, iterSpace
.iterVec(),
4018 destination
.getTypeparams());
4019 return abstractArrayExtValue(update
);
4023 /// For an elemental array expression.
4024 /// 1. Lower the scalars and array loads.
4025 /// 2. Create the iteration space.
4026 /// 3. Create the element-by-element computation in the loop.
4027 /// 4. Return the resulting array value.
4028 /// If no destination was set in the array context, a temporary of
4029 /// \p resultTy will be created to hold the evaluated expression.
4030 /// Otherwise, \p resultTy is ignored and the expression is evaluated
4031 /// in the destination. \p f is a continuation built from an
4032 /// evaluate::Expr or an ExtendedValue.
4033 ExtValue
lowerArrayExpression(CC f
, mlir::Type resultTy
) {
4034 mlir::Location loc
= getLoc();
4035 auto [iterSpace
, insPt
] = genIterSpace(resultTy
);
4036 auto exv
= f(iterSpace
);
4037 iterSpace
.setElement(std::move(exv
));
4038 auto lambda
= ccStoreToDest
4040 : defaultStoreToDestination(/*substring=*/nullptr);
4041 mlir::Value updVal
= fir::getBase(lambda(iterSpace
));
4042 finalizeElementCtx();
4043 builder
.create
<fir::ResultOp
>(loc
, updVal
);
4044 builder
.restoreInsertionPoint(insPt
);
4045 return abstractArrayExtValue(iterSpace
.outerResult());
4048 /// Compute the shape of a slice.
4049 llvm::SmallVector
<mlir::Value
> computeSliceShape(mlir::Value slice
) {
4050 llvm::SmallVector
<mlir::Value
> slicedShape
;
4051 auto slOp
= mlir::cast
<fir::SliceOp
>(slice
.getDefiningOp());
4052 mlir::Operation::operand_range triples
= slOp
.getTriples();
4053 mlir::IndexType idxTy
= builder
.getIndexType();
4054 mlir::Location loc
= getLoc();
4055 for (unsigned i
= 0, end
= triples
.size(); i
< end
; i
+= 3) {
4056 if (!mlir::isa_and_nonnull
<fir::UndefOp
>(
4057 triples
[i
+ 1].getDefiningOp())) {
4058 // (..., lb:ub:step, ...) case: extent = max((ub-lb+step)/step, 0)
4059 // See Fortran 2018 9.5.3.3.2 section for more details.
4060 mlir::Value res
= builder
.genExtentFromTriplet(
4061 loc
, triples
[i
], triples
[i
+ 1], triples
[i
+ 2], idxTy
);
4062 slicedShape
.emplace_back(res
);
4064 // do nothing. `..., i, ...` case, so dimension is dropped.
4070 /// Get the shape from an ArrayOperand. The shape of the array is adjusted if
4071 /// the array was sliced.
4072 llvm::SmallVector
<mlir::Value
> getShape(ArrayOperand array
) {
4074 return computeSliceShape(array
.slice
);
4075 if (mlir::isa
<fir::BaseBoxType
>(array
.memref
.getType()))
4076 return fir::factory::readExtents(builder
, getLoc(),
4077 fir::BoxValue
{array
.memref
});
4078 return fir::factory::getExtents(array
.shape
);
4081 /// Get the shape from an ArrayLoad.
4082 llvm::SmallVector
<mlir::Value
> getShape(fir::ArrayLoadOp arrayLoad
) {
4083 return getShape(ArrayOperand
{arrayLoad
.getMemref(), arrayLoad
.getShape(),
4084 arrayLoad
.getSlice()});
4087 /// Returns the first array operand that may not be absent. If all
4088 /// array operands may be absent, return the first one.
4089 const ArrayOperand
&getInducingShapeArrayOperand() const {
4090 assert(!arrayOperands
.empty());
4091 for (const ArrayOperand
&op
: arrayOperands
)
4092 if (!op
.mayBeAbsent
)
4094 // If all arrays operand appears in optional position, then none of them
4095 // is allowed to be absent as per 15.5.2.12 point 3. (6). Just pick the
4097 // TODO: There is an opportunity to add a runtime check here that
4098 // this array is present as required.
4099 return arrayOperands
[0];
4102 /// Generate the shape of the iteration space over the array expression. The
4103 /// iteration space may be implicit, explicit, or both. If it is implied it is
4104 /// based on the destination and operand array loads, or an optional
4105 /// Fortran::evaluate::Shape from the front end. If the shape is explicit,
4106 /// this returns any implicit shape component, if it exists.
4107 llvm::SmallVector
<mlir::Value
> genIterationShape() {
4108 // Use the precomputed destination shape.
4109 if (!destShape
.empty())
4111 // Otherwise, use the destination's shape.
4113 return getShape(destination
);
4114 // Otherwise, use the first ArrayLoad operand shape.
4115 if (!arrayOperands
.empty())
4116 return getShape(getInducingShapeArrayOperand());
4117 // Otherwise, in elemental context, try to find the passed object and
4118 // retrieve the iteration shape from it.
4119 if (loweredProcRef
&& loweredProcRef
->IsElemental()) {
4120 const std::optional
<Fortran::evaluate::ActualArgument
> passArg
=
4121 extractPassedArgFromProcRef(*loweredProcRef
, converter
);
4123 ExtValue exv
= asScalarRef(*passArg
->UnwrapExpr());
4124 fir::FirOpBuilder
*builder
= &converter
.getFirOpBuilder();
4125 auto extents
= fir::factory::getExtents(getLoc(), *builder
, exv
);
4126 if (extents
.size() == 0)
4127 TODO(getLoc(), "getting shape from polymorphic array in elemental "
4128 "procedure reference");
4132 fir::emitFatalError(getLoc(),
4133 "failed to compute the array expression shape");
4136 bool explicitSpaceIsActive() const {
4137 return explicitSpace
&& explicitSpace
->isActive();
4140 bool implicitSpaceHasMasks() const {
4141 return implicitSpace
&& !implicitSpace
->empty();
4144 CC
genMaskAccess(mlir::Value tmp
, mlir::Value shape
) {
4145 mlir::Location loc
= getLoc();
4146 return [=, builder
= &converter
.getFirOpBuilder()](IterSpace iters
) {
4147 mlir::Type arrTy
= fir::dyn_cast_ptrOrBoxEleTy(tmp
.getType());
4148 auto eleTy
= mlir::cast
<fir::SequenceType
>(arrTy
).getEleTy();
4149 mlir::Type eleRefTy
= builder
->getRefType(eleTy
);
4150 mlir::IntegerType i1Ty
= builder
->getI1Type();
4151 // Adjust indices for any shift of the origin of the array.
4152 llvm::SmallVector
<mlir::Value
> indices
= fir::factory::originateIndices(
4153 loc
, *builder
, tmp
.getType(), shape
, iters
.iterVec());
4155 builder
->create
<fir::ArrayCoorOp
>(loc
, eleRefTy
, tmp
, shape
,
4156 /*slice=*/mlir::Value
{}, indices
,
4157 /*typeParams=*/std::nullopt
);
4158 auto load
= builder
->create
<fir::LoadOp
>(loc
, addr
);
4159 return builder
->createConvert(loc
, i1Ty
, load
);
4163 /// Construct the incremental instantiations of the ragged array structure.
4164 /// Rebind the lazy buffer variable, etc. as we go.
4165 template <bool withAllocation
= false>
4166 mlir::Value
prepareRaggedArrays(Fortran::lower::FrontEndExpr expr
) {
4167 assert(explicitSpaceIsActive());
4168 mlir::Location loc
= getLoc();
4169 mlir::TupleType raggedTy
= fir::factory::getRaggedArrayHeaderType(builder
);
4170 llvm::SmallVector
<llvm::SmallVector
<fir::DoLoopOp
>> loopStack
=
4171 explicitSpace
->getLoopStack();
4172 const std::size_t depth
= loopStack
.size();
4173 mlir::IntegerType i64Ty
= builder
.getIntegerType(64);
4174 [[maybe_unused
]] mlir::Value byteSize
=
4175 builder
.createIntegerConstant(loc
, i64Ty
, 1);
4176 mlir::Value header
= implicitSpace
->lookupMaskHeader(expr
);
4177 for (std::remove_const_t
<decltype(depth
)> i
= 0; i
< depth
; ++i
) {
4178 auto insPt
= builder
.saveInsertionPoint();
4180 builder
.setInsertionPoint(loopStack
[i
+ 1][0]);
4182 // Compute and gather the extents.
4183 llvm::SmallVector
<mlir::Value
> extents
;
4184 for (auto doLoop
: loopStack
[i
])
4185 extents
.push_back(builder
.genExtentFromTriplet(
4186 loc
, doLoop
.getLowerBound(), doLoop
.getUpperBound(),
4187 doLoop
.getStep(), i64Ty
));
4188 if constexpr (withAllocation
) {
4189 fir::runtime::genRaggedArrayAllocate(
4190 loc
, builder
, header
, /*asHeader=*/true, byteSize
, extents
);
4193 // Compute the dynamic position into the header.
4194 llvm::SmallVector
<mlir::Value
> offsets
;
4195 for (auto doLoop
: loopStack
[i
]) {
4196 auto m
= builder
.create
<mlir::arith::SubIOp
>(
4197 loc
, doLoop
.getInductionVar(), doLoop
.getLowerBound());
4198 auto n
= builder
.create
<mlir::arith::DivSIOp
>(loc
, m
, doLoop
.getStep());
4199 mlir::Value one
= builder
.createIntegerConstant(loc
, n
.getType(), 1);
4200 offsets
.push_back(builder
.create
<mlir::arith::AddIOp
>(loc
, n
, one
));
4202 mlir::IntegerType i32Ty
= builder
.getIntegerType(32);
4203 mlir::Value uno
= builder
.createIntegerConstant(loc
, i32Ty
, 1);
4204 mlir::Type coorTy
= builder
.getRefType(raggedTy
.getType(1));
4205 auto hdOff
= builder
.create
<fir::CoordinateOp
>(loc
, coorTy
, header
, uno
);
4206 auto toTy
= fir::SequenceType::get(raggedTy
, offsets
.size());
4207 mlir::Type toRefTy
= builder
.getRefType(toTy
);
4208 auto ldHdr
= builder
.create
<fir::LoadOp
>(loc
, hdOff
);
4209 mlir::Value hdArr
= builder
.createConvert(loc
, toRefTy
, ldHdr
);
4210 auto shapeOp
= builder
.genShape(loc
, extents
);
4211 header
= builder
.create
<fir::ArrayCoorOp
>(
4212 loc
, builder
.getRefType(raggedTy
), hdArr
, shapeOp
,
4213 /*slice=*/mlir::Value
{}, offsets
,
4214 /*typeparams=*/mlir::ValueRange
{});
4215 auto hdrVar
= builder
.create
<fir::CoordinateOp
>(loc
, coorTy
, header
, uno
);
4216 auto inVar
= builder
.create
<fir::LoadOp
>(loc
, hdrVar
);
4217 mlir::Value two
= builder
.createIntegerConstant(loc
, i32Ty
, 2);
4218 mlir::Type coorTy2
= builder
.getRefType(raggedTy
.getType(2));
4219 auto hdrSh
= builder
.create
<fir::CoordinateOp
>(loc
, coorTy2
, header
, two
);
4220 auto shapePtr
= builder
.create
<fir::LoadOp
>(loc
, hdrSh
);
4221 // Replace the binding.
4222 implicitSpace
->rebind(expr
, genMaskAccess(inVar
, shapePtr
));
4224 builder
.restoreInsertionPoint(insPt
);
4229 /// Lower mask expressions with implied iteration spaces from the variants of
4230 /// WHERE syntax. Since it is legal for mask expressions to have side-effects
4231 /// and modify values that will be used for the lhs, rhs, or both of
4232 /// subsequent assignments, the mask must be evaluated before the assignment
4234 /// Mask expressions are array expressions too.
4236 // Lower the mask expressions, if any.
4237 if (implicitSpaceHasMasks()) {
4238 mlir::Location loc
= getLoc();
4239 // Mask expressions are array expressions too.
4240 for (const auto *e
: implicitSpace
->getExprs())
4241 if (e
&& !implicitSpace
->isLowered(e
)) {
4242 if (mlir::Value var
= implicitSpace
->lookupMaskVariable(e
)) {
4243 // Allocate the mask buffer lazily.
4244 assert(explicitSpaceIsActive());
4245 mlir::Value header
=
4246 prepareRaggedArrays
</*withAllocations=*/true>(e
);
4247 Fortran::lower::createLazyArrayTempValue(converter
, *e
, header
,
4249 // Close the explicit loops.
4250 builder
.create
<fir::ResultOp
>(loc
, explicitSpace
->getInnerArgs());
4251 builder
.setInsertionPointAfter(explicitSpace
->getOuterLoop());
4252 // Open a new copy of the explicit loop nest.
4253 explicitSpace
->genLoopNest();
4256 fir::ExtendedValue tmp
= Fortran::lower::createSomeArrayTempValue(
4257 converter
, *e
, symMap
, stmtCtx
);
4258 mlir::Value shape
= builder
.createShape(loc
, tmp
);
4259 implicitSpace
->bind(e
, genMaskAccess(fir::getBase(tmp
), shape
));
4262 // Set buffer from the header.
4263 for (const auto *e
: implicitSpace
->getExprs()) {
4266 if (implicitSpace
->lookupMaskVariable(e
)) {
4267 // Index into the ragged buffer to retrieve cached results.
4268 const int rank
= e
->Rank();
4269 assert(destShape
.empty() ||
4270 static_cast<std::size_t>(rank
) == destShape
.size());
4271 mlir::Value header
= prepareRaggedArrays(e
);
4272 mlir::TupleType raggedTy
=
4273 fir::factory::getRaggedArrayHeaderType(builder
);
4274 mlir::IntegerType i32Ty
= builder
.getIntegerType(32);
4275 mlir::Value one
= builder
.createIntegerConstant(loc
, i32Ty
, 1);
4276 auto coor1
= builder
.create
<fir::CoordinateOp
>(
4277 loc
, builder
.getRefType(raggedTy
.getType(1)), header
, one
);
4278 auto db
= builder
.create
<fir::LoadOp
>(loc
, coor1
);
4280 fir::unwrapSequenceType(fir::unwrapRefType(db
.getType()));
4282 builder
.getRefType(fir::SequenceType::get(eleTy
, rank
));
4283 // Address of ragged buffer data.
4284 mlir::Value buff
= builder
.createConvert(loc
, buffTy
, db
);
4286 mlir::Value two
= builder
.createIntegerConstant(loc
, i32Ty
, 2);
4287 auto coor2
= builder
.create
<fir::CoordinateOp
>(
4288 loc
, builder
.getRefType(raggedTy
.getType(2)), header
, two
);
4289 auto shBuff
= builder
.create
<fir::LoadOp
>(loc
, coor2
);
4290 mlir::IntegerType i64Ty
= builder
.getIntegerType(64);
4291 mlir::IndexType idxTy
= builder
.getIndexType();
4292 llvm::SmallVector
<mlir::Value
> extents
;
4293 for (std::remove_const_t
<decltype(rank
)> i
= 0; i
< rank
; ++i
) {
4294 mlir::Value off
= builder
.createIntegerConstant(loc
, i32Ty
, i
);
4295 auto coor
= builder
.create
<fir::CoordinateOp
>(
4296 loc
, builder
.getRefType(i64Ty
), shBuff
, off
);
4297 auto ldExt
= builder
.create
<fir::LoadOp
>(loc
, coor
);
4298 extents
.push_back(builder
.createConvert(loc
, idxTy
, ldExt
));
4300 if (destShape
.empty())
4301 destShape
= extents
;
4302 // Construct shape of buffer.
4303 mlir::Value shapeOp
= builder
.genShape(loc
, extents
);
4305 // Replace binding with the local result.
4306 implicitSpace
->rebind(e
, genMaskAccess(buff
, shapeOp
));
4312 // FIXME: should take multiple inner arguments.
4313 std::pair
<IterationSpace
, mlir::OpBuilder::InsertPoint
>
4314 genImplicitLoops(mlir::ValueRange shape
, mlir::Value innerArg
) {
4315 mlir::Location loc
= getLoc();
4316 mlir::IndexType idxTy
= builder
.getIndexType();
4317 mlir::Value one
= builder
.createIntegerConstant(loc
, idxTy
, 1);
4318 mlir::Value zero
= builder
.createIntegerConstant(loc
, idxTy
, 0);
4319 llvm::SmallVector
<mlir::Value
> loopUppers
;
4321 // Convert any implied shape to closed interval form. The fir.do_loop will
4322 // run from 0 to `extent - 1` inclusive.
4323 for (auto extent
: shape
)
4324 loopUppers
.push_back(
4325 builder
.create
<mlir::arith::SubIOp
>(loc
, extent
, one
));
4327 // Iteration space is created with outermost columns, innermost rows
4328 llvm::SmallVector
<fir::DoLoopOp
> loops
;
4330 const std::size_t loopDepth
= loopUppers
.size();
4331 llvm::SmallVector
<mlir::Value
> ivars
;
4333 for (auto i
: llvm::enumerate(llvm::reverse(loopUppers
))) {
4334 if (i
.index() > 0) {
4335 assert(!loops
.empty());
4336 builder
.setInsertionPointToStart(loops
.back().getBody());
4340 loop
= builder
.create
<fir::DoLoopOp
>(
4341 loc
, zero
, i
.value(), one
, isUnordered(),
4342 /*finalCount=*/false, mlir::ValueRange
{innerArg
});
4343 innerArg
= loop
.getRegionIterArgs().front();
4344 if (explicitSpaceIsActive())
4345 explicitSpace
->setInnerArg(0, innerArg
);
4347 loop
= builder
.create
<fir::DoLoopOp
>(loc
, zero
, i
.value(), one
,
4349 /*finalCount=*/false);
4351 ivars
.push_back(loop
.getInductionVar());
4352 loops
.push_back(loop
);
4356 for (std::remove_const_t
<decltype(loopDepth
)> i
= 0; i
+ 1 < loopDepth
;
4358 builder
.setInsertionPointToEnd(loops
[i
].getBody());
4359 builder
.create
<fir::ResultOp
>(loc
, loops
[i
+ 1].getResult(0));
4362 // Move insertion point to the start of the innermost loop in the nest.
4363 builder
.setInsertionPointToStart(loops
.back().getBody());
4364 // Set `afterLoopNest` to just after the entire loop nest.
4365 auto currPt
= builder
.saveInsertionPoint();
4366 builder
.setInsertionPointAfter(loops
[0]);
4367 auto afterLoopNest
= builder
.saveInsertionPoint();
4368 builder
.restoreInsertionPoint(currPt
);
4370 // Put the implicit loop variables in row to column order to match FIR's
4371 // Ops. (The loops were constructed from outermost column to innermost
4373 mlir::Value outerRes
;
4374 if (loops
[0].getNumResults() != 0)
4375 outerRes
= loops
[0].getResult(0);
4376 return {IterationSpace(innerArg
, outerRes
, llvm::reverse(ivars
)),
4380 /// Build the iteration space into which the array expression will be lowered.
4381 /// The resultType is used to create a temporary, if needed.
4382 std::pair
<IterationSpace
, mlir::OpBuilder::InsertPoint
>
4383 genIterSpace(mlir::Type resultType
) {
4384 mlir::Location loc
= getLoc();
4385 llvm::SmallVector
<mlir::Value
> shape
= genIterationShape();
4387 // Allocate storage for the result if it is not already provided.
4388 destination
= createAndLoadSomeArrayTemp(resultType
, shape
);
4391 // Generate the lazy mask allocation, if one was given.
4393 (*ccPrelude
)(shape
);
4395 // Now handle the implicit loops.
4396 mlir::Value inner
= explicitSpaceIsActive()
4397 ? explicitSpace
->getInnerArgs().front()
4398 : destination
.getResult();
4399 auto [iters
, afterLoopNest
] = genImplicitLoops(shape
, inner
);
4400 mlir::Value innerArg
= iters
.innerArgument();
4402 // Generate the mask conditional structure, if there are masks. Unlike the
4403 // explicit masks, which are interleaved, these mask expression appear in
4404 // the innermost loop.
4405 if (implicitSpaceHasMasks()) {
4406 // Recover the cached condition from the mask buffer.
4407 auto genCond
= [&](Fortran::lower::FrontEndExpr e
, IterSpace iters
) {
4408 return implicitSpace
->getBoundClosure(e
)(iters
);
4411 // Handle the negated conditions in topological order of the WHERE
4412 // clauses. See 10.2.3.2p4 as to why this control structure is produced.
4413 for (llvm::SmallVector
<Fortran::lower::FrontEndExpr
> maskExprs
:
4414 implicitSpace
->getMasks()) {
4415 const std::size_t size
= maskExprs
.size() - 1;
4416 auto genFalseBlock
= [&](const auto *e
, auto &&cond
) {
4417 auto ifOp
= builder
.create
<fir::IfOp
>(
4418 loc
, mlir::TypeRange
{innerArg
.getType()}, fir::getBase(cond
),
4419 /*withElseRegion=*/true);
4420 builder
.create
<fir::ResultOp
>(loc
, ifOp
.getResult(0));
4421 builder
.setInsertionPointToStart(&ifOp
.getThenRegion().front());
4422 builder
.create
<fir::ResultOp
>(loc
, innerArg
);
4423 builder
.setInsertionPointToStart(&ifOp
.getElseRegion().front());
4425 auto genTrueBlock
= [&](const auto *e
, auto &&cond
) {
4426 auto ifOp
= builder
.create
<fir::IfOp
>(
4427 loc
, mlir::TypeRange
{innerArg
.getType()}, fir::getBase(cond
),
4428 /*withElseRegion=*/true);
4429 builder
.create
<fir::ResultOp
>(loc
, ifOp
.getResult(0));
4430 builder
.setInsertionPointToStart(&ifOp
.getElseRegion().front());
4431 builder
.create
<fir::ResultOp
>(loc
, innerArg
);
4432 builder
.setInsertionPointToStart(&ifOp
.getThenRegion().front());
4434 for (std::remove_const_t
<decltype(size
)> i
= 0; i
< size
; ++i
)
4435 if (const auto *e
= maskExprs
[i
])
4436 genFalseBlock(e
, genCond(e
, iters
));
4438 // The last condition is either non-negated or unconditionally negated.
4439 if (const auto *e
= maskExprs
[size
])
4440 genTrueBlock(e
, genCond(e
, iters
));
4444 // We're ready to lower the body (an assignment statement) for this context
4445 // of loop nests at this point.
4446 return {iters
, afterLoopNest
};
4450 createAndLoadSomeArrayTemp(mlir::Type type
,
4451 llvm::ArrayRef
<mlir::Value
> shape
) {
4452 mlir::Location loc
= getLoc();
4453 if (fir::isPolymorphicType(type
))
4454 TODO(loc
, "polymorphic array temporary");
4456 return (*ccLoadDest
)(shape
);
4457 auto seqTy
= mlir::dyn_cast
<fir::SequenceType
>(type
);
4458 assert(seqTy
&& "must be an array");
4459 // TODO: Need to thread the LEN parameters here. For character, they may
4460 // differ from the operands length (e.g concatenation). So the array loads
4461 // type parameters are not enough.
4462 if (auto charTy
= mlir::dyn_cast
<fir::CharacterType
>(seqTy
.getEleTy()))
4463 if (charTy
.hasDynamicLen())
4464 TODO(loc
, "character array expression temp with dynamic length");
4465 if (auto recTy
= mlir::dyn_cast
<fir::RecordType
>(seqTy
.getEleTy()))
4466 if (recTy
.getNumLenParams() > 0)
4467 TODO(loc
, "derived type array expression temp with LEN parameters");
4468 if (mlir::Type eleTy
= fir::unwrapSequenceType(type
);
4469 fir::isRecordWithAllocatableMember(eleTy
))
4470 TODO(loc
, "creating an array temp where the element type has "
4471 "allocatable members");
4472 mlir::Value temp
= !seqTy
.hasDynamicExtents()
4473 ? builder
.create
<fir::AllocMemOp
>(loc
, type
)
4474 : builder
.create
<fir::AllocMemOp
>(
4475 loc
, type
, ".array.expr", std::nullopt
, shape
);
4476 fir::FirOpBuilder
*bldr
= &converter
.getFirOpBuilder();
4477 stmtCtx
.attachCleanup(
4478 [bldr
, loc
, temp
]() { bldr
->create
<fir::FreeMemOp
>(loc
, temp
); });
4479 mlir::Value shapeOp
= genShapeOp(shape
);
4480 return builder
.create
<fir::ArrayLoadOp
>(loc
, seqTy
, temp
, shapeOp
,
4481 /*slice=*/mlir::Value
{},
4485 static fir::ShapeOp
genShapeOp(mlir::Location loc
, fir::FirOpBuilder
&builder
,
4486 llvm::ArrayRef
<mlir::Value
> shape
) {
4487 mlir::IndexType idxTy
= builder
.getIndexType();
4488 llvm::SmallVector
<mlir::Value
> idxShape
;
4489 for (auto s
: shape
)
4490 idxShape
.push_back(builder
.createConvert(loc
, idxTy
, s
));
4491 return builder
.create
<fir::ShapeOp
>(loc
, idxShape
);
4494 fir::ShapeOp
genShapeOp(llvm::ArrayRef
<mlir::Value
> shape
) {
4495 return genShapeOp(getLoc(), builder
, shape
);
4498 //===--------------------------------------------------------------------===//
4499 // Expression traversal and lowering.
4500 //===--------------------------------------------------------------------===//
4502 /// Lower the expression, \p x, in a scalar context.
4503 template <typename A
>
4504 ExtValue
asScalar(const A
&x
) {
4505 return ScalarExprLowering
{getLoc(), converter
, symMap
, stmtCtx
}.genval(x
);
4508 /// Lower the expression, \p x, in a scalar context. If this is an explicit
4509 /// space, the expression may be scalar and refer to an array. We want to
4510 /// raise the array access to array operations in FIR to analyze potential
4511 /// conflicts even when the result is a scalar element.
4512 template <typename A
>
4513 ExtValue
asScalarArray(const A
&x
) {
4514 return explicitSpaceIsActive() && !isPointerAssignment()
4515 ? genarr(x
)(IterationSpace
{})
4519 /// Lower the expression in a scalar context to a memory reference.
4520 template <typename A
>
4521 ExtValue
asScalarRef(const A
&x
) {
4522 return ScalarExprLowering
{getLoc(), converter
, symMap
, stmtCtx
}.gen(x
);
4525 /// Lower an expression without dereferencing any indirection that may be
4526 /// a nullptr (because this is an absent optional or unallocated/disassociated
4527 /// descriptor). The returned expression cannot be addressed directly, it is
4528 /// meant to inquire about its status before addressing the related entity.
4529 template <typename A
>
4530 ExtValue
asInquired(const A
&x
) {
4531 return ScalarExprLowering
{getLoc(), converter
, symMap
, stmtCtx
}
4532 .lowerIntrinsicArgumentAsInquired(x
);
4535 /// Some temporaries are allocated on an element-by-element basis during the
4536 /// array expression evaluation. Collect the cleanups here so the resources
4537 /// can be freed before the next loop iteration, avoiding memory leaks. etc.
4538 Fortran::lower::StatementContext
&getElementCtx() {
4540 stmtCtx
.pushScope();
4546 /// If there were temporaries created for this element evaluation, finalize
4547 /// and deallocate the resources now. This should be done just prior to the
4548 /// fir::ResultOp at the end of the innermost loop.
4549 void finalizeElementCtx() {
4551 stmtCtx
.finalizeAndPop();
4556 /// Lower an elemental function array argument. This ensures array
4557 /// sub-expressions that are not variables and must be passed by address
4558 /// are lowered by value and placed in memory.
4559 template <typename A
>
4560 CC
genElementalArgument(const A
&x
) {
4561 // Ensure the returned element is in memory if this is what was requested.
4562 if ((semant
== ConstituentSemantics::RefOpaque
||
4563 semant
== ConstituentSemantics::DataAddr
||
4564 semant
== ConstituentSemantics::ByValueArg
)) {
4565 if (!Fortran::evaluate::IsVariable(x
)) {
4566 PushSemantics(ConstituentSemantics::DataValue
);
4568 mlir::Location loc
= getLoc();
4569 if (isParenthesizedVariable(x
)) {
4570 // Parenthesised variables are lowered to a reference to the variable
4571 // storage. When passing it as an argument, a copy must be passed.
4572 return [=](IterSpace iters
) -> ExtValue
{
4573 return createInMemoryScalarCopy(builder
, loc
, cc(iters
));
4576 mlir::Type storageType
=
4577 fir::unwrapSequenceType(converter
.genType(toEvExpr(x
)));
4578 return [=](IterSpace iters
) -> ExtValue
{
4579 return placeScalarValueInMemory(builder
, loc
, cc(iters
), storageType
);
4581 } else if (isArray(x
)) {
4582 // An array reference is needed, but the indices used in its path must
4583 // still be retrieved by value.
4584 assert(!nextPathSemant
&& "Next path semantics already set!");
4585 nextPathSemant
= ConstituentSemantics::RefTransparent
;
4587 assert(!nextPathSemant
&& "Next path semantics wasn't used!");
4594 // A reference to a Fortran elemental intrinsic or intrinsic module procedure.
4595 CC
genElementalIntrinsicProcRef(
4596 const Fortran::evaluate::ProcedureRef
&procRef
,
4597 std::optional
<mlir::Type
> retTy
,
4598 std::optional
<const Fortran::evaluate::SpecificIntrinsic
> intrinsic
=
4601 llvm::SmallVector
<CC
> operands
;
4603 intrinsic
? intrinsic
->name
4604 : procRef
.proc().GetSymbol()->GetUltimate().name().ToString();
4605 const fir::IntrinsicArgumentLoweringRules
*argLowering
=
4606 fir::getIntrinsicArgumentLowering(name
);
4607 mlir::Location loc
= getLoc();
4608 if (intrinsic
&& Fortran::lower::intrinsicRequiresCustomOptionalHandling(
4609 procRef
, *intrinsic
, converter
)) {
4610 using CcPairT
= std::pair
<CC
, std::optional
<mlir::Value
>>;
4611 llvm::SmallVector
<CcPairT
> operands
;
4612 auto prepareOptionalArg
= [&](const Fortran::lower::SomeExpr
&expr
) {
4613 if (expr
.Rank() == 0) {
4614 ExtValue optionalArg
= this->asInquired(expr
);
4615 mlir::Value isPresent
=
4616 genActualIsPresentTest(builder
, loc
, optionalArg
);
4617 operands
.emplace_back(
4618 [=](IterSpace iters
) -> ExtValue
{
4619 return genLoad(builder
, loc
, optionalArg
);
4623 auto [cc
, isPresent
, _
] = this->genOptionalArrayFetch(expr
);
4624 operands
.emplace_back(cc
, isPresent
);
4627 auto prepareOtherArg
= [&](const Fortran::lower::SomeExpr
&expr
,
4628 fir::LowerIntrinsicArgAs lowerAs
) {
4629 assert(lowerAs
== fir::LowerIntrinsicArgAs::Value
&&
4630 "expect value arguments for elemental intrinsic");
4631 PushSemantics(ConstituentSemantics::RefTransparent
);
4632 operands
.emplace_back(genElementalArgument(expr
), std::nullopt
);
4634 Fortran::lower::prepareCustomIntrinsicArgument(
4635 procRef
, *intrinsic
, retTy
, prepareOptionalArg
, prepareOtherArg
,
4638 fir::FirOpBuilder
*bldr
= &converter
.getFirOpBuilder();
4639 return [=](IterSpace iters
) -> ExtValue
{
4640 auto getArgument
= [&](std::size_t i
, bool) -> ExtValue
{
4641 return operands
[i
].first(iters
);
4643 auto isPresent
= [&](std::size_t i
) -> std::optional
<mlir::Value
> {
4644 return operands
[i
].second
;
4646 return Fortran::lower::lowerCustomIntrinsic(
4647 *bldr
, loc
, name
, retTy
, isPresent
, getArgument
, operands
.size(),
4651 /// Otherwise, pre-lower arguments and use intrinsic lowering utility.
4652 for (const auto &arg
: llvm::enumerate(procRef
.arguments())) {
4654 Fortran::evaluate::UnwrapExpr
<Fortran::lower::SomeExpr
>(arg
.value());
4657 operands
.emplace_back([=](IterSpace
) { return mlir::Value
{}; });
4658 } else if (!argLowering
) {
4659 // No argument lowering instruction, lower by value.
4660 PushSemantics(ConstituentSemantics::RefTransparent
);
4661 operands
.emplace_back(genElementalArgument(*expr
));
4663 // Ad-hoc argument lowering handling.
4664 fir::ArgLoweringRule argRules
=
4665 fir::lowerIntrinsicArgumentAs(*argLowering
, arg
.index());
4666 if (argRules
.handleDynamicOptional
&&
4667 Fortran::evaluate::MayBePassedAsAbsentOptional(*expr
)) {
4668 // Currently, there is not elemental intrinsic that requires lowering
4669 // a potentially absent argument to something else than a value (apart
4670 // from character MAX/MIN that are handled elsewhere.)
4671 if (argRules
.lowerAs
!= fir::LowerIntrinsicArgAs::Value
)
4672 TODO(loc
, "non trivial optional elemental intrinsic array "
4674 PushSemantics(ConstituentSemantics::RefTransparent
);
4675 operands
.emplace_back(genarrForwardOptionalArgumentToCall(*expr
));
4678 switch (argRules
.lowerAs
) {
4679 case fir::LowerIntrinsicArgAs::Value
: {
4680 PushSemantics(ConstituentSemantics::RefTransparent
);
4681 operands
.emplace_back(genElementalArgument(*expr
));
4683 case fir::LowerIntrinsicArgAs::Addr
: {
4684 // Note: assume does not have Fortran VALUE attribute semantics.
4685 PushSemantics(ConstituentSemantics::RefOpaque
);
4686 operands
.emplace_back(genElementalArgument(*expr
));
4688 case fir::LowerIntrinsicArgAs::Box
: {
4689 PushSemantics(ConstituentSemantics::RefOpaque
);
4690 auto lambda
= genElementalArgument(*expr
);
4691 operands
.emplace_back([=](IterSpace iters
) {
4692 return builder
.createBox(loc
, lambda(iters
));
4695 case fir::LowerIntrinsicArgAs::Inquired
:
4696 TODO(loc
, "intrinsic function with inquired argument");
4702 // Let the intrinsic library lower the intrinsic procedure call
4703 return [=](IterSpace iters
) {
4704 llvm::SmallVector
<ExtValue
> args
;
4705 for (const auto &cc
: operands
)
4706 args
.push_back(cc(iters
));
4707 return Fortran::lower::genIntrinsicCall(builder
, loc
, name
, retTy
, args
,
4712 /// Lower a procedure reference to a user-defined elemental procedure.
4713 CC
genElementalUserDefinedProcRef(
4714 const Fortran::evaluate::ProcedureRef
&procRef
,
4715 std::optional
<mlir::Type
> retTy
) {
4716 using PassBy
= Fortran::lower::CallerInterface::PassEntityBy
;
4718 // 10.1.4 p5. Impure elemental procedures must be called in element order.
4719 if (const Fortran::semantics::Symbol
*procSym
= procRef
.proc().GetSymbol())
4720 if (!Fortran::semantics::IsPureProcedure(*procSym
))
4721 setUnordered(false);
4723 Fortran::lower::CallerInterface
caller(procRef
, converter
);
4724 llvm::SmallVector
<CC
> operands
;
4725 operands
.reserve(caller
.getPassedArguments().size());
4726 mlir::Location loc
= getLoc();
4727 mlir::FunctionType callSiteType
= caller
.genFunctionType();
4728 for (const Fortran::lower::CallInterface
<
4729 Fortran::lower::CallerInterface
>::PassedEntity
&arg
:
4730 caller
.getPassedArguments()) {
4731 // 15.8.3 p1. Elemental procedure with intent(out)/intent(inout)
4732 // arguments must be called in element order.
4733 if (arg
.mayBeModifiedByCall())
4734 setUnordered(false);
4735 const auto *actual
= arg
.entity
;
4736 mlir::Type argTy
= callSiteType
.getInput(arg
.firArgument
);
4738 // Optional dummy argument for which there is no actual argument.
4739 auto absent
= builder
.create
<fir::AbsentOp
>(loc
, argTy
);
4740 operands
.emplace_back([=](IterSpace
) { return absent
; });
4743 const auto *expr
= actual
->UnwrapExpr();
4745 TODO(loc
, "assumed type actual argument");
4747 LLVM_DEBUG(expr
->AsFortran(llvm::dbgs()
4748 << "argument: " << arg
.firArgument
<< " = [")
4750 if (arg
.isOptional() &&
4751 Fortran::evaluate::MayBePassedAsAbsentOptional(*expr
))
4753 "passing dynamically optional argument to elemental procedures");
4754 switch (arg
.passBy
) {
4755 case PassBy::Value
: {
4756 // True pass-by-value semantics.
4757 PushSemantics(ConstituentSemantics::RefTransparent
);
4758 operands
.emplace_back(genElementalArgument(*expr
));
4760 case PassBy::BaseAddressValueAttribute
: {
4761 // VALUE attribute or pass-by-reference to a copy semantics. (byval*)
4762 if (isArray(*expr
)) {
4763 PushSemantics(ConstituentSemantics::ByValueArg
);
4764 operands
.emplace_back(genElementalArgument(*expr
));
4766 // Store scalar value in a temp to fulfill VALUE attribute.
4767 mlir::Value val
= fir::getBase(asScalar(*expr
));
4769 builder
.createTemporary(loc
, val
.getType(),
4770 llvm::ArrayRef
<mlir::NamedAttribute
>{
4771 fir::getAdaptToByRefAttr(builder
)});
4772 builder
.create
<fir::StoreOp
>(loc
, val
, temp
);
4773 operands
.emplace_back(
4774 [=](IterSpace iters
) -> ExtValue
{ return temp
; });
4777 case PassBy::BaseAddress
: {
4778 if (isArray(*expr
)) {
4779 PushSemantics(ConstituentSemantics::RefOpaque
);
4780 operands
.emplace_back(genElementalArgument(*expr
));
4782 ExtValue exv
= asScalarRef(*expr
);
4783 operands
.emplace_back([=](IterSpace iters
) { return exv
; });
4786 case PassBy::CharBoxValueAttribute
: {
4787 if (isArray(*expr
)) {
4788 PushSemantics(ConstituentSemantics::DataValue
);
4789 auto lambda
= genElementalArgument(*expr
);
4790 operands
.emplace_back([=](IterSpace iters
) {
4791 return fir::factory::CharacterExprHelper
{builder
, loc
}
4792 .createTempFrom(lambda(iters
));
4795 fir::factory::CharacterExprHelper
helper(builder
, loc
);
4796 fir::CharBoxValue argVal
= helper
.createTempFrom(asScalarRef(*expr
));
4797 operands
.emplace_back(
4798 [=](IterSpace iters
) -> ExtValue
{ return argVal
; });
4801 case PassBy::BoxChar
: {
4802 PushSemantics(ConstituentSemantics::RefOpaque
);
4803 operands
.emplace_back(genElementalArgument(*expr
));
4805 case PassBy::AddressAndLength
:
4806 // PassBy::AddressAndLength is only used for character results. Results
4807 // are not handled here.
4808 fir::emitFatalError(
4809 loc
, "unexpected PassBy::AddressAndLength in elemental call");
4811 case PassBy::CharProcTuple
: {
4812 ExtValue argRef
= asScalarRef(*expr
);
4813 mlir::Value tuple
= createBoxProcCharTuple(
4814 converter
, argTy
, fir::getBase(argRef
), fir::getLen(argRef
));
4815 operands
.emplace_back(
4816 [=](IterSpace iters
) -> ExtValue
{ return tuple
; });
4819 case PassBy::MutableBox
:
4820 // Handle polymorphic passed object.
4821 if (fir::isPolymorphicType(argTy
)) {
4822 if (isArray(*expr
)) {
4823 ExtValue exv
= asScalarRef(*expr
);
4824 mlir::Value sourceBox
;
4825 if (fir::isPolymorphicType(fir::getBase(exv
).getType()))
4826 sourceBox
= fir::getBase(exv
);
4828 fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(exv
).getType());
4829 mlir::Type innerTy
= fir::unwrapSequenceType(baseTy
);
4830 operands
.emplace_back([=](IterSpace iters
) -> ExtValue
{
4831 mlir::Value coord
= builder
.create
<fir::CoordinateOp
>(
4832 loc
, fir::ReferenceType::get(innerTy
), fir::getBase(exv
),
4835 mlir::ValueRange emptyRange
;
4836 return builder
.create
<fir::EmboxOp
>(
4837 loc
, fir::ClassType::get(innerTy
), coord
, empty
, empty
,
4838 emptyRange
, sourceBox
);
4841 ExtValue exv
= asScalarRef(*expr
);
4842 if (mlir::isa
<fir::BaseBoxType
>(fir::getBase(exv
).getType())) {
4843 operands
.emplace_back(
4844 [=](IterSpace iters
) -> ExtValue
{ return exv
; });
4847 fir::dyn_cast_ptrOrBoxEleTy(fir::getBase(exv
).getType());
4848 operands
.emplace_back([=](IterSpace iters
) -> ExtValue
{
4850 mlir::ValueRange emptyRange
;
4851 return builder
.create
<fir::EmboxOp
>(
4852 loc
, fir::ClassType::get(baseTy
), fir::getBase(exv
), empty
,
4859 // See C15100 and C15101
4860 fir::emitFatalError(loc
, "cannot be POINTER, ALLOCATABLE");
4861 case PassBy::BoxProcRef
:
4862 // Procedure pointer: no action here.
4867 if (caller
.getIfIndirectCall())
4868 fir::emitFatalError(loc
, "cannot be indirect call");
4870 // The lambda is mutable so that `caller` copy can be modified inside it.
4872 caller
= std::move(caller
)](IterSpace iters
) mutable -> ExtValue
{
4873 for (const auto &[cc
, argIface
] :
4874 llvm::zip(operands
, caller
.getPassedArguments())) {
4875 auto exv
= cc(iters
);
4876 auto arg
= exv
.match(
4877 [&](const fir::CharBoxValue
&cb
) -> mlir::Value
{
4878 return fir::factory::CharacterExprHelper
{builder
, loc
}
4881 [&](const auto &) { return fir::getBase(exv
); });
4882 caller
.placeInput(argIface
, arg
);
4884 return Fortran::lower::genCallOpAndResult(loc
, converter
, symMap
,
4885 getElementCtx(), caller
,
4886 callSiteType
, retTy
)
4891 /// Lower TRANSPOSE call without using runtime TRANSPOSE.
4892 /// Return continuation for generating the TRANSPOSE result.
4893 /// The continuation just swaps the iteration space before
4894 /// invoking continuation for the argument.
4895 CC
genTransposeProcRef(const Fortran::evaluate::ProcedureRef
&procRef
) {
4896 assert(procRef
.arguments().size() == 1 &&
4897 "TRANSPOSE must have one argument.");
4898 const auto *argExpr
= procRef
.arguments()[0].value().UnwrapExpr();
4901 llvm::SmallVector
<mlir::Value
> savedDestShape
= destShape
;
4902 assert((destShape
.empty() || destShape
.size() == 2) &&
4903 "TRANSPOSE destination must have rank 2.");
4905 if (!savedDestShape
.empty())
4906 std::swap(destShape
[0], destShape
[1]);
4908 PushSemantics(ConstituentSemantics::RefTransparent
);
4909 llvm::SmallVector
<CC
> operands
{genElementalArgument(*argExpr
)};
4911 if (!savedDestShape
.empty()) {
4912 // If destShape was set before transpose lowering, then
4913 // restore it. Otherwise, ...
4914 destShape
= savedDestShape
;
4915 } else if (!destShape
.empty()) {
4916 // ... if destShape has been set from the argument lowering,
4918 assert(destShape
.size() == 2 &&
4919 "TRANSPOSE destination must have rank 2.");
4920 std::swap(destShape
[0], destShape
[1]);
4923 return [=](IterSpace iters
) {
4924 assert(iters
.iterVec().size() == 2 &&
4925 "TRANSPOSE expects 2D iterations space.");
4926 IterationSpace
newIters(iters
, {iters
.iterValue(1), iters
.iterValue(0)});
4927 return operands
.front()(newIters
);
4931 /// Generate a procedure reference. This code is shared for both functions and
4932 /// subroutines, the difference being reflected by `retTy`.
4933 CC
genProcRef(const Fortran::evaluate::ProcedureRef
&procRef
,
4934 std::optional
<mlir::Type
> retTy
) {
4935 mlir::Location loc
= getLoc();
4936 setLoweredProcRef(&procRef
);
4938 if (isOptimizableTranspose(procRef
, converter
))
4939 return genTransposeProcRef(procRef
);
4941 if (procRef
.IsElemental()) {
4942 if (const Fortran::evaluate::SpecificIntrinsic
*intrin
=
4943 procRef
.proc().GetSpecificIntrinsic()) {
4944 // All elemental intrinsic functions are pure and cannot modify their
4945 // arguments. The only elemental subroutine, MVBITS has an Intent(inout)
4946 // argument. So for this last one, loops must be in element order
4947 // according to 15.8.3 p1.
4949 setUnordered(false);
4951 // Elemental intrinsic call.
4952 // The intrinsic procedure is called once per element of the array.
4953 return genElementalIntrinsicProcRef(procRef
, retTy
, *intrin
);
4955 if (Fortran::lower::isIntrinsicModuleProcRef(procRef
))
4956 return genElementalIntrinsicProcRef(procRef
, retTy
);
4957 if (ScalarExprLowering::isStatementFunctionCall(procRef
))
4958 fir::emitFatalError(loc
, "statement function cannot be elemental");
4961 // The procedure is called once per element of the array argument(s).
4962 return genElementalUserDefinedProcRef(procRef
, retTy
);
4965 // Transformational call.
4966 // The procedure is called once and produces a value of rank > 0.
4967 if (const Fortran::evaluate::SpecificIntrinsic
*intrinsic
=
4968 procRef
.proc().GetSpecificIntrinsic()) {
4969 if (explicitSpaceIsActive() && procRef
.Rank() == 0) {
4970 // Elide any implicit loop iters.
4971 return [=, &procRef
](IterSpace
) {
4972 return ScalarExprLowering
{loc
, converter
, symMap
, stmtCtx
}
4973 .genIntrinsicRef(procRef
, retTy
, *intrinsic
);
4977 ScalarExprLowering
{loc
, converter
, symMap
, stmtCtx
}.genIntrinsicRef(
4978 procRef
, retTy
, *intrinsic
));
4981 const bool isPtrAssn
= isPointerAssignment();
4982 if (explicitSpaceIsActive() && procRef
.Rank() == 0) {
4983 // Elide any implicit loop iters.
4984 return [=, &procRef
](IterSpace
) {
4985 ScalarExprLowering
sel(loc
, converter
, symMap
, stmtCtx
);
4986 return isPtrAssn
? sel
.genRawProcedureRef(procRef
, retTy
)
4987 : sel
.genProcedureRef(procRef
, retTy
);
4990 // In the default case, the call can be hoisted out of the loop nest. Apply
4991 // the iterations to the result, which may be an array value.
4992 ScalarExprLowering
sel(loc
, converter
, symMap
, stmtCtx
);
4993 auto exv
= isPtrAssn
? sel
.genRawProcedureRef(procRef
, retTy
)
4994 : sel
.genProcedureRef(procRef
, retTy
);
4998 CC
genarr(const Fortran::evaluate::ProcedureDesignator
&) {
4999 TODO(getLoc(), "procedure designator");
5001 CC
genarr(const Fortran::evaluate::ProcedureRef
&x
) {
5002 if (x
.hasAlternateReturns())
5003 fir::emitFatalError(getLoc(),
5004 "array procedure reference with alt-return");
5005 return genProcRef(x
, std::nullopt
);
5007 template <typename A
>
5008 CC
genScalarAndForwardValue(const A
&x
) {
5009 ExtValue result
= asScalar(x
);
5010 return [=](IterSpace
) { return result
; };
5012 template <typename A
, typename
= std::enable_if_t
<Fortran::common::HasMember
<
5013 A
, Fortran::evaluate::TypelessExpression
>>>
5014 CC
genarr(const A
&x
) {
5015 return genScalarAndForwardValue(x
);
5018 template <typename A
>
5019 CC
genarr(const Fortran::evaluate::Expr
<A
> &x
) {
5020 LLVM_DEBUG(Fortran::lower::DumpEvaluateExpr::dump(llvm::dbgs(), x
));
5021 if (isArray(x
) || (explicitSpaceIsActive() && isLeftHandSide()) ||
5022 isElementalProcWithArrayArgs(x
))
5023 return Fortran::common::visit([&](const auto &e
) { return genarr(e
); },
5025 if (explicitSpaceIsActive()) {
5026 assert(!isArray(x
) && !isLeftHandSide());
5028 Fortran::common::visit([&](const auto &e
) { return genarr(e
); }, x
.u
);
5029 auto result
= cc(IterationSpace
{});
5030 return [=](IterSpace
) { return result
; };
5032 return genScalarAndForwardValue(x
);
5035 // Converting a value of memory bound type requires creating a temp and
5036 // copying the value.
5037 static ExtValue
convertAdjustedType(fir::FirOpBuilder
&builder
,
5038 mlir::Location loc
, mlir::Type toType
,
5039 const ExtValue
&exv
) {
5041 [&](const fir::CharBoxValue
&cb
) -> ExtValue
{
5042 mlir::Value len
= cb
.getLen();
5044 builder
.create
<fir::AllocaOp
>(loc
, toType
, mlir::ValueRange
{len
});
5045 fir::CharBoxValue
result(mem
, len
);
5046 fir::factory::CharacterExprHelper
{builder
, loc
}.createAssign(
5047 ExtValue
{result
}, exv
);
5050 [&](const auto &) -> ExtValue
{
5051 fir::emitFatalError(loc
, "convert on adjusted extended value");
5054 template <Fortran::common::TypeCategory TC1
, int KIND
,
5055 Fortran::common::TypeCategory TC2
>
5056 CC
genarr(const Fortran::evaluate::Convert
<Fortran::evaluate::Type
<TC1
, KIND
>,
5058 mlir::Location loc
= getLoc();
5059 auto lambda
= genarr(x
.left());
5060 mlir::Type ty
= converter
.genType(TC1
, KIND
);
5061 return [=](IterSpace iters
) -> ExtValue
{
5062 auto exv
= lambda(iters
);
5063 mlir::Value val
= fir::getBase(exv
);
5064 auto valTy
= val
.getType();
5065 if (elementTypeWasAdjusted(valTy
) &&
5066 !(fir::isa_ref_type(valTy
) && fir::isa_integer(ty
)))
5067 return convertAdjustedType(builder
, loc
, ty
, exv
);
5068 return builder
.createConvert(loc
, ty
, val
);
5073 CC
genarr(const Fortran::evaluate::ComplexComponent
<KIND
> &x
) {
5074 mlir::Location loc
= getLoc();
5075 auto lambda
= genarr(x
.left());
5076 bool isImagPart
= x
.isImaginaryPart
;
5077 return [=](IterSpace iters
) -> ExtValue
{
5078 mlir::Value lhs
= fir::getBase(lambda(iters
));
5079 return fir::factory::Complex
{builder
, loc
}.extractComplexPart(lhs
,
5084 template <typename T
>
5085 CC
genarr(const Fortran::evaluate::Parentheses
<T
> &x
) {
5086 mlir::Location loc
= getLoc();
5087 if (isReferentiallyOpaque()) {
5088 // Context is a call argument in, for example, an elemental procedure
5089 // call. TODO: all array arguments should use array_load, array_access,
5090 // array_amend, and INTENT(OUT), INTENT(INOUT) arguments should have
5091 // array_merge_store ops.
5092 TODO(loc
, "parentheses on argument in elemental call");
5094 auto f
= genarr(x
.left());
5095 return [=](IterSpace iters
) -> ExtValue
{
5096 auto val
= f(iters
);
5097 mlir::Value base
= fir::getBase(val
);
5099 builder
.create
<fir::NoReassocOp
>(loc
, base
.getType(), base
);
5100 return fir::substBase(val
, newBase
);
5104 CC
genarr(const Fortran::evaluate::Negate
<Fortran::evaluate::Type
<
5105 Fortran::common::TypeCategory::Integer
, KIND
>> &x
) {
5106 mlir::Location loc
= getLoc();
5107 auto f
= genarr(x
.left());
5108 return [=](IterSpace iters
) -> ExtValue
{
5109 mlir::Value val
= fir::getBase(f(iters
));
5111 converter
.genType(Fortran::common::TypeCategory::Integer
, KIND
);
5112 mlir::Value zero
= builder
.createIntegerConstant(loc
, ty
, 0);
5113 return builder
.create
<mlir::arith::SubIOp
>(loc
, zero
, val
);
5117 CC
genarr(const Fortran::evaluate::Negate
<Fortran::evaluate::Type
<
5118 Fortran::common::TypeCategory::Real
, KIND
>> &x
) {
5119 mlir::Location loc
= getLoc();
5120 auto f
= genarr(x
.left());
5121 return [=](IterSpace iters
) -> ExtValue
{
5122 return builder
.create
<mlir::arith::NegFOp
>(loc
, fir::getBase(f(iters
)));
5126 CC
genarr(const Fortran::evaluate::Negate
<Fortran::evaluate::Type
<
5127 Fortran::common::TypeCategory::Complex
, KIND
>> &x
) {
5128 mlir::Location loc
= getLoc();
5129 auto f
= genarr(x
.left());
5130 return [=](IterSpace iters
) -> ExtValue
{
5131 return builder
.create
<fir::NegcOp
>(loc
, fir::getBase(f(iters
)));
5135 //===--------------------------------------------------------------------===//
5136 // Binary elemental ops
5137 //===--------------------------------------------------------------------===//
5139 template <typename OP
, typename A
>
5140 CC
createBinaryOp(const A
&evEx
) {
5141 mlir::Location loc
= getLoc();
5142 auto lambda
= genarr(evEx
.left());
5143 auto rf
= genarr(evEx
.right());
5144 return [=](IterSpace iters
) -> ExtValue
{
5145 mlir::Value left
= fir::getBase(lambda(iters
));
5146 mlir::Value right
= fir::getBase(rf(iters
));
5147 return builder
.create
<OP
>(loc
, left
, right
);
5152 #define GENBIN(GenBinEvOp, GenBinTyCat, GenBinFirOp) \
5153 template <int KIND> \
5154 CC genarr(const Fortran::evaluate::GenBinEvOp<Fortran::evaluate::Type< \
5155 Fortran::common::TypeCategory::GenBinTyCat, KIND>> &x) { \
5156 return createBinaryOp<GenBinFirOp>(x); \
5159 GENBIN(Add
, Integer
, mlir::arith::AddIOp
)
5160 GENBIN(Add
, Real
, mlir::arith::AddFOp
)
5161 GENBIN(Add
, Complex
, fir::AddcOp
)
5162 GENBIN(Subtract
, Integer
, mlir::arith::SubIOp
)
5163 GENBIN(Subtract
, Real
, mlir::arith::SubFOp
)
5164 GENBIN(Subtract
, Complex
, fir::SubcOp
)
5165 GENBIN(Multiply
, Integer
, mlir::arith::MulIOp
)
5166 GENBIN(Multiply
, Real
, mlir::arith::MulFOp
)
5167 GENBIN(Multiply
, Complex
, fir::MulcOp
)
5168 GENBIN(Divide
, Integer
, mlir::arith::DivSIOp
)
5169 GENBIN(Divide
, Real
, mlir::arith::DivFOp
)
5172 CC
genarr(const Fortran::evaluate::Divide
<Fortran::evaluate::Type
<
5173 Fortran::common::TypeCategory::Complex
, KIND
>> &x
) {
5174 mlir::Location loc
= getLoc();
5176 converter
.genType(Fortran::common::TypeCategory::Complex
, KIND
);
5177 auto lf
= genarr(x
.left());
5178 auto rf
= genarr(x
.right());
5179 return [=](IterSpace iters
) -> ExtValue
{
5180 mlir::Value lhs
= fir::getBase(lf(iters
));
5181 mlir::Value rhs
= fir::getBase(rf(iters
));
5182 return fir::genDivC(builder
, loc
, ty
, lhs
, rhs
);
5186 template <Fortran::common::TypeCategory TC
, int KIND
>
5188 const Fortran::evaluate::Power
<Fortran::evaluate::Type
<TC
, KIND
>> &x
) {
5189 mlir::Location loc
= getLoc();
5190 mlir::Type ty
= converter
.genType(TC
, KIND
);
5191 auto lf
= genarr(x
.left());
5192 auto rf
= genarr(x
.right());
5193 return [=](IterSpace iters
) -> ExtValue
{
5194 mlir::Value lhs
= fir::getBase(lf(iters
));
5195 mlir::Value rhs
= fir::getBase(rf(iters
));
5196 return fir::genPow(builder
, loc
, ty
, lhs
, rhs
);
5199 template <Fortran::common::TypeCategory TC
, int KIND
>
5201 const Fortran::evaluate::Extremum
<Fortran::evaluate::Type
<TC
, KIND
>> &x
) {
5202 mlir::Location loc
= getLoc();
5203 auto lf
= genarr(x
.left());
5204 auto rf
= genarr(x
.right());
5205 switch (x
.ordering
) {
5206 case Fortran::evaluate::Ordering::Greater
:
5207 return [=](IterSpace iters
) -> ExtValue
{
5208 mlir::Value lhs
= fir::getBase(lf(iters
));
5209 mlir::Value rhs
= fir::getBase(rf(iters
));
5210 return fir::genMax(builder
, loc
, llvm::ArrayRef
<mlir::Value
>{lhs
, rhs
});
5212 case Fortran::evaluate::Ordering::Less
:
5213 return [=](IterSpace iters
) -> ExtValue
{
5214 mlir::Value lhs
= fir::getBase(lf(iters
));
5215 mlir::Value rhs
= fir::getBase(rf(iters
));
5216 return fir::genMin(builder
, loc
, llvm::ArrayRef
<mlir::Value
>{lhs
, rhs
});
5218 case Fortran::evaluate::Ordering::Equal
:
5219 llvm_unreachable("Equal is not a valid ordering in this context");
5221 llvm_unreachable("unknown ordering");
5223 template <Fortran::common::TypeCategory TC
, int KIND
>
5225 const Fortran::evaluate::RealToIntPower
<Fortran::evaluate::Type
<TC
, KIND
>>
5227 mlir::Location loc
= getLoc();
5228 auto ty
= converter
.genType(TC
, KIND
);
5229 auto lf
= genarr(x
.left());
5230 auto rf
= genarr(x
.right());
5231 return [=](IterSpace iters
) {
5232 mlir::Value lhs
= fir::getBase(lf(iters
));
5233 mlir::Value rhs
= fir::getBase(rf(iters
));
5234 return fir::genPow(builder
, loc
, ty
, lhs
, rhs
);
5238 CC
genarr(const Fortran::evaluate::ComplexConstructor
<KIND
> &x
) {
5239 mlir::Location loc
= getLoc();
5240 auto lf
= genarr(x
.left());
5241 auto rf
= genarr(x
.right());
5242 return [=](IterSpace iters
) -> ExtValue
{
5243 mlir::Value lhs
= fir::getBase(lf(iters
));
5244 mlir::Value rhs
= fir::getBase(rf(iters
));
5245 return fir::factory::Complex
{builder
, loc
}.createComplex(KIND
, lhs
, rhs
);
5249 /// Fortran's concatenation operator `//`.
5251 CC
genarr(const Fortran::evaluate::Concat
<KIND
> &x
) {
5252 mlir::Location loc
= getLoc();
5253 auto lf
= genarr(x
.left());
5254 auto rf
= genarr(x
.right());
5255 return [=](IterSpace iters
) -> ExtValue
{
5256 auto lhs
= lf(iters
);
5257 auto rhs
= rf(iters
);
5258 const fir::CharBoxValue
*lchr
= lhs
.getCharBox();
5259 const fir::CharBoxValue
*rchr
= rhs
.getCharBox();
5261 return fir::factory::CharacterExprHelper
{builder
, loc
}
5262 .createConcatenate(*lchr
, *rchr
);
5264 TODO(loc
, "concat on unexpected extended values");
5265 return mlir::Value
{};
5270 CC
genarr(const Fortran::evaluate::SetLength
<KIND
> &x
) {
5271 auto lf
= genarr(x
.left());
5272 mlir::Value rhs
= fir::getBase(asScalar(x
.right()));
5273 fir::CharBoxValue temp
=
5274 fir::factory::CharacterExprHelper(builder
, getLoc())
5275 .createCharacterTemp(
5276 fir::CharacterType::getUnknownLen(builder
.getContext(), KIND
),
5278 return [=](IterSpace iters
) -> ExtValue
{
5279 fir::factory::CharacterExprHelper(builder
, getLoc())
5280 .createAssign(temp
, lf(iters
));
5285 template <typename T
>
5286 CC
genarr(const Fortran::evaluate::Constant
<T
> &x
) {
5288 return genScalarAndForwardValue(x
);
5289 return genarr(Fortran::lower::convertConstant(
5290 converter
, getLoc(), x
,
5291 /*outlineBigConstantsInReadOnlyMemory=*/true));
5294 //===--------------------------------------------------------------------===//
5295 // A vector subscript expression may be wrapped with a cast to INTEGER*8.
5296 // Get rid of it here so the vector can be loaded. Add it back when
5297 // generating the elemental evaluation (inside the loop nest).
5299 static Fortran::lower::SomeExpr
5300 ignoreEvConvert(const Fortran::evaluate::Expr
<Fortran::evaluate::Type
<
5301 Fortran::common::TypeCategory::Integer
, 8>> &x
) {
5302 return Fortran::common::visit(
5303 [&](const auto &v
) { return ignoreEvConvert(v
); }, x
.u
);
5305 template <Fortran::common::TypeCategory FROM
>
5306 static Fortran::lower::SomeExpr
ignoreEvConvert(
5307 const Fortran::evaluate::Convert
<
5308 Fortran::evaluate::Type
<Fortran::common::TypeCategory::Integer
, 8>,
5310 return toEvExpr(x
.left());
5312 template <typename A
>
5313 static Fortran::lower::SomeExpr
ignoreEvConvert(const A
&x
) {
5317 //===--------------------------------------------------------------------===//
5318 // Get the `Se::Symbol*` for the subscript expression, `x`. This symbol can
5319 // be used to determine the lbound, ubound of the vector.
5321 template <typename A
>
5322 static const Fortran::semantics::Symbol
*
5323 extractSubscriptSymbol(const Fortran::evaluate::Expr
<A
> &x
) {
5324 return Fortran::common::visit(
5325 [&](const auto &v
) { return extractSubscriptSymbol(v
); }, x
.u
);
5327 template <typename A
>
5328 static const Fortran::semantics::Symbol
*
5329 extractSubscriptSymbol(const Fortran::evaluate::Designator
<A
> &x
) {
5330 return Fortran::evaluate::UnwrapWholeSymbolDataRef(x
);
5332 template <typename A
>
5333 static const Fortran::semantics::Symbol
*extractSubscriptSymbol(const A
&x
) {
5337 //===--------------------------------------------------------------------===//
5339 /// Get the declared lower bound value of the array `x` in dimension `dim`.
5340 /// The argument `one` must be an ssa-value for the constant 1.
5341 mlir::Value
getLBound(const ExtValue
&x
, unsigned dim
, mlir::Value one
) {
5342 return fir::factory::readLowerBound(builder
, getLoc(), x
, dim
, one
);
5345 /// Get the declared upper bound value of the array `x` in dimension `dim`.
5346 /// The argument `one` must be an ssa-value for the constant 1.
5347 mlir::Value
getUBound(const ExtValue
&x
, unsigned dim
, mlir::Value one
) {
5348 mlir::Location loc
= getLoc();
5349 mlir::Value lb
= getLBound(x
, dim
, one
);
5350 mlir::Value extent
= fir::factory::readExtent(builder
, loc
, x
, dim
);
5351 auto add
= builder
.create
<mlir::arith::AddIOp
>(loc
, lb
, extent
);
5352 return builder
.create
<mlir::arith::SubIOp
>(loc
, add
, one
);
5355 /// Return the extent of the boxed array `x` in dimesion `dim`.
5356 mlir::Value
getExtent(const ExtValue
&x
, unsigned dim
) {
5357 return fir::factory::readExtent(builder
, getLoc(), x
, dim
);
5360 template <typename A
>
5361 ExtValue
genArrayBase(const A
&base
) {
5362 ScalarExprLowering sel
{getLoc(), converter
, symMap
, stmtCtx
};
5363 return base
.IsSymbol() ? sel
.gen(getFirstSym(base
))
5364 : sel
.gen(base
.GetComponent());
5367 template <typename A
>
5368 bool hasEvArrayRef(const A
&x
) {
5369 struct HasEvArrayRefHelper
5370 : public Fortran::evaluate::AnyTraverse
<HasEvArrayRefHelper
> {
5371 HasEvArrayRefHelper()
5372 : Fortran::evaluate::AnyTraverse
<HasEvArrayRefHelper
>(*this) {}
5373 using Fortran::evaluate::AnyTraverse
<HasEvArrayRefHelper
>::operator();
5374 bool operator()(const Fortran::evaluate::ArrayRef
&) const {
5381 CC
genVectorSubscriptArrayFetch(const Fortran::lower::SomeExpr
&expr
,
5383 PushSemantics(ConstituentSemantics::RefTransparent
);
5384 auto saved
= Fortran::common::ScopedSet(explicitSpace
, nullptr);
5385 llvm::SmallVector
<mlir::Value
> savedDestShape
= destShape
;
5387 auto result
= genarr(expr
);
5388 if (destShape
.empty())
5389 TODO(getLoc(), "expected vector to have an extent");
5390 assert(destShape
.size() == 1 && "vector has rank > 1");
5391 if (destShape
[0] != savedDestShape
[dim
]) {
5392 // Not the same, so choose the smaller value.
5393 mlir::Location loc
= getLoc();
5394 auto cmp
= builder
.create
<mlir::arith::CmpIOp
>(
5395 loc
, mlir::arith::CmpIPredicate::sgt
, destShape
[0],
5396 savedDestShape
[dim
]);
5397 auto sel
= builder
.create
<mlir::arith::SelectOp
>(
5398 loc
, cmp
, savedDestShape
[dim
], destShape
[0]);
5399 savedDestShape
[dim
] = sel
;
5400 destShape
= savedDestShape
;
5405 /// Generate an access by vector subscript using the index in the iteration
5406 /// vector at `dim`.
5407 mlir::Value
genAccessByVector(mlir::Location loc
, CC genArrFetch
,
5408 IterSpace iters
, std::size_t dim
) {
5409 IterationSpace
vecIters(iters
,
5410 llvm::ArrayRef
<mlir::Value
>{iters
.iterValue(dim
)});
5411 fir::ExtendedValue fetch
= genArrFetch(vecIters
);
5412 mlir::IndexType idxTy
= builder
.getIndexType();
5413 return builder
.createConvert(loc
, idxTy
, fir::getBase(fetch
));
5416 /// When we have an array reference, the expressions specified in each
5417 /// dimension may be slice operations (e.g. `i:j:k`), vectors, or simple
5418 /// (loop-invarianet) scalar expressions. This returns the base entity, the
5419 /// resulting type, and a continuation to adjust the default iteration space.
5420 void genSliceIndices(ComponentPath
&cmptData
, const ExtValue
&arrayExv
,
5421 const Fortran::evaluate::ArrayRef
&x
, bool atBase
) {
5422 mlir::Location loc
= getLoc();
5423 mlir::IndexType idxTy
= builder
.getIndexType();
5424 mlir::Value one
= builder
.createIntegerConstant(loc
, idxTy
, 1);
5425 llvm::SmallVector
<mlir::Value
> &trips
= cmptData
.trips
;
5426 LLVM_DEBUG(llvm::dbgs() << "array: " << arrayExv
<< '\n');
5427 auto &pc
= cmptData
.pc
;
5428 const bool useTripsForSlice
= !explicitSpaceIsActive();
5429 const bool createDestShape
= destShape
.empty();
5430 bool useSlice
= false;
5431 std::size_t shapeIndex
= 0;
5432 for (auto sub
: llvm::enumerate(x
.subscript())) {
5433 const std::size_t subsIndex
= sub
.index();
5434 Fortran::common::visit(
5435 Fortran::common::visitors
{
5436 [&](const Fortran::evaluate::Triplet
&t
) {
5437 mlir::Value lowerBound
;
5438 if (auto optLo
= t
.lower())
5439 lowerBound
= fir::getBase(asScalarArray(*optLo
));
5441 lowerBound
= getLBound(arrayExv
, subsIndex
, one
);
5442 lowerBound
= builder
.createConvert(loc
, idxTy
, lowerBound
);
5443 mlir::Value stride
= fir::getBase(asScalarArray(t
.stride()));
5444 stride
= builder
.createConvert(loc
, idxTy
, stride
);
5445 if (useTripsForSlice
|| createDestShape
) {
5446 // Generate a slice operation for the triplet. The first and
5447 // second position of the triplet may be omitted, and the
5448 // declared lbound and/or ubound expression values,
5449 // respectively, should be used instead.
5450 trips
.push_back(lowerBound
);
5451 mlir::Value upperBound
;
5452 if (auto optUp
= t
.upper())
5453 upperBound
= fir::getBase(asScalarArray(*optUp
));
5455 upperBound
= getUBound(arrayExv
, subsIndex
, one
);
5456 upperBound
= builder
.createConvert(loc
, idxTy
, upperBound
);
5457 trips
.push_back(upperBound
);
5458 trips
.push_back(stride
);
5459 if (createDestShape
) {
5460 auto extent
= builder
.genExtentFromTriplet(
5461 loc
, lowerBound
, upperBound
, stride
, idxTy
);
5462 destShape
.push_back(extent
);
5466 if (!useTripsForSlice
) {
5467 auto currentPC
= pc
;
5468 pc
= [=](IterSpace iters
) {
5469 IterationSpace newIters
= currentPC(iters
);
5470 mlir::Value impliedIter
= newIters
.iterValue(subsIndex
);
5471 // FIXME: must use the lower bound of this component.
5472 auto arrLowerBound
=
5473 atBase
? getLBound(arrayExv
, subsIndex
, one
) : one
;
5474 auto initial
= builder
.create
<mlir::arith::SubIOp
>(
5475 loc
, lowerBound
, arrLowerBound
);
5476 auto prod
= builder
.create
<mlir::arith::MulIOp
>(
5477 loc
, impliedIter
, stride
);
5479 builder
.create
<mlir::arith::AddIOp
>(loc
, initial
, prod
);
5480 newIters
.setIndexValue(subsIndex
, result
);
5486 [&](const Fortran::evaluate::IndirectSubscriptIntegerExpr
&ie
) {
5487 const auto &e
= ie
.value(); // dereference
5489 // This is a vector subscript. Use the index values as read
5490 // from a vector to determine the temporary array value.
5491 // Note: 9.5.3.3.3(3) specifies undefined behavior for
5492 // multiple updates to any specific array element through a
5493 // vector subscript with replicated values.
5494 assert(!isBoxValue() &&
5495 "fir.box cannot be created with vector subscripts");
5496 // TODO: Avoid creating a new evaluate::Expr here
5497 auto arrExpr
= ignoreEvConvert(e
);
5498 if (createDestShape
) {
5499 destShape
.push_back(fir::factory::getExtentAtDimension(
5500 loc
, builder
, arrayExv
, subsIndex
));
5503 genVectorSubscriptArrayFetch(arrExpr
, shapeIndex
);
5504 auto currentPC
= pc
;
5505 pc
= [=](IterSpace iters
) {
5506 IterationSpace newIters
= currentPC(iters
);
5507 auto val
= genAccessByVector(loc
, genArrFetch
, newIters
,
5509 // Value read from vector subscript array and normalized
5510 // using the base array's lower bound value.
5511 mlir::Value lb
= fir::factory::readLowerBound(
5512 builder
, loc
, arrayExv
, subsIndex
, one
);
5513 auto origin
= builder
.create
<mlir::arith::SubIOp
>(
5514 loc
, idxTy
, val
, lb
);
5515 newIters
.setIndexValue(subsIndex
, origin
);
5518 if (useTripsForSlice
) {
5519 LLVM_ATTRIBUTE_UNUSED
auto vectorSubscriptShape
=
5520 getShape(arrayOperands
.back());
5521 auto undef
= builder
.create
<fir::UndefOp
>(loc
, idxTy
);
5522 trips
.push_back(undef
);
5523 trips
.push_back(undef
);
5524 trips
.push_back(undef
);
5528 // This is a regular scalar subscript.
5529 if (useTripsForSlice
) {
5530 // A regular scalar index, which does not yield an array
5531 // section. Use a degenerate slice operation
5532 // `(e:undef:undef)` in this dimension as a placeholder.
5533 // This does not necessarily change the rank of the original
5534 // array, so the iteration space must also be extended to
5535 // include this expression in this dimension to adjust to
5536 // the array's declared rank.
5537 mlir::Value v
= fir::getBase(asScalarArray(e
));
5539 auto undef
= builder
.create
<fir::UndefOp
>(loc
, idxTy
);
5540 trips
.push_back(undef
);
5541 trips
.push_back(undef
);
5542 auto currentPC
= pc
;
5543 // Cast `e` to index type.
5544 mlir::Value iv
= builder
.createConvert(loc
, idxTy
, v
);
5545 // Normalize `e` by subtracting the declared lbound.
5546 mlir::Value lb
= fir::factory::readLowerBound(
5547 builder
, loc
, arrayExv
, subsIndex
, one
);
5549 builder
.create
<mlir::arith::SubIOp
>(loc
, idxTy
, iv
, lb
);
5550 // Add lbound adjusted value of `e` to the iteration vector
5551 // (except when creating a box because the iteration vector
5554 pc
= [=](IterSpace iters
) {
5555 IterationSpace newIters
= currentPC(iters
);
5556 newIters
.insertIndexValue(subsIndex
, ivAdj
);
5560 auto currentPC
= pc
;
5561 mlir::Value newValue
= fir::getBase(asScalarArray(e
));
5562 mlir::Value result
=
5563 builder
.createConvert(loc
, idxTy
, newValue
);
5564 mlir::Value lb
= fir::factory::readLowerBound(
5565 builder
, loc
, arrayExv
, subsIndex
, one
);
5566 result
= builder
.create
<mlir::arith::SubIOp
>(loc
, idxTy
,
5568 pc
= [=](IterSpace iters
) {
5569 IterationSpace newIters
= currentPC(iters
);
5570 newIters
.insertIndexValue(subsIndex
, result
);
5582 static mlir::Type
unwrapBoxEleTy(mlir::Type ty
) {
5583 if (auto boxTy
= mlir::dyn_cast
<fir::BaseBoxType
>(ty
))
5584 return fir::unwrapRefType(boxTy
.getEleTy());
5588 llvm::SmallVector
<mlir::Value
> getShape(mlir::Type ty
) {
5589 llvm::SmallVector
<mlir::Value
> result
;
5590 ty
= unwrapBoxEleTy(ty
);
5591 mlir::Location loc
= getLoc();
5592 mlir::IndexType idxTy
= builder
.getIndexType();
5593 for (auto extent
: mlir::cast
<fir::SequenceType
>(ty
).getShape()) {
5594 auto v
= extent
== fir::SequenceType::getUnknownExtent()
5595 ? builder
.create
<fir::UndefOp
>(loc
, idxTy
).getResult()
5596 : builder
.createIntegerConstant(loc
, idxTy
, extent
);
5597 result
.push_back(v
);
5602 CC
genarr(const Fortran::semantics::SymbolRef
&sym
,
5603 ComponentPath
&components
) {
5604 return genarr(sym
.get(), components
);
5607 ExtValue
abstractArrayExtValue(mlir::Value val
, mlir::Value len
= {}) {
5608 return convertToArrayBoxValue(getLoc(), builder
, val
, len
);
5611 CC
genarr(const ExtValue
&extMemref
) {
5612 ComponentPath
dummy(/*isImplicit=*/true);
5613 return genarr(extMemref
, dummy
);
5616 // If the slice values are given then use them. Otherwise, generate triples
5617 // that cover the entire shape specified by \p shapeVal.
5618 inline llvm::SmallVector
<mlir::Value
>
5619 padSlice(llvm::ArrayRef
<mlir::Value
> triples
, mlir::Value shapeVal
) {
5620 llvm::SmallVector
<mlir::Value
> result
;
5621 mlir::Location loc
= getLoc();
5622 if (triples
.size()) {
5623 result
.assign(triples
.begin(), triples
.end());
5625 auto one
= builder
.createIntegerConstant(loc
, builder
.getIndexType(), 1);
5627 TODO(loc
, "shape must be recovered from box");
5628 } else if (auto shapeOp
= mlir::dyn_cast_or_null
<fir::ShapeOp
>(
5629 shapeVal
.getDefiningOp())) {
5630 for (auto ext
: shapeOp
.getExtents()) {
5631 result
.push_back(one
);
5632 result
.push_back(ext
);
5633 result
.push_back(one
);
5635 } else if (auto shapeShift
= mlir::dyn_cast_or_null
<fir::ShapeShiftOp
>(
5636 shapeVal
.getDefiningOp())) {
5637 for (auto [lb
, ext
] :
5638 llvm::zip(shapeShift
.getOrigins(), shapeShift
.getExtents())) {
5639 result
.push_back(lb
);
5640 result
.push_back(ext
);
5641 result
.push_back(one
);
5644 TODO(loc
, "shape must be recovered from box");
5650 /// Base case of generating an array reference,
5651 CC
genarr(const ExtValue
&extMemref
, ComponentPath
&components
,
5652 mlir::Value CrayPtr
= nullptr) {
5653 mlir::Location loc
= getLoc();
5654 mlir::Value memref
= fir::getBase(extMemref
);
5655 mlir::Type arrTy
= fir::dyn_cast_ptrOrBoxEleTy(memref
.getType());
5656 assert(mlir::isa
<fir::SequenceType
>(arrTy
) &&
5657 "memory ref must be an array");
5658 mlir::Value shape
= builder
.createShape(loc
, extMemref
);
5660 if (components
.isSlice()) {
5661 if (isBoxValue() && components
.substring
) {
5662 // Append the substring operator to emboxing Op as it will become an
5663 // interior adjustment (add offset, adjust LEN) to the CHARACTER value
5664 // being referenced in the descriptor.
5665 llvm::SmallVector
<mlir::Value
> substringBounds
;
5666 populateBounds(substringBounds
, components
.substring
);
5667 // Convert to (offset, size)
5668 mlir::Type iTy
= substringBounds
[0].getType();
5669 if (substringBounds
.size() != 2) {
5670 fir::CharacterType charTy
=
5671 fir::factory::CharacterExprHelper::getCharType(arrTy
);
5672 if (charTy
.hasConstantLen()) {
5673 mlir::IndexType idxTy
= builder
.getIndexType();
5674 fir::CharacterType::LenType charLen
= charTy
.getLen();
5675 mlir::Value lenValue
=
5676 builder
.createIntegerConstant(loc
, idxTy
, charLen
);
5677 substringBounds
.push_back(lenValue
);
5679 llvm::SmallVector
<mlir::Value
> typeparams
=
5680 fir::getTypeParams(extMemref
);
5681 substringBounds
.push_back(typeparams
.back());
5684 // Convert the lower bound to 0-based substring.
5686 builder
.createIntegerConstant(loc
, substringBounds
[0].getType(), 1);
5687 substringBounds
[0] =
5688 builder
.create
<mlir::arith::SubIOp
>(loc
, substringBounds
[0], one
);
5689 // Convert the upper bound to a length.
5690 mlir::Value cast
= builder
.createConvert(loc
, iTy
, substringBounds
[1]);
5691 mlir::Value zero
= builder
.createIntegerConstant(loc
, iTy
, 0);
5693 builder
.create
<mlir::arith::SubIOp
>(loc
, cast
, substringBounds
[0]);
5694 auto cmp
= builder
.create
<mlir::arith::CmpIOp
>(
5695 loc
, mlir::arith::CmpIPredicate::sgt
, size
, zero
);
5696 // size = MAX(upper - (lower - 1), 0)
5697 substringBounds
[1] =
5698 builder
.create
<mlir::arith::SelectOp
>(loc
, cmp
, size
, zero
);
5699 slice
= builder
.create
<fir::SliceOp
>(
5700 loc
, padSlice(components
.trips
, shape
), components
.suffixComponents
,
5703 slice
= builder
.createSlice(loc
, extMemref
, components
.trips
,
5704 components
.suffixComponents
);
5706 if (components
.hasComponents()) {
5707 auto seqTy
= mlir::cast
<fir::SequenceType
>(arrTy
);
5709 fir::applyPathToType(seqTy
.getEleTy(), components
.suffixComponents
);
5711 fir::emitFatalError(loc
, "slicing path is ill-formed");
5712 if (auto realTy
= mlir::dyn_cast
<fir::RealType
>(eleTy
))
5713 eleTy
= Fortran::lower::convertReal(realTy
.getContext(),
5716 // create the type of the projected array.
5717 arrTy
= fir::SequenceType::get(seqTy
.getShape(), eleTy
);
5718 LLVM_DEBUG(llvm::dbgs()
5719 << "type of array projection from component slicing: "
5720 << eleTy
<< ", " << arrTy
<< '\n');
5723 arrayOperands
.push_back(ArrayOperand
{memref
, shape
, slice
});
5724 if (destShape
.empty())
5725 destShape
= getShape(arrayOperands
.back());
5727 // Semantics are a reference to a boxed array.
5728 // This case just requires that an embox operation be created to box the
5729 // value. The value of the box is forwarded in the continuation.
5730 mlir::Type reduceTy
= reduceRank(arrTy
, slice
);
5731 mlir::Type boxTy
= fir::BoxType::get(reduceTy
);
5732 if (mlir::isa
<fir::ClassType
>(memref
.getType()) &&
5733 !components
.hasComponents())
5734 boxTy
= fir::ClassType::get(reduceTy
);
5735 if (components
.substring
) {
5736 // Adjust char length to substring size.
5737 fir::CharacterType charTy
=
5738 fir::factory::CharacterExprHelper::getCharType(reduceTy
);
5739 auto seqTy
= mlir::cast
<fir::SequenceType
>(reduceTy
);
5740 // TODO: Use a constant for fir.char LEN if we can compute it.
5741 boxTy
= fir::BoxType::get(
5742 fir::SequenceType::get(fir::CharacterType::getUnknownLen(
5743 builder
.getContext(), charTy
.getFKind()),
5744 seqTy
.getDimension()));
5746 llvm::SmallVector
<mlir::Value
> lbounds
;
5747 llvm::SmallVector
<mlir::Value
> nonDeferredLenParams
;
5750 fir::factory::getNonDefaultLowerBounds(builder
, loc
, extMemref
);
5751 nonDeferredLenParams
= fir::factory::getNonDeferredLenParams(extMemref
);
5754 mlir::isa
<fir::BaseBoxType
>(memref
.getType())
5755 ? builder
.create
<fir::ReboxOp
>(loc
, boxTy
, memref
, shape
, slice
)
5758 .create
<fir::EmboxOp
>(loc
, boxTy
, memref
, shape
, slice
,
5759 fir::getTypeParams(extMemref
))
5761 return [=](IterSpace
) -> ExtValue
{
5762 return fir::BoxValue(embox
, lbounds
, nonDeferredLenParams
);
5765 auto eleTy
= mlir::cast
<fir::SequenceType
>(arrTy
).getEleTy();
5766 if (isReferentiallyOpaque()) {
5767 // Semantics are an opaque reference to an array.
5768 // This case forwards a continuation that will generate the address
5769 // arithmetic to the array element. This does not have copy-in/copy-out
5770 // semantics. No attempt to copy the array value will be made during the
5771 // interpretation of the Fortran statement.
5772 mlir::Type refEleTy
= builder
.getRefType(eleTy
);
5773 return [=](IterSpace iters
) -> ExtValue
{
5774 // ArrayCoorOp does not expect zero based indices.
5775 llvm::SmallVector
<mlir::Value
> indices
= fir::factory::originateIndices(
5776 loc
, builder
, memref
.getType(), shape
, iters
.iterVec());
5777 mlir::Value coor
= builder
.create
<fir::ArrayCoorOp
>(
5778 loc
, refEleTy
, memref
, shape
, slice
, indices
,
5779 fir::getTypeParams(extMemref
));
5780 if (auto charTy
= mlir::dyn_cast
<fir::CharacterType
>(eleTy
)) {
5781 llvm::SmallVector
<mlir::Value
> substringBounds
;
5782 populateBounds(substringBounds
, components
.substring
);
5783 if (!substringBounds
.empty()) {
5784 mlir::Value dstLen
= fir::factory::genLenOfCharacter(
5785 builder
, loc
, mlir::cast
<fir::SequenceType
>(arrTy
), memref
,
5786 fir::getTypeParams(extMemref
), iters
.iterVec(),
5788 fir::CharBoxValue
dstChar(coor
, dstLen
);
5789 return fir::factory::CharacterExprHelper
{builder
, loc
}
5790 .createSubstring(dstChar
, substringBounds
);
5793 return fir::factory::arraySectionElementToExtendedValue(
5794 builder
, loc
, extMemref
, coor
, slice
);
5797 auto arrLoad
= builder
.create
<fir::ArrayLoadOp
>(
5798 loc
, arrTy
, memref
, shape
, slice
, fir::getTypeParams(extMemref
));
5801 mlir::Type ptrTy
= CrayPtr
.getType();
5802 mlir::Value cnvrt
= Fortran::lower::addCrayPointerInst(
5803 loc
, builder
, CrayPtr
, ptrTy
, memref
.getType());
5804 auto addr
= builder
.create
<fir::LoadOp
>(loc
, cnvrt
);
5805 arrLoad
= builder
.create
<fir::ArrayLoadOp
>(loc
, arrTy
, addr
, shape
, slice
,
5806 fir::getTypeParams(extMemref
));
5809 mlir::Value arrLd
= arrLoad
.getResult();
5810 if (isProjectedCopyInCopyOut()) {
5811 // Semantics are projected copy-in copy-out.
5812 // The backing store of the destination of an array expression may be
5813 // partially modified. These updates are recorded in FIR by forwarding a
5814 // continuation that generates an `array_update` Op. The destination is
5815 // always loaded at the beginning of the statement and merged at the
5817 destination
= arrLoad
;
5818 auto lambda
= ccStoreToDest
5820 : defaultStoreToDestination(components
.substring
);
5821 return [=](IterSpace iters
) -> ExtValue
{ return lambda(iters
); };
5823 if (isCustomCopyInCopyOut()) {
5824 // Create an array_modify to get the LHS element address and indicate
5825 // the assignment, the actual assignment must be implemented in
5827 destination
= arrLoad
;
5828 return [=](IterSpace iters
) -> ExtValue
{
5829 mlir::Value innerArg
= iters
.innerArgument();
5830 mlir::Type resTy
= innerArg
.getType();
5831 mlir::Type eleTy
= fir::applyPathToType(resTy
, iters
.iterVec());
5832 mlir::Type refEleTy
=
5833 fir::isa_ref_type(eleTy
) ? eleTy
: builder
.getRefType(eleTy
);
5834 auto arrModify
= builder
.create
<fir::ArrayModifyOp
>(
5835 loc
, mlir::TypeRange
{refEleTy
, resTy
}, innerArg
, iters
.iterVec(),
5836 destination
.getTypeparams());
5837 return abstractArrayExtValue(arrModify
.getResult(1));
5840 if (isCopyInCopyOut()) {
5841 // Semantics are copy-in copy-out.
5842 // The continuation simply forwards the result of the `array_load` Op,
5843 // which is the value of the array as it was when loaded. All data
5844 // references with rank > 0 in an array expression typically have
5845 // copy-in copy-out semantics.
5846 return [=](IterSpace
) -> ExtValue
{ return arrLd
; };
5848 llvm::SmallVector
<mlir::Value
> arrLdTypeParams
=
5849 fir::factory::getTypeParams(loc
, builder
, arrLoad
);
5850 if (isValueAttribute()) {
5851 // Semantics are value attribute.
5852 // Here the continuation will `array_fetch` a value from an array and
5853 // then store that value in a temporary. One can thus imitate pass by
5854 // value even when the call is pass by reference.
5855 return [=](IterSpace iters
) -> ExtValue
{
5857 mlir::Type eleTy
= fir::applyPathToType(arrTy
, iters
.iterVec());
5858 if (isAdjustedArrayElementType(eleTy
)) {
5859 mlir::Type eleRefTy
= builder
.getRefType(eleTy
);
5860 base
= builder
.create
<fir::ArrayAccessOp
>(
5861 loc
, eleRefTy
, arrLd
, iters
.iterVec(), arrLdTypeParams
);
5863 base
= builder
.create
<fir::ArrayFetchOp
>(
5864 loc
, eleTy
, arrLd
, iters
.iterVec(), arrLdTypeParams
);
5867 builder
.createTemporary(loc
, base
.getType(),
5868 llvm::ArrayRef
<mlir::NamedAttribute
>{
5869 fir::getAdaptToByRefAttr(builder
)});
5870 builder
.create
<fir::StoreOp
>(loc
, base
, temp
);
5871 return fir::factory::arraySectionElementToExtendedValue(
5872 builder
, loc
, extMemref
, temp
, slice
);
5875 // In the default case, the array reference forwards an `array_fetch` or
5876 // `array_access` Op in the continuation.
5877 return [=](IterSpace iters
) -> ExtValue
{
5878 mlir::Type eleTy
= fir::applyPathToType(arrTy
, iters
.iterVec());
5879 if (isAdjustedArrayElementType(eleTy
)) {
5880 mlir::Type eleRefTy
= builder
.getRefType(eleTy
);
5881 mlir::Value arrayOp
= builder
.create
<fir::ArrayAccessOp
>(
5882 loc
, eleRefTy
, arrLd
, iters
.iterVec(), arrLdTypeParams
);
5883 if (auto charTy
= mlir::dyn_cast
<fir::CharacterType
>(eleTy
)) {
5884 llvm::SmallVector
<mlir::Value
> substringBounds
;
5885 populateBounds(substringBounds
, components
.substring
);
5886 if (!substringBounds
.empty()) {
5887 mlir::Value dstLen
= fir::factory::genLenOfCharacter(
5888 builder
, loc
, arrLoad
, iters
.iterVec(), substringBounds
);
5889 fir::CharBoxValue
dstChar(arrayOp
, dstLen
);
5890 return fir::factory::CharacterExprHelper
{builder
, loc
}
5891 .createSubstring(dstChar
, substringBounds
);
5894 return fir::factory::arraySectionElementToExtendedValue(
5895 builder
, loc
, extMemref
, arrayOp
, slice
);
5897 auto arrFetch
= builder
.create
<fir::ArrayFetchOp
>(
5898 loc
, eleTy
, arrLd
, iters
.iterVec(), arrLdTypeParams
);
5899 return fir::factory::arraySectionElementToExtendedValue(
5900 builder
, loc
, extMemref
, arrFetch
, slice
);
5904 std::tuple
<CC
, mlir::Value
, mlir::Type
>
5905 genOptionalArrayFetch(const Fortran::lower::SomeExpr
&expr
) {
5906 assert(expr
.Rank() > 0 && "expr must be an array");
5907 mlir::Location loc
= getLoc();
5908 ExtValue optionalArg
= asInquired(expr
);
5909 mlir::Value isPresent
= genActualIsPresentTest(builder
, loc
, optionalArg
);
5910 // Generate an array load and access to an array that may be an absent
5911 // optional or an unallocated optional.
5912 mlir::Value base
= getBase(optionalArg
);
5913 const bool hasOptionalAttr
=
5914 fir::valueHasFirAttribute(base
, fir::getOptionalAttrName());
5915 mlir::Type baseType
= fir::unwrapRefType(base
.getType());
5916 const bool isBox
= mlir::isa
<fir::BoxType
>(baseType
);
5917 const bool isAllocOrPtr
=
5918 Fortran::evaluate::IsAllocatableOrPointerObject(expr
);
5919 mlir::Type arrType
= fir::unwrapPassByRefType(baseType
);
5920 mlir::Type eleType
= fir::unwrapSequenceType(arrType
);
5921 ExtValue exv
= optionalArg
;
5922 if (hasOptionalAttr
&& isBox
&& !isAllocOrPtr
) {
5923 // Elemental argument cannot be allocatable or pointers (C15100).
5924 // Hence, per 15.5.2.12 3 (8) and (9), the provided Allocatable and
5925 // Pointer optional arrays cannot be absent. The only kind of entities
5926 // that can get here are optional assumed shape and polymorphic entities.
5927 exv
= absentBoxToUnallocatedBox(builder
, loc
, exv
, isPresent
);
5929 // All the properties can be read from any fir.box but the read values may
5930 // be undefined and should only be used inside a fir.if (canBeRead) region.
5931 if (const auto *mutableBox
= exv
.getBoxOf
<fir::MutableBoxValue
>())
5932 exv
= fir::factory::genMutableBoxRead(builder
, loc
, *mutableBox
);
5934 mlir::Value memref
= fir::getBase(exv
);
5935 mlir::Value shape
= builder
.createShape(loc
, exv
);
5936 mlir::Value noSlice
;
5937 auto arrLoad
= builder
.create
<fir::ArrayLoadOp
>(
5938 loc
, arrType
, memref
, shape
, noSlice
, fir::getTypeParams(exv
));
5939 mlir::Operation::operand_range arrLdTypeParams
= arrLoad
.getTypeparams();
5940 mlir::Value arrLd
= arrLoad
.getResult();
5941 // Mark the load to tell later passes it is unsafe to use this array_load
5942 // shape unconditionally.
5943 arrLoad
->setAttr(fir::getOptionalAttrName(), builder
.getUnitAttr());
5945 // Place the array as optional on the arrayOperands stack so that its
5946 // shape will only be used as a fallback to induce the implicit loop nest
5947 // (that is if there is no non optional array arguments).
5948 arrayOperands
.push_back(
5949 ArrayOperand
{memref
, shape
, noSlice
, /*mayBeAbsent=*/true});
5951 // By value semantics.
5952 auto cc
= [=](IterSpace iters
) -> ExtValue
{
5953 auto arrFetch
= builder
.create
<fir::ArrayFetchOp
>(
5954 loc
, eleType
, arrLd
, iters
.iterVec(), arrLdTypeParams
);
5955 return fir::factory::arraySectionElementToExtendedValue(
5956 builder
, loc
, exv
, arrFetch
, noSlice
);
5958 return {cc
, isPresent
, eleType
};
5961 /// Generate a continuation to pass \p expr to an OPTIONAL argument of an
5962 /// elemental procedure. This is meant to handle the cases where \p expr might
5963 /// be dynamically absent (i.e. when it is a POINTER, an ALLOCATABLE or an
5964 /// OPTIONAL variable). If p\ expr is guaranteed to be present genarr() can
5965 /// directly be called instead.
5966 CC
genarrForwardOptionalArgumentToCall(const Fortran::lower::SomeExpr
&expr
) {
5967 mlir::Location loc
= getLoc();
5968 // Only by-value numerical and logical so far.
5969 if (semant
!= ConstituentSemantics::RefTransparent
)
5970 TODO(loc
, "optional arguments in user defined elemental procedures");
5972 // Handle scalar argument case (the if-then-else is generated outside of the
5973 // implicit loop nest).
5974 if (expr
.Rank() == 0) {
5975 ExtValue optionalArg
= asInquired(expr
);
5976 mlir::Value isPresent
= genActualIsPresentTest(builder
, loc
, optionalArg
);
5977 mlir::Value elementValue
=
5978 fir::getBase(genOptionalValue(builder
, loc
, optionalArg
, isPresent
));
5979 return [=](IterSpace iters
) -> ExtValue
{ return elementValue
; };
5983 mlir::Value isPresent
;
5985 std::tie(cc
, isPresent
, eleType
) = genOptionalArrayFetch(expr
);
5986 return [=](IterSpace iters
) -> ExtValue
{
5987 mlir::Value elementValue
=
5989 .genIfOp(loc
, {eleType
}, isPresent
,
5990 /*withElseRegion=*/true)
5992 builder
.create
<fir::ResultOp
>(loc
, fir::getBase(cc(iters
)));
5996 fir::factory::createZeroValue(builder
, loc
, eleType
);
5997 builder
.create
<fir::ResultOp
>(loc
, zero
);
6000 return elementValue
;
6004 /// Reduce the rank of a array to be boxed based on the slice's operands.
6005 static mlir::Type
reduceRank(mlir::Type arrTy
, mlir::Value slice
) {
6007 auto slOp
= mlir::dyn_cast
<fir::SliceOp
>(slice
.getDefiningOp());
6008 assert(slOp
&& "expected slice op");
6009 auto seqTy
= mlir::dyn_cast
<fir::SequenceType
>(arrTy
);
6010 assert(seqTy
&& "expected array type");
6011 mlir::Operation::operand_range triples
= slOp
.getTriples();
6012 fir::SequenceType::Shape shape
;
6013 // reduce the rank for each invariant dimension
6014 for (unsigned i
= 1, end
= triples
.size(); i
< end
; i
+= 3) {
6015 if (auto extent
= fir::factory::getExtentFromTriplet(
6016 triples
[i
- 1], triples
[i
], triples
[i
+ 1]))
6017 shape
.push_back(*extent
);
6018 else if (!mlir::isa_and_nonnull
<fir::UndefOp
>(
6019 triples
[i
].getDefiningOp()))
6020 shape
.push_back(fir::SequenceType::getUnknownExtent());
6022 return fir::SequenceType::get(shape
, seqTy
.getEleTy());
6024 // not sliced, so no change in rank
6028 /// Example: <code>array%RE</code>
6029 CC
genarr(const Fortran::evaluate::ComplexPart
&x
,
6030 ComponentPath
&components
) {
6031 components
.reversePath
.push_back(&x
);
6032 return genarr(x
.complex(), components
);
6035 template <typename A
>
6036 CC
genSlicePath(const A
&x
, ComponentPath
&components
) {
6037 return genarr(x
, components
);
6040 CC
genarr(const Fortran::evaluate::StaticDataObject::Pointer
&,
6041 ComponentPath
&components
) {
6042 TODO(getLoc(), "substring of static object inside FORALL");
6045 /// Substrings (see 9.4.1)
6046 CC
genarr(const Fortran::evaluate::Substring
&x
, ComponentPath
&components
) {
6047 components
.substring
= &x
;
6048 return Fortran::common::visit(
6049 [&](const auto &v
) { return genarr(v
, components
); }, x
.parent());
6052 template <typename T
>
6053 CC
genarr(const Fortran::evaluate::FunctionRef
<T
> &funRef
) {
6054 // Note that it's possible that the function being called returns either an
6055 // array or a scalar. In the first case, use the element type of the array.
6057 funRef
, fir::unwrapSequenceType(converter
.genType(toEvExpr(funRef
))));
6060 //===--------------------------------------------------------------------===//
6061 // Array construction
6062 //===--------------------------------------------------------------------===//
6064 /// Target agnostic computation of the size of an element in the array.
6065 /// Returns the size in bytes with type `index` or a null Value if the element
6066 /// size is not constant.
6067 mlir::Value
computeElementSize(const ExtValue
&exv
, mlir::Type eleTy
,
6069 mlir::Location loc
= getLoc();
6070 mlir::IndexType idxTy
= builder
.getIndexType();
6071 mlir::Value multiplier
= builder
.createIntegerConstant(loc
, idxTy
, 1);
6072 if (fir::hasDynamicSize(eleTy
)) {
6073 if (auto charTy
= mlir::dyn_cast
<fir::CharacterType
>(eleTy
)) {
6074 // Array of char with dynamic LEN parameter. Downcast to an array
6075 // of singleton char, and scale by the len type parameter from
6078 [&](const fir::CharBoxValue
&cb
) { multiplier
= cb
.getLen(); },
6079 [&](const fir::CharArrayBoxValue
&cb
) { multiplier
= cb
.getLen(); },
6080 [&](const fir::BoxValue
&box
) {
6081 multiplier
= fir::factory::CharacterExprHelper(builder
, loc
)
6082 .readLengthFromBox(box
.getAddr());
6084 [&](const fir::MutableBoxValue
&box
) {
6085 multiplier
= fir::factory::CharacterExprHelper(builder
, loc
)
6086 .readLengthFromBox(box
.getAddr());
6089 fir::emitFatalError(loc
,
6090 "array constructor element has unknown size");
6092 fir::CharacterType newEleTy
= fir::CharacterType::getSingleton(
6093 eleTy
.getContext(), charTy
.getFKind());
6094 if (auto seqTy
= mlir::dyn_cast
<fir::SequenceType
>(resTy
)) {
6095 assert(eleTy
== seqTy
.getEleTy());
6096 resTy
= fir::SequenceType::get(seqTy
.getShape(), newEleTy
);
6100 TODO(loc
, "dynamic sized type");
6103 mlir::Type eleRefTy
= builder
.getRefType(eleTy
);
6104 mlir::Type resRefTy
= builder
.getRefType(resTy
);
6105 mlir::Value nullPtr
= builder
.createNullConstant(loc
, resRefTy
);
6106 auto offset
= builder
.create
<fir::CoordinateOp
>(
6107 loc
, eleRefTy
, nullPtr
, mlir::ValueRange
{multiplier
});
6108 return builder
.createConvert(loc
, idxTy
, offset
);
6111 /// Get the function signature of the LLVM memcpy intrinsic.
6112 mlir::FunctionType
memcpyType() {
6113 return fir::factory::getLlvmMemcpy(builder
).getFunctionType();
6116 /// Create a call to the LLVM memcpy intrinsic.
6117 void createCallMemcpy(llvm::ArrayRef
<mlir::Value
> args
) {
6118 mlir::Location loc
= getLoc();
6119 mlir::func::FuncOp memcpyFunc
= fir::factory::getLlvmMemcpy(builder
);
6120 mlir::SymbolRefAttr funcSymAttr
=
6121 builder
.getSymbolRefAttr(memcpyFunc
.getName());
6122 mlir::FunctionType funcTy
= memcpyFunc
.getFunctionType();
6123 builder
.create
<fir::CallOp
>(loc
, funcTy
.getResults(), funcSymAttr
, args
);
6126 // Construct code to check for a buffer overrun and realloc the buffer when
6127 // space is depleted. This is done between each item in the ac-value-list.
6128 mlir::Value
growBuffer(mlir::Value mem
, mlir::Value needed
,
6129 mlir::Value bufferSize
, mlir::Value buffSize
,
6130 mlir::Value eleSz
) {
6131 mlir::Location loc
= getLoc();
6132 mlir::func::FuncOp reallocFunc
= fir::factory::getRealloc(builder
);
6133 auto cond
= builder
.create
<mlir::arith::CmpIOp
>(
6134 loc
, mlir::arith::CmpIPredicate::sle
, bufferSize
, needed
);
6135 auto ifOp
= builder
.create
<fir::IfOp
>(loc
, mem
.getType(), cond
,
6136 /*withElseRegion=*/true);
6137 auto insPt
= builder
.saveInsertionPoint();
6138 builder
.setInsertionPointToStart(&ifOp
.getThenRegion().front());
6139 // Not enough space, resize the buffer.
6140 mlir::IndexType idxTy
= builder
.getIndexType();
6141 mlir::Value two
= builder
.createIntegerConstant(loc
, idxTy
, 2);
6142 auto newSz
= builder
.create
<mlir::arith::MulIOp
>(loc
, needed
, two
);
6143 builder
.create
<fir::StoreOp
>(loc
, newSz
, buffSize
);
6144 mlir::Value byteSz
= builder
.create
<mlir::arith::MulIOp
>(loc
, newSz
, eleSz
);
6145 mlir::SymbolRefAttr funcSymAttr
=
6146 builder
.getSymbolRefAttr(reallocFunc
.getName());
6147 mlir::FunctionType funcTy
= reallocFunc
.getFunctionType();
6148 auto newMem
= builder
.create
<fir::CallOp
>(
6149 loc
, funcTy
.getResults(), funcSymAttr
,
6150 llvm::ArrayRef
<mlir::Value
>{
6151 builder
.createConvert(loc
, funcTy
.getInputs()[0], mem
),
6152 builder
.createConvert(loc
, funcTy
.getInputs()[1], byteSz
)});
6153 mlir::Value castNewMem
=
6154 builder
.createConvert(loc
, mem
.getType(), newMem
.getResult(0));
6155 builder
.create
<fir::ResultOp
>(loc
, castNewMem
);
6156 builder
.setInsertionPointToStart(&ifOp
.getElseRegion().front());
6157 // Otherwise, just forward the buffer.
6158 builder
.create
<fir::ResultOp
>(loc
, mem
);
6159 builder
.restoreInsertionPoint(insPt
);
6160 return ifOp
.getResult(0);
6163 /// Copy the next value (or vector of values) into the array being
6165 mlir::Value
copyNextArrayCtorSection(const ExtValue
&exv
, mlir::Value buffPos
,
6166 mlir::Value buffSize
, mlir::Value mem
,
6167 mlir::Value eleSz
, mlir::Type eleTy
,
6168 mlir::Type eleRefTy
, mlir::Type resTy
) {
6169 mlir::Location loc
= getLoc();
6170 auto off
= builder
.create
<fir::LoadOp
>(loc
, buffPos
);
6171 auto limit
= builder
.create
<fir::LoadOp
>(loc
, buffSize
);
6172 mlir::IndexType idxTy
= builder
.getIndexType();
6173 mlir::Value one
= builder
.createIntegerConstant(loc
, idxTy
, 1);
6175 if (fir::isRecordWithAllocatableMember(eleTy
))
6176 TODO(loc
, "deep copy on allocatable members");
6179 // Compute the element size at runtime.
6180 assert(fir::hasDynamicSize(eleTy
));
6181 if (auto charTy
= mlir::dyn_cast
<fir::CharacterType
>(eleTy
)) {
6183 builder
.getKindMap().getCharacterBitsize(charTy
.getFKind()) / 8;
6185 builder
.createIntegerConstant(loc
, idxTy
, charBytes
);
6186 mlir::Value length
= fir::getLen(exv
);
6188 fir::emitFatalError(loc
, "result is not boxed character");
6189 eleSz
= builder
.create
<mlir::arith::MulIOp
>(loc
, bytes
, length
);
6191 TODO(loc
, "PDT size");
6192 // Will call the PDT's size function with the type parameters.
6196 // Compute the coordinate using `fir.coordinate_of`, or, if the type has
6197 // dynamic size, generating the pointer arithmetic.
6198 auto computeCoordinate
= [&](mlir::Value buff
, mlir::Value off
) {
6199 mlir::Type refTy
= eleRefTy
;
6200 if (fir::hasDynamicSize(eleTy
)) {
6201 if (auto charTy
= mlir::dyn_cast
<fir::CharacterType
>(eleTy
)) {
6202 // Scale a simple pointer using dynamic length and offset values.
6203 auto chTy
= fir::CharacterType::getSingleton(charTy
.getContext(),
6205 refTy
= builder
.getRefType(chTy
);
6206 mlir::Type toTy
= builder
.getRefType(builder
.getVarLenSeqTy(chTy
));
6207 buff
= builder
.createConvert(loc
, toTy
, buff
);
6208 off
= builder
.create
<mlir::arith::MulIOp
>(loc
, off
, eleSz
);
6210 TODO(loc
, "PDT offset");
6213 auto coor
= builder
.create
<fir::CoordinateOp
>(loc
, refTy
, buff
,
6214 mlir::ValueRange
{off
});
6215 return builder
.createConvert(loc
, eleRefTy
, coor
);
6218 // Lambda to lower an abstract array box value.
6219 auto doAbstractArray
= [&](const auto &v
) {
6220 // Compute the array size.
6221 mlir::Value arrSz
= one
;
6222 for (auto ext
: v
.getExtents())
6223 arrSz
= builder
.create
<mlir::arith::MulIOp
>(loc
, arrSz
, ext
);
6225 // Grow the buffer as needed.
6226 auto endOff
= builder
.create
<mlir::arith::AddIOp
>(loc
, off
, arrSz
);
6227 mem
= growBuffer(mem
, endOff
, limit
, buffSize
, eleSz
);
6229 // Copy the elements to the buffer.
6230 mlir::Value byteSz
=
6231 builder
.create
<mlir::arith::MulIOp
>(loc
, arrSz
, eleSz
);
6232 auto buff
= builder
.createConvert(loc
, fir::HeapType::get(resTy
), mem
);
6233 mlir::Value buffi
= computeCoordinate(buff
, off
);
6234 llvm::SmallVector
<mlir::Value
> args
= fir::runtime::createArguments(
6235 builder
, loc
, memcpyType(), buffi
, v
.getAddr(), byteSz
,
6236 /*volatile=*/builder
.createBool(loc
, false));
6237 createCallMemcpy(args
);
6239 // Save the incremented buffer position.
6240 builder
.create
<fir::StoreOp
>(loc
, endOff
, buffPos
);
6243 // Copy a trivial scalar value into the buffer.
6244 auto doTrivialScalar
= [&](const ExtValue
&v
, mlir::Value len
= {}) {
6245 // Increment the buffer position.
6246 auto plusOne
= builder
.create
<mlir::arith::AddIOp
>(loc
, off
, one
);
6248 // Grow the buffer as needed.
6249 mem
= growBuffer(mem
, plusOne
, limit
, buffSize
, eleSz
);
6251 // Store the element in the buffer.
6253 builder
.createConvert(loc
, fir::HeapType::get(resTy
), mem
);
6254 auto buffi
= builder
.create
<fir::CoordinateOp
>(loc
, eleRefTy
, buff
,
6255 mlir::ValueRange
{off
});
6256 fir::factory::genScalarAssignment(
6260 return fir::CharBoxValue(buffi
, len
);
6264 builder
.create
<fir::StoreOp
>(loc
, plusOne
, buffPos
);
6269 [&](mlir::Value
) { doTrivialScalar(exv
); },
6270 [&](const fir::CharBoxValue
&v
) {
6271 auto buffer
= v
.getBuffer();
6272 if (fir::isa_char(buffer
.getType())) {
6273 doTrivialScalar(exv
, eleSz
);
6275 // Increment the buffer position.
6276 auto plusOne
= builder
.create
<mlir::arith::AddIOp
>(loc
, off
, one
);
6278 // Grow the buffer as needed.
6279 mem
= growBuffer(mem
, plusOne
, limit
, buffSize
, eleSz
);
6281 // Store the element in the buffer.
6283 builder
.createConvert(loc
, fir::HeapType::get(resTy
), mem
);
6284 mlir::Value buffi
= computeCoordinate(buff
, off
);
6285 llvm::SmallVector
<mlir::Value
> args
= fir::runtime::createArguments(
6286 builder
, loc
, memcpyType(), buffi
, v
.getAddr(), eleSz
,
6287 /*volatile=*/builder
.createBool(loc
, false));
6288 createCallMemcpy(args
);
6290 builder
.create
<fir::StoreOp
>(loc
, plusOne
, buffPos
);
6293 [&](const fir::ArrayBoxValue
&v
) { doAbstractArray(v
); },
6294 [&](const fir::CharArrayBoxValue
&v
) { doAbstractArray(v
); },
6296 TODO(loc
, "unhandled array constructor expression");
6301 // Lower the expr cases in an ac-value-list.
6302 template <typename A
>
6303 std::pair
<ExtValue
, bool>
6304 genArrayCtorInitializer(const Fortran::evaluate::Expr
<A
> &x
, mlir::Type
,
6305 mlir::Value
, mlir::Value
, mlir::Value
,
6306 Fortran::lower::StatementContext
&stmtCtx
) {
6308 return {lowerNewArrayExpression(converter
, symMap
, stmtCtx
, toEvExpr(x
)),
6310 return {asScalar(x
), /*needCopy=*/true};
6313 // Lower an ac-implied-do in an ac-value-list.
6314 template <typename A
>
6315 std::pair
<ExtValue
, bool>
6316 genArrayCtorInitializer(const Fortran::evaluate::ImpliedDo
<A
> &x
,
6317 mlir::Type resTy
, mlir::Value mem
,
6318 mlir::Value buffPos
, mlir::Value buffSize
,
6319 Fortran::lower::StatementContext
&) {
6320 mlir::Location loc
= getLoc();
6321 mlir::IndexType idxTy
= builder
.getIndexType();
6323 builder
.createConvert(loc
, idxTy
, fir::getBase(asScalar(x
.lower())));
6325 builder
.createConvert(loc
, idxTy
, fir::getBase(asScalar(x
.upper())));
6327 builder
.createConvert(loc
, idxTy
, fir::getBase(asScalar(x
.stride())));
6328 auto seqTy
= mlir::cast
<fir::SequenceType
>(resTy
);
6329 mlir::Type eleTy
= fir::unwrapSequenceType(seqTy
);
6331 builder
.create
<fir::DoLoopOp
>(loc
, lo
, up
, step
, /*unordered=*/false,
6332 /*finalCount=*/false, mem
);
6333 // create a new binding for x.name(), to ac-do-variable, to the iteration
6335 symMap
.pushImpliedDoBinding(toStringRef(x
.name()), loop
.getInductionVar());
6336 auto insPt
= builder
.saveInsertionPoint();
6337 builder
.setInsertionPointToStart(loop
.getBody());
6338 // Thread mem inside the loop via loop argument.
6339 mem
= loop
.getRegionIterArgs()[0];
6341 mlir::Type eleRefTy
= builder
.getRefType(eleTy
);
6343 // Any temps created in the loop body must be freed inside the loop body.
6344 stmtCtx
.pushScope();
6345 std::optional
<mlir::Value
> charLen
;
6346 for (const Fortran::evaluate::ArrayConstructorValue
<A
> &acv
: x
.values()) {
6347 auto [exv
, copyNeeded
] = Fortran::common::visit(
6348 [&](const auto &v
) {
6349 return genArrayCtorInitializer(v
, resTy
, mem
, buffPos
, buffSize
,
6353 mlir::Value eleSz
= computeElementSize(exv
, eleTy
, resTy
);
6354 mem
= copyNeeded
? copyNextArrayCtorSection(exv
, buffPos
, buffSize
, mem
,
6355 eleSz
, eleTy
, eleRefTy
, resTy
)
6356 : fir::getBase(exv
);
6357 if (fir::isa_char(seqTy
.getEleTy()) && !charLen
) {
6358 charLen
= builder
.createTemporary(loc
, builder
.getI64Type());
6359 mlir::Value castLen
=
6360 builder
.createConvert(loc
, builder
.getI64Type(), fir::getLen(exv
));
6361 assert(charLen
.has_value());
6362 builder
.create
<fir::StoreOp
>(loc
, castLen
, *charLen
);
6365 stmtCtx
.finalizeAndPop();
6367 builder
.create
<fir::ResultOp
>(loc
, mem
);
6368 builder
.restoreInsertionPoint(insPt
);
6369 mem
= loop
.getResult(0);
6370 symMap
.popImpliedDoBinding();
6371 llvm::SmallVector
<mlir::Value
> extents
= {
6372 builder
.create
<fir::LoadOp
>(loc
, buffPos
).getResult()};
6374 // Convert to extended value.
6375 if (fir::isa_char(seqTy
.getEleTy())) {
6376 assert(charLen
.has_value());
6377 auto len
= builder
.create
<fir::LoadOp
>(loc
, *charLen
);
6378 return {fir::CharArrayBoxValue
{mem
, len
, extents
}, /*needCopy=*/false};
6380 return {fir::ArrayBoxValue
{mem
, extents
}, /*needCopy=*/false};
6383 // To simplify the handling and interaction between the various cases, array
6384 // constructors are always lowered to the incremental construction code
6385 // pattern, even if the extent of the array value is constant. After the
6386 // MemToReg pass and constant folding, the optimizer should be able to
6387 // determine that all the buffer overrun tests are false when the
6388 // incremental construction wasn't actually required.
6389 template <typename A
>
6390 CC
genarr(const Fortran::evaluate::ArrayConstructor
<A
> &x
) {
6391 mlir::Location loc
= getLoc();
6392 auto evExpr
= toEvExpr(x
);
6393 mlir::Type resTy
= translateSomeExprToFIRType(converter
, evExpr
);
6394 mlir::IndexType idxTy
= builder
.getIndexType();
6395 auto seqTy
= mlir::cast
<fir::SequenceType
>(resTy
);
6396 mlir::Type eleTy
= fir::unwrapSequenceType(resTy
);
6397 mlir::Value buffSize
= builder
.createTemporary(loc
, idxTy
, ".buff.size");
6398 mlir::Value zero
= builder
.createIntegerConstant(loc
, idxTy
, 0);
6399 mlir::Value buffPos
= builder
.createTemporary(loc
, idxTy
, ".buff.pos");
6400 builder
.create
<fir::StoreOp
>(loc
, zero
, buffPos
);
6401 // Allocate space for the array to be constructed.
6403 if (fir::hasDynamicSize(resTy
)) {
6404 if (fir::hasDynamicSize(eleTy
)) {
6405 // The size of each element may depend on a general expression. Defer
6406 // creating the buffer until after the expression is evaluated.
6407 mem
= builder
.createNullConstant(loc
, builder
.getRefType(eleTy
));
6408 builder
.create
<fir::StoreOp
>(loc
, zero
, buffSize
);
6410 mlir::Value initBuffSz
=
6411 builder
.createIntegerConstant(loc
, idxTy
, clInitialBufferSize
);
6412 mem
= builder
.create
<fir::AllocMemOp
>(
6413 loc
, eleTy
, /*typeparams=*/std::nullopt
, initBuffSz
);
6414 builder
.create
<fir::StoreOp
>(loc
, initBuffSz
, buffSize
);
6417 mem
= builder
.create
<fir::AllocMemOp
>(loc
, resTy
);
6419 for (auto extent
: seqTy
.getShape())
6421 mlir::Value initBuffSz
=
6422 builder
.createIntegerConstant(loc
, idxTy
, buffSz
);
6423 builder
.create
<fir::StoreOp
>(loc
, initBuffSz
, buffSize
);
6425 // Compute size of element
6426 mlir::Type eleRefTy
= builder
.getRefType(eleTy
);
6428 // Populate the buffer with the elements, growing as necessary.
6429 std::optional
<mlir::Value
> charLen
;
6430 for (const auto &expr
: x
) {
6431 auto [exv
, copyNeeded
] = Fortran::common::visit(
6432 [&](const auto &e
) {
6433 return genArrayCtorInitializer(e
, resTy
, mem
, buffPos
, buffSize
,
6437 mlir::Value eleSz
= computeElementSize(exv
, eleTy
, resTy
);
6438 mem
= copyNeeded
? copyNextArrayCtorSection(exv
, buffPos
, buffSize
, mem
,
6439 eleSz
, eleTy
, eleRefTy
, resTy
)
6440 : fir::getBase(exv
);
6441 if (fir::isa_char(seqTy
.getEleTy()) && !charLen
) {
6442 charLen
= builder
.createTemporary(loc
, builder
.getI64Type());
6443 mlir::Value castLen
=
6444 builder
.createConvert(loc
, builder
.getI64Type(), fir::getLen(exv
));
6445 builder
.create
<fir::StoreOp
>(loc
, castLen
, *charLen
);
6448 mem
= builder
.createConvert(loc
, fir::HeapType::get(resTy
), mem
);
6449 llvm::SmallVector
<mlir::Value
> extents
= {
6450 builder
.create
<fir::LoadOp
>(loc
, buffPos
)};
6452 // Cleanup the temporary.
6453 fir::FirOpBuilder
*bldr
= &converter
.getFirOpBuilder();
6454 stmtCtx
.attachCleanup(
6455 [bldr
, loc
, mem
]() { bldr
->create
<fir::FreeMemOp
>(loc
, mem
); });
6457 // Return the continuation.
6458 if (fir::isa_char(seqTy
.getEleTy())) {
6460 auto len
= builder
.create
<fir::LoadOp
>(loc
, *charLen
);
6461 return genarr(fir::CharArrayBoxValue
{mem
, len
, extents
});
6463 return genarr(fir::CharArrayBoxValue
{mem
, zero
, extents
});
6465 return genarr(fir::ArrayBoxValue
{mem
, extents
});
6468 CC
genarr(const Fortran::evaluate::ImpliedDoIndex
&) {
6469 fir::emitFatalError(getLoc(), "implied do index cannot have rank > 0");
6471 CC
genarr(const Fortran::evaluate::TypeParamInquiry
&x
) {
6472 TODO(getLoc(), "array expr type parameter inquiry");
6473 return [](IterSpace iters
) -> ExtValue
{ return mlir::Value
{}; };
6475 CC
genarr(const Fortran::evaluate::DescriptorInquiry
&x
) {
6476 TODO(getLoc(), "array expr descriptor inquiry");
6477 return [](IterSpace iters
) -> ExtValue
{ return mlir::Value
{}; };
6479 CC
genarr(const Fortran::evaluate::StructureConstructor
&x
) {
6480 TODO(getLoc(), "structure constructor");
6481 return [](IterSpace iters
) -> ExtValue
{ return mlir::Value
{}; };
6484 //===--------------------------------------------------------------------===//
6485 // LOCICAL operators (.NOT., .AND., .EQV., etc.)
6486 //===--------------------------------------------------------------------===//
6489 CC
genarr(const Fortran::evaluate::Not
<KIND
> &x
) {
6490 mlir::Location loc
= getLoc();
6491 mlir::IntegerType i1Ty
= builder
.getI1Type();
6492 auto lambda
= genarr(x
.left());
6493 mlir::Value truth
= builder
.createBool(loc
, true);
6494 return [=](IterSpace iters
) -> ExtValue
{
6495 mlir::Value logical
= fir::getBase(lambda(iters
));
6496 mlir::Value val
= builder
.createConvert(loc
, i1Ty
, logical
);
6497 return builder
.create
<mlir::arith::XOrIOp
>(loc
, val
, truth
);
6500 template <typename OP
, typename A
>
6501 CC
createBinaryBoolOp(const A
&x
) {
6502 mlir::Location loc
= getLoc();
6503 mlir::IntegerType i1Ty
= builder
.getI1Type();
6504 auto lf
= genarr(x
.left());
6505 auto rf
= genarr(x
.right());
6506 return [=](IterSpace iters
) -> ExtValue
{
6507 mlir::Value left
= fir::getBase(lf(iters
));
6508 mlir::Value right
= fir::getBase(rf(iters
));
6509 mlir::Value lhs
= builder
.createConvert(loc
, i1Ty
, left
);
6510 mlir::Value rhs
= builder
.createConvert(loc
, i1Ty
, right
);
6511 return builder
.create
<OP
>(loc
, lhs
, rhs
);
6514 template <typename OP
, typename A
>
6515 CC
createCompareBoolOp(mlir::arith::CmpIPredicate pred
, const A
&x
) {
6516 mlir::Location loc
= getLoc();
6517 mlir::IntegerType i1Ty
= builder
.getI1Type();
6518 auto lf
= genarr(x
.left());
6519 auto rf
= genarr(x
.right());
6520 return [=](IterSpace iters
) -> ExtValue
{
6521 mlir::Value left
= fir::getBase(lf(iters
));
6522 mlir::Value right
= fir::getBase(rf(iters
));
6523 mlir::Value lhs
= builder
.createConvert(loc
, i1Ty
, left
);
6524 mlir::Value rhs
= builder
.createConvert(loc
, i1Ty
, right
);
6525 return builder
.create
<OP
>(loc
, pred
, lhs
, rhs
);
6529 CC
genarr(const Fortran::evaluate::LogicalOperation
<KIND
> &x
) {
6530 switch (x
.logicalOperator
) {
6531 case Fortran::evaluate::LogicalOperator::And
:
6532 return createBinaryBoolOp
<mlir::arith::AndIOp
>(x
);
6533 case Fortran::evaluate::LogicalOperator::Or
:
6534 return createBinaryBoolOp
<mlir::arith::OrIOp
>(x
);
6535 case Fortran::evaluate::LogicalOperator::Eqv
:
6536 return createCompareBoolOp
<mlir::arith::CmpIOp
>(
6537 mlir::arith::CmpIPredicate::eq
, x
);
6538 case Fortran::evaluate::LogicalOperator::Neqv
:
6539 return createCompareBoolOp
<mlir::arith::CmpIOp
>(
6540 mlir::arith::CmpIPredicate::ne
, x
);
6541 case Fortran::evaluate::LogicalOperator::Not
:
6542 llvm_unreachable(".NOT. handled elsewhere");
6544 llvm_unreachable("unhandled case");
6547 //===--------------------------------------------------------------------===//
6548 // Relational operators (<, <=, ==, etc.)
6549 //===--------------------------------------------------------------------===//
6551 template <typename OP
, typename PRED
, typename A
>
6552 CC
createCompareOp(PRED pred
, const A
&x
) {
6553 mlir::Location loc
= getLoc();
6554 auto lf
= genarr(x
.left());
6555 auto rf
= genarr(x
.right());
6556 return [=](IterSpace iters
) -> ExtValue
{
6557 mlir::Value lhs
= fir::getBase(lf(iters
));
6558 mlir::Value rhs
= fir::getBase(rf(iters
));
6559 return builder
.create
<OP
>(loc
, pred
, lhs
, rhs
);
6562 template <typename A
>
6563 CC
createCompareCharOp(mlir::arith::CmpIPredicate pred
, const A
&x
) {
6564 mlir::Location loc
= getLoc();
6565 auto lf
= genarr(x
.left());
6566 auto rf
= genarr(x
.right());
6567 return [=](IterSpace iters
) -> ExtValue
{
6568 auto lhs
= lf(iters
);
6569 auto rhs
= rf(iters
);
6570 return fir::runtime::genCharCompare(builder
, loc
, pred
, lhs
, rhs
);
6574 CC
genarr(const Fortran::evaluate::Relational
<Fortran::evaluate::Type
<
6575 Fortran::common::TypeCategory::Integer
, KIND
>> &x
) {
6576 return createCompareOp
<mlir::arith::CmpIOp
>(translateRelational(x
.opr
), x
);
6579 CC
genarr(const Fortran::evaluate::Relational
<Fortran::evaluate::Type
<
6580 Fortran::common::TypeCategory::Character
, KIND
>> &x
) {
6581 return createCompareCharOp(translateRelational(x
.opr
), x
);
6584 CC
genarr(const Fortran::evaluate::Relational
<Fortran::evaluate::Type
<
6585 Fortran::common::TypeCategory::Real
, KIND
>> &x
) {
6586 return createCompareOp
<mlir::arith::CmpFOp
>(translateFloatRelational(x
.opr
),
6590 CC
genarr(const Fortran::evaluate::Relational
<Fortran::evaluate::Type
<
6591 Fortran::common::TypeCategory::Complex
, KIND
>> &x
) {
6592 return createCompareOp
<fir::CmpcOp
>(translateFloatRelational(x
.opr
), x
);
6595 const Fortran::evaluate::Relational
<Fortran::evaluate::SomeType
> &r
) {
6596 return Fortran::common::visit([&](const auto &x
) { return genarr(x
); },
6600 template <typename A
>
6601 CC
genarr(const Fortran::evaluate::Designator
<A
> &des
) {
6602 ComponentPath
components(des
.Rank() > 0);
6603 return Fortran::common::visit(
6604 [&](const auto &x
) { return genarr(x
, components
); }, des
.u
);
6607 /// Is the path component rank > 0?
6608 static bool ranked(const PathComponent
&x
) {
6609 return Fortran::common::visit(
6610 Fortran::common::visitors
{
6611 [](const ImplicitSubscripts
&) { return false; },
6612 [](const auto *v
) { return v
->Rank() > 0; }},
6616 void extendComponent(Fortran::lower::ComponentPath
&component
,
6617 mlir::Type coorTy
, mlir::ValueRange vals
) {
6618 auto *bldr
= &converter
.getFirOpBuilder();
6619 llvm::SmallVector
<mlir::Value
> offsets(vals
.begin(), vals
.end());
6620 auto currentFunc
= component
.getExtendCoorRef();
6621 auto loc
= getLoc();
6622 auto newCoorRef
= [bldr
, coorTy
, offsets
, currentFunc
,
6623 loc
](mlir::Value val
) -> mlir::Value
{
6624 return bldr
->create
<fir::CoordinateOp
>(loc
, bldr
->getRefType(coorTy
),
6625 currentFunc(val
), offsets
);
6627 component
.extendCoorRef
= newCoorRef
;
6630 //===-------------------------------------------------------------------===//
6631 // Array data references in an explicit iteration space.
6633 // Use the base array that was loaded before the loop nest.
6634 //===-------------------------------------------------------------------===//
6636 /// Lower the path (`revPath`, in reverse) to be appended to an array_fetch or
6637 /// array_update op. \p ty is the initial type of the array
6638 /// (reference). Returns the type of the element after application of the
6639 /// path in \p components.
6641 /// TODO: This needs to deal with array's with initial bounds other than 1.
6642 /// TODO: Thread type parameters correctly.
6643 mlir::Type
lowerPath(const ExtValue
&arrayExv
, ComponentPath
&components
) {
6644 mlir::Location loc
= getLoc();
6645 mlir::Type ty
= fir::getBase(arrayExv
).getType();
6646 auto &revPath
= components
.reversePath
;
6647 ty
= fir::unwrapPassByRefType(ty
);
6650 auto addComponentList
= [&](mlir::Type ty
, mlir::ValueRange vals
) {
6652 extendComponent(components
, ty
, vals
);
6653 } else if (prefix
) {
6655 components
.prefixComponents
.push_back(v
);
6658 components
.suffixComponents
.push_back(v
);
6661 mlir::IndexType idxTy
= builder
.getIndexType();
6662 mlir::Value one
= builder
.createIntegerConstant(loc
, idxTy
, 1);
6664 PushSemantics(isProjectedCopyInCopyOut()
6665 ? ConstituentSemantics::RefTransparent
6666 : nextPathSemantics());
6668 for (const auto &v
: llvm::reverse(revPath
)) {
6669 Fortran::common::visit(
6670 Fortran::common::visitors
{
6671 [&](const ImplicitSubscripts
&) {
6673 ty
= fir::unwrapSequenceType(ty
);
6675 [&](const Fortran::evaluate::ComplexPart
*x
) {
6676 assert(!prefix
&& "complex part must be at end");
6677 mlir::Value offset
= builder
.createIntegerConstant(
6678 loc
, builder
.getI32Type(),
6679 x
->part() == Fortran::evaluate::ComplexPart::Part::RE
? 0
6681 components
.suffixComponents
.push_back(offset
);
6682 ty
= fir::applyPathToType(ty
, mlir::ValueRange
{offset
});
6684 [&](const Fortran::evaluate::ArrayRef
*x
) {
6685 if (Fortran::lower::isRankedArrayAccess(*x
)) {
6686 genSliceIndices(components
, arrayExv
, *x
, atBase
);
6687 ty
= fir::unwrapSeqOrBoxedSeqType(ty
);
6689 // Array access where the expressions are scalar and cannot
6690 // depend upon the implied iteration space.
6691 unsigned ssIndex
= 0u;
6692 llvm::SmallVector
<mlir::Value
> componentsToAdd
;
6693 for (const auto &ss
: x
->subscript()) {
6694 Fortran::common::visit(
6695 Fortran::common::visitors
{
6696 [&](const Fortran::evaluate::
6697 IndirectSubscriptIntegerExpr
&ie
) {
6698 const auto &e
= ie
.value();
6700 fir::emitFatalError(
6702 "multiple components along single path "
6703 "generating array subexpressions");
6704 // Lower scalar index expression, append it to
6706 mlir::Value subscriptVal
=
6707 fir::getBase(asScalarArray(e
));
6708 // arrayExv is the base array. It needs to reflect
6709 // the current array component instead.
6710 // FIXME: must use lower bound of this component,
6711 // not just the constant 1.
6713 atBase
? fir::factory::readLowerBound(
6714 builder
, loc
, arrayExv
, ssIndex
,
6717 mlir::Value val
= builder
.createConvert(
6718 loc
, idxTy
, subscriptVal
);
6720 builder
.create
<mlir::arith::SubIOp
>(
6721 loc
, idxTy
, val
, lb
);
6722 componentsToAdd
.push_back(
6723 builder
.createConvert(loc
, idxTy
, ivAdj
));
6726 fir::emitFatalError(
6727 loc
, "multiple components along single path "
6728 "generating array subexpressions");
6733 ty
= fir::unwrapSeqOrBoxedSeqType(ty
);
6734 addComponentList(ty
, componentsToAdd
);
6737 [&](const Fortran::evaluate::Component
*x
) {
6738 auto fieldTy
= fir::FieldType::get(builder
.getContext());
6740 converter
.getRecordTypeFieldName(getLastSym(*x
));
6741 if (auto recTy
= mlir::dyn_cast
<fir::RecordType
>(ty
)) {
6742 ty
= recTy
.getType(name
);
6743 auto fld
= builder
.create
<fir::FieldIndexOp
>(
6744 loc
, fieldTy
, name
, recTy
, fir::getTypeParams(arrayExv
));
6745 addComponentList(ty
, {fld
});
6746 if (index
!= revPath
.size() - 1 || !isPointerAssignment()) {
6747 // Need an intermediate dereference if the boxed value
6748 // appears in the middle of the component path or if it is
6749 // on the right and this is not a pointer assignment.
6750 if (auto boxTy
= mlir::dyn_cast
<fir::BaseBoxType
>(ty
)) {
6751 auto currentFunc
= components
.getExtendCoorRef();
6752 auto loc
= getLoc();
6753 auto *bldr
= &converter
.getFirOpBuilder();
6754 auto newCoorRef
= [=](mlir::Value val
) -> mlir::Value
{
6755 return bldr
->create
<fir::LoadOp
>(loc
, currentFunc(val
));
6757 components
.extendCoorRef
= newCoorRef
;
6761 } else if (auto boxTy
= mlir::dyn_cast
<fir::BaseBoxType
>(ty
)) {
6762 ty
= fir::unwrapRefType(boxTy
.getEleTy());
6763 auto recTy
= mlir::cast
<fir::RecordType
>(ty
);
6764 ty
= recTy
.getType(name
);
6765 auto fld
= builder
.create
<fir::FieldIndexOp
>(
6766 loc
, fieldTy
, name
, recTy
, fir::getTypeParams(arrayExv
));
6767 extendComponent(components
, ty
, {fld
});
6769 TODO(loc
, "other component type");
6776 ty
= fir::unwrapSequenceType(ty
);
6777 components
.applied
= true;
6781 llvm::SmallVector
<mlir::Value
> genSubstringBounds(ComponentPath
&components
) {
6782 llvm::SmallVector
<mlir::Value
> result
;
6783 if (components
.substring
)
6784 populateBounds(result
, components
.substring
);
6788 CC
applyPathToArrayLoad(fir::ArrayLoadOp load
, ComponentPath
&components
) {
6789 mlir::Location loc
= getLoc();
6790 auto revPath
= components
.reversePath
;
6791 fir::ExtendedValue arrayExv
=
6792 arrayLoadExtValue(builder
, loc
, load
, {}, load
);
6793 mlir::Type eleTy
= lowerPath(arrayExv
, components
);
6794 auto currentPC
= components
.pc
;
6795 auto pc
= [=, prefix
= components
.prefixComponents
,
6796 suffix
= components
.suffixComponents
](IterSpace iters
) {
6797 // Add path prefix and suffix.
6798 return IterationSpace(currentPC(iters
), prefix
, suffix
);
6800 components
.resetPC();
6801 llvm::SmallVector
<mlir::Value
> substringBounds
=
6802 genSubstringBounds(components
);
6803 if (isProjectedCopyInCopyOut()) {
6805 auto lambda
= [=, esp
= this->explicitSpace
](IterSpace iters
) mutable {
6806 mlir::Value innerArg
= esp
->findArgumentOfLoad(load
);
6807 if (isAdjustedArrayElementType(eleTy
)) {
6808 mlir::Type eleRefTy
= builder
.getRefType(eleTy
);
6809 auto arrayOp
= builder
.create
<fir::ArrayAccessOp
>(
6810 loc
, eleRefTy
, innerArg
, iters
.iterVec(),
6811 fir::factory::getTypeParams(loc
, builder
, load
));
6812 if (auto charTy
= mlir::dyn_cast
<fir::CharacterType
>(eleTy
)) {
6813 mlir::Value dstLen
= fir::factory::genLenOfCharacter(
6814 builder
, loc
, load
, iters
.iterVec(), substringBounds
);
6815 fir::ArrayAmendOp amend
= createCharArrayAmend(
6816 loc
, builder
, arrayOp
, dstLen
, iters
.elementExv(), innerArg
,
6818 return arrayLoadExtValue(builder
, loc
, load
, iters
.iterVec(), amend
,
6821 if (fir::isa_derived(eleTy
)) {
6822 fir::ArrayAmendOp amend
=
6823 createDerivedArrayAmend(loc
, load
, builder
, arrayOp
,
6824 iters
.elementExv(), eleTy
, innerArg
);
6825 return arrayLoadExtValue(builder
, loc
, load
, iters
.iterVec(),
6828 assert(mlir::isa
<fir::SequenceType
>(eleTy
));
6829 TODO(loc
, "array (as element) assignment");
6831 if (components
.hasExtendCoorRef()) {
6833 fir::applyPathToType(innerArg
.getType(), iters
.iterVec());
6834 if (!eleBoxTy
|| !mlir::isa
<fir::BoxType
>(eleBoxTy
))
6835 TODO(loc
, "assignment in a FORALL involving a designator with a "
6836 "POINTER or ALLOCATABLE component part-ref");
6837 auto arrayOp
= builder
.create
<fir::ArrayAccessOp
>(
6838 loc
, builder
.getRefType(eleBoxTy
), innerArg
, iters
.iterVec(),
6839 fir::factory::getTypeParams(loc
, builder
, load
));
6840 mlir::Value addr
= components
.getExtendCoorRef()(arrayOp
);
6841 components
.resetExtendCoorRef();
6842 // When the lhs is a boxed value and the context is not a pointer
6843 // assignment, then insert the dereference of the box before any
6844 // conversion and store.
6845 if (!isPointerAssignment()) {
6846 if (auto boxTy
= mlir::dyn_cast
<fir::BaseBoxType
>(eleTy
)) {
6847 eleTy
= fir::boxMemRefType(boxTy
);
6848 addr
= builder
.create
<fir::BoxAddrOp
>(loc
, eleTy
, addr
);
6849 eleTy
= fir::unwrapRefType(eleTy
);
6852 auto ele
= convertElementForUpdate(loc
, eleTy
, iters
.getElement());
6853 builder
.create
<fir::StoreOp
>(loc
, ele
, addr
);
6854 auto amend
= builder
.create
<fir::ArrayAmendOp
>(
6855 loc
, innerArg
.getType(), innerArg
, arrayOp
);
6856 return arrayLoadExtValue(builder
, loc
, load
, iters
.iterVec(), amend
);
6858 auto ele
= convertElementForUpdate(loc
, eleTy
, iters
.getElement());
6859 auto update
= builder
.create
<fir::ArrayUpdateOp
>(
6860 loc
, innerArg
.getType(), innerArg
, ele
, iters
.iterVec(),
6861 fir::factory::getTypeParams(loc
, builder
, load
));
6862 return arrayLoadExtValue(builder
, loc
, load
, iters
.iterVec(), update
);
6864 return [=](IterSpace iters
) mutable { return lambda(pc(iters
)); };
6866 if (isCustomCopyInCopyOut()) {
6867 // Create an array_modify to get the LHS element address and indicate
6868 // the assignment, and create the call to the user defined assignment.
6870 auto lambda
= [=](IterSpace iters
) mutable {
6871 mlir::Value innerArg
= explicitSpace
->findArgumentOfLoad(load
);
6872 mlir::Type refEleTy
=
6873 fir::isa_ref_type(eleTy
) ? eleTy
: builder
.getRefType(eleTy
);
6874 auto arrModify
= builder
.create
<fir::ArrayModifyOp
>(
6875 loc
, mlir::TypeRange
{refEleTy
, innerArg
.getType()}, innerArg
,
6876 iters
.iterVec(), load
.getTypeparams());
6877 return arrayLoadExtValue(builder
, loc
, load
, iters
.iterVec(),
6878 arrModify
.getResult(1));
6880 return [=](IterSpace iters
) mutable { return lambda(pc(iters
)); };
6882 auto lambda
= [=, semant
= this->semant
](IterSpace iters
) mutable {
6883 if (semant
== ConstituentSemantics::RefOpaque
||
6884 isAdjustedArrayElementType(eleTy
)) {
6885 mlir::Type resTy
= builder
.getRefType(eleTy
);
6886 // Use array element reference semantics.
6887 auto access
= builder
.create
<fir::ArrayAccessOp
>(
6888 loc
, resTy
, load
, iters
.iterVec(),
6889 fir::factory::getTypeParams(loc
, builder
, load
));
6890 mlir::Value newBase
= access
;
6891 if (fir::isa_char(eleTy
)) {
6892 mlir::Value dstLen
= fir::factory::genLenOfCharacter(
6893 builder
, loc
, load
, iters
.iterVec(), substringBounds
);
6894 if (!substringBounds
.empty()) {
6895 fir::CharBoxValue charDst
{access
, dstLen
};
6896 fir::factory::CharacterExprHelper helper
{builder
, loc
};
6897 charDst
= helper
.createSubstring(charDst
, substringBounds
);
6898 newBase
= charDst
.getAddr();
6900 return arrayLoadExtValue(builder
, loc
, load
, iters
.iterVec(), newBase
,
6903 return arrayLoadExtValue(builder
, loc
, load
, iters
.iterVec(), newBase
);
6905 if (components
.hasExtendCoorRef()) {
6906 auto eleBoxTy
= fir::applyPathToType(load
.getType(), iters
.iterVec());
6907 if (!eleBoxTy
|| !mlir::isa
<fir::BoxType
>(eleBoxTy
))
6908 TODO(loc
, "assignment in a FORALL involving a designator with a "
6909 "POINTER or ALLOCATABLE component part-ref");
6910 auto access
= builder
.create
<fir::ArrayAccessOp
>(
6911 loc
, builder
.getRefType(eleBoxTy
), load
, iters
.iterVec(),
6912 fir::factory::getTypeParams(loc
, builder
, load
));
6913 mlir::Value addr
= components
.getExtendCoorRef()(access
);
6914 components
.resetExtendCoorRef();
6915 return arrayLoadExtValue(builder
, loc
, load
, iters
.iterVec(), addr
);
6917 if (isPointerAssignment()) {
6918 auto eleTy
= fir::applyPathToType(load
.getType(), iters
.iterVec());
6919 if (!mlir::isa
<fir::BoxType
>(eleTy
)) {
6920 // Rhs is a regular expression that will need to be boxed before
6921 // assigning to the boxed variable.
6922 auto typeParams
= fir::factory::getTypeParams(loc
, builder
, load
);
6923 auto access
= builder
.create
<fir::ArrayAccessOp
>(
6924 loc
, builder
.getRefType(eleTy
), load
, iters
.iterVec(),
6926 auto addr
= components
.getExtendCoorRef()(access
);
6927 components
.resetExtendCoorRef();
6928 auto ptrEleTy
= fir::PointerType::get(eleTy
);
6929 auto ptrAddr
= builder
.createConvert(loc
, ptrEleTy
, addr
);
6930 auto boxTy
= fir::BoxType::get(ptrEleTy
);
6931 // FIXME: The typeparams to the load may be different than those of
6933 if (components
.hasExtendCoorRef())
6934 TODO(loc
, "need to adjust typeparameter(s) to reflect the final "
6937 builder
.create
<fir::EmboxOp
>(loc
, boxTy
, ptrAddr
,
6938 /*shape=*/mlir::Value
{},
6939 /*slice=*/mlir::Value
{}, typeParams
);
6940 return arrayLoadExtValue(builder
, loc
, load
, iters
.iterVec(), embox
);
6943 auto fetch
= builder
.create
<fir::ArrayFetchOp
>(
6944 loc
, eleTy
, load
, iters
.iterVec(), load
.getTypeparams());
6945 return arrayLoadExtValue(builder
, loc
, load
, iters
.iterVec(), fetch
);
6947 return [=](IterSpace iters
) mutable { return lambda(pc(iters
)); };
6950 template <typename A
>
6951 CC
genImplicitArrayAccess(const A
&x
, ComponentPath
&components
) {
6952 components
.reversePath
.push_back(ImplicitSubscripts
{});
6953 ExtValue exv
= asScalarRef(x
);
6954 lowerPath(exv
, components
);
6955 auto lambda
= genarr(exv
, components
);
6956 return [=](IterSpace iters
) { return lambda(components
.pc(iters
)); };
6958 CC
genImplicitArrayAccess(const Fortran::evaluate::NamedEntity
&x
,
6959 ComponentPath
&components
) {
6961 return genImplicitArrayAccess(getFirstSym(x
), components
);
6962 return genImplicitArrayAccess(x
.GetComponent(), components
);
6965 CC
genImplicitArrayAccess(const Fortran::semantics::Symbol
&x
,
6966 ComponentPath
&components
) {
6967 mlir::Value ptrVal
= nullptr;
6968 if (x
.test(Fortran::semantics::Symbol::Flag::CrayPointee
)) {
6969 Fortran::semantics::SymbolRef ptrSym
{
6970 Fortran::semantics::GetCrayPointer(x
)};
6971 ExtValue ptr
= converter
.getSymbolExtendedValue(ptrSym
);
6972 ptrVal
= fir::getBase(ptr
);
6974 components
.reversePath
.push_back(ImplicitSubscripts
{});
6975 ExtValue exv
= asScalarRef(x
);
6976 lowerPath(exv
, components
);
6977 auto lambda
= genarr(exv
, components
, ptrVal
);
6978 return [=](IterSpace iters
) { return lambda(components
.pc(iters
)); };
6981 template <typename A
>
6982 CC
genAsScalar(const A
&x
) {
6983 mlir::Location loc
= getLoc();
6984 if (isProjectedCopyInCopyOut()) {
6985 return [=, &x
, builder
= &converter
.getFirOpBuilder()](
6986 IterSpace iters
) -> ExtValue
{
6987 ExtValue exv
= asScalarRef(x
);
6988 mlir::Value addr
= fir::getBase(exv
);
6989 mlir::Type eleTy
= fir::unwrapRefType(addr
.getType());
6990 if (isAdjustedArrayElementType(eleTy
)) {
6991 if (fir::isa_char(eleTy
)) {
6992 fir::factory::CharacterExprHelper
{*builder
, loc
}.createAssign(
6993 exv
, iters
.elementExv());
6994 } else if (fir::isa_derived(eleTy
)) {
6995 TODO(loc
, "assignment of derived type");
6997 fir::emitFatalError(loc
, "array type not expected in scalar");
7000 auto eleVal
= convertElementForUpdate(loc
, eleTy
, iters
.getElement());
7001 builder
->create
<fir::StoreOp
>(loc
, eleVal
, addr
);
7006 return [=, &x
](IterSpace
) { return asScalar(x
); };
7009 bool tailIsPointerInPointerAssignment(const Fortran::semantics::Symbol
&x
,
7010 ComponentPath
&components
) {
7011 return isPointerAssignment() && Fortran::semantics::IsPointer(x
) &&
7012 !components
.hasComponents();
7014 bool tailIsPointerInPointerAssignment(const Fortran::evaluate::Component
&x
,
7015 ComponentPath
&components
) {
7016 return tailIsPointerInPointerAssignment(getLastSym(x
), components
);
7019 CC
genarr(const Fortran::semantics::Symbol
&x
, ComponentPath
&components
) {
7020 if (explicitSpaceIsActive()) {
7021 if (x
.Rank() > 0 && !tailIsPointerInPointerAssignment(x
, components
))
7022 components
.reversePath
.push_back(ImplicitSubscripts
{});
7023 if (fir::ArrayLoadOp load
= explicitSpace
->findBinding(&x
))
7024 return applyPathToArrayLoad(load
, components
);
7026 return genImplicitArrayAccess(x
, components
);
7028 if (pathIsEmpty(components
))
7029 return components
.substring
? genAsScalar(*components
.substring
)
7031 mlir::Location loc
= getLoc();
7032 return [=](IterSpace
) -> ExtValue
{
7033 fir::emitFatalError(loc
, "reached symbol with path");
7037 /// Lower a component path with or without rank.
7038 /// Example: <code>array%baz%qux%waldo</code>
7039 CC
genarr(const Fortran::evaluate::Component
&x
, ComponentPath
&components
) {
7040 if (explicitSpaceIsActive()) {
7041 if (x
.base().Rank() == 0 && x
.Rank() > 0 &&
7042 !tailIsPointerInPointerAssignment(x
, components
))
7043 components
.reversePath
.push_back(ImplicitSubscripts
{});
7044 if (fir::ArrayLoadOp load
= explicitSpace
->findBinding(&x
))
7045 return applyPathToArrayLoad(load
, components
);
7047 if (x
.base().Rank() == 0)
7048 return genImplicitArrayAccess(x
, components
);
7050 bool atEnd
= pathIsEmpty(components
);
7051 if (!getLastSym(x
).test(Fortran::semantics::Symbol::Flag::ParentComp
))
7052 // Skip parent components; their components are placed directly in the
7054 components
.reversePath
.push_back(&x
);
7055 auto result
= genarr(x
.base(), components
);
7056 if (components
.applied
)
7059 return genAsScalar(x
);
7060 mlir::Location loc
= getLoc();
7061 return [=](IterSpace
) -> ExtValue
{
7062 fir::emitFatalError(loc
, "reached component with path");
7066 /// Array reference with subscripts. If this has rank > 0, this is a form
7067 /// of an array section (slice).
7069 /// There are two "slicing" primitives that may be applied on a dimension by
7070 /// dimension basis: (1) triple notation and (2) vector addressing. Since
7071 /// dimensions can be selectively sliced, some dimensions may contain
7072 /// regular scalar expressions and those dimensions do not participate in
7073 /// the array expression evaluation.
7074 CC
genarr(const Fortran::evaluate::ArrayRef
&x
, ComponentPath
&components
) {
7075 if (explicitSpaceIsActive()) {
7076 if (Fortran::lower::isRankedArrayAccess(x
))
7077 components
.reversePath
.push_back(ImplicitSubscripts
{});
7078 if (fir::ArrayLoadOp load
= explicitSpace
->findBinding(&x
)) {
7079 components
.reversePath
.push_back(&x
);
7080 return applyPathToArrayLoad(load
, components
);
7083 if (Fortran::lower::isRankedArrayAccess(x
)) {
7084 components
.reversePath
.push_back(&x
);
7085 return genImplicitArrayAccess(x
.base(), components
);
7088 bool atEnd
= pathIsEmpty(components
);
7089 components
.reversePath
.push_back(&x
);
7090 auto result
= genarr(x
.base(), components
);
7091 if (components
.applied
)
7093 mlir::Location loc
= getLoc();
7096 return genAsScalar(x
);
7097 fir::emitFatalError(loc
, "expected scalar");
7099 return [=](IterSpace
) -> ExtValue
{
7100 fir::emitFatalError(loc
, "reached arrayref with path");
7104 CC
genarr(const Fortran::evaluate::CoarrayRef
&x
, ComponentPath
&components
) {
7105 TODO(getLoc(), "coarray: reference to a coarray in an expression");
7108 CC
genarr(const Fortran::evaluate::NamedEntity
&x
,
7109 ComponentPath
&components
) {
7110 return x
.IsSymbol() ? genarr(getFirstSym(x
), components
)
7111 : genarr(x
.GetComponent(), components
);
7114 CC
genarr(const Fortran::evaluate::DataRef
&x
, ComponentPath
&components
) {
7115 return Fortran::common::visit(
7116 [&](const auto &v
) { return genarr(v
, components
); }, x
.u
);
7119 bool pathIsEmpty(const ComponentPath
&components
) {
7120 return components
.reversePath
.empty();
7123 explicit ArrayExprLowering(Fortran::lower::AbstractConverter
&converter
,
7124 Fortran::lower::StatementContext
&stmtCtx
,
7125 Fortran::lower::SymMap
&symMap
)
7126 : converter
{converter
}, builder
{converter
.getFirOpBuilder()},
7127 stmtCtx
{stmtCtx
}, symMap
{symMap
} {}
7129 explicit ArrayExprLowering(Fortran::lower::AbstractConverter
&converter
,
7130 Fortran::lower::StatementContext
&stmtCtx
,
7131 Fortran::lower::SymMap
&symMap
,
7132 ConstituentSemantics sem
)
7133 : converter
{converter
}, builder
{converter
.getFirOpBuilder()},
7134 stmtCtx
{stmtCtx
}, symMap
{symMap
}, semant
{sem
} {}
7136 explicit ArrayExprLowering(Fortran::lower::AbstractConverter
&converter
,
7137 Fortran::lower::StatementContext
&stmtCtx
,
7138 Fortran::lower::SymMap
&symMap
,
7139 ConstituentSemantics sem
,
7140 Fortran::lower::ExplicitIterSpace
*expSpace
,
7141 Fortran::lower::ImplicitIterSpace
*impSpace
)
7142 : converter
{converter
}, builder
{converter
.getFirOpBuilder()},
7143 stmtCtx
{stmtCtx
}, symMap
{symMap
},
7144 explicitSpace((expSpace
&& expSpace
->isActive()) ? expSpace
: nullptr),
7145 implicitSpace((impSpace
&& !impSpace
->empty()) ? impSpace
: nullptr),
7147 // Generate any mask expressions, as necessary. This is the compute step
7148 // that creates the effective masks. See 10.2.3.2 in particular.
7152 mlir::Location
getLoc() { return converter
.getCurrentLocation(); }
7154 /// Array appears in a lhs context such that it is assigned after the rhs is
7155 /// fully evaluated.
7156 inline bool isCopyInCopyOut() {
7157 return semant
== ConstituentSemantics::CopyInCopyOut
;
7160 /// Array appears in a lhs (or temp) context such that a projected,
7161 /// discontiguous subspace of the array is assigned after the rhs is fully
7162 /// evaluated. That is, the rhs array value is merged into a section of the
7164 inline bool isProjectedCopyInCopyOut() {
7165 return semant
== ConstituentSemantics::ProjectedCopyInCopyOut
;
7168 // ???: Do we still need this?
7169 inline bool isCustomCopyInCopyOut() {
7170 return semant
== ConstituentSemantics::CustomCopyInCopyOut
;
7173 /// Are we lowering in a left-hand side context?
7174 inline bool isLeftHandSide() {
7175 return isCopyInCopyOut() || isProjectedCopyInCopyOut() ||
7176 isCustomCopyInCopyOut();
7179 /// Array appears in a context where it must be boxed.
7180 inline bool isBoxValue() { return semant
== ConstituentSemantics::BoxValue
; }
7182 /// Array appears in a context where differences in the memory reference can
7183 /// be observable in the computational results. For example, an array
7184 /// element is passed to an impure procedure.
7185 inline bool isReferentiallyOpaque() {
7186 return semant
== ConstituentSemantics::RefOpaque
;
7189 /// Array appears in a context where it is passed as a VALUE argument.
7190 inline bool isValueAttribute() {
7191 return semant
== ConstituentSemantics::ByValueArg
;
7194 /// Semantics to use when lowering the next array path.
7195 /// If no value was set, the path uses the same semantics as the array.
7196 inline ConstituentSemantics
nextPathSemantics() {
7197 if (nextPathSemant
) {
7198 ConstituentSemantics sema
= nextPathSemant
.value();
7199 nextPathSemant
.reset();
7206 /// Can the loops over the expression be unordered?
7207 inline bool isUnordered() const { return unordered
; }
7209 void setUnordered(bool b
) { unordered
= b
; }
7211 inline bool isPointerAssignment() const { return lbounds
.has_value(); }
7213 inline bool isBoundsSpec() const {
7214 return isPointerAssignment() && !ubounds
.has_value();
7217 inline bool isBoundsRemap() const {
7218 return isPointerAssignment() && ubounds
.has_value();
7221 void setPointerAssignmentBounds(
7222 const llvm::SmallVector
<mlir::Value
> &lbs
,
7223 std::optional
<llvm::SmallVector
<mlir::Value
>> ubs
) {
7228 void setLoweredProcRef(const Fortran::evaluate::ProcedureRef
*procRef
) {
7229 loweredProcRef
= procRef
;
7232 Fortran::lower::AbstractConverter
&converter
;
7233 fir::FirOpBuilder
&builder
;
7234 Fortran::lower::StatementContext
&stmtCtx
;
7235 bool elementCtx
= false;
7236 Fortran::lower::SymMap
&symMap
;
7237 /// The continuation to generate code to update the destination.
7238 std::optional
<CC
> ccStoreToDest
;
7239 std::optional
<std::function
<void(llvm::ArrayRef
<mlir::Value
>)>> ccPrelude
;
7240 std::optional
<std::function
<fir::ArrayLoadOp(llvm::ArrayRef
<mlir::Value
>)>>
7242 /// The destination is the loaded array into which the results will be
7244 fir::ArrayLoadOp destination
;
7245 /// The shape of the destination.
7246 llvm::SmallVector
<mlir::Value
> destShape
;
7247 /// List of arrays in the expression that have been loaded.
7248 llvm::SmallVector
<ArrayOperand
> arrayOperands
;
7249 /// If there is a user-defined iteration space, explicitShape will hold the
7250 /// information from the front end.
7251 Fortran::lower::ExplicitIterSpace
*explicitSpace
= nullptr;
7252 Fortran::lower::ImplicitIterSpace
*implicitSpace
= nullptr;
7253 ConstituentSemantics semant
= ConstituentSemantics::RefTransparent
;
7254 std::optional
<ConstituentSemantics
> nextPathSemant
;
7255 /// `lbounds`, `ubounds` are used in POINTER value assignments, which may only
7256 /// occur in an explicit iteration space.
7257 std::optional
<llvm::SmallVector
<mlir::Value
>> lbounds
;
7258 std::optional
<llvm::SmallVector
<mlir::Value
>> ubounds
;
7259 // Can the array expression be evaluated in any order?
7260 // Will be set to false if any of the expression parts prevent this.
7261 bool unordered
= true;
7262 // ProcedureRef currently being lowered. Used to retrieve the iteration shape
7263 // in elemental context with passed object.
7264 const Fortran::evaluate::ProcedureRef
*loweredProcRef
= nullptr;
7268 fir::ExtendedValue
Fortran::lower::createSomeExtendedExpression(
7269 mlir::Location loc
, Fortran::lower::AbstractConverter
&converter
,
7270 const Fortran::lower::SomeExpr
&expr
, Fortran::lower::SymMap
&symMap
,
7271 Fortran::lower::StatementContext
&stmtCtx
) {
7272 LLVM_DEBUG(expr
.AsFortran(llvm::dbgs() << "expr: ") << '\n');
7273 return ScalarExprLowering
{loc
, converter
, symMap
, stmtCtx
}.genval(expr
);
7276 fir::ExtendedValue
Fortran::lower::createSomeInitializerExpression(
7277 mlir::Location loc
, Fortran::lower::AbstractConverter
&converter
,
7278 const Fortran::lower::SomeExpr
&expr
, Fortran::lower::SymMap
&symMap
,
7279 Fortran::lower::StatementContext
&stmtCtx
) {
7280 LLVM_DEBUG(expr
.AsFortran(llvm::dbgs() << "expr: ") << '\n');
7281 return ScalarExprLowering
{loc
, converter
, symMap
, stmtCtx
,
7282 /*inInitializer=*/true}
7286 fir::ExtendedValue
Fortran::lower::createSomeExtendedAddress(
7287 mlir::Location loc
, Fortran::lower::AbstractConverter
&converter
,
7288 const Fortran::lower::SomeExpr
&expr
, Fortran::lower::SymMap
&symMap
,
7289 Fortran::lower::StatementContext
&stmtCtx
) {
7290 LLVM_DEBUG(expr
.AsFortran(llvm::dbgs() << "address: ") << '\n');
7291 return ScalarExprLowering(loc
, converter
, symMap
, stmtCtx
).gen(expr
);
7294 fir::ExtendedValue
Fortran::lower::createInitializerAddress(
7295 mlir::Location loc
, Fortran::lower::AbstractConverter
&converter
,
7296 const Fortran::lower::SomeExpr
&expr
, Fortran::lower::SymMap
&symMap
,
7297 Fortran::lower::StatementContext
&stmtCtx
) {
7298 LLVM_DEBUG(expr
.AsFortran(llvm::dbgs() << "address: ") << '\n');
7299 return ScalarExprLowering(loc
, converter
, symMap
, stmtCtx
,
7300 /*inInitializer=*/true)
7304 void Fortran::lower::createSomeArrayAssignment(
7305 Fortran::lower::AbstractConverter
&converter
,
7306 const Fortran::lower::SomeExpr
&lhs
, const Fortran::lower::SomeExpr
&rhs
,
7307 Fortran::lower::SymMap
&symMap
, Fortran::lower::StatementContext
&stmtCtx
) {
7308 LLVM_DEBUG(lhs
.AsFortran(llvm::dbgs() << "onto array: ") << '\n';
7309 rhs
.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';);
7310 ArrayExprLowering::lowerArrayAssignment(converter
, symMap
, stmtCtx
, lhs
, rhs
);
7313 void Fortran::lower::createSomeArrayAssignment(
7314 Fortran::lower::AbstractConverter
&converter
, const fir::ExtendedValue
&lhs
,
7315 const Fortran::lower::SomeExpr
&rhs
, Fortran::lower::SymMap
&symMap
,
7316 Fortran::lower::StatementContext
&stmtCtx
) {
7317 LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs
<< '\n';
7318 rhs
.AsFortran(llvm::dbgs() << "assign expression: ") << '\n';);
7319 ArrayExprLowering::lowerArrayAssignment(converter
, symMap
, stmtCtx
, lhs
, rhs
);
7321 void Fortran::lower::createSomeArrayAssignment(
7322 Fortran::lower::AbstractConverter
&converter
, const fir::ExtendedValue
&lhs
,
7323 const fir::ExtendedValue
&rhs
, Fortran::lower::SymMap
&symMap
,
7324 Fortran::lower::StatementContext
&stmtCtx
) {
7325 LLVM_DEBUG(llvm::dbgs() << "onto array: " << lhs
<< '\n';
7326 llvm::dbgs() << "assign expression: " << rhs
<< '\n';);
7327 ArrayExprLowering::lowerArrayAssignment(converter
, symMap
, stmtCtx
, lhs
, rhs
);
7330 void Fortran::lower::createAnyMaskedArrayAssignment(
7331 Fortran::lower::AbstractConverter
&converter
,
7332 const Fortran::lower::SomeExpr
&lhs
, const Fortran::lower::SomeExpr
&rhs
,
7333 Fortran::lower::ExplicitIterSpace
&explicitSpace
,
7334 Fortran::lower::ImplicitIterSpace
&implicitSpace
,
7335 Fortran::lower::SymMap
&symMap
, Fortran::lower::StatementContext
&stmtCtx
) {
7336 LLVM_DEBUG(lhs
.AsFortran(llvm::dbgs() << "onto array: ") << '\n';
7337 rhs
.AsFortran(llvm::dbgs() << "assign expression: ")
7338 << " given the explicit iteration space:\n"
7339 << explicitSpace
<< "\n and implied mask conditions:\n"
7340 << implicitSpace
<< '\n';);
7341 ArrayExprLowering::lowerAnyMaskedArrayAssignment(
7342 converter
, symMap
, stmtCtx
, lhs
, rhs
, explicitSpace
, implicitSpace
);
7345 void Fortran::lower::createAllocatableArrayAssignment(
7346 Fortran::lower::AbstractConverter
&converter
,
7347 const Fortran::lower::SomeExpr
&lhs
, const Fortran::lower::SomeExpr
&rhs
,
7348 Fortran::lower::ExplicitIterSpace
&explicitSpace
,
7349 Fortran::lower::ImplicitIterSpace
&implicitSpace
,
7350 Fortran::lower::SymMap
&symMap
, Fortran::lower::StatementContext
&stmtCtx
) {
7351 LLVM_DEBUG(lhs
.AsFortran(llvm::dbgs() << "defining array: ") << '\n';
7352 rhs
.AsFortran(llvm::dbgs() << "assign expression: ")
7353 << " given the explicit iteration space:\n"
7354 << explicitSpace
<< "\n and implied mask conditions:\n"
7355 << implicitSpace
<< '\n';);
7356 ArrayExprLowering::lowerAllocatableArrayAssignment(
7357 converter
, symMap
, stmtCtx
, lhs
, rhs
, explicitSpace
, implicitSpace
);
7360 void Fortran::lower::createArrayOfPointerAssignment(
7361 Fortran::lower::AbstractConverter
&converter
,
7362 const Fortran::lower::SomeExpr
&lhs
, const Fortran::lower::SomeExpr
&rhs
,
7363 Fortran::lower::ExplicitIterSpace
&explicitSpace
,
7364 Fortran::lower::ImplicitIterSpace
&implicitSpace
,
7365 const llvm::SmallVector
<mlir::Value
> &lbounds
,
7366 std::optional
<llvm::SmallVector
<mlir::Value
>> ubounds
,
7367 Fortran::lower::SymMap
&symMap
, Fortran::lower::StatementContext
&stmtCtx
) {
7368 LLVM_DEBUG(lhs
.AsFortran(llvm::dbgs() << "defining pointer: ") << '\n';
7369 rhs
.AsFortran(llvm::dbgs() << "assign expression: ")
7370 << " given the explicit iteration space:\n"
7371 << explicitSpace
<< "\n and implied mask conditions:\n"
7372 << implicitSpace
<< '\n';);
7373 assert(explicitSpace
.isActive() && "must be in FORALL construct");
7374 ArrayExprLowering::lowerArrayOfPointerAssignment(
7375 converter
, symMap
, stmtCtx
, lhs
, rhs
, explicitSpace
, implicitSpace
,
7379 fir::ExtendedValue
Fortran::lower::createSomeArrayTempValue(
7380 Fortran::lower::AbstractConverter
&converter
,
7381 const Fortran::lower::SomeExpr
&expr
, Fortran::lower::SymMap
&symMap
,
7382 Fortran::lower::StatementContext
&stmtCtx
) {
7383 LLVM_DEBUG(expr
.AsFortran(llvm::dbgs() << "array value: ") << '\n');
7384 return ArrayExprLowering::lowerNewArrayExpression(converter
, symMap
, stmtCtx
,
7388 void Fortran::lower::createLazyArrayTempValue(
7389 Fortran::lower::AbstractConverter
&converter
,
7390 const Fortran::lower::SomeExpr
&expr
, mlir::Value raggedHeader
,
7391 Fortran::lower::SymMap
&symMap
, Fortran::lower::StatementContext
&stmtCtx
) {
7392 LLVM_DEBUG(expr
.AsFortran(llvm::dbgs() << "array value: ") << '\n');
7393 ArrayExprLowering::lowerLazyArrayExpression(converter
, symMap
, stmtCtx
, expr
,
7398 Fortran::lower::createSomeArrayBox(Fortran::lower::AbstractConverter
&converter
,
7399 const Fortran::lower::SomeExpr
&expr
,
7400 Fortran::lower::SymMap
&symMap
,
7401 Fortran::lower::StatementContext
&stmtCtx
) {
7402 LLVM_DEBUG(expr
.AsFortran(llvm::dbgs() << "box designator: ") << '\n');
7403 return ArrayExprLowering::lowerBoxedArrayExpression(converter
, symMap
,
7407 fir::MutableBoxValue
Fortran::lower::createMutableBox(
7408 mlir::Location loc
, Fortran::lower::AbstractConverter
&converter
,
7409 const Fortran::lower::SomeExpr
&expr
, Fortran::lower::SymMap
&symMap
) {
7410 // MutableBox lowering StatementContext does not need to be propagated
7411 // to the caller because the result value is a variable, not a temporary
7412 // expression. The StatementContext clean-up can occur before using the
7413 // resulting MutableBoxValue. Variables of all other types are handled in the
7415 Fortran::lower::StatementContext dummyStmtCtx
;
7416 return ScalarExprLowering
{loc
, converter
, symMap
, dummyStmtCtx
}
7417 .genMutableBoxValue(expr
);
7420 bool Fortran::lower::isParentComponent(const Fortran::lower::SomeExpr
&expr
) {
7421 if (const Fortran::semantics::Symbol
* symbol
{GetLastSymbol(expr
)}) {
7422 if (symbol
->test(Fortran::semantics::Symbol::Flag::ParentComp
))
7428 // Handling special case where the last component is referring to the
7429 // parent component.
7434 // TYPE, EXTENDS(t) :: t2
7439 // y(:)%t ! just need to update the box with a slice pointing to the first
7440 // ! component of `t`.
7441 // a%t ! simple conversion to TYPE(t).
7442 fir::ExtendedValue
Fortran::lower::updateBoxForParentComponent(
7443 Fortran::lower::AbstractConverter
&converter
, fir::ExtendedValue box
,
7444 const Fortran::lower::SomeExpr
&expr
) {
7445 mlir::Location loc
= converter
.getCurrentLocation();
7446 auto &builder
= converter
.getFirOpBuilder();
7447 mlir::Value boxBase
= fir::getBase(box
);
7448 mlir::Operation
*op
= boxBase
.getDefiningOp();
7449 mlir::Type actualTy
= converter
.genType(expr
);
7452 if (auto embox
= mlir::dyn_cast
<fir::EmboxOp
>(op
)) {
7453 auto newBox
= builder
.create
<fir::EmboxOp
>(
7454 loc
, fir::BoxType::get(actualTy
), embox
.getMemref(), embox
.getShape(),
7455 embox
.getSlice(), embox
.getTypeparams());
7456 return fir::substBase(box
, newBox
);
7458 if (auto rebox
= mlir::dyn_cast
<fir::ReboxOp
>(op
)) {
7459 auto newBox
= builder
.create
<fir::ReboxOp
>(
7460 loc
, fir::BoxType::get(actualTy
), rebox
.getBox(), rebox
.getShape(),
7462 return fir::substBase(box
, newBox
);
7467 mlir::ValueRange emptyRange
;
7468 return builder
.create
<fir::ReboxOp
>(loc
, fir::BoxType::get(actualTy
), boxBase
,
7473 fir::ExtendedValue
Fortran::lower::createBoxValue(
7474 mlir::Location loc
, Fortran::lower::AbstractConverter
&converter
,
7475 const Fortran::lower::SomeExpr
&expr
, Fortran::lower::SymMap
&symMap
,
7476 Fortran::lower::StatementContext
&stmtCtx
) {
7477 if (expr
.Rank() > 0 && Fortran::evaluate::IsVariable(expr
) &&
7478 !Fortran::evaluate::HasVectorSubscript(expr
)) {
7479 fir::ExtendedValue result
=
7480 Fortran::lower::createSomeArrayBox(converter
, expr
, symMap
, stmtCtx
);
7481 if (isParentComponent(expr
))
7482 result
= updateBoxForParentComponent(converter
, result
, expr
);
7485 fir::ExtendedValue addr
= Fortran::lower::createSomeExtendedAddress(
7486 loc
, converter
, expr
, symMap
, stmtCtx
);
7487 fir::ExtendedValue result
= fir::BoxValue(
7488 converter
.getFirOpBuilder().createBox(loc
, addr
, addr
.isPolymorphic()));
7489 if (isParentComponent(expr
))
7490 result
= updateBoxForParentComponent(converter
, result
, expr
);
7494 mlir::Value
Fortran::lower::createSubroutineCall(
7495 AbstractConverter
&converter
, const evaluate::ProcedureRef
&call
,
7496 ExplicitIterSpace
&explicitIterSpace
, ImplicitIterSpace
&implicitIterSpace
,
7497 SymMap
&symMap
, StatementContext
&stmtCtx
, bool isUserDefAssignment
) {
7498 mlir::Location loc
= converter
.getCurrentLocation();
7500 if (isUserDefAssignment
) {
7501 assert(call
.arguments().size() == 2);
7502 const auto *lhs
= call
.arguments()[0].value().UnwrapExpr();
7503 const auto *rhs
= call
.arguments()[1].value().UnwrapExpr();
7504 assert(lhs
&& rhs
&&
7505 "user defined assignment arguments must be expressions");
7506 if (call
.IsElemental() && lhs
->Rank() > 0) {
7507 // Elemental user defined assignment has special requirements to deal with
7508 // LHS/RHS overlaps. See 10.2.1.5 p2.
7509 ArrayExprLowering::lowerElementalUserAssignment(
7510 converter
, symMap
, stmtCtx
, explicitIterSpace
, implicitIterSpace
,
7512 } else if (explicitIterSpace
.isActive() && lhs
->Rank() == 0) {
7513 // Scalar defined assignment (elemental or not) in a FORALL context.
7514 mlir::func::FuncOp func
=
7515 Fortran::lower::CallerInterface(call
, converter
).getFuncOp();
7516 ArrayExprLowering::lowerScalarUserAssignment(
7517 converter
, symMap
, stmtCtx
, explicitIterSpace
, func
, *lhs
, *rhs
);
7518 } else if (explicitIterSpace
.isActive()) {
7519 // TODO: need to array fetch/modify sub-arrays?
7520 TODO(loc
, "non elemental user defined array assignment inside FORALL");
7522 if (!implicitIterSpace
.empty())
7523 fir::emitFatalError(
7525 "C1032: user defined assignment inside WHERE must be elemental");
7526 // Non elemental user defined assignment outside of FORALL and WHERE.
7527 // FIXME: The non elemental user defined assignment case with array
7528 // arguments must be take into account potential overlap. So far the front
7529 // end does not add parentheses around the RHS argument in the call as it
7530 // should according to 15.4.3.4.3 p2.
7531 Fortran::lower::createSomeExtendedExpression(
7532 loc
, converter
, toEvExpr(call
), symMap
, stmtCtx
);
7537 assert(implicitIterSpace
.empty() && !explicitIterSpace
.isActive() &&
7538 "subroutine calls are not allowed inside WHERE and FORALL");
7540 if (isElementalProcWithArrayArgs(call
)) {
7541 ArrayExprLowering::lowerElementalSubroutine(converter
, symMap
, stmtCtx
,
7545 // Simple subroutine call, with potential alternate return.
7546 auto res
= Fortran::lower::createSomeExtendedExpression(
7547 loc
, converter
, toEvExpr(call
), symMap
, stmtCtx
);
7548 return fir::getBase(res
);
7551 template <typename A
>
7552 fir::ArrayLoadOp
genArrayLoad(mlir::Location loc
,
7553 Fortran::lower::AbstractConverter
&converter
,
7554 fir::FirOpBuilder
&builder
, const A
*x
,
7555 Fortran::lower::SymMap
&symMap
,
7556 Fortran::lower::StatementContext
&stmtCtx
) {
7557 auto exv
= ScalarExprLowering
{loc
, converter
, symMap
, stmtCtx
}.gen(*x
);
7558 mlir::Value addr
= fir::getBase(exv
);
7559 mlir::Value shapeOp
= builder
.createShape(loc
, exv
);
7560 mlir::Type arrTy
= fir::dyn_cast_ptrOrBoxEleTy(addr
.getType());
7561 return builder
.create
<fir::ArrayLoadOp
>(loc
, arrTy
, addr
, shapeOp
,
7562 /*slice=*/mlir::Value
{},
7563 fir::getTypeParams(exv
));
7567 genArrayLoad(mlir::Location loc
, Fortran::lower::AbstractConverter
&converter
,
7568 fir::FirOpBuilder
&builder
, const Fortran::evaluate::ArrayRef
*x
,
7569 Fortran::lower::SymMap
&symMap
,
7570 Fortran::lower::StatementContext
&stmtCtx
) {
7571 if (x
->base().IsSymbol())
7572 return genArrayLoad(loc
, converter
, builder
, &getLastSym(x
->base()), symMap
,
7574 return genArrayLoad(loc
, converter
, builder
, &x
->base().GetComponent(),
7578 void Fortran::lower::createArrayLoads(
7579 Fortran::lower::AbstractConverter
&converter
,
7580 Fortran::lower::ExplicitIterSpace
&esp
, Fortran::lower::SymMap
&symMap
) {
7581 std::size_t counter
= esp
.getCounter();
7582 fir::FirOpBuilder
&builder
= converter
.getFirOpBuilder();
7583 mlir::Location loc
= converter
.getCurrentLocation();
7584 Fortran::lower::StatementContext
&stmtCtx
= esp
.stmtContext();
7585 // Gen the fir.array_load ops.
7586 auto genLoad
= [&](const auto *x
) -> fir::ArrayLoadOp
{
7587 return genArrayLoad(loc
, converter
, builder
, x
, symMap
, stmtCtx
);
7589 if (esp
.lhsBases
[counter
]) {
7590 auto &base
= *esp
.lhsBases
[counter
];
7591 auto load
= Fortran::common::visit(genLoad
, base
);
7592 esp
.initialArgs
.push_back(load
);
7593 esp
.resetInnerArgs();
7594 esp
.bindLoad(base
, load
);
7596 for (const auto &base
: esp
.rhsBases
[counter
])
7597 esp
.bindLoad(base
, Fortran::common::visit(genLoad
, base
));
7600 void Fortran::lower::createArrayMergeStores(
7601 Fortran::lower::AbstractConverter
&converter
,
7602 Fortran::lower::ExplicitIterSpace
&esp
) {
7603 fir::FirOpBuilder
&builder
= converter
.getFirOpBuilder();
7604 mlir::Location loc
= converter
.getCurrentLocation();
7605 builder
.setInsertionPointAfter(esp
.getOuterLoop());
7606 // Gen the fir.array_merge_store ops for all LHS arrays.
7607 for (auto i
: llvm::enumerate(esp
.getOuterLoop().getResults()))
7608 if (std::optional
<fir::ArrayLoadOp
> ldOpt
= esp
.getLhsLoad(i
.index())) {
7609 fir::ArrayLoadOp load
= *ldOpt
;
7610 builder
.create
<fir::ArrayMergeStoreOp
>(loc
, load
, i
.value(),
7611 load
.getMemref(), load
.getSlice(),
7612 load
.getTypeparams());
7614 if (esp
.loopCleanup
) {
7615 (*esp
.loopCleanup
)(builder
);
7616 esp
.loopCleanup
= std::nullopt
;
7618 esp
.initialArgs
.clear();
7619 esp
.innerArgs
.clear();
7620 esp
.outerLoop
= std::nullopt
;
7621 esp
.resetBindings();
7622 esp
.incrementCounter();
7625 mlir::Value
Fortran::lower::addCrayPointerInst(mlir::Location loc
,
7626 fir::FirOpBuilder
&builder
,
7632 mlir::ValueRange emptyRange
;
7633 auto boxTy
= fir::BoxType::get(ptrTy
);
7634 auto box
= builder
.create
<fir::EmboxOp
>(loc
, boxTy
, ptrVal
, empty
, empty
,
7636 mlir::Value addrof
=
7637 (mlir::isa
<fir::ReferenceType
>(ptrTy
))
7638 ? builder
.create
<fir::BoxAddrOp
>(loc
, ptrTy
, box
)
7639 : builder
.create
<fir::BoxAddrOp
>(loc
, builder
.getRefType(ptrTy
), box
);
7642 builder
.getRefType(fir::PointerType::get(fir::dyn_cast_ptrEleTy(pteTy
)));
7643 return builder
.createConvert(loc
, refPtrTy
, addrof
);