1 //===- FunctionPropertiesAnalysis.cpp - Function Properties Analysis ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the FunctionPropertiesInfo and FunctionPropertiesAnalysis
10 // classes used to extract function properties.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/FunctionPropertiesAnalysis.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/IR/CFG.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Dominators.h"
21 #include "llvm/IR/Instructions.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/Support/CommandLine.h"
29 cl::opt
<bool> EnableDetailedFunctionProperties(
30 "enable-detailed-function-properties", cl::Hidden
, cl::init(false),
31 cl::desc("Whether or not to compute detailed function properties."));
33 cl::opt
<unsigned> BigBasicBlockInstructionThreshold(
34 "big-basic-block-instruction-threshold", cl::Hidden
, cl::init(500),
35 cl::desc("The minimum number of instructions a basic block should contain "
36 "before being considered big."));
38 cl::opt
<unsigned> MediumBasicBlockInstructionThreshold(
39 "medium-basic-block-instruction-threshold", cl::Hidden
, cl::init(15),
40 cl::desc("The minimum number of instructions a basic block should contain "
41 "before being considered medium-sized."));
44 static cl::opt
<unsigned> CallWithManyArgumentsThreshold(
45 "call-with-many-arguments-threshold", cl::Hidden
, cl::init(4),
46 cl::desc("The minimum number of arguments a function call must have before "
47 "it is considered having many arguments."));
50 int64_t getNumBlocksFromCond(const BasicBlock
&BB
) {
52 if (const auto *BI
= dyn_cast
<BranchInst
>(BB
.getTerminator())) {
53 if (BI
->isConditional())
54 Ret
+= BI
->getNumSuccessors();
55 } else if (const auto *SI
= dyn_cast
<SwitchInst
>(BB
.getTerminator())) {
56 Ret
+= (SI
->getNumCases() + (nullptr != SI
->getDefaultDest()));
61 int64_t getUses(const Function
&F
) {
62 return ((!F
.hasLocalLinkage()) ? 1 : 0) + F
.getNumUses();
66 void FunctionPropertiesInfo::reIncludeBB(const BasicBlock
&BB
) {
70 void FunctionPropertiesInfo::updateForBB(const BasicBlock
&BB
,
72 assert(Direction
== 1 || Direction
== -1);
73 BasicBlockCount
+= Direction
;
74 BlocksReachedFromConditionalInstruction
+=
75 (Direction
* getNumBlocksFromCond(BB
));
76 for (const auto &I
: BB
) {
77 if (auto *CS
= dyn_cast
<CallBase
>(&I
)) {
78 const auto *Callee
= CS
->getCalledFunction();
79 if (Callee
&& !Callee
->isIntrinsic() && !Callee
->isDeclaration())
80 DirectCallsToDefinedFunctions
+= Direction
;
82 if (I
.getOpcode() == Instruction::Load
) {
83 LoadInstCount
+= Direction
;
84 } else if (I
.getOpcode() == Instruction::Store
) {
85 StoreInstCount
+= Direction
;
88 TotalInstructionCount
+= Direction
* BB
.sizeWithoutDebug();
90 if (EnableDetailedFunctionProperties
) {
91 unsigned SuccessorCount
= succ_size(&BB
);
92 if (SuccessorCount
== 1)
93 BasicBlocksWithSingleSuccessor
+= Direction
;
94 else if (SuccessorCount
== 2)
95 BasicBlocksWithTwoSuccessors
+= Direction
;
96 else if (SuccessorCount
> 2)
97 BasicBlocksWithMoreThanTwoSuccessors
+= Direction
;
99 unsigned PredecessorCount
= pred_size(&BB
);
100 if (PredecessorCount
== 1)
101 BasicBlocksWithSinglePredecessor
+= Direction
;
102 else if (PredecessorCount
== 2)
103 BasicBlocksWithTwoPredecessors
+= Direction
;
104 else if (PredecessorCount
> 2)
105 BasicBlocksWithMoreThanTwoPredecessors
+= Direction
;
107 if (TotalInstructionCount
> BigBasicBlockInstructionThreshold
)
108 BigBasicBlocks
+= Direction
;
109 else if (TotalInstructionCount
> MediumBasicBlockInstructionThreshold
)
110 MediumBasicBlocks
+= Direction
;
112 SmallBasicBlocks
+= Direction
;
114 // Calculate critical edges by looking through all successors of a basic
115 // block that has multiple successors and finding ones that have multiple
116 // predecessors, which represent critical edges.
117 if (SuccessorCount
> 1) {
118 for (const auto *Successor
: successors(&BB
)) {
119 if (pred_size(Successor
) > 1)
120 CriticalEdgeCount
+= Direction
;
124 ControlFlowEdgeCount
+= Direction
* SuccessorCount
;
126 if (const auto *BI
= dyn_cast
<BranchInst
>(BB
.getTerminator())) {
127 if (!BI
->isConditional())
128 UnconditionalBranchCount
+= Direction
;
131 for (const Instruction
&I
: BB
.instructionsWithoutDebug()) {
133 CastInstructionCount
+= Direction
;
135 if (I
.getType()->isFloatTy())
136 FloatingPointInstructionCount
+= Direction
;
137 else if (I
.getType()->isIntegerTy())
138 IntegerInstructionCount
+= Direction
;
140 if (isa
<IntrinsicInst
>(I
))
143 if (const auto *Call
= dyn_cast
<CallInst
>(&I
)) {
144 if (Call
->isIndirectCall())
145 IndirectCallCount
+= Direction
;
147 DirectCallCount
+= Direction
;
149 if (Call
->getType()->isIntegerTy())
150 CallReturnsIntegerCount
+= Direction
;
151 else if (Call
->getType()->isFloatingPointTy())
152 CallReturnsFloatCount
+= Direction
;
153 else if (Call
->getType()->isPointerTy())
154 CallReturnsPointerCount
+= Direction
;
155 else if (Call
->getType()->isVectorTy()) {
156 if (Call
->getType()->getScalarType()->isIntegerTy())
157 CallReturnsVectorIntCount
+= Direction
;
158 else if (Call
->getType()->getScalarType()->isFloatingPointTy())
159 CallReturnsVectorFloatCount
+= Direction
;
160 else if (Call
->getType()->getScalarType()->isPointerTy())
161 CallReturnsVectorPointerCount
+= Direction
;
164 if (Call
->arg_size() > CallWithManyArgumentsThreshold
)
165 CallWithManyArgumentsCount
+= Direction
;
167 for (const auto &Arg
: Call
->args()) {
168 if (Arg
->getType()->isPointerTy()) {
169 CallWithPointerArgumentCount
+= Direction
;
175 #define COUNT_OPERAND(OPTYPE) \
176 if (isa<OPTYPE>(Operand)) { \
177 OPTYPE##OperandCount += Direction; \
181 for (unsigned int OperandIndex
= 0; OperandIndex
< I
.getNumOperands();
183 Value
*Operand
= I
.getOperand(OperandIndex
);
184 COUNT_OPERAND(GlobalValue
)
185 COUNT_OPERAND(ConstantInt
)
186 COUNT_OPERAND(ConstantFP
)
187 COUNT_OPERAND(Constant
)
188 COUNT_OPERAND(Instruction
)
189 COUNT_OPERAND(BasicBlock
)
190 COUNT_OPERAND(InlineAsm
)
191 COUNT_OPERAND(Argument
)
193 // We only get to this point if we haven't matched any of the other
195 UnknownOperandCount
+= Direction
;
203 void FunctionPropertiesInfo::updateAggregateStats(const Function
&F
,
204 const LoopInfo
&LI
) {
207 TopLevelLoopCount
= llvm::size(LI
);
209 std::deque
<const Loop
*> Worklist
;
210 llvm::append_range(Worklist
, LI
);
211 while (!Worklist
.empty()) {
212 const auto *L
= Worklist
.front();
214 std::max(MaxLoopDepth
, static_cast<int64_t>(L
->getLoopDepth()));
215 Worklist
.pop_front();
216 llvm::append_range(Worklist
, L
->getSubLoops());
220 FunctionPropertiesInfo
FunctionPropertiesInfo::getFunctionPropertiesInfo(
221 Function
&F
, FunctionAnalysisManager
&FAM
) {
222 return getFunctionPropertiesInfo(F
, FAM
.getResult
<DominatorTreeAnalysis
>(F
),
223 FAM
.getResult
<LoopAnalysis
>(F
));
226 FunctionPropertiesInfo
FunctionPropertiesInfo::getFunctionPropertiesInfo(
227 const Function
&F
, const DominatorTree
&DT
, const LoopInfo
&LI
) {
229 FunctionPropertiesInfo FPI
;
230 for (const auto &BB
: F
)
231 if (DT
.isReachableFromEntry(&BB
))
233 FPI
.updateAggregateStats(F
, LI
);
237 void FunctionPropertiesInfo::print(raw_ostream
&OS
) const {
238 #define PRINT_PROPERTY(PROP_NAME) OS << #PROP_NAME ": " << PROP_NAME << "\n";
240 PRINT_PROPERTY(BasicBlockCount
)
241 PRINT_PROPERTY(BlocksReachedFromConditionalInstruction
)
243 PRINT_PROPERTY(DirectCallsToDefinedFunctions
)
244 PRINT_PROPERTY(LoadInstCount
)
245 PRINT_PROPERTY(StoreInstCount
)
246 PRINT_PROPERTY(MaxLoopDepth
)
247 PRINT_PROPERTY(TopLevelLoopCount
)
248 PRINT_PROPERTY(TotalInstructionCount
)
250 if (EnableDetailedFunctionProperties
) {
251 PRINT_PROPERTY(BasicBlocksWithSingleSuccessor
)
252 PRINT_PROPERTY(BasicBlocksWithTwoSuccessors
)
253 PRINT_PROPERTY(BasicBlocksWithMoreThanTwoSuccessors
)
254 PRINT_PROPERTY(BasicBlocksWithSinglePredecessor
)
255 PRINT_PROPERTY(BasicBlocksWithTwoPredecessors
)
256 PRINT_PROPERTY(BasicBlocksWithMoreThanTwoPredecessors
)
257 PRINT_PROPERTY(BigBasicBlocks
)
258 PRINT_PROPERTY(MediumBasicBlocks
)
259 PRINT_PROPERTY(SmallBasicBlocks
)
260 PRINT_PROPERTY(CastInstructionCount
)
261 PRINT_PROPERTY(FloatingPointInstructionCount
)
262 PRINT_PROPERTY(IntegerInstructionCount
)
263 PRINT_PROPERTY(ConstantIntOperandCount
)
264 PRINT_PROPERTY(ConstantFPOperandCount
)
265 PRINT_PROPERTY(ConstantOperandCount
)
266 PRINT_PROPERTY(InstructionOperandCount
)
267 PRINT_PROPERTY(BasicBlockOperandCount
)
268 PRINT_PROPERTY(GlobalValueOperandCount
)
269 PRINT_PROPERTY(InlineAsmOperandCount
)
270 PRINT_PROPERTY(ArgumentOperandCount
)
271 PRINT_PROPERTY(UnknownOperandCount
)
272 PRINT_PROPERTY(CriticalEdgeCount
)
273 PRINT_PROPERTY(ControlFlowEdgeCount
)
274 PRINT_PROPERTY(UnconditionalBranchCount
)
275 PRINT_PROPERTY(IntrinsicCount
)
276 PRINT_PROPERTY(DirectCallCount
)
277 PRINT_PROPERTY(IndirectCallCount
)
278 PRINT_PROPERTY(CallReturnsIntegerCount
)
279 PRINT_PROPERTY(CallReturnsFloatCount
)
280 PRINT_PROPERTY(CallReturnsPointerCount
)
281 PRINT_PROPERTY(CallReturnsVectorIntCount
)
282 PRINT_PROPERTY(CallReturnsVectorFloatCount
)
283 PRINT_PROPERTY(CallReturnsVectorPointerCount
)
284 PRINT_PROPERTY(CallWithManyArgumentsCount
)
285 PRINT_PROPERTY(CallWithPointerArgumentCount
)
288 #undef PRINT_PROPERTY
293 AnalysisKey
FunctionPropertiesAnalysis::Key
;
295 FunctionPropertiesInfo
296 FunctionPropertiesAnalysis::run(Function
&F
, FunctionAnalysisManager
&FAM
) {
297 return FunctionPropertiesInfo::getFunctionPropertiesInfo(F
, FAM
);
301 FunctionPropertiesPrinterPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
302 OS
<< "Printing analysis results of CFA for function "
303 << "'" << F
.getName() << "':"
305 AM
.getResult
<FunctionPropertiesAnalysis
>(F
).print(OS
);
306 return PreservedAnalyses::all();
309 FunctionPropertiesUpdater::FunctionPropertiesUpdater(
310 FunctionPropertiesInfo
&FPI
, CallBase
&CB
)
311 : FPI(FPI
), CallSiteBB(*CB
.getParent()), Caller(*CallSiteBB
.getParent()) {
312 assert(isa
<CallInst
>(CB
) || isa
<InvokeInst
>(CB
));
313 // For BBs that are likely to change, we subtract from feature totals their
314 // contribution. Some features, like max loop counts or depths, are left
315 // invalid, as they will be updated post-inlining.
316 SmallPtrSet
<const BasicBlock
*, 4> LikelyToChangeBBs
;
317 // The CB BB will change - it'll either be split or the callee's body (single
318 // BB) will be pasted in.
319 LikelyToChangeBBs
.insert(&CallSiteBB
);
321 // The caller's entry BB may change due to new alloca instructions.
322 LikelyToChangeBBs
.insert(&*Caller
.begin());
324 // The successors may become unreachable in the case of `invoke` inlining.
325 // We track successors separately, too, because they form a boundary, together
326 // with the CB BB ('Entry') between which the inlined callee will be pasted.
327 Successors
.insert(succ_begin(&CallSiteBB
), succ_end(&CallSiteBB
));
329 // the outcome of the inlining may be that some edges get lost (DCEd BBs
330 // because inlining brought some constant, for example). We don't know which
331 // edges will be removed, so we list all of them as potentially removable.
332 // Some BBs have (at this point) duplicate edges. Remove duplicates, otherwise
333 // the DT updater will not apply changes correctly.
334 DenseSet
<const BasicBlock
*> Inserted
;
335 for (auto *Succ
: successors(&CallSiteBB
))
336 if (Inserted
.insert(Succ
).second
)
337 DomTreeUpdates
.emplace_back(DominatorTree::UpdateKind::Delete
,
338 const_cast<BasicBlock
*>(&CallSiteBB
),
339 const_cast<BasicBlock
*>(Succ
));
340 // Reuse Inserted (which has some allocated capacity at this point) below, if
341 // we have an invoke.
343 // Inlining only handles invoke and calls. If this is an invoke, and inlining
344 // it pulls another invoke, the original landing pad may get split, so as to
345 // share its content with other potential users. So the edge up to which we
346 // need to invalidate and then re-account BB data is the successors of the
347 // current landing pad. We can leave the current lp, too - if it doesn't get
348 // split, then it will be the place traversal stops. Either way, the
349 // discounted BBs will be checked if reachable and re-added.
350 if (const auto *II
= dyn_cast
<InvokeInst
>(&CB
)) {
351 const auto *UnwindDest
= II
->getUnwindDest();
352 Successors
.insert(succ_begin(UnwindDest
), succ_end(UnwindDest
));
353 // Same idea as above, we pretend we lose all these edges.
354 for (auto *Succ
: successors(UnwindDest
))
355 if (Inserted
.insert(Succ
).second
)
356 DomTreeUpdates
.emplace_back(DominatorTree::UpdateKind::Delete
,
357 const_cast<BasicBlock
*>(UnwindDest
),
358 const_cast<BasicBlock
*>(Succ
));
361 // Exclude the CallSiteBB, if it happens to be its own successor (1-BB loop).
362 // We are only interested in BBs the graph moves past the callsite BB to
363 // define the frontier past which we don't want to re-process BBs. Including
364 // the callsite BB in this case would prematurely stop the traversal in
366 Successors
.erase(&CallSiteBB
);
368 for (const auto *BB
: Successors
)
369 LikelyToChangeBBs
.insert(BB
);
371 // Commit the change. While some of the BBs accounted for above may play dual
372 // role - e.g. caller's entry BB may be the same as the callsite BB - set
373 // insertion semantics make sure we account them once. This needs to be
374 // followed in `finish`, too.
375 for (const auto *BB
: LikelyToChangeBBs
)
376 FPI
.updateForBB(*BB
, -1);
379 DominatorTree
&FunctionPropertiesUpdater::getUpdatedDominatorTree(
380 FunctionAnalysisManager
&FAM
) const {
382 FAM
.getResult
<DominatorTreeAnalysis
>(const_cast<Function
&>(Caller
));
384 SmallVector
<DominatorTree::UpdateType
, 2> FinalDomTreeUpdates
;
386 DenseSet
<const BasicBlock
*> Inserted
;
387 for (auto *Succ
: successors(&CallSiteBB
))
388 if (Inserted
.insert(Succ
).second
)
389 FinalDomTreeUpdates
.push_back({DominatorTree::UpdateKind::Insert
,
390 const_cast<BasicBlock
*>(&CallSiteBB
),
391 const_cast<BasicBlock
*>(Succ
)});
393 // Perform the deletes last, so that any new nodes connected to nodes
394 // participating in the edge deletion are known to the DT.
395 for (auto &Upd
: DomTreeUpdates
)
396 if (!llvm::is_contained(successors(Upd
.getFrom()), Upd
.getTo()))
397 FinalDomTreeUpdates
.push_back(Upd
);
399 DT
.applyUpdates(FinalDomTreeUpdates
);
400 #ifdef EXPENSIVE_CHECKS
401 assert(DT
.verify(DominatorTree::VerificationLevel::Full
));
406 void FunctionPropertiesUpdater::finish(FunctionAnalysisManager
&FAM
) const {
407 // Update feature values from the BBs that were copied from the callee, or
408 // might have been modified because of inlining. The latter have been
409 // subtracted in the FunctionPropertiesUpdater ctor.
410 // There could be successors that were reached before but now are only
411 // reachable from elsewhere in the CFG.
412 // One example is the following diamond CFG (lines are arrows pointing down):
422 // There's a call site in C that is inlined. Upon doing that, it turns out
424 // call void @llvm.trap()
426 // F isn't reachable from C anymore, but we did discount it when we set up
427 // FunctionPropertiesUpdater, so we need to re-include it here.
428 // At the same time, D and E were reachable before, but now are not anymore,
429 // so we need to leave D out (we discounted it at setup), and explicitly
431 SetVector
<const BasicBlock
*> Reinclude
;
432 SetVector
<const BasicBlock
*> Unreachable
;
433 auto &DT
= getUpdatedDominatorTree(FAM
);
435 if (&CallSiteBB
!= &*Caller
.begin())
436 Reinclude
.insert(&*Caller
.begin());
438 // Distribute the successors to the 2 buckets.
439 for (const auto *Succ
: Successors
)
440 if (DT
.isReachableFromEntry(Succ
))
441 Reinclude
.insert(Succ
);
443 Unreachable
.insert(Succ
);
445 // For reinclusion, we want to stop at the reachable successors, who are at
446 // the beginning of the worklist; but, starting from the callsite bb and
447 // ending at those successors, we also want to perform a traversal.
448 // IncludeSuccessorsMark is the index after which we include successors.
449 const auto IncludeSuccessorsMark
= Reinclude
.size();
450 bool CSInsertion
= Reinclude
.insert(&CallSiteBB
);
453 for (size_t I
= 0; I
< Reinclude
.size(); ++I
) {
454 const auto *BB
= Reinclude
[I
];
455 FPI
.reIncludeBB(*BB
);
456 if (I
>= IncludeSuccessorsMark
)
457 Reinclude
.insert(succ_begin(BB
), succ_end(BB
));
460 // For exclusion, we don't need to exclude the set of BBs that were successors
461 // before and are now unreachable, because we already did that at setup. For
462 // the rest, as long as a successor is unreachable, we want to explicitly
464 const auto AlreadyExcludedMark
= Unreachable
.size();
465 for (size_t I
= 0; I
< Unreachable
.size(); ++I
) {
466 const auto *U
= Unreachable
[I
];
467 if (I
>= AlreadyExcludedMark
)
468 FPI
.updateForBB(*U
, -1);
469 for (const auto *Succ
: successors(U
))
470 if (!DT
.isReachableFromEntry(Succ
))
471 Unreachable
.insert(Succ
);
474 const auto &LI
= FAM
.getResult
<LoopAnalysis
>(const_cast<Function
&>(Caller
));
475 FPI
.updateAggregateStats(Caller
, LI
);
476 #ifdef EXPENSIVE_CHECKS
477 assert(isUpdateValid(Caller
, FPI
, FAM
));
481 bool FunctionPropertiesUpdater::isUpdateValid(Function
&F
,
482 const FunctionPropertiesInfo
&FPI
,
483 FunctionAnalysisManager
&FAM
) {
484 if (!FAM
.getResult
<DominatorTreeAnalysis
>(F
).verify(
485 DominatorTree::VerificationLevel::Full
))
489 auto Fresh
= FunctionPropertiesInfo::getFunctionPropertiesInfo(F
, DT
, LI
);