[mlir][linalg] Add support for masked vectorization of `tensor.insert_slice` (1/N...
[llvm-project.git] / llvm / lib / Analysis / ConstraintSystem.cpp
blob7216a0219080f4f1cbc32a1c2ffe6a68cf790461
1 //===- ConstraintSytem.cpp - A system of linear constraints. ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/ConstraintSystem.h"
10 #include "llvm/ADT/SmallVector.h"
11 #include "llvm/Support/MathExtras.h"
12 #include "llvm/ADT/StringExtras.h"
13 #include "llvm/IR/Value.h"
14 #include "llvm/Support/Debug.h"
16 #include <string>
18 using namespace llvm;
20 #define DEBUG_TYPE "constraint-system"
22 bool ConstraintSystem::eliminateUsingFM() {
23 // Implementation of Fourier–Motzkin elimination, with some tricks from the
24 // paper Pugh, William. "The Omega test: a fast and practical integer
25 // programming algorithm for dependence
26 // analysis."
27 // Supercomputing'91: Proceedings of the 1991 ACM/
28 // IEEE conference on Supercomputing. IEEE, 1991.
29 assert(!Constraints.empty() &&
30 "should only be called for non-empty constraint systems");
32 unsigned LastIdx = NumVariables - 1;
34 // First, either remove the variable in place if it is 0 or add the row to
35 // RemainingRows and remove it from the system.
36 SmallVector<SmallVector<Entry, 8>, 4> RemainingRows;
37 for (unsigned R1 = 0; R1 < Constraints.size();) {
38 SmallVector<Entry, 8> &Row1 = Constraints[R1];
39 if (getLastCoefficient(Row1, LastIdx) == 0) {
40 if (Row1.size() > 0 && Row1.back().Id == LastIdx)
41 Row1.pop_back();
42 R1++;
43 } else {
44 std::swap(Constraints[R1], Constraints.back());
45 RemainingRows.push_back(std::move(Constraints.back()));
46 Constraints.pop_back();
50 // Process rows where the variable is != 0.
51 unsigned NumRemainingConstraints = RemainingRows.size();
52 for (unsigned R1 = 0; R1 < NumRemainingConstraints; R1++) {
53 // FIXME do not use copy
54 for (unsigned R2 = R1 + 1; R2 < NumRemainingConstraints; R2++) {
55 int64_t UpperLast = getLastCoefficient(RemainingRows[R2], LastIdx);
56 int64_t LowerLast = getLastCoefficient(RemainingRows[R1], LastIdx);
57 assert(
58 UpperLast != 0 && LowerLast != 0 &&
59 "RemainingRows should only contain rows where the variable is != 0");
61 if ((LowerLast < 0 && UpperLast < 0) || (LowerLast > 0 && UpperLast > 0))
62 continue;
64 unsigned LowerR = R1;
65 unsigned UpperR = R2;
66 if (UpperLast < 0) {
67 std::swap(LowerR, UpperR);
68 std::swap(LowerLast, UpperLast);
71 SmallVector<Entry, 8> NR;
72 unsigned IdxUpper = 0;
73 unsigned IdxLower = 0;
74 auto &LowerRow = RemainingRows[LowerR];
75 auto &UpperRow = RemainingRows[UpperR];
76 while (true) {
77 if (IdxUpper >= UpperRow.size() || IdxLower >= LowerRow.size())
78 break;
79 int64_t M1, M2, N;
80 int64_t UpperV = 0;
81 int64_t LowerV = 0;
82 uint16_t CurrentId = std::numeric_limits<uint16_t>::max();
83 if (IdxUpper < UpperRow.size()) {
84 CurrentId = std::min(UpperRow[IdxUpper].Id, CurrentId);
86 if (IdxLower < LowerRow.size()) {
87 CurrentId = std::min(LowerRow[IdxLower].Id, CurrentId);
90 if (IdxUpper < UpperRow.size() && UpperRow[IdxUpper].Id == CurrentId) {
91 UpperV = UpperRow[IdxUpper].Coefficient;
92 IdxUpper++;
95 if (MulOverflow(UpperV, -1 * LowerLast, M1))
96 return false;
97 if (IdxLower < LowerRow.size() && LowerRow[IdxLower].Id == CurrentId) {
98 LowerV = LowerRow[IdxLower].Coefficient;
99 IdxLower++;
102 if (MulOverflow(LowerV, UpperLast, M2))
103 return false;
104 if (AddOverflow(M1, M2, N))
105 return false;
106 if (N == 0)
107 continue;
108 NR.emplace_back(N, CurrentId);
110 if (NR.empty())
111 continue;
112 Constraints.push_back(std::move(NR));
113 // Give up if the new system gets too big.
114 if (Constraints.size() > 500)
115 return false;
118 NumVariables -= 1;
120 return true;
123 bool ConstraintSystem::mayHaveSolutionImpl() {
124 while (!Constraints.empty() && NumVariables > 1) {
125 if (!eliminateUsingFM())
126 return true;
129 if (Constraints.empty() || NumVariables > 1)
130 return true;
132 return all_of(Constraints, [](auto &R) {
133 if (R.empty())
134 return true;
135 if (R[0].Id == 0)
136 return R[0].Coefficient >= 0;
137 return true;
141 SmallVector<std::string> ConstraintSystem::getVarNamesList() const {
142 SmallVector<std::string> Names(Value2Index.size(), "");
143 #ifndef NDEBUG
144 for (auto &[V, Index] : Value2Index) {
145 std::string OperandName;
146 if (V->getName().empty())
147 OperandName = V->getNameOrAsOperand();
148 else
149 OperandName = std::string("%") + V->getName().str();
150 Names[Index - 1] = OperandName;
152 #endif
153 return Names;
156 void ConstraintSystem::dump() const {
157 #ifndef NDEBUG
158 if (Constraints.empty())
159 return;
160 SmallVector<std::string> Names = getVarNamesList();
161 for (const auto &Row : Constraints) {
162 SmallVector<std::string, 16> Parts;
163 for (const Entry &E : Row) {
164 if (E.Id >= NumVariables)
165 break;
166 if (E.Id == 0)
167 continue;
168 std::string Coefficient;
169 if (E.Coefficient != 1)
170 Coefficient = std::to_string(E.Coefficient) + " * ";
171 Parts.push_back(Coefficient + Names[E.Id - 1]);
173 // assert(!Parts.empty() && "need to have at least some parts");
174 int64_t ConstPart = 0;
175 if (Row[0].Id == 0)
176 ConstPart = Row[0].Coefficient;
177 LLVM_DEBUG(dbgs() << join(Parts, std::string(" + "))
178 << " <= " << std::to_string(ConstPart) << "\n");
180 #endif
183 bool ConstraintSystem::mayHaveSolution() {
184 LLVM_DEBUG(dbgs() << "---\n");
185 LLVM_DEBUG(dump());
186 bool HasSolution = mayHaveSolutionImpl();
187 LLVM_DEBUG(dbgs() << (HasSolution ? "sat" : "unsat") << "\n");
188 return HasSolution;
191 bool ConstraintSystem::isConditionImplied(SmallVector<int64_t, 8> R) const {
192 // If all variable coefficients are 0, we have 'C >= 0'. If the constant is >=
193 // 0, R is always true, regardless of the system.
194 if (all_of(ArrayRef(R).drop_front(1), [](int64_t C) { return C == 0; }))
195 return R[0] >= 0;
197 // If there is no solution with the negation of R added to the system, the
198 // condition must hold based on the existing constraints.
199 R = ConstraintSystem::negate(R);
200 if (R.empty())
201 return false;
203 auto NewSystem = *this;
204 NewSystem.addVariableRow(R);
205 return !NewSystem.mayHaveSolution();