1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
13 // There are several aspects to this library. First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression. These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
37 //===----------------------------------------------------------------------===//
39 // There are several good references for the techniques used in this analysis.
41 // Chains of recurrences -- a method to expedite the evaluation
42 // of closed-form functions
43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 // On computational properties of chains of recurrences
48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 // Robert A. van Engelen
51 // Efficient Symbolic Analysis for Optimizing Compilers
52 // Robert A. van Engelen
54 // Using the chains of recurrences algebra for data dependence testing and
55 // induction variable substitution
56 // MS Thesis, Johnie Birch
58 //===----------------------------------------------------------------------===//
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/STLExtras.h"
68 #include "llvm/ADT/ScopeExit.h"
69 #include "llvm/ADT/Sequence.h"
70 #include "llvm/ADT/SmallPtrSet.h"
71 #include "llvm/ADT/SmallSet.h"
72 #include "llvm/ADT/SmallVector.h"
73 #include "llvm/ADT/Statistic.h"
74 #include "llvm/ADT/StringExtras.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/Analysis/AssumptionCache.h"
77 #include "llvm/Analysis/ConstantFolding.h"
78 #include "llvm/Analysis/InstructionSimplify.h"
79 #include "llvm/Analysis/LoopInfo.h"
80 #include "llvm/Analysis/MemoryBuiltins.h"
81 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
82 #include "llvm/Analysis/ScalarEvolutionPatternMatch.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/ValueTracking.h"
85 #include "llvm/Config/llvm-config.h"
86 #include "llvm/IR/Argument.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/CFG.h"
89 #include "llvm/IR/Constant.h"
90 #include "llvm/IR/ConstantRange.h"
91 #include "llvm/IR/Constants.h"
92 #include "llvm/IR/DataLayout.h"
93 #include "llvm/IR/DerivedTypes.h"
94 #include "llvm/IR/Dominators.h"
95 #include "llvm/IR/Function.h"
96 #include "llvm/IR/GlobalAlias.h"
97 #include "llvm/IR/GlobalValue.h"
98 #include "llvm/IR/InstIterator.h"
99 #include "llvm/IR/InstrTypes.h"
100 #include "llvm/IR/Instruction.h"
101 #include "llvm/IR/Instructions.h"
102 #include "llvm/IR/IntrinsicInst.h"
103 #include "llvm/IR/Intrinsics.h"
104 #include "llvm/IR/LLVMContext.h"
105 #include "llvm/IR/Operator.h"
106 #include "llvm/IR/PatternMatch.h"
107 #include "llvm/IR/Type.h"
108 #include "llvm/IR/Use.h"
109 #include "llvm/IR/User.h"
110 #include "llvm/IR/Value.h"
111 #include "llvm/IR/Verifier.h"
112 #include "llvm/InitializePasses.h"
113 #include "llvm/Pass.h"
114 #include "llvm/Support/Casting.h"
115 #include "llvm/Support/CommandLine.h"
116 #include "llvm/Support/Compiler.h"
117 #include "llvm/Support/Debug.h"
118 #include "llvm/Support/ErrorHandling.h"
119 #include "llvm/Support/KnownBits.h"
120 #include "llvm/Support/SaveAndRestore.h"
121 #include "llvm/Support/raw_ostream.h"
135 using namespace llvm
;
136 using namespace PatternMatch
;
137 using namespace SCEVPatternMatch
;
139 #define DEBUG_TYPE "scalar-evolution"
141 STATISTIC(NumExitCountsComputed
,
142 "Number of loop exits with predictable exit counts");
143 STATISTIC(NumExitCountsNotComputed
,
144 "Number of loop exits without predictable exit counts");
145 STATISTIC(NumBruteForceTripCountsComputed
,
146 "Number of loops with trip counts computed by force");
148 #ifdef EXPENSIVE_CHECKS
149 bool llvm::VerifySCEV
= true;
151 bool llvm::VerifySCEV
= false;
154 static cl::opt
<unsigned>
155 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden
,
156 cl::desc("Maximum number of iterations SCEV will "
157 "symbolically execute a constant "
161 static cl::opt
<bool, true> VerifySCEVOpt(
162 "verify-scev", cl::Hidden
, cl::location(VerifySCEV
),
163 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
164 static cl::opt
<bool> VerifySCEVStrict(
165 "verify-scev-strict", cl::Hidden
,
166 cl::desc("Enable stricter verification with -verify-scev is passed"));
168 static cl::opt
<bool> VerifyIR(
169 "scev-verify-ir", cl::Hidden
,
170 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
173 static cl::opt
<unsigned> MulOpsInlineThreshold(
174 "scev-mulops-inline-threshold", cl::Hidden
,
175 cl::desc("Threshold for inlining multiplication operands into a SCEV"),
178 static cl::opt
<unsigned> AddOpsInlineThreshold(
179 "scev-addops-inline-threshold", cl::Hidden
,
180 cl::desc("Threshold for inlining addition operands into a SCEV"),
183 static cl::opt
<unsigned> MaxSCEVCompareDepth(
184 "scalar-evolution-max-scev-compare-depth", cl::Hidden
,
185 cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
188 static cl::opt
<unsigned> MaxSCEVOperationsImplicationDepth(
189 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden
,
190 cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
193 static cl::opt
<unsigned> MaxValueCompareDepth(
194 "scalar-evolution-max-value-compare-depth", cl::Hidden
,
195 cl::desc("Maximum depth of recursive value complexity comparisons"),
198 static cl::opt
<unsigned>
199 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden
,
200 cl::desc("Maximum depth of recursive arithmetics"),
203 static cl::opt
<unsigned> MaxConstantEvolvingDepth(
204 "scalar-evolution-max-constant-evolving-depth", cl::Hidden
,
205 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
207 static cl::opt
<unsigned>
208 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden
,
209 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
212 static cl::opt
<unsigned>
213 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden
,
214 cl::desc("Max coefficients in AddRec during evolving"),
217 static cl::opt
<unsigned>
218 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden
,
219 cl::desc("Size of the expression which is considered huge"),
222 static cl::opt
<unsigned> RangeIterThreshold(
223 "scev-range-iter-threshold", cl::Hidden
,
224 cl::desc("Threshold for switching to iteratively computing SCEV ranges"),
227 static cl::opt
<unsigned> MaxLoopGuardCollectionDepth(
228 "scalar-evolution-max-loop-guard-collection-depth", cl::Hidden
,
229 cl::desc("Maximum depth for recursive loop guard collection"), cl::init(1));
232 ClassifyExpressions("scalar-evolution-classify-expressions",
233 cl::Hidden
, cl::init(true),
234 cl::desc("When printing analysis, include information on every instruction"));
236 static cl::opt
<bool> UseExpensiveRangeSharpening(
237 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden
,
239 cl::desc("Use more powerful methods of sharpening expression ranges. May "
240 "be costly in terms of compile time"));
242 static cl::opt
<unsigned> MaxPhiSCCAnalysisSize(
243 "scalar-evolution-max-scc-analysis-depth", cl::Hidden
,
244 cl::desc("Maximum amount of nodes to process while searching SCEVUnknown "
245 "Phi strongly connected components"),
249 EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden
,
250 cl::desc("Handle <= and >= in finite loops"),
253 static cl::opt
<bool> UseContextForNoWrapFlagInference(
254 "scalar-evolution-use-context-for-no-wrap-flag-strenghening", cl::Hidden
,
255 cl::desc("Infer nuw/nsw flags using context where suitable"),
258 //===----------------------------------------------------------------------===//
259 // SCEV class definitions
260 //===----------------------------------------------------------------------===//
262 //===----------------------------------------------------------------------===//
263 // Implementation of the SCEV class.
266 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
267 LLVM_DUMP_METHOD
void SCEV::dump() const {
273 void SCEV::print(raw_ostream
&OS
) const {
274 switch (getSCEVType()) {
276 cast
<SCEVConstant
>(this)->getValue()->printAsOperand(OS
, false);
282 const SCEVPtrToIntExpr
*PtrToInt
= cast
<SCEVPtrToIntExpr
>(this);
283 const SCEV
*Op
= PtrToInt
->getOperand();
284 OS
<< "(ptrtoint " << *Op
->getType() << " " << *Op
<< " to "
285 << *PtrToInt
->getType() << ")";
289 const SCEVTruncateExpr
*Trunc
= cast
<SCEVTruncateExpr
>(this);
290 const SCEV
*Op
= Trunc
->getOperand();
291 OS
<< "(trunc " << *Op
->getType() << " " << *Op
<< " to "
292 << *Trunc
->getType() << ")";
296 const SCEVZeroExtendExpr
*ZExt
= cast
<SCEVZeroExtendExpr
>(this);
297 const SCEV
*Op
= ZExt
->getOperand();
298 OS
<< "(zext " << *Op
->getType() << " " << *Op
<< " to "
299 << *ZExt
->getType() << ")";
303 const SCEVSignExtendExpr
*SExt
= cast
<SCEVSignExtendExpr
>(this);
304 const SCEV
*Op
= SExt
->getOperand();
305 OS
<< "(sext " << *Op
->getType() << " " << *Op
<< " to "
306 << *SExt
->getType() << ")";
310 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(this);
311 OS
<< "{" << *AR
->getOperand(0);
312 for (unsigned i
= 1, e
= AR
->getNumOperands(); i
!= e
; ++i
)
313 OS
<< ",+," << *AR
->getOperand(i
);
315 if (AR
->hasNoUnsignedWrap())
317 if (AR
->hasNoSignedWrap())
319 if (AR
->hasNoSelfWrap() &&
320 !AR
->getNoWrapFlags((NoWrapFlags
)(FlagNUW
| FlagNSW
)))
322 AR
->getLoop()->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
332 case scSequentialUMinExpr
: {
333 const SCEVNAryExpr
*NAry
= cast
<SCEVNAryExpr
>(this);
334 const char *OpStr
= nullptr;
335 switch (NAry
->getSCEVType()) {
336 case scAddExpr
: OpStr
= " + "; break;
337 case scMulExpr
: OpStr
= " * "; break;
338 case scUMaxExpr
: OpStr
= " umax "; break;
339 case scSMaxExpr
: OpStr
= " smax "; break;
346 case scSequentialUMinExpr
:
347 OpStr
= " umin_seq ";
350 llvm_unreachable("There are no other nary expression types.");
353 ListSeparator
LS(OpStr
);
354 for (const SCEV
*Op
: NAry
->operands())
357 switch (NAry
->getSCEVType()) {
360 if (NAry
->hasNoUnsignedWrap())
362 if (NAry
->hasNoSignedWrap())
366 // Nothing to print for other nary expressions.
372 const SCEVUDivExpr
*UDiv
= cast
<SCEVUDivExpr
>(this);
373 OS
<< "(" << *UDiv
->getLHS() << " /u " << *UDiv
->getRHS() << ")";
377 cast
<SCEVUnknown
>(this)->getValue()->printAsOperand(OS
, false);
379 case scCouldNotCompute
:
380 OS
<< "***COULDNOTCOMPUTE***";
383 llvm_unreachable("Unknown SCEV kind!");
386 Type
*SCEV::getType() const {
387 switch (getSCEVType()) {
389 return cast
<SCEVConstant
>(this)->getType();
391 return cast
<SCEVVScale
>(this)->getType();
396 return cast
<SCEVCastExpr
>(this)->getType();
398 return cast
<SCEVAddRecExpr
>(this)->getType();
400 return cast
<SCEVMulExpr
>(this)->getType();
405 return cast
<SCEVMinMaxExpr
>(this)->getType();
406 case scSequentialUMinExpr
:
407 return cast
<SCEVSequentialMinMaxExpr
>(this)->getType();
409 return cast
<SCEVAddExpr
>(this)->getType();
411 return cast
<SCEVUDivExpr
>(this)->getType();
413 return cast
<SCEVUnknown
>(this)->getType();
414 case scCouldNotCompute
:
415 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
417 llvm_unreachable("Unknown SCEV kind!");
420 ArrayRef
<const SCEV
*> SCEV::operands() const {
421 switch (getSCEVType()) {
430 return cast
<SCEVCastExpr
>(this)->operands();
438 case scSequentialUMinExpr
:
439 return cast
<SCEVNAryExpr
>(this)->operands();
441 return cast
<SCEVUDivExpr
>(this)->operands();
442 case scCouldNotCompute
:
443 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
445 llvm_unreachable("Unknown SCEV kind!");
448 bool SCEV::isZero() const { return match(this, m_scev_Zero()); }
450 bool SCEV::isOne() const { return match(this, m_scev_One()); }
452 bool SCEV::isAllOnesValue() const { return match(this, m_scev_AllOnes()); }
454 bool SCEV::isNonConstantNegative() const {
455 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(this);
456 if (!Mul
) return false;
458 // If there is a constant factor, it will be first.
459 const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Mul
->getOperand(0));
460 if (!SC
) return false;
462 // Return true if the value is negative, this matches things like (-42 * V).
463 return SC
->getAPInt().isNegative();
466 SCEVCouldNotCompute::SCEVCouldNotCompute() :
467 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute
, 0) {}
469 bool SCEVCouldNotCompute::classof(const SCEV
*S
) {
470 return S
->getSCEVType() == scCouldNotCompute
;
473 const SCEV
*ScalarEvolution::getConstant(ConstantInt
*V
) {
475 ID
.AddInteger(scConstant
);
478 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
479 SCEV
*S
= new (SCEVAllocator
) SCEVConstant(ID
.Intern(SCEVAllocator
), V
);
480 UniqueSCEVs
.InsertNode(S
, IP
);
484 const SCEV
*ScalarEvolution::getConstant(const APInt
&Val
) {
485 return getConstant(ConstantInt::get(getContext(), Val
));
489 ScalarEvolution::getConstant(Type
*Ty
, uint64_t V
, bool isSigned
) {
490 IntegerType
*ITy
= cast
<IntegerType
>(getEffectiveSCEVType(Ty
));
491 return getConstant(ConstantInt::get(ITy
, V
, isSigned
));
494 const SCEV
*ScalarEvolution::getVScale(Type
*Ty
) {
496 ID
.AddInteger(scVScale
);
499 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
))
501 SCEV
*S
= new (SCEVAllocator
) SCEVVScale(ID
.Intern(SCEVAllocator
), Ty
);
502 UniqueSCEVs
.InsertNode(S
, IP
);
506 const SCEV
*ScalarEvolution::getElementCount(Type
*Ty
, ElementCount EC
) {
507 const SCEV
*Res
= getConstant(Ty
, EC
.getKnownMinValue());
509 Res
= getMulExpr(Res
, getVScale(Ty
));
513 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID
, SCEVTypes SCEVTy
,
514 const SCEV
*op
, Type
*ty
)
515 : SCEV(ID
, SCEVTy
, computeExpressionSize(op
)), Op(op
), Ty(ty
) {}
517 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID
, const SCEV
*Op
,
519 : SCEVCastExpr(ID
, scPtrToInt
, Op
, ITy
) {
520 assert(getOperand()->getType()->isPointerTy() && Ty
->isIntegerTy() &&
521 "Must be a non-bit-width-changing pointer-to-integer cast!");
524 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID
,
525 SCEVTypes SCEVTy
, const SCEV
*op
,
527 : SCEVCastExpr(ID
, SCEVTy
, op
, ty
) {}
529 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID
, const SCEV
*op
,
531 : SCEVIntegralCastExpr(ID
, scTruncate
, op
, ty
) {
532 assert(getOperand()->getType()->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
533 "Cannot truncate non-integer value!");
536 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID
,
537 const SCEV
*op
, Type
*ty
)
538 : SCEVIntegralCastExpr(ID
, scZeroExtend
, op
, ty
) {
539 assert(getOperand()->getType()->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
540 "Cannot zero extend non-integer value!");
543 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID
,
544 const SCEV
*op
, Type
*ty
)
545 : SCEVIntegralCastExpr(ID
, scSignExtend
, op
, ty
) {
546 assert(getOperand()->getType()->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
547 "Cannot sign extend non-integer value!");
550 void SCEVUnknown::deleted() {
551 // Clear this SCEVUnknown from various maps.
552 SE
->forgetMemoizedResults(this);
554 // Remove this SCEVUnknown from the uniquing map.
555 SE
->UniqueSCEVs
.RemoveNode(this);
557 // Release the value.
561 void SCEVUnknown::allUsesReplacedWith(Value
*New
) {
562 // Clear this SCEVUnknown from various maps.
563 SE
->forgetMemoizedResults(this);
565 // Remove this SCEVUnknown from the uniquing map.
566 SE
->UniqueSCEVs
.RemoveNode(this);
568 // Replace the value pointer in case someone is still using this SCEVUnknown.
572 //===----------------------------------------------------------------------===//
574 //===----------------------------------------------------------------------===//
576 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
577 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
578 /// operands in SCEV expressions.
579 static int CompareValueComplexity(const LoopInfo
*const LI
, Value
*LV
,
580 Value
*RV
, unsigned Depth
) {
581 if (Depth
> MaxValueCompareDepth
)
584 // Order pointer values after integer values. This helps SCEVExpander form
586 bool LIsPointer
= LV
->getType()->isPointerTy(),
587 RIsPointer
= RV
->getType()->isPointerTy();
588 if (LIsPointer
!= RIsPointer
)
589 return (int)LIsPointer
- (int)RIsPointer
;
591 // Compare getValueID values.
592 unsigned LID
= LV
->getValueID(), RID
= RV
->getValueID();
594 return (int)LID
- (int)RID
;
596 // Sort arguments by their position.
597 if (const auto *LA
= dyn_cast
<Argument
>(LV
)) {
598 const auto *RA
= cast
<Argument
>(RV
);
599 unsigned LArgNo
= LA
->getArgNo(), RArgNo
= RA
->getArgNo();
600 return (int)LArgNo
- (int)RArgNo
;
603 if (const auto *LGV
= dyn_cast
<GlobalValue
>(LV
)) {
604 const auto *RGV
= cast
<GlobalValue
>(RV
);
606 const auto IsGVNameSemantic
= [&](const GlobalValue
*GV
) {
607 auto LT
= GV
->getLinkage();
608 return !(GlobalValue::isPrivateLinkage(LT
) ||
609 GlobalValue::isInternalLinkage(LT
));
612 // Use the names to distinguish the two values, but only if the
613 // names are semantically important.
614 if (IsGVNameSemantic(LGV
) && IsGVNameSemantic(RGV
))
615 return LGV
->getName().compare(RGV
->getName());
618 // For instructions, compare their loop depth, and their operand count. This
620 if (const auto *LInst
= dyn_cast
<Instruction
>(LV
)) {
621 const auto *RInst
= cast
<Instruction
>(RV
);
623 // Compare loop depths.
624 const BasicBlock
*LParent
= LInst
->getParent(),
625 *RParent
= RInst
->getParent();
626 if (LParent
!= RParent
) {
627 unsigned LDepth
= LI
->getLoopDepth(LParent
),
628 RDepth
= LI
->getLoopDepth(RParent
);
629 if (LDepth
!= RDepth
)
630 return (int)LDepth
- (int)RDepth
;
633 // Compare the number of operands.
634 unsigned LNumOps
= LInst
->getNumOperands(),
635 RNumOps
= RInst
->getNumOperands();
636 if (LNumOps
!= RNumOps
)
637 return (int)LNumOps
- (int)RNumOps
;
639 for (unsigned Idx
: seq(LNumOps
)) {
640 int Result
= CompareValueComplexity(LI
, LInst
->getOperand(Idx
),
641 RInst
->getOperand(Idx
), Depth
+ 1);
650 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
651 // than RHS, respectively. A three-way result allows recursive comparisons to be
653 // If the max analysis depth was reached, return std::nullopt, assuming we do
654 // not know if they are equivalent for sure.
655 static std::optional
<int>
656 CompareSCEVComplexity(EquivalenceClasses
<const SCEV
*> &EqCacheSCEV
,
657 const LoopInfo
*const LI
, const SCEV
*LHS
,
658 const SCEV
*RHS
, DominatorTree
&DT
, unsigned Depth
= 0) {
659 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
663 // Primarily, sort the SCEVs by their getSCEVType().
664 SCEVTypes LType
= LHS
->getSCEVType(), RType
= RHS
->getSCEVType();
666 return (int)LType
- (int)RType
;
668 if (EqCacheSCEV
.isEquivalent(LHS
, RHS
))
671 if (Depth
> MaxSCEVCompareDepth
)
674 // Aside from the getSCEVType() ordering, the particular ordering
675 // isn't very important except that it's beneficial to be consistent,
676 // so that (a + b) and (b + a) don't end up as different expressions.
679 const SCEVUnknown
*LU
= cast
<SCEVUnknown
>(LHS
);
680 const SCEVUnknown
*RU
= cast
<SCEVUnknown
>(RHS
);
683 CompareValueComplexity(LI
, LU
->getValue(), RU
->getValue(), Depth
+ 1);
685 EqCacheSCEV
.unionSets(LHS
, RHS
);
690 const SCEVConstant
*LC
= cast
<SCEVConstant
>(LHS
);
691 const SCEVConstant
*RC
= cast
<SCEVConstant
>(RHS
);
693 // Compare constant values.
694 const APInt
&LA
= LC
->getAPInt();
695 const APInt
&RA
= RC
->getAPInt();
696 unsigned LBitWidth
= LA
.getBitWidth(), RBitWidth
= RA
.getBitWidth();
697 if (LBitWidth
!= RBitWidth
)
698 return (int)LBitWidth
- (int)RBitWidth
;
699 return LA
.ult(RA
) ? -1 : 1;
703 const auto *LTy
= cast
<IntegerType
>(cast
<SCEVVScale
>(LHS
)->getType());
704 const auto *RTy
= cast
<IntegerType
>(cast
<SCEVVScale
>(RHS
)->getType());
705 return LTy
->getBitWidth() - RTy
->getBitWidth();
709 const SCEVAddRecExpr
*LA
= cast
<SCEVAddRecExpr
>(LHS
);
710 const SCEVAddRecExpr
*RA
= cast
<SCEVAddRecExpr
>(RHS
);
712 // There is always a dominance between two recs that are used by one SCEV,
713 // so we can safely sort recs by loop header dominance. We require such
714 // order in getAddExpr.
715 const Loop
*LLoop
= LA
->getLoop(), *RLoop
= RA
->getLoop();
716 if (LLoop
!= RLoop
) {
717 const BasicBlock
*LHead
= LLoop
->getHeader(), *RHead
= RLoop
->getHeader();
718 assert(LHead
!= RHead
&& "Two loops share the same header?");
719 if (DT
.dominates(LHead
, RHead
))
721 assert(DT
.dominates(RHead
, LHead
) &&
722 "No dominance between recurrences used by one SCEV?");
740 case scSequentialUMinExpr
: {
741 ArrayRef
<const SCEV
*> LOps
= LHS
->operands();
742 ArrayRef
<const SCEV
*> ROps
= RHS
->operands();
744 // Lexicographically compare n-ary-like expressions.
745 unsigned LNumOps
= LOps
.size(), RNumOps
= ROps
.size();
746 if (LNumOps
!= RNumOps
)
747 return (int)LNumOps
- (int)RNumOps
;
749 for (unsigned i
= 0; i
!= LNumOps
; ++i
) {
750 auto X
= CompareSCEVComplexity(EqCacheSCEV
, LI
, LOps
[i
], ROps
[i
], DT
,
755 EqCacheSCEV
.unionSets(LHS
, RHS
);
759 case scCouldNotCompute
:
760 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
762 llvm_unreachable("Unknown SCEV kind!");
765 /// Given a list of SCEV objects, order them by their complexity, and group
766 /// objects of the same complexity together by value. When this routine is
767 /// finished, we know that any duplicates in the vector are consecutive and that
768 /// complexity is monotonically increasing.
770 /// Note that we go take special precautions to ensure that we get deterministic
771 /// results from this routine. In other words, we don't want the results of
772 /// this to depend on where the addresses of various SCEV objects happened to
774 static void GroupByComplexity(SmallVectorImpl
<const SCEV
*> &Ops
,
775 LoopInfo
*LI
, DominatorTree
&DT
) {
776 if (Ops
.size() < 2) return; // Noop
778 EquivalenceClasses
<const SCEV
*> EqCacheSCEV
;
780 // Whether LHS has provably less complexity than RHS.
781 auto IsLessComplex
= [&](const SCEV
*LHS
, const SCEV
*RHS
) {
782 auto Complexity
= CompareSCEVComplexity(EqCacheSCEV
, LI
, LHS
, RHS
, DT
);
783 return Complexity
&& *Complexity
< 0;
785 if (Ops
.size() == 2) {
786 // This is the common case, which also happens to be trivially simple.
788 const SCEV
*&LHS
= Ops
[0], *&RHS
= Ops
[1];
789 if (IsLessComplex(RHS
, LHS
))
794 // Do the rough sort by complexity.
795 llvm::stable_sort(Ops
, [&](const SCEV
*LHS
, const SCEV
*RHS
) {
796 return IsLessComplex(LHS
, RHS
);
799 // Now that we are sorted by complexity, group elements of the same
800 // complexity. Note that this is, at worst, N^2, but the vector is likely to
801 // be extremely short in practice. Note that we take this approach because we
802 // do not want to depend on the addresses of the objects we are grouping.
803 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
-2; ++i
) {
804 const SCEV
*S
= Ops
[i
];
805 unsigned Complexity
= S
->getSCEVType();
807 // If there are any objects of the same complexity and same value as this
809 for (unsigned j
= i
+1; j
!= e
&& Ops
[j
]->getSCEVType() == Complexity
; ++j
) {
810 if (Ops
[j
] == S
) { // Found a duplicate.
811 // Move it to immediately after i'th element.
812 std::swap(Ops
[i
+1], Ops
[j
]);
813 ++i
; // no need to rescan it.
814 if (i
== e
-2) return; // Done!
820 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
821 /// least HugeExprThreshold nodes).
822 static bool hasHugeExpression(ArrayRef
<const SCEV
*> Ops
) {
823 return any_of(Ops
, [](const SCEV
*S
) {
824 return S
->getExpressionSize() >= HugeExprThreshold
;
828 /// Performs a number of common optimizations on the passed \p Ops. If the
829 /// whole expression reduces down to a single operand, it will be returned.
831 /// The following optimizations are performed:
832 /// * Fold constants using the \p Fold function.
833 /// * Remove identity constants satisfying \p IsIdentity.
834 /// * If a constant satisfies \p IsAbsorber, return it.
835 /// * Sort operands by complexity.
836 template <typename FoldT
, typename IsIdentityT
, typename IsAbsorberT
>
838 constantFoldAndGroupOps(ScalarEvolution
&SE
, LoopInfo
&LI
, DominatorTree
&DT
,
839 SmallVectorImpl
<const SCEV
*> &Ops
, FoldT Fold
,
840 IsIdentityT IsIdentity
, IsAbsorberT IsAbsorber
) {
841 const SCEVConstant
*Folded
= nullptr;
842 for (unsigned Idx
= 0; Idx
< Ops
.size();) {
843 const SCEV
*Op
= Ops
[Idx
];
844 if (const auto *C
= dyn_cast
<SCEVConstant
>(Op
)) {
848 Folded
= cast
<SCEVConstant
>(
849 SE
.getConstant(Fold(Folded
->getAPInt(), C
->getAPInt())));
850 Ops
.erase(Ops
.begin() + Idx
);
857 assert(Folded
&& "Must have folded value");
861 if (Folded
&& IsAbsorber(Folded
->getAPInt()))
864 GroupByComplexity(Ops
, &LI
, DT
);
865 if (Folded
&& !IsIdentity(Folded
->getAPInt()))
866 Ops
.insert(Ops
.begin(), Folded
);
868 return Ops
.size() == 1 ? Ops
[0] : nullptr;
871 //===----------------------------------------------------------------------===//
872 // Simple SCEV method implementations
873 //===----------------------------------------------------------------------===//
875 /// Compute BC(It, K). The result has width W. Assume, K > 0.
876 static const SCEV
*BinomialCoefficient(const SCEV
*It
, unsigned K
,
879 // Handle the simplest case efficiently.
881 return SE
.getTruncateOrZeroExtend(It
, ResultTy
);
883 // We are using the following formula for BC(It, K):
885 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
887 // Suppose, W is the bitwidth of the return value. We must be prepared for
888 // overflow. Hence, we must assure that the result of our computation is
889 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
890 // safe in modular arithmetic.
892 // However, this code doesn't use exactly that formula; the formula it uses
893 // is something like the following, where T is the number of factors of 2 in
894 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
897 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
899 // This formula is trivially equivalent to the previous formula. However,
900 // this formula can be implemented much more efficiently. The trick is that
901 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
902 // arithmetic. To do exact division in modular arithmetic, all we have
903 // to do is multiply by the inverse. Therefore, this step can be done at
906 // The next issue is how to safely do the division by 2^T. The way this
907 // is done is by doing the multiplication step at a width of at least W + T
908 // bits. This way, the bottom W+T bits of the product are accurate. Then,
909 // when we perform the division by 2^T (which is equivalent to a right shift
910 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
911 // truncated out after the division by 2^T.
913 // In comparison to just directly using the first formula, this technique
914 // is much more efficient; using the first formula requires W * K bits,
915 // but this formula less than W + K bits. Also, the first formula requires
916 // a division step, whereas this formula only requires multiplies and shifts.
918 // It doesn't matter whether the subtraction step is done in the calculation
919 // width or the input iteration count's width; if the subtraction overflows,
920 // the result must be zero anyway. We prefer here to do it in the width of
921 // the induction variable because it helps a lot for certain cases; CodeGen
922 // isn't smart enough to ignore the overflow, which leads to much less
923 // efficient code if the width of the subtraction is wider than the native
926 // (It's possible to not widen at all by pulling out factors of 2 before
927 // the multiplication; for example, K=2 can be calculated as
928 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
929 // extra arithmetic, so it's not an obvious win, and it gets
930 // much more complicated for K > 3.)
932 // Protection from insane SCEVs; this bound is conservative,
933 // but it probably doesn't matter.
935 return SE
.getCouldNotCompute();
937 unsigned W
= SE
.getTypeSizeInBits(ResultTy
);
939 // Calculate K! / 2^T and T; we divide out the factors of two before
940 // multiplying for calculating K! / 2^T to avoid overflow.
941 // Other overflow doesn't matter because we only care about the bottom
942 // W bits of the result.
943 APInt
OddFactorial(W
, 1);
945 for (unsigned i
= 3; i
<= K
; ++i
) {
946 unsigned TwoFactors
= countr_zero(i
);
948 OddFactorial
*= (i
>> TwoFactors
);
951 // We need at least W + T bits for the multiplication step
952 unsigned CalculationBits
= W
+ T
;
954 // Calculate 2^T, at width T+W.
955 APInt DivFactor
= APInt::getOneBitSet(CalculationBits
, T
);
957 // Calculate the multiplicative inverse of K! / 2^T;
958 // this multiplication factor will perform the exact division by
960 APInt MultiplyFactor
= OddFactorial
.multiplicativeInverse();
962 // Calculate the product, at width T+W
963 IntegerType
*CalculationTy
= IntegerType::get(SE
.getContext(),
965 const SCEV
*Dividend
= SE
.getTruncateOrZeroExtend(It
, CalculationTy
);
966 for (unsigned i
= 1; i
!= K
; ++i
) {
967 const SCEV
*S
= SE
.getMinusSCEV(It
, SE
.getConstant(It
->getType(), i
));
968 Dividend
= SE
.getMulExpr(Dividend
,
969 SE
.getTruncateOrZeroExtend(S
, CalculationTy
));
973 const SCEV
*DivResult
= SE
.getUDivExpr(Dividend
, SE
.getConstant(DivFactor
));
975 // Truncate the result, and divide by K! / 2^T.
977 return SE
.getMulExpr(SE
.getConstant(MultiplyFactor
),
978 SE
.getTruncateOrZeroExtend(DivResult
, ResultTy
));
981 /// Return the value of this chain of recurrences at the specified iteration
982 /// number. We can evaluate this recurrence by multiplying each element in the
983 /// chain by the binomial coefficient corresponding to it. In other words, we
984 /// can evaluate {A,+,B,+,C,+,D} as:
986 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
988 /// where BC(It, k) stands for binomial coefficient.
989 const SCEV
*SCEVAddRecExpr::evaluateAtIteration(const SCEV
*It
,
990 ScalarEvolution
&SE
) const {
991 return evaluateAtIteration(operands(), It
, SE
);
995 SCEVAddRecExpr::evaluateAtIteration(ArrayRef
<const SCEV
*> Operands
,
996 const SCEV
*It
, ScalarEvolution
&SE
) {
997 assert(Operands
.size() > 0);
998 const SCEV
*Result
= Operands
[0];
999 for (unsigned i
= 1, e
= Operands
.size(); i
!= e
; ++i
) {
1000 // The computation is correct in the face of overflow provided that the
1001 // multiplication is performed _after_ the evaluation of the binomial
1003 const SCEV
*Coeff
= BinomialCoefficient(It
, i
, SE
, Result
->getType());
1004 if (isa
<SCEVCouldNotCompute
>(Coeff
))
1007 Result
= SE
.getAddExpr(Result
, SE
.getMulExpr(Operands
[i
], Coeff
));
1012 //===----------------------------------------------------------------------===//
1013 // SCEV Expression folder implementations
1014 //===----------------------------------------------------------------------===//
1016 const SCEV
*ScalarEvolution::getLosslessPtrToIntExpr(const SCEV
*Op
,
1018 assert(Depth
<= 1 &&
1019 "getLosslessPtrToIntExpr() should self-recurse at most once.");
1021 // We could be called with an integer-typed operands during SCEV rewrites.
1022 // Since the operand is an integer already, just perform zext/trunc/self cast.
1023 if (!Op
->getType()->isPointerTy())
1026 // What would be an ID for such a SCEV cast expression?
1027 FoldingSetNodeID ID
;
1028 ID
.AddInteger(scPtrToInt
);
1033 // Is there already an expression for such a cast?
1034 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
))
1037 // It isn't legal for optimizations to construct new ptrtoint expressions
1038 // for non-integral pointers.
1039 if (getDataLayout().isNonIntegralPointerType(Op
->getType()))
1040 return getCouldNotCompute();
1042 Type
*IntPtrTy
= getDataLayout().getIntPtrType(Op
->getType());
1044 // We can only trivially model ptrtoint if SCEV's effective (integer) type
1045 // is sufficiently wide to represent all possible pointer values.
1046 // We could theoretically teach SCEV to truncate wider pointers, but
1047 // that isn't implemented for now.
1048 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op
->getType())) !=
1049 getDataLayout().getTypeSizeInBits(IntPtrTy
))
1050 return getCouldNotCompute();
1052 // If not, is this expression something we can't reduce any further?
1053 if (auto *U
= dyn_cast
<SCEVUnknown
>(Op
)) {
1054 // Perform some basic constant folding. If the operand of the ptr2int cast
1055 // is a null pointer, don't create a ptr2int SCEV expression (that will be
1056 // left as-is), but produce a zero constant.
1057 // NOTE: We could handle a more general case, but lack motivational cases.
1058 if (isa
<ConstantPointerNull
>(U
->getValue()))
1059 return getZero(IntPtrTy
);
1061 // Create an explicit cast node.
1062 // We can reuse the existing insert position since if we get here,
1063 // we won't have made any changes which would invalidate it.
1064 SCEV
*S
= new (SCEVAllocator
)
1065 SCEVPtrToIntExpr(ID
.Intern(SCEVAllocator
), Op
, IntPtrTy
);
1066 UniqueSCEVs
.InsertNode(S
, IP
);
1067 registerUser(S
, Op
);
1071 assert(Depth
== 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1072 "non-SCEVUnknown's.");
1074 // Otherwise, we've got some expression that is more complex than just a
1075 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1076 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1077 // only, and the expressions must otherwise be integer-typed.
1078 // So sink the cast down to the SCEVUnknown's.
1080 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1081 /// which computes a pointer-typed value, and rewrites the whole expression
1082 /// tree so that *all* the computations are done on integers, and the only
1083 /// pointer-typed operands in the expression are SCEVUnknown.
1084 class SCEVPtrToIntSinkingRewriter
1085 : public SCEVRewriteVisitor
<SCEVPtrToIntSinkingRewriter
> {
1086 using Base
= SCEVRewriteVisitor
<SCEVPtrToIntSinkingRewriter
>;
1089 SCEVPtrToIntSinkingRewriter(ScalarEvolution
&SE
) : SCEVRewriteVisitor(SE
) {}
1091 static const SCEV
*rewrite(const SCEV
*Scev
, ScalarEvolution
&SE
) {
1092 SCEVPtrToIntSinkingRewriter
Rewriter(SE
);
1093 return Rewriter
.visit(Scev
);
1096 const SCEV
*visit(const SCEV
*S
) {
1097 Type
*STy
= S
->getType();
1098 // If the expression is not pointer-typed, just keep it as-is.
1099 if (!STy
->isPointerTy())
1101 // Else, recursively sink the cast down into it.
1102 return Base::visit(S
);
1105 const SCEV
*visitAddExpr(const SCEVAddExpr
*Expr
) {
1106 SmallVector
<const SCEV
*, 2> Operands
;
1107 bool Changed
= false;
1108 for (const auto *Op
: Expr
->operands()) {
1109 Operands
.push_back(visit(Op
));
1110 Changed
|= Op
!= Operands
.back();
1112 return !Changed
? Expr
: SE
.getAddExpr(Operands
, Expr
->getNoWrapFlags());
1115 const SCEV
*visitMulExpr(const SCEVMulExpr
*Expr
) {
1116 SmallVector
<const SCEV
*, 2> Operands
;
1117 bool Changed
= false;
1118 for (const auto *Op
: Expr
->operands()) {
1119 Operands
.push_back(visit(Op
));
1120 Changed
|= Op
!= Operands
.back();
1122 return !Changed
? Expr
: SE
.getMulExpr(Operands
, Expr
->getNoWrapFlags());
1125 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
1126 assert(Expr
->getType()->isPointerTy() &&
1127 "Should only reach pointer-typed SCEVUnknown's.");
1128 return SE
.getLosslessPtrToIntExpr(Expr
, /*Depth=*/1);
1132 // And actually perform the cast sinking.
1133 const SCEV
*IntOp
= SCEVPtrToIntSinkingRewriter::rewrite(Op
, *this);
1134 assert(IntOp
->getType()->isIntegerTy() &&
1135 "We must have succeeded in sinking the cast, "
1136 "and ending up with an integer-typed expression!");
1140 const SCEV
*ScalarEvolution::getPtrToIntExpr(const SCEV
*Op
, Type
*Ty
) {
1141 assert(Ty
->isIntegerTy() && "Target type must be an integer type!");
1143 const SCEV
*IntOp
= getLosslessPtrToIntExpr(Op
);
1144 if (isa
<SCEVCouldNotCompute
>(IntOp
))
1147 return getTruncateOrZeroExtend(IntOp
, Ty
);
1150 const SCEV
*ScalarEvolution::getTruncateExpr(const SCEV
*Op
, Type
*Ty
,
1152 assert(getTypeSizeInBits(Op
->getType()) > getTypeSizeInBits(Ty
) &&
1153 "This is not a truncating conversion!");
1154 assert(isSCEVable(Ty
) &&
1155 "This is not a conversion to a SCEVable type!");
1156 assert(!Op
->getType()->isPointerTy() && "Can't truncate pointer!");
1157 Ty
= getEffectiveSCEVType(Ty
);
1159 FoldingSetNodeID ID
;
1160 ID
.AddInteger(scTruncate
);
1164 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1166 // Fold if the operand is constant.
1167 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
1169 cast
<ConstantInt
>(ConstantExpr::getTrunc(SC
->getValue(), Ty
)));
1171 // trunc(trunc(x)) --> trunc(x)
1172 if (const SCEVTruncateExpr
*ST
= dyn_cast
<SCEVTruncateExpr
>(Op
))
1173 return getTruncateExpr(ST
->getOperand(), Ty
, Depth
+ 1);
1175 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1176 if (const SCEVSignExtendExpr
*SS
= dyn_cast
<SCEVSignExtendExpr
>(Op
))
1177 return getTruncateOrSignExtend(SS
->getOperand(), Ty
, Depth
+ 1);
1179 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1180 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
1181 return getTruncateOrZeroExtend(SZ
->getOperand(), Ty
, Depth
+ 1);
1183 if (Depth
> MaxCastDepth
) {
1185 new (SCEVAllocator
) SCEVTruncateExpr(ID
.Intern(SCEVAllocator
), Op
, Ty
);
1186 UniqueSCEVs
.InsertNode(S
, IP
);
1187 registerUser(S
, Op
);
1191 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1192 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1193 // if after transforming we have at most one truncate, not counting truncates
1194 // that replace other casts.
1195 if (isa
<SCEVAddExpr
>(Op
) || isa
<SCEVMulExpr
>(Op
)) {
1196 auto *CommOp
= cast
<SCEVCommutativeExpr
>(Op
);
1197 SmallVector
<const SCEV
*, 4> Operands
;
1198 unsigned numTruncs
= 0;
1199 for (unsigned i
= 0, e
= CommOp
->getNumOperands(); i
!= e
&& numTruncs
< 2;
1201 const SCEV
*S
= getTruncateExpr(CommOp
->getOperand(i
), Ty
, Depth
+ 1);
1202 if (!isa
<SCEVIntegralCastExpr
>(CommOp
->getOperand(i
)) &&
1203 isa
<SCEVTruncateExpr
>(S
))
1205 Operands
.push_back(S
);
1207 if (numTruncs
< 2) {
1208 if (isa
<SCEVAddExpr
>(Op
))
1209 return getAddExpr(Operands
);
1210 if (isa
<SCEVMulExpr
>(Op
))
1211 return getMulExpr(Operands
);
1212 llvm_unreachable("Unexpected SCEV type for Op.");
1214 // Although we checked in the beginning that ID is not in the cache, it is
1215 // possible that during recursion and different modification ID was inserted
1216 // into the cache. So if we find it, just return it.
1217 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
))
1221 // If the input value is a chrec scev, truncate the chrec's operands.
1222 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Op
)) {
1223 SmallVector
<const SCEV
*, 4> Operands
;
1224 for (const SCEV
*Op
: AddRec
->operands())
1225 Operands
.push_back(getTruncateExpr(Op
, Ty
, Depth
+ 1));
1226 return getAddRecExpr(Operands
, AddRec
->getLoop(), SCEV::FlagAnyWrap
);
1229 // Return zero if truncating to known zeros.
1230 uint32_t MinTrailingZeros
= getMinTrailingZeros(Op
);
1231 if (MinTrailingZeros
>= getTypeSizeInBits(Ty
))
1234 // The cast wasn't folded; create an explicit cast node. We can reuse
1235 // the existing insert position since if we get here, we won't have
1236 // made any changes which would invalidate it.
1237 SCEV
*S
= new (SCEVAllocator
) SCEVTruncateExpr(ID
.Intern(SCEVAllocator
),
1239 UniqueSCEVs
.InsertNode(S
, IP
);
1240 registerUser(S
, Op
);
1244 // Get the limit of a recurrence such that incrementing by Step cannot cause
1245 // signed overflow as long as the value of the recurrence within the
1246 // loop does not exceed this limit before incrementing.
1247 static const SCEV
*getSignedOverflowLimitForStep(const SCEV
*Step
,
1248 ICmpInst::Predicate
*Pred
,
1249 ScalarEvolution
*SE
) {
1250 unsigned BitWidth
= SE
->getTypeSizeInBits(Step
->getType());
1251 if (SE
->isKnownPositive(Step
)) {
1252 *Pred
= ICmpInst::ICMP_SLT
;
1253 return SE
->getConstant(APInt::getSignedMinValue(BitWidth
) -
1254 SE
->getSignedRangeMax(Step
));
1256 if (SE
->isKnownNegative(Step
)) {
1257 *Pred
= ICmpInst::ICMP_SGT
;
1258 return SE
->getConstant(APInt::getSignedMaxValue(BitWidth
) -
1259 SE
->getSignedRangeMin(Step
));
1264 // Get the limit of a recurrence such that incrementing by Step cannot cause
1265 // unsigned overflow as long as the value of the recurrence within the loop does
1266 // not exceed this limit before incrementing.
1267 static const SCEV
*getUnsignedOverflowLimitForStep(const SCEV
*Step
,
1268 ICmpInst::Predicate
*Pred
,
1269 ScalarEvolution
*SE
) {
1270 unsigned BitWidth
= SE
->getTypeSizeInBits(Step
->getType());
1271 *Pred
= ICmpInst::ICMP_ULT
;
1273 return SE
->getConstant(APInt::getMinValue(BitWidth
) -
1274 SE
->getUnsignedRangeMax(Step
));
1279 struct ExtendOpTraitsBase
{
1280 typedef const SCEV
*(ScalarEvolution::*GetExtendExprTy
)(const SCEV
*, Type
*,
1284 // Used to make code generic over signed and unsigned overflow.
1285 template <typename ExtendOp
> struct ExtendOpTraits
{
1288 // static const SCEV::NoWrapFlags WrapType;
1290 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1292 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1293 // ICmpInst::Predicate *Pred,
1294 // ScalarEvolution *SE);
1298 struct ExtendOpTraits
<SCEVSignExtendExpr
> : public ExtendOpTraitsBase
{
1299 static const SCEV::NoWrapFlags WrapType
= SCEV::FlagNSW
;
1301 static const GetExtendExprTy GetExtendExpr
;
1303 static const SCEV
*getOverflowLimitForStep(const SCEV
*Step
,
1304 ICmpInst::Predicate
*Pred
,
1305 ScalarEvolution
*SE
) {
1306 return getSignedOverflowLimitForStep(Step
, Pred
, SE
);
1310 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits
<
1311 SCEVSignExtendExpr
>::GetExtendExpr
= &ScalarEvolution::getSignExtendExpr
;
1314 struct ExtendOpTraits
<SCEVZeroExtendExpr
> : public ExtendOpTraitsBase
{
1315 static const SCEV::NoWrapFlags WrapType
= SCEV::FlagNUW
;
1317 static const GetExtendExprTy GetExtendExpr
;
1319 static const SCEV
*getOverflowLimitForStep(const SCEV
*Step
,
1320 ICmpInst::Predicate
*Pred
,
1321 ScalarEvolution
*SE
) {
1322 return getUnsignedOverflowLimitForStep(Step
, Pred
, SE
);
1326 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits
<
1327 SCEVZeroExtendExpr
>::GetExtendExpr
= &ScalarEvolution::getZeroExtendExpr
;
1329 } // end anonymous namespace
1331 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1332 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1333 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1334 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1335 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1336 // expression "Step + sext/zext(PreIncAR)" is congruent with
1337 // "sext/zext(PostIncAR)"
1338 template <typename ExtendOpTy
>
1339 static const SCEV
*getPreStartForExtend(const SCEVAddRecExpr
*AR
, Type
*Ty
,
1340 ScalarEvolution
*SE
, unsigned Depth
) {
1341 auto WrapType
= ExtendOpTraits
<ExtendOpTy
>::WrapType
;
1342 auto GetExtendExpr
= ExtendOpTraits
<ExtendOpTy
>::GetExtendExpr
;
1344 const Loop
*L
= AR
->getLoop();
1345 const SCEV
*Start
= AR
->getStart();
1346 const SCEV
*Step
= AR
->getStepRecurrence(*SE
);
1348 // Check for a simple looking step prior to loop entry.
1349 const SCEVAddExpr
*SA
= dyn_cast
<SCEVAddExpr
>(Start
);
1353 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1354 // subtraction is expensive. For this purpose, perform a quick and dirty
1355 // difference, by checking for Step in the operand list. Note, that
1356 // SA might have repeated ops, like %a + %a + ..., so only remove one.
1357 SmallVector
<const SCEV
*, 4> DiffOps(SA
->operands());
1358 for (auto It
= DiffOps
.begin(); It
!= DiffOps
.end(); ++It
)
1364 if (DiffOps
.size() == SA
->getNumOperands())
1367 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1370 // 1. NSW/NUW flags on the step increment.
1371 auto PreStartFlags
=
1372 ScalarEvolution::maskFlags(SA
->getNoWrapFlags(), SCEV::FlagNUW
);
1373 const SCEV
*PreStart
= SE
->getAddExpr(DiffOps
, PreStartFlags
);
1374 const SCEVAddRecExpr
*PreAR
= dyn_cast
<SCEVAddRecExpr
>(
1375 SE
->getAddRecExpr(PreStart
, Step
, L
, SCEV::FlagAnyWrap
));
1377 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1378 // "S+X does not sign/unsign-overflow".
1381 const SCEV
*BECount
= SE
->getBackedgeTakenCount(L
);
1382 if (PreAR
&& PreAR
->getNoWrapFlags(WrapType
) &&
1383 !isa
<SCEVCouldNotCompute
>(BECount
) && SE
->isKnownPositive(BECount
))
1386 // 2. Direct overflow check on the step operation's expression.
1387 unsigned BitWidth
= SE
->getTypeSizeInBits(AR
->getType());
1388 Type
*WideTy
= IntegerType::get(SE
->getContext(), BitWidth
* 2);
1389 const SCEV
*OperandExtendedStart
=
1390 SE
->getAddExpr((SE
->*GetExtendExpr
)(PreStart
, WideTy
, Depth
),
1391 (SE
->*GetExtendExpr
)(Step
, WideTy
, Depth
));
1392 if ((SE
->*GetExtendExpr
)(Start
, WideTy
, Depth
) == OperandExtendedStart
) {
1393 if (PreAR
&& AR
->getNoWrapFlags(WrapType
)) {
1394 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1395 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1396 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1397 SE
->setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(PreAR
), WrapType
);
1402 // 3. Loop precondition.
1403 ICmpInst::Predicate Pred
;
1404 const SCEV
*OverflowLimit
=
1405 ExtendOpTraits
<ExtendOpTy
>::getOverflowLimitForStep(Step
, &Pred
, SE
);
1407 if (OverflowLimit
&&
1408 SE
->isLoopEntryGuardedByCond(L
, Pred
, PreStart
, OverflowLimit
))
1414 // Get the normalized zero or sign extended expression for this AddRec's Start.
1415 template <typename ExtendOpTy
>
1416 static const SCEV
*getExtendAddRecStart(const SCEVAddRecExpr
*AR
, Type
*Ty
,
1417 ScalarEvolution
*SE
,
1419 auto GetExtendExpr
= ExtendOpTraits
<ExtendOpTy
>::GetExtendExpr
;
1421 const SCEV
*PreStart
= getPreStartForExtend
<ExtendOpTy
>(AR
, Ty
, SE
, Depth
);
1423 return (SE
->*GetExtendExpr
)(AR
->getStart(), Ty
, Depth
);
1425 return SE
->getAddExpr((SE
->*GetExtendExpr
)(AR
->getStepRecurrence(*SE
), Ty
,
1427 (SE
->*GetExtendExpr
)(PreStart
, Ty
, Depth
));
1430 // Try to prove away overflow by looking at "nearby" add recurrences. A
1431 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1432 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1436 // {S,+,X} == {S-T,+,X} + T
1437 // => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1439 // If ({S-T,+,X} + T) does not overflow ... (1)
1441 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1443 // If {S-T,+,X} does not overflow ... (2)
1445 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1446 // == {Ext(S-T)+Ext(T),+,Ext(X)}
1448 // If (S-T)+T does not overflow ... (3)
1450 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1451 // == {Ext(S),+,Ext(X)} == LHS
1453 // Thus, if (1), (2) and (3) are true for some T, then
1454 // Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1456 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1457 // does not overflow" restricted to the 0th iteration. Therefore we only need
1458 // to check for (1) and (2).
1460 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1461 // is `Delta` (defined below).
1462 template <typename ExtendOpTy
>
1463 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV
*Start
,
1466 auto WrapType
= ExtendOpTraits
<ExtendOpTy
>::WrapType
;
1468 // We restrict `Start` to a constant to prevent SCEV from spending too much
1469 // time here. It is correct (but more expensive) to continue with a
1470 // non-constant `Start` and do a general SCEV subtraction to compute
1471 // `PreStart` below.
1472 const SCEVConstant
*StartC
= dyn_cast
<SCEVConstant
>(Start
);
1476 APInt StartAI
= StartC
->getAPInt();
1478 for (unsigned Delta
: {-2, -1, 1, 2}) {
1479 const SCEV
*PreStart
= getConstant(StartAI
- Delta
);
1481 FoldingSetNodeID ID
;
1482 ID
.AddInteger(scAddRecExpr
);
1483 ID
.AddPointer(PreStart
);
1484 ID
.AddPointer(Step
);
1488 static_cast<SCEVAddRecExpr
*>(UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
));
1490 // Give up if we don't already have the add recurrence we need because
1491 // actually constructing an add recurrence is relatively expensive.
1492 if (PreAR
&& PreAR
->getNoWrapFlags(WrapType
)) { // proves (2)
1493 const SCEV
*DeltaS
= getConstant(StartC
->getType(), Delta
);
1494 ICmpInst::Predicate Pred
= ICmpInst::BAD_ICMP_PREDICATE
;
1495 const SCEV
*Limit
= ExtendOpTraits
<ExtendOpTy
>::getOverflowLimitForStep(
1496 DeltaS
, &Pred
, this);
1497 if (Limit
&& isKnownPredicate(Pred
, PreAR
, Limit
)) // proves (1)
1505 // Finds an integer D for an expression (C + x + y + ...) such that the top
1506 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1507 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1508 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1509 // the (C + x + y + ...) expression is \p WholeAddExpr.
1510 static APInt
extractConstantWithoutWrapping(ScalarEvolution
&SE
,
1511 const SCEVConstant
*ConstantTerm
,
1512 const SCEVAddExpr
*WholeAddExpr
) {
1513 const APInt
&C
= ConstantTerm
->getAPInt();
1514 const unsigned BitWidth
= C
.getBitWidth();
1515 // Find number of trailing zeros of (x + y + ...) w/o the C first:
1516 uint32_t TZ
= BitWidth
;
1517 for (unsigned I
= 1, E
= WholeAddExpr
->getNumOperands(); I
< E
&& TZ
; ++I
)
1518 TZ
= std::min(TZ
, SE
.getMinTrailingZeros(WholeAddExpr
->getOperand(I
)));
1520 // Set D to be as many least significant bits of C as possible while still
1521 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1522 return TZ
< BitWidth
? C
.trunc(TZ
).zext(BitWidth
) : C
;
1524 return APInt(BitWidth
, 0);
1527 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1528 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1529 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1530 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1531 static APInt
extractConstantWithoutWrapping(ScalarEvolution
&SE
,
1532 const APInt
&ConstantStart
,
1534 const unsigned BitWidth
= ConstantStart
.getBitWidth();
1535 const uint32_t TZ
= SE
.getMinTrailingZeros(Step
);
1537 return TZ
< BitWidth
? ConstantStart
.trunc(TZ
).zext(BitWidth
)
1539 return APInt(BitWidth
, 0);
1542 static void insertFoldCacheEntry(
1543 const ScalarEvolution::FoldID
&ID
, const SCEV
*S
,
1544 DenseMap
<ScalarEvolution::FoldID
, const SCEV
*> &FoldCache
,
1545 DenseMap
<const SCEV
*, SmallVector
<ScalarEvolution::FoldID
, 2>>
1547 auto I
= FoldCache
.insert({ID
, S
});
1549 // Remove FoldCacheUser entry for ID when replacing an existing FoldCache
1551 auto &UserIDs
= FoldCacheUser
[I
.first
->second
];
1552 assert(count(UserIDs
, ID
) == 1 && "unexpected duplicates in UserIDs");
1553 for (unsigned I
= 0; I
!= UserIDs
.size(); ++I
)
1554 if (UserIDs
[I
] == ID
) {
1555 std::swap(UserIDs
[I
], UserIDs
.back());
1559 I
.first
->second
= S
;
1561 FoldCacheUser
[S
].push_back(ID
);
1565 ScalarEvolution::getZeroExtendExpr(const SCEV
*Op
, Type
*Ty
, unsigned Depth
) {
1566 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
1567 "This is not an extending conversion!");
1568 assert(isSCEVable(Ty
) &&
1569 "This is not a conversion to a SCEVable type!");
1570 assert(!Op
->getType()->isPointerTy() && "Can't extend pointer!");
1571 Ty
= getEffectiveSCEVType(Ty
);
1573 FoldID
ID(scZeroExtend
, Op
, Ty
);
1574 auto Iter
= FoldCache
.find(ID
);
1575 if (Iter
!= FoldCache
.end())
1576 return Iter
->second
;
1578 const SCEV
*S
= getZeroExtendExprImpl(Op
, Ty
, Depth
);
1579 if (!isa
<SCEVZeroExtendExpr
>(S
))
1580 insertFoldCacheEntry(ID
, S
, FoldCache
, FoldCacheUser
);
1584 const SCEV
*ScalarEvolution::getZeroExtendExprImpl(const SCEV
*Op
, Type
*Ty
,
1586 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
1587 "This is not an extending conversion!");
1588 assert(isSCEVable(Ty
) && "This is not a conversion to a SCEVable type!");
1589 assert(!Op
->getType()->isPointerTy() && "Can't extend pointer!");
1591 // Fold if the operand is constant.
1592 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
1593 return getConstant(SC
->getAPInt().zext(getTypeSizeInBits(Ty
)));
1595 // zext(zext(x)) --> zext(x)
1596 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
1597 return getZeroExtendExpr(SZ
->getOperand(), Ty
, Depth
+ 1);
1599 // Before doing any expensive analysis, check to see if we've already
1600 // computed a SCEV for this Op and Ty.
1601 FoldingSetNodeID ID
;
1602 ID
.AddInteger(scZeroExtend
);
1606 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1607 if (Depth
> MaxCastDepth
) {
1608 SCEV
*S
= new (SCEVAllocator
) SCEVZeroExtendExpr(ID
.Intern(SCEVAllocator
),
1610 UniqueSCEVs
.InsertNode(S
, IP
);
1611 registerUser(S
, Op
);
1615 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1616 if (const SCEVTruncateExpr
*ST
= dyn_cast
<SCEVTruncateExpr
>(Op
)) {
1617 // It's possible the bits taken off by the truncate were all zero bits. If
1618 // so, we should be able to simplify this further.
1619 const SCEV
*X
= ST
->getOperand();
1620 ConstantRange CR
= getUnsignedRange(X
);
1621 unsigned TruncBits
= getTypeSizeInBits(ST
->getType());
1622 unsigned NewBits
= getTypeSizeInBits(Ty
);
1623 if (CR
.truncate(TruncBits
).zeroExtend(NewBits
).contains(
1624 CR
.zextOrTrunc(NewBits
)))
1625 return getTruncateOrZeroExtend(X
, Ty
, Depth
);
1628 // If the input value is a chrec scev, and we can prove that the value
1629 // did not overflow the old, smaller, value, we can zero extend all of the
1630 // operands (often constants). This allows analysis of something like
1631 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1632 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
))
1633 if (AR
->isAffine()) {
1634 const SCEV
*Start
= AR
->getStart();
1635 const SCEV
*Step
= AR
->getStepRecurrence(*this);
1636 unsigned BitWidth
= getTypeSizeInBits(AR
->getType());
1637 const Loop
*L
= AR
->getLoop();
1639 // If we have special knowledge that this addrec won't overflow,
1640 // we don't need to do any further analysis.
1641 if (AR
->hasNoUnsignedWrap()) {
1643 getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this, Depth
+ 1);
1644 Step
= getZeroExtendExpr(Step
, Ty
, Depth
+ 1);
1645 return getAddRecExpr(Start
, Step
, L
, AR
->getNoWrapFlags());
1648 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1649 // Note that this serves two purposes: It filters out loops that are
1650 // simply not analyzable, and it covers the case where this code is
1651 // being called from within backedge-taken count analysis, such that
1652 // attempting to ask for the backedge-taken count would likely result
1653 // in infinite recursion. In the later case, the analysis code will
1654 // cope with a conservative value, and it will take care to purge
1655 // that value once it has finished.
1656 const SCEV
*MaxBECount
= getConstantMaxBackedgeTakenCount(L
);
1657 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
)) {
1658 // Manually compute the final value for AR, checking for overflow.
1660 // Check whether the backedge-taken count can be losslessly casted to
1661 // the addrec's type. The count is always unsigned.
1662 const SCEV
*CastedMaxBECount
=
1663 getTruncateOrZeroExtend(MaxBECount
, Start
->getType(), Depth
);
1664 const SCEV
*RecastedMaxBECount
= getTruncateOrZeroExtend(
1665 CastedMaxBECount
, MaxBECount
->getType(), Depth
);
1666 if (MaxBECount
== RecastedMaxBECount
) {
1667 Type
*WideTy
= IntegerType::get(getContext(), BitWidth
* 2);
1668 // Check whether Start+Step*MaxBECount has no unsigned overflow.
1669 const SCEV
*ZMul
= getMulExpr(CastedMaxBECount
, Step
,
1670 SCEV::FlagAnyWrap
, Depth
+ 1);
1671 const SCEV
*ZAdd
= getZeroExtendExpr(getAddExpr(Start
, ZMul
,
1675 const SCEV
*WideStart
= getZeroExtendExpr(Start
, WideTy
, Depth
+ 1);
1676 const SCEV
*WideMaxBECount
=
1677 getZeroExtendExpr(CastedMaxBECount
, WideTy
, Depth
+ 1);
1678 const SCEV
*OperandExtendedAdd
=
1679 getAddExpr(WideStart
,
1680 getMulExpr(WideMaxBECount
,
1681 getZeroExtendExpr(Step
, WideTy
, Depth
+ 1),
1682 SCEV::FlagAnyWrap
, Depth
+ 1),
1683 SCEV::FlagAnyWrap
, Depth
+ 1);
1684 if (ZAdd
== OperandExtendedAdd
) {
1685 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1686 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNUW
);
1687 // Return the expression with the addrec on the outside.
1688 Start
= getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this,
1690 Step
= getZeroExtendExpr(Step
, Ty
, Depth
+ 1);
1691 return getAddRecExpr(Start
, Step
, L
, AR
->getNoWrapFlags());
1693 // Similar to above, only this time treat the step value as signed.
1694 // This covers loops that count down.
1695 OperandExtendedAdd
=
1696 getAddExpr(WideStart
,
1697 getMulExpr(WideMaxBECount
,
1698 getSignExtendExpr(Step
, WideTy
, Depth
+ 1),
1699 SCEV::FlagAnyWrap
, Depth
+ 1),
1700 SCEV::FlagAnyWrap
, Depth
+ 1);
1701 if (ZAdd
== OperandExtendedAdd
) {
1702 // Cache knowledge of AR NW, which is propagated to this AddRec.
1703 // Negative step causes unsigned wrap, but it still can't self-wrap.
1704 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNW
);
1705 // Return the expression with the addrec on the outside.
1706 Start
= getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this,
1708 Step
= getSignExtendExpr(Step
, Ty
, Depth
+ 1);
1709 return getAddRecExpr(Start
, Step
, L
, AR
->getNoWrapFlags());
1714 // Normally, in the cases we can prove no-overflow via a
1715 // backedge guarding condition, we can also compute a backedge
1716 // taken count for the loop. The exceptions are assumptions and
1717 // guards present in the loop -- SCEV is not great at exploiting
1718 // these to compute max backedge taken counts, but can still use
1719 // these to prove lack of overflow. Use this fact to avoid
1720 // doing extra work that may not pay off.
1721 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
) || HasGuards
||
1722 !AC
.assumptions().empty()) {
1724 auto NewFlags
= proveNoUnsignedWrapViaInduction(AR
);
1725 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), NewFlags
);
1726 if (AR
->hasNoUnsignedWrap()) {
1727 // Same as nuw case above - duplicated here to avoid a compile time
1728 // issue. It's not clear that the order of checks does matter, but
1729 // it's one of two issue possible causes for a change which was
1730 // reverted. Be conservative for the moment.
1732 getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this, Depth
+ 1);
1733 Step
= getZeroExtendExpr(Step
, Ty
, Depth
+ 1);
1734 return getAddRecExpr(Start
, Step
, L
, AR
->getNoWrapFlags());
1737 // For a negative step, we can extend the operands iff doing so only
1738 // traverses values in the range zext([0,UINT_MAX]).
1739 if (isKnownNegative(Step
)) {
1740 const SCEV
*N
= getConstant(APInt::getMaxValue(BitWidth
) -
1741 getSignedRangeMin(Step
));
1742 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_UGT
, AR
, N
) ||
1743 isKnownOnEveryIteration(ICmpInst::ICMP_UGT
, AR
, N
)) {
1744 // Cache knowledge of AR NW, which is propagated to this
1745 // AddRec. Negative step causes unsigned wrap, but it
1746 // still can't self-wrap.
1747 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNW
);
1748 // Return the expression with the addrec on the outside.
1749 Start
= getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this,
1751 Step
= getSignExtendExpr(Step
, Ty
, Depth
+ 1);
1752 return getAddRecExpr(Start
, Step
, L
, AR
->getNoWrapFlags());
1757 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1758 // if D + (C - D + Step * n) could be proven to not unsigned wrap
1759 // where D maximizes the number of trailing zeros of (C - D + Step * n)
1760 if (const auto *SC
= dyn_cast
<SCEVConstant
>(Start
)) {
1761 const APInt
&C
= SC
->getAPInt();
1762 const APInt
&D
= extractConstantWithoutWrapping(*this, C
, Step
);
1764 const SCEV
*SZExtD
= getZeroExtendExpr(getConstant(D
), Ty
, Depth
);
1765 const SCEV
*SResidual
=
1766 getAddRecExpr(getConstant(C
- D
), Step
, L
, AR
->getNoWrapFlags());
1767 const SCEV
*SZExtR
= getZeroExtendExpr(SResidual
, Ty
, Depth
+ 1);
1768 return getAddExpr(SZExtD
, SZExtR
,
1769 (SCEV::NoWrapFlags
)(SCEV::FlagNSW
| SCEV::FlagNUW
),
1774 if (proveNoWrapByVaryingStart
<SCEVZeroExtendExpr
>(Start
, Step
, L
)) {
1775 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNUW
);
1777 getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this, Depth
+ 1);
1778 Step
= getZeroExtendExpr(Step
, Ty
, Depth
+ 1);
1779 return getAddRecExpr(Start
, Step
, L
, AR
->getNoWrapFlags());
1783 // zext(A % B) --> zext(A) % zext(B)
1787 if (matchURem(Op
, LHS
, RHS
))
1788 return getURemExpr(getZeroExtendExpr(LHS
, Ty
, Depth
+ 1),
1789 getZeroExtendExpr(RHS
, Ty
, Depth
+ 1));
1792 // zext(A / B) --> zext(A) / zext(B).
1793 if (auto *Div
= dyn_cast
<SCEVUDivExpr
>(Op
))
1794 return getUDivExpr(getZeroExtendExpr(Div
->getLHS(), Ty
, Depth
+ 1),
1795 getZeroExtendExpr(Div
->getRHS(), Ty
, Depth
+ 1));
1797 if (auto *SA
= dyn_cast
<SCEVAddExpr
>(Op
)) {
1798 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1799 if (SA
->hasNoUnsignedWrap()) {
1800 // If the addition does not unsign overflow then we can, by definition,
1801 // commute the zero extension with the addition operation.
1802 SmallVector
<const SCEV
*, 4> Ops
;
1803 for (const auto *Op
: SA
->operands())
1804 Ops
.push_back(getZeroExtendExpr(Op
, Ty
, Depth
+ 1));
1805 return getAddExpr(Ops
, SCEV::FlagNUW
, Depth
+ 1);
1808 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1809 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1810 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1812 // Often address arithmetics contain expressions like
1813 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1814 // This transformation is useful while proving that such expressions are
1815 // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1816 if (const auto *SC
= dyn_cast
<SCEVConstant
>(SA
->getOperand(0))) {
1817 const APInt
&D
= extractConstantWithoutWrapping(*this, SC
, SA
);
1819 const SCEV
*SZExtD
= getZeroExtendExpr(getConstant(D
), Ty
, Depth
);
1820 const SCEV
*SResidual
=
1821 getAddExpr(getConstant(-D
), SA
, SCEV::FlagAnyWrap
, Depth
);
1822 const SCEV
*SZExtR
= getZeroExtendExpr(SResidual
, Ty
, Depth
+ 1);
1823 return getAddExpr(SZExtD
, SZExtR
,
1824 (SCEV::NoWrapFlags
)(SCEV::FlagNSW
| SCEV::FlagNUW
),
1830 if (auto *SM
= dyn_cast
<SCEVMulExpr
>(Op
)) {
1831 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1832 if (SM
->hasNoUnsignedWrap()) {
1833 // If the multiply does not unsign overflow then we can, by definition,
1834 // commute the zero extension with the multiply operation.
1835 SmallVector
<const SCEV
*, 4> Ops
;
1836 for (const auto *Op
: SM
->operands())
1837 Ops
.push_back(getZeroExtendExpr(Op
, Ty
, Depth
+ 1));
1838 return getMulExpr(Ops
, SCEV::FlagNUW
, Depth
+ 1);
1841 // zext(2^K * (trunc X to iN)) to iM ->
1842 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1846 // zext(2^K * (trunc X to iN)) to iM
1847 // = zext((trunc X to iN) << K) to iM
1848 // = zext((trunc X to i{N-K}) << K)<nuw> to iM
1849 // (because shl removes the top K bits)
1850 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1851 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1853 if (SM
->getNumOperands() == 2)
1854 if (auto *MulLHS
= dyn_cast
<SCEVConstant
>(SM
->getOperand(0)))
1855 if (MulLHS
->getAPInt().isPowerOf2())
1856 if (auto *TruncRHS
= dyn_cast
<SCEVTruncateExpr
>(SM
->getOperand(1))) {
1857 int NewTruncBits
= getTypeSizeInBits(TruncRHS
->getType()) -
1858 MulLHS
->getAPInt().logBase2();
1859 Type
*NewTruncTy
= IntegerType::get(getContext(), NewTruncBits
);
1861 getZeroExtendExpr(MulLHS
, Ty
),
1863 getTruncateExpr(TruncRHS
->getOperand(), NewTruncTy
), Ty
),
1864 SCEV::FlagNUW
, Depth
+ 1);
1868 // zext(umin(x, y)) -> umin(zext(x), zext(y))
1869 // zext(umax(x, y)) -> umax(zext(x), zext(y))
1870 if (isa
<SCEVUMinExpr
>(Op
) || isa
<SCEVUMaxExpr
>(Op
)) {
1871 auto *MinMax
= cast
<SCEVMinMaxExpr
>(Op
);
1872 SmallVector
<const SCEV
*, 4> Operands
;
1873 for (auto *Operand
: MinMax
->operands())
1874 Operands
.push_back(getZeroExtendExpr(Operand
, Ty
));
1875 if (isa
<SCEVUMinExpr
>(MinMax
))
1876 return getUMinExpr(Operands
);
1877 return getUMaxExpr(Operands
);
1880 // zext(umin_seq(x, y)) -> umin_seq(zext(x), zext(y))
1881 if (auto *MinMax
= dyn_cast
<SCEVSequentialMinMaxExpr
>(Op
)) {
1882 assert(isa
<SCEVSequentialUMinExpr
>(MinMax
) && "Not supported!");
1883 SmallVector
<const SCEV
*, 4> Operands
;
1884 for (auto *Operand
: MinMax
->operands())
1885 Operands
.push_back(getZeroExtendExpr(Operand
, Ty
));
1886 return getUMinExpr(Operands
, /*Sequential*/ true);
1889 // The cast wasn't folded; create an explicit cast node.
1890 // Recompute the insert position, as it may have been invalidated.
1891 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1892 SCEV
*S
= new (SCEVAllocator
) SCEVZeroExtendExpr(ID
.Intern(SCEVAllocator
),
1894 UniqueSCEVs
.InsertNode(S
, IP
);
1895 registerUser(S
, Op
);
1900 ScalarEvolution::getSignExtendExpr(const SCEV
*Op
, Type
*Ty
, unsigned Depth
) {
1901 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
1902 "This is not an extending conversion!");
1903 assert(isSCEVable(Ty
) &&
1904 "This is not a conversion to a SCEVable type!");
1905 assert(!Op
->getType()->isPointerTy() && "Can't extend pointer!");
1906 Ty
= getEffectiveSCEVType(Ty
);
1908 FoldID
ID(scSignExtend
, Op
, Ty
);
1909 auto Iter
= FoldCache
.find(ID
);
1910 if (Iter
!= FoldCache
.end())
1911 return Iter
->second
;
1913 const SCEV
*S
= getSignExtendExprImpl(Op
, Ty
, Depth
);
1914 if (!isa
<SCEVSignExtendExpr
>(S
))
1915 insertFoldCacheEntry(ID
, S
, FoldCache
, FoldCacheUser
);
1919 const SCEV
*ScalarEvolution::getSignExtendExprImpl(const SCEV
*Op
, Type
*Ty
,
1921 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
1922 "This is not an extending conversion!");
1923 assert(isSCEVable(Ty
) && "This is not a conversion to a SCEVable type!");
1924 assert(!Op
->getType()->isPointerTy() && "Can't extend pointer!");
1925 Ty
= getEffectiveSCEVType(Ty
);
1927 // Fold if the operand is constant.
1928 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
1929 return getConstant(SC
->getAPInt().sext(getTypeSizeInBits(Ty
)));
1931 // sext(sext(x)) --> sext(x)
1932 if (const SCEVSignExtendExpr
*SS
= dyn_cast
<SCEVSignExtendExpr
>(Op
))
1933 return getSignExtendExpr(SS
->getOperand(), Ty
, Depth
+ 1);
1935 // sext(zext(x)) --> zext(x)
1936 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
1937 return getZeroExtendExpr(SZ
->getOperand(), Ty
, Depth
+ 1);
1939 // Before doing any expensive analysis, check to see if we've already
1940 // computed a SCEV for this Op and Ty.
1941 FoldingSetNodeID ID
;
1942 ID
.AddInteger(scSignExtend
);
1946 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1947 // Limit recursion depth.
1948 if (Depth
> MaxCastDepth
) {
1949 SCEV
*S
= new (SCEVAllocator
) SCEVSignExtendExpr(ID
.Intern(SCEVAllocator
),
1951 UniqueSCEVs
.InsertNode(S
, IP
);
1952 registerUser(S
, Op
);
1956 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1957 if (const SCEVTruncateExpr
*ST
= dyn_cast
<SCEVTruncateExpr
>(Op
)) {
1958 // It's possible the bits taken off by the truncate were all sign bits. If
1959 // so, we should be able to simplify this further.
1960 const SCEV
*X
= ST
->getOperand();
1961 ConstantRange CR
= getSignedRange(X
);
1962 unsigned TruncBits
= getTypeSizeInBits(ST
->getType());
1963 unsigned NewBits
= getTypeSizeInBits(Ty
);
1964 if (CR
.truncate(TruncBits
).signExtend(NewBits
).contains(
1965 CR
.sextOrTrunc(NewBits
)))
1966 return getTruncateOrSignExtend(X
, Ty
, Depth
);
1969 if (auto *SA
= dyn_cast
<SCEVAddExpr
>(Op
)) {
1970 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1971 if (SA
->hasNoSignedWrap()) {
1972 // If the addition does not sign overflow then we can, by definition,
1973 // commute the sign extension with the addition operation.
1974 SmallVector
<const SCEV
*, 4> Ops
;
1975 for (const auto *Op
: SA
->operands())
1976 Ops
.push_back(getSignExtendExpr(Op
, Ty
, Depth
+ 1));
1977 return getAddExpr(Ops
, SCEV::FlagNSW
, Depth
+ 1);
1980 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1981 // if D + (C - D + x + y + ...) could be proven to not signed wrap
1982 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1984 // For instance, this will bring two seemingly different expressions:
1985 // 1 + sext(5 + 20 * %x + 24 * %y) and
1986 // sext(6 + 20 * %x + 24 * %y)
1987 // to the same form:
1988 // 2 + sext(4 + 20 * %x + 24 * %y)
1989 if (const auto *SC
= dyn_cast
<SCEVConstant
>(SA
->getOperand(0))) {
1990 const APInt
&D
= extractConstantWithoutWrapping(*this, SC
, SA
);
1992 const SCEV
*SSExtD
= getSignExtendExpr(getConstant(D
), Ty
, Depth
);
1993 const SCEV
*SResidual
=
1994 getAddExpr(getConstant(-D
), SA
, SCEV::FlagAnyWrap
, Depth
);
1995 const SCEV
*SSExtR
= getSignExtendExpr(SResidual
, Ty
, Depth
+ 1);
1996 return getAddExpr(SSExtD
, SSExtR
,
1997 (SCEV::NoWrapFlags
)(SCEV::FlagNSW
| SCEV::FlagNUW
),
2002 // If the input value is a chrec scev, and we can prove that the value
2003 // did not overflow the old, smaller, value, we can sign extend all of the
2004 // operands (often constants). This allows analysis of something like
2005 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
2006 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
))
2007 if (AR
->isAffine()) {
2008 const SCEV
*Start
= AR
->getStart();
2009 const SCEV
*Step
= AR
->getStepRecurrence(*this);
2010 unsigned BitWidth
= getTypeSizeInBits(AR
->getType());
2011 const Loop
*L
= AR
->getLoop();
2013 // If we have special knowledge that this addrec won't overflow,
2014 // we don't need to do any further analysis.
2015 if (AR
->hasNoSignedWrap()) {
2017 getExtendAddRecStart
<SCEVSignExtendExpr
>(AR
, Ty
, this, Depth
+ 1);
2018 Step
= getSignExtendExpr(Step
, Ty
, Depth
+ 1);
2019 return getAddRecExpr(Start
, Step
, L
, SCEV::FlagNSW
);
2022 // Check whether the backedge-taken count is SCEVCouldNotCompute.
2023 // Note that this serves two purposes: It filters out loops that are
2024 // simply not analyzable, and it covers the case where this code is
2025 // being called from within backedge-taken count analysis, such that
2026 // attempting to ask for the backedge-taken count would likely result
2027 // in infinite recursion. In the later case, the analysis code will
2028 // cope with a conservative value, and it will take care to purge
2029 // that value once it has finished.
2030 const SCEV
*MaxBECount
= getConstantMaxBackedgeTakenCount(L
);
2031 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
)) {
2032 // Manually compute the final value for AR, checking for
2035 // Check whether the backedge-taken count can be losslessly casted to
2036 // the addrec's type. The count is always unsigned.
2037 const SCEV
*CastedMaxBECount
=
2038 getTruncateOrZeroExtend(MaxBECount
, Start
->getType(), Depth
);
2039 const SCEV
*RecastedMaxBECount
= getTruncateOrZeroExtend(
2040 CastedMaxBECount
, MaxBECount
->getType(), Depth
);
2041 if (MaxBECount
== RecastedMaxBECount
) {
2042 Type
*WideTy
= IntegerType::get(getContext(), BitWidth
* 2);
2043 // Check whether Start+Step*MaxBECount has no signed overflow.
2044 const SCEV
*SMul
= getMulExpr(CastedMaxBECount
, Step
,
2045 SCEV::FlagAnyWrap
, Depth
+ 1);
2046 const SCEV
*SAdd
= getSignExtendExpr(getAddExpr(Start
, SMul
,
2050 const SCEV
*WideStart
= getSignExtendExpr(Start
, WideTy
, Depth
+ 1);
2051 const SCEV
*WideMaxBECount
=
2052 getZeroExtendExpr(CastedMaxBECount
, WideTy
, Depth
+ 1);
2053 const SCEV
*OperandExtendedAdd
=
2054 getAddExpr(WideStart
,
2055 getMulExpr(WideMaxBECount
,
2056 getSignExtendExpr(Step
, WideTy
, Depth
+ 1),
2057 SCEV::FlagAnyWrap
, Depth
+ 1),
2058 SCEV::FlagAnyWrap
, Depth
+ 1);
2059 if (SAdd
== OperandExtendedAdd
) {
2060 // Cache knowledge of AR NSW, which is propagated to this AddRec.
2061 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNSW
);
2062 // Return the expression with the addrec on the outside.
2063 Start
= getExtendAddRecStart
<SCEVSignExtendExpr
>(AR
, Ty
, this,
2065 Step
= getSignExtendExpr(Step
, Ty
, Depth
+ 1);
2066 return getAddRecExpr(Start
, Step
, L
, AR
->getNoWrapFlags());
2068 // Similar to above, only this time treat the step value as unsigned.
2069 // This covers loops that count up with an unsigned step.
2070 OperandExtendedAdd
=
2071 getAddExpr(WideStart
,
2072 getMulExpr(WideMaxBECount
,
2073 getZeroExtendExpr(Step
, WideTy
, Depth
+ 1),
2074 SCEV::FlagAnyWrap
, Depth
+ 1),
2075 SCEV::FlagAnyWrap
, Depth
+ 1);
2076 if (SAdd
== OperandExtendedAdd
) {
2077 // If AR wraps around then
2079 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
2080 // => SAdd != OperandExtendedAdd
2082 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2083 // (SAdd == OperandExtendedAdd => AR is NW)
2085 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNW
);
2087 // Return the expression with the addrec on the outside.
2088 Start
= getExtendAddRecStart
<SCEVSignExtendExpr
>(AR
, Ty
, this,
2090 Step
= getZeroExtendExpr(Step
, Ty
, Depth
+ 1);
2091 return getAddRecExpr(Start
, Step
, L
, AR
->getNoWrapFlags());
2096 auto NewFlags
= proveNoSignedWrapViaInduction(AR
);
2097 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), NewFlags
);
2098 if (AR
->hasNoSignedWrap()) {
2099 // Same as nsw case above - duplicated here to avoid a compile time
2100 // issue. It's not clear that the order of checks does matter, but
2101 // it's one of two issue possible causes for a change which was
2102 // reverted. Be conservative for the moment.
2104 getExtendAddRecStart
<SCEVSignExtendExpr
>(AR
, Ty
, this, Depth
+ 1);
2105 Step
= getSignExtendExpr(Step
, Ty
, Depth
+ 1);
2106 return getAddRecExpr(Start
, Step
, L
, AR
->getNoWrapFlags());
2109 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2110 // if D + (C - D + Step * n) could be proven to not signed wrap
2111 // where D maximizes the number of trailing zeros of (C - D + Step * n)
2112 if (const auto *SC
= dyn_cast
<SCEVConstant
>(Start
)) {
2113 const APInt
&C
= SC
->getAPInt();
2114 const APInt
&D
= extractConstantWithoutWrapping(*this, C
, Step
);
2116 const SCEV
*SSExtD
= getSignExtendExpr(getConstant(D
), Ty
, Depth
);
2117 const SCEV
*SResidual
=
2118 getAddRecExpr(getConstant(C
- D
), Step
, L
, AR
->getNoWrapFlags());
2119 const SCEV
*SSExtR
= getSignExtendExpr(SResidual
, Ty
, Depth
+ 1);
2120 return getAddExpr(SSExtD
, SSExtR
,
2121 (SCEV::NoWrapFlags
)(SCEV::FlagNSW
| SCEV::FlagNUW
),
2126 if (proveNoWrapByVaryingStart
<SCEVSignExtendExpr
>(Start
, Step
, L
)) {
2127 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNSW
);
2129 getExtendAddRecStart
<SCEVSignExtendExpr
>(AR
, Ty
, this, Depth
+ 1);
2130 Step
= getSignExtendExpr(Step
, Ty
, Depth
+ 1);
2131 return getAddRecExpr(Start
, Step
, L
, AR
->getNoWrapFlags());
2135 // If the input value is provably positive and we could not simplify
2136 // away the sext build a zext instead.
2137 if (isKnownNonNegative(Op
))
2138 return getZeroExtendExpr(Op
, Ty
, Depth
+ 1);
2140 // sext(smin(x, y)) -> smin(sext(x), sext(y))
2141 // sext(smax(x, y)) -> smax(sext(x), sext(y))
2142 if (isa
<SCEVSMinExpr
>(Op
) || isa
<SCEVSMaxExpr
>(Op
)) {
2143 auto *MinMax
= cast
<SCEVMinMaxExpr
>(Op
);
2144 SmallVector
<const SCEV
*, 4> Operands
;
2145 for (auto *Operand
: MinMax
->operands())
2146 Operands
.push_back(getSignExtendExpr(Operand
, Ty
));
2147 if (isa
<SCEVSMinExpr
>(MinMax
))
2148 return getSMinExpr(Operands
);
2149 return getSMaxExpr(Operands
);
2152 // The cast wasn't folded; create an explicit cast node.
2153 // Recompute the insert position, as it may have been invalidated.
2154 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
2155 SCEV
*S
= new (SCEVAllocator
) SCEVSignExtendExpr(ID
.Intern(SCEVAllocator
),
2157 UniqueSCEVs
.InsertNode(S
, IP
);
2158 registerUser(S
, { Op
});
2162 const SCEV
*ScalarEvolution::getCastExpr(SCEVTypes Kind
, const SCEV
*Op
,
2166 return getTruncateExpr(Op
, Ty
);
2168 return getZeroExtendExpr(Op
, Ty
);
2170 return getSignExtendExpr(Op
, Ty
);
2172 return getPtrToIntExpr(Op
, Ty
);
2174 llvm_unreachable("Not a SCEV cast expression!");
2178 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2179 /// unspecified bits out to the given type.
2180 const SCEV
*ScalarEvolution::getAnyExtendExpr(const SCEV
*Op
,
2182 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
2183 "This is not an extending conversion!");
2184 assert(isSCEVable(Ty
) &&
2185 "This is not a conversion to a SCEVable type!");
2186 Ty
= getEffectiveSCEVType(Ty
);
2188 // Sign-extend negative constants.
2189 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
2190 if (SC
->getAPInt().isNegative())
2191 return getSignExtendExpr(Op
, Ty
);
2193 // Peel off a truncate cast.
2194 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(Op
)) {
2195 const SCEV
*NewOp
= T
->getOperand();
2196 if (getTypeSizeInBits(NewOp
->getType()) < getTypeSizeInBits(Ty
))
2197 return getAnyExtendExpr(NewOp
, Ty
);
2198 return getTruncateOrNoop(NewOp
, Ty
);
2201 // Next try a zext cast. If the cast is folded, use it.
2202 const SCEV
*ZExt
= getZeroExtendExpr(Op
, Ty
);
2203 if (!isa
<SCEVZeroExtendExpr
>(ZExt
))
2206 // Next try a sext cast. If the cast is folded, use it.
2207 const SCEV
*SExt
= getSignExtendExpr(Op
, Ty
);
2208 if (!isa
<SCEVSignExtendExpr
>(SExt
))
2211 // Force the cast to be folded into the operands of an addrec.
2212 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
)) {
2213 SmallVector
<const SCEV
*, 4> Ops
;
2214 for (const SCEV
*Op
: AR
->operands())
2215 Ops
.push_back(getAnyExtendExpr(Op
, Ty
));
2216 return getAddRecExpr(Ops
, AR
->getLoop(), SCEV::FlagNW
);
2219 // If the expression is obviously signed, use the sext cast value.
2220 if (isa
<SCEVSMaxExpr
>(Op
))
2223 // Absent any other information, use the zext cast value.
2227 /// Process the given Ops list, which is a list of operands to be added under
2228 /// the given scale, update the given map. This is a helper function for
2229 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2230 /// that would form an add expression like this:
2232 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2234 /// where A and B are constants, update the map with these values:
2236 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2238 /// and add 13 + A*B*29 to AccumulatedConstant.
2239 /// This will allow getAddRecExpr to produce this:
2241 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2243 /// This form often exposes folding opportunities that are hidden in
2244 /// the original operand list.
2246 /// Return true iff it appears that any interesting folding opportunities
2247 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2248 /// the common case where no interesting opportunities are present, and
2249 /// is also used as a check to avoid infinite recursion.
2251 CollectAddOperandsWithScales(SmallDenseMap
<const SCEV
*, APInt
, 16> &M
,
2252 SmallVectorImpl
<const SCEV
*> &NewOps
,
2253 APInt
&AccumulatedConstant
,
2254 ArrayRef
<const SCEV
*> Ops
, const APInt
&Scale
,
2255 ScalarEvolution
&SE
) {
2256 bool Interesting
= false;
2258 // Iterate over the add operands. They are sorted, with constants first.
2260 while (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Ops
[i
])) {
2262 // Pull a buried constant out to the outside.
2263 if (Scale
!= 1 || AccumulatedConstant
!= 0 || C
->getValue()->isZero())
2265 AccumulatedConstant
+= Scale
* C
->getAPInt();
2268 // Next comes everything else. We're especially interested in multiplies
2269 // here, but they're in the middle, so just visit the rest with one loop.
2270 for (; i
!= Ops
.size(); ++i
) {
2271 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[i
]);
2272 if (Mul
&& isa
<SCEVConstant
>(Mul
->getOperand(0))) {
2274 Scale
* cast
<SCEVConstant
>(Mul
->getOperand(0))->getAPInt();
2275 if (Mul
->getNumOperands() == 2 && isa
<SCEVAddExpr
>(Mul
->getOperand(1))) {
2276 // A multiplication of a constant with another add; recurse.
2277 const SCEVAddExpr
*Add
= cast
<SCEVAddExpr
>(Mul
->getOperand(1));
2279 CollectAddOperandsWithScales(M
, NewOps
, AccumulatedConstant
,
2280 Add
->operands(), NewScale
, SE
);
2282 // A multiplication of a constant with some other value. Update
2284 SmallVector
<const SCEV
*, 4> MulOps(drop_begin(Mul
->operands()));
2285 const SCEV
*Key
= SE
.getMulExpr(MulOps
);
2286 auto Pair
= M
.insert({Key
, NewScale
});
2288 NewOps
.push_back(Pair
.first
->first
);
2290 Pair
.first
->second
+= NewScale
;
2291 // The map already had an entry for this value, which may indicate
2292 // a folding opportunity.
2297 // An ordinary operand. Update the map.
2298 std::pair
<DenseMap
<const SCEV
*, APInt
>::iterator
, bool> Pair
=
2299 M
.insert({Ops
[i
], Scale
});
2301 NewOps
.push_back(Pair
.first
->first
);
2303 Pair
.first
->second
+= Scale
;
2304 // The map already had an entry for this value, which may indicate
2305 // a folding opportunity.
2314 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp
, bool Signed
,
2315 const SCEV
*LHS
, const SCEV
*RHS
,
2316 const Instruction
*CtxI
) {
2317 const SCEV
*(ScalarEvolution::*Operation
)(const SCEV
*, const SCEV
*,
2318 SCEV::NoWrapFlags
, unsigned);
2321 llvm_unreachable("Unsupported binary op");
2322 case Instruction::Add
:
2323 Operation
= &ScalarEvolution::getAddExpr
;
2325 case Instruction::Sub
:
2326 Operation
= &ScalarEvolution::getMinusSCEV
;
2328 case Instruction::Mul
:
2329 Operation
= &ScalarEvolution::getMulExpr
;
2333 const SCEV
*(ScalarEvolution::*Extension
)(const SCEV
*, Type
*, unsigned) =
2334 Signed
? &ScalarEvolution::getSignExtendExpr
2335 : &ScalarEvolution::getZeroExtendExpr
;
2337 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2338 auto *NarrowTy
= cast
<IntegerType
>(LHS
->getType());
2340 IntegerType::get(NarrowTy
->getContext(), NarrowTy
->getBitWidth() * 2);
2342 const SCEV
*A
= (this->*Extension
)(
2343 (this->*Operation
)(LHS
, RHS
, SCEV::FlagAnyWrap
, 0), WideTy
, 0);
2344 const SCEV
*LHSB
= (this->*Extension
)(LHS
, WideTy
, 0);
2345 const SCEV
*RHSB
= (this->*Extension
)(RHS
, WideTy
, 0);
2346 const SCEV
*B
= (this->*Operation
)(LHSB
, RHSB
, SCEV::FlagAnyWrap
, 0);
2349 // Can we use context to prove the fact we need?
2352 // TODO: Support mul.
2353 if (BinOp
== Instruction::Mul
)
2355 auto *RHSC
= dyn_cast
<SCEVConstant
>(RHS
);
2356 // TODO: Lift this limitation.
2359 APInt C
= RHSC
->getAPInt();
2360 unsigned NumBits
= C
.getBitWidth();
2361 bool IsSub
= (BinOp
== Instruction::Sub
);
2362 bool IsNegativeConst
= (Signed
&& C
.isNegative());
2363 // Compute the direction and magnitude by which we need to check overflow.
2364 bool OverflowDown
= IsSub
^ IsNegativeConst
;
2365 APInt Magnitude
= C
;
2366 if (IsNegativeConst
) {
2367 if (C
== APInt::getSignedMinValue(NumBits
))
2368 // TODO: SINT_MIN on inversion gives the same negative value, we don't
2369 // want to deal with that.
2374 ICmpInst::Predicate Pred
= Signed
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
2376 // To avoid overflow down, we need to make sure that MIN + Magnitude <= LHS.
2377 APInt Min
= Signed
? APInt::getSignedMinValue(NumBits
)
2378 : APInt::getMinValue(NumBits
);
2379 APInt Limit
= Min
+ Magnitude
;
2380 return isKnownPredicateAt(Pred
, getConstant(Limit
), LHS
, CtxI
);
2382 // To avoid overflow up, we need to make sure that LHS <= MAX - Magnitude.
2383 APInt Max
= Signed
? APInt::getSignedMaxValue(NumBits
)
2384 : APInt::getMaxValue(NumBits
);
2385 APInt Limit
= Max
- Magnitude
;
2386 return isKnownPredicateAt(Pred
, LHS
, getConstant(Limit
), CtxI
);
2390 std::optional
<SCEV::NoWrapFlags
>
2391 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2392 const OverflowingBinaryOperator
*OBO
) {
2393 // It cannot be done any better.
2394 if (OBO
->hasNoUnsignedWrap() && OBO
->hasNoSignedWrap())
2395 return std::nullopt
;
2397 SCEV::NoWrapFlags Flags
= SCEV::NoWrapFlags::FlagAnyWrap
;
2399 if (OBO
->hasNoUnsignedWrap())
2400 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNUW
);
2401 if (OBO
->hasNoSignedWrap())
2402 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNSW
);
2404 bool Deduced
= false;
2406 if (OBO
->getOpcode() != Instruction::Add
&&
2407 OBO
->getOpcode() != Instruction::Sub
&&
2408 OBO
->getOpcode() != Instruction::Mul
)
2409 return std::nullopt
;
2411 const SCEV
*LHS
= getSCEV(OBO
->getOperand(0));
2412 const SCEV
*RHS
= getSCEV(OBO
->getOperand(1));
2414 const Instruction
*CtxI
=
2415 UseContextForNoWrapFlagInference
? dyn_cast
<Instruction
>(OBO
) : nullptr;
2416 if (!OBO
->hasNoUnsignedWrap() &&
2417 willNotOverflow((Instruction::BinaryOps
)OBO
->getOpcode(),
2418 /* Signed */ false, LHS
, RHS
, CtxI
)) {
2419 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNUW
);
2423 if (!OBO
->hasNoSignedWrap() &&
2424 willNotOverflow((Instruction::BinaryOps
)OBO
->getOpcode(),
2425 /* Signed */ true, LHS
, RHS
, CtxI
)) {
2426 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNSW
);
2432 return std::nullopt
;
2435 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2436 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
2437 // can't-overflow flags for the operation if possible.
2438 static SCEV::NoWrapFlags
2439 StrengthenNoWrapFlags(ScalarEvolution
*SE
, SCEVTypes Type
,
2440 const ArrayRef
<const SCEV
*> Ops
,
2441 SCEV::NoWrapFlags Flags
) {
2442 using namespace std::placeholders
;
2444 using OBO
= OverflowingBinaryOperator
;
2447 Type
== scAddExpr
|| Type
== scAddRecExpr
|| Type
== scMulExpr
;
2449 assert(CanAnalyze
&& "don't call from other places!");
2451 int SignOrUnsignMask
= SCEV::FlagNUW
| SCEV::FlagNSW
;
2452 SCEV::NoWrapFlags SignOrUnsignWrap
=
2453 ScalarEvolution::maskFlags(Flags
, SignOrUnsignMask
);
2455 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2456 auto IsKnownNonNegative
= [&](const SCEV
*S
) {
2457 return SE
->isKnownNonNegative(S
);
2460 if (SignOrUnsignWrap
== SCEV::FlagNSW
&& all_of(Ops
, IsKnownNonNegative
))
2462 ScalarEvolution::setFlags(Flags
, (SCEV::NoWrapFlags
)SignOrUnsignMask
);
2464 SignOrUnsignWrap
= ScalarEvolution::maskFlags(Flags
, SignOrUnsignMask
);
2466 if (SignOrUnsignWrap
!= SignOrUnsignMask
&&
2467 (Type
== scAddExpr
|| Type
== scMulExpr
) && Ops
.size() == 2 &&
2468 isa
<SCEVConstant
>(Ops
[0])) {
2473 return Instruction::Add
;
2475 return Instruction::Mul
;
2477 llvm_unreachable("Unexpected SCEV op.");
2481 const APInt
&C
= cast
<SCEVConstant
>(Ops
[0])->getAPInt();
2483 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2484 if (!(SignOrUnsignWrap
& SCEV::FlagNSW
)) {
2485 auto NSWRegion
= ConstantRange::makeGuaranteedNoWrapRegion(
2486 Opcode
, C
, OBO::NoSignedWrap
);
2487 if (NSWRegion
.contains(SE
->getSignedRange(Ops
[1])))
2488 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNSW
);
2491 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2492 if (!(SignOrUnsignWrap
& SCEV::FlagNUW
)) {
2493 auto NUWRegion
= ConstantRange::makeGuaranteedNoWrapRegion(
2494 Opcode
, C
, OBO::NoUnsignedWrap
);
2495 if (NUWRegion
.contains(SE
->getUnsignedRange(Ops
[1])))
2496 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNUW
);
2500 // <0,+,nonnegative><nw> is also nuw
2501 // TODO: Add corresponding nsw case
2502 if (Type
== scAddRecExpr
&& ScalarEvolution::hasFlags(Flags
, SCEV::FlagNW
) &&
2503 !ScalarEvolution::hasFlags(Flags
, SCEV::FlagNUW
) && Ops
.size() == 2 &&
2504 Ops
[0]->isZero() && IsKnownNonNegative(Ops
[1]))
2505 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNUW
);
2507 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2508 if (Type
== scMulExpr
&& !ScalarEvolution::hasFlags(Flags
, SCEV::FlagNUW
) &&
2510 if (auto *UDiv
= dyn_cast
<SCEVUDivExpr
>(Ops
[0]))
2511 if (UDiv
->getOperand(1) == Ops
[1])
2512 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNUW
);
2513 if (auto *UDiv
= dyn_cast
<SCEVUDivExpr
>(Ops
[1]))
2514 if (UDiv
->getOperand(1) == Ops
[0])
2515 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNUW
);
2521 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV
*S
, const Loop
*L
) {
2522 return isLoopInvariant(S
, L
) && properlyDominates(S
, L
->getHeader());
2525 /// Get a canonical add expression, or something simpler if possible.
2526 const SCEV
*ScalarEvolution::getAddExpr(SmallVectorImpl
<const SCEV
*> &Ops
,
2527 SCEV::NoWrapFlags OrigFlags
,
2529 assert(!(OrigFlags
& ~(SCEV::FlagNUW
| SCEV::FlagNSW
)) &&
2530 "only nuw or nsw allowed");
2531 assert(!Ops
.empty() && "Cannot get empty add!");
2532 if (Ops
.size() == 1) return Ops
[0];
2534 Type
*ETy
= getEffectiveSCEVType(Ops
[0]->getType());
2535 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
2536 assert(getEffectiveSCEVType(Ops
[i
]->getType()) == ETy
&&
2537 "SCEVAddExpr operand types don't match!");
2538 unsigned NumPtrs
= count_if(
2539 Ops
, [](const SCEV
*Op
) { return Op
->getType()->isPointerTy(); });
2540 assert(NumPtrs
<= 1 && "add has at most one pointer operand");
2543 const SCEV
*Folded
= constantFoldAndGroupOps(
2545 [](const APInt
&C1
, const APInt
&C2
) { return C1
+ C2
; },
2546 [](const APInt
&C
) { return C
.isZero(); }, // identity
2547 [](const APInt
&C
) { return false; }); // absorber
2551 unsigned Idx
= isa
<SCEVConstant
>(Ops
[0]) ? 1 : 0;
2553 // Delay expensive flag strengthening until necessary.
2554 auto ComputeFlags
= [this, OrigFlags
](const ArrayRef
<const SCEV
*> Ops
) {
2555 return StrengthenNoWrapFlags(this, scAddExpr
, Ops
, OrigFlags
);
2558 // Limit recursion calls depth.
2559 if (Depth
> MaxArithDepth
|| hasHugeExpression(Ops
))
2560 return getOrCreateAddExpr(Ops
, ComputeFlags(Ops
));
2562 if (SCEV
*S
= findExistingSCEVInCache(scAddExpr
, Ops
)) {
2563 // Don't strengthen flags if we have no new information.
2564 SCEVAddExpr
*Add
= static_cast<SCEVAddExpr
*>(S
);
2565 if (Add
->getNoWrapFlags(OrigFlags
) != OrigFlags
)
2566 Add
->setNoWrapFlags(ComputeFlags(Ops
));
2570 // Okay, check to see if the same value occurs in the operand list more than
2571 // once. If so, merge them together into an multiply expression. Since we
2572 // sorted the list, these values are required to be adjacent.
2573 Type
*Ty
= Ops
[0]->getType();
2574 bool FoundMatch
= false;
2575 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
-1; ++i
)
2576 if (Ops
[i
] == Ops
[i
+1]) { // X + Y + Y --> X + Y*2
2577 // Scan ahead to count how many equal operands there are.
2579 while (i
+Count
!= e
&& Ops
[i
+Count
] == Ops
[i
])
2581 // Merge the values into a multiply.
2582 const SCEV
*Scale
= getConstant(Ty
, Count
);
2583 const SCEV
*Mul
= getMulExpr(Scale
, Ops
[i
], SCEV::FlagAnyWrap
, Depth
+ 1);
2584 if (Ops
.size() == Count
)
2587 Ops
.erase(Ops
.begin()+i
+1, Ops
.begin()+i
+Count
);
2588 --i
; e
-= Count
- 1;
2592 return getAddExpr(Ops
, OrigFlags
, Depth
+ 1);
2594 // Check for truncates. If all the operands are truncated from the same
2595 // type, see if factoring out the truncate would permit the result to be
2596 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2597 // if the contents of the resulting outer trunc fold to something simple.
2598 auto FindTruncSrcType
= [&]() -> Type
* {
2599 // We're ultimately looking to fold an addrec of truncs and muls of only
2600 // constants and truncs, so if we find any other types of SCEV
2601 // as operands of the addrec then we bail and return nullptr here.
2602 // Otherwise, we return the type of the operand of a trunc that we find.
2603 if (auto *T
= dyn_cast
<SCEVTruncateExpr
>(Ops
[Idx
]))
2604 return T
->getOperand()->getType();
2605 if (const auto *Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[Idx
])) {
2606 const auto *LastOp
= Mul
->getOperand(Mul
->getNumOperands() - 1);
2607 if (const auto *T
= dyn_cast
<SCEVTruncateExpr
>(LastOp
))
2608 return T
->getOperand()->getType();
2612 if (auto *SrcType
= FindTruncSrcType()) {
2613 SmallVector
<const SCEV
*, 8> LargeOps
;
2615 // Check all the operands to see if they can be represented in the
2616 // source type of the truncate.
2617 for (const SCEV
*Op
: Ops
) {
2618 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(Op
)) {
2619 if (T
->getOperand()->getType() != SrcType
) {
2623 LargeOps
.push_back(T
->getOperand());
2624 } else if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Op
)) {
2625 LargeOps
.push_back(getAnyExtendExpr(C
, SrcType
));
2626 } else if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(Op
)) {
2627 SmallVector
<const SCEV
*, 8> LargeMulOps
;
2628 for (unsigned j
= 0, f
= M
->getNumOperands(); j
!= f
&& Ok
; ++j
) {
2629 if (const SCEVTruncateExpr
*T
=
2630 dyn_cast
<SCEVTruncateExpr
>(M
->getOperand(j
))) {
2631 if (T
->getOperand()->getType() != SrcType
) {
2635 LargeMulOps
.push_back(T
->getOperand());
2636 } else if (const auto *C
= dyn_cast
<SCEVConstant
>(M
->getOperand(j
))) {
2637 LargeMulOps
.push_back(getAnyExtendExpr(C
, SrcType
));
2644 LargeOps
.push_back(getMulExpr(LargeMulOps
, SCEV::FlagAnyWrap
, Depth
+ 1));
2651 // Evaluate the expression in the larger type.
2652 const SCEV
*Fold
= getAddExpr(LargeOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2653 // If it folds to something simple, use it. Otherwise, don't.
2654 if (isa
<SCEVConstant
>(Fold
) || isa
<SCEVUnknown
>(Fold
))
2655 return getTruncateExpr(Fold
, Ty
);
2659 if (Ops
.size() == 2) {
2660 // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2661 // C2 can be folded in a way that allows retaining wrapping flags of (X +
2663 const SCEV
*A
= Ops
[0];
2664 const SCEV
*B
= Ops
[1];
2665 auto *AddExpr
= dyn_cast
<SCEVAddExpr
>(B
);
2666 auto *C
= dyn_cast
<SCEVConstant
>(A
);
2667 if (AddExpr
&& C
&& isa
<SCEVConstant
>(AddExpr
->getOperand(0))) {
2668 auto C1
= cast
<SCEVConstant
>(AddExpr
->getOperand(0))->getAPInt();
2669 auto C2
= C
->getAPInt();
2670 SCEV::NoWrapFlags PreservedFlags
= SCEV::FlagAnyWrap
;
2672 APInt ConstAdd
= C1
+ C2
;
2673 auto AddFlags
= AddExpr
->getNoWrapFlags();
2674 // Adding a smaller constant is NUW if the original AddExpr was NUW.
2675 if (ScalarEvolution::hasFlags(AddFlags
, SCEV::FlagNUW
) &&
2678 ScalarEvolution::setFlags(PreservedFlags
, SCEV::FlagNUW
);
2681 // Adding a constant with the same sign and small magnitude is NSW, if the
2682 // original AddExpr was NSW.
2683 if (ScalarEvolution::hasFlags(AddFlags
, SCEV::FlagNSW
) &&
2684 C1
.isSignBitSet() == ConstAdd
.isSignBitSet() &&
2685 ConstAdd
.abs().ule(C1
.abs())) {
2687 ScalarEvolution::setFlags(PreservedFlags
, SCEV::FlagNSW
);
2690 if (PreservedFlags
!= SCEV::FlagAnyWrap
) {
2691 SmallVector
<const SCEV
*, 4> NewOps(AddExpr
->operands());
2692 NewOps
[0] = getConstant(ConstAdd
);
2693 return getAddExpr(NewOps
, PreservedFlags
);
2698 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y)
2699 if (Ops
.size() == 2) {
2700 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[0]);
2701 if (Mul
&& Mul
->getNumOperands() == 2 &&
2702 Mul
->getOperand(0)->isAllOnesValue()) {
2705 if (matchURem(Mul
->getOperand(1), X
, Y
) && X
== Ops
[1]) {
2706 return getMulExpr(Y
, getUDivExpr(X
, Y
));
2711 // Skip past any other cast SCEVs.
2712 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddExpr
)
2715 // If there are add operands they would be next.
2716 if (Idx
< Ops
.size()) {
2717 bool DeletedAdd
= false;
2718 // If the original flags and all inlined SCEVAddExprs are NUW, use the
2719 // common NUW flag for expression after inlining. Other flags cannot be
2720 // preserved, because they may depend on the original order of operations.
2721 SCEV::NoWrapFlags CommonFlags
= maskFlags(OrigFlags
, SCEV::FlagNUW
);
2722 while (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[Idx
])) {
2723 if (Ops
.size() > AddOpsInlineThreshold
||
2724 Add
->getNumOperands() > AddOpsInlineThreshold
)
2726 // If we have an add, expand the add operands onto the end of the operands
2728 Ops
.erase(Ops
.begin()+Idx
);
2729 append_range(Ops
, Add
->operands());
2731 CommonFlags
= maskFlags(CommonFlags
, Add
->getNoWrapFlags());
2734 // If we deleted at least one add, we added operands to the end of the list,
2735 // and they are not necessarily sorted. Recurse to resort and resimplify
2736 // any operands we just acquired.
2738 return getAddExpr(Ops
, CommonFlags
, Depth
+ 1);
2741 // Skip over the add expression until we get to a multiply.
2742 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scMulExpr
)
2745 // Check to see if there are any folding opportunities present with
2746 // operands multiplied by constant values.
2747 if (Idx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[Idx
])) {
2748 uint64_t BitWidth
= getTypeSizeInBits(Ty
);
2749 SmallDenseMap
<const SCEV
*, APInt
, 16> M
;
2750 SmallVector
<const SCEV
*, 8> NewOps
;
2751 APInt
AccumulatedConstant(BitWidth
, 0);
2752 if (CollectAddOperandsWithScales(M
, NewOps
, AccumulatedConstant
,
2753 Ops
, APInt(BitWidth
, 1), *this)) {
2754 struct APIntCompare
{
2755 bool operator()(const APInt
&LHS
, const APInt
&RHS
) const {
2756 return LHS
.ult(RHS
);
2760 // Some interesting folding opportunity is present, so its worthwhile to
2761 // re-generate the operands list. Group the operands by constant scale,
2762 // to avoid multiplying by the same constant scale multiple times.
2763 std::map
<APInt
, SmallVector
<const SCEV
*, 4>, APIntCompare
> MulOpLists
;
2764 for (const SCEV
*NewOp
: NewOps
)
2765 MulOpLists
[M
.find(NewOp
)->second
].push_back(NewOp
);
2766 // Re-generate the operands list.
2768 if (AccumulatedConstant
!= 0)
2769 Ops
.push_back(getConstant(AccumulatedConstant
));
2770 for (auto &MulOp
: MulOpLists
) {
2771 if (MulOp
.first
== 1) {
2772 Ops
.push_back(getAddExpr(MulOp
.second
, SCEV::FlagAnyWrap
, Depth
+ 1));
2773 } else if (MulOp
.first
!= 0) {
2774 Ops
.push_back(getMulExpr(
2775 getConstant(MulOp
.first
),
2776 getAddExpr(MulOp
.second
, SCEV::FlagAnyWrap
, Depth
+ 1),
2777 SCEV::FlagAnyWrap
, Depth
+ 1));
2782 if (Ops
.size() == 1)
2784 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2788 // If we are adding something to a multiply expression, make sure the
2789 // something is not already an operand of the multiply. If so, merge it into
2791 for (; Idx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[Idx
]); ++Idx
) {
2792 const SCEVMulExpr
*Mul
= cast
<SCEVMulExpr
>(Ops
[Idx
]);
2793 for (unsigned MulOp
= 0, e
= Mul
->getNumOperands(); MulOp
!= e
; ++MulOp
) {
2794 const SCEV
*MulOpSCEV
= Mul
->getOperand(MulOp
);
2795 if (isa
<SCEVConstant
>(MulOpSCEV
))
2797 for (unsigned AddOp
= 0, e
= Ops
.size(); AddOp
!= e
; ++AddOp
)
2798 if (MulOpSCEV
== Ops
[AddOp
]) {
2799 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
2800 const SCEV
*InnerMul
= Mul
->getOperand(MulOp
== 0);
2801 if (Mul
->getNumOperands() != 2) {
2802 // If the multiply has more than two operands, we must get the
2804 SmallVector
<const SCEV
*, 4> MulOps(
2805 Mul
->operands().take_front(MulOp
));
2806 append_range(MulOps
, Mul
->operands().drop_front(MulOp
+ 1));
2807 InnerMul
= getMulExpr(MulOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2809 SmallVector
<const SCEV
*, 2> TwoOps
= {getOne(Ty
), InnerMul
};
2810 const SCEV
*AddOne
= getAddExpr(TwoOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2811 const SCEV
*OuterMul
= getMulExpr(AddOne
, MulOpSCEV
,
2812 SCEV::FlagAnyWrap
, Depth
+ 1);
2813 if (Ops
.size() == 2) return OuterMul
;
2815 Ops
.erase(Ops
.begin()+AddOp
);
2816 Ops
.erase(Ops
.begin()+Idx
-1);
2818 Ops
.erase(Ops
.begin()+Idx
);
2819 Ops
.erase(Ops
.begin()+AddOp
-1);
2821 Ops
.push_back(OuterMul
);
2822 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2825 // Check this multiply against other multiplies being added together.
2826 for (unsigned OtherMulIdx
= Idx
+1;
2827 OtherMulIdx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[OtherMulIdx
]);
2829 const SCEVMulExpr
*OtherMul
= cast
<SCEVMulExpr
>(Ops
[OtherMulIdx
]);
2830 // If MulOp occurs in OtherMul, we can fold the two multiplies
2832 for (unsigned OMulOp
= 0, e
= OtherMul
->getNumOperands();
2833 OMulOp
!= e
; ++OMulOp
)
2834 if (OtherMul
->getOperand(OMulOp
) == MulOpSCEV
) {
2835 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2836 const SCEV
*InnerMul1
= Mul
->getOperand(MulOp
== 0);
2837 if (Mul
->getNumOperands() != 2) {
2838 SmallVector
<const SCEV
*, 4> MulOps(
2839 Mul
->operands().take_front(MulOp
));
2840 append_range(MulOps
, Mul
->operands().drop_front(MulOp
+1));
2841 InnerMul1
= getMulExpr(MulOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2843 const SCEV
*InnerMul2
= OtherMul
->getOperand(OMulOp
== 0);
2844 if (OtherMul
->getNumOperands() != 2) {
2845 SmallVector
<const SCEV
*, 4> MulOps(
2846 OtherMul
->operands().take_front(OMulOp
));
2847 append_range(MulOps
, OtherMul
->operands().drop_front(OMulOp
+1));
2848 InnerMul2
= getMulExpr(MulOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2850 SmallVector
<const SCEV
*, 2> TwoOps
= {InnerMul1
, InnerMul2
};
2851 const SCEV
*InnerMulSum
=
2852 getAddExpr(TwoOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2853 const SCEV
*OuterMul
= getMulExpr(MulOpSCEV
, InnerMulSum
,
2854 SCEV::FlagAnyWrap
, Depth
+ 1);
2855 if (Ops
.size() == 2) return OuterMul
;
2856 Ops
.erase(Ops
.begin()+Idx
);
2857 Ops
.erase(Ops
.begin()+OtherMulIdx
-1);
2858 Ops
.push_back(OuterMul
);
2859 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2865 // If there are any add recurrences in the operands list, see if any other
2866 // added values are loop invariant. If so, we can fold them into the
2868 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddRecExpr
)
2871 // Scan over all recurrences, trying to fold loop invariants into them.
2872 for (; Idx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[Idx
]); ++Idx
) {
2873 // Scan all of the other operands to this add and add them to the vector if
2874 // they are loop invariant w.r.t. the recurrence.
2875 SmallVector
<const SCEV
*, 8> LIOps
;
2876 const SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(Ops
[Idx
]);
2877 const Loop
*AddRecLoop
= AddRec
->getLoop();
2878 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
2879 if (isAvailableAtLoopEntry(Ops
[i
], AddRecLoop
)) {
2880 LIOps
.push_back(Ops
[i
]);
2881 Ops
.erase(Ops
.begin()+i
);
2885 // If we found some loop invariants, fold them into the recurrence.
2886 if (!LIOps
.empty()) {
2887 // Compute nowrap flags for the addition of the loop-invariant ops and
2888 // the addrec. Temporarily push it as an operand for that purpose. These
2889 // flags are valid in the scope of the addrec only.
2890 LIOps
.push_back(AddRec
);
2891 SCEV::NoWrapFlags Flags
= ComputeFlags(LIOps
);
2894 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
2895 LIOps
.push_back(AddRec
->getStart());
2897 SmallVector
<const SCEV
*, 4> AddRecOps(AddRec
->operands());
2899 // It is not in general safe to propagate flags valid on an add within
2900 // the addrec scope to one outside it. We must prove that the inner
2901 // scope is guaranteed to execute if the outer one does to be able to
2902 // safely propagate. We know the program is undefined if poison is
2903 // produced on the inner scoped addrec. We also know that *for this use*
2904 // the outer scoped add can't overflow (because of the flags we just
2905 // computed for the inner scoped add) without the program being undefined.
2906 // Proving that entry to the outer scope neccesitates entry to the inner
2907 // scope, thus proves the program undefined if the flags would be violated
2908 // in the outer scope.
2909 SCEV::NoWrapFlags AddFlags
= Flags
;
2910 if (AddFlags
!= SCEV::FlagAnyWrap
) {
2911 auto *DefI
= getDefiningScopeBound(LIOps
);
2912 auto *ReachI
= &*AddRecLoop
->getHeader()->begin();
2913 if (!isGuaranteedToTransferExecutionTo(DefI
, ReachI
))
2914 AddFlags
= SCEV::FlagAnyWrap
;
2916 AddRecOps
[0] = getAddExpr(LIOps
, AddFlags
, Depth
+ 1);
2918 // Build the new addrec. Propagate the NUW and NSW flags if both the
2919 // outer add and the inner addrec are guaranteed to have no overflow.
2920 // Always propagate NW.
2921 Flags
= AddRec
->getNoWrapFlags(setFlags(Flags
, SCEV::FlagNW
));
2922 const SCEV
*NewRec
= getAddRecExpr(AddRecOps
, AddRecLoop
, Flags
);
2924 // If all of the other operands were loop invariant, we are done.
2925 if (Ops
.size() == 1) return NewRec
;
2927 // Otherwise, add the folded AddRec by the non-invariant parts.
2928 for (unsigned i
= 0;; ++i
)
2929 if (Ops
[i
] == AddRec
) {
2933 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2936 // Okay, if there weren't any loop invariants to be folded, check to see if
2937 // there are multiple AddRec's with the same loop induction variable being
2938 // added together. If so, we can fold them.
2939 for (unsigned OtherIdx
= Idx
+1;
2940 OtherIdx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
2942 // We expect the AddRecExpr's to be sorted in reverse dominance order,
2943 // so that the 1st found AddRecExpr is dominated by all others.
2944 assert(DT
.dominates(
2945 cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
])->getLoop()->getHeader(),
2946 AddRec
->getLoop()->getHeader()) &&
2947 "AddRecExprs are not sorted in reverse dominance order?");
2948 if (AddRecLoop
== cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
])->getLoop()) {
2949 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2950 SmallVector
<const SCEV
*, 4> AddRecOps(AddRec
->operands());
2951 for (; OtherIdx
!= Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
2953 const auto *OtherAddRec
= cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
2954 if (OtherAddRec
->getLoop() == AddRecLoop
) {
2955 for (unsigned i
= 0, e
= OtherAddRec
->getNumOperands();
2957 if (i
>= AddRecOps
.size()) {
2958 append_range(AddRecOps
, OtherAddRec
->operands().drop_front(i
));
2961 SmallVector
<const SCEV
*, 2> TwoOps
= {
2962 AddRecOps
[i
], OtherAddRec
->getOperand(i
)};
2963 AddRecOps
[i
] = getAddExpr(TwoOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2965 Ops
.erase(Ops
.begin() + OtherIdx
); --OtherIdx
;
2968 // Step size has changed, so we cannot guarantee no self-wraparound.
2969 Ops
[Idx
] = getAddRecExpr(AddRecOps
, AddRecLoop
, SCEV::FlagAnyWrap
);
2970 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2974 // Otherwise couldn't fold anything into this recurrence. Move onto the
2978 // Okay, it looks like we really DO need an add expr. Check to see if we
2979 // already have one, otherwise create a new one.
2980 return getOrCreateAddExpr(Ops
, ComputeFlags(Ops
));
2984 ScalarEvolution::getOrCreateAddExpr(ArrayRef
<const SCEV
*> Ops
,
2985 SCEV::NoWrapFlags Flags
) {
2986 FoldingSetNodeID ID
;
2987 ID
.AddInteger(scAddExpr
);
2988 for (const SCEV
*Op
: Ops
)
2992 static_cast<SCEVAddExpr
*>(UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
));
2994 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
2995 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
2996 S
= new (SCEVAllocator
)
2997 SCEVAddExpr(ID
.Intern(SCEVAllocator
), O
, Ops
.size());
2998 UniqueSCEVs
.InsertNode(S
, IP
);
2999 registerUser(S
, Ops
);
3001 S
->setNoWrapFlags(Flags
);
3006 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef
<const SCEV
*> Ops
,
3007 const Loop
*L
, SCEV::NoWrapFlags Flags
) {
3008 FoldingSetNodeID ID
;
3009 ID
.AddInteger(scAddRecExpr
);
3010 for (const SCEV
*Op
: Ops
)
3015 static_cast<SCEVAddRecExpr
*>(UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
));
3017 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
3018 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
3019 S
= new (SCEVAllocator
)
3020 SCEVAddRecExpr(ID
.Intern(SCEVAllocator
), O
, Ops
.size(), L
);
3021 UniqueSCEVs
.InsertNode(S
, IP
);
3022 LoopUsers
[L
].push_back(S
);
3023 registerUser(S
, Ops
);
3025 setNoWrapFlags(S
, Flags
);
3030 ScalarEvolution::getOrCreateMulExpr(ArrayRef
<const SCEV
*> Ops
,
3031 SCEV::NoWrapFlags Flags
) {
3032 FoldingSetNodeID ID
;
3033 ID
.AddInteger(scMulExpr
);
3034 for (const SCEV
*Op
: Ops
)
3038 static_cast<SCEVMulExpr
*>(UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
));
3040 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
3041 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
3042 S
= new (SCEVAllocator
) SCEVMulExpr(ID
.Intern(SCEVAllocator
),
3044 UniqueSCEVs
.InsertNode(S
, IP
);
3045 registerUser(S
, Ops
);
3047 S
->setNoWrapFlags(Flags
);
3051 static uint64_t umul_ov(uint64_t i
, uint64_t j
, bool &Overflow
) {
3053 if (j
> 1 && k
/ j
!= i
) Overflow
= true;
3057 /// Compute the result of "n choose k", the binomial coefficient. If an
3058 /// intermediate computation overflows, Overflow will be set and the return will
3059 /// be garbage. Overflow is not cleared on absence of overflow.
3060 static uint64_t Choose(uint64_t n
, uint64_t k
, bool &Overflow
) {
3061 // We use the multiplicative formula:
3062 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
3063 // At each iteration, we take the n-th term of the numeral and divide by the
3064 // (k-n)th term of the denominator. This division will always produce an
3065 // integral result, and helps reduce the chance of overflow in the
3066 // intermediate computations. However, we can still overflow even when the
3067 // final result would fit.
3069 if (n
== 0 || n
== k
) return 1;
3070 if (k
> n
) return 0;
3076 for (uint64_t i
= 1; i
<= k
; ++i
) {
3077 r
= umul_ov(r
, n
-(i
-1), Overflow
);
3083 /// Determine if any of the operands in this SCEV are a constant or if
3084 /// any of the add or multiply expressions in this SCEV contain a constant.
3085 static bool containsConstantInAddMulChain(const SCEV
*StartExpr
) {
3086 struct FindConstantInAddMulChain
{
3087 bool FoundConstant
= false;
3089 bool follow(const SCEV
*S
) {
3090 FoundConstant
|= isa
<SCEVConstant
>(S
);
3091 return isa
<SCEVAddExpr
>(S
) || isa
<SCEVMulExpr
>(S
);
3094 bool isDone() const {
3095 return FoundConstant
;
3099 FindConstantInAddMulChain F
;
3100 SCEVTraversal
<FindConstantInAddMulChain
> ST(F
);
3101 ST
.visitAll(StartExpr
);
3102 return F
.FoundConstant
;
3105 /// Get a canonical multiply expression, or something simpler if possible.
3106 const SCEV
*ScalarEvolution::getMulExpr(SmallVectorImpl
<const SCEV
*> &Ops
,
3107 SCEV::NoWrapFlags OrigFlags
,
3109 assert(OrigFlags
== maskFlags(OrigFlags
, SCEV::FlagNUW
| SCEV::FlagNSW
) &&
3110 "only nuw or nsw allowed");
3111 assert(!Ops
.empty() && "Cannot get empty mul!");
3112 if (Ops
.size() == 1) return Ops
[0];
3114 Type
*ETy
= Ops
[0]->getType();
3115 assert(!ETy
->isPointerTy());
3116 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
3117 assert(Ops
[i
]->getType() == ETy
&&
3118 "SCEVMulExpr operand types don't match!");
3121 const SCEV
*Folded
= constantFoldAndGroupOps(
3123 [](const APInt
&C1
, const APInt
&C2
) { return C1
* C2
; },
3124 [](const APInt
&C
) { return C
.isOne(); }, // identity
3125 [](const APInt
&C
) { return C
.isZero(); }); // absorber
3129 // Delay expensive flag strengthening until necessary.
3130 auto ComputeFlags
= [this, OrigFlags
](const ArrayRef
<const SCEV
*> Ops
) {
3131 return StrengthenNoWrapFlags(this, scMulExpr
, Ops
, OrigFlags
);
3134 // Limit recursion calls depth.
3135 if (Depth
> MaxArithDepth
|| hasHugeExpression(Ops
))
3136 return getOrCreateMulExpr(Ops
, ComputeFlags(Ops
));
3138 if (SCEV
*S
= findExistingSCEVInCache(scMulExpr
, Ops
)) {
3139 // Don't strengthen flags if we have no new information.
3140 SCEVMulExpr
*Mul
= static_cast<SCEVMulExpr
*>(S
);
3141 if (Mul
->getNoWrapFlags(OrigFlags
) != OrigFlags
)
3142 Mul
->setNoWrapFlags(ComputeFlags(Ops
));
3146 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
3147 if (Ops
.size() == 2) {
3148 // C1*(C2+V) -> C1*C2 + C1*V
3149 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[1]))
3150 // If any of Add's ops are Adds or Muls with a constant, apply this
3151 // transformation as well.
3153 // TODO: There are some cases where this transformation is not
3154 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of
3155 // this transformation should be narrowed down.
3156 if (Add
->getNumOperands() == 2 && containsConstantInAddMulChain(Add
)) {
3157 const SCEV
*LHS
= getMulExpr(LHSC
, Add
->getOperand(0),
3158 SCEV::FlagAnyWrap
, Depth
+ 1);
3159 const SCEV
*RHS
= getMulExpr(LHSC
, Add
->getOperand(1),
3160 SCEV::FlagAnyWrap
, Depth
+ 1);
3161 return getAddExpr(LHS
, RHS
, SCEV::FlagAnyWrap
, Depth
+ 1);
3164 if (Ops
[0]->isAllOnesValue()) {
3165 // If we have a mul by -1 of an add, try distributing the -1 among the
3167 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[1])) {
3168 SmallVector
<const SCEV
*, 4> NewOps
;
3169 bool AnyFolded
= false;
3170 for (const SCEV
*AddOp
: Add
->operands()) {
3171 const SCEV
*Mul
= getMulExpr(Ops
[0], AddOp
, SCEV::FlagAnyWrap
,
3173 if (!isa
<SCEVMulExpr
>(Mul
)) AnyFolded
= true;
3174 NewOps
.push_back(Mul
);
3177 return getAddExpr(NewOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
3178 } else if (const auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(Ops
[1])) {
3179 // Negation preserves a recurrence's no self-wrap property.
3180 SmallVector
<const SCEV
*, 4> Operands
;
3181 for (const SCEV
*AddRecOp
: AddRec
->operands())
3182 Operands
.push_back(getMulExpr(Ops
[0], AddRecOp
, SCEV::FlagAnyWrap
,
3184 // Let M be the minimum representable signed value. AddRec with nsw
3185 // multiplied by -1 can have signed overflow if and only if it takes a
3186 // value of M: M * (-1) would stay M and (M + 1) * (-1) would be the
3187 // maximum signed value. In all other cases signed overflow is
3189 auto FlagsMask
= SCEV::FlagNW
;
3190 if (hasFlags(AddRec
->getNoWrapFlags(), SCEV::FlagNSW
)) {
3192 APInt::getSignedMinValue(getTypeSizeInBits(AddRec
->getType()));
3193 if (getSignedRangeMin(AddRec
) != MinInt
)
3194 FlagsMask
= setFlags(FlagsMask
, SCEV::FlagNSW
);
3196 return getAddRecExpr(Operands
, AddRec
->getLoop(),
3197 AddRec
->getNoWrapFlags(FlagsMask
));
3203 // Skip over the add expression until we get to a multiply.
3205 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scMulExpr
)
3208 // If there are mul operands inline them all into this expression.
3209 if (Idx
< Ops
.size()) {
3210 bool DeletedMul
= false;
3211 while (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[Idx
])) {
3212 if (Ops
.size() > MulOpsInlineThreshold
)
3214 // If we have an mul, expand the mul operands onto the end of the
3216 Ops
.erase(Ops
.begin()+Idx
);
3217 append_range(Ops
, Mul
->operands());
3221 // If we deleted at least one mul, we added operands to the end of the
3222 // list, and they are not necessarily sorted. Recurse to resort and
3223 // resimplify any operands we just acquired.
3225 return getMulExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
3228 // If there are any add recurrences in the operands list, see if any other
3229 // added values are loop invariant. If so, we can fold them into the
3231 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddRecExpr
)
3234 // Scan over all recurrences, trying to fold loop invariants into them.
3235 for (; Idx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[Idx
]); ++Idx
) {
3236 // Scan all of the other operands to this mul and add them to the vector
3237 // if they are loop invariant w.r.t. the recurrence.
3238 SmallVector
<const SCEV
*, 8> LIOps
;
3239 const SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(Ops
[Idx
]);
3240 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
3241 if (isAvailableAtLoopEntry(Ops
[i
], AddRec
->getLoop())) {
3242 LIOps
.push_back(Ops
[i
]);
3243 Ops
.erase(Ops
.begin()+i
);
3247 // If we found some loop invariants, fold them into the recurrence.
3248 if (!LIOps
.empty()) {
3249 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
3250 SmallVector
<const SCEV
*, 4> NewOps
;
3251 NewOps
.reserve(AddRec
->getNumOperands());
3252 const SCEV
*Scale
= getMulExpr(LIOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
3254 // If both the mul and addrec are nuw, we can preserve nuw.
3255 // If both the mul and addrec are nsw, we can only preserve nsw if either
3256 // a) they are also nuw, or
3257 // b) all multiplications of addrec operands with scale are nsw.
3258 SCEV::NoWrapFlags Flags
=
3259 AddRec
->getNoWrapFlags(ComputeFlags({Scale
, AddRec
}));
3261 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
) {
3262 NewOps
.push_back(getMulExpr(Scale
, AddRec
->getOperand(i
),
3263 SCEV::FlagAnyWrap
, Depth
+ 1));
3265 if (hasFlags(Flags
, SCEV::FlagNSW
) && !hasFlags(Flags
, SCEV::FlagNUW
)) {
3266 ConstantRange NSWRegion
= ConstantRange::makeGuaranteedNoWrapRegion(
3267 Instruction::Mul
, getSignedRange(Scale
),
3268 OverflowingBinaryOperator::NoSignedWrap
);
3269 if (!NSWRegion
.contains(getSignedRange(AddRec
->getOperand(i
))))
3270 Flags
= clearFlags(Flags
, SCEV::FlagNSW
);
3274 const SCEV
*NewRec
= getAddRecExpr(NewOps
, AddRec
->getLoop(), Flags
);
3276 // If all of the other operands were loop invariant, we are done.
3277 if (Ops
.size() == 1) return NewRec
;
3279 // Otherwise, multiply the folded AddRec by the non-invariant parts.
3280 for (unsigned i
= 0;; ++i
)
3281 if (Ops
[i
] == AddRec
) {
3285 return getMulExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
3288 // Okay, if there weren't any loop invariants to be folded, check to see
3289 // if there are multiple AddRec's with the same loop induction variable
3290 // being multiplied together. If so, we can fold them.
3292 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3293 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3294 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3295 // ]]],+,...up to x=2n}.
3296 // Note that the arguments to choose() are always integers with values
3297 // known at compile time, never SCEV objects.
3299 // The implementation avoids pointless extra computations when the two
3300 // addrec's are of different length (mathematically, it's equivalent to
3301 // an infinite stream of zeros on the right).
3302 bool OpsModified
= false;
3303 for (unsigned OtherIdx
= Idx
+1;
3304 OtherIdx
!= Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
3306 const SCEVAddRecExpr
*OtherAddRec
=
3307 dyn_cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
3308 if (!OtherAddRec
|| OtherAddRec
->getLoop() != AddRec
->getLoop())
3311 // Limit max number of arguments to avoid creation of unreasonably big
3312 // SCEVAddRecs with very complex operands.
3313 if (AddRec
->getNumOperands() + OtherAddRec
->getNumOperands() - 1 >
3314 MaxAddRecSize
|| hasHugeExpression({AddRec
, OtherAddRec
}))
3317 bool Overflow
= false;
3318 Type
*Ty
= AddRec
->getType();
3319 bool LargerThan64Bits
= getTypeSizeInBits(Ty
) > 64;
3320 SmallVector
<const SCEV
*, 7> AddRecOps
;
3321 for (int x
= 0, xe
= AddRec
->getNumOperands() +
3322 OtherAddRec
->getNumOperands() - 1; x
!= xe
&& !Overflow
; ++x
) {
3323 SmallVector
<const SCEV
*, 7> SumOps
;
3324 for (int y
= x
, ye
= 2*x
+1; y
!= ye
&& !Overflow
; ++y
) {
3325 uint64_t Coeff1
= Choose(x
, 2*x
- y
, Overflow
);
3326 for (int z
= std::max(y
-x
, y
-(int)AddRec
->getNumOperands()+1),
3327 ze
= std::min(x
+1, (int)OtherAddRec
->getNumOperands());
3328 z
< ze
&& !Overflow
; ++z
) {
3329 uint64_t Coeff2
= Choose(2*x
- y
, x
-z
, Overflow
);
3331 if (LargerThan64Bits
)
3332 Coeff
= umul_ov(Coeff1
, Coeff2
, Overflow
);
3334 Coeff
= Coeff1
*Coeff2
;
3335 const SCEV
*CoeffTerm
= getConstant(Ty
, Coeff
);
3336 const SCEV
*Term1
= AddRec
->getOperand(y
-z
);
3337 const SCEV
*Term2
= OtherAddRec
->getOperand(z
);
3338 SumOps
.push_back(getMulExpr(CoeffTerm
, Term1
, Term2
,
3339 SCEV::FlagAnyWrap
, Depth
+ 1));
3343 SumOps
.push_back(getZero(Ty
));
3344 AddRecOps
.push_back(getAddExpr(SumOps
, SCEV::FlagAnyWrap
, Depth
+ 1));
3347 const SCEV
*NewAddRec
= getAddRecExpr(AddRecOps
, AddRec
->getLoop(),
3349 if (Ops
.size() == 2) return NewAddRec
;
3350 Ops
[Idx
] = NewAddRec
;
3351 Ops
.erase(Ops
.begin() + OtherIdx
); --OtherIdx
;
3353 AddRec
= dyn_cast
<SCEVAddRecExpr
>(NewAddRec
);
3359 return getMulExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
3361 // Otherwise couldn't fold anything into this recurrence. Move onto the
3365 // Okay, it looks like we really DO need an mul expr. Check to see if we
3366 // already have one, otherwise create a new one.
3367 return getOrCreateMulExpr(Ops
, ComputeFlags(Ops
));
3370 /// Represents an unsigned remainder expression based on unsigned division.
3371 const SCEV
*ScalarEvolution::getURemExpr(const SCEV
*LHS
,
3373 assert(getEffectiveSCEVType(LHS
->getType()) ==
3374 getEffectiveSCEVType(RHS
->getType()) &&
3375 "SCEVURemExpr operand types don't match!");
3377 // Short-circuit easy cases
3378 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
)) {
3379 // If constant is one, the result is trivial
3380 if (RHSC
->getValue()->isOne())
3381 return getZero(LHS
->getType()); // X urem 1 --> 0
3383 // If constant is a power of two, fold into a zext(trunc(LHS)).
3384 if (RHSC
->getAPInt().isPowerOf2()) {
3385 Type
*FullTy
= LHS
->getType();
3387 IntegerType::get(getContext(), RHSC
->getAPInt().logBase2());
3388 return getZeroExtendExpr(getTruncateExpr(LHS
, TruncTy
), FullTy
);
3392 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3393 const SCEV
*UDiv
= getUDivExpr(LHS
, RHS
);
3394 const SCEV
*Mult
= getMulExpr(UDiv
, RHS
, SCEV::FlagNUW
);
3395 return getMinusSCEV(LHS
, Mult
, SCEV::FlagNUW
);
3398 /// Get a canonical unsigned division expression, or something simpler if
3400 const SCEV
*ScalarEvolution::getUDivExpr(const SCEV
*LHS
,
3402 assert(!LHS
->getType()->isPointerTy() &&
3403 "SCEVUDivExpr operand can't be pointer!");
3404 assert(LHS
->getType() == RHS
->getType() &&
3405 "SCEVUDivExpr operand types don't match!");
3407 FoldingSetNodeID ID
;
3408 ID
.AddInteger(scUDivExpr
);
3412 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
))
3416 if (match(LHS
, m_scev_Zero()))
3419 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
)) {
3420 if (RHSC
->getValue()->isOne())
3421 return LHS
; // X udiv 1 --> x
3422 // If the denominator is zero, the result of the udiv is undefined. Don't
3423 // try to analyze it, because the resolution chosen here may differ from
3424 // the resolution chosen in other parts of the compiler.
3425 if (!RHSC
->getValue()->isZero()) {
3426 // Determine if the division can be folded into the operands of
3428 // TODO: Generalize this to non-constants by using known-bits information.
3429 Type
*Ty
= LHS
->getType();
3430 unsigned LZ
= RHSC
->getAPInt().countl_zero();
3431 unsigned MaxShiftAmt
= getTypeSizeInBits(Ty
) - LZ
- 1;
3432 // For non-power-of-two values, effectively round the value up to the
3433 // nearest power of two.
3434 if (!RHSC
->getAPInt().isPowerOf2())
3436 IntegerType
*ExtTy
=
3437 IntegerType::get(getContext(), getTypeSizeInBits(Ty
) + MaxShiftAmt
);
3438 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(LHS
))
3439 if (const SCEVConstant
*Step
=
3440 dyn_cast
<SCEVConstant
>(AR
->getStepRecurrence(*this))) {
3441 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3442 const APInt
&StepInt
= Step
->getAPInt();
3443 const APInt
&DivInt
= RHSC
->getAPInt();
3444 if (!StepInt
.urem(DivInt
) &&
3445 getZeroExtendExpr(AR
, ExtTy
) ==
3446 getAddRecExpr(getZeroExtendExpr(AR
->getStart(), ExtTy
),
3447 getZeroExtendExpr(Step
, ExtTy
),
3448 AR
->getLoop(), SCEV::FlagAnyWrap
)) {
3449 SmallVector
<const SCEV
*, 4> Operands
;
3450 for (const SCEV
*Op
: AR
->operands())
3451 Operands
.push_back(getUDivExpr(Op
, RHS
));
3452 return getAddRecExpr(Operands
, AR
->getLoop(), SCEV::FlagNW
);
3454 /// Get a canonical UDivExpr for a recurrence.
3455 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3456 // We can currently only fold X%N if X is constant.
3457 const SCEVConstant
*StartC
= dyn_cast
<SCEVConstant
>(AR
->getStart());
3458 if (StartC
&& !DivInt
.urem(StepInt
) &&
3459 getZeroExtendExpr(AR
, ExtTy
) ==
3460 getAddRecExpr(getZeroExtendExpr(AR
->getStart(), ExtTy
),
3461 getZeroExtendExpr(Step
, ExtTy
),
3462 AR
->getLoop(), SCEV::FlagAnyWrap
)) {
3463 const APInt
&StartInt
= StartC
->getAPInt();
3464 const APInt
&StartRem
= StartInt
.urem(StepInt
);
3465 if (StartRem
!= 0) {
3466 const SCEV
*NewLHS
=
3467 getAddRecExpr(getConstant(StartInt
- StartRem
), Step
,
3468 AR
->getLoop(), SCEV::FlagNW
);
3469 if (LHS
!= NewLHS
) {
3472 // Reset the ID to include the new LHS, and check if it is
3475 ID
.AddInteger(scUDivExpr
);
3479 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
))
3485 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3486 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(LHS
)) {
3487 SmallVector
<const SCEV
*, 4> Operands
;
3488 for (const SCEV
*Op
: M
->operands())
3489 Operands
.push_back(getZeroExtendExpr(Op
, ExtTy
));
3490 if (getZeroExtendExpr(M
, ExtTy
) == getMulExpr(Operands
))
3491 // Find an operand that's safely divisible.
3492 for (unsigned i
= 0, e
= M
->getNumOperands(); i
!= e
; ++i
) {
3493 const SCEV
*Op
= M
->getOperand(i
);
3494 const SCEV
*Div
= getUDivExpr(Op
, RHSC
);
3495 if (!isa
<SCEVUDivExpr
>(Div
) && getMulExpr(Div
, RHSC
) == Op
) {
3496 Operands
= SmallVector
<const SCEV
*, 4>(M
->operands());
3498 return getMulExpr(Operands
);
3503 // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3504 if (const SCEVUDivExpr
*OtherDiv
= dyn_cast
<SCEVUDivExpr
>(LHS
)) {
3505 if (auto *DivisorConstant
=
3506 dyn_cast
<SCEVConstant
>(OtherDiv
->getRHS())) {
3507 bool Overflow
= false;
3509 DivisorConstant
->getAPInt().umul_ov(RHSC
->getAPInt(), Overflow
);
3511 return getConstant(RHSC
->getType(), 0, false);
3513 return getUDivExpr(OtherDiv
->getLHS(), getConstant(NewRHS
));
3517 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3518 if (const SCEVAddExpr
*A
= dyn_cast
<SCEVAddExpr
>(LHS
)) {
3519 SmallVector
<const SCEV
*, 4> Operands
;
3520 for (const SCEV
*Op
: A
->operands())
3521 Operands
.push_back(getZeroExtendExpr(Op
, ExtTy
));
3522 if (getZeroExtendExpr(A
, ExtTy
) == getAddExpr(Operands
)) {
3524 for (unsigned i
= 0, e
= A
->getNumOperands(); i
!= e
; ++i
) {
3525 const SCEV
*Op
= getUDivExpr(A
->getOperand(i
), RHS
);
3526 if (isa
<SCEVUDivExpr
>(Op
) ||
3527 getMulExpr(Op
, RHS
) != A
->getOperand(i
))
3529 Operands
.push_back(Op
);
3531 if (Operands
.size() == A
->getNumOperands())
3532 return getAddExpr(Operands
);
3536 // Fold if both operands are constant.
3537 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
))
3538 return getConstant(LHSC
->getAPInt().udiv(RHSC
->getAPInt()));
3542 // ((-C + (C smax %x)) /u %x) evaluates to zero, for any positive constant C.
3543 if (const auto *AE
= dyn_cast
<SCEVAddExpr
>(LHS
);
3544 AE
&& AE
->getNumOperands() == 2) {
3545 if (const auto *VC
= dyn_cast
<SCEVConstant
>(AE
->getOperand(0))) {
3546 const APInt
&NegC
= VC
->getAPInt();
3547 if (NegC
.isNegative() && !NegC
.isMinSignedValue()) {
3548 const auto *MME
= dyn_cast
<SCEVSMaxExpr
>(AE
->getOperand(1));
3549 if (MME
&& MME
->getNumOperands() == 2 &&
3550 isa
<SCEVConstant
>(MME
->getOperand(0)) &&
3551 cast
<SCEVConstant
>(MME
->getOperand(0))->getAPInt() == -NegC
&&
3552 MME
->getOperand(1) == RHS
)
3553 return getZero(LHS
->getType());
3558 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3559 // changes). Make sure we get a new one.
3561 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
3562 SCEV
*S
= new (SCEVAllocator
) SCEVUDivExpr(ID
.Intern(SCEVAllocator
),
3564 UniqueSCEVs
.InsertNode(S
, IP
);
3565 registerUser(S
, {LHS
, RHS
});
3569 APInt
gcd(const SCEVConstant
*C1
, const SCEVConstant
*C2
) {
3570 APInt A
= C1
->getAPInt().abs();
3571 APInt B
= C2
->getAPInt().abs();
3572 uint32_t ABW
= A
.getBitWidth();
3573 uint32_t BBW
= B
.getBitWidth();
3580 return APIntOps::GreatestCommonDivisor(std::move(A
), std::move(B
));
3583 /// Get a canonical unsigned division expression, or something simpler if
3584 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3585 /// can attempt to remove factors from the LHS and RHS. We can't do this when
3586 /// it's not exact because the udiv may be clearing bits.
3587 const SCEV
*ScalarEvolution::getUDivExactExpr(const SCEV
*LHS
,
3589 // TODO: we could try to find factors in all sorts of things, but for now we
3590 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3591 // end of this file for inspiration.
3593 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(LHS
);
3594 if (!Mul
|| !Mul
->hasNoUnsignedWrap())
3595 return getUDivExpr(LHS
, RHS
);
3597 if (const SCEVConstant
*RHSCst
= dyn_cast
<SCEVConstant
>(RHS
)) {
3598 // If the mulexpr multiplies by a constant, then that constant must be the
3599 // first element of the mulexpr.
3600 if (const auto *LHSCst
= dyn_cast
<SCEVConstant
>(Mul
->getOperand(0))) {
3601 if (LHSCst
== RHSCst
) {
3602 SmallVector
<const SCEV
*, 2> Operands(drop_begin(Mul
->operands()));
3603 return getMulExpr(Operands
);
3606 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3607 // that there's a factor provided by one of the other terms. We need to
3609 APInt Factor
= gcd(LHSCst
, RHSCst
);
3610 if (!Factor
.isIntN(1)) {
3612 cast
<SCEVConstant
>(getConstant(LHSCst
->getAPInt().udiv(Factor
)));
3614 cast
<SCEVConstant
>(getConstant(RHSCst
->getAPInt().udiv(Factor
)));
3615 SmallVector
<const SCEV
*, 2> Operands
;
3616 Operands
.push_back(LHSCst
);
3617 append_range(Operands
, Mul
->operands().drop_front());
3618 LHS
= getMulExpr(Operands
);
3620 Mul
= dyn_cast
<SCEVMulExpr
>(LHS
);
3622 return getUDivExactExpr(LHS
, RHS
);
3627 for (int i
= 0, e
= Mul
->getNumOperands(); i
!= e
; ++i
) {
3628 if (Mul
->getOperand(i
) == RHS
) {
3629 SmallVector
<const SCEV
*, 2> Operands
;
3630 append_range(Operands
, Mul
->operands().take_front(i
));
3631 append_range(Operands
, Mul
->operands().drop_front(i
+ 1));
3632 return getMulExpr(Operands
);
3636 return getUDivExpr(LHS
, RHS
);
3639 /// Get an add recurrence expression for the specified loop. Simplify the
3640 /// expression as much as possible.
3641 const SCEV
*ScalarEvolution::getAddRecExpr(const SCEV
*Start
, const SCEV
*Step
,
3643 SCEV::NoWrapFlags Flags
) {
3644 SmallVector
<const SCEV
*, 4> Operands
;
3645 Operands
.push_back(Start
);
3646 if (const SCEVAddRecExpr
*StepChrec
= dyn_cast
<SCEVAddRecExpr
>(Step
))
3647 if (StepChrec
->getLoop() == L
) {
3648 append_range(Operands
, StepChrec
->operands());
3649 return getAddRecExpr(Operands
, L
, maskFlags(Flags
, SCEV::FlagNW
));
3652 Operands
.push_back(Step
);
3653 return getAddRecExpr(Operands
, L
, Flags
);
3656 /// Get an add recurrence expression for the specified loop. Simplify the
3657 /// expression as much as possible.
3659 ScalarEvolution::getAddRecExpr(SmallVectorImpl
<const SCEV
*> &Operands
,
3660 const Loop
*L
, SCEV::NoWrapFlags Flags
) {
3661 if (Operands
.size() == 1) return Operands
[0];
3663 Type
*ETy
= getEffectiveSCEVType(Operands
[0]->getType());
3664 for (const SCEV
*Op
: llvm::drop_begin(Operands
)) {
3665 assert(getEffectiveSCEVType(Op
->getType()) == ETy
&&
3666 "SCEVAddRecExpr operand types don't match!");
3667 assert(!Op
->getType()->isPointerTy() && "Step must be integer");
3669 for (const SCEV
*Op
: Operands
)
3670 assert(isAvailableAtLoopEntry(Op
, L
) &&
3671 "SCEVAddRecExpr operand is not available at loop entry!");
3674 if (Operands
.back()->isZero()) {
3675 Operands
.pop_back();
3676 return getAddRecExpr(Operands
, L
, SCEV::FlagAnyWrap
); // {X,+,0} --> X
3679 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3680 // use that information to infer NUW and NSW flags. However, computing a
3681 // BE count requires calling getAddRecExpr, so we may not yet have a
3682 // meaningful BE count at this point (and if we don't, we'd be stuck
3683 // with a SCEVCouldNotCompute as the cached BE count).
3685 Flags
= StrengthenNoWrapFlags(this, scAddRecExpr
, Operands
, Flags
);
3687 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3688 if (const SCEVAddRecExpr
*NestedAR
= dyn_cast
<SCEVAddRecExpr
>(Operands
[0])) {
3689 const Loop
*NestedLoop
= NestedAR
->getLoop();
3690 if (L
->contains(NestedLoop
)
3691 ? (L
->getLoopDepth() < NestedLoop
->getLoopDepth())
3692 : (!NestedLoop
->contains(L
) &&
3693 DT
.dominates(L
->getHeader(), NestedLoop
->getHeader()))) {
3694 SmallVector
<const SCEV
*, 4> NestedOperands(NestedAR
->operands());
3695 Operands
[0] = NestedAR
->getStart();
3696 // AddRecs require their operands be loop-invariant with respect to their
3697 // loops. Don't perform this transformation if it would break this
3699 bool AllInvariant
= all_of(
3700 Operands
, [&](const SCEV
*Op
) { return isLoopInvariant(Op
, L
); });
3703 // Create a recurrence for the outer loop with the same step size.
3705 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3706 // inner recurrence has the same property.
3707 SCEV::NoWrapFlags OuterFlags
=
3708 maskFlags(Flags
, SCEV::FlagNW
| NestedAR
->getNoWrapFlags());
3710 NestedOperands
[0] = getAddRecExpr(Operands
, L
, OuterFlags
);
3711 AllInvariant
= all_of(NestedOperands
, [&](const SCEV
*Op
) {
3712 return isLoopInvariant(Op
, NestedLoop
);
3716 // Ok, both add recurrences are valid after the transformation.
3718 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3719 // the outer recurrence has the same property.
3720 SCEV::NoWrapFlags InnerFlags
=
3721 maskFlags(NestedAR
->getNoWrapFlags(), SCEV::FlagNW
| Flags
);
3722 return getAddRecExpr(NestedOperands
, NestedLoop
, InnerFlags
);
3725 // Reset Operands to its original state.
3726 Operands
[0] = NestedAR
;
3730 // Okay, it looks like we really DO need an addrec expr. Check to see if we
3731 // already have one, otherwise create a new one.
3732 return getOrCreateAddRecExpr(Operands
, L
, Flags
);
3736 ScalarEvolution::getGEPExpr(GEPOperator
*GEP
,
3737 const SmallVectorImpl
<const SCEV
*> &IndexExprs
) {
3738 const SCEV
*BaseExpr
= getSCEV(GEP
->getPointerOperand());
3739 // getSCEV(Base)->getType() has the same address space as Base->getType()
3740 // because SCEV::getType() preserves the address space.
3741 Type
*IntIdxTy
= getEffectiveSCEVType(BaseExpr
->getType());
3742 GEPNoWrapFlags NW
= GEP
->getNoWrapFlags();
3743 if (NW
!= GEPNoWrapFlags::none()) {
3744 // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
3745 // but to do that, we have to ensure that said flag is valid in the entire
3746 // defined scope of the SCEV.
3747 // TODO: non-instructions have global scope. We might be able to prove
3748 // some global scope cases
3749 auto *GEPI
= dyn_cast
<Instruction
>(GEP
);
3750 if (!GEPI
|| !isSCEVExprNeverPoison(GEPI
))
3751 NW
= GEPNoWrapFlags::none();
3754 SCEV::NoWrapFlags OffsetWrap
= SCEV::FlagAnyWrap
;
3755 if (NW
.hasNoUnsignedSignedWrap())
3756 OffsetWrap
= setFlags(OffsetWrap
, SCEV::FlagNSW
);
3757 if (NW
.hasNoUnsignedWrap())
3758 OffsetWrap
= setFlags(OffsetWrap
, SCEV::FlagNUW
);
3760 Type
*CurTy
= GEP
->getType();
3761 bool FirstIter
= true;
3762 SmallVector
<const SCEV
*, 4> Offsets
;
3763 for (const SCEV
*IndexExpr
: IndexExprs
) {
3764 // Compute the (potentially symbolic) offset in bytes for this index.
3765 if (StructType
*STy
= dyn_cast
<StructType
>(CurTy
)) {
3766 // For a struct, add the member offset.
3767 ConstantInt
*Index
= cast
<SCEVConstant
>(IndexExpr
)->getValue();
3768 unsigned FieldNo
= Index
->getZExtValue();
3769 const SCEV
*FieldOffset
= getOffsetOfExpr(IntIdxTy
, STy
, FieldNo
);
3770 Offsets
.push_back(FieldOffset
);
3772 // Update CurTy to the type of the field at Index.
3773 CurTy
= STy
->getTypeAtIndex(Index
);
3775 // Update CurTy to its element type.
3777 assert(isa
<PointerType
>(CurTy
) &&
3778 "The first index of a GEP indexes a pointer");
3779 CurTy
= GEP
->getSourceElementType();
3782 CurTy
= GetElementPtrInst::getTypeAtIndex(CurTy
, (uint64_t)0);
3784 // For an array, add the element offset, explicitly scaled.
3785 const SCEV
*ElementSize
= getSizeOfExpr(IntIdxTy
, CurTy
);
3786 // Getelementptr indices are signed.
3787 IndexExpr
= getTruncateOrSignExtend(IndexExpr
, IntIdxTy
);
3789 // Multiply the index by the element size to compute the element offset.
3790 const SCEV
*LocalOffset
= getMulExpr(IndexExpr
, ElementSize
, OffsetWrap
);
3791 Offsets
.push_back(LocalOffset
);
3795 // Handle degenerate case of GEP without offsets.
3796 if (Offsets
.empty())
3799 // Add the offsets together, assuming nsw if inbounds.
3800 const SCEV
*Offset
= getAddExpr(Offsets
, OffsetWrap
);
3801 // Add the base address and the offset. We cannot use the nsw flag, as the
3802 // base address is unsigned. However, if we know that the offset is
3803 // non-negative, we can use nuw.
3804 bool NUW
= NW
.hasNoUnsignedWrap() ||
3805 (NW
.hasNoUnsignedSignedWrap() && isKnownNonNegative(Offset
));
3806 SCEV::NoWrapFlags BaseWrap
= NUW
? SCEV::FlagNUW
: SCEV::FlagAnyWrap
;
3807 auto *GEPExpr
= getAddExpr(BaseExpr
, Offset
, BaseWrap
);
3808 assert(BaseExpr
->getType() == GEPExpr
->getType() &&
3809 "GEP should not change type mid-flight.");
3813 SCEV
*ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType
,
3814 ArrayRef
<const SCEV
*> Ops
) {
3815 FoldingSetNodeID ID
;
3816 ID
.AddInteger(SCEVType
);
3817 for (const SCEV
*Op
: Ops
)
3820 return UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
);
3823 const SCEV
*ScalarEvolution::getAbsExpr(const SCEV
*Op
, bool IsNSW
) {
3824 SCEV::NoWrapFlags Flags
= IsNSW
? SCEV::FlagNSW
: SCEV::FlagAnyWrap
;
3825 return getSMaxExpr(Op
, getNegativeSCEV(Op
, Flags
));
3828 const SCEV
*ScalarEvolution::getMinMaxExpr(SCEVTypes Kind
,
3829 SmallVectorImpl
<const SCEV
*> &Ops
) {
3830 assert(SCEVMinMaxExpr::isMinMaxType(Kind
) && "Not a SCEVMinMaxExpr!");
3831 assert(!Ops
.empty() && "Cannot get empty (u|s)(min|max)!");
3832 if (Ops
.size() == 1) return Ops
[0];
3834 Type
*ETy
= getEffectiveSCEVType(Ops
[0]->getType());
3835 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
) {
3836 assert(getEffectiveSCEVType(Ops
[i
]->getType()) == ETy
&&
3837 "Operand types don't match!");
3838 assert(Ops
[0]->getType()->isPointerTy() ==
3839 Ops
[i
]->getType()->isPointerTy() &&
3840 "min/max should be consistently pointerish");
3844 bool IsSigned
= Kind
== scSMaxExpr
|| Kind
== scSMinExpr
;
3845 bool IsMax
= Kind
== scSMaxExpr
|| Kind
== scUMaxExpr
;
3847 const SCEV
*Folded
= constantFoldAndGroupOps(
3849 [&](const APInt
&C1
, const APInt
&C2
) {
3852 return APIntOps::smax(C1
, C2
);
3854 return APIntOps::smin(C1
, C2
);
3856 return APIntOps::umax(C1
, C2
);
3858 return APIntOps::umin(C1
, C2
);
3860 llvm_unreachable("Unknown SCEV min/max opcode");
3863 [&](const APInt
&C
) {
3866 return IsSigned
? C
.isMinSignedValue() : C
.isMinValue();
3868 return IsSigned
? C
.isMaxSignedValue() : C
.isMaxValue();
3870 [&](const APInt
&C
) {
3873 return IsSigned
? C
.isMaxSignedValue() : C
.isMaxValue();
3875 return IsSigned
? C
.isMinSignedValue() : C
.isMinValue();
3880 // Check if we have created the same expression before.
3881 if (const SCEV
*S
= findExistingSCEVInCache(Kind
, Ops
)) {
3885 // Find the first operation of the same kind
3887 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < Kind
)
3890 // Check to see if one of the operands is of the same kind. If so, expand its
3891 // operands onto our operand list, and recurse to simplify.
3892 if (Idx
< Ops
.size()) {
3893 bool DeletedAny
= false;
3894 while (Ops
[Idx
]->getSCEVType() == Kind
) {
3895 const SCEVMinMaxExpr
*SMME
= cast
<SCEVMinMaxExpr
>(Ops
[Idx
]);
3896 Ops
.erase(Ops
.begin()+Idx
);
3897 append_range(Ops
, SMME
->operands());
3902 return getMinMaxExpr(Kind
, Ops
);
3905 // Okay, check to see if the same value occurs in the operand list twice. If
3906 // so, delete one. Since we sorted the list, these values are required to
3908 llvm::CmpInst::Predicate GEPred
=
3909 IsSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
3910 llvm::CmpInst::Predicate LEPred
=
3911 IsSigned
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
3912 llvm::CmpInst::Predicate FirstPred
= IsMax
? GEPred
: LEPred
;
3913 llvm::CmpInst::Predicate SecondPred
= IsMax
? LEPred
: GEPred
;
3914 for (unsigned i
= 0, e
= Ops
.size() - 1; i
!= e
; ++i
) {
3915 if (Ops
[i
] == Ops
[i
+ 1] ||
3916 isKnownViaNonRecursiveReasoning(FirstPred
, Ops
[i
], Ops
[i
+ 1])) {
3917 // X op Y op Y --> X op Y
3918 // X op Y --> X, if we know X, Y are ordered appropriately
3919 Ops
.erase(Ops
.begin() + i
+ 1, Ops
.begin() + i
+ 2);
3922 } else if (isKnownViaNonRecursiveReasoning(SecondPred
, Ops
[i
],
3924 // X op Y --> Y, if we know X, Y are ordered appropriately
3925 Ops
.erase(Ops
.begin() + i
, Ops
.begin() + i
+ 1);
3931 if (Ops
.size() == 1) return Ops
[0];
3933 assert(!Ops
.empty() && "Reduced smax down to nothing!");
3935 // Okay, it looks like we really DO need an expr. Check to see if we
3936 // already have one, otherwise create a new one.
3937 FoldingSetNodeID ID
;
3938 ID
.AddInteger(Kind
);
3939 for (const SCEV
*Op
: Ops
)
3942 const SCEV
*ExistingSCEV
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
);
3944 return ExistingSCEV
;
3945 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
3946 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
3947 SCEV
*S
= new (SCEVAllocator
)
3948 SCEVMinMaxExpr(ID
.Intern(SCEVAllocator
), Kind
, O
, Ops
.size());
3950 UniqueSCEVs
.InsertNode(S
, IP
);
3951 registerUser(S
, Ops
);
3957 class SCEVSequentialMinMaxDeduplicatingVisitor final
3958 : public SCEVVisitor
<SCEVSequentialMinMaxDeduplicatingVisitor
,
3959 std::optional
<const SCEV
*>> {
3960 using RetVal
= std::optional
<const SCEV
*>;
3961 using Base
= SCEVVisitor
<SCEVSequentialMinMaxDeduplicatingVisitor
, RetVal
>;
3963 ScalarEvolution
&SE
;
3964 const SCEVTypes RootKind
; // Must be a sequential min/max expression.
3965 const SCEVTypes NonSequentialRootKind
; // Non-sequential variant of RootKind.
3966 SmallPtrSet
<const SCEV
*, 16> SeenOps
;
3968 bool canRecurseInto(SCEVTypes Kind
) const {
3969 // We can only recurse into the SCEV expression of the same effective type
3970 // as the type of our root SCEV expression.
3971 return RootKind
== Kind
|| NonSequentialRootKind
== Kind
;
3974 RetVal
visitAnyMinMaxExpr(const SCEV
*S
) {
3975 assert((isa
<SCEVMinMaxExpr
>(S
) || isa
<SCEVSequentialMinMaxExpr
>(S
)) &&
3976 "Only for min/max expressions.");
3977 SCEVTypes Kind
= S
->getSCEVType();
3979 if (!canRecurseInto(Kind
))
3982 auto *NAry
= cast
<SCEVNAryExpr
>(S
);
3983 SmallVector
<const SCEV
*> NewOps
;
3984 bool Changed
= visit(Kind
, NAry
->operands(), NewOps
);
3989 return std::nullopt
;
3991 return isa
<SCEVSequentialMinMaxExpr
>(S
)
3992 ? SE
.getSequentialMinMaxExpr(Kind
, NewOps
)
3993 : SE
.getMinMaxExpr(Kind
, NewOps
);
3996 RetVal
visit(const SCEV
*S
) {
3997 // Has the whole operand been seen already?
3998 if (!SeenOps
.insert(S
).second
)
3999 return std::nullopt
;
4000 return Base::visit(S
);
4004 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution
&SE
,
4006 : SE(SE
), RootKind(RootKind
),
4007 NonSequentialRootKind(
4008 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
4011 bool /*Changed*/ visit(SCEVTypes Kind
, ArrayRef
<const SCEV
*> OrigOps
,
4012 SmallVectorImpl
<const SCEV
*> &NewOps
) {
4013 bool Changed
= false;
4014 SmallVector
<const SCEV
*> Ops
;
4015 Ops
.reserve(OrigOps
.size());
4017 for (const SCEV
*Op
: OrigOps
) {
4018 RetVal NewOp
= visit(Op
);
4022 Ops
.emplace_back(*NewOp
);
4026 NewOps
= std::move(Ops
);
4030 RetVal
visitConstant(const SCEVConstant
*Constant
) { return Constant
; }
4032 RetVal
visitVScale(const SCEVVScale
*VScale
) { return VScale
; }
4034 RetVal
visitPtrToIntExpr(const SCEVPtrToIntExpr
*Expr
) { return Expr
; }
4036 RetVal
visitTruncateExpr(const SCEVTruncateExpr
*Expr
) { return Expr
; }
4038 RetVal
visitZeroExtendExpr(const SCEVZeroExtendExpr
*Expr
) { return Expr
; }
4040 RetVal
visitSignExtendExpr(const SCEVSignExtendExpr
*Expr
) { return Expr
; }
4042 RetVal
visitAddExpr(const SCEVAddExpr
*Expr
) { return Expr
; }
4044 RetVal
visitMulExpr(const SCEVMulExpr
*Expr
) { return Expr
; }
4046 RetVal
visitUDivExpr(const SCEVUDivExpr
*Expr
) { return Expr
; }
4048 RetVal
visitAddRecExpr(const SCEVAddRecExpr
*Expr
) { return Expr
; }
4050 RetVal
visitSMaxExpr(const SCEVSMaxExpr
*Expr
) {
4051 return visitAnyMinMaxExpr(Expr
);
4054 RetVal
visitUMaxExpr(const SCEVUMaxExpr
*Expr
) {
4055 return visitAnyMinMaxExpr(Expr
);
4058 RetVal
visitSMinExpr(const SCEVSMinExpr
*Expr
) {
4059 return visitAnyMinMaxExpr(Expr
);
4062 RetVal
visitUMinExpr(const SCEVUMinExpr
*Expr
) {
4063 return visitAnyMinMaxExpr(Expr
);
4066 RetVal
visitSequentialUMinExpr(const SCEVSequentialUMinExpr
*Expr
) {
4067 return visitAnyMinMaxExpr(Expr
);
4070 RetVal
visitUnknown(const SCEVUnknown
*Expr
) { return Expr
; }
4072 RetVal
visitCouldNotCompute(const SCEVCouldNotCompute
*Expr
) { return Expr
; }
4077 static bool scevUnconditionallyPropagatesPoisonFromOperands(SCEVTypes Kind
) {
4094 // If any operand is poison, the whole expression is poison.
4096 case scSequentialUMinExpr
:
4097 // FIXME: if the *first* operand is poison, the whole expression is poison.
4098 return false; // Pessimistically, say that it does not propagate poison.
4099 case scCouldNotCompute
:
4100 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
4102 llvm_unreachable("Unknown SCEV kind!");
4106 // The only way poison may be introduced in a SCEV expression is from a
4107 // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown,
4108 // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not*
4109 // introduce poison -- they encode guaranteed, non-speculated knowledge.
4111 // Additionally, all SCEV nodes propagate poison from inputs to outputs,
4112 // with the notable exception of umin_seq, where only poison from the first
4113 // operand is (unconditionally) propagated.
4114 struct SCEVPoisonCollector
{
4115 bool LookThroughMaybePoisonBlocking
;
4116 SmallPtrSet
<const SCEVUnknown
*, 4> MaybePoison
;
4117 SCEVPoisonCollector(bool LookThroughMaybePoisonBlocking
)
4118 : LookThroughMaybePoisonBlocking(LookThroughMaybePoisonBlocking
) {}
4120 bool follow(const SCEV
*S
) {
4121 if (!LookThroughMaybePoisonBlocking
&&
4122 !scevUnconditionallyPropagatesPoisonFromOperands(S
->getSCEVType()))
4125 if (auto *SU
= dyn_cast
<SCEVUnknown
>(S
)) {
4126 if (!isGuaranteedNotToBePoison(SU
->getValue()))
4127 MaybePoison
.insert(SU
);
4131 bool isDone() const { return false; }
4135 /// Return true if V is poison given that AssumedPoison is already poison.
4136 static bool impliesPoison(const SCEV
*AssumedPoison
, const SCEV
*S
) {
4137 // First collect all SCEVs that might result in AssumedPoison to be poison.
4138 // We need to look through potentially poison-blocking operations here,
4139 // because we want to find all SCEVs that *might* result in poison, not only
4140 // those that are *required* to.
4141 SCEVPoisonCollector
PC1(/* LookThroughMaybePoisonBlocking */ true);
4142 visitAll(AssumedPoison
, PC1
);
4144 // AssumedPoison is never poison. As the assumption is false, the implication
4145 // is true. Don't bother walking the other SCEV in this case.
4146 if (PC1
.MaybePoison
.empty())
4149 // Collect all SCEVs in S that, if poison, *will* result in S being poison
4150 // as well. We cannot look through potentially poison-blocking operations
4151 // here, as their arguments only *may* make the result poison.
4152 SCEVPoisonCollector
PC2(/* LookThroughMaybePoisonBlocking */ false);
4155 // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison,
4156 // it will also make S poison by being part of PC2.MaybePoison.
4157 return llvm::set_is_subset(PC1
.MaybePoison
, PC2
.MaybePoison
);
4160 void ScalarEvolution::getPoisonGeneratingValues(
4161 SmallPtrSetImpl
<const Value
*> &Result
, const SCEV
*S
) {
4162 SCEVPoisonCollector
PC(/* LookThroughMaybePoisonBlocking */ false);
4164 for (const SCEVUnknown
*SU
: PC
.MaybePoison
)
4165 Result
.insert(SU
->getValue());
4168 bool ScalarEvolution::canReuseInstruction(
4169 const SCEV
*S
, Instruction
*I
,
4170 SmallVectorImpl
<Instruction
*> &DropPoisonGeneratingInsts
) {
4171 // If the instruction cannot be poison, it's always safe to reuse.
4172 if (programUndefinedIfPoison(I
))
4175 // Otherwise, it is possible that I is more poisonous that S. Collect the
4176 // poison-contributors of S, and then check whether I has any additional
4177 // poison-contributors. Poison that is contributed through poison-generating
4178 // flags is handled by dropping those flags instead.
4179 SmallPtrSet
<const Value
*, 8> PoisonVals
;
4180 getPoisonGeneratingValues(PoisonVals
, S
);
4182 SmallVector
<Value
*> Worklist
;
4183 SmallPtrSet
<Value
*, 8> Visited
;
4184 Worklist
.push_back(I
);
4185 while (!Worklist
.empty()) {
4186 Value
*V
= Worklist
.pop_back_val();
4187 if (!Visited
.insert(V
).second
)
4190 // Avoid walking large instruction graphs.
4191 if (Visited
.size() > 16)
4194 // Either the value can't be poison, or the S would also be poison if it
4196 if (PoisonVals
.contains(V
) || ::isGuaranteedNotToBePoison(V
))
4199 auto *I
= dyn_cast
<Instruction
>(V
);
4203 // Disjoint or instructions are interpreted as adds by SCEV. However, we
4204 // can't replace an arbitrary add with disjoint or, even if we drop the
4205 // flag. We would need to convert the or into an add.
4206 if (auto *PDI
= dyn_cast
<PossiblyDisjointInst
>(I
))
4207 if (PDI
->isDisjoint())
4210 // FIXME: Ignore vscale, even though it technically could be poison. Do this
4211 // because SCEV currently assumes it can't be poison. Remove this special
4212 // case once we proper model when vscale can be poison.
4213 if (auto *II
= dyn_cast
<IntrinsicInst
>(I
);
4214 II
&& II
->getIntrinsicID() == Intrinsic::vscale
)
4217 if (canCreatePoison(cast
<Operator
>(I
), /*ConsiderFlagsAndMetadata*/ false))
4220 // If the instruction can't create poison, we can recurse to its operands.
4221 if (I
->hasPoisonGeneratingAnnotations())
4222 DropPoisonGeneratingInsts
.push_back(I
);
4224 for (Value
*Op
: I
->operands())
4225 Worklist
.push_back(Op
);
4231 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind
,
4232 SmallVectorImpl
<const SCEV
*> &Ops
) {
4233 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind
) &&
4234 "Not a SCEVSequentialMinMaxExpr!");
4235 assert(!Ops
.empty() && "Cannot get empty (u|s)(min|max)!");
4236 if (Ops
.size() == 1)
4239 Type
*ETy
= getEffectiveSCEVType(Ops
[0]->getType());
4240 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
) {
4241 assert(getEffectiveSCEVType(Ops
[i
]->getType()) == ETy
&&
4242 "Operand types don't match!");
4243 assert(Ops
[0]->getType()->isPointerTy() ==
4244 Ops
[i
]->getType()->isPointerTy() &&
4245 "min/max should be consistently pointerish");
4249 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative,
4250 // so we can *NOT* do any kind of sorting of the expressions!
4252 // Check if we have created the same expression before.
4253 if (const SCEV
*S
= findExistingSCEVInCache(Kind
, Ops
))
4256 // FIXME: there are *some* simplifications that we can do here.
4258 // Keep only the first instance of an operand.
4260 SCEVSequentialMinMaxDeduplicatingVisitor
Deduplicator(*this, Kind
);
4261 bool Changed
= Deduplicator
.visit(Kind
, Ops
, Ops
);
4263 return getSequentialMinMaxExpr(Kind
, Ops
);
4266 // Check to see if one of the operands is of the same kind. If so, expand its
4267 // operands onto our operand list, and recurse to simplify.
4270 bool DeletedAny
= false;
4271 while (Idx
< Ops
.size()) {
4272 if (Ops
[Idx
]->getSCEVType() != Kind
) {
4276 const auto *SMME
= cast
<SCEVSequentialMinMaxExpr
>(Ops
[Idx
]);
4277 Ops
.erase(Ops
.begin() + Idx
);
4278 Ops
.insert(Ops
.begin() + Idx
, SMME
->operands().begin(),
4279 SMME
->operands().end());
4284 return getSequentialMinMaxExpr(Kind
, Ops
);
4287 const SCEV
*SaturationPoint
;
4288 ICmpInst::Predicate Pred
;
4290 case scSequentialUMinExpr
:
4291 SaturationPoint
= getZero(Ops
[0]->getType());
4292 Pred
= ICmpInst::ICMP_ULE
;
4295 llvm_unreachable("Not a sequential min/max type.");
4298 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
) {
4299 if (!isGuaranteedNotToCauseUB(Ops
[i
]))
4301 // We can replace %x umin_seq %y with %x umin %y if either:
4302 // * %y being poison implies %x is also poison.
4303 // * %x cannot be the saturating value (e.g. zero for umin).
4304 if (::impliesPoison(Ops
[i
], Ops
[i
- 1]) ||
4305 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE
, Ops
[i
- 1],
4307 SmallVector
<const SCEV
*> SeqOps
= {Ops
[i
- 1], Ops
[i
]};
4308 Ops
[i
- 1] = getMinMaxExpr(
4309 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind
),
4311 Ops
.erase(Ops
.begin() + i
);
4312 return getSequentialMinMaxExpr(Kind
, Ops
);
4314 // Fold %x umin_seq %y to %x if %x ule %y.
4315 // TODO: We might be able to prove the predicate for a later operand.
4316 if (isKnownViaNonRecursiveReasoning(Pred
, Ops
[i
- 1], Ops
[i
])) {
4317 Ops
.erase(Ops
.begin() + i
);
4318 return getSequentialMinMaxExpr(Kind
, Ops
);
4322 // Okay, it looks like we really DO need an expr. Check to see if we
4323 // already have one, otherwise create a new one.
4324 FoldingSetNodeID ID
;
4325 ID
.AddInteger(Kind
);
4326 for (const SCEV
*Op
: Ops
)
4329 const SCEV
*ExistingSCEV
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
);
4331 return ExistingSCEV
;
4333 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
4334 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
4335 SCEV
*S
= new (SCEVAllocator
)
4336 SCEVSequentialMinMaxExpr(ID
.Intern(SCEVAllocator
), Kind
, O
, Ops
.size());
4338 UniqueSCEVs
.InsertNode(S
, IP
);
4339 registerUser(S
, Ops
);
4343 const SCEV
*ScalarEvolution::getSMaxExpr(const SCEV
*LHS
, const SCEV
*RHS
) {
4344 SmallVector
<const SCEV
*, 2> Ops
= {LHS
, RHS
};
4345 return getSMaxExpr(Ops
);
4348 const SCEV
*ScalarEvolution::getSMaxExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
4349 return getMinMaxExpr(scSMaxExpr
, Ops
);
4352 const SCEV
*ScalarEvolution::getUMaxExpr(const SCEV
*LHS
, const SCEV
*RHS
) {
4353 SmallVector
<const SCEV
*, 2> Ops
= {LHS
, RHS
};
4354 return getUMaxExpr(Ops
);
4357 const SCEV
*ScalarEvolution::getUMaxExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
4358 return getMinMaxExpr(scUMaxExpr
, Ops
);
4361 const SCEV
*ScalarEvolution::getSMinExpr(const SCEV
*LHS
,
4363 SmallVector
<const SCEV
*, 2> Ops
= { LHS
, RHS
};
4364 return getSMinExpr(Ops
);
4367 const SCEV
*ScalarEvolution::getSMinExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
4368 return getMinMaxExpr(scSMinExpr
, Ops
);
4371 const SCEV
*ScalarEvolution::getUMinExpr(const SCEV
*LHS
, const SCEV
*RHS
,
4373 SmallVector
<const SCEV
*, 2> Ops
= { LHS
, RHS
};
4374 return getUMinExpr(Ops
, Sequential
);
4377 const SCEV
*ScalarEvolution::getUMinExpr(SmallVectorImpl
<const SCEV
*> &Ops
,
4379 return Sequential
? getSequentialMinMaxExpr(scSequentialUMinExpr
, Ops
)
4380 : getMinMaxExpr(scUMinExpr
, Ops
);
4384 ScalarEvolution::getSizeOfExpr(Type
*IntTy
, TypeSize Size
) {
4385 const SCEV
*Res
= getConstant(IntTy
, Size
.getKnownMinValue());
4386 if (Size
.isScalable())
4387 Res
= getMulExpr(Res
, getVScale(IntTy
));
4391 const SCEV
*ScalarEvolution::getSizeOfExpr(Type
*IntTy
, Type
*AllocTy
) {
4392 return getSizeOfExpr(IntTy
, getDataLayout().getTypeAllocSize(AllocTy
));
4395 const SCEV
*ScalarEvolution::getStoreSizeOfExpr(Type
*IntTy
, Type
*StoreTy
) {
4396 return getSizeOfExpr(IntTy
, getDataLayout().getTypeStoreSize(StoreTy
));
4399 const SCEV
*ScalarEvolution::getOffsetOfExpr(Type
*IntTy
,
4402 // We can bypass creating a target-independent constant expression and then
4403 // folding it back into a ConstantInt. This is just a compile-time
4405 const StructLayout
*SL
= getDataLayout().getStructLayout(STy
);
4406 assert(!SL
->getSizeInBits().isScalable() &&
4407 "Cannot get offset for structure containing scalable vector types");
4408 return getConstant(IntTy
, SL
->getElementOffset(FieldNo
));
4411 const SCEV
*ScalarEvolution::getUnknown(Value
*V
) {
4412 // Don't attempt to do anything other than create a SCEVUnknown object
4413 // here. createSCEV only calls getUnknown after checking for all other
4414 // interesting possibilities, and any other code that calls getUnknown
4415 // is doing so in order to hide a value from SCEV canonicalization.
4417 FoldingSetNodeID ID
;
4418 ID
.AddInteger(scUnknown
);
4421 if (SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) {
4422 assert(cast
<SCEVUnknown
>(S
)->getValue() == V
&&
4423 "Stale SCEVUnknown in uniquing map!");
4426 SCEV
*S
= new (SCEVAllocator
) SCEVUnknown(ID
.Intern(SCEVAllocator
), V
, this,
4428 FirstUnknown
= cast
<SCEVUnknown
>(S
);
4429 UniqueSCEVs
.InsertNode(S
, IP
);
4433 //===----------------------------------------------------------------------===//
4434 // Basic SCEV Analysis and PHI Idiom Recognition Code
4437 /// Test if values of the given type are analyzable within the SCEV
4438 /// framework. This primarily includes integer types, and it can optionally
4439 /// include pointer types if the ScalarEvolution class has access to
4440 /// target-specific information.
4441 bool ScalarEvolution::isSCEVable(Type
*Ty
) const {
4442 // Integers and pointers are always SCEVable.
4443 return Ty
->isIntOrPtrTy();
4446 /// Return the size in bits of the specified type, for which isSCEVable must
4448 uint64_t ScalarEvolution::getTypeSizeInBits(Type
*Ty
) const {
4449 assert(isSCEVable(Ty
) && "Type is not SCEVable!");
4450 if (Ty
->isPointerTy())
4451 return getDataLayout().getIndexTypeSizeInBits(Ty
);
4452 return getDataLayout().getTypeSizeInBits(Ty
);
4455 /// Return a type with the same bitwidth as the given type and which represents
4456 /// how SCEV will treat the given type, for which isSCEVable must return
4457 /// true. For pointer types, this is the pointer index sized integer type.
4458 Type
*ScalarEvolution::getEffectiveSCEVType(Type
*Ty
) const {
4459 assert(isSCEVable(Ty
) && "Type is not SCEVable!");
4461 if (Ty
->isIntegerTy())
4464 // The only other support type is pointer.
4465 assert(Ty
->isPointerTy() && "Unexpected non-pointer non-integer type!");
4466 return getDataLayout().getIndexType(Ty
);
4469 Type
*ScalarEvolution::getWiderType(Type
*T1
, Type
*T2
) const {
4470 return getTypeSizeInBits(T1
) >= getTypeSizeInBits(T2
) ? T1
: T2
;
4473 bool ScalarEvolution::instructionCouldExistWithOperands(const SCEV
*A
,
4475 /// For a valid use point to exist, the defining scope of one operand
4476 /// must dominate the other.
4477 bool PreciseA
, PreciseB
;
4478 auto *ScopeA
= getDefiningScopeBound({A
}, PreciseA
);
4479 auto *ScopeB
= getDefiningScopeBound({B
}, PreciseB
);
4480 if (!PreciseA
|| !PreciseB
)
4483 return (ScopeA
== ScopeB
) || DT
.dominates(ScopeA
, ScopeB
) ||
4484 DT
.dominates(ScopeB
, ScopeA
);
4487 const SCEV
*ScalarEvolution::getCouldNotCompute() {
4488 return CouldNotCompute
.get();
4491 bool ScalarEvolution::checkValidity(const SCEV
*S
) const {
4492 bool ContainsNulls
= SCEVExprContains(S
, [](const SCEV
*S
) {
4493 auto *SU
= dyn_cast
<SCEVUnknown
>(S
);
4494 return SU
&& SU
->getValue() == nullptr;
4497 return !ContainsNulls
;
4500 bool ScalarEvolution::containsAddRecurrence(const SCEV
*S
) {
4501 HasRecMapType::iterator I
= HasRecMap
.find(S
);
4502 if (I
!= HasRecMap
.end())
4506 SCEVExprContains(S
, [](const SCEV
*S
) { return isa
<SCEVAddRecExpr
>(S
); });
4507 HasRecMap
.insert({S
, FoundAddRec
});
4511 /// Return the ValueOffsetPair set for \p S. \p S can be represented
4512 /// by the value and offset from any ValueOffsetPair in the set.
4513 ArrayRef
<Value
*> ScalarEvolution::getSCEVValues(const SCEV
*S
) {
4514 ExprValueMapType::iterator SI
= ExprValueMap
.find_as(S
);
4515 if (SI
== ExprValueMap
.end())
4517 return SI
->second
.getArrayRef();
4520 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4521 /// cannot be used separately. eraseValueFromMap should be used to remove
4522 /// V from ValueExprMap and ExprValueMap at the same time.
4523 void ScalarEvolution::eraseValueFromMap(Value
*V
) {
4524 ValueExprMapType::iterator I
= ValueExprMap
.find_as(V
);
4525 if (I
!= ValueExprMap
.end()) {
4526 auto EVIt
= ExprValueMap
.find(I
->second
);
4527 bool Removed
= EVIt
->second
.remove(V
);
4529 assert(Removed
&& "Value not in ExprValueMap?");
4530 ValueExprMap
.erase(I
);
4534 void ScalarEvolution::insertValueToMap(Value
*V
, const SCEV
*S
) {
4535 // A recursive query may have already computed the SCEV. It should be
4536 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily
4537 // inferred nowrap flags.
4538 auto It
= ValueExprMap
.find_as(V
);
4539 if (It
== ValueExprMap
.end()) {
4540 ValueExprMap
.insert({SCEVCallbackVH(V
, this), S
});
4541 ExprValueMap
[S
].insert(V
);
4545 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4546 /// create a new one.
4547 const SCEV
*ScalarEvolution::getSCEV(Value
*V
) {
4548 assert(isSCEVable(V
->getType()) && "Value is not SCEVable!");
4550 if (const SCEV
*S
= getExistingSCEV(V
))
4552 return createSCEVIter(V
);
4555 const SCEV
*ScalarEvolution::getExistingSCEV(Value
*V
) {
4556 assert(isSCEVable(V
->getType()) && "Value is not SCEVable!");
4558 ValueExprMapType::iterator I
= ValueExprMap
.find_as(V
);
4559 if (I
!= ValueExprMap
.end()) {
4560 const SCEV
*S
= I
->second
;
4561 assert(checkValidity(S
) &&
4562 "existing SCEV has not been properly invalidated");
4568 /// Return a SCEV corresponding to -V = -1*V
4569 const SCEV
*ScalarEvolution::getNegativeSCEV(const SCEV
*V
,
4570 SCEV::NoWrapFlags Flags
) {
4571 if (const SCEVConstant
*VC
= dyn_cast
<SCEVConstant
>(V
))
4573 cast
<ConstantInt
>(ConstantExpr::getNeg(VC
->getValue())));
4575 Type
*Ty
= V
->getType();
4576 Ty
= getEffectiveSCEVType(Ty
);
4577 return getMulExpr(V
, getMinusOne(Ty
), Flags
);
4580 /// If Expr computes ~A, return A else return nullptr
4581 static const SCEV
*MatchNotExpr(const SCEV
*Expr
) {
4582 const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Expr
);
4583 if (!Add
|| Add
->getNumOperands() != 2 ||
4584 !Add
->getOperand(0)->isAllOnesValue())
4587 const SCEVMulExpr
*AddRHS
= dyn_cast
<SCEVMulExpr
>(Add
->getOperand(1));
4588 if (!AddRHS
|| AddRHS
->getNumOperands() != 2 ||
4589 !AddRHS
->getOperand(0)->isAllOnesValue())
4592 return AddRHS
->getOperand(1);
4595 /// Return a SCEV corresponding to ~V = -1-V
4596 const SCEV
*ScalarEvolution::getNotSCEV(const SCEV
*V
) {
4597 assert(!V
->getType()->isPointerTy() && "Can't negate pointer");
4599 if (const SCEVConstant
*VC
= dyn_cast
<SCEVConstant
>(V
))
4601 cast
<ConstantInt
>(ConstantExpr::getNot(VC
->getValue())));
4603 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4604 if (const SCEVMinMaxExpr
*MME
= dyn_cast
<SCEVMinMaxExpr
>(V
)) {
4605 auto MatchMinMaxNegation
= [&](const SCEVMinMaxExpr
*MME
) {
4606 SmallVector
<const SCEV
*, 2> MatchedOperands
;
4607 for (const SCEV
*Operand
: MME
->operands()) {
4608 const SCEV
*Matched
= MatchNotExpr(Operand
);
4610 return (const SCEV
*)nullptr;
4611 MatchedOperands
.push_back(Matched
);
4613 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME
->getSCEVType()),
4616 if (const SCEV
*Replaced
= MatchMinMaxNegation(MME
))
4620 Type
*Ty
= V
->getType();
4621 Ty
= getEffectiveSCEVType(Ty
);
4622 return getMinusSCEV(getMinusOne(Ty
), V
);
4625 const SCEV
*ScalarEvolution::removePointerBase(const SCEV
*P
) {
4626 assert(P
->getType()->isPointerTy());
4628 if (auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(P
)) {
4629 // The base of an AddRec is the first operand.
4630 SmallVector
<const SCEV
*> Ops
{AddRec
->operands()};
4631 Ops
[0] = removePointerBase(Ops
[0]);
4632 // Don't try to transfer nowrap flags for now. We could in some cases
4633 // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4634 return getAddRecExpr(Ops
, AddRec
->getLoop(), SCEV::FlagAnyWrap
);
4636 if (auto *Add
= dyn_cast
<SCEVAddExpr
>(P
)) {
4637 // The base of an Add is the pointer operand.
4638 SmallVector
<const SCEV
*> Ops
{Add
->operands()};
4639 const SCEV
**PtrOp
= nullptr;
4640 for (const SCEV
*&AddOp
: Ops
) {
4641 if (AddOp
->getType()->isPointerTy()) {
4642 assert(!PtrOp
&& "Cannot have multiple pointer ops");
4646 *PtrOp
= removePointerBase(*PtrOp
);
4647 // Don't try to transfer nowrap flags for now. We could in some cases
4648 // (for example, if the pointer operand of the Add is a SCEVUnknown).
4649 return getAddExpr(Ops
);
4651 // Any other expression must be a pointer base.
4652 return getZero(P
->getType());
4655 const SCEV
*ScalarEvolution::getMinusSCEV(const SCEV
*LHS
, const SCEV
*RHS
,
4656 SCEV::NoWrapFlags Flags
,
4658 // Fast path: X - X --> 0.
4660 return getZero(LHS
->getType());
4662 // If we subtract two pointers with different pointer bases, bail.
4663 // Eventually, we're going to add an assertion to getMulExpr that we
4664 // can't multiply by a pointer.
4665 if (RHS
->getType()->isPointerTy()) {
4666 if (!LHS
->getType()->isPointerTy() ||
4667 getPointerBase(LHS
) != getPointerBase(RHS
))
4668 return getCouldNotCompute();
4669 LHS
= removePointerBase(LHS
);
4670 RHS
= removePointerBase(RHS
);
4673 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4674 // makes it so that we cannot make much use of NUW.
4675 auto AddFlags
= SCEV::FlagAnyWrap
;
4676 const bool RHSIsNotMinSigned
=
4677 !getSignedRangeMin(RHS
).isMinSignedValue();
4678 if (hasFlags(Flags
, SCEV::FlagNSW
)) {
4679 // Let M be the minimum representable signed value. Then (-1)*RHS
4680 // signed-wraps if and only if RHS is M. That can happen even for
4681 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4682 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4683 // (-1)*RHS, we need to prove that RHS != M.
4685 // If LHS is non-negative and we know that LHS - RHS does not
4686 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4687 // either by proving that RHS > M or that LHS >= 0.
4688 if (RHSIsNotMinSigned
|| isKnownNonNegative(LHS
)) {
4689 AddFlags
= SCEV::FlagNSW
;
4693 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4694 // RHS is NSW and LHS >= 0.
4696 // The difficulty here is that the NSW flag may have been proven
4697 // relative to a loop that is to be found in a recurrence in LHS and
4698 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4699 // larger scope than intended.
4700 auto NegFlags
= RHSIsNotMinSigned
? SCEV::FlagNSW
: SCEV::FlagAnyWrap
;
4702 return getAddExpr(LHS
, getNegativeSCEV(RHS
, NegFlags
), AddFlags
, Depth
);
4705 const SCEV
*ScalarEvolution::getTruncateOrZeroExtend(const SCEV
*V
, Type
*Ty
,
4707 Type
*SrcTy
= V
->getType();
4708 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4709 "Cannot truncate or zero extend with non-integer arguments!");
4710 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4711 return V
; // No conversion
4712 if (getTypeSizeInBits(SrcTy
) > getTypeSizeInBits(Ty
))
4713 return getTruncateExpr(V
, Ty
, Depth
);
4714 return getZeroExtendExpr(V
, Ty
, Depth
);
4717 const SCEV
*ScalarEvolution::getTruncateOrSignExtend(const SCEV
*V
, Type
*Ty
,
4719 Type
*SrcTy
= V
->getType();
4720 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4721 "Cannot truncate or zero extend with non-integer arguments!");
4722 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4723 return V
; // No conversion
4724 if (getTypeSizeInBits(SrcTy
) > getTypeSizeInBits(Ty
))
4725 return getTruncateExpr(V
, Ty
, Depth
);
4726 return getSignExtendExpr(V
, Ty
, Depth
);
4730 ScalarEvolution::getNoopOrZeroExtend(const SCEV
*V
, Type
*Ty
) {
4731 Type
*SrcTy
= V
->getType();
4732 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4733 "Cannot noop or zero extend with non-integer arguments!");
4734 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
4735 "getNoopOrZeroExtend cannot truncate!");
4736 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4737 return V
; // No conversion
4738 return getZeroExtendExpr(V
, Ty
);
4742 ScalarEvolution::getNoopOrSignExtend(const SCEV
*V
, Type
*Ty
) {
4743 Type
*SrcTy
= V
->getType();
4744 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4745 "Cannot noop or sign extend with non-integer arguments!");
4746 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
4747 "getNoopOrSignExtend cannot truncate!");
4748 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4749 return V
; // No conversion
4750 return getSignExtendExpr(V
, Ty
);
4754 ScalarEvolution::getNoopOrAnyExtend(const SCEV
*V
, Type
*Ty
) {
4755 Type
*SrcTy
= V
->getType();
4756 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4757 "Cannot noop or any extend with non-integer arguments!");
4758 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
4759 "getNoopOrAnyExtend cannot truncate!");
4760 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4761 return V
; // No conversion
4762 return getAnyExtendExpr(V
, Ty
);
4766 ScalarEvolution::getTruncateOrNoop(const SCEV
*V
, Type
*Ty
) {
4767 Type
*SrcTy
= V
->getType();
4768 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4769 "Cannot truncate or noop with non-integer arguments!");
4770 assert(getTypeSizeInBits(SrcTy
) >= getTypeSizeInBits(Ty
) &&
4771 "getTruncateOrNoop cannot extend!");
4772 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4773 return V
; // No conversion
4774 return getTruncateExpr(V
, Ty
);
4777 const SCEV
*ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV
*LHS
,
4779 const SCEV
*PromotedLHS
= LHS
;
4780 const SCEV
*PromotedRHS
= RHS
;
4782 if (getTypeSizeInBits(LHS
->getType()) > getTypeSizeInBits(RHS
->getType()))
4783 PromotedRHS
= getZeroExtendExpr(RHS
, LHS
->getType());
4785 PromotedLHS
= getNoopOrZeroExtend(LHS
, RHS
->getType());
4787 return getUMaxExpr(PromotedLHS
, PromotedRHS
);
4790 const SCEV
*ScalarEvolution::getUMinFromMismatchedTypes(const SCEV
*LHS
,
4793 SmallVector
<const SCEV
*, 2> Ops
= { LHS
, RHS
};
4794 return getUMinFromMismatchedTypes(Ops
, Sequential
);
4798 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl
<const SCEV
*> &Ops
,
4800 assert(!Ops
.empty() && "At least one operand must be!");
4802 if (Ops
.size() == 1)
4805 // Find the max type first.
4806 Type
*MaxType
= nullptr;
4807 for (const auto *S
: Ops
)
4809 MaxType
= getWiderType(MaxType
, S
->getType());
4811 MaxType
= S
->getType();
4812 assert(MaxType
&& "Failed to find maximum type!");
4814 // Extend all ops to max type.
4815 SmallVector
<const SCEV
*, 2> PromotedOps
;
4816 for (const auto *S
: Ops
)
4817 PromotedOps
.push_back(getNoopOrZeroExtend(S
, MaxType
));
4820 return getUMinExpr(PromotedOps
, Sequential
);
4823 const SCEV
*ScalarEvolution::getPointerBase(const SCEV
*V
) {
4824 // A pointer operand may evaluate to a nonpointer expression, such as null.
4825 if (!V
->getType()->isPointerTy())
4829 if (auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(V
)) {
4830 V
= AddRec
->getStart();
4831 } else if (auto *Add
= dyn_cast
<SCEVAddExpr
>(V
)) {
4832 const SCEV
*PtrOp
= nullptr;
4833 for (const SCEV
*AddOp
: Add
->operands()) {
4834 if (AddOp
->getType()->isPointerTy()) {
4835 assert(!PtrOp
&& "Cannot have multiple pointer ops");
4839 assert(PtrOp
&& "Must have pointer op");
4841 } else // Not something we can look further into.
4846 /// Push users of the given Instruction onto the given Worklist.
4847 static void PushDefUseChildren(Instruction
*I
,
4848 SmallVectorImpl
<Instruction
*> &Worklist
,
4849 SmallPtrSetImpl
<Instruction
*> &Visited
) {
4850 // Push the def-use children onto the Worklist stack.
4851 for (User
*U
: I
->users()) {
4852 auto *UserInsn
= cast
<Instruction
>(U
);
4853 if (Visited
.insert(UserInsn
).second
)
4854 Worklist
.push_back(UserInsn
);
4860 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4861 /// expression in case its Loop is L. If it is not L then
4862 /// if IgnoreOtherLoops is true then use AddRec itself
4863 /// otherwise rewrite cannot be done.
4864 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4865 class SCEVInitRewriter
: public SCEVRewriteVisitor
<SCEVInitRewriter
> {
4867 static const SCEV
*rewrite(const SCEV
*S
, const Loop
*L
, ScalarEvolution
&SE
,
4868 bool IgnoreOtherLoops
= true) {
4869 SCEVInitRewriter
Rewriter(L
, SE
);
4870 const SCEV
*Result
= Rewriter
.visit(S
);
4871 if (Rewriter
.hasSeenLoopVariantSCEVUnknown())
4872 return SE
.getCouldNotCompute();
4873 return Rewriter
.hasSeenOtherLoops() && !IgnoreOtherLoops
4874 ? SE
.getCouldNotCompute()
4878 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
4879 if (!SE
.isLoopInvariant(Expr
, L
))
4880 SeenLoopVariantSCEVUnknown
= true;
4884 const SCEV
*visitAddRecExpr(const SCEVAddRecExpr
*Expr
) {
4885 // Only re-write AddRecExprs for this loop.
4886 if (Expr
->getLoop() == L
)
4887 return Expr
->getStart();
4888 SeenOtherLoops
= true;
4892 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown
; }
4894 bool hasSeenOtherLoops() { return SeenOtherLoops
; }
4897 explicit SCEVInitRewriter(const Loop
*L
, ScalarEvolution
&SE
)
4898 : SCEVRewriteVisitor(SE
), L(L
) {}
4901 bool SeenLoopVariantSCEVUnknown
= false;
4902 bool SeenOtherLoops
= false;
4905 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4906 /// increment expression in case its Loop is L. If it is not L then
4907 /// use AddRec itself.
4908 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4909 class SCEVPostIncRewriter
: public SCEVRewriteVisitor
<SCEVPostIncRewriter
> {
4911 static const SCEV
*rewrite(const SCEV
*S
, const Loop
*L
, ScalarEvolution
&SE
) {
4912 SCEVPostIncRewriter
Rewriter(L
, SE
);
4913 const SCEV
*Result
= Rewriter
.visit(S
);
4914 return Rewriter
.hasSeenLoopVariantSCEVUnknown()
4915 ? SE
.getCouldNotCompute()
4919 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
4920 if (!SE
.isLoopInvariant(Expr
, L
))
4921 SeenLoopVariantSCEVUnknown
= true;
4925 const SCEV
*visitAddRecExpr(const SCEVAddRecExpr
*Expr
) {
4926 // Only re-write AddRecExprs for this loop.
4927 if (Expr
->getLoop() == L
)
4928 return Expr
->getPostIncExpr(SE
);
4929 SeenOtherLoops
= true;
4933 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown
; }
4935 bool hasSeenOtherLoops() { return SeenOtherLoops
; }
4938 explicit SCEVPostIncRewriter(const Loop
*L
, ScalarEvolution
&SE
)
4939 : SCEVRewriteVisitor(SE
), L(L
) {}
4942 bool SeenLoopVariantSCEVUnknown
= false;
4943 bool SeenOtherLoops
= false;
4946 /// This class evaluates the compare condition by matching it against the
4947 /// condition of loop latch. If there is a match we assume a true value
4948 /// for the condition while building SCEV nodes.
4949 class SCEVBackedgeConditionFolder
4950 : public SCEVRewriteVisitor
<SCEVBackedgeConditionFolder
> {
4952 static const SCEV
*rewrite(const SCEV
*S
, const Loop
*L
,
4953 ScalarEvolution
&SE
) {
4954 bool IsPosBECond
= false;
4955 Value
*BECond
= nullptr;
4956 if (BasicBlock
*Latch
= L
->getLoopLatch()) {
4957 BranchInst
*BI
= dyn_cast
<BranchInst
>(Latch
->getTerminator());
4958 if (BI
&& BI
->isConditional()) {
4959 assert(BI
->getSuccessor(0) != BI
->getSuccessor(1) &&
4960 "Both outgoing branches should not target same header!");
4961 BECond
= BI
->getCondition();
4962 IsPosBECond
= BI
->getSuccessor(0) == L
->getHeader();
4967 SCEVBackedgeConditionFolder
Rewriter(L
, BECond
, IsPosBECond
, SE
);
4968 return Rewriter
.visit(S
);
4971 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
4972 const SCEV
*Result
= Expr
;
4973 bool InvariantF
= SE
.isLoopInvariant(Expr
, L
);
4976 Instruction
*I
= cast
<Instruction
>(Expr
->getValue());
4977 switch (I
->getOpcode()) {
4978 case Instruction::Select
: {
4979 SelectInst
*SI
= cast
<SelectInst
>(I
);
4980 std::optional
<const SCEV
*> Res
=
4981 compareWithBackedgeCondition(SI
->getCondition());
4983 bool IsOne
= cast
<SCEVConstant
>(*Res
)->getValue()->isOne();
4984 Result
= SE
.getSCEV(IsOne
? SI
->getTrueValue() : SI
->getFalseValue());
4989 std::optional
<const SCEV
*> Res
= compareWithBackedgeCondition(I
);
5000 explicit SCEVBackedgeConditionFolder(const Loop
*L
, Value
*BECond
,
5001 bool IsPosBECond
, ScalarEvolution
&SE
)
5002 : SCEVRewriteVisitor(SE
), L(L
), BackedgeCond(BECond
),
5003 IsPositiveBECond(IsPosBECond
) {}
5005 std::optional
<const SCEV
*> compareWithBackedgeCondition(Value
*IC
);
5008 /// Loop back condition.
5009 Value
*BackedgeCond
= nullptr;
5010 /// Set to true if loop back is on positive branch condition.
5011 bool IsPositiveBECond
;
5014 std::optional
<const SCEV
*>
5015 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value
*IC
) {
5017 // If value matches the backedge condition for loop latch,
5018 // then return a constant evolution node based on loopback
5020 if (BackedgeCond
== IC
)
5021 return IsPositiveBECond
? SE
.getOne(Type::getInt1Ty(SE
.getContext()))
5022 : SE
.getZero(Type::getInt1Ty(SE
.getContext()));
5023 return std::nullopt
;
5026 class SCEVShiftRewriter
: public SCEVRewriteVisitor
<SCEVShiftRewriter
> {
5028 static const SCEV
*rewrite(const SCEV
*S
, const Loop
*L
,
5029 ScalarEvolution
&SE
) {
5030 SCEVShiftRewriter
Rewriter(L
, SE
);
5031 const SCEV
*Result
= Rewriter
.visit(S
);
5032 return Rewriter
.isValid() ? Result
: SE
.getCouldNotCompute();
5035 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
5036 // Only allow AddRecExprs for this loop.
5037 if (!SE
.isLoopInvariant(Expr
, L
))
5042 const SCEV
*visitAddRecExpr(const SCEVAddRecExpr
*Expr
) {
5043 if (Expr
->getLoop() == L
&& Expr
->isAffine())
5044 return SE
.getMinusSCEV(Expr
, Expr
->getStepRecurrence(SE
));
5049 bool isValid() { return Valid
; }
5052 explicit SCEVShiftRewriter(const Loop
*L
, ScalarEvolution
&SE
)
5053 : SCEVRewriteVisitor(SE
), L(L
) {}
5059 } // end anonymous namespace
5062 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr
*AR
) {
5063 if (!AR
->isAffine())
5064 return SCEV::FlagAnyWrap
;
5066 using OBO
= OverflowingBinaryOperator
;
5068 SCEV::NoWrapFlags Result
= SCEV::FlagAnyWrap
;
5070 if (!AR
->hasNoSelfWrap()) {
5071 const SCEV
*BECount
= getConstantMaxBackedgeTakenCount(AR
->getLoop());
5072 if (const SCEVConstant
*BECountMax
= dyn_cast
<SCEVConstant
>(BECount
)) {
5073 ConstantRange StepCR
= getSignedRange(AR
->getStepRecurrence(*this));
5074 const APInt
&BECountAP
= BECountMax
->getAPInt();
5075 unsigned NoOverflowBitWidth
=
5076 BECountAP
.getActiveBits() + StepCR
.getMinSignedBits();
5077 if (NoOverflowBitWidth
<= getTypeSizeInBits(AR
->getType()))
5078 Result
= ScalarEvolution::setFlags(Result
, SCEV::FlagNW
);
5082 if (!AR
->hasNoSignedWrap()) {
5083 ConstantRange AddRecRange
= getSignedRange(AR
);
5084 ConstantRange IncRange
= getSignedRange(AR
->getStepRecurrence(*this));
5086 auto NSWRegion
= ConstantRange::makeGuaranteedNoWrapRegion(
5087 Instruction::Add
, IncRange
, OBO::NoSignedWrap
);
5088 if (NSWRegion
.contains(AddRecRange
))
5089 Result
= ScalarEvolution::setFlags(Result
, SCEV::FlagNSW
);
5092 if (!AR
->hasNoUnsignedWrap()) {
5093 ConstantRange AddRecRange
= getUnsignedRange(AR
);
5094 ConstantRange IncRange
= getUnsignedRange(AR
->getStepRecurrence(*this));
5096 auto NUWRegion
= ConstantRange::makeGuaranteedNoWrapRegion(
5097 Instruction::Add
, IncRange
, OBO::NoUnsignedWrap
);
5098 if (NUWRegion
.contains(AddRecRange
))
5099 Result
= ScalarEvolution::setFlags(Result
, SCEV::FlagNUW
);
5106 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr
*AR
) {
5107 SCEV::NoWrapFlags Result
= AR
->getNoWrapFlags();
5109 if (AR
->hasNoSignedWrap())
5112 if (!AR
->isAffine())
5115 // This function can be expensive, only try to prove NSW once per AddRec.
5116 if (!SignedWrapViaInductionTried
.insert(AR
).second
)
5119 const SCEV
*Step
= AR
->getStepRecurrence(*this);
5120 const Loop
*L
= AR
->getLoop();
5122 // Check whether the backedge-taken count is SCEVCouldNotCompute.
5123 // Note that this serves two purposes: It filters out loops that are
5124 // simply not analyzable, and it covers the case where this code is
5125 // being called from within backedge-taken count analysis, such that
5126 // attempting to ask for the backedge-taken count would likely result
5127 // in infinite recursion. In the later case, the analysis code will
5128 // cope with a conservative value, and it will take care to purge
5129 // that value once it has finished.
5130 const SCEV
*MaxBECount
= getConstantMaxBackedgeTakenCount(L
);
5132 // Normally, in the cases we can prove no-overflow via a
5133 // backedge guarding condition, we can also compute a backedge
5134 // taken count for the loop. The exceptions are assumptions and
5135 // guards present in the loop -- SCEV is not great at exploiting
5136 // these to compute max backedge taken counts, but can still use
5137 // these to prove lack of overflow. Use this fact to avoid
5138 // doing extra work that may not pay off.
5140 if (isa
<SCEVCouldNotCompute
>(MaxBECount
) && !HasGuards
&&
5141 AC
.assumptions().empty())
5144 // If the backedge is guarded by a comparison with the pre-inc value the
5145 // addrec is safe. Also, if the entry is guarded by a comparison with the
5146 // start value and the backedge is guarded by a comparison with the post-inc
5147 // value, the addrec is safe.
5148 ICmpInst::Predicate Pred
;
5149 const SCEV
*OverflowLimit
=
5150 getSignedOverflowLimitForStep(Step
, &Pred
, this);
5151 if (OverflowLimit
&&
5152 (isLoopBackedgeGuardedByCond(L
, Pred
, AR
, OverflowLimit
) ||
5153 isKnownOnEveryIteration(Pred
, AR
, OverflowLimit
))) {
5154 Result
= setFlags(Result
, SCEV::FlagNSW
);
5159 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr
*AR
) {
5160 SCEV::NoWrapFlags Result
= AR
->getNoWrapFlags();
5162 if (AR
->hasNoUnsignedWrap())
5165 if (!AR
->isAffine())
5168 // This function can be expensive, only try to prove NUW once per AddRec.
5169 if (!UnsignedWrapViaInductionTried
.insert(AR
).second
)
5172 const SCEV
*Step
= AR
->getStepRecurrence(*this);
5173 unsigned BitWidth
= getTypeSizeInBits(AR
->getType());
5174 const Loop
*L
= AR
->getLoop();
5176 // Check whether the backedge-taken count is SCEVCouldNotCompute.
5177 // Note that this serves two purposes: It filters out loops that are
5178 // simply not analyzable, and it covers the case where this code is
5179 // being called from within backedge-taken count analysis, such that
5180 // attempting to ask for the backedge-taken count would likely result
5181 // in infinite recursion. In the later case, the analysis code will
5182 // cope with a conservative value, and it will take care to purge
5183 // that value once it has finished.
5184 const SCEV
*MaxBECount
= getConstantMaxBackedgeTakenCount(L
);
5186 // Normally, in the cases we can prove no-overflow via a
5187 // backedge guarding condition, we can also compute a backedge
5188 // taken count for the loop. The exceptions are assumptions and
5189 // guards present in the loop -- SCEV is not great at exploiting
5190 // these to compute max backedge taken counts, but can still use
5191 // these to prove lack of overflow. Use this fact to avoid
5192 // doing extra work that may not pay off.
5194 if (isa
<SCEVCouldNotCompute
>(MaxBECount
) && !HasGuards
&&
5195 AC
.assumptions().empty())
5198 // If the backedge is guarded by a comparison with the pre-inc value the
5199 // addrec is safe. Also, if the entry is guarded by a comparison with the
5200 // start value and the backedge is guarded by a comparison with the post-inc
5201 // value, the addrec is safe.
5202 if (isKnownPositive(Step
)) {
5203 const SCEV
*N
= getConstant(APInt::getMinValue(BitWidth
) -
5204 getUnsignedRangeMax(Step
));
5205 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_ULT
, AR
, N
) ||
5206 isKnownOnEveryIteration(ICmpInst::ICMP_ULT
, AR
, N
)) {
5207 Result
= setFlags(Result
, SCEV::FlagNUW
);
5216 /// Represents an abstract binary operation. This may exist as a
5217 /// normal instruction or constant expression, or may have been
5218 /// derived from an expression tree.
5226 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
5227 /// constant expression.
5228 Operator
*Op
= nullptr;
5230 explicit BinaryOp(Operator
*Op
)
5231 : Opcode(Op
->getOpcode()), LHS(Op
->getOperand(0)), RHS(Op
->getOperand(1)),
5233 if (auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(Op
)) {
5234 IsNSW
= OBO
->hasNoSignedWrap();
5235 IsNUW
= OBO
->hasNoUnsignedWrap();
5239 explicit BinaryOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
, bool IsNSW
= false,
5241 : Opcode(Opcode
), LHS(LHS
), RHS(RHS
), IsNSW(IsNSW
), IsNUW(IsNUW
) {}
5244 } // end anonymous namespace
5246 /// Try to map \p V into a BinaryOp, and return \c std::nullopt on failure.
5247 static std::optional
<BinaryOp
> MatchBinaryOp(Value
*V
, const DataLayout
&DL
,
5248 AssumptionCache
&AC
,
5249 const DominatorTree
&DT
,
5250 const Instruction
*CxtI
) {
5251 auto *Op
= dyn_cast
<Operator
>(V
);
5253 return std::nullopt
;
5255 // Implementation detail: all the cleverness here should happen without
5256 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
5257 // SCEV expressions when possible, and we should not break that.
5259 switch (Op
->getOpcode()) {
5260 case Instruction::Add
:
5261 case Instruction::Sub
:
5262 case Instruction::Mul
:
5263 case Instruction::UDiv
:
5264 case Instruction::URem
:
5265 case Instruction::And
:
5266 case Instruction::AShr
:
5267 case Instruction::Shl
:
5268 return BinaryOp(Op
);
5270 case Instruction::Or
: {
5271 // Convert or disjoint into add nuw nsw.
5272 if (cast
<PossiblyDisjointInst
>(Op
)->isDisjoint())
5273 return BinaryOp(Instruction::Add
, Op
->getOperand(0), Op
->getOperand(1),
5274 /*IsNSW=*/true, /*IsNUW=*/true);
5275 return BinaryOp(Op
);
5278 case Instruction::Xor
:
5279 if (auto *RHSC
= dyn_cast
<ConstantInt
>(Op
->getOperand(1)))
5280 // If the RHS of the xor is a signmask, then this is just an add.
5281 // Instcombine turns add of signmask into xor as a strength reduction step.
5282 if (RHSC
->getValue().isSignMask())
5283 return BinaryOp(Instruction::Add
, Op
->getOperand(0), Op
->getOperand(1));
5284 // Binary `xor` is a bit-wise `add`.
5285 if (V
->getType()->isIntegerTy(1))
5286 return BinaryOp(Instruction::Add
, Op
->getOperand(0), Op
->getOperand(1));
5287 return BinaryOp(Op
);
5289 case Instruction::LShr
:
5290 // Turn logical shift right of a constant into a unsigned divide.
5291 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(Op
->getOperand(1))) {
5292 uint32_t BitWidth
= cast
<IntegerType
>(Op
->getType())->getBitWidth();
5294 // If the shift count is not less than the bitwidth, the result of
5295 // the shift is undefined. Don't try to analyze it, because the
5296 // resolution chosen here may differ from the resolution chosen in
5297 // other parts of the compiler.
5298 if (SA
->getValue().ult(BitWidth
)) {
5300 ConstantInt::get(SA
->getContext(),
5301 APInt::getOneBitSet(BitWidth
, SA
->getZExtValue()));
5302 return BinaryOp(Instruction::UDiv
, Op
->getOperand(0), X
);
5305 return BinaryOp(Op
);
5307 case Instruction::ExtractValue
: {
5308 auto *EVI
= cast
<ExtractValueInst
>(Op
);
5309 if (EVI
->getNumIndices() != 1 || EVI
->getIndices()[0] != 0)
5312 auto *WO
= dyn_cast
<WithOverflowInst
>(EVI
->getAggregateOperand());
5316 Instruction::BinaryOps BinOp
= WO
->getBinaryOp();
5317 bool Signed
= WO
->isSigned();
5318 // TODO: Should add nuw/nsw flags for mul as well.
5319 if (BinOp
== Instruction::Mul
|| !isOverflowIntrinsicNoWrap(WO
, DT
))
5320 return BinaryOp(BinOp
, WO
->getLHS(), WO
->getRHS());
5322 // Now that we know that all uses of the arithmetic-result component of
5323 // CI are guarded by the overflow check, we can go ahead and pretend
5324 // that the arithmetic is non-overflowing.
5325 return BinaryOp(BinOp
, WO
->getLHS(), WO
->getRHS(),
5326 /* IsNSW = */ Signed
, /* IsNUW = */ !Signed
);
5333 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
5334 // semantics as a Sub, return a binary sub expression.
5335 if (auto *II
= dyn_cast
<IntrinsicInst
>(V
))
5336 if (II
->getIntrinsicID() == Intrinsic::loop_decrement_reg
)
5337 return BinaryOp(Instruction::Sub
, II
->getOperand(0), II
->getOperand(1));
5339 return std::nullopt
;
5342 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
5343 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
5344 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
5345 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
5346 /// follows one of the following patterns:
5347 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5348 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5349 /// If the SCEV expression of \p Op conforms with one of the expected patterns
5350 /// we return the type of the truncation operation, and indicate whether the
5351 /// truncated type should be treated as signed/unsigned by setting
5352 /// \p Signed to true/false, respectively.
5353 static Type
*isSimpleCastedPHI(const SCEV
*Op
, const SCEVUnknown
*SymbolicPHI
,
5354 bool &Signed
, ScalarEvolution
&SE
) {
5355 // The case where Op == SymbolicPHI (that is, with no type conversions on
5356 // the way) is handled by the regular add recurrence creating logic and
5357 // would have already been triggered in createAddRecForPHI. Reaching it here
5358 // means that createAddRecFromPHI had failed for this PHI before (e.g.,
5359 // because one of the other operands of the SCEVAddExpr updating this PHI is
5362 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
5363 // this case predicates that allow us to prove that Op == SymbolicPHI will
5365 if (Op
== SymbolicPHI
)
5368 unsigned SourceBits
= SE
.getTypeSizeInBits(SymbolicPHI
->getType());
5369 unsigned NewBits
= SE
.getTypeSizeInBits(Op
->getType());
5370 if (SourceBits
!= NewBits
)
5373 const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(Op
);
5374 const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(Op
);
5377 const SCEVTruncateExpr
*Trunc
=
5378 SExt
? dyn_cast
<SCEVTruncateExpr
>(SExt
->getOperand())
5379 : dyn_cast
<SCEVTruncateExpr
>(ZExt
->getOperand());
5382 const SCEV
*X
= Trunc
->getOperand();
5383 if (X
!= SymbolicPHI
)
5385 Signed
= SExt
!= nullptr;
5386 return Trunc
->getType();
5389 static const Loop
*isIntegerLoopHeaderPHI(const PHINode
*PN
, LoopInfo
&LI
) {
5390 if (!PN
->getType()->isIntegerTy())
5392 const Loop
*L
= LI
.getLoopFor(PN
->getParent());
5393 if (!L
|| L
->getHeader() != PN
->getParent())
5398 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
5399 // computation that updates the phi follows the following pattern:
5400 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
5401 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
5402 // If so, try to see if it can be rewritten as an AddRecExpr under some
5403 // Predicates. If successful, return them as a pair. Also cache the results
5406 // Example usage scenario:
5407 // Say the Rewriter is called for the following SCEV:
5408 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5410 // %X = phi i64 (%Start, %BEValue)
5411 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
5412 // and call this function with %SymbolicPHI = %X.
5414 // The analysis will find that the value coming around the backedge has
5415 // the following SCEV:
5416 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5417 // Upon concluding that this matches the desired pattern, the function
5418 // will return the pair {NewAddRec, SmallPredsVec} where:
5419 // NewAddRec = {%Start,+,%Step}
5420 // SmallPredsVec = {P1, P2, P3} as follows:
5421 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
5422 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
5423 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
5424 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec
5425 // under the predicates {P1,P2,P3}.
5426 // This predicated rewrite will be cached in PredicatedSCEVRewrites:
5427 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
5431 // 1) Extend the Induction descriptor to also support inductions that involve
5432 // casts: When needed (namely, when we are called in the context of the
5433 // vectorizer induction analysis), a Set of cast instructions will be
5434 // populated by this method, and provided back to isInductionPHI. This is
5435 // needed to allow the vectorizer to properly record them to be ignored by
5436 // the cost model and to avoid vectorizing them (otherwise these casts,
5437 // which are redundant under the runtime overflow checks, will be
5438 // vectorized, which can be costly).
5440 // 2) Support additional induction/PHISCEV patterns: We also want to support
5441 // inductions where the sext-trunc / zext-trunc operations (partly) occur
5442 // after the induction update operation (the induction increment):
5444 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
5445 // which correspond to a phi->add->trunc->sext/zext->phi update chain.
5447 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
5448 // which correspond to a phi->trunc->add->sext/zext->phi update chain.
5450 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
5451 std::optional
<std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>>>
5452 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown
*SymbolicPHI
) {
5453 SmallVector
<const SCEVPredicate
*, 3> Predicates
;
5455 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5456 // return an AddRec expression under some predicate.
5458 auto *PN
= cast
<PHINode
>(SymbolicPHI
->getValue());
5459 const Loop
*L
= isIntegerLoopHeaderPHI(PN
, LI
);
5460 assert(L
&& "Expecting an integer loop header phi");
5462 // The loop may have multiple entrances or multiple exits; we can analyze
5463 // this phi as an addrec if it has a unique entry value and a unique
5465 Value
*BEValueV
= nullptr, *StartValueV
= nullptr;
5466 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
5467 Value
*V
= PN
->getIncomingValue(i
);
5468 if (L
->contains(PN
->getIncomingBlock(i
))) {
5471 } else if (BEValueV
!= V
) {
5475 } else if (!StartValueV
) {
5477 } else if (StartValueV
!= V
) {
5478 StartValueV
= nullptr;
5482 if (!BEValueV
|| !StartValueV
)
5483 return std::nullopt
;
5485 const SCEV
*BEValue
= getSCEV(BEValueV
);
5487 // If the value coming around the backedge is an add with the symbolic
5488 // value we just inserted, possibly with casts that we can ignore under
5489 // an appropriate runtime guard, then we found a simple induction variable!
5490 const auto *Add
= dyn_cast
<SCEVAddExpr
>(BEValue
);
5492 return std::nullopt
;
5494 // If there is a single occurrence of the symbolic value, possibly
5495 // casted, replace it with a recurrence.
5496 unsigned FoundIndex
= Add
->getNumOperands();
5497 Type
*TruncTy
= nullptr;
5499 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
5501 isSimpleCastedPHI(Add
->getOperand(i
), SymbolicPHI
, Signed
, *this)))
5502 if (FoundIndex
== e
) {
5507 if (FoundIndex
== Add
->getNumOperands())
5508 return std::nullopt
;
5510 // Create an add with everything but the specified operand.
5511 SmallVector
<const SCEV
*, 8> Ops
;
5512 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
5513 if (i
!= FoundIndex
)
5514 Ops
.push_back(Add
->getOperand(i
));
5515 const SCEV
*Accum
= getAddExpr(Ops
);
5517 // The runtime checks will not be valid if the step amount is
5518 // varying inside the loop.
5519 if (!isLoopInvariant(Accum
, L
))
5520 return std::nullopt
;
5522 // *** Part2: Create the predicates
5524 // Analysis was successful: we have a phi-with-cast pattern for which we
5525 // can return an AddRec expression under the following predicates:
5527 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5528 // fits within the truncated type (does not overflow) for i = 0 to n-1.
5529 // P2: An Equal predicate that guarantees that
5530 // Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5531 // P3: An Equal predicate that guarantees that
5532 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5534 // As we next prove, the above predicates guarantee that:
5535 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5538 // More formally, we want to prove that:
5539 // Expr(i+1) = Start + (i+1) * Accum
5540 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5543 // 1) Expr(0) = Start
5544 // 2) Expr(1) = Start + Accum
5545 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5546 // 3) Induction hypothesis (step i):
5547 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5551 // = Start + (i+1)*Accum
5552 // = (Start + i*Accum) + Accum
5553 // = Expr(i) + Accum
5554 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5557 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5559 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5560 // + (Ext ix (Trunc iy (Accum) to ix) to iy)
5561 // + Accum :: from P3
5563 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5564 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5566 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5567 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5569 // By induction, the same applies to all iterations 1<=i<n:
5572 // Create a truncated addrec for which we will add a no overflow check (P1).
5573 const SCEV
*StartVal
= getSCEV(StartValueV
);
5574 const SCEV
*PHISCEV
=
5575 getAddRecExpr(getTruncateExpr(StartVal
, TruncTy
),
5576 getTruncateExpr(Accum
, TruncTy
), L
, SCEV::FlagAnyWrap
);
5578 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5579 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5580 // will be constant.
5582 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5584 if (const auto *AR
= dyn_cast
<SCEVAddRecExpr
>(PHISCEV
)) {
5585 SCEVWrapPredicate::IncrementWrapFlags AddedFlags
=
5586 Signed
? SCEVWrapPredicate::IncrementNSSW
5587 : SCEVWrapPredicate::IncrementNUSW
;
5588 const SCEVPredicate
*AddRecPred
= getWrapPredicate(AR
, AddedFlags
);
5589 Predicates
.push_back(AddRecPred
);
5592 // Create the Equal Predicates P2,P3:
5594 // It is possible that the predicates P2 and/or P3 are computable at
5595 // compile time due to StartVal and/or Accum being constants.
5596 // If either one is, then we can check that now and escape if either P2
5599 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5600 // for each of StartVal and Accum
5601 auto getExtendedExpr
= [&](const SCEV
*Expr
,
5602 bool CreateSignExtend
) -> const SCEV
* {
5603 assert(isLoopInvariant(Expr
, L
) && "Expr is expected to be invariant");
5604 const SCEV
*TruncatedExpr
= getTruncateExpr(Expr
, TruncTy
);
5605 const SCEV
*ExtendedExpr
=
5606 CreateSignExtend
? getSignExtendExpr(TruncatedExpr
, Expr
->getType())
5607 : getZeroExtendExpr(TruncatedExpr
, Expr
->getType());
5608 return ExtendedExpr
;
5612 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5613 // = getExtendedExpr(Expr)
5614 // Determine whether the predicate P: Expr == ExtendedExpr
5615 // is known to be false at compile time
5616 auto PredIsKnownFalse
= [&](const SCEV
*Expr
,
5617 const SCEV
*ExtendedExpr
) -> bool {
5618 return Expr
!= ExtendedExpr
&&
5619 isKnownPredicate(ICmpInst::ICMP_NE
, Expr
, ExtendedExpr
);
5622 const SCEV
*StartExtended
= getExtendedExpr(StartVal
, Signed
);
5623 if (PredIsKnownFalse(StartVal
, StartExtended
)) {
5624 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5625 return std::nullopt
;
5628 // The Step is always Signed (because the overflow checks are either
5630 const SCEV
*AccumExtended
= getExtendedExpr(Accum
, /*CreateSignExtend=*/true);
5631 if (PredIsKnownFalse(Accum
, AccumExtended
)) {
5632 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5633 return std::nullopt
;
5636 auto AppendPredicate
= [&](const SCEV
*Expr
,
5637 const SCEV
*ExtendedExpr
) -> void {
5638 if (Expr
!= ExtendedExpr
&&
5639 !isKnownPredicate(ICmpInst::ICMP_EQ
, Expr
, ExtendedExpr
)) {
5640 const SCEVPredicate
*Pred
= getEqualPredicate(Expr
, ExtendedExpr
);
5641 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred
);
5642 Predicates
.push_back(Pred
);
5646 AppendPredicate(StartVal
, StartExtended
);
5647 AppendPredicate(Accum
, AccumExtended
);
5649 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5650 // which the casts had been folded away. The caller can rewrite SymbolicPHI
5651 // into NewAR if it will also add the runtime overflow checks specified in
5653 auto *NewAR
= getAddRecExpr(StartVal
, Accum
, L
, SCEV::FlagAnyWrap
);
5655 std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>> PredRewrite
=
5656 std::make_pair(NewAR
, Predicates
);
5657 // Remember the result of the analysis for this SCEV at this locayyytion.
5658 PredicatedSCEVRewrites
[{SymbolicPHI
, L
}] = PredRewrite
;
5662 std::optional
<std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>>>
5663 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown
*SymbolicPHI
) {
5664 auto *PN
= cast
<PHINode
>(SymbolicPHI
->getValue());
5665 const Loop
*L
= isIntegerLoopHeaderPHI(PN
, LI
);
5667 return std::nullopt
;
5669 // Check to see if we already analyzed this PHI.
5670 auto I
= PredicatedSCEVRewrites
.find({SymbolicPHI
, L
});
5671 if (I
!= PredicatedSCEVRewrites
.end()) {
5672 std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>> Rewrite
=
5674 // Analysis was done before and failed to create an AddRec:
5675 if (Rewrite
.first
== SymbolicPHI
)
5676 return std::nullopt
;
5677 // Analysis was done before and succeeded to create an AddRec under
5679 assert(isa
<SCEVAddRecExpr
>(Rewrite
.first
) && "Expected an AddRec");
5680 assert(!(Rewrite
.second
).empty() && "Expected to find Predicates");
5684 std::optional
<std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>>>
5685 Rewrite
= createAddRecFromPHIWithCastsImpl(SymbolicPHI
);
5687 // Record in the cache that the analysis failed
5689 SmallVector
<const SCEVPredicate
*, 3> Predicates
;
5690 PredicatedSCEVRewrites
[{SymbolicPHI
, L
}] = {SymbolicPHI
, Predicates
};
5691 return std::nullopt
;
5697 // FIXME: This utility is currently required because the Rewriter currently
5698 // does not rewrite this expression:
5699 // {0, +, (sext ix (trunc iy to ix) to iy)}
5700 // into {0, +, %step},
5701 // even when the following Equal predicate exists:
5702 // "%step == (sext ix (trunc iy to ix) to iy)".
5703 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5704 const SCEVAddRecExpr
*AR1
, const SCEVAddRecExpr
*AR2
) const {
5708 auto areExprsEqual
= [&](const SCEV
*Expr1
, const SCEV
*Expr2
) -> bool {
5709 if (Expr1
!= Expr2
&&
5710 !Preds
->implies(SE
.getEqualPredicate(Expr1
, Expr2
), SE
) &&
5711 !Preds
->implies(SE
.getEqualPredicate(Expr2
, Expr1
), SE
))
5716 if (!areExprsEqual(AR1
->getStart(), AR2
->getStart()) ||
5717 !areExprsEqual(AR1
->getStepRecurrence(SE
), AR2
->getStepRecurrence(SE
)))
5722 /// A helper function for createAddRecFromPHI to handle simple cases.
5724 /// This function tries to find an AddRec expression for the simplest (yet most
5725 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5726 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5727 /// technique for finding the AddRec expression.
5728 const SCEV
*ScalarEvolution::createSimpleAffineAddRec(PHINode
*PN
,
5730 Value
*StartValueV
) {
5731 const Loop
*L
= LI
.getLoopFor(PN
->getParent());
5732 assert(L
&& L
->getHeader() == PN
->getParent());
5733 assert(BEValueV
&& StartValueV
);
5735 auto BO
= MatchBinaryOp(BEValueV
, getDataLayout(), AC
, DT
, PN
);
5739 if (BO
->Opcode
!= Instruction::Add
)
5742 const SCEV
*Accum
= nullptr;
5743 if (BO
->LHS
== PN
&& L
->isLoopInvariant(BO
->RHS
))
5744 Accum
= getSCEV(BO
->RHS
);
5745 else if (BO
->RHS
== PN
&& L
->isLoopInvariant(BO
->LHS
))
5746 Accum
= getSCEV(BO
->LHS
);
5751 SCEV::NoWrapFlags Flags
= SCEV::FlagAnyWrap
;
5753 Flags
= setFlags(Flags
, SCEV::FlagNUW
);
5755 Flags
= setFlags(Flags
, SCEV::FlagNSW
);
5757 const SCEV
*StartVal
= getSCEV(StartValueV
);
5758 const SCEV
*PHISCEV
= getAddRecExpr(StartVal
, Accum
, L
, Flags
);
5759 insertValueToMap(PN
, PHISCEV
);
5761 if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(PHISCEV
)) {
5762 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
),
5763 (SCEV::NoWrapFlags
)(AR
->getNoWrapFlags() |
5764 proveNoWrapViaConstantRanges(AR
)));
5767 // We can add Flags to the post-inc expression only if we
5768 // know that it is *undefined behavior* for BEValueV to
5770 if (auto *BEInst
= dyn_cast
<Instruction
>(BEValueV
)) {
5771 assert(isLoopInvariant(Accum
, L
) &&
5772 "Accum is defined outside L, but is not invariant?");
5773 if (isAddRecNeverPoison(BEInst
, L
))
5774 (void)getAddRecExpr(getAddExpr(StartVal
, Accum
), Accum
, L
, Flags
);
5780 const SCEV
*ScalarEvolution::createAddRecFromPHI(PHINode
*PN
) {
5781 const Loop
*L
= LI
.getLoopFor(PN
->getParent());
5782 if (!L
|| L
->getHeader() != PN
->getParent())
5785 // The loop may have multiple entrances or multiple exits; we can analyze
5786 // this phi as an addrec if it has a unique entry value and a unique
5788 Value
*BEValueV
= nullptr, *StartValueV
= nullptr;
5789 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
5790 Value
*V
= PN
->getIncomingValue(i
);
5791 if (L
->contains(PN
->getIncomingBlock(i
))) {
5794 } else if (BEValueV
!= V
) {
5798 } else if (!StartValueV
) {
5800 } else if (StartValueV
!= V
) {
5801 StartValueV
= nullptr;
5805 if (!BEValueV
|| !StartValueV
)
5808 assert(ValueExprMap
.find_as(PN
) == ValueExprMap
.end() &&
5809 "PHI node already processed?");
5811 // First, try to find AddRec expression without creating a fictituos symbolic
5813 if (auto *S
= createSimpleAffineAddRec(PN
, BEValueV
, StartValueV
))
5816 // Handle PHI node value symbolically.
5817 const SCEV
*SymbolicName
= getUnknown(PN
);
5818 insertValueToMap(PN
, SymbolicName
);
5820 // Using this symbolic name for the PHI, analyze the value coming around
5822 const SCEV
*BEValue
= getSCEV(BEValueV
);
5824 // NOTE: If BEValue is loop invariant, we know that the PHI node just
5825 // has a special value for the first iteration of the loop.
5827 // If the value coming around the backedge is an add with the symbolic
5828 // value we just inserted, then we found a simple induction variable!
5829 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(BEValue
)) {
5830 // If there is a single occurrence of the symbolic value, replace it
5831 // with a recurrence.
5832 unsigned FoundIndex
= Add
->getNumOperands();
5833 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
5834 if (Add
->getOperand(i
) == SymbolicName
)
5835 if (FoundIndex
== e
) {
5840 if (FoundIndex
!= Add
->getNumOperands()) {
5841 // Create an add with everything but the specified operand.
5842 SmallVector
<const SCEV
*, 8> Ops
;
5843 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
5844 if (i
!= FoundIndex
)
5845 Ops
.push_back(SCEVBackedgeConditionFolder::rewrite(Add
->getOperand(i
),
5847 const SCEV
*Accum
= getAddExpr(Ops
);
5849 // This is not a valid addrec if the step amount is varying each
5850 // loop iteration, but is not itself an addrec in this loop.
5851 if (isLoopInvariant(Accum
, L
) ||
5852 (isa
<SCEVAddRecExpr
>(Accum
) &&
5853 cast
<SCEVAddRecExpr
>(Accum
)->getLoop() == L
)) {
5854 SCEV::NoWrapFlags Flags
= SCEV::FlagAnyWrap
;
5856 if (auto BO
= MatchBinaryOp(BEValueV
, getDataLayout(), AC
, DT
, PN
)) {
5857 if (BO
->Opcode
== Instruction::Add
&& BO
->LHS
== PN
) {
5859 Flags
= setFlags(Flags
, SCEV::FlagNUW
);
5861 Flags
= setFlags(Flags
, SCEV::FlagNSW
);
5863 } else if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(BEValueV
)) {
5864 if (GEP
->getOperand(0) == PN
) {
5865 GEPNoWrapFlags NW
= GEP
->getNoWrapFlags();
5866 // If the increment has any nowrap flags, then we know the address
5867 // space cannot be wrapped around.
5868 if (NW
!= GEPNoWrapFlags::none())
5869 Flags
= setFlags(Flags
, SCEV::FlagNW
);
5870 // If the GEP is nuw or nusw with non-negative offset, we know that
5871 // no unsigned wrap occurs. We cannot set the nsw flag as only the
5872 // offset is treated as signed, while the base is unsigned.
5873 if (NW
.hasNoUnsignedWrap() ||
5874 (NW
.hasNoUnsignedSignedWrap() && isKnownNonNegative(Accum
)))
5875 Flags
= setFlags(Flags
, SCEV::FlagNUW
);
5878 // We cannot transfer nuw and nsw flags from subtraction
5879 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5883 const SCEV
*StartVal
= getSCEV(StartValueV
);
5884 const SCEV
*PHISCEV
= getAddRecExpr(StartVal
, Accum
, L
, Flags
);
5886 // Okay, for the entire analysis of this edge we assumed the PHI
5887 // to be symbolic. We now need to go back and purge all of the
5888 // entries for the scalars that use the symbolic expression.
5889 forgetMemoizedResults(SymbolicName
);
5890 insertValueToMap(PN
, PHISCEV
);
5892 if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(PHISCEV
)) {
5893 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
),
5894 (SCEV::NoWrapFlags
)(AR
->getNoWrapFlags() |
5895 proveNoWrapViaConstantRanges(AR
)));
5898 // We can add Flags to the post-inc expression only if we
5899 // know that it is *undefined behavior* for BEValueV to
5901 if (auto *BEInst
= dyn_cast
<Instruction
>(BEValueV
))
5902 if (isLoopInvariant(Accum
, L
) && isAddRecNeverPoison(BEInst
, L
))
5903 (void)getAddRecExpr(getAddExpr(StartVal
, Accum
), Accum
, L
, Flags
);
5909 // Otherwise, this could be a loop like this:
5910 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
5911 // In this case, j = {1,+,1} and BEValue is j.
5912 // Because the other in-value of i (0) fits the evolution of BEValue
5913 // i really is an addrec evolution.
5915 // We can generalize this saying that i is the shifted value of BEValue
5916 // by one iteration:
5917 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
5919 // Do not allow refinement in rewriting of BEValue.
5920 const SCEV
*Shifted
= SCEVShiftRewriter::rewrite(BEValue
, L
, *this);
5921 const SCEV
*Start
= SCEVInitRewriter::rewrite(Shifted
, L
, *this, false);
5922 if (Shifted
!= getCouldNotCompute() && Start
!= getCouldNotCompute() &&
5923 isGuaranteedNotToCauseUB(Shifted
) && ::impliesPoison(Shifted
, Start
)) {
5924 const SCEV
*StartVal
= getSCEV(StartValueV
);
5925 if (Start
== StartVal
) {
5926 // Okay, for the entire analysis of this edge we assumed the PHI
5927 // to be symbolic. We now need to go back and purge all of the
5928 // entries for the scalars that use the symbolic expression.
5929 forgetMemoizedResults(SymbolicName
);
5930 insertValueToMap(PN
, Shifted
);
5936 // Remove the temporary PHI node SCEV that has been inserted while intending
5937 // to create an AddRecExpr for this PHI node. We can not keep this temporary
5938 // as it will prevent later (possibly simpler) SCEV expressions to be added
5939 // to the ValueExprMap.
5940 eraseValueFromMap(PN
);
5945 // Try to match a control flow sequence that branches out at BI and merges back
5946 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
5948 static bool BrPHIToSelect(DominatorTree
&DT
, BranchInst
*BI
, PHINode
*Merge
,
5949 Value
*&C
, Value
*&LHS
, Value
*&RHS
) {
5950 C
= BI
->getCondition();
5952 BasicBlockEdge
LeftEdge(BI
->getParent(), BI
->getSuccessor(0));
5953 BasicBlockEdge
RightEdge(BI
->getParent(), BI
->getSuccessor(1));
5955 if (!LeftEdge
.isSingleEdge())
5958 assert(RightEdge
.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5960 Use
&LeftUse
= Merge
->getOperandUse(0);
5961 Use
&RightUse
= Merge
->getOperandUse(1);
5963 if (DT
.dominates(LeftEdge
, LeftUse
) && DT
.dominates(RightEdge
, RightUse
)) {
5969 if (DT
.dominates(LeftEdge
, RightUse
) && DT
.dominates(RightEdge
, LeftUse
)) {
5978 const SCEV
*ScalarEvolution::createNodeFromSelectLikePHI(PHINode
*PN
) {
5980 [&](BasicBlock
*BB
) { return DT
.isReachableFromEntry(BB
); };
5981 if (PN
->getNumIncomingValues() == 2 && all_of(PN
->blocks(), IsReachable
)) {
5984 // br %cond, label %left, label %right
5990 // V = phi [ %x, %left ], [ %y, %right ]
5992 // as "select %cond, %x, %y"
5994 BasicBlock
*IDom
= DT
[PN
->getParent()]->getIDom()->getBlock();
5995 assert(IDom
&& "At least the entry block should dominate PN");
5997 auto *BI
= dyn_cast
<BranchInst
>(IDom
->getTerminator());
5998 Value
*Cond
= nullptr, *LHS
= nullptr, *RHS
= nullptr;
6000 if (BI
&& BI
->isConditional() &&
6001 BrPHIToSelect(DT
, BI
, PN
, Cond
, LHS
, RHS
) &&
6002 properlyDominates(getSCEV(LHS
), PN
->getParent()) &&
6003 properlyDominates(getSCEV(RHS
), PN
->getParent()))
6004 return createNodeForSelectOrPHI(PN
, Cond
, LHS
, RHS
);
6010 /// Returns SCEV for the first operand of a phi if all phi operands have
6011 /// identical opcodes and operands
6013 /// a: %add = %a + %b
6015 /// b: %add1 = %a + %b
6017 /// c: %phi = phi [%add, a], [%add1, b]
6018 /// scev(%phi) => scev(%add)
6020 ScalarEvolution::createNodeForPHIWithIdenticalOperands(PHINode
*PN
) {
6021 BinaryOperator
*CommonInst
= nullptr;
6022 // Check if instructions are identical.
6023 for (Value
*Incoming
: PN
->incoming_values()) {
6024 auto *IncomingInst
= dyn_cast
<BinaryOperator
>(Incoming
);
6028 if (!CommonInst
->isIdenticalToWhenDefined(IncomingInst
))
6029 return nullptr; // Not identical, give up
6031 // Remember binary operator
6032 CommonInst
= IncomingInst
;
6038 // Check if SCEV exprs for instructions are identical.
6039 const SCEV
*CommonSCEV
= getSCEV(CommonInst
);
6040 bool SCEVExprsIdentical
=
6041 all_of(drop_begin(PN
->incoming_values()),
6042 [this, CommonSCEV
](Value
*V
) { return CommonSCEV
== getSCEV(V
); });
6043 return SCEVExprsIdentical
? CommonSCEV
: nullptr;
6046 const SCEV
*ScalarEvolution::createNodeForPHI(PHINode
*PN
) {
6047 if (const SCEV
*S
= createAddRecFromPHI(PN
))
6050 // We do not allow simplifying phi (undef, X) to X here, to avoid reusing the
6052 if (Value
*V
= simplifyInstruction(
6053 PN
, {getDataLayout(), &TLI
, &DT
, &AC
, /*CtxI=*/nullptr,
6054 /*UseInstrInfo=*/true, /*CanUseUndef=*/false}))
6057 if (const SCEV
*S
= createNodeForPHIWithIdenticalOperands(PN
))
6060 if (const SCEV
*S
= createNodeFromSelectLikePHI(PN
))
6063 // If it's not a loop phi, we can't handle it yet.
6064 return getUnknown(PN
);
6067 bool SCEVMinMaxExprContains(const SCEV
*Root
, const SCEV
*OperandToFind
,
6068 SCEVTypes RootKind
) {
6069 struct FindClosure
{
6070 const SCEV
*OperandToFind
;
6071 const SCEVTypes RootKind
; // Must be a sequential min/max expression.
6072 const SCEVTypes NonSequentialRootKind
; // Non-seq variant of RootKind.
6076 bool canRecurseInto(SCEVTypes Kind
) const {
6077 // We can only recurse into the SCEV expression of the same effective type
6078 // as the type of our root SCEV expression, and into zero-extensions.
6079 return RootKind
== Kind
|| NonSequentialRootKind
== Kind
||
6080 scZeroExtend
== Kind
;
6083 FindClosure(const SCEV
*OperandToFind
, SCEVTypes RootKind
)
6084 : OperandToFind(OperandToFind
), RootKind(RootKind
),
6085 NonSequentialRootKind(
6086 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
6089 bool follow(const SCEV
*S
) {
6090 Found
= S
== OperandToFind
;
6092 return !isDone() && canRecurseInto(S
->getSCEVType());
6095 bool isDone() const { return Found
; }
6098 FindClosure
FC(OperandToFind
, RootKind
);
6103 std::optional
<const SCEV
*>
6104 ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(Type
*Ty
,
6108 // Try to match some simple smax or umax patterns.
6111 Value
*LHS
= ICI
->getOperand(0);
6112 Value
*RHS
= ICI
->getOperand(1);
6114 switch (ICI
->getPredicate()) {
6115 case ICmpInst::ICMP_SLT
:
6116 case ICmpInst::ICMP_SLE
:
6117 case ICmpInst::ICMP_ULT
:
6118 case ICmpInst::ICMP_ULE
:
6119 std::swap(LHS
, RHS
);
6121 case ICmpInst::ICMP_SGT
:
6122 case ICmpInst::ICMP_SGE
:
6123 case ICmpInst::ICMP_UGT
:
6124 case ICmpInst::ICMP_UGE
:
6125 // a > b ? a+x : b+x -> max(a, b)+x
6126 // a > b ? b+x : a+x -> min(a, b)+x
6127 if (getTypeSizeInBits(LHS
->getType()) <= getTypeSizeInBits(Ty
)) {
6128 bool Signed
= ICI
->isSigned();
6129 const SCEV
*LA
= getSCEV(TrueVal
);
6130 const SCEV
*RA
= getSCEV(FalseVal
);
6131 const SCEV
*LS
= getSCEV(LHS
);
6132 const SCEV
*RS
= getSCEV(RHS
);
6133 if (LA
->getType()->isPointerTy()) {
6134 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
6135 // Need to make sure we can't produce weird expressions involving
6136 // negated pointers.
6137 if (LA
== LS
&& RA
== RS
)
6138 return Signed
? getSMaxExpr(LS
, RS
) : getUMaxExpr(LS
, RS
);
6139 if (LA
== RS
&& RA
== LS
)
6140 return Signed
? getSMinExpr(LS
, RS
) : getUMinExpr(LS
, RS
);
6142 auto CoerceOperand
= [&](const SCEV
*Op
) -> const SCEV
* {
6143 if (Op
->getType()->isPointerTy()) {
6144 Op
= getLosslessPtrToIntExpr(Op
);
6145 if (isa
<SCEVCouldNotCompute
>(Op
))
6149 Op
= getNoopOrSignExtend(Op
, Ty
);
6151 Op
= getNoopOrZeroExtend(Op
, Ty
);
6154 LS
= CoerceOperand(LS
);
6155 RS
= CoerceOperand(RS
);
6156 if (isa
<SCEVCouldNotCompute
>(LS
) || isa
<SCEVCouldNotCompute
>(RS
))
6158 const SCEV
*LDiff
= getMinusSCEV(LA
, LS
);
6159 const SCEV
*RDiff
= getMinusSCEV(RA
, RS
);
6161 return getAddExpr(Signed
? getSMaxExpr(LS
, RS
) : getUMaxExpr(LS
, RS
),
6163 LDiff
= getMinusSCEV(LA
, RS
);
6164 RDiff
= getMinusSCEV(RA
, LS
);
6166 return getAddExpr(Signed
? getSMinExpr(LS
, RS
) : getUMinExpr(LS
, RS
),
6170 case ICmpInst::ICMP_NE
:
6171 // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y
6172 std::swap(TrueVal
, FalseVal
);
6174 case ICmpInst::ICMP_EQ
:
6175 // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1
6176 if (getTypeSizeInBits(LHS
->getType()) <= getTypeSizeInBits(Ty
) &&
6177 isa
<ConstantInt
>(RHS
) && cast
<ConstantInt
>(RHS
)->isZero()) {
6178 const SCEV
*X
= getNoopOrZeroExtend(getSCEV(LHS
), Ty
);
6179 const SCEV
*TrueValExpr
= getSCEV(TrueVal
); // C+y
6180 const SCEV
*FalseValExpr
= getSCEV(FalseVal
); // x+y
6181 const SCEV
*Y
= getMinusSCEV(FalseValExpr
, X
); // y = (x+y)-x
6182 const SCEV
*C
= getMinusSCEV(TrueValExpr
, Y
); // C = (C+y)-y
6183 if (isa
<SCEVConstant
>(C
) && cast
<SCEVConstant
>(C
)->getAPInt().ule(1))
6184 return getAddExpr(getUMaxExpr(X
, C
), Y
);
6186 // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...))
6187 // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...))
6188 // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...)
6189 // -> umin_seq(x, umin (..., umin_seq(...), ...))
6190 if (isa
<ConstantInt
>(RHS
) && cast
<ConstantInt
>(RHS
)->isZero() &&
6191 isa
<ConstantInt
>(TrueVal
) && cast
<ConstantInt
>(TrueVal
)->isZero()) {
6192 const SCEV
*X
= getSCEV(LHS
);
6193 while (auto *ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(X
))
6194 X
= ZExt
->getOperand();
6195 if (getTypeSizeInBits(X
->getType()) <= getTypeSizeInBits(Ty
)) {
6196 const SCEV
*FalseValExpr
= getSCEV(FalseVal
);
6197 if (SCEVMinMaxExprContains(FalseValExpr
, X
, scSequentialUMinExpr
))
6198 return getUMinExpr(getNoopOrZeroExtend(X
, Ty
), FalseValExpr
,
6199 /*Sequential=*/true);
6207 return std::nullopt
;
6210 static std::optional
<const SCEV
*>
6211 createNodeForSelectViaUMinSeq(ScalarEvolution
*SE
, const SCEV
*CondExpr
,
6212 const SCEV
*TrueExpr
, const SCEV
*FalseExpr
) {
6213 assert(CondExpr
->getType()->isIntegerTy(1) &&
6214 TrueExpr
->getType() == FalseExpr
->getType() &&
6215 TrueExpr
->getType()->isIntegerTy(1) &&
6216 "Unexpected operands of a select.");
6218 // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0)
6219 // --> C + (umin_seq cond, x - C)
6221 // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C))
6222 // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0)
6223 // --> C + (umin_seq ~cond, x - C)
6225 // FIXME: while we can't legally model the case where both of the hands
6226 // are fully variable, we only require that the *difference* is constant.
6227 if (!isa
<SCEVConstant
>(TrueExpr
) && !isa
<SCEVConstant
>(FalseExpr
))
6228 return std::nullopt
;
6231 if (isa
<SCEVConstant
>(TrueExpr
)) {
6232 CondExpr
= SE
->getNotSCEV(CondExpr
);
6239 return SE
->getAddExpr(C
, SE
->getUMinExpr(CondExpr
, SE
->getMinusSCEV(X
, C
),
6240 /*Sequential=*/true));
6243 static std::optional
<const SCEV
*>
6244 createNodeForSelectViaUMinSeq(ScalarEvolution
*SE
, Value
*Cond
, Value
*TrueVal
,
6246 if (!isa
<ConstantInt
>(TrueVal
) && !isa
<ConstantInt
>(FalseVal
))
6247 return std::nullopt
;
6249 const auto *SECond
= SE
->getSCEV(Cond
);
6250 const auto *SETrue
= SE
->getSCEV(TrueVal
);
6251 const auto *SEFalse
= SE
->getSCEV(FalseVal
);
6252 return createNodeForSelectViaUMinSeq(SE
, SECond
, SETrue
, SEFalse
);
6255 const SCEV
*ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq(
6256 Value
*V
, Value
*Cond
, Value
*TrueVal
, Value
*FalseVal
) {
6257 assert(Cond
->getType()->isIntegerTy(1) && "Select condition is not an i1?");
6258 assert(TrueVal
->getType() == FalseVal
->getType() &&
6259 V
->getType() == TrueVal
->getType() &&
6260 "Types of select hands and of the result must match.");
6262 // For now, only deal with i1-typed `select`s.
6263 if (!V
->getType()->isIntegerTy(1))
6264 return getUnknown(V
);
6266 if (std::optional
<const SCEV
*> S
=
6267 createNodeForSelectViaUMinSeq(this, Cond
, TrueVal
, FalseVal
))
6270 return getUnknown(V
);
6273 const SCEV
*ScalarEvolution::createNodeForSelectOrPHI(Value
*V
, Value
*Cond
,
6276 // Handle "constant" branch or select. This can occur for instance when a
6277 // loop pass transforms an inner loop and moves on to process the outer loop.
6278 if (auto *CI
= dyn_cast
<ConstantInt
>(Cond
))
6279 return getSCEV(CI
->isOne() ? TrueVal
: FalseVal
);
6281 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
6282 if (auto *ICI
= dyn_cast
<ICmpInst
>(Cond
)) {
6283 if (std::optional
<const SCEV
*> S
=
6284 createNodeForSelectOrPHIInstWithICmpInstCond(I
->getType(), ICI
,
6290 return createNodeForSelectOrPHIViaUMinSeq(V
, Cond
, TrueVal
, FalseVal
);
6293 /// Expand GEP instructions into add and multiply operations. This allows them
6294 /// to be analyzed by regular SCEV code.
6295 const SCEV
*ScalarEvolution::createNodeForGEP(GEPOperator
*GEP
) {
6296 assert(GEP
->getSourceElementType()->isSized() &&
6297 "GEP source element type must be sized");
6299 SmallVector
<const SCEV
*, 4> IndexExprs
;
6300 for (Value
*Index
: GEP
->indices())
6301 IndexExprs
.push_back(getSCEV(Index
));
6302 return getGEPExpr(GEP
, IndexExprs
);
6305 APInt
ScalarEvolution::getConstantMultipleImpl(const SCEV
*S
) {
6306 uint64_t BitWidth
= getTypeSizeInBits(S
->getType());
6307 auto GetShiftedByZeros
= [BitWidth
](uint32_t TrailingZeros
) {
6308 return TrailingZeros
>= BitWidth
6309 ? APInt::getZero(BitWidth
)
6310 : APInt::getOneBitSet(BitWidth
, TrailingZeros
);
6312 auto GetGCDMultiple
= [this](const SCEVNAryExpr
*N
) {
6313 // The result is GCD of all operands results.
6314 APInt Res
= getConstantMultiple(N
->getOperand(0));
6315 for (unsigned I
= 1, E
= N
->getNumOperands(); I
< E
&& Res
!= 1; ++I
)
6316 Res
= APIntOps::GreatestCommonDivisor(
6317 Res
, getConstantMultiple(N
->getOperand(I
)));
6321 switch (S
->getSCEVType()) {
6323 return cast
<SCEVConstant
>(S
)->getAPInt();
6325 return getConstantMultiple(cast
<SCEVPtrToIntExpr
>(S
)->getOperand());
6328 return APInt(BitWidth
, 1);
6330 // Only multiples that are a power of 2 will hold after truncation.
6331 const SCEVTruncateExpr
*T
= cast
<SCEVTruncateExpr
>(S
);
6332 uint32_t TZ
= getMinTrailingZeros(T
->getOperand());
6333 return GetShiftedByZeros(TZ
);
6335 case scZeroExtend
: {
6336 const SCEVZeroExtendExpr
*Z
= cast
<SCEVZeroExtendExpr
>(S
);
6337 return getConstantMultiple(Z
->getOperand()).zext(BitWidth
);
6339 case scSignExtend
: {
6340 // Only multiples that are a power of 2 will hold after sext.
6341 const SCEVSignExtendExpr
*E
= cast
<SCEVSignExtendExpr
>(S
);
6342 uint32_t TZ
= getMinTrailingZeros(E
->getOperand());
6343 return GetShiftedByZeros(TZ
);
6346 const SCEVMulExpr
*M
= cast
<SCEVMulExpr
>(S
);
6347 if (M
->hasNoUnsignedWrap()) {
6348 // The result is the product of all operand results.
6349 APInt Res
= getConstantMultiple(M
->getOperand(0));
6350 for (const SCEV
*Operand
: M
->operands().drop_front())
6351 Res
= Res
* getConstantMultiple(Operand
);
6355 // If there are no wrap guarentees, find the trailing zeros, which is the
6356 // sum of trailing zeros for all its operands.
6358 for (const SCEV
*Operand
: M
->operands())
6359 TZ
+= getMinTrailingZeros(Operand
);
6360 return GetShiftedByZeros(TZ
);
6363 case scAddRecExpr
: {
6364 const SCEVNAryExpr
*N
= cast
<SCEVNAryExpr
>(S
);
6365 if (N
->hasNoUnsignedWrap())
6366 return GetGCDMultiple(N
);
6367 // Find the trailing bits, which is the minimum of its operands.
6368 uint32_t TZ
= getMinTrailingZeros(N
->getOperand(0));
6369 for (const SCEV
*Operand
: N
->operands().drop_front())
6370 TZ
= std::min(TZ
, getMinTrailingZeros(Operand
));
6371 return GetShiftedByZeros(TZ
);
6377 case scSequentialUMinExpr
:
6378 return GetGCDMultiple(cast
<SCEVNAryExpr
>(S
));
6380 // ask ValueTracking for known bits
6381 const SCEVUnknown
*U
= cast
<SCEVUnknown
>(S
);
6383 computeKnownBits(U
->getValue(), getDataLayout(), 0, &AC
, nullptr, &DT
)
6384 .countMinTrailingZeros();
6385 return GetShiftedByZeros(Known
);
6387 case scCouldNotCompute
:
6388 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6390 llvm_unreachable("Unknown SCEV kind!");
6393 APInt
ScalarEvolution::getConstantMultiple(const SCEV
*S
) {
6394 auto I
= ConstantMultipleCache
.find(S
);
6395 if (I
!= ConstantMultipleCache
.end())
6398 APInt Result
= getConstantMultipleImpl(S
);
6399 auto InsertPair
= ConstantMultipleCache
.insert({S
, Result
});
6400 assert(InsertPair
.second
&& "Should insert a new key");
6401 return InsertPair
.first
->second
;
6404 APInt
ScalarEvolution::getNonZeroConstantMultiple(const SCEV
*S
) {
6405 APInt Multiple
= getConstantMultiple(S
);
6406 return Multiple
== 0 ? APInt(Multiple
.getBitWidth(), 1) : Multiple
;
6409 uint32_t ScalarEvolution::getMinTrailingZeros(const SCEV
*S
) {
6410 return std::min(getConstantMultiple(S
).countTrailingZeros(),
6411 (unsigned)getTypeSizeInBits(S
->getType()));
6414 /// Helper method to assign a range to V from metadata present in the IR.
6415 static std::optional
<ConstantRange
> GetRangeFromMetadata(Value
*V
) {
6416 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
6417 if (MDNode
*MD
= I
->getMetadata(LLVMContext::MD_range
))
6418 return getConstantRangeFromMetadata(*MD
);
6419 if (const auto *CB
= dyn_cast
<CallBase
>(V
))
6420 if (std::optional
<ConstantRange
> Range
= CB
->getRange())
6423 if (auto *A
= dyn_cast
<Argument
>(V
))
6424 if (std::optional
<ConstantRange
> Range
= A
->getRange())
6427 return std::nullopt
;
6430 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr
*AddRec
,
6431 SCEV::NoWrapFlags Flags
) {
6432 if (AddRec
->getNoWrapFlags(Flags
) != Flags
) {
6433 AddRec
->setNoWrapFlags(Flags
);
6434 UnsignedRanges
.erase(AddRec
);
6435 SignedRanges
.erase(AddRec
);
6436 ConstantMultipleCache
.erase(AddRec
);
6440 ConstantRange
ScalarEvolution::
6441 getRangeForUnknownRecurrence(const SCEVUnknown
*U
) {
6442 const DataLayout
&DL
= getDataLayout();
6444 unsigned BitWidth
= getTypeSizeInBits(U
->getType());
6445 const ConstantRange
FullSet(BitWidth
, /*isFullSet=*/true);
6447 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
6448 // use information about the trip count to improve our available range. Note
6449 // that the trip count independent cases are already handled by known bits.
6450 // WARNING: The definition of recurrence used here is subtly different than
6451 // the one used by AddRec (and thus most of this file). Step is allowed to
6452 // be arbitrarily loop varying here, where AddRec allows only loop invariant
6453 // and other addrecs in the same loop (for non-affine addrecs). The code
6454 // below intentionally handles the case where step is not loop invariant.
6455 auto *P
= dyn_cast
<PHINode
>(U
->getValue());
6459 // Make sure that no Phi input comes from an unreachable block. Otherwise,
6460 // even the values that are not available in these blocks may come from them,
6461 // and this leads to false-positive recurrence test.
6462 for (auto *Pred
: predecessors(P
->getParent()))
6463 if (!DT
.isReachableFromEntry(Pred
))
6467 Value
*Start
, *Step
;
6468 if (!matchSimpleRecurrence(P
, BO
, Start
, Step
))
6471 // If we found a recurrence in reachable code, we must be in a loop. Note
6472 // that BO might be in some subloop of L, and that's completely okay.
6473 auto *L
= LI
.getLoopFor(P
->getParent());
6474 assert(L
&& L
->getHeader() == P
->getParent());
6475 if (!L
->contains(BO
->getParent()))
6476 // NOTE: This bailout should be an assert instead. However, asserting
6477 // the condition here exposes a case where LoopFusion is querying SCEV
6478 // with malformed loop information during the midst of the transform.
6479 // There doesn't appear to be an obvious fix, so for the moment bailout
6480 // until the caller issue can be fixed. PR49566 tracks the bug.
6483 // TODO: Extend to other opcodes such as mul, and div
6484 switch (BO
->getOpcode()) {
6487 case Instruction::AShr
:
6488 case Instruction::LShr
:
6489 case Instruction::Shl
:
6493 if (BO
->getOperand(0) != P
)
6494 // TODO: Handle the power function forms some day.
6497 unsigned TC
= getSmallConstantMaxTripCount(L
);
6498 if (!TC
|| TC
>= BitWidth
)
6501 auto KnownStart
= computeKnownBits(Start
, DL
, 0, &AC
, nullptr, &DT
);
6502 auto KnownStep
= computeKnownBits(Step
, DL
, 0, &AC
, nullptr, &DT
);
6503 assert(KnownStart
.getBitWidth() == BitWidth
&&
6504 KnownStep
.getBitWidth() == BitWidth
);
6506 // Compute total shift amount, being careful of overflow and bitwidths.
6507 auto MaxShiftAmt
= KnownStep
.getMaxValue();
6508 APInt
TCAP(BitWidth
, TC
-1);
6509 bool Overflow
= false;
6510 auto TotalShift
= MaxShiftAmt
.umul_ov(TCAP
, Overflow
);
6514 switch (BO
->getOpcode()) {
6516 llvm_unreachable("filtered out above");
6517 case Instruction::AShr
: {
6518 // For each ashr, three cases:
6519 // shift = 0 => unchanged value
6520 // saturation => 0 or -1
6521 // other => a value closer to zero (of the same sign)
6522 // Thus, the end value is closer to zero than the start.
6523 auto KnownEnd
= KnownBits::ashr(KnownStart
,
6524 KnownBits::makeConstant(TotalShift
));
6525 if (KnownStart
.isNonNegative())
6526 // Analogous to lshr (simply not yet canonicalized)
6527 return ConstantRange::getNonEmpty(KnownEnd
.getMinValue(),
6528 KnownStart
.getMaxValue() + 1);
6529 if (KnownStart
.isNegative())
6530 // End >=u Start && End <=s Start
6531 return ConstantRange::getNonEmpty(KnownStart
.getMinValue(),
6532 KnownEnd
.getMaxValue() + 1);
6535 case Instruction::LShr
: {
6536 // For each lshr, three cases:
6537 // shift = 0 => unchanged value
6539 // other => a smaller positive number
6540 // Thus, the low end of the unsigned range is the last value produced.
6541 auto KnownEnd
= KnownBits::lshr(KnownStart
,
6542 KnownBits::makeConstant(TotalShift
));
6543 return ConstantRange::getNonEmpty(KnownEnd
.getMinValue(),
6544 KnownStart
.getMaxValue() + 1);
6546 case Instruction::Shl
: {
6547 // Iff no bits are shifted out, value increases on every shift.
6548 auto KnownEnd
= KnownBits::shl(KnownStart
,
6549 KnownBits::makeConstant(TotalShift
));
6550 if (TotalShift
.ult(KnownStart
.countMinLeadingZeros()))
6551 return ConstantRange(KnownStart
.getMinValue(),
6552 KnownEnd
.getMaxValue() + 1);
6559 const ConstantRange
&
6560 ScalarEvolution::getRangeRefIter(const SCEV
*S
,
6561 ScalarEvolution::RangeSignHint SignHint
) {
6562 DenseMap
<const SCEV
*, ConstantRange
> &Cache
=
6563 SignHint
== ScalarEvolution::HINT_RANGE_UNSIGNED
? UnsignedRanges
6565 SmallVector
<const SCEV
*> WorkList
;
6566 SmallPtrSet
<const SCEV
*, 8> Seen
;
6568 // Add Expr to the worklist, if Expr is either an N-ary expression or a
6569 // SCEVUnknown PHI node.
6570 auto AddToWorklist
= [&WorkList
, &Seen
, &Cache
](const SCEV
*Expr
) {
6571 if (!Seen
.insert(Expr
).second
)
6573 if (Cache
.contains(Expr
))
6575 switch (Expr
->getSCEVType()) {
6577 if (!isa
<PHINode
>(cast
<SCEVUnknown
>(Expr
)->getValue()))
6594 case scSequentialUMinExpr
:
6595 WorkList
.push_back(Expr
);
6597 case scCouldNotCompute
:
6598 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6603 // Build worklist by queuing operands of N-ary expressions and phi nodes.
6604 for (unsigned I
= 0; I
!= WorkList
.size(); ++I
) {
6605 const SCEV
*P
= WorkList
[I
];
6606 auto *UnknownS
= dyn_cast
<SCEVUnknown
>(P
);
6607 // If it is not a `SCEVUnknown`, just recurse into operands.
6609 for (const SCEV
*Op
: P
->operands())
6613 // `SCEVUnknown`'s require special treatment.
6614 if (const PHINode
*P
= dyn_cast
<PHINode
>(UnknownS
->getValue())) {
6615 if (!PendingPhiRangesIter
.insert(P
).second
)
6617 for (auto &Op
: reverse(P
->operands()))
6618 AddToWorklist(getSCEV(Op
));
6622 if (!WorkList
.empty()) {
6623 // Use getRangeRef to compute ranges for items in the worklist in reverse
6624 // order. This will force ranges for earlier operands to be computed before
6625 // their users in most cases.
6626 for (const SCEV
*P
: reverse(drop_begin(WorkList
))) {
6627 getRangeRef(P
, SignHint
);
6629 if (auto *UnknownS
= dyn_cast
<SCEVUnknown
>(P
))
6630 if (const PHINode
*P
= dyn_cast
<PHINode
>(UnknownS
->getValue()))
6631 PendingPhiRangesIter
.erase(P
);
6635 return getRangeRef(S
, SignHint
, 0);
6638 /// Determine the range for a particular SCEV. If SignHint is
6639 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
6640 /// with a "cleaner" unsigned (resp. signed) representation.
6641 const ConstantRange
&ScalarEvolution::getRangeRef(
6642 const SCEV
*S
, ScalarEvolution::RangeSignHint SignHint
, unsigned Depth
) {
6643 DenseMap
<const SCEV
*, ConstantRange
> &Cache
=
6644 SignHint
== ScalarEvolution::HINT_RANGE_UNSIGNED
? UnsignedRanges
6646 ConstantRange::PreferredRangeType RangeType
=
6647 SignHint
== ScalarEvolution::HINT_RANGE_UNSIGNED
? ConstantRange::Unsigned
6648 : ConstantRange::Signed
;
6650 // See if we've computed this range already.
6651 DenseMap
<const SCEV
*, ConstantRange
>::iterator I
= Cache
.find(S
);
6652 if (I
!= Cache
.end())
6655 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
))
6656 return setRange(C
, SignHint
, ConstantRange(C
->getAPInt()));
6658 // Switch to iteratively computing the range for S, if it is part of a deeply
6659 // nested expression.
6660 if (Depth
> RangeIterThreshold
)
6661 return getRangeRefIter(S
, SignHint
);
6663 unsigned BitWidth
= getTypeSizeInBits(S
->getType());
6664 ConstantRange
ConservativeResult(BitWidth
, /*isFullSet=*/true);
6665 using OBO
= OverflowingBinaryOperator
;
6667 // If the value has known zeros, the maximum value will have those known zeros
6669 if (SignHint
== ScalarEvolution::HINT_RANGE_UNSIGNED
) {
6670 APInt Multiple
= getNonZeroConstantMultiple(S
);
6671 APInt Remainder
= APInt::getMaxValue(BitWidth
).urem(Multiple
);
6672 if (!Remainder
.isZero())
6673 ConservativeResult
=
6674 ConstantRange(APInt::getMinValue(BitWidth
),
6675 APInt::getMaxValue(BitWidth
) - Remainder
+ 1);
6678 uint32_t TZ
= getMinTrailingZeros(S
);
6680 ConservativeResult
= ConstantRange(
6681 APInt::getSignedMinValue(BitWidth
),
6682 APInt::getSignedMaxValue(BitWidth
).ashr(TZ
).shl(TZ
) + 1);
6686 switch (S
->getSCEVType()) {
6688 llvm_unreachable("Already handled above.");
6690 return setRange(S
, SignHint
, getVScaleRange(&F
, BitWidth
));
6692 const SCEVTruncateExpr
*Trunc
= cast
<SCEVTruncateExpr
>(S
);
6693 ConstantRange X
= getRangeRef(Trunc
->getOperand(), SignHint
, Depth
+ 1);
6696 ConservativeResult
.intersectWith(X
.truncate(BitWidth
), RangeType
));
6698 case scZeroExtend
: {
6699 const SCEVZeroExtendExpr
*ZExt
= cast
<SCEVZeroExtendExpr
>(S
);
6700 ConstantRange X
= getRangeRef(ZExt
->getOperand(), SignHint
, Depth
+ 1);
6703 ConservativeResult
.intersectWith(X
.zeroExtend(BitWidth
), RangeType
));
6705 case scSignExtend
: {
6706 const SCEVSignExtendExpr
*SExt
= cast
<SCEVSignExtendExpr
>(S
);
6707 ConstantRange X
= getRangeRef(SExt
->getOperand(), SignHint
, Depth
+ 1);
6710 ConservativeResult
.intersectWith(X
.signExtend(BitWidth
), RangeType
));
6713 const SCEVPtrToIntExpr
*PtrToInt
= cast
<SCEVPtrToIntExpr
>(S
);
6714 ConstantRange X
= getRangeRef(PtrToInt
->getOperand(), SignHint
, Depth
+ 1);
6715 return setRange(PtrToInt
, SignHint
, X
);
6718 const SCEVAddExpr
*Add
= cast
<SCEVAddExpr
>(S
);
6719 ConstantRange X
= getRangeRef(Add
->getOperand(0), SignHint
, Depth
+ 1);
6720 unsigned WrapType
= OBO::AnyWrap
;
6721 if (Add
->hasNoSignedWrap())
6722 WrapType
|= OBO::NoSignedWrap
;
6723 if (Add
->hasNoUnsignedWrap())
6724 WrapType
|= OBO::NoUnsignedWrap
;
6725 for (const SCEV
*Op
: drop_begin(Add
->operands()))
6726 X
= X
.addWithNoWrap(getRangeRef(Op
, SignHint
, Depth
+ 1), WrapType
,
6728 return setRange(Add
, SignHint
,
6729 ConservativeResult
.intersectWith(X
, RangeType
));
6732 const SCEVMulExpr
*Mul
= cast
<SCEVMulExpr
>(S
);
6733 ConstantRange X
= getRangeRef(Mul
->getOperand(0), SignHint
, Depth
+ 1);
6734 for (const SCEV
*Op
: drop_begin(Mul
->operands()))
6735 X
= X
.multiply(getRangeRef(Op
, SignHint
, Depth
+ 1));
6736 return setRange(Mul
, SignHint
,
6737 ConservativeResult
.intersectWith(X
, RangeType
));
6740 const SCEVUDivExpr
*UDiv
= cast
<SCEVUDivExpr
>(S
);
6741 ConstantRange X
= getRangeRef(UDiv
->getLHS(), SignHint
, Depth
+ 1);
6742 ConstantRange Y
= getRangeRef(UDiv
->getRHS(), SignHint
, Depth
+ 1);
6743 return setRange(UDiv
, SignHint
,
6744 ConservativeResult
.intersectWith(X
.udiv(Y
), RangeType
));
6746 case scAddRecExpr
: {
6747 const SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(S
);
6748 // If there's no unsigned wrap, the value will never be less than its
6750 if (AddRec
->hasNoUnsignedWrap()) {
6751 APInt UnsignedMinValue
= getUnsignedRangeMin(AddRec
->getStart());
6752 if (!UnsignedMinValue
.isZero())
6753 ConservativeResult
= ConservativeResult
.intersectWith(
6754 ConstantRange(UnsignedMinValue
, APInt(BitWidth
, 0)), RangeType
);
6757 // If there's no signed wrap, and all the operands except initial value have
6758 // the same sign or zero, the value won't ever be:
6759 // 1: smaller than initial value if operands are non negative,
6760 // 2: bigger than initial value if operands are non positive.
6761 // For both cases, value can not cross signed min/max boundary.
6762 if (AddRec
->hasNoSignedWrap()) {
6763 bool AllNonNeg
= true;
6764 bool AllNonPos
= true;
6765 for (unsigned i
= 1, e
= AddRec
->getNumOperands(); i
!= e
; ++i
) {
6766 if (!isKnownNonNegative(AddRec
->getOperand(i
)))
6768 if (!isKnownNonPositive(AddRec
->getOperand(i
)))
6772 ConservativeResult
= ConservativeResult
.intersectWith(
6773 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec
->getStart()),
6774 APInt::getSignedMinValue(BitWidth
)),
6777 ConservativeResult
= ConservativeResult
.intersectWith(
6778 ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth
),
6779 getSignedRangeMax(AddRec
->getStart()) +
6784 // TODO: non-affine addrec
6785 if (AddRec
->isAffine()) {
6786 const SCEV
*MaxBEScev
=
6787 getConstantMaxBackedgeTakenCount(AddRec
->getLoop());
6788 if (!isa
<SCEVCouldNotCompute
>(MaxBEScev
)) {
6789 APInt MaxBECount
= cast
<SCEVConstant
>(MaxBEScev
)->getAPInt();
6791 // Adjust MaxBECount to the same bitwidth as AddRec. We can truncate if
6792 // MaxBECount's active bits are all <= AddRec's bit width.
6793 if (MaxBECount
.getBitWidth() > BitWidth
&&
6794 MaxBECount
.getActiveBits() <= BitWidth
)
6795 MaxBECount
= MaxBECount
.trunc(BitWidth
);
6796 else if (MaxBECount
.getBitWidth() < BitWidth
)
6797 MaxBECount
= MaxBECount
.zext(BitWidth
);
6799 if (MaxBECount
.getBitWidth() == BitWidth
) {
6800 auto RangeFromAffine
= getRangeForAffineAR(
6801 AddRec
->getStart(), AddRec
->getStepRecurrence(*this), MaxBECount
);
6802 ConservativeResult
=
6803 ConservativeResult
.intersectWith(RangeFromAffine
, RangeType
);
6805 auto RangeFromFactoring
= getRangeViaFactoring(
6806 AddRec
->getStart(), AddRec
->getStepRecurrence(*this), MaxBECount
);
6807 ConservativeResult
=
6808 ConservativeResult
.intersectWith(RangeFromFactoring
, RangeType
);
6812 // Now try symbolic BE count and more powerful methods.
6813 if (UseExpensiveRangeSharpening
) {
6814 const SCEV
*SymbolicMaxBECount
=
6815 getSymbolicMaxBackedgeTakenCount(AddRec
->getLoop());
6816 if (!isa
<SCEVCouldNotCompute
>(SymbolicMaxBECount
) &&
6817 getTypeSizeInBits(MaxBEScev
->getType()) <= BitWidth
&&
6818 AddRec
->hasNoSelfWrap()) {
6819 auto RangeFromAffineNew
= getRangeForAffineNoSelfWrappingAR(
6820 AddRec
, SymbolicMaxBECount
, BitWidth
, SignHint
);
6821 ConservativeResult
=
6822 ConservativeResult
.intersectWith(RangeFromAffineNew
, RangeType
);
6827 return setRange(AddRec
, SignHint
, std::move(ConservativeResult
));
6833 case scSequentialUMinExpr
: {
6835 switch (S
->getSCEVType()) {
6837 ID
= Intrinsic::umax
;
6840 ID
= Intrinsic::smax
;
6843 case scSequentialUMinExpr
:
6844 ID
= Intrinsic::umin
;
6847 ID
= Intrinsic::smin
;
6850 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr.");
6853 const auto *NAry
= cast
<SCEVNAryExpr
>(S
);
6854 ConstantRange X
= getRangeRef(NAry
->getOperand(0), SignHint
, Depth
+ 1);
6855 for (unsigned i
= 1, e
= NAry
->getNumOperands(); i
!= e
; ++i
)
6857 ID
, {X
, getRangeRef(NAry
->getOperand(i
), SignHint
, Depth
+ 1)});
6858 return setRange(S
, SignHint
,
6859 ConservativeResult
.intersectWith(X
, RangeType
));
6862 const SCEVUnknown
*U
= cast
<SCEVUnknown
>(S
);
6863 Value
*V
= U
->getValue();
6865 // Check if the IR explicitly contains !range metadata.
6866 std::optional
<ConstantRange
> MDRange
= GetRangeFromMetadata(V
);
6868 ConservativeResult
=
6869 ConservativeResult
.intersectWith(*MDRange
, RangeType
);
6871 // Use facts about recurrences in the underlying IR. Note that add
6872 // recurrences are AddRecExprs and thus don't hit this path. This
6873 // primarily handles shift recurrences.
6874 auto CR
= getRangeForUnknownRecurrence(U
);
6875 ConservativeResult
= ConservativeResult
.intersectWith(CR
);
6877 // See if ValueTracking can give us a useful range.
6878 const DataLayout
&DL
= getDataLayout();
6879 KnownBits Known
= computeKnownBits(V
, DL
, 0, &AC
, nullptr, &DT
);
6880 if (Known
.getBitWidth() != BitWidth
)
6881 Known
= Known
.zextOrTrunc(BitWidth
);
6883 // ValueTracking may be able to compute a tighter result for the number of
6884 // sign bits than for the value of those sign bits.
6885 unsigned NS
= ComputeNumSignBits(V
, DL
, 0, &AC
, nullptr, &DT
);
6886 if (U
->getType()->isPointerTy()) {
6887 // If the pointer size is larger than the index size type, this can cause
6888 // NS to be larger than BitWidth. So compensate for this.
6889 unsigned ptrSize
= DL
.getPointerTypeSizeInBits(U
->getType());
6890 int ptrIdxDiff
= ptrSize
- BitWidth
;
6891 if (ptrIdxDiff
> 0 && ptrSize
> BitWidth
&& NS
> (unsigned)ptrIdxDiff
)
6896 // If we know any of the sign bits, we know all of the sign bits.
6897 if (!Known
.Zero
.getHiBits(NS
).isZero())
6898 Known
.Zero
.setHighBits(NS
);
6899 if (!Known
.One
.getHiBits(NS
).isZero())
6900 Known
.One
.setHighBits(NS
);
6903 if (Known
.getMinValue() != Known
.getMaxValue() + 1)
6904 ConservativeResult
= ConservativeResult
.intersectWith(
6905 ConstantRange(Known
.getMinValue(), Known
.getMaxValue() + 1),
6908 ConservativeResult
= ConservativeResult
.intersectWith(
6909 ConstantRange(APInt::getSignedMinValue(BitWidth
).ashr(NS
- 1),
6910 APInt::getSignedMaxValue(BitWidth
).ashr(NS
- 1) + 1),
6913 if (U
->getType()->isPointerTy() && SignHint
== HINT_RANGE_UNSIGNED
) {
6914 // Strengthen the range if the underlying IR value is a
6915 // global/alloca/heap allocation using the size of the object.
6916 bool CanBeNull
, CanBeFreed
;
6917 uint64_t DerefBytes
=
6918 V
->getPointerDereferenceableBytes(DL
, CanBeNull
, CanBeFreed
);
6919 if (DerefBytes
> 1 && isUIntN(BitWidth
, DerefBytes
)) {
6920 // The highest address the object can start is DerefBytes bytes before
6921 // the end (unsigned max value). If this value is not a multiple of the
6922 // alignment, the last possible start value is the next lowest multiple
6923 // of the alignment. Note: The computations below cannot overflow,
6924 // because if they would there's no possible start address for the
6927 APInt::getMaxValue(BitWidth
) - APInt(BitWidth
, DerefBytes
);
6928 uint64_t Align
= U
->getValue()->getPointerAlignment(DL
).value();
6929 uint64_t Rem
= MaxVal
.urem(Align
);
6930 MaxVal
-= APInt(BitWidth
, Rem
);
6931 APInt MinVal
= APInt::getZero(BitWidth
);
6932 if (llvm::isKnownNonZero(V
, DL
))
6934 ConservativeResult
= ConservativeResult
.intersectWith(
6935 ConstantRange::getNonEmpty(MinVal
, MaxVal
+ 1), RangeType
);
6939 // A range of Phi is a subset of union of all ranges of its input.
6940 if (PHINode
*Phi
= dyn_cast
<PHINode
>(V
)) {
6941 // Make sure that we do not run over cycled Phis.
6942 if (PendingPhiRanges
.insert(Phi
).second
) {
6943 ConstantRange
RangeFromOps(BitWidth
, /*isFullSet=*/false);
6945 for (const auto &Op
: Phi
->operands()) {
6946 auto OpRange
= getRangeRef(getSCEV(Op
), SignHint
, Depth
+ 1);
6947 RangeFromOps
= RangeFromOps
.unionWith(OpRange
);
6948 // No point to continue if we already have a full set.
6949 if (RangeFromOps
.isFullSet())
6952 ConservativeResult
=
6953 ConservativeResult
.intersectWith(RangeFromOps
, RangeType
);
6954 bool Erased
= PendingPhiRanges
.erase(Phi
);
6955 assert(Erased
&& "Failed to erase Phi properly?");
6960 // vscale can't be equal to zero
6961 if (const auto *II
= dyn_cast
<IntrinsicInst
>(V
))
6962 if (II
->getIntrinsicID() == Intrinsic::vscale
) {
6963 ConstantRange Disallowed
= APInt::getZero(BitWidth
);
6964 ConservativeResult
= ConservativeResult
.difference(Disallowed
);
6967 return setRange(U
, SignHint
, std::move(ConservativeResult
));
6969 case scCouldNotCompute
:
6970 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6973 return setRange(S
, SignHint
, std::move(ConservativeResult
));
6976 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6977 // values that the expression can take. Initially, the expression has a value
6978 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6979 // argument defines if we treat Step as signed or unsigned.
6980 static ConstantRange
getRangeForAffineARHelper(APInt Step
,
6981 const ConstantRange
&StartRange
,
6982 const APInt
&MaxBECount
,
6984 unsigned BitWidth
= Step
.getBitWidth();
6985 assert(BitWidth
== StartRange
.getBitWidth() &&
6986 BitWidth
== MaxBECount
.getBitWidth() && "mismatched bit widths");
6987 // If either Step or MaxBECount is 0, then the expression won't change, and we
6988 // just need to return the initial range.
6989 if (Step
== 0 || MaxBECount
== 0)
6992 // If we don't know anything about the initial value (i.e. StartRange is
6993 // FullRange), then we don't know anything about the final range either.
6994 // Return FullRange.
6995 if (StartRange
.isFullSet())
6996 return ConstantRange::getFull(BitWidth
);
6998 // If Step is signed and negative, then we use its absolute value, but we also
6999 // note that we're moving in the opposite direction.
7000 bool Descending
= Signed
&& Step
.isNegative();
7003 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
7004 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
7005 // This equations hold true due to the well-defined wrap-around behavior of
7009 // Check if Offset is more than full span of BitWidth. If it is, the
7010 // expression is guaranteed to overflow.
7011 if (APInt::getMaxValue(StartRange
.getBitWidth()).udiv(Step
).ult(MaxBECount
))
7012 return ConstantRange::getFull(BitWidth
);
7014 // Offset is by how much the expression can change. Checks above guarantee no
7016 APInt Offset
= Step
* MaxBECount
;
7018 // Minimum value of the final range will match the minimal value of StartRange
7019 // if the expression is increasing and will be decreased by Offset otherwise.
7020 // Maximum value of the final range will match the maximal value of StartRange
7021 // if the expression is decreasing and will be increased by Offset otherwise.
7022 APInt StartLower
= StartRange
.getLower();
7023 APInt StartUpper
= StartRange
.getUpper() - 1;
7024 APInt MovedBoundary
= Descending
? (StartLower
- std::move(Offset
))
7025 : (StartUpper
+ std::move(Offset
));
7027 // It's possible that the new minimum/maximum value will fall into the initial
7028 // range (due to wrap around). This means that the expression can take any
7029 // value in this bitwidth, and we have to return full range.
7030 if (StartRange
.contains(MovedBoundary
))
7031 return ConstantRange::getFull(BitWidth
);
7034 Descending
? std::move(MovedBoundary
) : std::move(StartLower
);
7036 Descending
? std::move(StartUpper
) : std::move(MovedBoundary
);
7039 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
7040 return ConstantRange::getNonEmpty(std::move(NewLower
), std::move(NewUpper
));
7043 ConstantRange
ScalarEvolution::getRangeForAffineAR(const SCEV
*Start
,
7045 const APInt
&MaxBECount
) {
7046 assert(getTypeSizeInBits(Start
->getType()) ==
7047 getTypeSizeInBits(Step
->getType()) &&
7048 getTypeSizeInBits(Start
->getType()) == MaxBECount
.getBitWidth() &&
7049 "mismatched bit widths");
7051 // First, consider step signed.
7052 ConstantRange StartSRange
= getSignedRange(Start
);
7053 ConstantRange StepSRange
= getSignedRange(Step
);
7055 // If Step can be both positive and negative, we need to find ranges for the
7056 // maximum absolute step values in both directions and union them.
7057 ConstantRange SR
= getRangeForAffineARHelper(
7058 StepSRange
.getSignedMin(), StartSRange
, MaxBECount
, /* Signed = */ true);
7059 SR
= SR
.unionWith(getRangeForAffineARHelper(StepSRange
.getSignedMax(),
7060 StartSRange
, MaxBECount
,
7061 /* Signed = */ true));
7063 // Next, consider step unsigned.
7064 ConstantRange UR
= getRangeForAffineARHelper(
7065 getUnsignedRangeMax(Step
), getUnsignedRange(Start
), MaxBECount
,
7066 /* Signed = */ false);
7068 // Finally, intersect signed and unsigned ranges.
7069 return SR
.intersectWith(UR
, ConstantRange::Smallest
);
7072 ConstantRange
ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
7073 const SCEVAddRecExpr
*AddRec
, const SCEV
*MaxBECount
, unsigned BitWidth
,
7074 ScalarEvolution::RangeSignHint SignHint
) {
7075 assert(AddRec
->isAffine() && "Non-affine AddRecs are not suppored!\n");
7076 assert(AddRec
->hasNoSelfWrap() &&
7077 "This only works for non-self-wrapping AddRecs!");
7078 const bool IsSigned
= SignHint
== HINT_RANGE_SIGNED
;
7079 const SCEV
*Step
= AddRec
->getStepRecurrence(*this);
7080 // Only deal with constant step to save compile time.
7081 if (!isa
<SCEVConstant
>(Step
))
7082 return ConstantRange::getFull(BitWidth
);
7083 // Let's make sure that we can prove that we do not self-wrap during
7084 // MaxBECount iterations. We need this because MaxBECount is a maximum
7085 // iteration count estimate, and we might infer nw from some exit for which we
7086 // do not know max exit count (or any other side reasoning).
7087 // TODO: Turn into assert at some point.
7088 if (getTypeSizeInBits(MaxBECount
->getType()) >
7089 getTypeSizeInBits(AddRec
->getType()))
7090 return ConstantRange::getFull(BitWidth
);
7091 MaxBECount
= getNoopOrZeroExtend(MaxBECount
, AddRec
->getType());
7092 const SCEV
*RangeWidth
= getMinusOne(AddRec
->getType());
7093 const SCEV
*StepAbs
= getUMinExpr(Step
, getNegativeSCEV(Step
));
7094 const SCEV
*MaxItersWithoutWrap
= getUDivExpr(RangeWidth
, StepAbs
);
7095 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE
, MaxBECount
,
7096 MaxItersWithoutWrap
))
7097 return ConstantRange::getFull(BitWidth
);
7099 ICmpInst::Predicate LEPred
=
7100 IsSigned
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
7101 ICmpInst::Predicate GEPred
=
7102 IsSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
7103 const SCEV
*End
= AddRec
->evaluateAtIteration(MaxBECount
, *this);
7105 // We know that there is no self-wrap. Let's take Start and End values and
7106 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
7107 // the iteration. They either lie inside the range [Min(Start, End),
7108 // Max(Start, End)] or outside it:
7110 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax;
7111 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax;
7113 // No self wrap flag guarantees that the intermediate values cannot be BOTH
7114 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
7115 // knowledge, let's try to prove that we are dealing with Case 1. It is so if
7116 // Start <= End and step is positive, or Start >= End and step is negative.
7117 const SCEV
*Start
= applyLoopGuards(AddRec
->getStart(), AddRec
->getLoop());
7118 ConstantRange StartRange
= getRangeRef(Start
, SignHint
);
7119 ConstantRange EndRange
= getRangeRef(End
, SignHint
);
7120 ConstantRange RangeBetween
= StartRange
.unionWith(EndRange
);
7121 // If they already cover full iteration space, we will know nothing useful
7122 // even if we prove what we want to prove.
7123 if (RangeBetween
.isFullSet())
7124 return RangeBetween
;
7125 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
7126 bool IsWrappedSet
= IsSigned
? RangeBetween
.isSignWrappedSet()
7127 : RangeBetween
.isWrappedSet();
7129 return ConstantRange::getFull(BitWidth
);
7131 if (isKnownPositive(Step
) &&
7132 isKnownPredicateViaConstantRanges(LEPred
, Start
, End
))
7133 return RangeBetween
;
7134 if (isKnownNegative(Step
) &&
7135 isKnownPredicateViaConstantRanges(GEPred
, Start
, End
))
7136 return RangeBetween
;
7137 return ConstantRange::getFull(BitWidth
);
7140 ConstantRange
ScalarEvolution::getRangeViaFactoring(const SCEV
*Start
,
7142 const APInt
&MaxBECount
) {
7143 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
7144 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
7146 unsigned BitWidth
= MaxBECount
.getBitWidth();
7147 assert(getTypeSizeInBits(Start
->getType()) == BitWidth
&&
7148 getTypeSizeInBits(Step
->getType()) == BitWidth
&&
7149 "mismatched bit widths");
7151 struct SelectPattern
{
7152 Value
*Condition
= nullptr;
7156 explicit SelectPattern(ScalarEvolution
&SE
, unsigned BitWidth
,
7158 std::optional
<unsigned> CastOp
;
7159 APInt
Offset(BitWidth
, 0);
7161 assert(SE
.getTypeSizeInBits(S
->getType()) == BitWidth
&&
7164 // Peel off a constant offset:
7165 if (auto *SA
= dyn_cast
<SCEVAddExpr
>(S
)) {
7166 // In the future we could consider being smarter here and handle
7167 // {Start+Step,+,Step} too.
7168 if (SA
->getNumOperands() != 2 || !isa
<SCEVConstant
>(SA
->getOperand(0)))
7171 Offset
= cast
<SCEVConstant
>(SA
->getOperand(0))->getAPInt();
7172 S
= SA
->getOperand(1);
7175 // Peel off a cast operation
7176 if (auto *SCast
= dyn_cast
<SCEVIntegralCastExpr
>(S
)) {
7177 CastOp
= SCast
->getSCEVType();
7178 S
= SCast
->getOperand();
7181 using namespace llvm::PatternMatch
;
7183 auto *SU
= dyn_cast
<SCEVUnknown
>(S
);
7184 const APInt
*TrueVal
, *FalseVal
;
7186 !match(SU
->getValue(), m_Select(m_Value(Condition
), m_APInt(TrueVal
),
7187 m_APInt(FalseVal
)))) {
7188 Condition
= nullptr;
7192 TrueValue
= *TrueVal
;
7193 FalseValue
= *FalseVal
;
7195 // Re-apply the cast we peeled off earlier
7199 llvm_unreachable("Unknown SCEV cast type!");
7202 TrueValue
= TrueValue
.trunc(BitWidth
);
7203 FalseValue
= FalseValue
.trunc(BitWidth
);
7206 TrueValue
= TrueValue
.zext(BitWidth
);
7207 FalseValue
= FalseValue
.zext(BitWidth
);
7210 TrueValue
= TrueValue
.sext(BitWidth
);
7211 FalseValue
= FalseValue
.sext(BitWidth
);
7215 // Re-apply the constant offset we peeled off earlier
7216 TrueValue
+= Offset
;
7217 FalseValue
+= Offset
;
7220 bool isRecognized() { return Condition
!= nullptr; }
7223 SelectPattern
StartPattern(*this, BitWidth
, Start
);
7224 if (!StartPattern
.isRecognized())
7225 return ConstantRange::getFull(BitWidth
);
7227 SelectPattern
StepPattern(*this, BitWidth
, Step
);
7228 if (!StepPattern
.isRecognized())
7229 return ConstantRange::getFull(BitWidth
);
7231 if (StartPattern
.Condition
!= StepPattern
.Condition
) {
7232 // We don't handle this case today; but we could, by considering four
7233 // possibilities below instead of two. I'm not sure if there are cases where
7234 // that will help over what getRange already does, though.
7235 return ConstantRange::getFull(BitWidth
);
7238 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
7239 // construct arbitrary general SCEV expressions here. This function is called
7240 // from deep in the call stack, and calling getSCEV (on a sext instruction,
7241 // say) can end up caching a suboptimal value.
7243 // FIXME: without the explicit `this` receiver below, MSVC errors out with
7244 // C2352 and C2512 (otherwise it isn't needed).
7246 const SCEV
*TrueStart
= this->getConstant(StartPattern
.TrueValue
);
7247 const SCEV
*TrueStep
= this->getConstant(StepPattern
.TrueValue
);
7248 const SCEV
*FalseStart
= this->getConstant(StartPattern
.FalseValue
);
7249 const SCEV
*FalseStep
= this->getConstant(StepPattern
.FalseValue
);
7251 ConstantRange TrueRange
=
7252 this->getRangeForAffineAR(TrueStart
, TrueStep
, MaxBECount
);
7253 ConstantRange FalseRange
=
7254 this->getRangeForAffineAR(FalseStart
, FalseStep
, MaxBECount
);
7256 return TrueRange
.unionWith(FalseRange
);
7259 SCEV::NoWrapFlags
ScalarEvolution::getNoWrapFlagsFromUB(const Value
*V
) {
7260 if (isa
<ConstantExpr
>(V
)) return SCEV::FlagAnyWrap
;
7261 const BinaryOperator
*BinOp
= cast
<BinaryOperator
>(V
);
7263 // Return early if there are no flags to propagate to the SCEV.
7264 SCEV::NoWrapFlags Flags
= SCEV::FlagAnyWrap
;
7265 if (BinOp
->hasNoUnsignedWrap())
7266 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNUW
);
7267 if (BinOp
->hasNoSignedWrap())
7268 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNSW
);
7269 if (Flags
== SCEV::FlagAnyWrap
)
7270 return SCEV::FlagAnyWrap
;
7272 return isSCEVExprNeverPoison(BinOp
) ? Flags
: SCEV::FlagAnyWrap
;
7276 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV
*S
) {
7277 if (auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
))
7278 return &*AddRec
->getLoop()->getHeader()->begin();
7279 if (auto *U
= dyn_cast
<SCEVUnknown
>(S
))
7280 if (auto *I
= dyn_cast
<Instruction
>(U
->getValue()))
7286 ScalarEvolution::getDefiningScopeBound(ArrayRef
<const SCEV
*> Ops
,
7289 // Do a bounded search of the def relation of the requested SCEVs.
7290 SmallSet
<const SCEV
*, 16> Visited
;
7291 SmallVector
<const SCEV
*> Worklist
;
7292 auto pushOp
= [&](const SCEV
*S
) {
7293 if (!Visited
.insert(S
).second
)
7295 // Threshold of 30 here is arbitrary.
7296 if (Visited
.size() > 30) {
7300 Worklist
.push_back(S
);
7303 for (const auto *S
: Ops
)
7306 const Instruction
*Bound
= nullptr;
7307 while (!Worklist
.empty()) {
7308 auto *S
= Worklist
.pop_back_val();
7309 if (auto *DefI
= getNonTrivialDefiningScopeBound(S
)) {
7310 if (!Bound
|| DT
.dominates(Bound
, DefI
))
7313 for (const auto *Op
: S
->operands())
7317 return Bound
? Bound
: &*F
.getEntryBlock().begin();
7321 ScalarEvolution::getDefiningScopeBound(ArrayRef
<const SCEV
*> Ops
) {
7323 return getDefiningScopeBound(Ops
, Discard
);
7326 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction
*A
,
7327 const Instruction
*B
) {
7328 if (A
->getParent() == B
->getParent() &&
7329 isGuaranteedToTransferExecutionToSuccessor(A
->getIterator(),
7333 auto *BLoop
= LI
.getLoopFor(B
->getParent());
7334 if (BLoop
&& BLoop
->getHeader() == B
->getParent() &&
7335 BLoop
->getLoopPreheader() == A
->getParent() &&
7336 isGuaranteedToTransferExecutionToSuccessor(A
->getIterator(),
7337 A
->getParent()->end()) &&
7338 isGuaranteedToTransferExecutionToSuccessor(B
->getParent()->begin(),
7344 bool ScalarEvolution::isGuaranteedNotToBePoison(const SCEV
*Op
) {
7345 SCEVPoisonCollector
PC(/* LookThroughMaybePoisonBlocking */ true);
7347 return PC
.MaybePoison
.empty();
7350 bool ScalarEvolution::isGuaranteedNotToCauseUB(const SCEV
*Op
) {
7351 return !SCEVExprContains(Op
, [this](const SCEV
*S
) {
7352 auto *UDiv
= dyn_cast
<SCEVUDivExpr
>(S
);
7353 // The UDiv may be UB if the divisor is poison or zero. Unless the divisor
7354 // is a non-zero constant, we have to assume the UDiv may be UB.
7355 return UDiv
&& (!isKnownNonZero(UDiv
->getOperand(1)) ||
7356 !isGuaranteedNotToBePoison(UDiv
->getOperand(1)));
7360 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction
*I
) {
7361 // Only proceed if we can prove that I does not yield poison.
7362 if (!programUndefinedIfPoison(I
))
7365 // At this point we know that if I is executed, then it does not wrap
7366 // according to at least one of NSW or NUW. If I is not executed, then we do
7367 // not know if the calculation that I represents would wrap. Multiple
7368 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
7369 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
7370 // derived from other instructions that map to the same SCEV. We cannot make
7371 // that guarantee for cases where I is not executed. So we need to find a
7372 // upper bound on the defining scope for the SCEV, and prove that I is
7373 // executed every time we enter that scope. When the bounding scope is a
7374 // loop (the common case), this is equivalent to proving I executes on every
7375 // iteration of that loop.
7376 SmallVector
<const SCEV
*> SCEVOps
;
7377 for (const Use
&Op
: I
->operands()) {
7378 // I could be an extractvalue from a call to an overflow intrinsic.
7379 // TODO: We can do better here in some cases.
7380 if (isSCEVable(Op
->getType()))
7381 SCEVOps
.push_back(getSCEV(Op
));
7383 auto *DefI
= getDefiningScopeBound(SCEVOps
);
7384 return isGuaranteedToTransferExecutionTo(DefI
, I
);
7387 bool ScalarEvolution::isAddRecNeverPoison(const Instruction
*I
, const Loop
*L
) {
7388 // If we know that \c I can never be poison period, then that's enough.
7389 if (isSCEVExprNeverPoison(I
))
7392 // If the loop only has one exit, then we know that, if the loop is entered,
7393 // any instruction dominating that exit will be executed. If any such
7394 // instruction would result in UB, the addrec cannot be poison.
7396 // This is basically the same reasoning as in isSCEVExprNeverPoison(), but
7397 // also handles uses outside the loop header (they just need to dominate the
7400 auto *ExitingBB
= L
->getExitingBlock();
7401 if (!ExitingBB
|| !loopHasNoAbnormalExits(L
))
7404 SmallPtrSet
<const Value
*, 16> KnownPoison
;
7405 SmallVector
<const Instruction
*, 8> Worklist
;
7407 // We start by assuming \c I, the post-inc add recurrence, is poison. Only
7408 // things that are known to be poison under that assumption go on the
7410 KnownPoison
.insert(I
);
7411 Worklist
.push_back(I
);
7413 while (!Worklist
.empty()) {
7414 const Instruction
*Poison
= Worklist
.pop_back_val();
7416 for (const Use
&U
: Poison
->uses()) {
7417 const Instruction
*PoisonUser
= cast
<Instruction
>(U
.getUser());
7418 if (mustTriggerUB(PoisonUser
, KnownPoison
) &&
7419 DT
.dominates(PoisonUser
->getParent(), ExitingBB
))
7422 if (propagatesPoison(U
) && L
->contains(PoisonUser
))
7423 if (KnownPoison
.insert(PoisonUser
).second
)
7424 Worklist
.push_back(PoisonUser
);
7431 ScalarEvolution::LoopProperties
7432 ScalarEvolution::getLoopProperties(const Loop
*L
) {
7433 using LoopProperties
= ScalarEvolution::LoopProperties
;
7435 auto Itr
= LoopPropertiesCache
.find(L
);
7436 if (Itr
== LoopPropertiesCache
.end()) {
7437 auto HasSideEffects
= [](Instruction
*I
) {
7438 if (auto *SI
= dyn_cast
<StoreInst
>(I
))
7439 return !SI
->isSimple();
7441 return I
->mayThrow() || I
->mayWriteToMemory();
7444 LoopProperties LP
= {/* HasNoAbnormalExits */ true,
7445 /*HasNoSideEffects*/ true};
7447 for (auto *BB
: L
->getBlocks())
7448 for (auto &I
: *BB
) {
7449 if (!isGuaranteedToTransferExecutionToSuccessor(&I
))
7450 LP
.HasNoAbnormalExits
= false;
7451 if (HasSideEffects(&I
))
7452 LP
.HasNoSideEffects
= false;
7453 if (!LP
.HasNoAbnormalExits
&& !LP
.HasNoSideEffects
)
7454 break; // We're already as pessimistic as we can get.
7457 auto InsertPair
= LoopPropertiesCache
.insert({L
, LP
});
7458 assert(InsertPair
.second
&& "We just checked!");
7459 Itr
= InsertPair
.first
;
7465 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop
*L
) {
7466 // A mustprogress loop without side effects must be finite.
7467 // TODO: The check used here is very conservative. It's only *specific*
7468 // side effects which are well defined in infinite loops.
7469 return isFinite(L
) || (isMustProgress(L
) && loopHasNoSideEffects(L
));
7472 const SCEV
*ScalarEvolution::createSCEVIter(Value
*V
) {
7473 // Worklist item with a Value and a bool indicating whether all operands have
7474 // been visited already.
7475 using PointerTy
= PointerIntPair
<Value
*, 1, bool>;
7476 SmallVector
<PointerTy
> Stack
;
7478 Stack
.emplace_back(V
, true);
7479 Stack
.emplace_back(V
, false);
7480 while (!Stack
.empty()) {
7481 auto E
= Stack
.pop_back_val();
7482 Value
*CurV
= E
.getPointer();
7484 if (getExistingSCEV(CurV
))
7487 SmallVector
<Value
*> Ops
;
7488 const SCEV
*CreatedSCEV
= nullptr;
7489 // If all operands have been visited already, create the SCEV.
7491 CreatedSCEV
= createSCEV(CurV
);
7493 // Otherwise get the operands we need to create SCEV's for before creating
7494 // the SCEV for CurV. If the SCEV for CurV can be constructed trivially,
7496 CreatedSCEV
= getOperandsToCreate(CurV
, Ops
);
7500 insertValueToMap(CurV
, CreatedSCEV
);
7502 // Queue CurV for SCEV creation, followed by its's operands which need to
7503 // be constructed first.
7504 Stack
.emplace_back(CurV
, true);
7505 for (Value
*Op
: Ops
)
7506 Stack
.emplace_back(Op
, false);
7510 return getExistingSCEV(V
);
7514 ScalarEvolution::getOperandsToCreate(Value
*V
, SmallVectorImpl
<Value
*> &Ops
) {
7515 if (!isSCEVable(V
->getType()))
7516 return getUnknown(V
);
7518 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
7519 // Don't attempt to analyze instructions in blocks that aren't
7520 // reachable. Such instructions don't matter, and they aren't required
7521 // to obey basic rules for definitions dominating uses which this
7522 // analysis depends on.
7523 if (!DT
.isReachableFromEntry(I
->getParent()))
7524 return getUnknown(PoisonValue::get(V
->getType()));
7525 } else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
))
7526 return getConstant(CI
);
7527 else if (isa
<GlobalAlias
>(V
))
7528 return getUnknown(V
);
7529 else if (!isa
<ConstantExpr
>(V
))
7530 return getUnknown(V
);
7532 Operator
*U
= cast
<Operator
>(V
);
7534 MatchBinaryOp(U
, getDataLayout(), AC
, DT
, dyn_cast
<Instruction
>(V
))) {
7535 bool IsConstArg
= isa
<ConstantInt
>(BO
->RHS
);
7536 switch (BO
->Opcode
) {
7537 case Instruction::Add
:
7538 case Instruction::Mul
: {
7539 // For additions and multiplications, traverse add/mul chains for which we
7540 // can potentially create a single SCEV, to reduce the number of
7541 // get{Add,Mul}Expr calls.
7544 if (BO
->Op
!= V
&& getExistingSCEV(BO
->Op
)) {
7545 Ops
.push_back(BO
->Op
);
7549 Ops
.push_back(BO
->RHS
);
7550 auto NewBO
= MatchBinaryOp(BO
->LHS
, getDataLayout(), AC
, DT
,
7551 dyn_cast
<Instruction
>(V
));
7553 (BO
->Opcode
== Instruction::Add
&&
7554 (NewBO
->Opcode
!= Instruction::Add
&&
7555 NewBO
->Opcode
!= Instruction::Sub
)) ||
7556 (BO
->Opcode
== Instruction::Mul
&&
7557 NewBO
->Opcode
!= Instruction::Mul
)) {
7558 Ops
.push_back(BO
->LHS
);
7561 // CreateSCEV calls getNoWrapFlagsFromUB, which under certain conditions
7562 // requires a SCEV for the LHS.
7563 if (BO
->Op
&& (BO
->IsNSW
|| BO
->IsNUW
)) {
7564 auto *I
= dyn_cast
<Instruction
>(BO
->Op
);
7565 if (I
&& programUndefinedIfPoison(I
)) {
7566 Ops
.push_back(BO
->LHS
);
7574 case Instruction::Sub
:
7575 case Instruction::UDiv
:
7576 case Instruction::URem
:
7578 case Instruction::AShr
:
7579 case Instruction::Shl
:
7580 case Instruction::Xor
:
7584 case Instruction::And
:
7585 case Instruction::Or
:
7586 if (!IsConstArg
&& !BO
->LHS
->getType()->isIntegerTy(1))
7589 case Instruction::LShr
:
7590 return getUnknown(V
);
7592 llvm_unreachable("Unhandled binop");
7596 Ops
.push_back(BO
->LHS
);
7597 Ops
.push_back(BO
->RHS
);
7601 switch (U
->getOpcode()) {
7602 case Instruction::Trunc
:
7603 case Instruction::ZExt
:
7604 case Instruction::SExt
:
7605 case Instruction::PtrToInt
:
7606 Ops
.push_back(U
->getOperand(0));
7609 case Instruction::BitCast
:
7610 if (isSCEVable(U
->getType()) && isSCEVable(U
->getOperand(0)->getType())) {
7611 Ops
.push_back(U
->getOperand(0));
7614 return getUnknown(V
);
7616 case Instruction::SDiv
:
7617 case Instruction::SRem
:
7618 Ops
.push_back(U
->getOperand(0));
7619 Ops
.push_back(U
->getOperand(1));
7622 case Instruction::GetElementPtr
:
7623 assert(cast
<GEPOperator
>(U
)->getSourceElementType()->isSized() &&
7624 "GEP source element type must be sized");
7625 for (Value
*Index
: U
->operands())
7626 Ops
.push_back(Index
);
7629 case Instruction::IntToPtr
:
7630 return getUnknown(V
);
7632 case Instruction::PHI
:
7633 // Keep constructing SCEVs' for phis recursively for now.
7636 case Instruction::Select
: {
7637 // Check if U is a select that can be simplified to a SCEVUnknown.
7638 auto CanSimplifyToUnknown
= [this, U
]() {
7639 if (U
->getType()->isIntegerTy(1) || isa
<ConstantInt
>(U
->getOperand(0)))
7642 auto *ICI
= dyn_cast
<ICmpInst
>(U
->getOperand(0));
7645 Value
*LHS
= ICI
->getOperand(0);
7646 Value
*RHS
= ICI
->getOperand(1);
7647 if (ICI
->getPredicate() == CmpInst::ICMP_EQ
||
7648 ICI
->getPredicate() == CmpInst::ICMP_NE
) {
7649 if (!(isa
<ConstantInt
>(RHS
) && cast
<ConstantInt
>(RHS
)->isZero()))
7651 } else if (getTypeSizeInBits(LHS
->getType()) >
7652 getTypeSizeInBits(U
->getType()))
7656 if (CanSimplifyToUnknown())
7657 return getUnknown(U
);
7659 for (Value
*Inc
: U
->operands())
7664 case Instruction::Call
:
7665 case Instruction::Invoke
:
7666 if (Value
*RV
= cast
<CallBase
>(U
)->getReturnedArgOperand()) {
7671 if (auto *II
= dyn_cast
<IntrinsicInst
>(U
)) {
7672 switch (II
->getIntrinsicID()) {
7673 case Intrinsic::abs
:
7674 Ops
.push_back(II
->getArgOperand(0));
7676 case Intrinsic::umax
:
7677 case Intrinsic::umin
:
7678 case Intrinsic::smax
:
7679 case Intrinsic::smin
:
7680 case Intrinsic::usub_sat
:
7681 case Intrinsic::uadd_sat
:
7682 Ops
.push_back(II
->getArgOperand(0));
7683 Ops
.push_back(II
->getArgOperand(1));
7685 case Intrinsic::start_loop_iterations
:
7686 case Intrinsic::annotation
:
7687 case Intrinsic::ptr_annotation
:
7688 Ops
.push_back(II
->getArgOperand(0));
7700 const SCEV
*ScalarEvolution::createSCEV(Value
*V
) {
7701 if (!isSCEVable(V
->getType()))
7702 return getUnknown(V
);
7704 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
7705 // Don't attempt to analyze instructions in blocks that aren't
7706 // reachable. Such instructions don't matter, and they aren't required
7707 // to obey basic rules for definitions dominating uses which this
7708 // analysis depends on.
7709 if (!DT
.isReachableFromEntry(I
->getParent()))
7710 return getUnknown(PoisonValue::get(V
->getType()));
7711 } else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
))
7712 return getConstant(CI
);
7713 else if (isa
<GlobalAlias
>(V
))
7714 return getUnknown(V
);
7715 else if (!isa
<ConstantExpr
>(V
))
7716 return getUnknown(V
);
7721 Operator
*U
= cast
<Operator
>(V
);
7723 MatchBinaryOp(U
, getDataLayout(), AC
, DT
, dyn_cast
<Instruction
>(V
))) {
7724 switch (BO
->Opcode
) {
7725 case Instruction::Add
: {
7726 // The simple thing to do would be to just call getSCEV on both operands
7727 // and call getAddExpr with the result. However if we're looking at a
7728 // bunch of things all added together, this can be quite inefficient,
7729 // because it leads to N-1 getAddExpr calls for N ultimate operands.
7730 // Instead, gather up all the operands and make a single getAddExpr call.
7731 // LLVM IR canonical form means we need only traverse the left operands.
7732 SmallVector
<const SCEV
*, 4> AddOps
;
7735 if (auto *OpSCEV
= getExistingSCEV(BO
->Op
)) {
7736 AddOps
.push_back(OpSCEV
);
7740 // If a NUW or NSW flag can be applied to the SCEV for this
7741 // addition, then compute the SCEV for this addition by itself
7742 // with a separate call to getAddExpr. We need to do that
7743 // instead of pushing the operands of the addition onto AddOps,
7744 // since the flags are only known to apply to this particular
7745 // addition - they may not apply to other additions that can be
7746 // formed with operands from AddOps.
7747 const SCEV
*RHS
= getSCEV(BO
->RHS
);
7748 SCEV::NoWrapFlags Flags
= getNoWrapFlagsFromUB(BO
->Op
);
7749 if (Flags
!= SCEV::FlagAnyWrap
) {
7750 const SCEV
*LHS
= getSCEV(BO
->LHS
);
7751 if (BO
->Opcode
== Instruction::Sub
)
7752 AddOps
.push_back(getMinusSCEV(LHS
, RHS
, Flags
));
7754 AddOps
.push_back(getAddExpr(LHS
, RHS
, Flags
));
7759 if (BO
->Opcode
== Instruction::Sub
)
7760 AddOps
.push_back(getNegativeSCEV(getSCEV(BO
->RHS
)));
7762 AddOps
.push_back(getSCEV(BO
->RHS
));
7764 auto NewBO
= MatchBinaryOp(BO
->LHS
, getDataLayout(), AC
, DT
,
7765 dyn_cast
<Instruction
>(V
));
7766 if (!NewBO
|| (NewBO
->Opcode
!= Instruction::Add
&&
7767 NewBO
->Opcode
!= Instruction::Sub
)) {
7768 AddOps
.push_back(getSCEV(BO
->LHS
));
7774 return getAddExpr(AddOps
);
7777 case Instruction::Mul
: {
7778 SmallVector
<const SCEV
*, 4> MulOps
;
7781 if (auto *OpSCEV
= getExistingSCEV(BO
->Op
)) {
7782 MulOps
.push_back(OpSCEV
);
7786 SCEV::NoWrapFlags Flags
= getNoWrapFlagsFromUB(BO
->Op
);
7787 if (Flags
!= SCEV::FlagAnyWrap
) {
7788 LHS
= getSCEV(BO
->LHS
);
7789 RHS
= getSCEV(BO
->RHS
);
7790 MulOps
.push_back(getMulExpr(LHS
, RHS
, Flags
));
7795 MulOps
.push_back(getSCEV(BO
->RHS
));
7796 auto NewBO
= MatchBinaryOp(BO
->LHS
, getDataLayout(), AC
, DT
,
7797 dyn_cast
<Instruction
>(V
));
7798 if (!NewBO
|| NewBO
->Opcode
!= Instruction::Mul
) {
7799 MulOps
.push_back(getSCEV(BO
->LHS
));
7805 return getMulExpr(MulOps
);
7807 case Instruction::UDiv
:
7808 LHS
= getSCEV(BO
->LHS
);
7809 RHS
= getSCEV(BO
->RHS
);
7810 return getUDivExpr(LHS
, RHS
);
7811 case Instruction::URem
:
7812 LHS
= getSCEV(BO
->LHS
);
7813 RHS
= getSCEV(BO
->RHS
);
7814 return getURemExpr(LHS
, RHS
);
7815 case Instruction::Sub
: {
7816 SCEV::NoWrapFlags Flags
= SCEV::FlagAnyWrap
;
7818 Flags
= getNoWrapFlagsFromUB(BO
->Op
);
7819 LHS
= getSCEV(BO
->LHS
);
7820 RHS
= getSCEV(BO
->RHS
);
7821 return getMinusSCEV(LHS
, RHS
, Flags
);
7823 case Instruction::And
:
7824 // For an expression like x&255 that merely masks off the high bits,
7825 // use zext(trunc(x)) as the SCEV expression.
7826 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->RHS
)) {
7828 return getSCEV(BO
->RHS
);
7829 if (CI
->isMinusOne())
7830 return getSCEV(BO
->LHS
);
7831 const APInt
&A
= CI
->getValue();
7833 // Instcombine's ShrinkDemandedConstant may strip bits out of
7834 // constants, obscuring what would otherwise be a low-bits mask.
7835 // Use computeKnownBits to compute what ShrinkDemandedConstant
7836 // knew about to reconstruct a low-bits mask value.
7837 unsigned LZ
= A
.countl_zero();
7838 unsigned TZ
= A
.countr_zero();
7839 unsigned BitWidth
= A
.getBitWidth();
7840 KnownBits
Known(BitWidth
);
7841 computeKnownBits(BO
->LHS
, Known
, getDataLayout(),
7842 0, &AC
, nullptr, &DT
);
7844 APInt EffectiveMask
=
7845 APInt::getLowBitsSet(BitWidth
, BitWidth
- LZ
- TZ
).shl(TZ
);
7846 if ((LZ
!= 0 || TZ
!= 0) && !((~A
& ~Known
.Zero
) & EffectiveMask
)) {
7847 const SCEV
*MulCount
= getConstant(APInt::getOneBitSet(BitWidth
, TZ
));
7848 const SCEV
*LHS
= getSCEV(BO
->LHS
);
7849 const SCEV
*ShiftedLHS
= nullptr;
7850 if (auto *LHSMul
= dyn_cast
<SCEVMulExpr
>(LHS
)) {
7851 if (auto *OpC
= dyn_cast
<SCEVConstant
>(LHSMul
->getOperand(0))) {
7852 // For an expression like (x * 8) & 8, simplify the multiply.
7853 unsigned MulZeros
= OpC
->getAPInt().countr_zero();
7854 unsigned GCD
= std::min(MulZeros
, TZ
);
7855 APInt DivAmt
= APInt::getOneBitSet(BitWidth
, TZ
- GCD
);
7856 SmallVector
<const SCEV
*, 4> MulOps
;
7857 MulOps
.push_back(getConstant(OpC
->getAPInt().lshr(GCD
)));
7858 append_range(MulOps
, LHSMul
->operands().drop_front());
7859 auto *NewMul
= getMulExpr(MulOps
, LHSMul
->getNoWrapFlags());
7860 ShiftedLHS
= getUDivExpr(NewMul
, getConstant(DivAmt
));
7864 ShiftedLHS
= getUDivExpr(LHS
, MulCount
);
7867 getTruncateExpr(ShiftedLHS
,
7868 IntegerType::get(getContext(), BitWidth
- LZ
- TZ
)),
7869 BO
->LHS
->getType()),
7873 // Binary `and` is a bit-wise `umin`.
7874 if (BO
->LHS
->getType()->isIntegerTy(1)) {
7875 LHS
= getSCEV(BO
->LHS
);
7876 RHS
= getSCEV(BO
->RHS
);
7877 return getUMinExpr(LHS
, RHS
);
7881 case Instruction::Or
:
7882 // Binary `or` is a bit-wise `umax`.
7883 if (BO
->LHS
->getType()->isIntegerTy(1)) {
7884 LHS
= getSCEV(BO
->LHS
);
7885 RHS
= getSCEV(BO
->RHS
);
7886 return getUMaxExpr(LHS
, RHS
);
7890 case Instruction::Xor
:
7891 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->RHS
)) {
7892 // If the RHS of xor is -1, then this is a not operation.
7893 if (CI
->isMinusOne())
7894 return getNotSCEV(getSCEV(BO
->LHS
));
7896 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
7897 // This is a variant of the check for xor with -1, and it handles
7898 // the case where instcombine has trimmed non-demanded bits out
7899 // of an xor with -1.
7900 if (auto *LBO
= dyn_cast
<BinaryOperator
>(BO
->LHS
))
7901 if (ConstantInt
*LCI
= dyn_cast
<ConstantInt
>(LBO
->getOperand(1)))
7902 if (LBO
->getOpcode() == Instruction::And
&&
7903 LCI
->getValue() == CI
->getValue())
7904 if (const SCEVZeroExtendExpr
*Z
=
7905 dyn_cast
<SCEVZeroExtendExpr
>(getSCEV(BO
->LHS
))) {
7906 Type
*UTy
= BO
->LHS
->getType();
7907 const SCEV
*Z0
= Z
->getOperand();
7908 Type
*Z0Ty
= Z0
->getType();
7909 unsigned Z0TySize
= getTypeSizeInBits(Z0Ty
);
7911 // If C is a low-bits mask, the zero extend is serving to
7912 // mask off the high bits. Complement the operand and
7913 // re-apply the zext.
7914 if (CI
->getValue().isMask(Z0TySize
))
7915 return getZeroExtendExpr(getNotSCEV(Z0
), UTy
);
7917 // If C is a single bit, it may be in the sign-bit position
7918 // before the zero-extend. In this case, represent the xor
7919 // using an add, which is equivalent, and re-apply the zext.
7920 APInt Trunc
= CI
->getValue().trunc(Z0TySize
);
7921 if (Trunc
.zext(getTypeSizeInBits(UTy
)) == CI
->getValue() &&
7923 return getZeroExtendExpr(getAddExpr(Z0
, getConstant(Trunc
)),
7929 case Instruction::Shl
:
7930 // Turn shift left of a constant amount into a multiply.
7931 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(BO
->RHS
)) {
7932 uint32_t BitWidth
= cast
<IntegerType
>(SA
->getType())->getBitWidth();
7934 // If the shift count is not less than the bitwidth, the result of
7935 // the shift is undefined. Don't try to analyze it, because the
7936 // resolution chosen here may differ from the resolution chosen in
7937 // other parts of the compiler.
7938 if (SA
->getValue().uge(BitWidth
))
7941 // We can safely preserve the nuw flag in all cases. It's also safe to
7942 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
7943 // requires special handling. It can be preserved as long as we're not
7944 // left shifting by bitwidth - 1.
7945 auto Flags
= SCEV::FlagAnyWrap
;
7947 auto MulFlags
= getNoWrapFlagsFromUB(BO
->Op
);
7948 if ((MulFlags
& SCEV::FlagNSW
) &&
7949 ((MulFlags
& SCEV::FlagNUW
) || SA
->getValue().ult(BitWidth
- 1)))
7950 Flags
= (SCEV::NoWrapFlags
)(Flags
| SCEV::FlagNSW
);
7951 if (MulFlags
& SCEV::FlagNUW
)
7952 Flags
= (SCEV::NoWrapFlags
)(Flags
| SCEV::FlagNUW
);
7955 ConstantInt
*X
= ConstantInt::get(
7956 getContext(), APInt::getOneBitSet(BitWidth
, SA
->getZExtValue()));
7957 return getMulExpr(getSCEV(BO
->LHS
), getConstant(X
), Flags
);
7961 case Instruction::AShr
:
7962 // AShr X, C, where C is a constant.
7963 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->RHS
);
7967 Type
*OuterTy
= BO
->LHS
->getType();
7968 uint64_t BitWidth
= getTypeSizeInBits(OuterTy
);
7969 // If the shift count is not less than the bitwidth, the result of
7970 // the shift is undefined. Don't try to analyze it, because the
7971 // resolution chosen here may differ from the resolution chosen in
7972 // other parts of the compiler.
7973 if (CI
->getValue().uge(BitWidth
))
7977 return getSCEV(BO
->LHS
); // shift by zero --> noop
7979 uint64_t AShrAmt
= CI
->getZExtValue();
7980 Type
*TruncTy
= IntegerType::get(getContext(), BitWidth
- AShrAmt
);
7982 Operator
*L
= dyn_cast
<Operator
>(BO
->LHS
);
7983 const SCEV
*AddTruncateExpr
= nullptr;
7984 ConstantInt
*ShlAmtCI
= nullptr;
7985 const SCEV
*AddConstant
= nullptr;
7987 if (L
&& L
->getOpcode() == Instruction::Add
) {
7991 // n, c and m are constants.
7993 Operator
*LShift
= dyn_cast
<Operator
>(L
->getOperand(0));
7994 ConstantInt
*AddOperandCI
= dyn_cast
<ConstantInt
>(L
->getOperand(1));
7995 if (LShift
&& LShift
->getOpcode() == Instruction::Shl
) {
7997 const SCEV
*ShlOp0SCEV
= getSCEV(LShift
->getOperand(0));
7998 ShlAmtCI
= dyn_cast
<ConstantInt
>(LShift
->getOperand(1));
7999 // since we truncate to TruncTy, the AddConstant should be of the
8000 // same type, so create a new Constant with type same as TruncTy.
8001 // Also, the Add constant should be shifted right by AShr amount.
8002 APInt AddOperand
= AddOperandCI
->getValue().ashr(AShrAmt
);
8003 AddConstant
= getConstant(AddOperand
.trunc(BitWidth
- AShrAmt
));
8004 // we model the expression as sext(add(trunc(A), c << n)), since the
8005 // sext(trunc) part is already handled below, we create a
8006 // AddExpr(TruncExp) which will be used later.
8007 AddTruncateExpr
= getTruncateExpr(ShlOp0SCEV
, TruncTy
);
8010 } else if (L
&& L
->getOpcode() == Instruction::Shl
) {
8013 // Both n and m are constant.
8015 const SCEV
*ShlOp0SCEV
= getSCEV(L
->getOperand(0));
8016 ShlAmtCI
= dyn_cast
<ConstantInt
>(L
->getOperand(1));
8017 AddTruncateExpr
= getTruncateExpr(ShlOp0SCEV
, TruncTy
);
8020 if (AddTruncateExpr
&& ShlAmtCI
) {
8021 // We can merge the two given cases into a single SCEV statement,
8022 // incase n = m, the mul expression will be 2^0, so it gets resolved to
8023 // a simpler case. The following code handles the two cases:
8025 // 1) For a two-shift sext-inreg, i.e. n = m,
8026 // use sext(trunc(x)) as the SCEV expression.
8028 // 2) When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
8029 // expression. We already checked that ShlAmt < BitWidth, so
8030 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
8031 // ShlAmt - AShrAmt < Amt.
8032 const APInt
&ShlAmt
= ShlAmtCI
->getValue();
8033 if (ShlAmt
.ult(BitWidth
) && ShlAmt
.uge(AShrAmt
)) {
8034 APInt Mul
= APInt::getOneBitSet(BitWidth
- AShrAmt
,
8035 ShlAmtCI
->getZExtValue() - AShrAmt
);
8036 const SCEV
*CompositeExpr
=
8037 getMulExpr(AddTruncateExpr
, getConstant(Mul
));
8038 if (L
->getOpcode() != Instruction::Shl
)
8039 CompositeExpr
= getAddExpr(CompositeExpr
, AddConstant
);
8041 return getSignExtendExpr(CompositeExpr
, OuterTy
);
8048 switch (U
->getOpcode()) {
8049 case Instruction::Trunc
:
8050 return getTruncateExpr(getSCEV(U
->getOperand(0)), U
->getType());
8052 case Instruction::ZExt
:
8053 return getZeroExtendExpr(getSCEV(U
->getOperand(0)), U
->getType());
8055 case Instruction::SExt
:
8056 if (auto BO
= MatchBinaryOp(U
->getOperand(0), getDataLayout(), AC
, DT
,
8057 dyn_cast
<Instruction
>(V
))) {
8058 // The NSW flag of a subtract does not always survive the conversion to
8059 // A + (-1)*B. By pushing sign extension onto its operands we are much
8060 // more likely to preserve NSW and allow later AddRec optimisations.
8062 // NOTE: This is effectively duplicating this logic from getSignExtend:
8063 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
8064 // but by that point the NSW information has potentially been lost.
8065 if (BO
->Opcode
== Instruction::Sub
&& BO
->IsNSW
) {
8066 Type
*Ty
= U
->getType();
8067 auto *V1
= getSignExtendExpr(getSCEV(BO
->LHS
), Ty
);
8068 auto *V2
= getSignExtendExpr(getSCEV(BO
->RHS
), Ty
);
8069 return getMinusSCEV(V1
, V2
, SCEV::FlagNSW
);
8072 return getSignExtendExpr(getSCEV(U
->getOperand(0)), U
->getType());
8074 case Instruction::BitCast
:
8075 // BitCasts are no-op casts so we just eliminate the cast.
8076 if (isSCEVable(U
->getType()) && isSCEVable(U
->getOperand(0)->getType()))
8077 return getSCEV(U
->getOperand(0));
8080 case Instruction::PtrToInt
: {
8081 // Pointer to integer cast is straight-forward, so do model it.
8082 const SCEV
*Op
= getSCEV(U
->getOperand(0));
8083 Type
*DstIntTy
= U
->getType();
8084 // But only if effective SCEV (integer) type is wide enough to represent
8085 // all possible pointer values.
8086 const SCEV
*IntOp
= getPtrToIntExpr(Op
, DstIntTy
);
8087 if (isa
<SCEVCouldNotCompute
>(IntOp
))
8088 return getUnknown(V
);
8091 case Instruction::IntToPtr
:
8092 // Just don't deal with inttoptr casts.
8093 return getUnknown(V
);
8095 case Instruction::SDiv
:
8096 // If both operands are non-negative, this is just an udiv.
8097 if (isKnownNonNegative(getSCEV(U
->getOperand(0))) &&
8098 isKnownNonNegative(getSCEV(U
->getOperand(1))))
8099 return getUDivExpr(getSCEV(U
->getOperand(0)), getSCEV(U
->getOperand(1)));
8102 case Instruction::SRem
:
8103 // If both operands are non-negative, this is just an urem.
8104 if (isKnownNonNegative(getSCEV(U
->getOperand(0))) &&
8105 isKnownNonNegative(getSCEV(U
->getOperand(1))))
8106 return getURemExpr(getSCEV(U
->getOperand(0)), getSCEV(U
->getOperand(1)));
8109 case Instruction::GetElementPtr
:
8110 return createNodeForGEP(cast
<GEPOperator
>(U
));
8112 case Instruction::PHI
:
8113 return createNodeForPHI(cast
<PHINode
>(U
));
8115 case Instruction::Select
:
8116 return createNodeForSelectOrPHI(U
, U
->getOperand(0), U
->getOperand(1),
8119 case Instruction::Call
:
8120 case Instruction::Invoke
:
8121 if (Value
*RV
= cast
<CallBase
>(U
)->getReturnedArgOperand())
8124 if (auto *II
= dyn_cast
<IntrinsicInst
>(U
)) {
8125 switch (II
->getIntrinsicID()) {
8126 case Intrinsic::abs
:
8128 getSCEV(II
->getArgOperand(0)),
8129 /*IsNSW=*/cast
<ConstantInt
>(II
->getArgOperand(1))->isOne());
8130 case Intrinsic::umax
:
8131 LHS
= getSCEV(II
->getArgOperand(0));
8132 RHS
= getSCEV(II
->getArgOperand(1));
8133 return getUMaxExpr(LHS
, RHS
);
8134 case Intrinsic::umin
:
8135 LHS
= getSCEV(II
->getArgOperand(0));
8136 RHS
= getSCEV(II
->getArgOperand(1));
8137 return getUMinExpr(LHS
, RHS
);
8138 case Intrinsic::smax
:
8139 LHS
= getSCEV(II
->getArgOperand(0));
8140 RHS
= getSCEV(II
->getArgOperand(1));
8141 return getSMaxExpr(LHS
, RHS
);
8142 case Intrinsic::smin
:
8143 LHS
= getSCEV(II
->getArgOperand(0));
8144 RHS
= getSCEV(II
->getArgOperand(1));
8145 return getSMinExpr(LHS
, RHS
);
8146 case Intrinsic::usub_sat
: {
8147 const SCEV
*X
= getSCEV(II
->getArgOperand(0));
8148 const SCEV
*Y
= getSCEV(II
->getArgOperand(1));
8149 const SCEV
*ClampedY
= getUMinExpr(X
, Y
);
8150 return getMinusSCEV(X
, ClampedY
, SCEV::FlagNUW
);
8152 case Intrinsic::uadd_sat
: {
8153 const SCEV
*X
= getSCEV(II
->getArgOperand(0));
8154 const SCEV
*Y
= getSCEV(II
->getArgOperand(1));
8155 const SCEV
*ClampedX
= getUMinExpr(X
, getNotSCEV(Y
));
8156 return getAddExpr(ClampedX
, Y
, SCEV::FlagNUW
);
8158 case Intrinsic::start_loop_iterations
:
8159 case Intrinsic::annotation
:
8160 case Intrinsic::ptr_annotation
:
8161 // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is
8162 // just eqivalent to the first operand for SCEV purposes.
8163 return getSCEV(II
->getArgOperand(0));
8164 case Intrinsic::vscale
:
8165 return getVScale(II
->getType());
8173 return getUnknown(V
);
8176 //===----------------------------------------------------------------------===//
8177 // Iteration Count Computation Code
8180 const SCEV
*ScalarEvolution::getTripCountFromExitCount(const SCEV
*ExitCount
) {
8181 if (isa
<SCEVCouldNotCompute
>(ExitCount
))
8182 return getCouldNotCompute();
8184 auto *ExitCountType
= ExitCount
->getType();
8185 assert(ExitCountType
->isIntegerTy());
8186 auto *EvalTy
= Type::getIntNTy(ExitCountType
->getContext(),
8187 1 + ExitCountType
->getScalarSizeInBits());
8188 return getTripCountFromExitCount(ExitCount
, EvalTy
, nullptr);
8191 const SCEV
*ScalarEvolution::getTripCountFromExitCount(const SCEV
*ExitCount
,
8194 if (isa
<SCEVCouldNotCompute
>(ExitCount
))
8195 return getCouldNotCompute();
8197 unsigned ExitCountSize
= getTypeSizeInBits(ExitCount
->getType());
8198 unsigned EvalSize
= EvalTy
->getPrimitiveSizeInBits();
8200 auto CanAddOneWithoutOverflow
= [&]() {
8201 ConstantRange ExitCountRange
=
8202 getRangeRef(ExitCount
, RangeSignHint::HINT_RANGE_UNSIGNED
);
8203 if (!ExitCountRange
.contains(APInt::getMaxValue(ExitCountSize
)))
8206 return L
&& isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_NE
, ExitCount
,
8207 getMinusOne(ExitCount
->getType()));
8210 // If we need to zero extend the backedge count, check if we can add one to
8211 // it prior to zero extending without overflow. Provided this is safe, it
8212 // allows better simplification of the +1.
8213 if (EvalSize
> ExitCountSize
&& CanAddOneWithoutOverflow())
8214 return getZeroExtendExpr(
8215 getAddExpr(ExitCount
, getOne(ExitCount
->getType())), EvalTy
);
8217 // Get the total trip count from the count by adding 1. This may wrap.
8218 return getAddExpr(getTruncateOrZeroExtend(ExitCount
, EvalTy
), getOne(EvalTy
));
8221 static unsigned getConstantTripCount(const SCEVConstant
*ExitCount
) {
8225 ConstantInt
*ExitConst
= ExitCount
->getValue();
8227 // Guard against huge trip counts.
8228 if (ExitConst
->getValue().getActiveBits() > 32)
8231 // In case of integer overflow, this returns 0, which is correct.
8232 return ((unsigned)ExitConst
->getZExtValue()) + 1;
8235 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop
*L
) {
8236 auto *ExitCount
= dyn_cast
<SCEVConstant
>(getBackedgeTakenCount(L
, Exact
));
8237 return getConstantTripCount(ExitCount
);
8241 ScalarEvolution::getSmallConstantTripCount(const Loop
*L
,
8242 const BasicBlock
*ExitingBlock
) {
8243 assert(ExitingBlock
&& "Must pass a non-null exiting block!");
8244 assert(L
->isLoopExiting(ExitingBlock
) &&
8245 "Exiting block must actually branch out of the loop!");
8246 const SCEVConstant
*ExitCount
=
8247 dyn_cast
<SCEVConstant
>(getExitCount(L
, ExitingBlock
));
8248 return getConstantTripCount(ExitCount
);
8251 unsigned ScalarEvolution::getSmallConstantMaxTripCount(
8252 const Loop
*L
, SmallVectorImpl
<const SCEVPredicate
*> *Predicates
) {
8254 const auto *MaxExitCount
=
8255 Predicates
? getPredicatedConstantMaxBackedgeTakenCount(L
, *Predicates
)
8256 : getConstantMaxBackedgeTakenCount(L
);
8257 return getConstantTripCount(dyn_cast
<SCEVConstant
>(MaxExitCount
));
8260 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop
*L
) {
8261 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
8262 L
->getExitingBlocks(ExitingBlocks
);
8264 std::optional
<unsigned> Res
;
8265 for (auto *ExitingBB
: ExitingBlocks
) {
8266 unsigned Multiple
= getSmallConstantTripMultiple(L
, ExitingBB
);
8269 Res
= (unsigned)std::gcd(*Res
, Multiple
);
8271 return Res
.value_or(1);
8274 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop
*L
,
8275 const SCEV
*ExitCount
) {
8276 if (ExitCount
== getCouldNotCompute())
8279 // Get the trip count
8280 const SCEV
*TCExpr
= getTripCountFromExitCount(applyLoopGuards(ExitCount
, L
));
8282 APInt Multiple
= getNonZeroConstantMultiple(TCExpr
);
8283 // If a trip multiple is huge (>=2^32), the trip count is still divisible by
8284 // the greatest power of 2 divisor less than 2^32.
8285 return Multiple
.getActiveBits() > 32
8286 ? 1U << std::min((unsigned)31, Multiple
.countTrailingZeros())
8287 : (unsigned)Multiple
.zextOrTrunc(32).getZExtValue();
8290 /// Returns the largest constant divisor of the trip count of this loop as a
8291 /// normal unsigned value, if possible. This means that the actual trip count is
8292 /// always a multiple of the returned value (don't forget the trip count could
8293 /// very well be zero as well!).
8295 /// Returns 1 if the trip count is unknown or not guaranteed to be the
8296 /// multiple of a constant (which is also the case if the trip count is simply
8297 /// constant, use getSmallConstantTripCount for that case), Will also return 1
8298 /// if the trip count is very large (>= 2^32).
8300 /// As explained in the comments for getSmallConstantTripCount, this assumes
8301 /// that control exits the loop via ExitingBlock.
8303 ScalarEvolution::getSmallConstantTripMultiple(const Loop
*L
,
8304 const BasicBlock
*ExitingBlock
) {
8305 assert(ExitingBlock
&& "Must pass a non-null exiting block!");
8306 assert(L
->isLoopExiting(ExitingBlock
) &&
8307 "Exiting block must actually branch out of the loop!");
8308 const SCEV
*ExitCount
= getExitCount(L
, ExitingBlock
);
8309 return getSmallConstantTripMultiple(L
, ExitCount
);
8312 const SCEV
*ScalarEvolution::getExitCount(const Loop
*L
,
8313 const BasicBlock
*ExitingBlock
,
8314 ExitCountKind Kind
) {
8317 return getBackedgeTakenInfo(L
).getExact(ExitingBlock
, this);
8318 case SymbolicMaximum
:
8319 return getBackedgeTakenInfo(L
).getSymbolicMax(ExitingBlock
, this);
8320 case ConstantMaximum
:
8321 return getBackedgeTakenInfo(L
).getConstantMax(ExitingBlock
, this);
8323 llvm_unreachable("Invalid ExitCountKind!");
8326 const SCEV
*ScalarEvolution::getPredicatedExitCount(
8327 const Loop
*L
, const BasicBlock
*ExitingBlock
,
8328 SmallVectorImpl
<const SCEVPredicate
*> *Predicates
, ExitCountKind Kind
) {
8331 return getPredicatedBackedgeTakenInfo(L
).getExact(ExitingBlock
, this,
8333 case SymbolicMaximum
:
8334 return getPredicatedBackedgeTakenInfo(L
).getSymbolicMax(ExitingBlock
, this,
8336 case ConstantMaximum
:
8337 return getPredicatedBackedgeTakenInfo(L
).getConstantMax(ExitingBlock
, this,
8340 llvm_unreachable("Invalid ExitCountKind!");
8343 const SCEV
*ScalarEvolution::getPredicatedBackedgeTakenCount(
8344 const Loop
*L
, SmallVectorImpl
<const SCEVPredicate
*> &Preds
) {
8345 return getPredicatedBackedgeTakenInfo(L
).getExact(L
, this, &Preds
);
8348 const SCEV
*ScalarEvolution::getBackedgeTakenCount(const Loop
*L
,
8349 ExitCountKind Kind
) {
8352 return getBackedgeTakenInfo(L
).getExact(L
, this);
8353 case ConstantMaximum
:
8354 return getBackedgeTakenInfo(L
).getConstantMax(this);
8355 case SymbolicMaximum
:
8356 return getBackedgeTakenInfo(L
).getSymbolicMax(L
, this);
8358 llvm_unreachable("Invalid ExitCountKind!");
8361 const SCEV
*ScalarEvolution::getPredicatedSymbolicMaxBackedgeTakenCount(
8362 const Loop
*L
, SmallVectorImpl
<const SCEVPredicate
*> &Preds
) {
8363 return getPredicatedBackedgeTakenInfo(L
).getSymbolicMax(L
, this, &Preds
);
8366 const SCEV
*ScalarEvolution::getPredicatedConstantMaxBackedgeTakenCount(
8367 const Loop
*L
, SmallVectorImpl
<const SCEVPredicate
*> &Preds
) {
8368 return getPredicatedBackedgeTakenInfo(L
).getConstantMax(this, &Preds
);
8371 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop
*L
) {
8372 return getBackedgeTakenInfo(L
).isConstantMaxOrZero(this);
8375 /// Push PHI nodes in the header of the given loop onto the given Worklist.
8376 static void PushLoopPHIs(const Loop
*L
,
8377 SmallVectorImpl
<Instruction
*> &Worklist
,
8378 SmallPtrSetImpl
<Instruction
*> &Visited
) {
8379 BasicBlock
*Header
= L
->getHeader();
8381 // Push all Loop-header PHIs onto the Worklist stack.
8382 for (PHINode
&PN
: Header
->phis())
8383 if (Visited
.insert(&PN
).second
)
8384 Worklist
.push_back(&PN
);
8387 ScalarEvolution::BackedgeTakenInfo
&
8388 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop
*L
) {
8389 auto &BTI
= getBackedgeTakenInfo(L
);
8390 if (BTI
.hasFullInfo())
8393 auto Pair
= PredicatedBackedgeTakenCounts
.insert({L
, BackedgeTakenInfo()});
8396 return Pair
.first
->second
;
8398 BackedgeTakenInfo Result
=
8399 computeBackedgeTakenCount(L
, /*AllowPredicates=*/true);
8401 return PredicatedBackedgeTakenCounts
.find(L
)->second
= std::move(Result
);
8404 ScalarEvolution::BackedgeTakenInfo
&
8405 ScalarEvolution::getBackedgeTakenInfo(const Loop
*L
) {
8406 // Initially insert an invalid entry for this loop. If the insertion
8407 // succeeds, proceed to actually compute a backedge-taken count and
8408 // update the value. The temporary CouldNotCompute value tells SCEV
8409 // code elsewhere that it shouldn't attempt to request a new
8410 // backedge-taken count, which could result in infinite recursion.
8411 std::pair
<DenseMap
<const Loop
*, BackedgeTakenInfo
>::iterator
, bool> Pair
=
8412 BackedgeTakenCounts
.insert({L
, BackedgeTakenInfo()});
8414 return Pair
.first
->second
;
8416 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
8417 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
8418 // must be cleared in this scope.
8419 BackedgeTakenInfo Result
= computeBackedgeTakenCount(L
);
8421 // Now that we know more about the trip count for this loop, forget any
8422 // existing SCEV values for PHI nodes in this loop since they are only
8423 // conservative estimates made without the benefit of trip count
8424 // information. This invalidation is not necessary for correctness, and is
8425 // only done to produce more precise results.
8426 if (Result
.hasAnyInfo()) {
8427 // Invalidate any expression using an addrec in this loop.
8428 SmallVector
<const SCEV
*, 8> ToForget
;
8429 auto LoopUsersIt
= LoopUsers
.find(L
);
8430 if (LoopUsersIt
!= LoopUsers
.end())
8431 append_range(ToForget
, LoopUsersIt
->second
);
8432 forgetMemoizedResults(ToForget
);
8434 // Invalidate constant-evolved loop header phis.
8435 for (PHINode
&PN
: L
->getHeader()->phis())
8436 ConstantEvolutionLoopExitValue
.erase(&PN
);
8439 // Re-lookup the insert position, since the call to
8440 // computeBackedgeTakenCount above could result in a
8441 // recusive call to getBackedgeTakenInfo (on a different
8442 // loop), which would invalidate the iterator computed
8444 return BackedgeTakenCounts
.find(L
)->second
= std::move(Result
);
8447 void ScalarEvolution::forgetAllLoops() {
8448 // This method is intended to forget all info about loops. It should
8449 // invalidate caches as if the following happened:
8450 // - The trip counts of all loops have changed arbitrarily
8451 // - Every llvm::Value has been updated in place to produce a different
8453 BackedgeTakenCounts
.clear();
8454 PredicatedBackedgeTakenCounts
.clear();
8455 BECountUsers
.clear();
8456 LoopPropertiesCache
.clear();
8457 ConstantEvolutionLoopExitValue
.clear();
8458 ValueExprMap
.clear();
8459 ValuesAtScopes
.clear();
8460 ValuesAtScopesUsers
.clear();
8461 LoopDispositions
.clear();
8462 BlockDispositions
.clear();
8463 UnsignedRanges
.clear();
8464 SignedRanges
.clear();
8465 ExprValueMap
.clear();
8467 ConstantMultipleCache
.clear();
8468 PredicatedSCEVRewrites
.clear();
8470 FoldCacheUser
.clear();
8472 void ScalarEvolution::visitAndClearUsers(
8473 SmallVectorImpl
<Instruction
*> &Worklist
,
8474 SmallPtrSetImpl
<Instruction
*> &Visited
,
8475 SmallVectorImpl
<const SCEV
*> &ToForget
) {
8476 while (!Worklist
.empty()) {
8477 Instruction
*I
= Worklist
.pop_back_val();
8478 if (!isSCEVable(I
->getType()) && !isa
<WithOverflowInst
>(I
))
8481 ValueExprMapType::iterator It
=
8482 ValueExprMap
.find_as(static_cast<Value
*>(I
));
8483 if (It
!= ValueExprMap
.end()) {
8484 eraseValueFromMap(It
->first
);
8485 ToForget
.push_back(It
->second
);
8486 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
8487 ConstantEvolutionLoopExitValue
.erase(PN
);
8490 PushDefUseChildren(I
, Worklist
, Visited
);
8494 void ScalarEvolution::forgetLoop(const Loop
*L
) {
8495 SmallVector
<const Loop
*, 16> LoopWorklist(1, L
);
8496 SmallVector
<Instruction
*, 32> Worklist
;
8497 SmallPtrSet
<Instruction
*, 16> Visited
;
8498 SmallVector
<const SCEV
*, 16> ToForget
;
8500 // Iterate over all the loops and sub-loops to drop SCEV information.
8501 while (!LoopWorklist
.empty()) {
8502 auto *CurrL
= LoopWorklist
.pop_back_val();
8504 // Drop any stored trip count value.
8505 forgetBackedgeTakenCounts(CurrL
, /* Predicated */ false);
8506 forgetBackedgeTakenCounts(CurrL
, /* Predicated */ true);
8508 // Drop information about predicated SCEV rewrites for this loop.
8509 for (auto I
= PredicatedSCEVRewrites
.begin();
8510 I
!= PredicatedSCEVRewrites
.end();) {
8511 std::pair
<const SCEV
*, const Loop
*> Entry
= I
->first
;
8512 if (Entry
.second
== CurrL
)
8513 PredicatedSCEVRewrites
.erase(I
++);
8518 auto LoopUsersItr
= LoopUsers
.find(CurrL
);
8519 if (LoopUsersItr
!= LoopUsers
.end()) {
8520 ToForget
.insert(ToForget
.end(), LoopUsersItr
->second
.begin(),
8521 LoopUsersItr
->second
.end());
8524 // Drop information about expressions based on loop-header PHIs.
8525 PushLoopPHIs(CurrL
, Worklist
, Visited
);
8526 visitAndClearUsers(Worklist
, Visited
, ToForget
);
8528 LoopPropertiesCache
.erase(CurrL
);
8529 // Forget all contained loops too, to avoid dangling entries in the
8530 // ValuesAtScopes map.
8531 LoopWorklist
.append(CurrL
->begin(), CurrL
->end());
8533 forgetMemoizedResults(ToForget
);
8536 void ScalarEvolution::forgetTopmostLoop(const Loop
*L
) {
8537 forgetLoop(L
->getOutermostLoop());
8540 void ScalarEvolution::forgetValue(Value
*V
) {
8541 Instruction
*I
= dyn_cast
<Instruction
>(V
);
8544 // Drop information about expressions based on loop-header PHIs.
8545 SmallVector
<Instruction
*, 16> Worklist
;
8546 SmallPtrSet
<Instruction
*, 8> Visited
;
8547 SmallVector
<const SCEV
*, 8> ToForget
;
8548 Worklist
.push_back(I
);
8550 visitAndClearUsers(Worklist
, Visited
, ToForget
);
8552 forgetMemoizedResults(ToForget
);
8555 void ScalarEvolution::forgetLcssaPhiWithNewPredecessor(Loop
*L
, PHINode
*V
) {
8556 if (!isSCEVable(V
->getType()))
8559 // If SCEV looked through a trivial LCSSA phi node, we might have SCEV's
8560 // directly using a SCEVUnknown/SCEVAddRec defined in the loop. After an
8561 // extra predecessor is added, this is no longer valid. Find all Unknowns and
8562 // AddRecs defined in the loop and invalidate any SCEV's making use of them.
8563 if (const SCEV
*S
= getExistingSCEV(V
)) {
8564 struct InvalidationRootCollector
{
8566 SmallVector
<const SCEV
*, 8> Roots
;
8568 InvalidationRootCollector(Loop
*L
) : L(L
) {}
8570 bool follow(const SCEV
*S
) {
8571 if (auto *SU
= dyn_cast
<SCEVUnknown
>(S
)) {
8572 if (auto *I
= dyn_cast
<Instruction
>(SU
->getValue()))
8575 } else if (auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
8576 if (L
->contains(AddRec
->getLoop()))
8581 bool isDone() const { return false; }
8584 InvalidationRootCollector
C(L
);
8586 forgetMemoizedResults(C
.Roots
);
8589 // Also perform the normal invalidation.
8593 void ScalarEvolution::forgetLoopDispositions() { LoopDispositions
.clear(); }
8595 void ScalarEvolution::forgetBlockAndLoopDispositions(Value
*V
) {
8596 // Unless a specific value is passed to invalidation, completely clear both
8599 BlockDispositions
.clear();
8600 LoopDispositions
.clear();
8604 if (!isSCEVable(V
->getType()))
8607 const SCEV
*S
= getExistingSCEV(V
);
8611 // Invalidate the block and loop dispositions cached for S. Dispositions of
8612 // S's users may change if S's disposition changes (i.e. a user may change to
8613 // loop-invariant, if S changes to loop invariant), so also invalidate
8614 // dispositions of S's users recursively.
8615 SmallVector
<const SCEV
*, 8> Worklist
= {S
};
8616 SmallPtrSet
<const SCEV
*, 8> Seen
= {S
};
8617 while (!Worklist
.empty()) {
8618 const SCEV
*Curr
= Worklist
.pop_back_val();
8619 bool LoopDispoRemoved
= LoopDispositions
.erase(Curr
);
8620 bool BlockDispoRemoved
= BlockDispositions
.erase(Curr
);
8621 if (!LoopDispoRemoved
&& !BlockDispoRemoved
)
8623 auto Users
= SCEVUsers
.find(Curr
);
8624 if (Users
!= SCEVUsers
.end())
8625 for (const auto *User
: Users
->second
)
8626 if (Seen
.insert(User
).second
)
8627 Worklist
.push_back(User
);
8631 /// Get the exact loop backedge taken count considering all loop exits. A
8632 /// computable result can only be returned for loops with all exiting blocks
8633 /// dominating the latch. howFarToZero assumes that the limit of each loop test
8634 /// is never skipped. This is a valid assumption as long as the loop exits via
8635 /// that test. For precise results, it is the caller's responsibility to specify
8636 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
8637 const SCEV
*ScalarEvolution::BackedgeTakenInfo::getExact(
8638 const Loop
*L
, ScalarEvolution
*SE
,
8639 SmallVectorImpl
<const SCEVPredicate
*> *Preds
) const {
8640 // If any exits were not computable, the loop is not computable.
8641 if (!isComplete() || ExitNotTaken
.empty())
8642 return SE
->getCouldNotCompute();
8644 const BasicBlock
*Latch
= L
->getLoopLatch();
8645 // All exiting blocks we have collected must dominate the only backedge.
8647 return SE
->getCouldNotCompute();
8649 // All exiting blocks we have gathered dominate loop's latch, so exact trip
8650 // count is simply a minimum out of all these calculated exit counts.
8651 SmallVector
<const SCEV
*, 2> Ops
;
8652 for (const auto &ENT
: ExitNotTaken
) {
8653 const SCEV
*BECount
= ENT
.ExactNotTaken
;
8654 assert(BECount
!= SE
->getCouldNotCompute() && "Bad exit SCEV!");
8655 assert(SE
->DT
.dominates(ENT
.ExitingBlock
, Latch
) &&
8656 "We should only have known counts for exiting blocks that dominate "
8659 Ops
.push_back(BECount
);
8662 append_range(*Preds
, ENT
.Predicates
);
8664 assert((Preds
|| ENT
.hasAlwaysTruePredicate()) &&
8665 "Predicate should be always true!");
8668 // If an earlier exit exits on the first iteration (exit count zero), then
8669 // a later poison exit count should not propagate into the result. This are
8670 // exactly the semantics provided by umin_seq.
8671 return SE
->getUMinFromMismatchedTypes(Ops
, /* Sequential */ true);
8674 const ScalarEvolution::ExitNotTakenInfo
*
8675 ScalarEvolution::BackedgeTakenInfo::getExitNotTaken(
8676 const BasicBlock
*ExitingBlock
,
8677 SmallVectorImpl
<const SCEVPredicate
*> *Predicates
) const {
8678 for (const auto &ENT
: ExitNotTaken
)
8679 if (ENT
.ExitingBlock
== ExitingBlock
) {
8680 if (ENT
.hasAlwaysTruePredicate())
8682 else if (Predicates
) {
8683 append_range(*Predicates
, ENT
.Predicates
);
8691 /// getConstantMax - Get the constant max backedge taken count for the loop.
8692 const SCEV
*ScalarEvolution::BackedgeTakenInfo::getConstantMax(
8693 ScalarEvolution
*SE
,
8694 SmallVectorImpl
<const SCEVPredicate
*> *Predicates
) const {
8695 if (!getConstantMax())
8696 return SE
->getCouldNotCompute();
8698 for (const auto &ENT
: ExitNotTaken
)
8699 if (!ENT
.hasAlwaysTruePredicate()) {
8701 return SE
->getCouldNotCompute();
8702 append_range(*Predicates
, ENT
.Predicates
);
8705 assert((isa
<SCEVCouldNotCompute
>(getConstantMax()) ||
8706 isa
<SCEVConstant
>(getConstantMax())) &&
8707 "No point in having a non-constant max backedge taken count!");
8708 return getConstantMax();
8711 const SCEV
*ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(
8712 const Loop
*L
, ScalarEvolution
*SE
,
8713 SmallVectorImpl
<const SCEVPredicate
*> *Predicates
) {
8715 // Form an expression for the maximum exit count possible for this loop. We
8716 // merge the max and exact information to approximate a version of
8717 // getConstantMaxBackedgeTakenCount which isn't restricted to just
8719 SmallVector
<const SCEV
*, 4> ExitCounts
;
8721 for (const auto &ENT
: ExitNotTaken
) {
8722 const SCEV
*ExitCount
= ENT
.SymbolicMaxNotTaken
;
8723 if (!isa
<SCEVCouldNotCompute
>(ExitCount
)) {
8724 assert(SE
->DT
.dominates(ENT
.ExitingBlock
, L
->getLoopLatch()) &&
8725 "We should only have known counts for exiting blocks that "
8727 ExitCounts
.push_back(ExitCount
);
8729 append_range(*Predicates
, ENT
.Predicates
);
8731 assert((Predicates
|| ENT
.hasAlwaysTruePredicate()) &&
8732 "Predicate should be always true!");
8735 if (ExitCounts
.empty())
8736 SymbolicMax
= SE
->getCouldNotCompute();
8739 SE
->getUMinFromMismatchedTypes(ExitCounts
, /*Sequential*/ true);
8744 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
8745 ScalarEvolution
*SE
) const {
8746 auto PredicateNotAlwaysTrue
= [](const ExitNotTakenInfo
&ENT
) {
8747 return !ENT
.hasAlwaysTruePredicate();
8749 return MaxOrZero
&& !any_of(ExitNotTaken
, PredicateNotAlwaysTrue
);
8752 ScalarEvolution::ExitLimit::ExitLimit(const SCEV
*E
)
8753 : ExitLimit(E
, E
, E
, false) {}
8755 ScalarEvolution::ExitLimit::ExitLimit(
8756 const SCEV
*E
, const SCEV
*ConstantMaxNotTaken
,
8757 const SCEV
*SymbolicMaxNotTaken
, bool MaxOrZero
,
8758 ArrayRef
<ArrayRef
<const SCEVPredicate
*>> PredLists
)
8759 : ExactNotTaken(E
), ConstantMaxNotTaken(ConstantMaxNotTaken
),
8760 SymbolicMaxNotTaken(SymbolicMaxNotTaken
), MaxOrZero(MaxOrZero
) {
8761 // If we prove the max count is zero, so is the symbolic bound. This happens
8762 // in practice due to differences in a) how context sensitive we've chosen
8763 // to be and b) how we reason about bounds implied by UB.
8764 if (ConstantMaxNotTaken
->isZero()) {
8765 this->ExactNotTaken
= E
= ConstantMaxNotTaken
;
8766 this->SymbolicMaxNotTaken
= SymbolicMaxNotTaken
= ConstantMaxNotTaken
;
8769 assert((isa
<SCEVCouldNotCompute
>(ExactNotTaken
) ||
8770 !isa
<SCEVCouldNotCompute
>(ConstantMaxNotTaken
)) &&
8771 "Exact is not allowed to be less precise than Constant Max");
8772 assert((isa
<SCEVCouldNotCompute
>(ExactNotTaken
) ||
8773 !isa
<SCEVCouldNotCompute
>(SymbolicMaxNotTaken
)) &&
8774 "Exact is not allowed to be less precise than Symbolic Max");
8775 assert((isa
<SCEVCouldNotCompute
>(SymbolicMaxNotTaken
) ||
8776 !isa
<SCEVCouldNotCompute
>(ConstantMaxNotTaken
)) &&
8777 "Symbolic Max is not allowed to be less precise than Constant Max");
8778 assert((isa
<SCEVCouldNotCompute
>(ConstantMaxNotTaken
) ||
8779 isa
<SCEVConstant
>(ConstantMaxNotTaken
)) &&
8780 "No point in having a non-constant max backedge taken count!");
8781 SmallPtrSet
<const SCEVPredicate
*, 4> SeenPreds
;
8782 for (const auto PredList
: PredLists
)
8783 for (const auto *P
: PredList
) {
8784 if (SeenPreds
.contains(P
))
8786 assert(!isa
<SCEVUnionPredicate
>(P
) && "Only add leaf predicates here!");
8787 SeenPreds
.insert(P
);
8788 Predicates
.push_back(P
);
8790 assert((isa
<SCEVCouldNotCompute
>(E
) || !E
->getType()->isPointerTy()) &&
8791 "Backedge count should be int");
8792 assert((isa
<SCEVCouldNotCompute
>(ConstantMaxNotTaken
) ||
8793 !ConstantMaxNotTaken
->getType()->isPointerTy()) &&
8794 "Max backedge count should be int");
8797 ScalarEvolution::ExitLimit::ExitLimit(const SCEV
*E
,
8798 const SCEV
*ConstantMaxNotTaken
,
8799 const SCEV
*SymbolicMaxNotTaken
,
8801 ArrayRef
<const SCEVPredicate
*> PredList
)
8802 : ExitLimit(E
, ConstantMaxNotTaken
, SymbolicMaxNotTaken
, MaxOrZero
,
8803 ArrayRef({PredList
})) {}
8805 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
8806 /// computable exit into a persistent ExitNotTakenInfo array.
8807 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
8808 ArrayRef
<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo
> ExitCounts
,
8809 bool IsComplete
, const SCEV
*ConstantMax
, bool MaxOrZero
)
8810 : ConstantMax(ConstantMax
), IsComplete(IsComplete
), MaxOrZero(MaxOrZero
) {
8811 using EdgeExitInfo
= ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo
;
8813 ExitNotTaken
.reserve(ExitCounts
.size());
8814 std::transform(ExitCounts
.begin(), ExitCounts
.end(),
8815 std::back_inserter(ExitNotTaken
),
8816 [&](const EdgeExitInfo
&EEI
) {
8817 BasicBlock
*ExitBB
= EEI
.first
;
8818 const ExitLimit
&EL
= EEI
.second
;
8819 return ExitNotTakenInfo(ExitBB
, EL
.ExactNotTaken
,
8820 EL
.ConstantMaxNotTaken
, EL
.SymbolicMaxNotTaken
,
8823 assert((isa
<SCEVCouldNotCompute
>(ConstantMax
) ||
8824 isa
<SCEVConstant
>(ConstantMax
)) &&
8825 "No point in having a non-constant max backedge taken count!");
8828 /// Compute the number of times the backedge of the specified loop will execute.
8829 ScalarEvolution::BackedgeTakenInfo
8830 ScalarEvolution::computeBackedgeTakenCount(const Loop
*L
,
8831 bool AllowPredicates
) {
8832 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
8833 L
->getExitingBlocks(ExitingBlocks
);
8835 using EdgeExitInfo
= ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo
;
8837 SmallVector
<EdgeExitInfo
, 4> ExitCounts
;
8838 bool CouldComputeBECount
= true;
8839 BasicBlock
*Latch
= L
->getLoopLatch(); // may be NULL.
8840 const SCEV
*MustExitMaxBECount
= nullptr;
8841 const SCEV
*MayExitMaxBECount
= nullptr;
8842 bool MustExitMaxOrZero
= false;
8843 bool IsOnlyExit
= ExitingBlocks
.size() == 1;
8845 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
8846 // and compute maxBECount.
8847 // Do a union of all the predicates here.
8848 for (BasicBlock
*ExitBB
: ExitingBlocks
) {
8849 // We canonicalize untaken exits to br (constant), ignore them so that
8850 // proving an exit untaken doesn't negatively impact our ability to reason
8851 // about the loop as whole.
8852 if (auto *BI
= dyn_cast
<BranchInst
>(ExitBB
->getTerminator()))
8853 if (auto *CI
= dyn_cast
<ConstantInt
>(BI
->getCondition())) {
8854 bool ExitIfTrue
= !L
->contains(BI
->getSuccessor(0));
8855 if (ExitIfTrue
== CI
->isZero())
8859 ExitLimit EL
= computeExitLimit(L
, ExitBB
, IsOnlyExit
, AllowPredicates
);
8861 assert((AllowPredicates
|| EL
.Predicates
.empty()) &&
8862 "Predicated exit limit when predicates are not allowed!");
8864 // 1. For each exit that can be computed, add an entry to ExitCounts.
8865 // CouldComputeBECount is true only if all exits can be computed.
8866 if (EL
.ExactNotTaken
!= getCouldNotCompute())
8867 ++NumExitCountsComputed
;
8869 // We couldn't compute an exact value for this exit, so
8870 // we won't be able to compute an exact value for the loop.
8871 CouldComputeBECount
= false;
8872 // Remember exit count if either exact or symbolic is known. Because
8873 // Exact always implies symbolic, only check symbolic.
8874 if (EL
.SymbolicMaxNotTaken
!= getCouldNotCompute())
8875 ExitCounts
.emplace_back(ExitBB
, EL
);
8877 assert(EL
.ExactNotTaken
== getCouldNotCompute() &&
8878 "Exact is known but symbolic isn't?");
8879 ++NumExitCountsNotComputed
;
8882 // 2. Derive the loop's MaxBECount from each exit's max number of
8883 // non-exiting iterations. Partition the loop exits into two kinds:
8884 // LoopMustExits and LoopMayExits.
8886 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
8887 // is a LoopMayExit. If any computable LoopMustExit is found, then
8888 // MaxBECount is the minimum EL.ConstantMaxNotTaken of computable
8889 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
8890 // EL.ConstantMaxNotTaken, where CouldNotCompute is considered greater than
8892 // computable EL.ConstantMaxNotTaken.
8893 if (EL
.ConstantMaxNotTaken
!= getCouldNotCompute() && Latch
&&
8894 DT
.dominates(ExitBB
, Latch
)) {
8895 if (!MustExitMaxBECount
) {
8896 MustExitMaxBECount
= EL
.ConstantMaxNotTaken
;
8897 MustExitMaxOrZero
= EL
.MaxOrZero
;
8899 MustExitMaxBECount
= getUMinFromMismatchedTypes(MustExitMaxBECount
,
8900 EL
.ConstantMaxNotTaken
);
8902 } else if (MayExitMaxBECount
!= getCouldNotCompute()) {
8903 if (!MayExitMaxBECount
|| EL
.ConstantMaxNotTaken
== getCouldNotCompute())
8904 MayExitMaxBECount
= EL
.ConstantMaxNotTaken
;
8906 MayExitMaxBECount
= getUMaxFromMismatchedTypes(MayExitMaxBECount
,
8907 EL
.ConstantMaxNotTaken
);
8911 const SCEV
*MaxBECount
= MustExitMaxBECount
? MustExitMaxBECount
:
8912 (MayExitMaxBECount
? MayExitMaxBECount
: getCouldNotCompute());
8913 // The loop backedge will be taken the maximum or zero times if there's
8914 // a single exit that must be taken the maximum or zero times.
8915 bool MaxOrZero
= (MustExitMaxOrZero
&& ExitingBlocks
.size() == 1);
8917 // Remember which SCEVs are used in exit limits for invalidation purposes.
8918 // We only care about non-constant SCEVs here, so we can ignore
8919 // EL.ConstantMaxNotTaken
8920 // and MaxBECount, which must be SCEVConstant.
8921 for (const auto &Pair
: ExitCounts
) {
8922 if (!isa
<SCEVConstant
>(Pair
.second
.ExactNotTaken
))
8923 BECountUsers
[Pair
.second
.ExactNotTaken
].insert({L
, AllowPredicates
});
8924 if (!isa
<SCEVConstant
>(Pair
.second
.SymbolicMaxNotTaken
))
8925 BECountUsers
[Pair
.second
.SymbolicMaxNotTaken
].insert(
8926 {L
, AllowPredicates
});
8928 return BackedgeTakenInfo(std::move(ExitCounts
), CouldComputeBECount
,
8929 MaxBECount
, MaxOrZero
);
8932 ScalarEvolution::ExitLimit
8933 ScalarEvolution::computeExitLimit(const Loop
*L
, BasicBlock
*ExitingBlock
,
8934 bool IsOnlyExit
, bool AllowPredicates
) {
8935 assert(L
->contains(ExitingBlock
) && "Exit count for non-loop block?");
8936 // If our exiting block does not dominate the latch, then its connection with
8937 // loop's exit limit may be far from trivial.
8938 const BasicBlock
*Latch
= L
->getLoopLatch();
8939 if (!Latch
|| !DT
.dominates(ExitingBlock
, Latch
))
8940 return getCouldNotCompute();
8942 Instruction
*Term
= ExitingBlock
->getTerminator();
8943 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(Term
)) {
8944 assert(BI
->isConditional() && "If unconditional, it can't be in loop!");
8945 bool ExitIfTrue
= !L
->contains(BI
->getSuccessor(0));
8946 assert(ExitIfTrue
== L
->contains(BI
->getSuccessor(1)) &&
8947 "It should have one successor in loop and one exit block!");
8948 // Proceed to the next level to examine the exit condition expression.
8949 return computeExitLimitFromCond(L
, BI
->getCondition(), ExitIfTrue
,
8950 /*ControlsOnlyExit=*/IsOnlyExit
,
8954 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(Term
)) {
8955 // For switch, make sure that there is a single exit from the loop.
8956 BasicBlock
*Exit
= nullptr;
8957 for (auto *SBB
: successors(ExitingBlock
))
8958 if (!L
->contains(SBB
)) {
8959 if (Exit
) // Multiple exit successors.
8960 return getCouldNotCompute();
8963 assert(Exit
&& "Exiting block must have at least one exit");
8964 return computeExitLimitFromSingleExitSwitch(
8965 L
, SI
, Exit
, /*ControlsOnlyExit=*/IsOnlyExit
);
8968 return getCouldNotCompute();
8971 ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromCond(
8972 const Loop
*L
, Value
*ExitCond
, bool ExitIfTrue
, bool ControlsOnlyExit
,
8973 bool AllowPredicates
) {
8974 ScalarEvolution::ExitLimitCacheTy
Cache(L
, ExitIfTrue
, AllowPredicates
);
8975 return computeExitLimitFromCondCached(Cache
, L
, ExitCond
, ExitIfTrue
,
8976 ControlsOnlyExit
, AllowPredicates
);
8979 std::optional
<ScalarEvolution::ExitLimit
>
8980 ScalarEvolution::ExitLimitCache::find(const Loop
*L
, Value
*ExitCond
,
8981 bool ExitIfTrue
, bool ControlsOnlyExit
,
8982 bool AllowPredicates
) {
8984 (void)this->ExitIfTrue
;
8985 (void)this->AllowPredicates
;
8987 assert(this->L
== L
&& this->ExitIfTrue
== ExitIfTrue
&&
8988 this->AllowPredicates
== AllowPredicates
&&
8989 "Variance in assumed invariant key components!");
8990 auto Itr
= TripCountMap
.find({ExitCond
, ControlsOnlyExit
});
8991 if (Itr
== TripCountMap
.end())
8992 return std::nullopt
;
8996 void ScalarEvolution::ExitLimitCache::insert(const Loop
*L
, Value
*ExitCond
,
8998 bool ControlsOnlyExit
,
8999 bool AllowPredicates
,
9000 const ExitLimit
&EL
) {
9001 assert(this->L
== L
&& this->ExitIfTrue
== ExitIfTrue
&&
9002 this->AllowPredicates
== AllowPredicates
&&
9003 "Variance in assumed invariant key components!");
9005 auto InsertResult
= TripCountMap
.insert({{ExitCond
, ControlsOnlyExit
}, EL
});
9006 assert(InsertResult
.second
&& "Expected successful insertion!");
9011 ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromCondCached(
9012 ExitLimitCacheTy
&Cache
, const Loop
*L
, Value
*ExitCond
, bool ExitIfTrue
,
9013 bool ControlsOnlyExit
, bool AllowPredicates
) {
9015 if (auto MaybeEL
= Cache
.find(L
, ExitCond
, ExitIfTrue
, ControlsOnlyExit
,
9019 ExitLimit EL
= computeExitLimitFromCondImpl(
9020 Cache
, L
, ExitCond
, ExitIfTrue
, ControlsOnlyExit
, AllowPredicates
);
9021 Cache
.insert(L
, ExitCond
, ExitIfTrue
, ControlsOnlyExit
, AllowPredicates
, EL
);
9025 ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromCondImpl(
9026 ExitLimitCacheTy
&Cache
, const Loop
*L
, Value
*ExitCond
, bool ExitIfTrue
,
9027 bool ControlsOnlyExit
, bool AllowPredicates
) {
9028 // Handle BinOp conditions (And, Or).
9029 if (auto LimitFromBinOp
= computeExitLimitFromCondFromBinOp(
9030 Cache
, L
, ExitCond
, ExitIfTrue
, ControlsOnlyExit
, AllowPredicates
))
9031 return *LimitFromBinOp
;
9033 // With an icmp, it may be feasible to compute an exact backedge-taken count.
9034 // Proceed to the next level to examine the icmp.
9035 if (ICmpInst
*ExitCondICmp
= dyn_cast
<ICmpInst
>(ExitCond
)) {
9037 computeExitLimitFromICmp(L
, ExitCondICmp
, ExitIfTrue
, ControlsOnlyExit
);
9038 if (EL
.hasFullInfo() || !AllowPredicates
)
9041 // Try again, but use SCEV predicates this time.
9042 return computeExitLimitFromICmp(L
, ExitCondICmp
, ExitIfTrue
,
9044 /*AllowPredicates=*/true);
9047 // Check for a constant condition. These are normally stripped out by
9048 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
9049 // preserve the CFG and is temporarily leaving constant conditions
9051 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(ExitCond
)) {
9052 if (ExitIfTrue
== !CI
->getZExtValue())
9053 // The backedge is always taken.
9054 return getCouldNotCompute();
9055 // The backedge is never taken.
9056 return getZero(CI
->getType());
9059 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic
9060 // with a constant step, we can form an equivalent icmp predicate and figure
9061 // out how many iterations will be taken before we exit.
9062 const WithOverflowInst
*WO
;
9064 if (match(ExitCond
, m_ExtractValue
<1>(m_WithOverflowInst(WO
))) &&
9065 match(WO
->getRHS(), m_APInt(C
))) {
9067 ConstantRange::makeExactNoWrapRegion(WO
->getBinaryOp(), *C
,
9068 WO
->getNoWrapKind());
9069 CmpInst::Predicate Pred
;
9070 APInt NewRHSC
, Offset
;
9071 NWR
.getEquivalentICmp(Pred
, NewRHSC
, Offset
);
9073 Pred
= ICmpInst::getInversePredicate(Pred
);
9074 auto *LHS
= getSCEV(WO
->getLHS());
9076 LHS
= getAddExpr(LHS
, getConstant(Offset
));
9077 auto EL
= computeExitLimitFromICmp(L
, Pred
, LHS
, getConstant(NewRHSC
),
9078 ControlsOnlyExit
, AllowPredicates
);
9079 if (EL
.hasAnyInfo())
9083 // If it's not an integer or pointer comparison then compute it the hard way.
9084 return computeExitCountExhaustively(L
, ExitCond
, ExitIfTrue
);
9087 std::optional
<ScalarEvolution::ExitLimit
>
9088 ScalarEvolution::computeExitLimitFromCondFromBinOp(
9089 ExitLimitCacheTy
&Cache
, const Loop
*L
, Value
*ExitCond
, bool ExitIfTrue
,
9090 bool ControlsOnlyExit
, bool AllowPredicates
) {
9091 // Check if the controlling expression for this loop is an And or Or.
9094 if (match(ExitCond
, m_LogicalAnd(m_Value(Op0
), m_Value(Op1
))))
9096 else if (match(ExitCond
, m_LogicalOr(m_Value(Op0
), m_Value(Op1
))))
9099 return std::nullopt
;
9101 // EitherMayExit is true in these two cases:
9102 // br (and Op0 Op1), loop, exit
9103 // br (or Op0 Op1), exit, loop
9104 bool EitherMayExit
= IsAnd
^ ExitIfTrue
;
9105 ExitLimit EL0
= computeExitLimitFromCondCached(
9106 Cache
, L
, Op0
, ExitIfTrue
, ControlsOnlyExit
&& !EitherMayExit
,
9108 ExitLimit EL1
= computeExitLimitFromCondCached(
9109 Cache
, L
, Op1
, ExitIfTrue
, ControlsOnlyExit
&& !EitherMayExit
,
9112 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
9113 const Constant
*NeutralElement
= ConstantInt::get(ExitCond
->getType(), IsAnd
);
9114 if (isa
<ConstantInt
>(Op1
))
9115 return Op1
== NeutralElement
? EL0
: EL1
;
9116 if (isa
<ConstantInt
>(Op0
))
9117 return Op0
== NeutralElement
? EL1
: EL0
;
9119 const SCEV
*BECount
= getCouldNotCompute();
9120 const SCEV
*ConstantMaxBECount
= getCouldNotCompute();
9121 const SCEV
*SymbolicMaxBECount
= getCouldNotCompute();
9122 if (EitherMayExit
) {
9123 bool UseSequentialUMin
= !isa
<BinaryOperator
>(ExitCond
);
9124 // Both conditions must be same for the loop to continue executing.
9125 // Choose the less conservative count.
9126 if (EL0
.ExactNotTaken
!= getCouldNotCompute() &&
9127 EL1
.ExactNotTaken
!= getCouldNotCompute()) {
9128 BECount
= getUMinFromMismatchedTypes(EL0
.ExactNotTaken
, EL1
.ExactNotTaken
,
9131 if (EL0
.ConstantMaxNotTaken
== getCouldNotCompute())
9132 ConstantMaxBECount
= EL1
.ConstantMaxNotTaken
;
9133 else if (EL1
.ConstantMaxNotTaken
== getCouldNotCompute())
9134 ConstantMaxBECount
= EL0
.ConstantMaxNotTaken
;
9136 ConstantMaxBECount
= getUMinFromMismatchedTypes(EL0
.ConstantMaxNotTaken
,
9137 EL1
.ConstantMaxNotTaken
);
9138 if (EL0
.SymbolicMaxNotTaken
== getCouldNotCompute())
9139 SymbolicMaxBECount
= EL1
.SymbolicMaxNotTaken
;
9140 else if (EL1
.SymbolicMaxNotTaken
== getCouldNotCompute())
9141 SymbolicMaxBECount
= EL0
.SymbolicMaxNotTaken
;
9143 SymbolicMaxBECount
= getUMinFromMismatchedTypes(
9144 EL0
.SymbolicMaxNotTaken
, EL1
.SymbolicMaxNotTaken
, UseSequentialUMin
);
9146 // Both conditions must be same at the same time for the loop to exit.
9147 // For now, be conservative.
9148 if (EL0
.ExactNotTaken
== EL1
.ExactNotTaken
)
9149 BECount
= EL0
.ExactNotTaken
;
9152 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
9153 // to be more aggressive when computing BECount than when computing
9154 // ConstantMaxBECount. In these cases it is possible for EL0.ExactNotTaken
9156 // EL1.ExactNotTaken to match, but for EL0.ConstantMaxNotTaken and
9157 // EL1.ConstantMaxNotTaken to not.
9158 if (isa
<SCEVCouldNotCompute
>(ConstantMaxBECount
) &&
9159 !isa
<SCEVCouldNotCompute
>(BECount
))
9160 ConstantMaxBECount
= getConstant(getUnsignedRangeMax(BECount
));
9161 if (isa
<SCEVCouldNotCompute
>(SymbolicMaxBECount
))
9162 SymbolicMaxBECount
=
9163 isa
<SCEVCouldNotCompute
>(BECount
) ? ConstantMaxBECount
: BECount
;
9164 return ExitLimit(BECount
, ConstantMaxBECount
, SymbolicMaxBECount
, false,
9165 {ArrayRef(EL0
.Predicates
), ArrayRef(EL1
.Predicates
)});
9168 ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromICmp(
9169 const Loop
*L
, ICmpInst
*ExitCond
, bool ExitIfTrue
, bool ControlsOnlyExit
,
9170 bool AllowPredicates
) {
9171 // If the condition was exit on true, convert the condition to exit on false
9174 Pred
= ExitCond
->getCmpPredicate();
9176 Pred
= ExitCond
->getInverseCmpPredicate();
9177 const ICmpInst::Predicate OriginalPred
= Pred
;
9179 const SCEV
*LHS
= getSCEV(ExitCond
->getOperand(0));
9180 const SCEV
*RHS
= getSCEV(ExitCond
->getOperand(1));
9182 ExitLimit EL
= computeExitLimitFromICmp(L
, Pred
, LHS
, RHS
, ControlsOnlyExit
,
9184 if (EL
.hasAnyInfo())
9187 auto *ExhaustiveCount
=
9188 computeExitCountExhaustively(L
, ExitCond
, ExitIfTrue
);
9190 if (!isa
<SCEVCouldNotCompute
>(ExhaustiveCount
))
9191 return ExhaustiveCount
;
9193 return computeShiftCompareExitLimit(ExitCond
->getOperand(0),
9194 ExitCond
->getOperand(1), L
, OriginalPred
);
9196 ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromICmp(
9197 const Loop
*L
, CmpPredicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
,
9198 bool ControlsOnlyExit
, bool AllowPredicates
) {
9200 // Try to evaluate any dependencies out of the loop.
9201 LHS
= getSCEVAtScope(LHS
, L
);
9202 RHS
= getSCEVAtScope(RHS
, L
);
9204 // At this point, we would like to compute how many iterations of the
9205 // loop the predicate will return true for these inputs.
9206 if (isLoopInvariant(LHS
, L
) && !isLoopInvariant(RHS
, L
)) {
9207 // If there is a loop-invariant, force it into the RHS.
9208 std::swap(LHS
, RHS
);
9209 Pred
= ICmpInst::getSwappedCmpPredicate(Pred
);
9212 bool ControllingFiniteLoop
= ControlsOnlyExit
&& loopHasNoAbnormalExits(L
) &&
9213 loopIsFiniteByAssumption(L
);
9214 // Simplify the operands before analyzing them.
9215 (void)SimplifyICmpOperands(Pred
, LHS
, RHS
, /*Depth=*/0);
9217 // If we have a comparison of a chrec against a constant, try to use value
9218 // ranges to answer this query.
9219 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
))
9220 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(LHS
))
9221 if (AddRec
->getLoop() == L
) {
9222 // Form the constant range.
9223 ConstantRange CompRange
=
9224 ConstantRange::makeExactICmpRegion(Pred
, RHSC
->getAPInt());
9226 const SCEV
*Ret
= AddRec
->getNumIterationsInRange(CompRange
, *this);
9227 if (!isa
<SCEVCouldNotCompute
>(Ret
)) return Ret
;
9230 // If this loop must exit based on this condition (or execute undefined
9231 // behaviour), see if we can improve wrap flags. This is essentially
9232 // a must execute style proof.
9233 if (ControllingFiniteLoop
&& isLoopInvariant(RHS
, L
)) {
9234 // If we can prove the test sequence produced must repeat the same values
9235 // on self-wrap of the IV, then we can infer that IV doesn't self wrap
9236 // because if it did, we'd have an infinite (undefined) loop.
9237 // TODO: We can peel off any functions which are invertible *in L*. Loop
9238 // invariant terms are effectively constants for our purposes here.
9239 auto *InnerLHS
= LHS
;
9240 if (auto *ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(LHS
))
9241 InnerLHS
= ZExt
->getOperand();
9242 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(InnerLHS
);
9243 AR
&& !AR
->hasNoSelfWrap() && AR
->getLoop() == L
&& AR
->isAffine() &&
9244 isKnownToBeAPowerOfTwo(AR
->getStepRecurrence(*this), /*OrZero=*/true,
9245 /*OrNegative=*/true)) {
9246 auto Flags
= AR
->getNoWrapFlags();
9247 Flags
= setFlags(Flags
, SCEV::FlagNW
);
9248 SmallVector
<const SCEV
*> Operands
{AR
->operands()};
9249 Flags
= StrengthenNoWrapFlags(this, scAddRecExpr
, Operands
, Flags
);
9250 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), Flags
);
9253 // For a slt/ult condition with a positive step, can we prove nsw/nuw?
9254 // From no-self-wrap, this follows trivially from the fact that every
9255 // (un)signed-wrapped, but not self-wrapped value must be LT than the
9256 // last value before (un)signed wrap. Since we know that last value
9257 // didn't exit, nor will any smaller one.
9258 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_ULT
) {
9259 auto WrapType
= Pred
== ICmpInst::ICMP_SLT
? SCEV::FlagNSW
: SCEV::FlagNUW
;
9260 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
9261 AR
&& AR
->getLoop() == L
&& AR
->isAffine() &&
9262 !AR
->getNoWrapFlags(WrapType
) && AR
->hasNoSelfWrap() &&
9263 isKnownPositive(AR
->getStepRecurrence(*this))) {
9264 auto Flags
= AR
->getNoWrapFlags();
9265 Flags
= setFlags(Flags
, WrapType
);
9266 SmallVector
<const SCEV
*> Operands
{AR
->operands()};
9267 Flags
= StrengthenNoWrapFlags(this, scAddRecExpr
, Operands
, Flags
);
9268 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), Flags
);
9274 case ICmpInst::ICMP_NE
: { // while (X != Y)
9275 // Convert to: while (X-Y != 0)
9276 if (LHS
->getType()->isPointerTy()) {
9277 LHS
= getLosslessPtrToIntExpr(LHS
);
9278 if (isa
<SCEVCouldNotCompute
>(LHS
))
9281 if (RHS
->getType()->isPointerTy()) {
9282 RHS
= getLosslessPtrToIntExpr(RHS
);
9283 if (isa
<SCEVCouldNotCompute
>(RHS
))
9286 ExitLimit EL
= howFarToZero(getMinusSCEV(LHS
, RHS
), L
, ControlsOnlyExit
,
9288 if (EL
.hasAnyInfo())
9292 case ICmpInst::ICMP_EQ
: { // while (X == Y)
9293 // Convert to: while (X-Y == 0)
9294 if (LHS
->getType()->isPointerTy()) {
9295 LHS
= getLosslessPtrToIntExpr(LHS
);
9296 if (isa
<SCEVCouldNotCompute
>(LHS
))
9299 if (RHS
->getType()->isPointerTy()) {
9300 RHS
= getLosslessPtrToIntExpr(RHS
);
9301 if (isa
<SCEVCouldNotCompute
>(RHS
))
9304 ExitLimit EL
= howFarToNonZero(getMinusSCEV(LHS
, RHS
), L
);
9305 if (EL
.hasAnyInfo()) return EL
;
9308 case ICmpInst::ICMP_SLE
:
9309 case ICmpInst::ICMP_ULE
:
9310 // Since the loop is finite, an invariant RHS cannot include the boundary
9311 // value, otherwise it would loop forever.
9312 if (!EnableFiniteLoopControl
|| !ControllingFiniteLoop
||
9313 !isLoopInvariant(RHS
, L
)) {
9314 // Otherwise, perform the addition in a wider type, to avoid overflow.
9315 // If the LHS is an addrec with the appropriate nowrap flag, the
9316 // extension will be sunk into it and the exit count can be analyzed.
9317 auto *OldType
= dyn_cast
<IntegerType
>(LHS
->getType());
9320 // Prefer doubling the bitwidth over adding a single bit to make it more
9321 // likely that we use a legal type.
9323 Type::getIntNTy(OldType
->getContext(), OldType
->getBitWidth() * 2);
9324 if (ICmpInst::isSigned(Pred
)) {
9325 LHS
= getSignExtendExpr(LHS
, NewType
);
9326 RHS
= getSignExtendExpr(RHS
, NewType
);
9328 LHS
= getZeroExtendExpr(LHS
, NewType
);
9329 RHS
= getZeroExtendExpr(RHS
, NewType
);
9332 RHS
= getAddExpr(getOne(RHS
->getType()), RHS
);
9334 case ICmpInst::ICMP_SLT
:
9335 case ICmpInst::ICMP_ULT
: { // while (X < Y)
9336 bool IsSigned
= ICmpInst::isSigned(Pred
);
9337 ExitLimit EL
= howManyLessThans(LHS
, RHS
, L
, IsSigned
, ControlsOnlyExit
,
9339 if (EL
.hasAnyInfo())
9343 case ICmpInst::ICMP_SGE
:
9344 case ICmpInst::ICMP_UGE
:
9345 // Since the loop is finite, an invariant RHS cannot include the boundary
9346 // value, otherwise it would loop forever.
9347 if (!EnableFiniteLoopControl
|| !ControllingFiniteLoop
||
9348 !isLoopInvariant(RHS
, L
))
9350 RHS
= getAddExpr(getMinusOne(RHS
->getType()), RHS
);
9352 case ICmpInst::ICMP_SGT
:
9353 case ICmpInst::ICMP_UGT
: { // while (X > Y)
9354 bool IsSigned
= ICmpInst::isSigned(Pred
);
9355 ExitLimit EL
= howManyGreaterThans(LHS
, RHS
, L
, IsSigned
, ControlsOnlyExit
,
9357 if (EL
.hasAnyInfo())
9365 return getCouldNotCompute();
9368 ScalarEvolution::ExitLimit
9369 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop
*L
,
9371 BasicBlock
*ExitingBlock
,
9372 bool ControlsOnlyExit
) {
9373 assert(!L
->contains(ExitingBlock
) && "Not an exiting block!");
9375 // Give up if the exit is the default dest of a switch.
9376 if (Switch
->getDefaultDest() == ExitingBlock
)
9377 return getCouldNotCompute();
9379 assert(L
->contains(Switch
->getDefaultDest()) &&
9380 "Default case must not exit the loop!");
9381 const SCEV
*LHS
= getSCEVAtScope(Switch
->getCondition(), L
);
9382 const SCEV
*RHS
= getConstant(Switch
->findCaseDest(ExitingBlock
));
9384 // while (X != Y) --> while (X-Y != 0)
9385 ExitLimit EL
= howFarToZero(getMinusSCEV(LHS
, RHS
), L
, ControlsOnlyExit
);
9386 if (EL
.hasAnyInfo())
9389 return getCouldNotCompute();
9392 static ConstantInt
*
9393 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr
*AddRec
, ConstantInt
*C
,
9394 ScalarEvolution
&SE
) {
9395 const SCEV
*InVal
= SE
.getConstant(C
);
9396 const SCEV
*Val
= AddRec
->evaluateAtIteration(InVal
, SE
);
9397 assert(isa
<SCEVConstant
>(Val
) &&
9398 "Evaluation of SCEV at constant didn't fold correctly?");
9399 return cast
<SCEVConstant
>(Val
)->getValue();
9402 ScalarEvolution::ExitLimit
ScalarEvolution::computeShiftCompareExitLimit(
9403 Value
*LHS
, Value
*RHSV
, const Loop
*L
, ICmpInst::Predicate Pred
) {
9404 ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(RHSV
);
9406 return getCouldNotCompute();
9408 const BasicBlock
*Latch
= L
->getLoopLatch();
9410 return getCouldNotCompute();
9412 const BasicBlock
*Predecessor
= L
->getLoopPredecessor();
9414 return getCouldNotCompute();
9416 // Return true if V is of the form "LHS `shift_op` <positive constant>".
9417 // Return LHS in OutLHS and shift_opt in OutOpCode.
9418 auto MatchPositiveShift
=
9419 [](Value
*V
, Value
*&OutLHS
, Instruction::BinaryOps
&OutOpCode
) {
9421 using namespace PatternMatch
;
9423 ConstantInt
*ShiftAmt
;
9424 if (match(V
, m_LShr(m_Value(OutLHS
), m_ConstantInt(ShiftAmt
))))
9425 OutOpCode
= Instruction::LShr
;
9426 else if (match(V
, m_AShr(m_Value(OutLHS
), m_ConstantInt(ShiftAmt
))))
9427 OutOpCode
= Instruction::AShr
;
9428 else if (match(V
, m_Shl(m_Value(OutLHS
), m_ConstantInt(ShiftAmt
))))
9429 OutOpCode
= Instruction::Shl
;
9433 return ShiftAmt
->getValue().isStrictlyPositive();
9436 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
9439 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
9440 // %iv.shifted = lshr i32 %iv, <positive constant>
9442 // Return true on a successful match. Return the corresponding PHI node (%iv
9443 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
9444 auto MatchShiftRecurrence
=
9445 [&](Value
*V
, PHINode
*&PNOut
, Instruction::BinaryOps
&OpCodeOut
) {
9446 std::optional
<Instruction::BinaryOps
> PostShiftOpCode
;
9449 Instruction::BinaryOps OpC
;
9452 // If we encounter a shift instruction, "peel off" the shift operation,
9453 // and remember that we did so. Later when we inspect %iv's backedge
9454 // value, we will make sure that the backedge value uses the same
9457 // Note: the peeled shift operation does not have to be the same
9458 // instruction as the one feeding into the PHI's backedge value. We only
9459 // really care about it being the same *kind* of shift instruction --
9460 // that's all that is required for our later inferences to hold.
9461 if (MatchPositiveShift(LHS
, V
, OpC
)) {
9462 PostShiftOpCode
= OpC
;
9467 PNOut
= dyn_cast
<PHINode
>(LHS
);
9468 if (!PNOut
|| PNOut
->getParent() != L
->getHeader())
9471 Value
*BEValue
= PNOut
->getIncomingValueForBlock(Latch
);
9475 // The backedge value for the PHI node must be a shift by a positive
9477 MatchPositiveShift(BEValue
, OpLHS
, OpCodeOut
) &&
9479 // of the PHI node itself
9482 // and the kind of shift should be match the kind of shift we peeled
9484 (!PostShiftOpCode
|| *PostShiftOpCode
== OpCodeOut
);
9488 Instruction::BinaryOps OpCode
;
9489 if (!MatchShiftRecurrence(LHS
, PN
, OpCode
))
9490 return getCouldNotCompute();
9492 const DataLayout
&DL
= getDataLayout();
9494 // The key rationale for this optimization is that for some kinds of shift
9495 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
9496 // within a finite number of iterations. If the condition guarding the
9497 // backedge (in the sense that the backedge is taken if the condition is true)
9498 // is false for the value the shift recurrence stabilizes to, then we know
9499 // that the backedge is taken only a finite number of times.
9501 ConstantInt
*StableValue
= nullptr;
9504 llvm_unreachable("Impossible case!");
9506 case Instruction::AShr
: {
9507 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
9508 // bitwidth(K) iterations.
9509 Value
*FirstValue
= PN
->getIncomingValueForBlock(Predecessor
);
9510 KnownBits Known
= computeKnownBits(FirstValue
, DL
, 0, &AC
,
9511 Predecessor
->getTerminator(), &DT
);
9512 auto *Ty
= cast
<IntegerType
>(RHS
->getType());
9513 if (Known
.isNonNegative())
9514 StableValue
= ConstantInt::get(Ty
, 0);
9515 else if (Known
.isNegative())
9516 StableValue
= ConstantInt::get(Ty
, -1, true);
9518 return getCouldNotCompute();
9522 case Instruction::LShr
:
9523 case Instruction::Shl
:
9524 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
9525 // stabilize to 0 in at most bitwidth(K) iterations.
9526 StableValue
= ConstantInt::get(cast
<IntegerType
>(RHS
->getType()), 0);
9531 ConstantFoldCompareInstOperands(Pred
, StableValue
, RHS
, DL
, &TLI
);
9532 assert(Result
->getType()->isIntegerTy(1) &&
9533 "Otherwise cannot be an operand to a branch instruction");
9535 if (Result
->isZeroValue()) {
9536 unsigned BitWidth
= getTypeSizeInBits(RHS
->getType());
9537 const SCEV
*UpperBound
=
9538 getConstant(getEffectiveSCEVType(RHS
->getType()), BitWidth
);
9539 return ExitLimit(getCouldNotCompute(), UpperBound
, UpperBound
, false);
9542 return getCouldNotCompute();
9545 /// Return true if we can constant fold an instruction of the specified type,
9546 /// assuming that all operands were constants.
9547 static bool CanConstantFold(const Instruction
*I
) {
9548 if (isa
<BinaryOperator
>(I
) || isa
<CmpInst
>(I
) ||
9549 isa
<SelectInst
>(I
) || isa
<CastInst
>(I
) || isa
<GetElementPtrInst
>(I
) ||
9550 isa
<LoadInst
>(I
) || isa
<ExtractValueInst
>(I
))
9553 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
9554 if (const Function
*F
= CI
->getCalledFunction())
9555 return canConstantFoldCallTo(CI
, F
);
9559 /// Determine whether this instruction can constant evolve within this loop
9560 /// assuming its operands can all constant evolve.
9561 static bool canConstantEvolve(Instruction
*I
, const Loop
*L
) {
9562 // An instruction outside of the loop can't be derived from a loop PHI.
9563 if (!L
->contains(I
)) return false;
9565 if (isa
<PHINode
>(I
)) {
9566 // We don't currently keep track of the control flow needed to evaluate
9567 // PHIs, so we cannot handle PHIs inside of loops.
9568 return L
->getHeader() == I
->getParent();
9571 // If we won't be able to constant fold this expression even if the operands
9572 // are constants, bail early.
9573 return CanConstantFold(I
);
9576 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
9577 /// recursing through each instruction operand until reaching a loop header phi.
9579 getConstantEvolvingPHIOperands(Instruction
*UseInst
, const Loop
*L
,
9580 DenseMap
<Instruction
*, PHINode
*> &PHIMap
,
9582 if (Depth
> MaxConstantEvolvingDepth
)
9585 // Otherwise, we can evaluate this instruction if all of its operands are
9586 // constant or derived from a PHI node themselves.
9587 PHINode
*PHI
= nullptr;
9588 for (Value
*Op
: UseInst
->operands()) {
9589 if (isa
<Constant
>(Op
)) continue;
9591 Instruction
*OpInst
= dyn_cast
<Instruction
>(Op
);
9592 if (!OpInst
|| !canConstantEvolve(OpInst
, L
)) return nullptr;
9594 PHINode
*P
= dyn_cast
<PHINode
>(OpInst
);
9596 // If this operand is already visited, reuse the prior result.
9597 // We may have P != PHI if this is the deepest point at which the
9598 // inconsistent paths meet.
9599 P
= PHIMap
.lookup(OpInst
);
9601 // Recurse and memoize the results, whether a phi is found or not.
9602 // This recursive call invalidates pointers into PHIMap.
9603 P
= getConstantEvolvingPHIOperands(OpInst
, L
, PHIMap
, Depth
+ 1);
9607 return nullptr; // Not evolving from PHI
9608 if (PHI
&& PHI
!= P
)
9609 return nullptr; // Evolving from multiple different PHIs.
9612 // This is a expression evolving from a constant PHI!
9616 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
9617 /// in the loop that V is derived from. We allow arbitrary operations along the
9618 /// way, but the operands of an operation must either be constants or a value
9619 /// derived from a constant PHI. If this expression does not fit with these
9620 /// constraints, return null.
9621 static PHINode
*getConstantEvolvingPHI(Value
*V
, const Loop
*L
) {
9622 Instruction
*I
= dyn_cast
<Instruction
>(V
);
9623 if (!I
|| !canConstantEvolve(I
, L
)) return nullptr;
9625 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
9628 // Record non-constant instructions contained by the loop.
9629 DenseMap
<Instruction
*, PHINode
*> PHIMap
;
9630 return getConstantEvolvingPHIOperands(I
, L
, PHIMap
, 0);
9633 /// EvaluateExpression - Given an expression that passes the
9634 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
9635 /// in the loop has the value PHIVal. If we can't fold this expression for some
9636 /// reason, return null.
9637 static Constant
*EvaluateExpression(Value
*V
, const Loop
*L
,
9638 DenseMap
<Instruction
*, Constant
*> &Vals
,
9639 const DataLayout
&DL
,
9640 const TargetLibraryInfo
*TLI
) {
9641 // Convenient constant check, but redundant for recursive calls.
9642 if (Constant
*C
= dyn_cast
<Constant
>(V
)) return C
;
9643 Instruction
*I
= dyn_cast
<Instruction
>(V
);
9644 if (!I
) return nullptr;
9646 if (Constant
*C
= Vals
.lookup(I
)) return C
;
9648 // An instruction inside the loop depends on a value outside the loop that we
9649 // weren't given a mapping for, or a value such as a call inside the loop.
9650 if (!canConstantEvolve(I
, L
)) return nullptr;
9652 // An unmapped PHI can be due to a branch or another loop inside this loop,
9653 // or due to this not being the initial iteration through a loop where we
9654 // couldn't compute the evolution of this particular PHI last time.
9655 if (isa
<PHINode
>(I
)) return nullptr;
9657 std::vector
<Constant
*> Operands(I
->getNumOperands());
9659 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
9660 Instruction
*Operand
= dyn_cast
<Instruction
>(I
->getOperand(i
));
9662 Operands
[i
] = dyn_cast
<Constant
>(I
->getOperand(i
));
9663 if (!Operands
[i
]) return nullptr;
9666 Constant
*C
= EvaluateExpression(Operand
, L
, Vals
, DL
, TLI
);
9668 if (!C
) return nullptr;
9672 return ConstantFoldInstOperands(I
, Operands
, DL
, TLI
,
9673 /*AllowNonDeterministic=*/false);
9677 // If every incoming value to PN except the one for BB is a specific Constant,
9678 // return that, else return nullptr.
9679 static Constant
*getOtherIncomingValue(PHINode
*PN
, BasicBlock
*BB
) {
9680 Constant
*IncomingVal
= nullptr;
9682 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
9683 if (PN
->getIncomingBlock(i
) == BB
)
9686 auto *CurrentVal
= dyn_cast
<Constant
>(PN
->getIncomingValue(i
));
9690 if (IncomingVal
!= CurrentVal
) {
9693 IncomingVal
= CurrentVal
;
9700 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
9701 /// in the header of its containing loop, we know the loop executes a
9702 /// constant number of times, and the PHI node is just a recurrence
9703 /// involving constants, fold it.
9705 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode
*PN
,
9708 auto [I
, Inserted
] = ConstantEvolutionLoopExitValue
.try_emplace(PN
);
9712 if (BEs
.ugt(MaxBruteForceIterations
))
9713 return nullptr; // Not going to evaluate it.
9715 Constant
*&RetVal
= I
->second
;
9717 DenseMap
<Instruction
*, Constant
*> CurrentIterVals
;
9718 BasicBlock
*Header
= L
->getHeader();
9719 assert(PN
->getParent() == Header
&& "Can't evaluate PHI not in loop header!");
9721 BasicBlock
*Latch
= L
->getLoopLatch();
9725 for (PHINode
&PHI
: Header
->phis()) {
9726 if (auto *StartCST
= getOtherIncomingValue(&PHI
, Latch
))
9727 CurrentIterVals
[&PHI
] = StartCST
;
9729 if (!CurrentIterVals
.count(PN
))
9730 return RetVal
= nullptr;
9732 Value
*BEValue
= PN
->getIncomingValueForBlock(Latch
);
9734 // Execute the loop symbolically to determine the exit value.
9735 assert(BEs
.getActiveBits() < CHAR_BIT
* sizeof(unsigned) &&
9736 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
9738 unsigned NumIterations
= BEs
.getZExtValue(); // must be in range
9739 unsigned IterationNum
= 0;
9740 const DataLayout
&DL
= getDataLayout();
9741 for (; ; ++IterationNum
) {
9742 if (IterationNum
== NumIterations
)
9743 return RetVal
= CurrentIterVals
[PN
]; // Got exit value!
9745 // Compute the value of the PHIs for the next iteration.
9746 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
9747 DenseMap
<Instruction
*, Constant
*> NextIterVals
;
9749 EvaluateExpression(BEValue
, L
, CurrentIterVals
, DL
, &TLI
);
9751 return nullptr; // Couldn't evaluate!
9752 NextIterVals
[PN
] = NextPHI
;
9754 bool StoppedEvolving
= NextPHI
== CurrentIterVals
[PN
];
9756 // Also evaluate the other PHI nodes. However, we don't get to stop if we
9757 // cease to be able to evaluate one of them or if they stop evolving,
9758 // because that doesn't necessarily prevent us from computing PN.
9759 SmallVector
<std::pair
<PHINode
*, Constant
*>, 8> PHIsToCompute
;
9760 for (const auto &I
: CurrentIterVals
) {
9761 PHINode
*PHI
= dyn_cast
<PHINode
>(I
.first
);
9762 if (!PHI
|| PHI
== PN
|| PHI
->getParent() != Header
) continue;
9763 PHIsToCompute
.emplace_back(PHI
, I
.second
);
9765 // We use two distinct loops because EvaluateExpression may invalidate any
9766 // iterators into CurrentIterVals.
9767 for (const auto &I
: PHIsToCompute
) {
9768 PHINode
*PHI
= I
.first
;
9769 Constant
*&NextPHI
= NextIterVals
[PHI
];
9770 if (!NextPHI
) { // Not already computed.
9771 Value
*BEValue
= PHI
->getIncomingValueForBlock(Latch
);
9772 NextPHI
= EvaluateExpression(BEValue
, L
, CurrentIterVals
, DL
, &TLI
);
9774 if (NextPHI
!= I
.second
)
9775 StoppedEvolving
= false;
9778 // If all entries in CurrentIterVals == NextIterVals then we can stop
9779 // iterating, the loop can't continue to change.
9780 if (StoppedEvolving
)
9781 return RetVal
= CurrentIterVals
[PN
];
9783 CurrentIterVals
.swap(NextIterVals
);
9787 const SCEV
*ScalarEvolution::computeExitCountExhaustively(const Loop
*L
,
9790 PHINode
*PN
= getConstantEvolvingPHI(Cond
, L
);
9791 if (!PN
) return getCouldNotCompute();
9793 // If the loop is canonicalized, the PHI will have exactly two entries.
9794 // That's the only form we support here.
9795 if (PN
->getNumIncomingValues() != 2) return getCouldNotCompute();
9797 DenseMap
<Instruction
*, Constant
*> CurrentIterVals
;
9798 BasicBlock
*Header
= L
->getHeader();
9799 assert(PN
->getParent() == Header
&& "Can't evaluate PHI not in loop header!");
9801 BasicBlock
*Latch
= L
->getLoopLatch();
9802 assert(Latch
&& "Should follow from NumIncomingValues == 2!");
9804 for (PHINode
&PHI
: Header
->phis()) {
9805 if (auto *StartCST
= getOtherIncomingValue(&PHI
, Latch
))
9806 CurrentIterVals
[&PHI
] = StartCST
;
9808 if (!CurrentIterVals
.count(PN
))
9809 return getCouldNotCompute();
9811 // Okay, we find a PHI node that defines the trip count of this loop. Execute
9812 // the loop symbolically to determine when the condition gets a value of
9814 unsigned MaxIterations
= MaxBruteForceIterations
; // Limit analysis.
9815 const DataLayout
&DL
= getDataLayout();
9816 for (unsigned IterationNum
= 0; IterationNum
!= MaxIterations
;++IterationNum
){
9817 auto *CondVal
= dyn_cast_or_null
<ConstantInt
>(
9818 EvaluateExpression(Cond
, L
, CurrentIterVals
, DL
, &TLI
));
9820 // Couldn't symbolically evaluate.
9821 if (!CondVal
) return getCouldNotCompute();
9823 if (CondVal
->getValue() == uint64_t(ExitWhen
)) {
9824 ++NumBruteForceTripCountsComputed
;
9825 return getConstant(Type::getInt32Ty(getContext()), IterationNum
);
9828 // Update all the PHI nodes for the next iteration.
9829 DenseMap
<Instruction
*, Constant
*> NextIterVals
;
9831 // Create a list of which PHIs we need to compute. We want to do this before
9832 // calling EvaluateExpression on them because that may invalidate iterators
9833 // into CurrentIterVals.
9834 SmallVector
<PHINode
*, 8> PHIsToCompute
;
9835 for (const auto &I
: CurrentIterVals
) {
9836 PHINode
*PHI
= dyn_cast
<PHINode
>(I
.first
);
9837 if (!PHI
|| PHI
->getParent() != Header
) continue;
9838 PHIsToCompute
.push_back(PHI
);
9840 for (PHINode
*PHI
: PHIsToCompute
) {
9841 Constant
*&NextPHI
= NextIterVals
[PHI
];
9842 if (NextPHI
) continue; // Already computed!
9844 Value
*BEValue
= PHI
->getIncomingValueForBlock(Latch
);
9845 NextPHI
= EvaluateExpression(BEValue
, L
, CurrentIterVals
, DL
, &TLI
);
9847 CurrentIterVals
.swap(NextIterVals
);
9850 // Too many iterations were needed to evaluate.
9851 return getCouldNotCompute();
9854 const SCEV
*ScalarEvolution::getSCEVAtScope(const SCEV
*V
, const Loop
*L
) {
9855 SmallVector
<std::pair
<const Loop
*, const SCEV
*>, 2> &Values
=
9857 // Check to see if we've folded this expression at this loop before.
9858 for (auto &LS
: Values
)
9860 return LS
.second
? LS
.second
: V
;
9862 Values
.emplace_back(L
, nullptr);
9864 // Otherwise compute it.
9865 const SCEV
*C
= computeSCEVAtScope(V
, L
);
9866 for (auto &LS
: reverse(ValuesAtScopes
[V
]))
9867 if (LS
.first
== L
) {
9869 if (!isa
<SCEVConstant
>(C
))
9870 ValuesAtScopesUsers
[C
].push_back({L
, V
});
9876 /// This builds up a Constant using the ConstantExpr interface. That way, we
9877 /// will return Constants for objects which aren't represented by a
9878 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
9879 /// Returns NULL if the SCEV isn't representable as a Constant.
9880 static Constant
*BuildConstantFromSCEV(const SCEV
*V
) {
9881 switch (V
->getSCEVType()) {
9882 case scCouldNotCompute
:
9887 return cast
<SCEVConstant
>(V
)->getValue();
9889 return dyn_cast
<Constant
>(cast
<SCEVUnknown
>(V
)->getValue());
9891 const SCEVPtrToIntExpr
*P2I
= cast
<SCEVPtrToIntExpr
>(V
);
9892 if (Constant
*CastOp
= BuildConstantFromSCEV(P2I
->getOperand()))
9893 return ConstantExpr::getPtrToInt(CastOp
, P2I
->getType());
9898 const SCEVTruncateExpr
*ST
= cast
<SCEVTruncateExpr
>(V
);
9899 if (Constant
*CastOp
= BuildConstantFromSCEV(ST
->getOperand()))
9900 return ConstantExpr::getTrunc(CastOp
, ST
->getType());
9904 const SCEVAddExpr
*SA
= cast
<SCEVAddExpr
>(V
);
9905 Constant
*C
= nullptr;
9906 for (const SCEV
*Op
: SA
->operands()) {
9907 Constant
*OpC
= BuildConstantFromSCEV(Op
);
9914 assert(!C
->getType()->isPointerTy() &&
9915 "Can only have one pointer, and it must be last");
9916 if (OpC
->getType()->isPointerTy()) {
9917 // The offsets have been converted to bytes. We can add bytes using
9919 C
= ConstantExpr::getGetElementPtr(Type::getInt8Ty(C
->getContext()),
9922 C
= ConstantExpr::getAdd(C
, OpC
);
9935 case scSequentialUMinExpr
:
9938 llvm_unreachable("Unknown SCEV kind!");
9942 ScalarEvolution::getWithOperands(const SCEV
*S
,
9943 SmallVectorImpl
<const SCEV
*> &NewOps
) {
9944 switch (S
->getSCEVType()) {
9949 return getCastExpr(S
->getSCEVType(), NewOps
[0], S
->getType());
9950 case scAddRecExpr
: {
9951 auto *AddRec
= cast
<SCEVAddRecExpr
>(S
);
9952 return getAddRecExpr(NewOps
, AddRec
->getLoop(), AddRec
->getNoWrapFlags());
9955 return getAddExpr(NewOps
, cast
<SCEVAddExpr
>(S
)->getNoWrapFlags());
9957 return getMulExpr(NewOps
, cast
<SCEVMulExpr
>(S
)->getNoWrapFlags());
9959 return getUDivExpr(NewOps
[0], NewOps
[1]);
9964 return getMinMaxExpr(S
->getSCEVType(), NewOps
);
9965 case scSequentialUMinExpr
:
9966 return getSequentialMinMaxExpr(S
->getSCEVType(), NewOps
);
9971 case scCouldNotCompute
:
9972 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9974 llvm_unreachable("Unknown SCEV kind!");
9977 const SCEV
*ScalarEvolution::computeSCEVAtScope(const SCEV
*V
, const Loop
*L
) {
9978 switch (V
->getSCEVType()) {
9982 case scAddRecExpr
: {
9983 // If this is a loop recurrence for a loop that does not contain L, then we
9984 // are dealing with the final value computed by the loop.
9985 const SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(V
);
9986 // First, attempt to evaluate each operand.
9987 // Avoid performing the look-up in the common case where the specified
9988 // expression has no loop-variant portions.
9989 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
) {
9990 const SCEV
*OpAtScope
= getSCEVAtScope(AddRec
->getOperand(i
), L
);
9991 if (OpAtScope
== AddRec
->getOperand(i
))
9994 // Okay, at least one of these operands is loop variant but might be
9995 // foldable. Build a new instance of the folded commutative expression.
9996 SmallVector
<const SCEV
*, 8> NewOps
;
9997 NewOps
.reserve(AddRec
->getNumOperands());
9998 append_range(NewOps
, AddRec
->operands().take_front(i
));
9999 NewOps
.push_back(OpAtScope
);
10000 for (++i
; i
!= e
; ++i
)
10001 NewOps
.push_back(getSCEVAtScope(AddRec
->getOperand(i
), L
));
10003 const SCEV
*FoldedRec
= getAddRecExpr(
10004 NewOps
, AddRec
->getLoop(), AddRec
->getNoWrapFlags(SCEV::FlagNW
));
10005 AddRec
= dyn_cast
<SCEVAddRecExpr
>(FoldedRec
);
10006 // The addrec may be folded to a nonrecurrence, for example, if the
10007 // induction variable is multiplied by zero after constant folding. Go
10008 // ahead and return the folded value.
10014 // If the scope is outside the addrec's loop, evaluate it by using the
10015 // loop exit value of the addrec.
10016 if (!AddRec
->getLoop()->contains(L
)) {
10017 // To evaluate this recurrence, we need to know how many times the AddRec
10018 // loop iterates. Compute this now.
10019 const SCEV
*BackedgeTakenCount
= getBackedgeTakenCount(AddRec
->getLoop());
10020 if (BackedgeTakenCount
== getCouldNotCompute())
10023 // Then, evaluate the AddRec.
10024 return AddRec
->evaluateAtIteration(BackedgeTakenCount
, *this);
10040 case scSequentialUMinExpr
: {
10041 ArrayRef
<const SCEV
*> Ops
= V
->operands();
10042 // Avoid performing the look-up in the common case where the specified
10043 // expression has no loop-variant portions.
10044 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
10045 const SCEV
*OpAtScope
= getSCEVAtScope(Ops
[i
], L
);
10046 if (OpAtScope
!= Ops
[i
]) {
10047 // Okay, at least one of these operands is loop variant but might be
10048 // foldable. Build a new instance of the folded commutative expression.
10049 SmallVector
<const SCEV
*, 8> NewOps
;
10050 NewOps
.reserve(Ops
.size());
10051 append_range(NewOps
, Ops
.take_front(i
));
10052 NewOps
.push_back(OpAtScope
);
10054 for (++i
; i
!= e
; ++i
) {
10055 OpAtScope
= getSCEVAtScope(Ops
[i
], L
);
10056 NewOps
.push_back(OpAtScope
);
10059 return getWithOperands(V
, NewOps
);
10062 // If we got here, all operands are loop invariant.
10066 // If this instruction is evolved from a constant-evolving PHI, compute the
10067 // exit value from the loop without using SCEVs.
10068 const SCEVUnknown
*SU
= cast
<SCEVUnknown
>(V
);
10069 Instruction
*I
= dyn_cast
<Instruction
>(SU
->getValue());
10071 return V
; // This is some other type of SCEVUnknown, just return it.
10073 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
10074 const Loop
*CurrLoop
= this->LI
[I
->getParent()];
10075 // Looking for loop exit value.
10076 if (CurrLoop
&& CurrLoop
->getParentLoop() == L
&&
10077 PN
->getParent() == CurrLoop
->getHeader()) {
10078 // Okay, there is no closed form solution for the PHI node. Check
10079 // to see if the loop that contains it has a known backedge-taken
10080 // count. If so, we may be able to force computation of the exit
10082 const SCEV
*BackedgeTakenCount
= getBackedgeTakenCount(CurrLoop
);
10083 // This trivial case can show up in some degenerate cases where
10084 // the incoming IR has not yet been fully simplified.
10085 if (BackedgeTakenCount
->isZero()) {
10086 Value
*InitValue
= nullptr;
10087 bool MultipleInitValues
= false;
10088 for (unsigned i
= 0; i
< PN
->getNumIncomingValues(); i
++) {
10089 if (!CurrLoop
->contains(PN
->getIncomingBlock(i
))) {
10091 InitValue
= PN
->getIncomingValue(i
);
10092 else if (InitValue
!= PN
->getIncomingValue(i
)) {
10093 MultipleInitValues
= true;
10098 if (!MultipleInitValues
&& InitValue
)
10099 return getSCEV(InitValue
);
10101 // Do we have a loop invariant value flowing around the backedge
10102 // for a loop which must execute the backedge?
10103 if (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
) &&
10104 isKnownNonZero(BackedgeTakenCount
) &&
10105 PN
->getNumIncomingValues() == 2) {
10107 unsigned InLoopPred
=
10108 CurrLoop
->contains(PN
->getIncomingBlock(0)) ? 0 : 1;
10109 Value
*BackedgeVal
= PN
->getIncomingValue(InLoopPred
);
10110 if (CurrLoop
->isLoopInvariant(BackedgeVal
))
10111 return getSCEV(BackedgeVal
);
10113 if (auto *BTCC
= dyn_cast
<SCEVConstant
>(BackedgeTakenCount
)) {
10114 // Okay, we know how many times the containing loop executes. If
10115 // this is a constant evolving PHI node, get the final value at
10116 // the specified iteration number.
10118 getConstantEvolutionLoopExitValue(PN
, BTCC
->getAPInt(), CurrLoop
);
10120 return getSCEV(RV
);
10125 // Okay, this is an expression that we cannot symbolically evaluate
10126 // into a SCEV. Check to see if it's possible to symbolically evaluate
10127 // the arguments into constants, and if so, try to constant propagate the
10128 // result. This is particularly useful for computing loop exit values.
10129 if (!CanConstantFold(I
))
10130 return V
; // This is some other type of SCEVUnknown, just return it.
10132 SmallVector
<Constant
*, 4> Operands
;
10133 Operands
.reserve(I
->getNumOperands());
10134 bool MadeImprovement
= false;
10135 for (Value
*Op
: I
->operands()) {
10136 if (Constant
*C
= dyn_cast
<Constant
>(Op
)) {
10137 Operands
.push_back(C
);
10141 // If any of the operands is non-constant and if they are
10142 // non-integer and non-pointer, don't even try to analyze them
10143 // with scev techniques.
10144 if (!isSCEVable(Op
->getType()))
10147 const SCEV
*OrigV
= getSCEV(Op
);
10148 const SCEV
*OpV
= getSCEVAtScope(OrigV
, L
);
10149 MadeImprovement
|= OrigV
!= OpV
;
10151 Constant
*C
= BuildConstantFromSCEV(OpV
);
10154 assert(C
->getType() == Op
->getType() && "Type mismatch");
10155 Operands
.push_back(C
);
10158 // Check to see if getSCEVAtScope actually made an improvement.
10159 if (!MadeImprovement
)
10160 return V
; // This is some other type of SCEVUnknown, just return it.
10162 Constant
*C
= nullptr;
10163 const DataLayout
&DL
= getDataLayout();
10164 C
= ConstantFoldInstOperands(I
, Operands
, DL
, &TLI
,
10165 /*AllowNonDeterministic=*/false);
10170 case scCouldNotCompute
:
10171 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
10173 llvm_unreachable("Unknown SCEV type!");
10176 const SCEV
*ScalarEvolution::getSCEVAtScope(Value
*V
, const Loop
*L
) {
10177 return getSCEVAtScope(getSCEV(V
), L
);
10180 const SCEV
*ScalarEvolution::stripInjectiveFunctions(const SCEV
*S
) const {
10181 if (const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(S
))
10182 return stripInjectiveFunctions(ZExt
->getOperand());
10183 if (const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(S
))
10184 return stripInjectiveFunctions(SExt
->getOperand());
10188 /// Finds the minimum unsigned root of the following equation:
10190 /// A * X = B (mod N)
10192 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
10193 /// A and B isn't important.
10195 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
10196 static const SCEV
*
10197 SolveLinEquationWithOverflow(const APInt
&A
, const SCEV
*B
,
10198 SmallVectorImpl
<const SCEVPredicate
*> *Predicates
,
10200 ScalarEvolution
&SE
) {
10201 uint32_t BW
= A
.getBitWidth();
10202 assert(BW
== SE
.getTypeSizeInBits(B
->getType()));
10203 assert(A
!= 0 && "A must be non-zero.");
10205 // 1. D = gcd(A, N)
10207 // The gcd of A and N may have only one prime factor: 2. The number of
10208 // trailing zeros in A is its multiplicity
10209 uint32_t Mult2
= A
.countr_zero();
10212 // 2. Check if B is divisible by D.
10214 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
10215 // is not less than multiplicity of this prime factor for D.
10216 if (SE
.getMinTrailingZeros(B
) < Mult2
) {
10217 // Check if we can prove there's no remainder using URem.
10219 SE
.getURemExpr(B
, SE
.getConstant(APInt::getOneBitSet(BW
, Mult2
)));
10220 const SCEV
*Zero
= SE
.getZero(B
->getType());
10221 if (!SE
.isKnownPredicate(CmpInst::ICMP_EQ
, URem
, Zero
)) {
10222 // Try to add a predicate ensuring B is a multiple of 1 << Mult2.
10224 return SE
.getCouldNotCompute();
10226 // Avoid adding a predicate that is known to be false.
10227 if (SE
.isKnownPredicate(CmpInst::ICMP_NE
, URem
, Zero
))
10228 return SE
.getCouldNotCompute();
10229 Predicates
->push_back(SE
.getEqualPredicate(URem
, Zero
));
10233 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
10236 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
10237 // (N / D) in general. The inverse itself always fits into BW bits, though,
10238 // so we immediately truncate it.
10239 APInt AD
= A
.lshr(Mult2
).trunc(BW
- Mult2
); // AD = A / D
10240 APInt I
= AD
.multiplicativeInverse().zext(BW
);
10242 // 4. Compute the minimum unsigned root of the equation:
10243 // I * (B / D) mod (N / D)
10244 // To simplify the computation, we factor out the divide by D:
10245 // (I * B mod N) / D
10246 const SCEV
*D
= SE
.getConstant(APInt::getOneBitSet(BW
, Mult2
));
10247 return SE
.getUDivExactExpr(SE
.getMulExpr(B
, SE
.getConstant(I
)), D
);
10250 /// For a given quadratic addrec, generate coefficients of the corresponding
10251 /// quadratic equation, multiplied by a common value to ensure that they are
10253 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
10254 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
10255 /// were multiplied by, and BitWidth is the bit width of the original addrec
10257 /// This function returns std::nullopt if the addrec coefficients are not
10258 /// compile- time constants.
10259 static std::optional
<std::tuple
<APInt
, APInt
, APInt
, APInt
, unsigned>>
10260 GetQuadraticEquation(const SCEVAddRecExpr
*AddRec
) {
10261 assert(AddRec
->getNumOperands() == 3 && "This is not a quadratic chrec!");
10262 const SCEVConstant
*LC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(0));
10263 const SCEVConstant
*MC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(1));
10264 const SCEVConstant
*NC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(2));
10265 LLVM_DEBUG(dbgs() << __func__
<< ": analyzing quadratic addrec: "
10266 << *AddRec
<< '\n');
10268 // We currently can only solve this if the coefficients are constants.
10269 if (!LC
|| !MC
|| !NC
) {
10270 LLVM_DEBUG(dbgs() << __func__
<< ": coefficients are not constant\n");
10271 return std::nullopt
;
10274 APInt L
= LC
->getAPInt();
10275 APInt M
= MC
->getAPInt();
10276 APInt N
= NC
->getAPInt();
10277 assert(!N
.isZero() && "This is not a quadratic addrec");
10279 unsigned BitWidth
= LC
->getAPInt().getBitWidth();
10280 unsigned NewWidth
= BitWidth
+ 1;
10281 LLVM_DEBUG(dbgs() << __func__
<< ": addrec coeff bw: "
10282 << BitWidth
<< '\n');
10283 // The sign-extension (as opposed to a zero-extension) here matches the
10284 // extension used in SolveQuadraticEquationWrap (with the same motivation).
10285 N
= N
.sext(NewWidth
);
10286 M
= M
.sext(NewWidth
);
10287 L
= L
.sext(NewWidth
);
10289 // The increments are M, M+N, M+2N, ..., so the accumulated values are
10290 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
10291 // L+M, L+2M+N, L+3M+3N, ...
10292 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
10294 // The equation Acc = 0 is then
10295 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0.
10296 // In a quadratic form it becomes:
10297 // N n^2 + (2M-N) n + 2L = 0.
10300 APInt B
= 2 * M
- A
;
10302 APInt T
= APInt(NewWidth
, 2);
10303 LLVM_DEBUG(dbgs() << __func__
<< ": equation " << A
<< "x^2 + " << B
10304 << "x + " << C
<< ", coeff bw: " << NewWidth
10305 << ", multiplied by " << T
<< '\n');
10306 return std::make_tuple(A
, B
, C
, T
, BitWidth
);
10309 /// Helper function to compare optional APInts:
10310 /// (a) if X and Y both exist, return min(X, Y),
10311 /// (b) if neither X nor Y exist, return std::nullopt,
10312 /// (c) if exactly one of X and Y exists, return that value.
10313 static std::optional
<APInt
> MinOptional(std::optional
<APInt
> X
,
10314 std::optional
<APInt
> Y
) {
10316 unsigned W
= std::max(X
->getBitWidth(), Y
->getBitWidth());
10317 APInt XW
= X
->sext(W
);
10318 APInt YW
= Y
->sext(W
);
10319 return XW
.slt(YW
) ? *X
: *Y
;
10322 return std::nullopt
;
10323 return X
? *X
: *Y
;
10326 /// Helper function to truncate an optional APInt to a given BitWidth.
10327 /// When solving addrec-related equations, it is preferable to return a value
10328 /// that has the same bit width as the original addrec's coefficients. If the
10329 /// solution fits in the original bit width, truncate it (except for i1).
10330 /// Returning a value of a different bit width may inhibit some optimizations.
10332 /// In general, a solution to a quadratic equation generated from an addrec
10333 /// may require BW+1 bits, where BW is the bit width of the addrec's
10334 /// coefficients. The reason is that the coefficients of the quadratic
10335 /// equation are BW+1 bits wide (to avoid truncation when converting from
10336 /// the addrec to the equation).
10337 static std::optional
<APInt
> TruncIfPossible(std::optional
<APInt
> X
,
10338 unsigned BitWidth
) {
10340 return std::nullopt
;
10341 unsigned W
= X
->getBitWidth();
10342 if (BitWidth
> 1 && BitWidth
< W
&& X
->isIntN(BitWidth
))
10343 return X
->trunc(BitWidth
);
10347 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
10348 /// iterations. The values L, M, N are assumed to be signed, and they
10349 /// should all have the same bit widths.
10350 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
10351 /// where BW is the bit width of the addrec's coefficients.
10352 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
10353 /// returned as such, otherwise the bit width of the returned value may
10354 /// be greater than BW.
10356 /// This function returns std::nullopt if
10357 /// (a) the addrec coefficients are not constant, or
10358 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
10359 /// like x^2 = 5, no integer solutions exist, in other cases an integer
10360 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it.
10361 static std::optional
<APInt
>
10362 SolveQuadraticAddRecExact(const SCEVAddRecExpr
*AddRec
, ScalarEvolution
&SE
) {
10365 auto T
= GetQuadraticEquation(AddRec
);
10367 return std::nullopt
;
10369 std::tie(A
, B
, C
, M
, BitWidth
) = *T
;
10370 LLVM_DEBUG(dbgs() << __func__
<< ": solving for unsigned overflow\n");
10371 std::optional
<APInt
> X
=
10372 APIntOps::SolveQuadraticEquationWrap(A
, B
, C
, BitWidth
+ 1);
10374 return std::nullopt
;
10376 ConstantInt
*CX
= ConstantInt::get(SE
.getContext(), *X
);
10377 ConstantInt
*V
= EvaluateConstantChrecAtConstant(AddRec
, CX
, SE
);
10379 return std::nullopt
;
10381 return TruncIfPossible(X
, BitWidth
);
10384 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
10385 /// iterations. The values M, N are assumed to be signed, and they
10386 /// should all have the same bit widths.
10387 /// Find the least n such that c(n) does not belong to the given range,
10388 /// while c(n-1) does.
10390 /// This function returns std::nullopt if
10391 /// (a) the addrec coefficients are not constant, or
10392 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
10393 /// bounds of the range.
10394 static std::optional
<APInt
>
10395 SolveQuadraticAddRecRange(const SCEVAddRecExpr
*AddRec
,
10396 const ConstantRange
&Range
, ScalarEvolution
&SE
) {
10397 assert(AddRec
->getOperand(0)->isZero() &&
10398 "Starting value of addrec should be 0");
10399 LLVM_DEBUG(dbgs() << __func__
<< ": solving boundary crossing for range "
10400 << Range
<< ", addrec " << *AddRec
<< '\n');
10401 // This case is handled in getNumIterationsInRange. Here we can assume that
10402 // we start in the range.
10403 assert(Range
.contains(APInt(SE
.getTypeSizeInBits(AddRec
->getType()), 0)) &&
10404 "Addrec's initial value should be in range");
10408 auto T
= GetQuadraticEquation(AddRec
);
10410 return std::nullopt
;
10412 // Be careful about the return value: there can be two reasons for not
10413 // returning an actual number. First, if no solutions to the equations
10414 // were found, and second, if the solutions don't leave the given range.
10415 // The first case means that the actual solution is "unknown", the second
10416 // means that it's known, but not valid. If the solution is unknown, we
10417 // cannot make any conclusions.
10418 // Return a pair: the optional solution and a flag indicating if the
10419 // solution was found.
10420 auto SolveForBoundary
=
10421 [&](APInt Bound
) -> std::pair
<std::optional
<APInt
>, bool> {
10422 // Solve for signed overflow and unsigned overflow, pick the lower
10424 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
10425 << Bound
<< " (before multiplying by " << M
<< ")\n");
10426 Bound
*= M
; // The quadratic equation multiplier.
10428 std::optional
<APInt
> SO
;
10429 if (BitWidth
> 1) {
10430 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10431 "signed overflow\n");
10432 SO
= APIntOps::SolveQuadraticEquationWrap(A
, B
, -Bound
, BitWidth
);
10434 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10435 "unsigned overflow\n");
10436 std::optional
<APInt
> UO
=
10437 APIntOps::SolveQuadraticEquationWrap(A
, B
, -Bound
, BitWidth
+ 1);
10439 auto LeavesRange
= [&] (const APInt
&X
) {
10440 ConstantInt
*C0
= ConstantInt::get(SE
.getContext(), X
);
10441 ConstantInt
*V0
= EvaluateConstantChrecAtConstant(AddRec
, C0
, SE
);
10442 if (Range
.contains(V0
->getValue()))
10444 // X should be at least 1, so X-1 is non-negative.
10445 ConstantInt
*C1
= ConstantInt::get(SE
.getContext(), X
-1);
10446 ConstantInt
*V1
= EvaluateConstantChrecAtConstant(AddRec
, C1
, SE
);
10447 if (Range
.contains(V1
->getValue()))
10452 // If SolveQuadraticEquationWrap returns std::nullopt, it means that there
10453 // can be a solution, but the function failed to find it. We cannot treat it
10454 // as "no solution".
10456 return {std::nullopt
, false};
10458 // Check the smaller value first to see if it leaves the range.
10459 // At this point, both SO and UO must have values.
10460 std::optional
<APInt
> Min
= MinOptional(SO
, UO
);
10461 if (LeavesRange(*Min
))
10462 return { Min
, true };
10463 std::optional
<APInt
> Max
= Min
== SO
? UO
: SO
;
10464 if (LeavesRange(*Max
))
10465 return { Max
, true };
10467 // Solutions were found, but were eliminated, hence the "true".
10468 return {std::nullopt
, true};
10471 std::tie(A
, B
, C
, M
, BitWidth
) = *T
;
10472 // Lower bound is inclusive, subtract 1 to represent the exiting value.
10473 APInt Lower
= Range
.getLower().sext(A
.getBitWidth()) - 1;
10474 APInt Upper
= Range
.getUpper().sext(A
.getBitWidth());
10475 auto SL
= SolveForBoundary(Lower
);
10476 auto SU
= SolveForBoundary(Upper
);
10477 // If any of the solutions was unknown, no meaninigful conclusions can
10479 if (!SL
.second
|| !SU
.second
)
10480 return std::nullopt
;
10482 // Claim: The correct solution is not some value between Min and Max.
10484 // Justification: Assuming that Min and Max are different values, one of
10485 // them is when the first signed overflow happens, the other is when the
10486 // first unsigned overflow happens. Crossing the range boundary is only
10487 // possible via an overflow (treating 0 as a special case of it, modeling
10488 // an overflow as crossing k*2^W for some k).
10490 // The interesting case here is when Min was eliminated as an invalid
10491 // solution, but Max was not. The argument is that if there was another
10492 // overflow between Min and Max, it would also have been eliminated if
10493 // it was considered.
10495 // For a given boundary, it is possible to have two overflows of the same
10496 // type (signed/unsigned) without having the other type in between: this
10497 // can happen when the vertex of the parabola is between the iterations
10498 // corresponding to the overflows. This is only possible when the two
10499 // overflows cross k*2^W for the same k. In such case, if the second one
10500 // left the range (and was the first one to do so), the first overflow
10501 // would have to enter the range, which would mean that either we had left
10502 // the range before or that we started outside of it. Both of these cases
10503 // are contradictions.
10505 // Claim: In the case where SolveForBoundary returns std::nullopt, the correct
10506 // solution is not some value between the Max for this boundary and the
10507 // Min of the other boundary.
10509 // Justification: Assume that we had such Max_A and Min_B corresponding
10510 // to range boundaries A and B and such that Max_A < Min_B. If there was
10511 // a solution between Max_A and Min_B, it would have to be caused by an
10512 // overflow corresponding to either A or B. It cannot correspond to B,
10513 // since Min_B is the first occurrence of such an overflow. If it
10514 // corresponded to A, it would have to be either a signed or an unsigned
10515 // overflow that is larger than both eliminated overflows for A. But
10516 // between the eliminated overflows and this overflow, the values would
10517 // cover the entire value space, thus crossing the other boundary, which
10518 // is a contradiction.
10520 return TruncIfPossible(MinOptional(SL
.first
, SU
.first
), BitWidth
);
10523 ScalarEvolution::ExitLimit
ScalarEvolution::howFarToZero(const SCEV
*V
,
10525 bool ControlsOnlyExit
,
10526 bool AllowPredicates
) {
10528 // This is only used for loops with a "x != y" exit test. The exit condition
10529 // is now expressed as a single expression, V = x-y. So the exit test is
10530 // effectively V != 0. We know and take advantage of the fact that this
10531 // expression only being used in a comparison by zero context.
10533 SmallVector
<const SCEVPredicate
*> Predicates
;
10534 // If the value is a constant
10535 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(V
)) {
10536 // If the value is already zero, the branch will execute zero times.
10537 if (C
->getValue()->isZero()) return C
;
10538 return getCouldNotCompute(); // Otherwise it will loop infinitely.
10541 const SCEVAddRecExpr
*AddRec
=
10542 dyn_cast
<SCEVAddRecExpr
>(stripInjectiveFunctions(V
));
10544 if (!AddRec
&& AllowPredicates
)
10545 // Try to make this an AddRec using runtime tests, in the first X
10546 // iterations of this loop, where X is the SCEV expression found by the
10547 // algorithm below.
10548 AddRec
= convertSCEVToAddRecWithPredicates(V
, L
, Predicates
);
10550 if (!AddRec
|| AddRec
->getLoop() != L
)
10551 return getCouldNotCompute();
10553 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
10554 // the quadratic equation to solve it.
10555 if (AddRec
->isQuadratic() && AddRec
->getType()->isIntegerTy()) {
10556 // We can only use this value if the chrec ends up with an exact zero
10557 // value at this index. When solving for "X*X != 5", for example, we
10558 // should not accept a root of 2.
10559 if (auto S
= SolveQuadraticAddRecExact(AddRec
, *this)) {
10560 const auto *R
= cast
<SCEVConstant
>(getConstant(*S
));
10561 return ExitLimit(R
, R
, R
, false, Predicates
);
10563 return getCouldNotCompute();
10566 // Otherwise we can only handle this if it is affine.
10567 if (!AddRec
->isAffine())
10568 return getCouldNotCompute();
10570 // If this is an affine expression, the execution count of this branch is
10571 // the minimum unsigned root of the following equation:
10573 // Start + Step*N = 0 (mod 2^BW)
10577 // Step*N = -Start (mod 2^BW)
10579 // where BW is the common bit width of Start and Step.
10581 // Get the initial value for the loop.
10582 const SCEV
*Start
= getSCEVAtScope(AddRec
->getStart(), L
->getParentLoop());
10583 const SCEV
*Step
= getSCEVAtScope(AddRec
->getOperand(1), L
->getParentLoop());
10585 if (!isLoopInvariant(Step
, L
))
10586 return getCouldNotCompute();
10588 LoopGuards Guards
= LoopGuards::collect(L
, *this);
10589 // Specialize step for this loop so we get context sensitive facts below.
10590 const SCEV
*StepWLG
= applyLoopGuards(Step
, Guards
);
10592 // For positive steps (counting up until unsigned overflow):
10593 // N = -Start/Step (as unsigned)
10594 // For negative steps (counting down to zero):
10596 // First compute the unsigned distance from zero in the direction of Step.
10597 bool CountDown
= isKnownNegative(StepWLG
);
10598 if (!CountDown
&& !isKnownNonNegative(StepWLG
))
10599 return getCouldNotCompute();
10601 const SCEV
*Distance
= CountDown
? Start
: getNegativeSCEV(Start
);
10602 // Handle unitary steps, which cannot wraparound.
10603 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
10604 // N = Distance (as unsigned)
10606 if (match(Step
, m_CombineOr(m_scev_One(), m_scev_AllOnes()))) {
10607 APInt MaxBECount
= getUnsignedRangeMax(applyLoopGuards(Distance
, Guards
));
10608 MaxBECount
= APIntOps::umin(MaxBECount
, getUnsignedRangeMax(Distance
));
10610 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
10611 // we end up with a loop whose backedge-taken count is n - 1. Detect this
10612 // case, and see if we can improve the bound.
10614 // Explicitly handling this here is necessary because getUnsignedRange
10615 // isn't context-sensitive; it doesn't know that we only care about the
10616 // range inside the loop.
10617 const SCEV
*Zero
= getZero(Distance
->getType());
10618 const SCEV
*One
= getOne(Distance
->getType());
10619 const SCEV
*DistancePlusOne
= getAddExpr(Distance
, One
);
10620 if (isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_NE
, DistancePlusOne
, Zero
)) {
10621 // If Distance + 1 doesn't overflow, we can compute the maximum distance
10622 // as "unsigned_max(Distance + 1) - 1".
10623 ConstantRange CR
= getUnsignedRange(DistancePlusOne
);
10624 MaxBECount
= APIntOps::umin(MaxBECount
, CR
.getUnsignedMax() - 1);
10626 return ExitLimit(Distance
, getConstant(MaxBECount
), Distance
, false,
10630 // If the condition controls loop exit (the loop exits only if the expression
10631 // is true) and the addition is no-wrap we can use unsigned divide to
10632 // compute the backedge count. In this case, the step may not divide the
10633 // distance, but we don't care because if the condition is "missed" the loop
10634 // will have undefined behavior due to wrapping.
10635 if (ControlsOnlyExit
&& AddRec
->hasNoSelfWrap() &&
10636 loopHasNoAbnormalExits(AddRec
->getLoop())) {
10638 // If the stride is zero, the loop must be infinite. In C++, most loops
10639 // are finite by assumption, in which case the step being zero implies
10640 // UB must execute if the loop is entered.
10641 if (!loopIsFiniteByAssumption(L
) && !isKnownNonZero(StepWLG
))
10642 return getCouldNotCompute();
10644 const SCEV
*Exact
=
10645 getUDivExpr(Distance
, CountDown
? getNegativeSCEV(Step
) : Step
);
10646 const SCEV
*ConstantMax
= getCouldNotCompute();
10647 if (Exact
!= getCouldNotCompute()) {
10648 APInt MaxInt
= getUnsignedRangeMax(applyLoopGuards(Exact
, Guards
));
10650 getConstant(APIntOps::umin(MaxInt
, getUnsignedRangeMax(Exact
)));
10652 const SCEV
*SymbolicMax
=
10653 isa
<SCEVCouldNotCompute
>(Exact
) ? ConstantMax
: Exact
;
10654 return ExitLimit(Exact
, ConstantMax
, SymbolicMax
, false, Predicates
);
10657 // Solve the general equation.
10658 const SCEVConstant
*StepC
= dyn_cast
<SCEVConstant
>(Step
);
10659 if (!StepC
|| StepC
->getValue()->isZero())
10660 return getCouldNotCompute();
10661 const SCEV
*E
= SolveLinEquationWithOverflow(
10662 StepC
->getAPInt(), getNegativeSCEV(Start
),
10663 AllowPredicates
? &Predicates
: nullptr, *this);
10666 if (E
!= getCouldNotCompute()) {
10667 APInt MaxWithGuards
= getUnsignedRangeMax(applyLoopGuards(E
, Guards
));
10668 M
= getConstant(APIntOps::umin(MaxWithGuards
, getUnsignedRangeMax(E
)));
10670 auto *S
= isa
<SCEVCouldNotCompute
>(E
) ? M
: E
;
10671 return ExitLimit(E
, M
, S
, false, Predicates
);
10674 ScalarEvolution::ExitLimit
10675 ScalarEvolution::howFarToNonZero(const SCEV
*V
, const Loop
*L
) {
10676 // Loops that look like: while (X == 0) are very strange indeed. We don't
10677 // handle them yet except for the trivial case. This could be expanded in the
10678 // future as needed.
10680 // If the value is a constant, check to see if it is known to be non-zero
10681 // already. If so, the backedge will execute zero times.
10682 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(V
)) {
10683 if (!C
->getValue()->isZero())
10684 return getZero(C
->getType());
10685 return getCouldNotCompute(); // Otherwise it will loop infinitely.
10688 // We could implement others, but I really doubt anyone writes loops like
10689 // this, and if they did, they would already be constant folded.
10690 return getCouldNotCompute();
10693 std::pair
<const BasicBlock
*, const BasicBlock
*>
10694 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock
*BB
)
10696 // If the block has a unique predecessor, then there is no path from the
10697 // predecessor to the block that does not go through the direct edge
10698 // from the predecessor to the block.
10699 if (const BasicBlock
*Pred
= BB
->getSinglePredecessor())
10702 // A loop's header is defined to be a block that dominates the loop.
10703 // If the header has a unique predecessor outside the loop, it must be
10704 // a block that has exactly one successor that can reach the loop.
10705 if (const Loop
*L
= LI
.getLoopFor(BB
))
10706 return {L
->getLoopPredecessor(), L
->getHeader()};
10708 return {nullptr, BB
};
10711 /// SCEV structural equivalence is usually sufficient for testing whether two
10712 /// expressions are equal, however for the purposes of looking for a condition
10713 /// guarding a loop, it can be useful to be a little more general, since a
10714 /// front-end may have replicated the controlling expression.
10715 static bool HasSameValue(const SCEV
*A
, const SCEV
*B
) {
10716 // Quick check to see if they are the same SCEV.
10717 if (A
== B
) return true;
10719 auto ComputesEqualValues
= [](const Instruction
*A
, const Instruction
*B
) {
10720 // Not all instructions that are "identical" compute the same value. For
10721 // instance, two distinct alloca instructions allocating the same type are
10722 // identical and do not read memory; but compute distinct values.
10723 return A
->isIdenticalTo(B
) && (isa
<BinaryOperator
>(A
) || isa
<GetElementPtrInst
>(A
));
10726 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
10727 // two different instructions with the same value. Check for this case.
10728 if (const SCEVUnknown
*AU
= dyn_cast
<SCEVUnknown
>(A
))
10729 if (const SCEVUnknown
*BU
= dyn_cast
<SCEVUnknown
>(B
))
10730 if (const Instruction
*AI
= dyn_cast
<Instruction
>(AU
->getValue()))
10731 if (const Instruction
*BI
= dyn_cast
<Instruction
>(BU
->getValue()))
10732 if (ComputesEqualValues(AI
, BI
))
10735 // Otherwise assume they may have a different value.
10739 static bool MatchBinarySub(const SCEV
*S
, const SCEV
*&LHS
, const SCEV
*&RHS
) {
10740 const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(S
);
10741 if (!Add
|| Add
->getNumOperands() != 2)
10743 if (auto *ME
= dyn_cast
<SCEVMulExpr
>(Add
->getOperand(0));
10744 ME
&& ME
->getNumOperands() == 2 && ME
->getOperand(0)->isAllOnesValue()) {
10745 LHS
= Add
->getOperand(1);
10746 RHS
= ME
->getOperand(1);
10749 if (auto *ME
= dyn_cast
<SCEVMulExpr
>(Add
->getOperand(1));
10750 ME
&& ME
->getNumOperands() == 2 && ME
->getOperand(0)->isAllOnesValue()) {
10751 LHS
= Add
->getOperand(0);
10752 RHS
= ME
->getOperand(1);
10758 bool ScalarEvolution::SimplifyICmpOperands(CmpPredicate
&Pred
, const SCEV
*&LHS
,
10759 const SCEV
*&RHS
, unsigned Depth
) {
10760 bool Changed
= false;
10761 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
10763 auto TrivialCase
= [&](bool TriviallyTrue
) {
10764 LHS
= RHS
= getConstant(ConstantInt::getFalse(getContext()));
10765 Pred
= TriviallyTrue
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
;
10768 // If we hit the max recursion limit bail out.
10772 // Canonicalize a constant to the right side.
10773 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
)) {
10774 // Check for both operands constant.
10775 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
)) {
10776 if (!ICmpInst::compare(LHSC
->getAPInt(), RHSC
->getAPInt(), Pred
))
10777 return TrivialCase(false);
10778 return TrivialCase(true);
10780 // Otherwise swap the operands to put the constant on the right.
10781 std::swap(LHS
, RHS
);
10782 Pred
= ICmpInst::getSwappedCmpPredicate(Pred
);
10786 // If we're comparing an addrec with a value which is loop-invariant in the
10787 // addrec's loop, put the addrec on the left. Also make a dominance check,
10788 // as both operands could be addrecs loop-invariant in each other's loop.
10789 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(RHS
)) {
10790 const Loop
*L
= AR
->getLoop();
10791 if (isLoopInvariant(LHS
, L
) && properlyDominates(LHS
, L
->getHeader())) {
10792 std::swap(LHS
, RHS
);
10793 Pred
= ICmpInst::getSwappedCmpPredicate(Pred
);
10798 // If there's a constant operand, canonicalize comparisons with boundary
10799 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
10800 if (const SCEVConstant
*RC
= dyn_cast
<SCEVConstant
>(RHS
)) {
10801 const APInt
&RA
= RC
->getAPInt();
10803 bool SimplifiedByConstantRange
= false;
10805 if (!ICmpInst::isEquality(Pred
)) {
10806 ConstantRange ExactCR
= ConstantRange::makeExactICmpRegion(Pred
, RA
);
10807 if (ExactCR
.isFullSet())
10808 return TrivialCase(true);
10809 if (ExactCR
.isEmptySet())
10810 return TrivialCase(false);
10813 CmpInst::Predicate NewPred
;
10814 if (ExactCR
.getEquivalentICmp(NewPred
, NewRHS
) &&
10815 ICmpInst::isEquality(NewPred
)) {
10816 // We were able to convert an inequality to an equality.
10818 RHS
= getConstant(NewRHS
);
10819 Changed
= SimplifiedByConstantRange
= true;
10823 if (!SimplifiedByConstantRange
) {
10827 case ICmpInst::ICMP_EQ
:
10828 case ICmpInst::ICMP_NE
:
10829 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
10830 if (RA
.isZero() && MatchBinarySub(LHS
, LHS
, RHS
))
10834 // The "Should have been caught earlier!" messages refer to the fact
10835 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
10836 // should have fired on the corresponding cases, and canonicalized the
10837 // check to trivial case.
10839 case ICmpInst::ICMP_UGE
:
10840 assert(!RA
.isMinValue() && "Should have been caught earlier!");
10841 Pred
= ICmpInst::ICMP_UGT
;
10842 RHS
= getConstant(RA
- 1);
10845 case ICmpInst::ICMP_ULE
:
10846 assert(!RA
.isMaxValue() && "Should have been caught earlier!");
10847 Pred
= ICmpInst::ICMP_ULT
;
10848 RHS
= getConstant(RA
+ 1);
10851 case ICmpInst::ICMP_SGE
:
10852 assert(!RA
.isMinSignedValue() && "Should have been caught earlier!");
10853 Pred
= ICmpInst::ICMP_SGT
;
10854 RHS
= getConstant(RA
- 1);
10857 case ICmpInst::ICMP_SLE
:
10858 assert(!RA
.isMaxSignedValue() && "Should have been caught earlier!");
10859 Pred
= ICmpInst::ICMP_SLT
;
10860 RHS
= getConstant(RA
+ 1);
10867 // Check for obvious equality.
10868 if (HasSameValue(LHS
, RHS
)) {
10869 if (ICmpInst::isTrueWhenEqual(Pred
))
10870 return TrivialCase(true);
10871 if (ICmpInst::isFalseWhenEqual(Pred
))
10872 return TrivialCase(false);
10875 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
10876 // adding or subtracting 1 from one of the operands.
10878 case ICmpInst::ICMP_SLE
:
10879 if (!getSignedRangeMax(RHS
).isMaxSignedValue()) {
10880 RHS
= getAddExpr(getConstant(RHS
->getType(), 1, true), RHS
,
10882 Pred
= ICmpInst::ICMP_SLT
;
10884 } else if (!getSignedRangeMin(LHS
).isMinSignedValue()) {
10885 LHS
= getAddExpr(getConstant(RHS
->getType(), (uint64_t)-1, true), LHS
,
10887 Pred
= ICmpInst::ICMP_SLT
;
10891 case ICmpInst::ICMP_SGE
:
10892 if (!getSignedRangeMin(RHS
).isMinSignedValue()) {
10893 RHS
= getAddExpr(getConstant(RHS
->getType(), (uint64_t)-1, true), RHS
,
10895 Pred
= ICmpInst::ICMP_SGT
;
10897 } else if (!getSignedRangeMax(LHS
).isMaxSignedValue()) {
10898 LHS
= getAddExpr(getConstant(RHS
->getType(), 1, true), LHS
,
10900 Pred
= ICmpInst::ICMP_SGT
;
10904 case ICmpInst::ICMP_ULE
:
10905 if (!getUnsignedRangeMax(RHS
).isMaxValue()) {
10906 RHS
= getAddExpr(getConstant(RHS
->getType(), 1, true), RHS
,
10908 Pred
= ICmpInst::ICMP_ULT
;
10910 } else if (!getUnsignedRangeMin(LHS
).isMinValue()) {
10911 LHS
= getAddExpr(getConstant(RHS
->getType(), (uint64_t)-1, true), LHS
);
10912 Pred
= ICmpInst::ICMP_ULT
;
10916 case ICmpInst::ICMP_UGE
:
10917 if (!getUnsignedRangeMin(RHS
).isMinValue()) {
10918 RHS
= getAddExpr(getConstant(RHS
->getType(), (uint64_t)-1, true), RHS
);
10919 Pred
= ICmpInst::ICMP_UGT
;
10921 } else if (!getUnsignedRangeMax(LHS
).isMaxValue()) {
10922 LHS
= getAddExpr(getConstant(RHS
->getType(), 1, true), LHS
,
10924 Pred
= ICmpInst::ICMP_UGT
;
10932 // TODO: More simplifications are possible here.
10934 // Recursively simplify until we either hit a recursion limit or nothing
10937 return SimplifyICmpOperands(Pred
, LHS
, RHS
, Depth
+ 1);
10942 bool ScalarEvolution::isKnownNegative(const SCEV
*S
) {
10943 return getSignedRangeMax(S
).isNegative();
10946 bool ScalarEvolution::isKnownPositive(const SCEV
*S
) {
10947 return getSignedRangeMin(S
).isStrictlyPositive();
10950 bool ScalarEvolution::isKnownNonNegative(const SCEV
*S
) {
10951 return !getSignedRangeMin(S
).isNegative();
10954 bool ScalarEvolution::isKnownNonPositive(const SCEV
*S
) {
10955 return !getSignedRangeMax(S
).isStrictlyPositive();
10958 bool ScalarEvolution::isKnownNonZero(const SCEV
*S
) {
10959 // Query push down for cases where the unsigned range is
10960 // less than sufficient.
10961 if (const auto *SExt
= dyn_cast
<SCEVSignExtendExpr
>(S
))
10962 return isKnownNonZero(SExt
->getOperand(0));
10963 return getUnsignedRangeMin(S
) != 0;
10966 bool ScalarEvolution::isKnownToBeAPowerOfTwo(const SCEV
*S
, bool OrZero
,
10968 auto NonRecursive
= [this, OrNegative
](const SCEV
*S
) {
10969 if (auto *C
= dyn_cast
<SCEVConstant
>(S
))
10970 return C
->getAPInt().isPowerOf2() ||
10971 (OrNegative
&& C
->getAPInt().isNegatedPowerOf2());
10973 // The vscale_range indicates vscale is a power-of-two.
10974 return isa
<SCEVVScale
>(S
) && F
.hasFnAttribute(Attribute::VScaleRange
);
10977 if (NonRecursive(S
))
10980 auto *Mul
= dyn_cast
<SCEVMulExpr
>(S
);
10983 return all_of(Mul
->operands(), NonRecursive
) && (OrZero
|| isKnownNonZero(S
));
10986 std::pair
<const SCEV
*, const SCEV
*>
10987 ScalarEvolution::SplitIntoInitAndPostInc(const Loop
*L
, const SCEV
*S
) {
10988 // Compute SCEV on entry of loop L.
10989 const SCEV
*Start
= SCEVInitRewriter::rewrite(S
, L
, *this);
10990 if (Start
== getCouldNotCompute())
10991 return { Start
, Start
};
10992 // Compute post increment SCEV for loop L.
10993 const SCEV
*PostInc
= SCEVPostIncRewriter::rewrite(S
, L
, *this);
10994 assert(PostInc
!= getCouldNotCompute() && "Unexpected could not compute");
10995 return { Start
, PostInc
};
10998 bool ScalarEvolution::isKnownViaInduction(CmpPredicate Pred
, const SCEV
*LHS
,
11000 // First collect all loops.
11001 SmallPtrSet
<const Loop
*, 8> LoopsUsed
;
11002 getUsedLoops(LHS
, LoopsUsed
);
11003 getUsedLoops(RHS
, LoopsUsed
);
11005 if (LoopsUsed
.empty())
11008 // Domination relationship must be a linear order on collected loops.
11010 for (const auto *L1
: LoopsUsed
)
11011 for (const auto *L2
: LoopsUsed
)
11012 assert((DT
.dominates(L1
->getHeader(), L2
->getHeader()) ||
11013 DT
.dominates(L2
->getHeader(), L1
->getHeader())) &&
11014 "Domination relationship is not a linear order");
11018 *llvm::max_element(LoopsUsed
, [&](const Loop
*L1
, const Loop
*L2
) {
11019 return DT
.properlyDominates(L1
->getHeader(), L2
->getHeader());
11022 // Get init and post increment value for LHS.
11023 auto SplitLHS
= SplitIntoInitAndPostInc(MDL
, LHS
);
11024 // if LHS contains unknown non-invariant SCEV then bail out.
11025 if (SplitLHS
.first
== getCouldNotCompute())
11027 assert (SplitLHS
.second
!= getCouldNotCompute() && "Unexpected CNC");
11028 // Get init and post increment value for RHS.
11029 auto SplitRHS
= SplitIntoInitAndPostInc(MDL
, RHS
);
11030 // if RHS contains unknown non-invariant SCEV then bail out.
11031 if (SplitRHS
.first
== getCouldNotCompute())
11033 assert (SplitRHS
.second
!= getCouldNotCompute() && "Unexpected CNC");
11034 // It is possible that init SCEV contains an invariant load but it does
11035 // not dominate MDL and is not available at MDL loop entry, so we should
11037 if (!isAvailableAtLoopEntry(SplitLHS
.first
, MDL
) ||
11038 !isAvailableAtLoopEntry(SplitRHS
.first
, MDL
))
11041 // It seems backedge guard check is faster than entry one so in some cases
11042 // it can speed up whole estimation by short circuit
11043 return isLoopBackedgeGuardedByCond(MDL
, Pred
, SplitLHS
.second
,
11044 SplitRHS
.second
) &&
11045 isLoopEntryGuardedByCond(MDL
, Pred
, SplitLHS
.first
, SplitRHS
.first
);
11048 bool ScalarEvolution::isKnownPredicate(CmpPredicate Pred
, const SCEV
*LHS
,
11050 // Canonicalize the inputs first.
11051 (void)SimplifyICmpOperands(Pred
, LHS
, RHS
);
11053 if (isKnownViaInduction(Pred
, LHS
, RHS
))
11056 if (isKnownPredicateViaSplitting(Pred
, LHS
, RHS
))
11059 // Otherwise see what can be done with some simple reasoning.
11060 return isKnownViaNonRecursiveReasoning(Pred
, LHS
, RHS
);
11063 std::optional
<bool> ScalarEvolution::evaluatePredicate(CmpPredicate Pred
,
11066 if (isKnownPredicate(Pred
, LHS
, RHS
))
11068 if (isKnownPredicate(ICmpInst::getInverseCmpPredicate(Pred
), LHS
, RHS
))
11070 return std::nullopt
;
11073 bool ScalarEvolution::isKnownPredicateAt(CmpPredicate Pred
, const SCEV
*LHS
,
11075 const Instruction
*CtxI
) {
11076 // TODO: Analyze guards and assumes from Context's block.
11077 return isKnownPredicate(Pred
, LHS
, RHS
) ||
11078 isBasicBlockEntryGuardedByCond(CtxI
->getParent(), Pred
, LHS
, RHS
);
11081 std::optional
<bool>
11082 ScalarEvolution::evaluatePredicateAt(CmpPredicate Pred
, const SCEV
*LHS
,
11083 const SCEV
*RHS
, const Instruction
*CtxI
) {
11084 std::optional
<bool> KnownWithoutContext
= evaluatePredicate(Pred
, LHS
, RHS
);
11085 if (KnownWithoutContext
)
11086 return KnownWithoutContext
;
11088 if (isBasicBlockEntryGuardedByCond(CtxI
->getParent(), Pred
, LHS
, RHS
))
11090 if (isBasicBlockEntryGuardedByCond(
11091 CtxI
->getParent(), ICmpInst::getInverseCmpPredicate(Pred
), LHS
, RHS
))
11093 return std::nullopt
;
11096 bool ScalarEvolution::isKnownOnEveryIteration(CmpPredicate Pred
,
11097 const SCEVAddRecExpr
*LHS
,
11099 const Loop
*L
= LHS
->getLoop();
11100 return isLoopEntryGuardedByCond(L
, Pred
, LHS
->getStart(), RHS
) &&
11101 isLoopBackedgeGuardedByCond(L
, Pred
, LHS
->getPostIncExpr(*this), RHS
);
11104 std::optional
<ScalarEvolution::MonotonicPredicateType
>
11105 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr
*LHS
,
11106 ICmpInst::Predicate Pred
) {
11107 auto Result
= getMonotonicPredicateTypeImpl(LHS
, Pred
);
11110 // Verify an invariant: inverting the predicate should turn a monotonically
11111 // increasing change to a monotonically decreasing one, and vice versa.
11113 auto ResultSwapped
=
11114 getMonotonicPredicateTypeImpl(LHS
, ICmpInst::getSwappedPredicate(Pred
));
11116 assert(*ResultSwapped
!= *Result
&&
11117 "monotonicity should flip as we flip the predicate");
11124 std::optional
<ScalarEvolution::MonotonicPredicateType
>
11125 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr
*LHS
,
11126 ICmpInst::Predicate Pred
) {
11127 // A zero step value for LHS means the induction variable is essentially a
11128 // loop invariant value. We don't really depend on the predicate actually
11129 // flipping from false to true (for increasing predicates, and the other way
11130 // around for decreasing predicates), all we care about is that *if* the
11131 // predicate changes then it only changes from false to true.
11133 // A zero step value in itself is not very useful, but there may be places
11134 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
11135 // as general as possible.
11137 // Only handle LE/LT/GE/GT predicates.
11138 if (!ICmpInst::isRelational(Pred
))
11139 return std::nullopt
;
11141 bool IsGreater
= ICmpInst::isGE(Pred
) || ICmpInst::isGT(Pred
);
11142 assert((IsGreater
|| ICmpInst::isLE(Pred
) || ICmpInst::isLT(Pred
)) &&
11143 "Should be greater or less!");
11145 // Check that AR does not wrap.
11146 if (ICmpInst::isUnsigned(Pred
)) {
11147 if (!LHS
->hasNoUnsignedWrap())
11148 return std::nullopt
;
11149 return IsGreater
? MonotonicallyIncreasing
: MonotonicallyDecreasing
;
11151 assert(ICmpInst::isSigned(Pred
) &&
11152 "Relational predicate is either signed or unsigned!");
11153 if (!LHS
->hasNoSignedWrap())
11154 return std::nullopt
;
11156 const SCEV
*Step
= LHS
->getStepRecurrence(*this);
11158 if (isKnownNonNegative(Step
))
11159 return IsGreater
? MonotonicallyIncreasing
: MonotonicallyDecreasing
;
11161 if (isKnownNonPositive(Step
))
11162 return !IsGreater
? MonotonicallyIncreasing
: MonotonicallyDecreasing
;
11164 return std::nullopt
;
11167 std::optional
<ScalarEvolution::LoopInvariantPredicate
>
11168 ScalarEvolution::getLoopInvariantPredicate(CmpPredicate Pred
, const SCEV
*LHS
,
11169 const SCEV
*RHS
, const Loop
*L
,
11170 const Instruction
*CtxI
) {
11171 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
11172 if (!isLoopInvariant(RHS
, L
)) {
11173 if (!isLoopInvariant(LHS
, L
))
11174 return std::nullopt
;
11176 std::swap(LHS
, RHS
);
11177 Pred
= ICmpInst::getSwappedCmpPredicate(Pred
);
11180 const SCEVAddRecExpr
*ArLHS
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
11181 if (!ArLHS
|| ArLHS
->getLoop() != L
)
11182 return std::nullopt
;
11184 auto MonotonicType
= getMonotonicPredicateType(ArLHS
, Pred
);
11185 if (!MonotonicType
)
11186 return std::nullopt
;
11187 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
11188 // true as the loop iterates, and the backedge is control dependent on
11189 // "ArLHS `Pred` RHS" == true then we can reason as follows:
11191 // * if the predicate was false in the first iteration then the predicate
11192 // is never evaluated again, since the loop exits without taking the
11194 // * if the predicate was true in the first iteration then it will
11195 // continue to be true for all future iterations since it is
11196 // monotonically increasing.
11198 // For both the above possibilities, we can replace the loop varying
11199 // predicate with its value on the first iteration of the loop (which is
11200 // loop invariant).
11202 // A similar reasoning applies for a monotonically decreasing predicate, by
11203 // replacing true with false and false with true in the above two bullets.
11204 bool Increasing
= *MonotonicType
== ScalarEvolution::MonotonicallyIncreasing
;
11205 auto P
= Increasing
? Pred
: ICmpInst::getInverseCmpPredicate(Pred
);
11207 if (isLoopBackedgeGuardedByCond(L
, P
, LHS
, RHS
))
11208 return ScalarEvolution::LoopInvariantPredicate(Pred
, ArLHS
->getStart(),
11212 return std::nullopt
;
11213 // Try to prove via context.
11214 // TODO: Support other cases.
11218 case ICmpInst::ICMP_ULE
:
11219 case ICmpInst::ICMP_ULT
: {
11220 assert(ArLHS
->hasNoUnsignedWrap() && "Is a requirement of monotonicity!");
11221 // Given preconditions
11222 // (1) ArLHS does not cross the border of positive and negative parts of
11223 // range because of:
11224 // - Positive step; (TODO: lift this limitation)
11225 // - nuw - does not cross zero boundary;
11226 // - nsw - does not cross SINT_MAX boundary;
11227 // (2) ArLHS <s RHS
11229 // we can replace the loop variant ArLHS <u RHS condition with loop
11230 // invariant Start(ArLHS) <u RHS.
11232 // Because of (1) there are two options:
11233 // - ArLHS is always negative. It means that ArLHS <u RHS is always false;
11234 // - ArLHS is always non-negative. Because of (3) RHS is also non-negative.
11235 // It means that ArLHS <s RHS <=> ArLHS <u RHS.
11236 // Because of (2) ArLHS <u RHS is trivially true.
11237 // All together it means that ArLHS <u RHS <=> Start(ArLHS) >=s 0.
11238 // We can strengthen this to Start(ArLHS) <u RHS.
11239 auto SignFlippedPred
= ICmpInst::getFlippedSignednessPredicate(Pred
);
11240 if (ArLHS
->hasNoSignedWrap() && ArLHS
->isAffine() &&
11241 isKnownPositive(ArLHS
->getStepRecurrence(*this)) &&
11242 isKnownNonNegative(RHS
) &&
11243 isKnownPredicateAt(SignFlippedPred
, ArLHS
, RHS
, CtxI
))
11244 return ScalarEvolution::LoopInvariantPredicate(Pred
, ArLHS
->getStart(),
11249 return std::nullopt
;
11252 std::optional
<ScalarEvolution::LoopInvariantPredicate
>
11253 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
11254 CmpPredicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
, const Loop
*L
,
11255 const Instruction
*CtxI
, const SCEV
*MaxIter
) {
11256 if (auto LIP
= getLoopInvariantExitCondDuringFirstIterationsImpl(
11257 Pred
, LHS
, RHS
, L
, CtxI
, MaxIter
))
11259 if (auto *UMin
= dyn_cast
<SCEVUMinExpr
>(MaxIter
))
11260 // Number of iterations expressed as UMIN isn't always great for expressing
11261 // the value on the last iteration. If the straightforward approach didn't
11262 // work, try the following trick: if the a predicate is invariant for X, it
11263 // is also invariant for umin(X, ...). So try to find something that works
11264 // among subexpressions of MaxIter expressed as umin.
11265 for (auto *Op
: UMin
->operands())
11266 if (auto LIP
= getLoopInvariantExitCondDuringFirstIterationsImpl(
11267 Pred
, LHS
, RHS
, L
, CtxI
, Op
))
11269 return std::nullopt
;
11272 std::optional
<ScalarEvolution::LoopInvariantPredicate
>
11273 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterationsImpl(
11274 CmpPredicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
, const Loop
*L
,
11275 const Instruction
*CtxI
, const SCEV
*MaxIter
) {
11276 // Try to prove the following set of facts:
11277 // - The predicate is monotonic in the iteration space.
11278 // - If the check does not fail on the 1st iteration:
11279 // - No overflow will happen during first MaxIter iterations;
11280 // - It will not fail on the MaxIter'th iteration.
11281 // If the check does fail on the 1st iteration, we leave the loop and no
11282 // other checks matter.
11284 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
11285 if (!isLoopInvariant(RHS
, L
)) {
11286 if (!isLoopInvariant(LHS
, L
))
11287 return std::nullopt
;
11289 std::swap(LHS
, RHS
);
11290 Pred
= ICmpInst::getSwappedCmpPredicate(Pred
);
11293 auto *AR
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
11294 if (!AR
|| AR
->getLoop() != L
)
11295 return std::nullopt
;
11297 // The predicate must be relational (i.e. <, <=, >=, >).
11298 if (!ICmpInst::isRelational(Pred
))
11299 return std::nullopt
;
11301 // TODO: Support steps other than +/- 1.
11302 const SCEV
*Step
= AR
->getStepRecurrence(*this);
11303 auto *One
= getOne(Step
->getType());
11304 auto *MinusOne
= getNegativeSCEV(One
);
11305 if (Step
!= One
&& Step
!= MinusOne
)
11306 return std::nullopt
;
11308 // Type mismatch here means that MaxIter is potentially larger than max
11309 // unsigned value in start type, which mean we cannot prove no wrap for the
11311 if (AR
->getType() != MaxIter
->getType())
11312 return std::nullopt
;
11314 // Value of IV on suggested last iteration.
11315 const SCEV
*Last
= AR
->evaluateAtIteration(MaxIter
, *this);
11316 // Does it still meet the requirement?
11317 if (!isLoopBackedgeGuardedByCond(L
, Pred
, Last
, RHS
))
11318 return std::nullopt
;
11319 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
11320 // not exceed max unsigned value of this type), this effectively proves
11321 // that there is no wrap during the iteration. To prove that there is no
11322 // signed/unsigned wrap, we need to check that
11323 // Start <= Last for step = 1 or Start >= Last for step = -1.
11324 ICmpInst::Predicate NoOverflowPred
=
11325 CmpInst::isSigned(Pred
) ? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
11326 if (Step
== MinusOne
)
11327 NoOverflowPred
= ICmpInst::getSwappedCmpPredicate(NoOverflowPred
);
11328 const SCEV
*Start
= AR
->getStart();
11329 if (!isKnownPredicateAt(NoOverflowPred
, Start
, Last
, CtxI
))
11330 return std::nullopt
;
11332 // Everything is fine.
11333 return ScalarEvolution::LoopInvariantPredicate(Pred
, Start
, RHS
);
11336 bool ScalarEvolution::isKnownPredicateViaConstantRanges(CmpPredicate Pred
,
11339 if (HasSameValue(LHS
, RHS
))
11340 return ICmpInst::isTrueWhenEqual(Pred
);
11342 // This code is split out from isKnownPredicate because it is called from
11343 // within isLoopEntryGuardedByCond.
11345 auto CheckRanges
= [&](const ConstantRange
&RangeLHS
,
11346 const ConstantRange
&RangeRHS
) {
11347 return RangeLHS
.icmp(Pred
, RangeRHS
);
11350 // The check at the top of the function catches the case where the values are
11351 // known to be equal.
11352 if (Pred
== CmpInst::ICMP_EQ
)
11355 if (Pred
== CmpInst::ICMP_NE
) {
11356 auto SL
= getSignedRange(LHS
);
11357 auto SR
= getSignedRange(RHS
);
11358 if (CheckRanges(SL
, SR
))
11360 auto UL
= getUnsignedRange(LHS
);
11361 auto UR
= getUnsignedRange(RHS
);
11362 if (CheckRanges(UL
, UR
))
11364 auto *Diff
= getMinusSCEV(LHS
, RHS
);
11365 return !isa
<SCEVCouldNotCompute
>(Diff
) && isKnownNonZero(Diff
);
11368 if (CmpInst::isSigned(Pred
)) {
11369 auto SL
= getSignedRange(LHS
);
11370 auto SR
= getSignedRange(RHS
);
11371 return CheckRanges(SL
, SR
);
11374 auto UL
= getUnsignedRange(LHS
);
11375 auto UR
= getUnsignedRange(RHS
);
11376 return CheckRanges(UL
, UR
);
11379 bool ScalarEvolution::isKnownPredicateViaNoOverflow(CmpPredicate Pred
,
11382 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
11383 // C1 and C2 are constant integers. If either X or Y are not add expressions,
11384 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
11385 // OutC1 and OutC2.
11386 auto MatchBinaryAddToConst
= [this](const SCEV
*X
, const SCEV
*Y
,
11387 APInt
&OutC1
, APInt
&OutC2
,
11388 SCEV::NoWrapFlags ExpectedFlags
) {
11389 const SCEV
*XNonConstOp
, *XConstOp
;
11390 const SCEV
*YNonConstOp
, *YConstOp
;
11391 SCEV::NoWrapFlags XFlagsPresent
;
11392 SCEV::NoWrapFlags YFlagsPresent
;
11394 if (!splitBinaryAdd(X
, XConstOp
, XNonConstOp
, XFlagsPresent
)) {
11395 XConstOp
= getZero(X
->getType());
11397 XFlagsPresent
= ExpectedFlags
;
11399 if (!isa
<SCEVConstant
>(XConstOp
) ||
11400 (XFlagsPresent
& ExpectedFlags
) != ExpectedFlags
)
11403 if (!splitBinaryAdd(Y
, YConstOp
, YNonConstOp
, YFlagsPresent
)) {
11404 YConstOp
= getZero(Y
->getType());
11406 YFlagsPresent
= ExpectedFlags
;
11409 if (!isa
<SCEVConstant
>(YConstOp
) ||
11410 (YFlagsPresent
& ExpectedFlags
) != ExpectedFlags
)
11413 if (YNonConstOp
!= XNonConstOp
)
11416 OutC1
= cast
<SCEVConstant
>(XConstOp
)->getAPInt();
11417 OutC2
= cast
<SCEVConstant
>(YConstOp
)->getAPInt();
11429 case ICmpInst::ICMP_SGE
:
11430 std::swap(LHS
, RHS
);
11432 case ICmpInst::ICMP_SLE
:
11433 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
11434 if (MatchBinaryAddToConst(LHS
, RHS
, C1
, C2
, SCEV::FlagNSW
) && C1
.sle(C2
))
11439 case ICmpInst::ICMP_SGT
:
11440 std::swap(LHS
, RHS
);
11442 case ICmpInst::ICMP_SLT
:
11443 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
11444 if (MatchBinaryAddToConst(LHS
, RHS
, C1
, C2
, SCEV::FlagNSW
) && C1
.slt(C2
))
11449 case ICmpInst::ICMP_UGE
:
11450 std::swap(LHS
, RHS
);
11452 case ICmpInst::ICMP_ULE
:
11453 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
11454 if (MatchBinaryAddToConst(LHS
, RHS
, C1
, C2
, SCEV::FlagNUW
) && C1
.ule(C2
))
11459 case ICmpInst::ICMP_UGT
:
11460 std::swap(LHS
, RHS
);
11462 case ICmpInst::ICMP_ULT
:
11463 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
11464 if (MatchBinaryAddToConst(LHS
, RHS
, C1
, C2
, SCEV::FlagNUW
) && C1
.ult(C2
))
11472 bool ScalarEvolution::isKnownPredicateViaSplitting(CmpPredicate Pred
,
11475 if (Pred
!= ICmpInst::ICMP_ULT
|| ProvingSplitPredicate
)
11478 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
11479 // the stack can result in exponential time complexity.
11480 SaveAndRestore
Restore(ProvingSplitPredicate
, true);
11482 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
11484 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
11485 // isKnownPredicate. isKnownPredicate is more powerful, but also more
11486 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
11487 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
11488 // use isKnownPredicate later if needed.
11489 return isKnownNonNegative(RHS
) &&
11490 isKnownPredicate(CmpInst::ICMP_SGE
, LHS
, getZero(LHS
->getType())) &&
11491 isKnownPredicate(CmpInst::ICMP_SLT
, LHS
, RHS
);
11494 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock
*BB
, CmpPredicate Pred
,
11495 const SCEV
*LHS
, const SCEV
*RHS
) {
11496 // No need to even try if we know the module has no guards.
11500 return any_of(*BB
, [&](const Instruction
&I
) {
11501 using namespace llvm::PatternMatch
;
11504 return match(&I
, m_Intrinsic
<Intrinsic::experimental_guard
>(
11505 m_Value(Condition
))) &&
11506 isImpliedCond(Pred
, LHS
, RHS
, Condition
, false);
11510 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
11511 /// protected by a conditional between LHS and RHS. This is used to
11512 /// to eliminate casts.
11513 bool ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop
*L
,
11517 // Interpret a null as meaning no loop, where there is obviously no guard
11518 // (interprocedural conditions notwithstanding). Do not bother about
11519 // unreachable loops.
11520 if (!L
|| !DT
.isReachableFromEntry(L
->getHeader()))
11524 assert(!verifyFunction(*L
->getHeader()->getParent(), &dbgs()) &&
11525 "This cannot be done on broken IR!");
11528 if (isKnownViaNonRecursiveReasoning(Pred
, LHS
, RHS
))
11531 BasicBlock
*Latch
= L
->getLoopLatch();
11535 BranchInst
*LoopContinuePredicate
=
11536 dyn_cast
<BranchInst
>(Latch
->getTerminator());
11537 if (LoopContinuePredicate
&& LoopContinuePredicate
->isConditional() &&
11538 isImpliedCond(Pred
, LHS
, RHS
,
11539 LoopContinuePredicate
->getCondition(),
11540 LoopContinuePredicate
->getSuccessor(0) != L
->getHeader()))
11543 // We don't want more than one activation of the following loops on the stack
11544 // -- that can lead to O(n!) time complexity.
11545 if (WalkingBEDominatingConds
)
11548 SaveAndRestore
ClearOnExit(WalkingBEDominatingConds
, true);
11550 // See if we can exploit a trip count to prove the predicate.
11551 const auto &BETakenInfo
= getBackedgeTakenInfo(L
);
11552 const SCEV
*LatchBECount
= BETakenInfo
.getExact(Latch
, this);
11553 if (LatchBECount
!= getCouldNotCompute()) {
11554 // We know that Latch branches back to the loop header exactly
11555 // LatchBECount times. This means the backdege condition at Latch is
11556 // equivalent to "{0,+,1} u< LatchBECount".
11557 Type
*Ty
= LatchBECount
->getType();
11558 auto NoWrapFlags
= SCEV::NoWrapFlags(SCEV::FlagNUW
| SCEV::FlagNW
);
11559 const SCEV
*LoopCounter
=
11560 getAddRecExpr(getZero(Ty
), getOne(Ty
), L
, NoWrapFlags
);
11561 if (isImpliedCond(Pred
, LHS
, RHS
, ICmpInst::ICMP_ULT
, LoopCounter
,
11566 // Check conditions due to any @llvm.assume intrinsics.
11567 for (auto &AssumeVH
: AC
.assumptions()) {
11570 auto *CI
= cast
<CallInst
>(AssumeVH
);
11571 if (!DT
.dominates(CI
, Latch
->getTerminator()))
11574 if (isImpliedCond(Pred
, LHS
, RHS
, CI
->getArgOperand(0), false))
11578 if (isImpliedViaGuard(Latch
, Pred
, LHS
, RHS
))
11581 for (DomTreeNode
*DTN
= DT
[Latch
], *HeaderDTN
= DT
[L
->getHeader()];
11582 DTN
!= HeaderDTN
; DTN
= DTN
->getIDom()) {
11583 assert(DTN
&& "should reach the loop header before reaching the root!");
11585 BasicBlock
*BB
= DTN
->getBlock();
11586 if (isImpliedViaGuard(BB
, Pred
, LHS
, RHS
))
11589 BasicBlock
*PBB
= BB
->getSinglePredecessor();
11593 BranchInst
*ContinuePredicate
= dyn_cast
<BranchInst
>(PBB
->getTerminator());
11594 if (!ContinuePredicate
|| !ContinuePredicate
->isConditional())
11597 Value
*Condition
= ContinuePredicate
->getCondition();
11599 // If we have an edge `E` within the loop body that dominates the only
11600 // latch, the condition guarding `E` also guards the backedge. This
11601 // reasoning works only for loops with a single latch.
11603 BasicBlockEdge
DominatingEdge(PBB
, BB
);
11604 if (DominatingEdge
.isSingleEdge()) {
11605 // We're constructively (and conservatively) enumerating edges within the
11606 // loop body that dominate the latch. The dominator tree better agree
11607 // with us on this:
11608 assert(DT
.dominates(DominatingEdge
, Latch
) && "should be!");
11610 if (isImpliedCond(Pred
, LHS
, RHS
, Condition
,
11611 BB
!= ContinuePredicate
->getSuccessor(0)))
11619 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock
*BB
,
11623 // Do not bother proving facts for unreachable code.
11624 if (!DT
.isReachableFromEntry(BB
))
11627 assert(!verifyFunction(*BB
->getParent(), &dbgs()) &&
11628 "This cannot be done on broken IR!");
11630 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
11631 // the facts (a >= b && a != b) separately. A typical situation is when the
11632 // non-strict comparison is known from ranges and non-equality is known from
11633 // dominating predicates. If we are proving strict comparison, we always try
11634 // to prove non-equality and non-strict comparison separately.
11635 auto NonStrictPredicate
= ICmpInst::getNonStrictPredicate(Pred
);
11636 const bool ProvingStrictComparison
= (Pred
!= NonStrictPredicate
);
11637 bool ProvedNonStrictComparison
= false;
11638 bool ProvedNonEquality
= false;
11640 auto SplitAndProve
= [&](std::function
<bool(CmpPredicate
)> Fn
) -> bool {
11641 if (!ProvedNonStrictComparison
)
11642 ProvedNonStrictComparison
= Fn(NonStrictPredicate
);
11643 if (!ProvedNonEquality
)
11644 ProvedNonEquality
= Fn(ICmpInst::ICMP_NE
);
11645 if (ProvedNonStrictComparison
&& ProvedNonEquality
)
11650 if (ProvingStrictComparison
) {
11651 auto ProofFn
= [&](CmpPredicate P
) {
11652 return isKnownViaNonRecursiveReasoning(P
, LHS
, RHS
);
11654 if (SplitAndProve(ProofFn
))
11658 // Try to prove (Pred, LHS, RHS) using isImpliedCond.
11659 auto ProveViaCond
= [&](const Value
*Condition
, bool Inverse
) {
11660 const Instruction
*CtxI
= &BB
->front();
11661 if (isImpliedCond(Pred
, LHS
, RHS
, Condition
, Inverse
, CtxI
))
11663 if (ProvingStrictComparison
) {
11664 auto ProofFn
= [&](CmpPredicate P
) {
11665 return isImpliedCond(P
, LHS
, RHS
, Condition
, Inverse
, CtxI
);
11667 if (SplitAndProve(ProofFn
))
11673 // Starting at the block's predecessor, climb up the predecessor chain, as long
11674 // as there are predecessors that can be found that have unique successors
11675 // leading to the original block.
11676 const Loop
*ContainingLoop
= LI
.getLoopFor(BB
);
11677 const BasicBlock
*PredBB
;
11678 if (ContainingLoop
&& ContainingLoop
->getHeader() == BB
)
11679 PredBB
= ContainingLoop
->getLoopPredecessor();
11681 PredBB
= BB
->getSinglePredecessor();
11682 for (std::pair
<const BasicBlock
*, const BasicBlock
*> Pair(PredBB
, BB
);
11683 Pair
.first
; Pair
= getPredecessorWithUniqueSuccessorForBB(Pair
.first
)) {
11684 const BranchInst
*BlockEntryPredicate
=
11685 dyn_cast
<BranchInst
>(Pair
.first
->getTerminator());
11686 if (!BlockEntryPredicate
|| BlockEntryPredicate
->isUnconditional())
11689 if (ProveViaCond(BlockEntryPredicate
->getCondition(),
11690 BlockEntryPredicate
->getSuccessor(0) != Pair
.second
))
11694 // Check conditions due to any @llvm.assume intrinsics.
11695 for (auto &AssumeVH
: AC
.assumptions()) {
11698 auto *CI
= cast
<CallInst
>(AssumeVH
);
11699 if (!DT
.dominates(CI
, BB
))
11702 if (ProveViaCond(CI
->getArgOperand(0), false))
11706 // Check conditions due to any @llvm.experimental.guard intrinsics.
11707 auto *GuardDecl
= Intrinsic::getDeclarationIfExists(
11708 F
.getParent(), Intrinsic::experimental_guard
);
11710 for (const auto *GU
: GuardDecl
->users())
11711 if (const auto *Guard
= dyn_cast
<IntrinsicInst
>(GU
))
11712 if (Guard
->getFunction() == BB
->getParent() && DT
.dominates(Guard
, BB
))
11713 if (ProveViaCond(Guard
->getArgOperand(0), false))
11718 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop
*L
, CmpPredicate Pred
,
11721 // Interpret a null as meaning no loop, where there is obviously no guard
11722 // (interprocedural conditions notwithstanding).
11726 // Both LHS and RHS must be available at loop entry.
11727 assert(isAvailableAtLoopEntry(LHS
, L
) &&
11728 "LHS is not available at Loop Entry");
11729 assert(isAvailableAtLoopEntry(RHS
, L
) &&
11730 "RHS is not available at Loop Entry");
11732 if (isKnownViaNonRecursiveReasoning(Pred
, LHS
, RHS
))
11735 return isBasicBlockEntryGuardedByCond(L
->getHeader(), Pred
, LHS
, RHS
);
11738 bool ScalarEvolution::isImpliedCond(CmpPredicate Pred
, const SCEV
*LHS
,
11740 const Value
*FoundCondValue
, bool Inverse
,
11741 const Instruction
*CtxI
) {
11742 // False conditions implies anything. Do not bother analyzing it further.
11743 if (FoundCondValue
==
11744 ConstantInt::getBool(FoundCondValue
->getContext(), Inverse
))
11747 if (!PendingLoopPredicates
.insert(FoundCondValue
).second
)
11751 make_scope_exit([&]() { PendingLoopPredicates
.erase(FoundCondValue
); });
11753 // Recursively handle And and Or conditions.
11754 const Value
*Op0
, *Op1
;
11755 if (match(FoundCondValue
, m_LogicalAnd(m_Value(Op0
), m_Value(Op1
)))) {
11757 return isImpliedCond(Pred
, LHS
, RHS
, Op0
, Inverse
, CtxI
) ||
11758 isImpliedCond(Pred
, LHS
, RHS
, Op1
, Inverse
, CtxI
);
11759 } else if (match(FoundCondValue
, m_LogicalOr(m_Value(Op0
), m_Value(Op1
)))) {
11761 return isImpliedCond(Pred
, LHS
, RHS
, Op0
, Inverse
, CtxI
) ||
11762 isImpliedCond(Pred
, LHS
, RHS
, Op1
, Inverse
, CtxI
);
11765 const ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(FoundCondValue
);
11766 if (!ICI
) return false;
11768 // Now that we found a conditional branch that dominates the loop or controls
11769 // the loop latch. Check to see if it is the comparison we are looking for.
11770 CmpPredicate FoundPred
;
11772 FoundPred
= ICI
->getInverseCmpPredicate();
11774 FoundPred
= ICI
->getCmpPredicate();
11776 const SCEV
*FoundLHS
= getSCEV(ICI
->getOperand(0));
11777 const SCEV
*FoundRHS
= getSCEV(ICI
->getOperand(1));
11779 return isImpliedCond(Pred
, LHS
, RHS
, FoundPred
, FoundLHS
, FoundRHS
, CtxI
);
11782 bool ScalarEvolution::isImpliedCond(CmpPredicate Pred
, const SCEV
*LHS
,
11783 const SCEV
*RHS
, CmpPredicate FoundPred
,
11784 const SCEV
*FoundLHS
, const SCEV
*FoundRHS
,
11785 const Instruction
*CtxI
) {
11786 // Balance the types.
11787 if (getTypeSizeInBits(LHS
->getType()) <
11788 getTypeSizeInBits(FoundLHS
->getType())) {
11789 // For unsigned and equality predicates, try to prove that both found
11790 // operands fit into narrow unsigned range. If so, try to prove facts in
11792 if (!CmpInst::isSigned(FoundPred
) && !FoundLHS
->getType()->isPointerTy() &&
11793 !FoundRHS
->getType()->isPointerTy()) {
11794 auto *NarrowType
= LHS
->getType();
11795 auto *WideType
= FoundLHS
->getType();
11796 auto BitWidth
= getTypeSizeInBits(NarrowType
);
11797 const SCEV
*MaxValue
= getZeroExtendExpr(
11798 getConstant(APInt::getMaxValue(BitWidth
)), WideType
);
11799 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE
, FoundLHS
,
11801 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE
, FoundRHS
,
11803 const SCEV
*TruncFoundLHS
= getTruncateExpr(FoundLHS
, NarrowType
);
11804 const SCEV
*TruncFoundRHS
= getTruncateExpr(FoundRHS
, NarrowType
);
11805 if (isImpliedCondBalancedTypes(Pred
, LHS
, RHS
, FoundPred
, TruncFoundLHS
,
11806 TruncFoundRHS
, CtxI
))
11811 if (LHS
->getType()->isPointerTy() || RHS
->getType()->isPointerTy())
11813 if (CmpInst::isSigned(Pred
)) {
11814 LHS
= getSignExtendExpr(LHS
, FoundLHS
->getType());
11815 RHS
= getSignExtendExpr(RHS
, FoundLHS
->getType());
11817 LHS
= getZeroExtendExpr(LHS
, FoundLHS
->getType());
11818 RHS
= getZeroExtendExpr(RHS
, FoundLHS
->getType());
11820 } else if (getTypeSizeInBits(LHS
->getType()) >
11821 getTypeSizeInBits(FoundLHS
->getType())) {
11822 if (FoundLHS
->getType()->isPointerTy() || FoundRHS
->getType()->isPointerTy())
11824 if (CmpInst::isSigned(FoundPred
)) {
11825 FoundLHS
= getSignExtendExpr(FoundLHS
, LHS
->getType());
11826 FoundRHS
= getSignExtendExpr(FoundRHS
, LHS
->getType());
11828 FoundLHS
= getZeroExtendExpr(FoundLHS
, LHS
->getType());
11829 FoundRHS
= getZeroExtendExpr(FoundRHS
, LHS
->getType());
11832 return isImpliedCondBalancedTypes(Pred
, LHS
, RHS
, FoundPred
, FoundLHS
,
11836 bool ScalarEvolution::isImpliedCondBalancedTypes(
11837 CmpPredicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
, CmpPredicate FoundPred
,
11838 const SCEV
*FoundLHS
, const SCEV
*FoundRHS
, const Instruction
*CtxI
) {
11839 assert(getTypeSizeInBits(LHS
->getType()) ==
11840 getTypeSizeInBits(FoundLHS
->getType()) &&
11841 "Types should be balanced!");
11842 // Canonicalize the query to match the way instcombine will have
11843 // canonicalized the comparison.
11844 if (SimplifyICmpOperands(Pred
, LHS
, RHS
))
11846 return CmpInst::isTrueWhenEqual(Pred
);
11847 if (SimplifyICmpOperands(FoundPred
, FoundLHS
, FoundRHS
))
11848 if (FoundLHS
== FoundRHS
)
11849 return CmpInst::isFalseWhenEqual(FoundPred
);
11851 // Check to see if we can make the LHS or RHS match.
11852 if (LHS
== FoundRHS
|| RHS
== FoundLHS
) {
11853 if (isa
<SCEVConstant
>(RHS
)) {
11854 std::swap(FoundLHS
, FoundRHS
);
11855 FoundPred
= ICmpInst::getSwappedCmpPredicate(FoundPred
);
11857 std::swap(LHS
, RHS
);
11858 Pred
= ICmpInst::getSwappedCmpPredicate(Pred
);
11862 // Check whether the found predicate is the same as the desired predicate.
11863 // FIXME: use CmpPredicate::getMatching here.
11864 if (FoundPred
== static_cast<CmpInst::Predicate
>(Pred
))
11865 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
, CtxI
);
11867 // Check whether swapping the found predicate makes it the same as the
11868 // desired predicate.
11869 // FIXME: use CmpPredicate::getMatching here.
11870 if (ICmpInst::getSwappedCmpPredicate(FoundPred
) ==
11871 static_cast<CmpInst::Predicate
>(Pred
)) {
11872 // We can write the implication
11873 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS
11874 // using one of the following ways:
11875 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS
11876 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS
11877 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS
11878 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS
11879 // Forms 1. and 2. require swapping the operands of one condition. Don't
11880 // do this if it would break canonical constant/addrec ordering.
11881 if (!isa
<SCEVConstant
>(RHS
) && !isa
<SCEVAddRecExpr
>(LHS
))
11882 return isImpliedCondOperands(FoundPred
, RHS
, LHS
, FoundLHS
, FoundRHS
,
11884 if (!isa
<SCEVConstant
>(FoundRHS
) && !isa
<SCEVAddRecExpr
>(FoundLHS
))
11885 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundRHS
, FoundLHS
, CtxI
);
11887 // There's no clear preference between forms 3. and 4., try both. Avoid
11888 // forming getNotSCEV of pointer values as the resulting subtract is
11890 if (!LHS
->getType()->isPointerTy() && !RHS
->getType()->isPointerTy() &&
11891 isImpliedCondOperands(FoundPred
, getNotSCEV(LHS
), getNotSCEV(RHS
),
11892 FoundLHS
, FoundRHS
, CtxI
))
11895 if (!FoundLHS
->getType()->isPointerTy() &&
11896 !FoundRHS
->getType()->isPointerTy() &&
11897 isImpliedCondOperands(Pred
, LHS
, RHS
, getNotSCEV(FoundLHS
),
11898 getNotSCEV(FoundRHS
), CtxI
))
11904 auto IsSignFlippedPredicate
= [](CmpInst::Predicate P1
,
11905 CmpInst::Predicate P2
) {
11906 assert(P1
!= P2
&& "Handled earlier!");
11907 return CmpInst::isRelational(P2
) &&
11908 P1
== ICmpInst::getFlippedSignednessPredicate(P2
);
11910 if (IsSignFlippedPredicate(Pred
, FoundPred
)) {
11911 // Unsigned comparison is the same as signed comparison when both the
11912 // operands are non-negative or negative.
11913 if ((isKnownNonNegative(FoundLHS
) && isKnownNonNegative(FoundRHS
)) ||
11914 (isKnownNegative(FoundLHS
) && isKnownNegative(FoundRHS
)))
11915 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
, CtxI
);
11916 // Create local copies that we can freely swap and canonicalize our
11917 // conditions to "le/lt".
11918 CmpPredicate CanonicalPred
= Pred
, CanonicalFoundPred
= FoundPred
;
11919 const SCEV
*CanonicalLHS
= LHS
, *CanonicalRHS
= RHS
,
11920 *CanonicalFoundLHS
= FoundLHS
, *CanonicalFoundRHS
= FoundRHS
;
11921 if (ICmpInst::isGT(CanonicalPred
) || ICmpInst::isGE(CanonicalPred
)) {
11922 CanonicalPred
= ICmpInst::getSwappedCmpPredicate(CanonicalPred
);
11923 CanonicalFoundPred
= ICmpInst::getSwappedCmpPredicate(CanonicalFoundPred
);
11924 std::swap(CanonicalLHS
, CanonicalRHS
);
11925 std::swap(CanonicalFoundLHS
, CanonicalFoundRHS
);
11927 assert((ICmpInst::isLT(CanonicalPred
) || ICmpInst::isLE(CanonicalPred
)) &&
11929 assert((ICmpInst::isLT(CanonicalFoundPred
) ||
11930 ICmpInst::isLE(CanonicalFoundPred
)) &&
11932 if (ICmpInst::isSigned(CanonicalPred
) && isKnownNonNegative(CanonicalRHS
))
11933 // Use implication:
11934 // x <u y && y >=s 0 --> x <s y.
11935 // If we can prove the left part, the right part is also proven.
11936 return isImpliedCondOperands(CanonicalFoundPred
, CanonicalLHS
,
11937 CanonicalRHS
, CanonicalFoundLHS
,
11938 CanonicalFoundRHS
);
11939 if (ICmpInst::isUnsigned(CanonicalPred
) && isKnownNegative(CanonicalRHS
))
11940 // Use implication:
11941 // x <s y && y <s 0 --> x <u y.
11942 // If we can prove the left part, the right part is also proven.
11943 return isImpliedCondOperands(CanonicalFoundPred
, CanonicalLHS
,
11944 CanonicalRHS
, CanonicalFoundLHS
,
11945 CanonicalFoundRHS
);
11948 // Check if we can make progress by sharpening ranges.
11949 if (FoundPred
== ICmpInst::ICMP_NE
&&
11950 (isa
<SCEVConstant
>(FoundLHS
) || isa
<SCEVConstant
>(FoundRHS
))) {
11952 const SCEVConstant
*C
= nullptr;
11953 const SCEV
*V
= nullptr;
11955 if (isa
<SCEVConstant
>(FoundLHS
)) {
11956 C
= cast
<SCEVConstant
>(FoundLHS
);
11959 C
= cast
<SCEVConstant
>(FoundRHS
);
11963 // The guarding predicate tells us that C != V. If the known range
11964 // of V is [C, t), we can sharpen the range to [C + 1, t). The
11965 // range we consider has to correspond to same signedness as the
11966 // predicate we're interested in folding.
11968 APInt Min
= ICmpInst::isSigned(Pred
) ?
11969 getSignedRangeMin(V
) : getUnsignedRangeMin(V
);
11971 if (Min
== C
->getAPInt()) {
11972 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
11973 // This is true even if (Min + 1) wraps around -- in case of
11974 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
11976 APInt SharperMin
= Min
+ 1;
11979 case ICmpInst::ICMP_SGE
:
11980 case ICmpInst::ICMP_UGE
:
11981 // We know V `Pred` SharperMin. If this implies LHS `Pred`
11982 // RHS, we're done.
11983 if (isImpliedCondOperands(Pred
, LHS
, RHS
, V
, getConstant(SharperMin
),
11988 case ICmpInst::ICMP_SGT
:
11989 case ICmpInst::ICMP_UGT
:
11990 // We know from the range information that (V `Pred` Min ||
11991 // V == Min). We know from the guarding condition that !(V
11992 // == Min). This gives us
11994 // V `Pred` Min || V == Min && !(V == Min)
11997 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
11999 if (isImpliedCondOperands(Pred
, LHS
, RHS
, V
, getConstant(Min
), CtxI
))
12003 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
12004 case ICmpInst::ICMP_SLE
:
12005 case ICmpInst::ICMP_ULE
:
12006 if (isImpliedCondOperands(ICmpInst::getSwappedCmpPredicate(Pred
), RHS
,
12007 LHS
, V
, getConstant(SharperMin
), CtxI
))
12011 case ICmpInst::ICMP_SLT
:
12012 case ICmpInst::ICMP_ULT
:
12013 if (isImpliedCondOperands(ICmpInst::getSwappedCmpPredicate(Pred
), RHS
,
12014 LHS
, V
, getConstant(Min
), CtxI
))
12025 // Check whether the actual condition is beyond sufficient.
12026 if (FoundPred
== ICmpInst::ICMP_EQ
)
12027 if (ICmpInst::isTrueWhenEqual(Pred
))
12028 if (isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
, CtxI
))
12030 if (Pred
== ICmpInst::ICMP_NE
)
12031 if (!ICmpInst::isTrueWhenEqual(FoundPred
))
12032 if (isImpliedCondOperands(FoundPred
, LHS
, RHS
, FoundLHS
, FoundRHS
, CtxI
))
12035 if (isImpliedCondOperandsViaRanges(Pred
, LHS
, RHS
, FoundPred
, FoundLHS
, FoundRHS
))
12038 // Otherwise assume the worst.
12042 bool ScalarEvolution::splitBinaryAdd(const SCEV
*Expr
,
12043 const SCEV
*&L
, const SCEV
*&R
,
12044 SCEV::NoWrapFlags
&Flags
) {
12045 const auto *AE
= dyn_cast
<SCEVAddExpr
>(Expr
);
12046 if (!AE
|| AE
->getNumOperands() != 2)
12049 L
= AE
->getOperand(0);
12050 R
= AE
->getOperand(1);
12051 Flags
= AE
->getNoWrapFlags();
12055 std::optional
<APInt
>
12056 ScalarEvolution::computeConstantDifference(const SCEV
*More
, const SCEV
*Less
) {
12057 // We avoid subtracting expressions here because this function is usually
12058 // fairly deep in the call stack (i.e. is called many times).
12060 unsigned BW
= getTypeSizeInBits(More
->getType());
12062 APInt
DiffMul(BW
, 1);
12063 // Try various simplifications to reduce the difference to a constant. Limit
12064 // the number of allowed simplifications to keep compile-time low.
12065 for (unsigned I
= 0; I
< 8; ++I
) {
12069 // Reduce addrecs with identical steps to their start value.
12070 if (isa
<SCEVAddRecExpr
>(Less
) && isa
<SCEVAddRecExpr
>(More
)) {
12071 const auto *LAR
= cast
<SCEVAddRecExpr
>(Less
);
12072 const auto *MAR
= cast
<SCEVAddRecExpr
>(More
);
12074 if (LAR
->getLoop() != MAR
->getLoop())
12075 return std::nullopt
;
12077 // We look at affine expressions only; not for correctness but to keep
12078 // getStepRecurrence cheap.
12079 if (!LAR
->isAffine() || !MAR
->isAffine())
12080 return std::nullopt
;
12082 if (LAR
->getStepRecurrence(*this) != MAR
->getStepRecurrence(*this))
12083 return std::nullopt
;
12085 Less
= LAR
->getStart();
12086 More
= MAR
->getStart();
12090 // Try to match a common constant multiply.
12091 auto MatchConstMul
=
12092 [](const SCEV
*S
) -> std::optional
<std::pair
<const SCEV
*, APInt
>> {
12093 auto *M
= dyn_cast
<SCEVMulExpr
>(S
);
12094 if (!M
|| M
->getNumOperands() != 2 ||
12095 !isa
<SCEVConstant
>(M
->getOperand(0)))
12096 return std::nullopt
;
12098 {M
->getOperand(1), cast
<SCEVConstant
>(M
->getOperand(0))->getAPInt()}};
12100 if (auto MatchedMore
= MatchConstMul(More
)) {
12101 if (auto MatchedLess
= MatchConstMul(Less
)) {
12102 if (MatchedMore
->second
== MatchedLess
->second
) {
12103 More
= MatchedMore
->first
;
12104 Less
= MatchedLess
->first
;
12105 DiffMul
*= MatchedMore
->second
;
12111 // Try to cancel out common factors in two add expressions.
12112 SmallDenseMap
<const SCEV
*, int, 8> Multiplicity
;
12113 auto Add
= [&](const SCEV
*S
, int Mul
) {
12114 if (auto *C
= dyn_cast
<SCEVConstant
>(S
)) {
12116 Diff
+= C
->getAPInt() * DiffMul
;
12119 Diff
-= C
->getAPInt() * DiffMul
;
12122 Multiplicity
[S
] += Mul
;
12124 auto Decompose
= [&](const SCEV
*S
, int Mul
) {
12125 if (isa
<SCEVAddExpr
>(S
)) {
12126 for (const SCEV
*Op
: S
->operands())
12131 Decompose(More
, 1);
12132 Decompose(Less
, -1);
12134 // Check whether all the non-constants cancel out, or reduce to new
12135 // More/Less values.
12136 const SCEV
*NewMore
= nullptr, *NewLess
= nullptr;
12137 for (const auto &[S
, Mul
] : Multiplicity
) {
12142 return std::nullopt
;
12144 } else if (Mul
== -1) {
12146 return std::nullopt
;
12149 return std::nullopt
;
12152 // Values stayed the same, no point in trying further.
12153 if (NewMore
== More
|| NewLess
== Less
)
12154 return std::nullopt
;
12159 // Reduced to constant.
12160 if (!More
&& !Less
)
12163 // Left with variable on only one side, bail out.
12164 if (!More
|| !Less
)
12165 return std::nullopt
;
12168 // Did not reduce to constant.
12169 return std::nullopt
;
12172 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
12173 CmpPredicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
, const SCEV
*FoundLHS
,
12174 const SCEV
*FoundRHS
, const Instruction
*CtxI
) {
12175 // Try to recognize the following pattern:
12180 // FoundLHS = {Start,+,W}
12181 // context_bb: // Basic block from the same loop
12182 // known(Pred, FoundLHS, FoundRHS)
12184 // If some predicate is known in the context of a loop, it is also known on
12185 // each iteration of this loop, including the first iteration. Therefore, in
12186 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
12187 // prove the original pred using this fact.
12190 const BasicBlock
*ContextBB
= CtxI
->getParent();
12191 // Make sure AR varies in the context block.
12192 if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(FoundLHS
)) {
12193 const Loop
*L
= AR
->getLoop();
12194 // Make sure that context belongs to the loop and executes on 1st iteration
12195 // (if it ever executes at all).
12196 if (!L
->contains(ContextBB
) || !DT
.dominates(ContextBB
, L
->getLoopLatch()))
12198 if (!isAvailableAtLoopEntry(FoundRHS
, AR
->getLoop()))
12200 return isImpliedCondOperands(Pred
, LHS
, RHS
, AR
->getStart(), FoundRHS
);
12203 if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(FoundRHS
)) {
12204 const Loop
*L
= AR
->getLoop();
12205 // Make sure that context belongs to the loop and executes on 1st iteration
12206 // (if it ever executes at all).
12207 if (!L
->contains(ContextBB
) || !DT
.dominates(ContextBB
, L
->getLoopLatch()))
12209 if (!isAvailableAtLoopEntry(FoundLHS
, AR
->getLoop()))
12211 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, AR
->getStart());
12217 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(CmpPredicate Pred
,
12220 const SCEV
*FoundLHS
,
12221 const SCEV
*FoundRHS
) {
12222 if (Pred
!= CmpInst::ICMP_SLT
&& Pred
!= CmpInst::ICMP_ULT
)
12225 const auto *AddRecLHS
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
12229 const auto *AddRecFoundLHS
= dyn_cast
<SCEVAddRecExpr
>(FoundLHS
);
12230 if (!AddRecFoundLHS
)
12233 // We'd like to let SCEV reason about control dependencies, so we constrain
12234 // both the inequalities to be about add recurrences on the same loop. This
12235 // way we can use isLoopEntryGuardedByCond later.
12237 const Loop
*L
= AddRecFoundLHS
->getLoop();
12238 if (L
!= AddRecLHS
->getLoop())
12241 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
12243 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
12246 // Informal proof for (2), assuming (1) [*]:
12248 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
12252 // FoundLHS s< FoundRHS s< INT_MIN - C
12253 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
12254 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
12255 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
12256 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
12257 // <=> FoundLHS + C s< FoundRHS + C
12259 // [*]: (1) can be proved by ruling out overflow.
12261 // [**]: This can be proved by analyzing all the four possibilities:
12262 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
12263 // (A s>= 0, B s>= 0).
12266 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
12267 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
12268 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
12269 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
12270 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
12273 std::optional
<APInt
> LDiff
= computeConstantDifference(LHS
, FoundLHS
);
12276 std::optional
<APInt
> RDiff
= computeConstantDifference(RHS
, FoundRHS
);
12277 if (!RDiff
|| *LDiff
!= *RDiff
)
12280 if (LDiff
->isMinValue())
12283 APInt FoundRHSLimit
;
12285 if (Pred
== CmpInst::ICMP_ULT
) {
12286 FoundRHSLimit
= -(*RDiff
);
12288 assert(Pred
== CmpInst::ICMP_SLT
&& "Checked above!");
12289 FoundRHSLimit
= APInt::getSignedMinValue(getTypeSizeInBits(RHS
->getType())) - *RDiff
;
12292 // Try to prove (1) or (2), as needed.
12293 return isAvailableAtLoopEntry(FoundRHS
, L
) &&
12294 isLoopEntryGuardedByCond(L
, Pred
, FoundRHS
,
12295 getConstant(FoundRHSLimit
));
12298 bool ScalarEvolution::isImpliedViaMerge(CmpPredicate Pred
, const SCEV
*LHS
,
12299 const SCEV
*RHS
, const SCEV
*FoundLHS
,
12300 const SCEV
*FoundRHS
, unsigned Depth
) {
12301 const PHINode
*LPhi
= nullptr, *RPhi
= nullptr;
12303 auto ClearOnExit
= make_scope_exit([&]() {
12305 bool Erased
= PendingMerges
.erase(LPhi
);
12306 assert(Erased
&& "Failed to erase LPhi!");
12310 bool Erased
= PendingMerges
.erase(RPhi
);
12311 assert(Erased
&& "Failed to erase RPhi!");
12316 // Find respective Phis and check that they are not being pending.
12317 if (const SCEVUnknown
*LU
= dyn_cast
<SCEVUnknown
>(LHS
))
12318 if (auto *Phi
= dyn_cast
<PHINode
>(LU
->getValue())) {
12319 if (!PendingMerges
.insert(Phi
).second
)
12323 if (const SCEVUnknown
*RU
= dyn_cast
<SCEVUnknown
>(RHS
))
12324 if (auto *Phi
= dyn_cast
<PHINode
>(RU
->getValue())) {
12325 // If we detect a loop of Phi nodes being processed by this method, for
12328 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
12329 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
12331 // we don't want to deal with a case that complex, so return conservative
12333 if (!PendingMerges
.insert(Phi
).second
)
12338 // If none of LHS, RHS is a Phi, nothing to do here.
12339 if (!LPhi
&& !RPhi
)
12342 // If there is a SCEVUnknown Phi we are interested in, make it left.
12344 std::swap(LHS
, RHS
);
12345 std::swap(FoundLHS
, FoundRHS
);
12346 std::swap(LPhi
, RPhi
);
12347 Pred
= ICmpInst::getSwappedCmpPredicate(Pred
);
12350 assert(LPhi
&& "LPhi should definitely be a SCEVUnknown Phi!");
12351 const BasicBlock
*LBB
= LPhi
->getParent();
12352 const SCEVAddRecExpr
*RAR
= dyn_cast
<SCEVAddRecExpr
>(RHS
);
12354 auto ProvedEasily
= [&](const SCEV
*S1
, const SCEV
*S2
) {
12355 return isKnownViaNonRecursiveReasoning(Pred
, S1
, S2
) ||
12356 isImpliedCondOperandsViaRanges(Pred
, S1
, S2
, Pred
, FoundLHS
, FoundRHS
) ||
12357 isImpliedViaOperations(Pred
, S1
, S2
, FoundLHS
, FoundRHS
, Depth
);
12360 if (RPhi
&& RPhi
->getParent() == LBB
) {
12361 // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
12362 // If we compare two Phis from the same block, and for each entry block
12363 // the predicate is true for incoming values from this block, then the
12364 // predicate is also true for the Phis.
12365 for (const BasicBlock
*IncBB
: predecessors(LBB
)) {
12366 const SCEV
*L
= getSCEV(LPhi
->getIncomingValueForBlock(IncBB
));
12367 const SCEV
*R
= getSCEV(RPhi
->getIncomingValueForBlock(IncBB
));
12368 if (!ProvedEasily(L
, R
))
12371 } else if (RAR
&& RAR
->getLoop()->getHeader() == LBB
) {
12372 // Case two: RHS is also a Phi from the same basic block, and it is an
12373 // AddRec. It means that there is a loop which has both AddRec and Unknown
12374 // PHIs, for it we can compare incoming values of AddRec from above the loop
12375 // and latch with their respective incoming values of LPhi.
12376 // TODO: Generalize to handle loops with many inputs in a header.
12377 if (LPhi
->getNumIncomingValues() != 2) return false;
12379 auto *RLoop
= RAR
->getLoop();
12380 auto *Predecessor
= RLoop
->getLoopPredecessor();
12381 assert(Predecessor
&& "Loop with AddRec with no predecessor?");
12382 const SCEV
*L1
= getSCEV(LPhi
->getIncomingValueForBlock(Predecessor
));
12383 if (!ProvedEasily(L1
, RAR
->getStart()))
12385 auto *Latch
= RLoop
->getLoopLatch();
12386 assert(Latch
&& "Loop with AddRec with no latch?");
12387 const SCEV
*L2
= getSCEV(LPhi
->getIncomingValueForBlock(Latch
));
12388 if (!ProvedEasily(L2
, RAR
->getPostIncExpr(*this)))
12391 // In all other cases go over inputs of LHS and compare each of them to RHS,
12392 // the predicate is true for (LHS, RHS) if it is true for all such pairs.
12393 // At this point RHS is either a non-Phi, or it is a Phi from some block
12394 // different from LBB.
12395 for (const BasicBlock
*IncBB
: predecessors(LBB
)) {
12396 // Check that RHS is available in this block.
12397 if (!dominates(RHS
, IncBB
))
12399 const SCEV
*L
= getSCEV(LPhi
->getIncomingValueForBlock(IncBB
));
12400 // Make sure L does not refer to a value from a potentially previous
12401 // iteration of a loop.
12402 if (!properlyDominates(L
, LBB
))
12404 if (!ProvedEasily(L
, RHS
))
12411 bool ScalarEvolution::isImpliedCondOperandsViaShift(CmpPredicate Pred
,
12414 const SCEV
*FoundLHS
,
12415 const SCEV
*FoundRHS
) {
12416 // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make
12417 // sure that we are dealing with same LHS.
12418 if (RHS
== FoundRHS
) {
12419 std::swap(LHS
, RHS
);
12420 std::swap(FoundLHS
, FoundRHS
);
12421 Pred
= ICmpInst::getSwappedCmpPredicate(Pred
);
12423 if (LHS
!= FoundLHS
)
12426 auto *SUFoundRHS
= dyn_cast
<SCEVUnknown
>(FoundRHS
);
12430 Value
*Shiftee
, *ShiftValue
;
12432 using namespace PatternMatch
;
12433 if (match(SUFoundRHS
->getValue(),
12434 m_LShr(m_Value(Shiftee
), m_Value(ShiftValue
)))) {
12435 auto *ShifteeS
= getSCEV(Shiftee
);
12436 // Prove one of the following:
12437 // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS
12438 // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS
12439 // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
12441 // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
12442 // ---> LHS <=s RHS
12443 if (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_ULE
)
12444 return isKnownPredicate(ICmpInst::ICMP_ULE
, ShifteeS
, RHS
);
12445 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SLE
)
12446 if (isKnownNonNegative(ShifteeS
))
12447 return isKnownPredicate(ICmpInst::ICMP_SLE
, ShifteeS
, RHS
);
12453 bool ScalarEvolution::isImpliedCondOperands(CmpPredicate Pred
, const SCEV
*LHS
,
12455 const SCEV
*FoundLHS
,
12456 const SCEV
*FoundRHS
,
12457 const Instruction
*CtxI
) {
12458 if (isImpliedCondOperandsViaRanges(Pred
, LHS
, RHS
, Pred
, FoundLHS
, FoundRHS
))
12461 if (isImpliedCondOperandsViaNoOverflow(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
12464 if (isImpliedCondOperandsViaShift(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
12467 if (isImpliedCondOperandsViaAddRecStart(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
,
12471 return isImpliedCondOperandsHelper(Pred
, LHS
, RHS
,
12472 FoundLHS
, FoundRHS
);
12475 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
12476 template <typename MinMaxExprType
>
12477 static bool IsMinMaxConsistingOf(const SCEV
*MaybeMinMaxExpr
,
12478 const SCEV
*Candidate
) {
12479 const MinMaxExprType
*MinMaxExpr
= dyn_cast
<MinMaxExprType
>(MaybeMinMaxExpr
);
12483 return is_contained(MinMaxExpr
->operands(), Candidate
);
12486 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution
&SE
,
12487 CmpPredicate Pred
, const SCEV
*LHS
,
12489 // If both sides are affine addrecs for the same loop, with equal
12490 // steps, and we know the recurrences don't wrap, then we only
12491 // need to check the predicate on the starting values.
12493 if (!ICmpInst::isRelational(Pred
))
12496 const SCEVAddRecExpr
*LAR
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
12499 const SCEVAddRecExpr
*RAR
= dyn_cast
<SCEVAddRecExpr
>(RHS
);
12502 if (LAR
->getLoop() != RAR
->getLoop())
12504 if (!LAR
->isAffine() || !RAR
->isAffine())
12507 if (LAR
->getStepRecurrence(SE
) != RAR
->getStepRecurrence(SE
))
12510 SCEV::NoWrapFlags NW
= ICmpInst::isSigned(Pred
) ?
12511 SCEV::FlagNSW
: SCEV::FlagNUW
;
12512 if (!LAR
->getNoWrapFlags(NW
) || !RAR
->getNoWrapFlags(NW
))
12515 return SE
.isKnownPredicate(Pred
, LAR
->getStart(), RAR
->getStart());
12518 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
12520 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution
&SE
, CmpPredicate Pred
,
12521 const SCEV
*LHS
, const SCEV
*RHS
) {
12526 case ICmpInst::ICMP_SGE
:
12527 std::swap(LHS
, RHS
);
12529 case ICmpInst::ICMP_SLE
:
12531 // min(A, ...) <= A
12532 IsMinMaxConsistingOf
<SCEVSMinExpr
>(LHS
, RHS
) ||
12533 // A <= max(A, ...)
12534 IsMinMaxConsistingOf
<SCEVSMaxExpr
>(RHS
, LHS
);
12536 case ICmpInst::ICMP_UGE
:
12537 std::swap(LHS
, RHS
);
12539 case ICmpInst::ICMP_ULE
:
12541 // min(A, ...) <= A
12542 // FIXME: what about umin_seq?
12543 IsMinMaxConsistingOf
<SCEVUMinExpr
>(LHS
, RHS
) ||
12544 // A <= max(A, ...)
12545 IsMinMaxConsistingOf
<SCEVUMaxExpr
>(RHS
, LHS
);
12548 llvm_unreachable("covered switch fell through?!");
12551 bool ScalarEvolution::isImpliedViaOperations(CmpPredicate Pred
, const SCEV
*LHS
,
12553 const SCEV
*FoundLHS
,
12554 const SCEV
*FoundRHS
,
12556 assert(getTypeSizeInBits(LHS
->getType()) ==
12557 getTypeSizeInBits(RHS
->getType()) &&
12558 "LHS and RHS have different sizes?");
12559 assert(getTypeSizeInBits(FoundLHS
->getType()) ==
12560 getTypeSizeInBits(FoundRHS
->getType()) &&
12561 "FoundLHS and FoundRHS have different sizes?");
12562 // We want to avoid hurting the compile time with analysis of too big trees.
12563 if (Depth
> MaxSCEVOperationsImplicationDepth
)
12566 // We only want to work with GT comparison so far.
12567 if (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_SLT
) {
12568 Pred
= ICmpInst::getSwappedCmpPredicate(Pred
);
12569 std::swap(LHS
, RHS
);
12570 std::swap(FoundLHS
, FoundRHS
);
12573 // For unsigned, try to reduce it to corresponding signed comparison.
12574 if (Pred
== ICmpInst::ICMP_UGT
)
12575 // We can replace unsigned predicate with its signed counterpart if all
12576 // involved values are non-negative.
12577 // TODO: We could have better support for unsigned.
12578 if (isKnownNonNegative(FoundLHS
) && isKnownNonNegative(FoundRHS
)) {
12579 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
12580 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
12581 // use this fact to prove that LHS and RHS are non-negative.
12582 const SCEV
*MinusOne
= getMinusOne(LHS
->getType());
12583 if (isImpliedCondOperands(ICmpInst::ICMP_SGT
, LHS
, MinusOne
, FoundLHS
,
12585 isImpliedCondOperands(ICmpInst::ICMP_SGT
, RHS
, MinusOne
, FoundLHS
,
12587 Pred
= ICmpInst::ICMP_SGT
;
12590 if (Pred
!= ICmpInst::ICMP_SGT
)
12593 auto GetOpFromSExt
= [&](const SCEV
*S
) {
12594 if (auto *Ext
= dyn_cast
<SCEVSignExtendExpr
>(S
))
12595 return Ext
->getOperand();
12596 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
12597 // the constant in some cases.
12601 // Acquire values from extensions.
12602 auto *OrigLHS
= LHS
;
12603 auto *OrigFoundLHS
= FoundLHS
;
12604 LHS
= GetOpFromSExt(LHS
);
12605 FoundLHS
= GetOpFromSExt(FoundLHS
);
12607 // Is the SGT predicate can be proved trivially or using the found context.
12608 auto IsSGTViaContext
= [&](const SCEV
*S1
, const SCEV
*S2
) {
12609 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT
, S1
, S2
) ||
12610 isImpliedViaOperations(ICmpInst::ICMP_SGT
, S1
, S2
, OrigFoundLHS
,
12611 FoundRHS
, Depth
+ 1);
12614 if (auto *LHSAddExpr
= dyn_cast
<SCEVAddExpr
>(LHS
)) {
12615 // We want to avoid creation of any new non-constant SCEV. Since we are
12616 // going to compare the operands to RHS, we should be certain that we don't
12617 // need any size extensions for this. So let's decline all cases when the
12618 // sizes of types of LHS and RHS do not match.
12619 // TODO: Maybe try to get RHS from sext to catch more cases?
12620 if (getTypeSizeInBits(LHS
->getType()) != getTypeSizeInBits(RHS
->getType()))
12623 // Should not overflow.
12624 if (!LHSAddExpr
->hasNoSignedWrap())
12627 auto *LL
= LHSAddExpr
->getOperand(0);
12628 auto *LR
= LHSAddExpr
->getOperand(1);
12629 auto *MinusOne
= getMinusOne(RHS
->getType());
12631 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
12632 auto IsSumGreaterThanRHS
= [&](const SCEV
*S1
, const SCEV
*S2
) {
12633 return IsSGTViaContext(S1
, MinusOne
) && IsSGTViaContext(S2
, RHS
);
12635 // Try to prove the following rule:
12636 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
12637 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
12638 if (IsSumGreaterThanRHS(LL
, LR
) || IsSumGreaterThanRHS(LR
, LL
))
12640 } else if (auto *LHSUnknownExpr
= dyn_cast
<SCEVUnknown
>(LHS
)) {
12642 // FIXME: Once we have SDiv implemented, we can get rid of this matching.
12644 using namespace llvm::PatternMatch
;
12646 if (match(LHSUnknownExpr
->getValue(), m_SDiv(m_Value(LL
), m_Value(LR
)))) {
12647 // Rules for division.
12648 // We are going to perform some comparisons with Denominator and its
12649 // derivative expressions. In general case, creating a SCEV for it may
12650 // lead to a complex analysis of the entire graph, and in particular it
12651 // can request trip count recalculation for the same loop. This would
12652 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
12653 // this, we only want to create SCEVs that are constants in this section.
12654 // So we bail if Denominator is not a constant.
12655 if (!isa
<ConstantInt
>(LR
))
12658 auto *Denominator
= cast
<SCEVConstant
>(getSCEV(LR
));
12660 // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
12661 // then a SCEV for the numerator already exists and matches with FoundLHS.
12662 auto *Numerator
= getExistingSCEV(LL
);
12663 if (!Numerator
|| Numerator
->getType() != FoundLHS
->getType())
12666 // Make sure that the numerator matches with FoundLHS and the denominator
12668 if (!HasSameValue(Numerator
, FoundLHS
) || !isKnownPositive(Denominator
))
12671 auto *DTy
= Denominator
->getType();
12672 auto *FRHSTy
= FoundRHS
->getType();
12673 if (DTy
->isPointerTy() != FRHSTy
->isPointerTy())
12674 // One of types is a pointer and another one is not. We cannot extend
12675 // them properly to a wider type, so let us just reject this case.
12676 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
12677 // to avoid this check.
12681 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
12682 auto *WTy
= getWiderType(DTy
, FRHSTy
);
12683 auto *DenominatorExt
= getNoopOrSignExtend(Denominator
, WTy
);
12684 auto *FoundRHSExt
= getNoopOrSignExtend(FoundRHS
, WTy
);
12686 // Try to prove the following rule:
12687 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
12688 // For example, given that FoundLHS > 2. It means that FoundLHS is at
12689 // least 3. If we divide it by Denominator < 4, we will have at least 1.
12690 auto *DenomMinusTwo
= getMinusSCEV(DenominatorExt
, getConstant(WTy
, 2));
12691 if (isKnownNonPositive(RHS
) &&
12692 IsSGTViaContext(FoundRHSExt
, DenomMinusTwo
))
12695 // Try to prove the following rule:
12696 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
12697 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
12698 // If we divide it by Denominator > 2, then:
12699 // 1. If FoundLHS is negative, then the result is 0.
12700 // 2. If FoundLHS is non-negative, then the result is non-negative.
12701 // Anyways, the result is non-negative.
12702 auto *MinusOne
= getMinusOne(WTy
);
12703 auto *NegDenomMinusOne
= getMinusSCEV(MinusOne
, DenominatorExt
);
12704 if (isKnownNegative(RHS
) &&
12705 IsSGTViaContext(FoundRHSExt
, NegDenomMinusOne
))
12710 // If our expression contained SCEVUnknown Phis, and we split it down and now
12711 // need to prove something for them, try to prove the predicate for every
12712 // possible incoming values of those Phis.
12713 if (isImpliedViaMerge(Pred
, OrigLHS
, RHS
, OrigFoundLHS
, FoundRHS
, Depth
+ 1))
12719 static bool isKnownPredicateExtendIdiom(CmpPredicate Pred
, const SCEV
*LHS
,
12721 // zext x u<= sext x, sext x s<= zext x
12724 case ICmpInst::ICMP_SGE
:
12725 std::swap(LHS
, RHS
);
12727 case ICmpInst::ICMP_SLE
: {
12728 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt.
12729 return match(LHS
, m_scev_SExt(m_SCEV(Op
))) &&
12730 match(RHS
, m_scev_ZExt(m_Specific(Op
)));
12732 case ICmpInst::ICMP_UGE
:
12733 std::swap(LHS
, RHS
);
12735 case ICmpInst::ICMP_ULE
: {
12736 // If operand >=u 0 then ZExt == SExt. If operand <u 0 then ZExt <u SExt.
12737 return match(LHS
, m_scev_ZExt(m_SCEV(Op
))) &&
12738 match(RHS
, m_scev_SExt(m_Specific(Op
)));
12743 llvm_unreachable("unhandled case");
12746 bool ScalarEvolution::isKnownViaNonRecursiveReasoning(CmpPredicate Pred
,
12749 return isKnownPredicateExtendIdiom(Pred
, LHS
, RHS
) ||
12750 isKnownPredicateViaConstantRanges(Pred
, LHS
, RHS
) ||
12751 IsKnownPredicateViaMinOrMax(*this, Pred
, LHS
, RHS
) ||
12752 IsKnownPredicateViaAddRecStart(*this, Pred
, LHS
, RHS
) ||
12753 isKnownPredicateViaNoOverflow(Pred
, LHS
, RHS
);
12756 bool ScalarEvolution::isImpliedCondOperandsHelper(CmpPredicate Pred
,
12759 const SCEV
*FoundLHS
,
12760 const SCEV
*FoundRHS
) {
12763 llvm_unreachable("Unexpected CmpPredicate value!");
12764 case ICmpInst::ICMP_EQ
:
12765 case ICmpInst::ICMP_NE
:
12766 if (HasSameValue(LHS
, FoundLHS
) && HasSameValue(RHS
, FoundRHS
))
12769 case ICmpInst::ICMP_SLT
:
12770 case ICmpInst::ICMP_SLE
:
12771 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE
, LHS
, FoundLHS
) &&
12772 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE
, RHS
, FoundRHS
))
12775 case ICmpInst::ICMP_SGT
:
12776 case ICmpInst::ICMP_SGE
:
12777 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE
, LHS
, FoundLHS
) &&
12778 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE
, RHS
, FoundRHS
))
12781 case ICmpInst::ICMP_ULT
:
12782 case ICmpInst::ICMP_ULE
:
12783 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE
, LHS
, FoundLHS
) &&
12784 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE
, RHS
, FoundRHS
))
12787 case ICmpInst::ICMP_UGT
:
12788 case ICmpInst::ICMP_UGE
:
12789 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE
, LHS
, FoundLHS
) &&
12790 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE
, RHS
, FoundRHS
))
12795 // Maybe it can be proved via operations?
12796 if (isImpliedViaOperations(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
12802 bool ScalarEvolution::isImpliedCondOperandsViaRanges(
12803 CmpPredicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
, CmpPredicate FoundPred
,
12804 const SCEV
*FoundLHS
, const SCEV
*FoundRHS
) {
12805 if (!isa
<SCEVConstant
>(RHS
) || !isa
<SCEVConstant
>(FoundRHS
))
12806 // The restriction on `FoundRHS` be lifted easily -- it exists only to
12807 // reduce the compile time impact of this optimization.
12810 std::optional
<APInt
> Addend
= computeConstantDifference(LHS
, FoundLHS
);
12814 const APInt
&ConstFoundRHS
= cast
<SCEVConstant
>(FoundRHS
)->getAPInt();
12816 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
12817 // antecedent "`FoundLHS` `FoundPred` `FoundRHS`".
12818 ConstantRange FoundLHSRange
=
12819 ConstantRange::makeExactICmpRegion(FoundPred
, ConstFoundRHS
);
12821 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
12822 ConstantRange LHSRange
= FoundLHSRange
.add(ConstantRange(*Addend
));
12824 // We can also compute the range of values for `LHS` that satisfy the
12825 // consequent, "`LHS` `Pred` `RHS`":
12826 const APInt
&ConstRHS
= cast
<SCEVConstant
>(RHS
)->getAPInt();
12827 // The antecedent implies the consequent if every value of `LHS` that
12828 // satisfies the antecedent also satisfies the consequent.
12829 return LHSRange
.icmp(Pred
, ConstRHS
);
12832 bool ScalarEvolution::canIVOverflowOnLT(const SCEV
*RHS
, const SCEV
*Stride
,
12834 assert(isKnownPositive(Stride
) && "Positive stride expected!");
12836 unsigned BitWidth
= getTypeSizeInBits(RHS
->getType());
12837 const SCEV
*One
= getOne(Stride
->getType());
12840 APInt MaxRHS
= getSignedRangeMax(RHS
);
12841 APInt MaxValue
= APInt::getSignedMaxValue(BitWidth
);
12842 APInt MaxStrideMinusOne
= getSignedRangeMax(getMinusSCEV(Stride
, One
));
12844 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
12845 return (std::move(MaxValue
) - MaxStrideMinusOne
).slt(MaxRHS
);
12848 APInt MaxRHS
= getUnsignedRangeMax(RHS
);
12849 APInt MaxValue
= APInt::getMaxValue(BitWidth
);
12850 APInt MaxStrideMinusOne
= getUnsignedRangeMax(getMinusSCEV(Stride
, One
));
12852 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
12853 return (std::move(MaxValue
) - MaxStrideMinusOne
).ult(MaxRHS
);
12856 bool ScalarEvolution::canIVOverflowOnGT(const SCEV
*RHS
, const SCEV
*Stride
,
12859 unsigned BitWidth
= getTypeSizeInBits(RHS
->getType());
12860 const SCEV
*One
= getOne(Stride
->getType());
12863 APInt MinRHS
= getSignedRangeMin(RHS
);
12864 APInt MinValue
= APInt::getSignedMinValue(BitWidth
);
12865 APInt MaxStrideMinusOne
= getSignedRangeMax(getMinusSCEV(Stride
, One
));
12867 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
12868 return (std::move(MinValue
) + MaxStrideMinusOne
).sgt(MinRHS
);
12871 APInt MinRHS
= getUnsignedRangeMin(RHS
);
12872 APInt MinValue
= APInt::getMinValue(BitWidth
);
12873 APInt MaxStrideMinusOne
= getUnsignedRangeMax(getMinusSCEV(Stride
, One
));
12875 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
12876 return (std::move(MinValue
) + MaxStrideMinusOne
).ugt(MinRHS
);
12879 const SCEV
*ScalarEvolution::getUDivCeilSCEV(const SCEV
*N
, const SCEV
*D
) {
12880 // umin(N, 1) + floor((N - umin(N, 1)) / D)
12881 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
12882 // expression fixes the case of N=0.
12883 const SCEV
*MinNOne
= getUMinExpr(N
, getOne(N
->getType()));
12884 const SCEV
*NMinusOne
= getMinusSCEV(N
, MinNOne
);
12885 return getAddExpr(MinNOne
, getUDivExpr(NMinusOne
, D
));
12888 const SCEV
*ScalarEvolution::computeMaxBECountForLT(const SCEV
*Start
,
12889 const SCEV
*Stride
,
12893 // The logic in this function assumes we can represent a positive stride.
12894 // If we can't, the backedge-taken count must be zero.
12895 if (IsSigned
&& BitWidth
== 1)
12896 return getZero(Stride
->getType());
12898 // This code below only been closely audited for negative strides in the
12899 // unsigned comparison case, it may be correct for signed comparison, but
12900 // that needs to be established.
12901 if (IsSigned
&& isKnownNegative(Stride
))
12902 return getCouldNotCompute();
12904 // Calculate the maximum backedge count based on the range of values
12905 // permitted by Start, End, and Stride.
12907 IsSigned
? getSignedRangeMin(Start
) : getUnsignedRangeMin(Start
);
12910 IsSigned
? getSignedRangeMin(Stride
) : getUnsignedRangeMin(Stride
);
12912 // We assume either the stride is positive, or the backedge-taken count
12913 // is zero. So force StrideForMaxBECount to be at least one.
12914 APInt
One(BitWidth
, 1);
12915 APInt StrideForMaxBECount
= IsSigned
? APIntOps::smax(One
, MinStride
)
12916 : APIntOps::umax(One
, MinStride
);
12918 APInt MaxValue
= IsSigned
? APInt::getSignedMaxValue(BitWidth
)
12919 : APInt::getMaxValue(BitWidth
);
12920 APInt Limit
= MaxValue
- (StrideForMaxBECount
- 1);
12922 // Although End can be a MAX expression we estimate MaxEnd considering only
12923 // the case End = RHS of the loop termination condition. This is safe because
12924 // in the other case (End - Start) is zero, leading to a zero maximum backedge
12926 APInt MaxEnd
= IsSigned
? APIntOps::smin(getSignedRangeMax(End
), Limit
)
12927 : APIntOps::umin(getUnsignedRangeMax(End
), Limit
);
12929 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
12930 MaxEnd
= IsSigned
? APIntOps::smax(MaxEnd
, MinStart
)
12931 : APIntOps::umax(MaxEnd
, MinStart
);
12933 return getUDivCeilSCEV(getConstant(MaxEnd
- MinStart
) /* Delta */,
12934 getConstant(StrideForMaxBECount
) /* Step */);
12937 ScalarEvolution::ExitLimit
12938 ScalarEvolution::howManyLessThans(const SCEV
*LHS
, const SCEV
*RHS
,
12939 const Loop
*L
, bool IsSigned
,
12940 bool ControlsOnlyExit
, bool AllowPredicates
) {
12941 SmallVector
<const SCEVPredicate
*> Predicates
;
12943 const SCEVAddRecExpr
*IV
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
12944 bool PredicatedIV
= false;
12946 if (auto *ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(LHS
)) {
12947 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(ZExt
->getOperand());
12948 if (AR
&& AR
->getLoop() == L
&& AR
->isAffine()) {
12949 auto canProveNUW
= [&]() {
12950 // We can use the comparison to infer no-wrap flags only if it fully
12951 // controls the loop exit.
12952 if (!ControlsOnlyExit
)
12955 if (!isLoopInvariant(RHS
, L
))
12958 if (!isKnownNonZero(AR
->getStepRecurrence(*this)))
12959 // We need the sequence defined by AR to strictly increase in the
12960 // unsigned integer domain for the logic below to hold.
12963 const unsigned InnerBitWidth
= getTypeSizeInBits(AR
->getType());
12964 const unsigned OuterBitWidth
= getTypeSizeInBits(RHS
->getType());
12965 // If RHS <=u Limit, then there must exist a value V in the sequence
12966 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and
12967 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned
12968 // overflow occurs. This limit also implies that a signed comparison
12969 // (in the wide bitwidth) is equivalent to an unsigned comparison as
12970 // the high bits on both sides must be zero.
12971 APInt StrideMax
= getUnsignedRangeMax(AR
->getStepRecurrence(*this));
12972 APInt Limit
= APInt::getMaxValue(InnerBitWidth
) - (StrideMax
- 1);
12973 Limit
= Limit
.zext(OuterBitWidth
);
12974 return getUnsignedRangeMax(applyLoopGuards(RHS
, L
)).ule(Limit
);
12976 auto Flags
= AR
->getNoWrapFlags();
12977 if (!hasFlags(Flags
, SCEV::FlagNUW
) && canProveNUW())
12978 Flags
= setFlags(Flags
, SCEV::FlagNUW
);
12980 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), Flags
);
12981 if (AR
->hasNoUnsignedWrap()) {
12982 // Emulate what getZeroExtendExpr would have done during construction
12983 // if we'd been able to infer the fact just above at that time.
12984 const SCEV
*Step
= AR
->getStepRecurrence(*this);
12985 Type
*Ty
= ZExt
->getType();
12986 auto *S
= getAddRecExpr(
12987 getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this, 0),
12988 getZeroExtendExpr(Step
, Ty
, 0), L
, AR
->getNoWrapFlags());
12989 IV
= dyn_cast
<SCEVAddRecExpr
>(S
);
12996 if (!IV
&& AllowPredicates
) {
12997 // Try to make this an AddRec using runtime tests, in the first X
12998 // iterations of this loop, where X is the SCEV expression found by the
12999 // algorithm below.
13000 IV
= convertSCEVToAddRecWithPredicates(LHS
, L
, Predicates
);
13001 PredicatedIV
= true;
13004 // Avoid weird loops
13005 if (!IV
|| IV
->getLoop() != L
|| !IV
->isAffine())
13006 return getCouldNotCompute();
13008 // A precondition of this method is that the condition being analyzed
13009 // reaches an exiting branch which dominates the latch. Given that, we can
13010 // assume that an increment which violates the nowrap specification and
13011 // produces poison must cause undefined behavior when the resulting poison
13012 // value is branched upon and thus we can conclude that the backedge is
13013 // taken no more often than would be required to produce that poison value.
13014 // Note that a well defined loop can exit on the iteration which violates
13015 // the nowrap specification if there is another exit (either explicit or
13016 // implicit/exceptional) which causes the loop to execute before the
13017 // exiting instruction we're analyzing would trigger UB.
13018 auto WrapType
= IsSigned
? SCEV::FlagNSW
: SCEV::FlagNUW
;
13019 bool NoWrap
= ControlsOnlyExit
&& IV
->getNoWrapFlags(WrapType
);
13020 ICmpInst::Predicate Cond
= IsSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
13022 const SCEV
*Stride
= IV
->getStepRecurrence(*this);
13024 bool PositiveStride
= isKnownPositive(Stride
);
13026 // Avoid negative or zero stride values.
13027 if (!PositiveStride
) {
13028 // We can compute the correct backedge taken count for loops with unknown
13029 // strides if we can prove that the loop is not an infinite loop with side
13030 // effects. Here's the loop structure we are trying to handle -
13036 // } while (i < end);
13038 // The backedge taken count for such loops is evaluated as -
13039 // (max(end, start + stride) - start - 1) /u stride
13041 // The additional preconditions that we need to check to prove correctness
13042 // of the above formula is as follows -
13044 // a) IV is either nuw or nsw depending upon signedness (indicated by the
13046 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
13047 // no side effects within the loop)
13048 // c) loop has a single static exit (with no abnormal exits)
13050 // Precondition a) implies that if the stride is negative, this is a single
13051 // trip loop. The backedge taken count formula reduces to zero in this case.
13053 // Precondition b) and c) combine to imply that if rhs is invariant in L,
13054 // then a zero stride means the backedge can't be taken without executing
13055 // undefined behavior.
13057 // The positive stride case is the same as isKnownPositive(Stride) returning
13058 // true (original behavior of the function).
13060 if (PredicatedIV
|| !NoWrap
|| !loopIsFiniteByAssumption(L
) ||
13061 !loopHasNoAbnormalExits(L
))
13062 return getCouldNotCompute();
13064 if (!isKnownNonZero(Stride
)) {
13065 // If we have a step of zero, and RHS isn't invariant in L, we don't know
13066 // if it might eventually be greater than start and if so, on which
13067 // iteration. We can't even produce a useful upper bound.
13068 if (!isLoopInvariant(RHS
, L
))
13069 return getCouldNotCompute();
13071 // We allow a potentially zero stride, but we need to divide by stride
13072 // below. Since the loop can't be infinite and this check must control
13073 // the sole exit, we can infer the exit must be taken on the first
13074 // iteration (e.g. backedge count = 0) if the stride is zero. Given that,
13075 // we know the numerator in the divides below must be zero, so we can
13076 // pick an arbitrary non-zero value for the denominator (e.g. stride)
13077 // and produce the right result.
13078 // FIXME: Handle the case where Stride is poison?
13079 auto wouldZeroStrideBeUB
= [&]() {
13080 // Proof by contradiction. Suppose the stride were zero. If we can
13081 // prove that the backedge *is* taken on the first iteration, then since
13082 // we know this condition controls the sole exit, we must have an
13083 // infinite loop. We can't have a (well defined) infinite loop per
13084 // check just above.
13085 // Note: The (Start - Stride) term is used to get the start' term from
13086 // (start' + stride,+,stride). Remember that we only care about the
13087 // result of this expression when stride == 0 at runtime.
13088 auto *StartIfZero
= getMinusSCEV(IV
->getStart(), Stride
);
13089 return isLoopEntryGuardedByCond(L
, Cond
, StartIfZero
, RHS
);
13091 if (!wouldZeroStrideBeUB()) {
13092 Stride
= getUMaxExpr(Stride
, getOne(Stride
->getType()));
13095 } else if (!NoWrap
) {
13096 // Avoid proven overflow cases: this will ensure that the backedge taken
13097 // count will not generate any unsigned overflow.
13098 if (canIVOverflowOnLT(RHS
, Stride
, IsSigned
))
13099 return getCouldNotCompute();
13102 // On all paths just preceeding, we established the following invariant:
13103 // IV can be assumed not to overflow up to and including the exiting
13104 // iteration. We proved this in one of two ways:
13105 // 1) We can show overflow doesn't occur before the exiting iteration
13106 // 1a) canIVOverflowOnLT, and b) step of one
13107 // 2) We can show that if overflow occurs, the loop must execute UB
13108 // before any possible exit.
13109 // Note that we have not yet proved RHS invariant (in general).
13111 const SCEV
*Start
= IV
->getStart();
13113 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
13114 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
13115 // Use integer-typed versions for actual computation; we can't subtract
13116 // pointers in general.
13117 const SCEV
*OrigStart
= Start
;
13118 const SCEV
*OrigRHS
= RHS
;
13119 if (Start
->getType()->isPointerTy()) {
13120 Start
= getLosslessPtrToIntExpr(Start
);
13121 if (isa
<SCEVCouldNotCompute
>(Start
))
13124 if (RHS
->getType()->isPointerTy()) {
13125 RHS
= getLosslessPtrToIntExpr(RHS
);
13126 if (isa
<SCEVCouldNotCompute
>(RHS
))
13130 const SCEV
*End
= nullptr, *BECount
= nullptr,
13131 *BECountIfBackedgeTaken
= nullptr;
13132 if (!isLoopInvariant(RHS
, L
)) {
13133 const auto *RHSAddRec
= dyn_cast
<SCEVAddRecExpr
>(RHS
);
13134 if (PositiveStride
&& RHSAddRec
!= nullptr && RHSAddRec
->getLoop() == L
&&
13135 RHSAddRec
->getNoWrapFlags()) {
13136 // The structure of loop we are trying to calculate backedge count of:
13138 // left = left_start
13139 // right = right_start
13141 // while(left < right){
13142 // ... do something here ...
13143 // left += s1; // stride of left is s1 (s1 > 0)
13144 // right += s2; // stride of right is s2 (s2 < 0)
13148 const SCEV
*RHSStart
= RHSAddRec
->getStart();
13149 const SCEV
*RHSStride
= RHSAddRec
->getStepRecurrence(*this);
13151 // If Stride - RHSStride is positive and does not overflow, we can write
13152 // backedge count as ->
13153 // ceil((End - Start) /u (Stride - RHSStride))
13154 // Where, End = max(RHSStart, Start)
13156 // Check if RHSStride < 0 and Stride - RHSStride will not overflow.
13157 if (isKnownNegative(RHSStride
) &&
13158 willNotOverflow(Instruction::Sub
, /*Signed=*/true, Stride
,
13161 const SCEV
*Denominator
= getMinusSCEV(Stride
, RHSStride
);
13162 if (isKnownPositive(Denominator
)) {
13163 End
= IsSigned
? getSMaxExpr(RHSStart
, Start
)
13164 : getUMaxExpr(RHSStart
, Start
);
13166 // We can do this because End >= Start, as End = max(RHSStart, Start)
13167 const SCEV
*Delta
= getMinusSCEV(End
, Start
);
13169 BECount
= getUDivCeilSCEV(Delta
, Denominator
);
13170 BECountIfBackedgeTaken
=
13171 getUDivCeilSCEV(getMinusSCEV(RHSStart
, Start
), Denominator
);
13175 if (BECount
== nullptr) {
13176 // If we cannot calculate ExactBECount, we can calculate the MaxBECount,
13177 // given the start, stride and max value for the end bound of the
13178 // loop (RHS), and the fact that IV does not overflow (which is
13180 const SCEV
*MaxBECount
= computeMaxBECountForLT(
13181 Start
, Stride
, RHS
, getTypeSizeInBits(LHS
->getType()), IsSigned
);
13182 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount
,
13183 MaxBECount
, false /*MaxOrZero*/, Predicates
);
13186 // We use the expression (max(End,Start)-Start)/Stride to describe the
13187 // backedge count, as if the backedge is taken at least once
13188 // max(End,Start) is End and so the result is as above, and if not
13189 // max(End,Start) is Start so we get a backedge count of zero.
13190 auto *OrigStartMinusStride
= getMinusSCEV(OrigStart
, Stride
);
13191 assert(isAvailableAtLoopEntry(OrigStartMinusStride
, L
) && "Must be!");
13192 assert(isAvailableAtLoopEntry(OrigStart
, L
) && "Must be!");
13193 assert(isAvailableAtLoopEntry(OrigRHS
, L
) && "Must be!");
13194 // Can we prove (max(RHS,Start) > Start - Stride?
13195 if (isLoopEntryGuardedByCond(L
, Cond
, OrigStartMinusStride
, OrigStart
) &&
13196 isLoopEntryGuardedByCond(L
, Cond
, OrigStartMinusStride
, OrigRHS
)) {
13197 // In this case, we can use a refined formula for computing backedge
13198 // taken count. The general formula remains:
13199 // "End-Start /uceiling Stride" where "End = max(RHS,Start)"
13200 // We want to use the alternate formula:
13201 // "((End - 1) - (Start - Stride)) /u Stride"
13202 // Let's do a quick case analysis to show these are equivalent under
13203 // our precondition that max(RHS,Start) > Start - Stride.
13204 // * For RHS <= Start, the backedge-taken count must be zero.
13205 // "((End - 1) - (Start - Stride)) /u Stride" reduces to
13206 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
13207 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values
13208 // of Stride. For 0 stride, we've use umin(1,Stride) above,
13209 // reducing this to the stride of 1 case.
13210 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil
13212 // "((End - 1) - (Start - Stride)) /u Stride" reduces to
13213 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
13214 // "((RHS - (Start - Stride) - 1) /u Stride".
13215 // Our preconditions trivially imply no overflow in that form.
13216 const SCEV
*MinusOne
= getMinusOne(Stride
->getType());
13217 const SCEV
*Numerator
=
13218 getMinusSCEV(getAddExpr(RHS
, MinusOne
), getMinusSCEV(Start
, Stride
));
13219 BECount
= getUDivExpr(Numerator
, Stride
);
13223 auto canProveRHSGreaterThanEqualStart
= [&]() {
13224 auto CondGE
= IsSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
13225 const SCEV
*GuardedRHS
= applyLoopGuards(OrigRHS
, L
);
13226 const SCEV
*GuardedStart
= applyLoopGuards(OrigStart
, L
);
13228 if (isLoopEntryGuardedByCond(L
, CondGE
, OrigRHS
, OrigStart
) ||
13229 isKnownPredicate(CondGE
, GuardedRHS
, GuardedStart
))
13232 // (RHS > Start - 1) implies RHS >= Start.
13233 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
13234 // "Start - 1" doesn't overflow.
13235 // * For signed comparison, if Start - 1 does overflow, it's equal
13236 // to INT_MAX, and "RHS >s INT_MAX" is trivially false.
13237 // * For unsigned comparison, if Start - 1 does overflow, it's equal
13238 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
13240 // FIXME: Should isLoopEntryGuardedByCond do this for us?
13241 auto CondGT
= IsSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
13242 auto *StartMinusOne
=
13243 getAddExpr(OrigStart
, getMinusOne(OrigStart
->getType()));
13244 return isLoopEntryGuardedByCond(L
, CondGT
, OrigRHS
, StartMinusOne
);
13247 // If we know that RHS >= Start in the context of loop, then we know
13248 // that max(RHS, Start) = RHS at this point.
13249 if (canProveRHSGreaterThanEqualStart()) {
13252 // If RHS < Start, the backedge will be taken zero times. So in
13253 // general, we can write the backedge-taken count as:
13255 // RHS >= Start ? ceil(RHS - Start) / Stride : 0
13257 // We convert it to the following to make it more convenient for SCEV:
13259 // ceil(max(RHS, Start) - Start) / Stride
13260 End
= IsSigned
? getSMaxExpr(RHS
, Start
) : getUMaxExpr(RHS
, Start
);
13262 // See what would happen if we assume the backedge is taken. This is
13263 // used to compute MaxBECount.
13264 BECountIfBackedgeTaken
=
13265 getUDivCeilSCEV(getMinusSCEV(RHS
, Start
), Stride
);
13268 // At this point, we know:
13270 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
13271 // 2. The index variable doesn't overflow.
13273 // Therefore, we know N exists such that
13274 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
13275 // doesn't overflow.
13277 // Using this information, try to prove whether the addition in
13278 // "(Start - End) + (Stride - 1)" has unsigned overflow.
13279 const SCEV
*One
= getOne(Stride
->getType());
13280 bool MayAddOverflow
= [&] {
13281 if (isKnownToBeAPowerOfTwo(Stride
)) {
13282 // Suppose Stride is a power of two, and Start/End are unsigned
13283 // integers. Let UMAX be the largest representable unsigned
13286 // By the preconditions of this function, we know
13287 // "(Start + Stride * N) >= End", and this doesn't overflow.
13290 // End <= (Start + Stride * N) <= UMAX
13292 // Subtracting Start from all the terms:
13294 // End - Start <= Stride * N <= UMAX - Start
13296 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore:
13298 // End - Start <= Stride * N <= UMAX
13300 // Stride * N is a multiple of Stride. Therefore,
13302 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
13304 // Since Stride is a power of two, UMAX + 1 is divisible by
13305 // Stride. Therefore, UMAX mod Stride == Stride - 1. So we can
13308 // End - Start <= Stride * N <= UMAX - Stride - 1
13310 // Dropping the middle term:
13312 // End - Start <= UMAX - Stride - 1
13314 // Adding Stride - 1 to both sides:
13316 // (End - Start) + (Stride - 1) <= UMAX
13318 // In other words, the addition doesn't have unsigned overflow.
13320 // A similar proof works if we treat Start/End as signed values.
13321 // Just rewrite steps before "End - Start <= Stride * N <= UMAX"
13322 // to use signed max instead of unsigned max. Note that we're
13323 // trying to prove a lack of unsigned overflow in either case.
13326 if (Start
== Stride
|| Start
== getMinusSCEV(Stride
, One
)) {
13327 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End
13328 // - 1. If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1
13329 // <u End. If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End -
13332 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 ==
13339 const SCEV
*Delta
= getMinusSCEV(End
, Start
);
13340 if (!MayAddOverflow
) {
13341 // floor((D + (S - 1)) / S)
13342 // We prefer this formulation if it's legal because it's fewer
13345 getUDivExpr(getAddExpr(Delta
, getMinusSCEV(Stride
, One
)), Stride
);
13347 BECount
= getUDivCeilSCEV(Delta
, Stride
);
13352 const SCEV
*ConstantMaxBECount
;
13353 bool MaxOrZero
= false;
13354 if (isa
<SCEVConstant
>(BECount
)) {
13355 ConstantMaxBECount
= BECount
;
13356 } else if (BECountIfBackedgeTaken
&&
13357 isa
<SCEVConstant
>(BECountIfBackedgeTaken
)) {
13358 // If we know exactly how many times the backedge will be taken if it's
13359 // taken at least once, then the backedge count will either be that or
13361 ConstantMaxBECount
= BECountIfBackedgeTaken
;
13364 ConstantMaxBECount
= computeMaxBECountForLT(
13365 Start
, Stride
, RHS
, getTypeSizeInBits(LHS
->getType()), IsSigned
);
13368 if (isa
<SCEVCouldNotCompute
>(ConstantMaxBECount
) &&
13369 !isa
<SCEVCouldNotCompute
>(BECount
))
13370 ConstantMaxBECount
= getConstant(getUnsignedRangeMax(BECount
));
13372 const SCEV
*SymbolicMaxBECount
=
13373 isa
<SCEVCouldNotCompute
>(BECount
) ? ConstantMaxBECount
: BECount
;
13374 return ExitLimit(BECount
, ConstantMaxBECount
, SymbolicMaxBECount
, MaxOrZero
,
13378 ScalarEvolution::ExitLimit
ScalarEvolution::howManyGreaterThans(
13379 const SCEV
*LHS
, const SCEV
*RHS
, const Loop
*L
, bool IsSigned
,
13380 bool ControlsOnlyExit
, bool AllowPredicates
) {
13381 SmallVector
<const SCEVPredicate
*> Predicates
;
13382 // We handle only IV > Invariant
13383 if (!isLoopInvariant(RHS
, L
))
13384 return getCouldNotCompute();
13386 const SCEVAddRecExpr
*IV
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
13387 if (!IV
&& AllowPredicates
)
13388 // Try to make this an AddRec using runtime tests, in the first X
13389 // iterations of this loop, where X is the SCEV expression found by the
13390 // algorithm below.
13391 IV
= convertSCEVToAddRecWithPredicates(LHS
, L
, Predicates
);
13393 // Avoid weird loops
13394 if (!IV
|| IV
->getLoop() != L
|| !IV
->isAffine())
13395 return getCouldNotCompute();
13397 auto WrapType
= IsSigned
? SCEV::FlagNSW
: SCEV::FlagNUW
;
13398 bool NoWrap
= ControlsOnlyExit
&& IV
->getNoWrapFlags(WrapType
);
13399 ICmpInst::Predicate Cond
= IsSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
13401 const SCEV
*Stride
= getNegativeSCEV(IV
->getStepRecurrence(*this));
13403 // Avoid negative or zero stride values
13404 if (!isKnownPositive(Stride
))
13405 return getCouldNotCompute();
13407 // Avoid proven overflow cases: this will ensure that the backedge taken count
13408 // will not generate any unsigned overflow. Relaxed no-overflow conditions
13409 // exploit NoWrapFlags, allowing to optimize in presence of undefined
13410 // behaviors like the case of C language.
13411 if (!Stride
->isOne() && !NoWrap
)
13412 if (canIVOverflowOnGT(RHS
, Stride
, IsSigned
))
13413 return getCouldNotCompute();
13415 const SCEV
*Start
= IV
->getStart();
13416 const SCEV
*End
= RHS
;
13417 if (!isLoopEntryGuardedByCond(L
, Cond
, getAddExpr(Start
, Stride
), RHS
)) {
13418 // If we know that Start >= RHS in the context of loop, then we know that
13419 // min(RHS, Start) = RHS at this point.
13420 if (isLoopEntryGuardedByCond(
13421 L
, IsSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
, Start
, RHS
))
13424 End
= IsSigned
? getSMinExpr(RHS
, Start
) : getUMinExpr(RHS
, Start
);
13427 if (Start
->getType()->isPointerTy()) {
13428 Start
= getLosslessPtrToIntExpr(Start
);
13429 if (isa
<SCEVCouldNotCompute
>(Start
))
13432 if (End
->getType()->isPointerTy()) {
13433 End
= getLosslessPtrToIntExpr(End
);
13434 if (isa
<SCEVCouldNotCompute
>(End
))
13438 // Compute ((Start - End) + (Stride - 1)) / Stride.
13439 // FIXME: This can overflow. Holding off on fixing this for now;
13440 // howManyGreaterThans will hopefully be gone soon.
13441 const SCEV
*One
= getOne(Stride
->getType());
13442 const SCEV
*BECount
= getUDivExpr(
13443 getAddExpr(getMinusSCEV(Start
, End
), getMinusSCEV(Stride
, One
)), Stride
);
13445 APInt MaxStart
= IsSigned
? getSignedRangeMax(Start
)
13446 : getUnsignedRangeMax(Start
);
13448 APInt MinStride
= IsSigned
? getSignedRangeMin(Stride
)
13449 : getUnsignedRangeMin(Stride
);
13451 unsigned BitWidth
= getTypeSizeInBits(LHS
->getType());
13452 APInt Limit
= IsSigned
? APInt::getSignedMinValue(BitWidth
) + (MinStride
- 1)
13453 : APInt::getMinValue(BitWidth
) + (MinStride
- 1);
13455 // Although End can be a MIN expression we estimate MinEnd considering only
13456 // the case End = RHS. This is safe because in the other case (Start - End)
13457 // is zero, leading to a zero maximum backedge taken count.
13459 IsSigned
? APIntOps::smax(getSignedRangeMin(RHS
), Limit
)
13460 : APIntOps::umax(getUnsignedRangeMin(RHS
), Limit
);
13462 const SCEV
*ConstantMaxBECount
=
13463 isa
<SCEVConstant
>(BECount
)
13465 : getUDivCeilSCEV(getConstant(MaxStart
- MinEnd
),
13466 getConstant(MinStride
));
13468 if (isa
<SCEVCouldNotCompute
>(ConstantMaxBECount
))
13469 ConstantMaxBECount
= BECount
;
13470 const SCEV
*SymbolicMaxBECount
=
13471 isa
<SCEVCouldNotCompute
>(BECount
) ? ConstantMaxBECount
: BECount
;
13473 return ExitLimit(BECount
, ConstantMaxBECount
, SymbolicMaxBECount
, false,
13477 const SCEV
*SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange
&Range
,
13478 ScalarEvolution
&SE
) const {
13479 if (Range
.isFullSet()) // Infinite loop.
13480 return SE
.getCouldNotCompute();
13482 // If the start is a non-zero constant, shift the range to simplify things.
13483 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(getStart()))
13484 if (!SC
->getValue()->isZero()) {
13485 SmallVector
<const SCEV
*, 4> Operands(operands());
13486 Operands
[0] = SE
.getZero(SC
->getType());
13487 const SCEV
*Shifted
= SE
.getAddRecExpr(Operands
, getLoop(),
13488 getNoWrapFlags(FlagNW
));
13489 if (const auto *ShiftedAddRec
= dyn_cast
<SCEVAddRecExpr
>(Shifted
))
13490 return ShiftedAddRec
->getNumIterationsInRange(
13491 Range
.subtract(SC
->getAPInt()), SE
);
13492 // This is strange and shouldn't happen.
13493 return SE
.getCouldNotCompute();
13496 // The only time we can solve this is when we have all constant indices.
13497 // Otherwise, we cannot determine the overflow conditions.
13498 if (any_of(operands(), [](const SCEV
*Op
) { return !isa
<SCEVConstant
>(Op
); }))
13499 return SE
.getCouldNotCompute();
13501 // Okay at this point we know that all elements of the chrec are constants and
13502 // that the start element is zero.
13504 // First check to see if the range contains zero. If not, the first
13505 // iteration exits.
13506 unsigned BitWidth
= SE
.getTypeSizeInBits(getType());
13507 if (!Range
.contains(APInt(BitWidth
, 0)))
13508 return SE
.getZero(getType());
13511 // If this is an affine expression then we have this situation:
13512 // Solve {0,+,A} in Range === Ax in Range
13514 // We know that zero is in the range. If A is positive then we know that
13515 // the upper value of the range must be the first possible exit value.
13516 // If A is negative then the lower of the range is the last possible loop
13517 // value. Also note that we already checked for a full range.
13518 APInt A
= cast
<SCEVConstant
>(getOperand(1))->getAPInt();
13519 APInt End
= A
.sge(1) ? (Range
.getUpper() - 1) : Range
.getLower();
13521 // The exit value should be (End+A)/A.
13522 APInt ExitVal
= (End
+ A
).udiv(A
);
13523 ConstantInt
*ExitValue
= ConstantInt::get(SE
.getContext(), ExitVal
);
13525 // Evaluate at the exit value. If we really did fall out of the valid
13526 // range, then we computed our trip count, otherwise wrap around or other
13527 // things must have happened.
13528 ConstantInt
*Val
= EvaluateConstantChrecAtConstant(this, ExitValue
, SE
);
13529 if (Range
.contains(Val
->getValue()))
13530 return SE
.getCouldNotCompute(); // Something strange happened
13532 // Ensure that the previous value is in the range.
13533 assert(Range
.contains(
13534 EvaluateConstantChrecAtConstant(this,
13535 ConstantInt::get(SE
.getContext(), ExitVal
- 1), SE
)->getValue()) &&
13536 "Linear scev computation is off in a bad way!");
13537 return SE
.getConstant(ExitValue
);
13540 if (isQuadratic()) {
13541 if (auto S
= SolveQuadraticAddRecRange(this, Range
, SE
))
13542 return SE
.getConstant(*S
);
13545 return SE
.getCouldNotCompute();
13548 const SCEVAddRecExpr
*
13549 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution
&SE
) const {
13550 assert(getNumOperands() > 1 && "AddRec with zero step?");
13551 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
13552 // but in this case we cannot guarantee that the value returned will be an
13553 // AddRec because SCEV does not have a fixed point where it stops
13554 // simplification: it is legal to return ({rec1} + {rec2}). For example, it
13555 // may happen if we reach arithmetic depth limit while simplifying. So we
13556 // construct the returned value explicitly.
13557 SmallVector
<const SCEV
*, 3> Ops
;
13558 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
13559 // (this + Step) is {A+B,+,B+C,+...,+,N}.
13560 for (unsigned i
= 0, e
= getNumOperands() - 1; i
< e
; ++i
)
13561 Ops
.push_back(SE
.getAddExpr(getOperand(i
), getOperand(i
+ 1)));
13562 // We know that the last operand is not a constant zero (otherwise it would
13563 // have been popped out earlier). This guarantees us that if the result has
13564 // the same last operand, then it will also not be popped out, meaning that
13565 // the returned value will be an AddRec.
13566 const SCEV
*Last
= getOperand(getNumOperands() - 1);
13567 assert(!Last
->isZero() && "Recurrency with zero step?");
13568 Ops
.push_back(Last
);
13569 return cast
<SCEVAddRecExpr
>(SE
.getAddRecExpr(Ops
, getLoop(),
13570 SCEV::FlagAnyWrap
));
13573 // Return true when S contains at least an undef value.
13574 bool ScalarEvolution::containsUndefs(const SCEV
*S
) const {
13575 return SCEVExprContains(S
, [](const SCEV
*S
) {
13576 if (const auto *SU
= dyn_cast
<SCEVUnknown
>(S
))
13577 return isa
<UndefValue
>(SU
->getValue());
13582 // Return true when S contains a value that is a nullptr.
13583 bool ScalarEvolution::containsErasedValue(const SCEV
*S
) const {
13584 return SCEVExprContains(S
, [](const SCEV
*S
) {
13585 if (const auto *SU
= dyn_cast
<SCEVUnknown
>(S
))
13586 return SU
->getValue() == nullptr;
13591 /// Return the size of an element read or written by Inst.
13592 const SCEV
*ScalarEvolution::getElementSize(Instruction
*Inst
) {
13594 if (StoreInst
*Store
= dyn_cast
<StoreInst
>(Inst
))
13595 Ty
= Store
->getValueOperand()->getType();
13596 else if (LoadInst
*Load
= dyn_cast
<LoadInst
>(Inst
))
13597 Ty
= Load
->getType();
13601 Type
*ETy
= getEffectiveSCEVType(PointerType::getUnqual(Inst
->getContext()));
13602 return getSizeOfExpr(ETy
, Ty
);
13605 //===----------------------------------------------------------------------===//
13606 // SCEVCallbackVH Class Implementation
13607 //===----------------------------------------------------------------------===//
13609 void ScalarEvolution::SCEVCallbackVH::deleted() {
13610 assert(SE
&& "SCEVCallbackVH called with a null ScalarEvolution!");
13611 if (PHINode
*PN
= dyn_cast
<PHINode
>(getValPtr()))
13612 SE
->ConstantEvolutionLoopExitValue
.erase(PN
);
13613 SE
->eraseValueFromMap(getValPtr());
13614 // this now dangles!
13617 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value
*V
) {
13618 assert(SE
&& "SCEVCallbackVH called with a null ScalarEvolution!");
13620 // Forget all the expressions associated with users of the old value,
13621 // so that future queries will recompute the expressions using the new
13623 SE
->forgetValue(getValPtr());
13624 // this now dangles!
13627 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value
*V
, ScalarEvolution
*se
)
13628 : CallbackVH(V
), SE(se
) {}
13630 //===----------------------------------------------------------------------===//
13631 // ScalarEvolution Class Implementation
13632 //===----------------------------------------------------------------------===//
13634 ScalarEvolution::ScalarEvolution(Function
&F
, TargetLibraryInfo
&TLI
,
13635 AssumptionCache
&AC
, DominatorTree
&DT
,
13637 : F(F
), DL(F
.getDataLayout()), TLI(TLI
), AC(AC
), DT(DT
), LI(LI
),
13638 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
13639 LoopDispositions(64), BlockDispositions(64) {
13640 // To use guards for proving predicates, we need to scan every instruction in
13641 // relevant basic blocks, and not just terminators. Doing this is a waste of
13642 // time if the IR does not actually contain any calls to
13643 // @llvm.experimental.guard, so do a quick check and remember this beforehand.
13645 // This pessimizes the case where a pass that preserves ScalarEvolution wants
13646 // to _add_ guards to the module when there weren't any before, and wants
13647 // ScalarEvolution to optimize based on those guards. For now we prefer to be
13648 // efficient in lieu of being smart in that rather obscure case.
13650 auto *GuardDecl
= Intrinsic::getDeclarationIfExists(
13651 F
.getParent(), Intrinsic::experimental_guard
);
13652 HasGuards
= GuardDecl
&& !GuardDecl
->use_empty();
13655 ScalarEvolution::ScalarEvolution(ScalarEvolution
&&Arg
)
13656 : F(Arg
.F
), DL(Arg
.DL
), HasGuards(Arg
.HasGuards
), TLI(Arg
.TLI
), AC(Arg
.AC
),
13657 DT(Arg
.DT
), LI(Arg
.LI
), CouldNotCompute(std::move(Arg
.CouldNotCompute
)),
13658 ValueExprMap(std::move(Arg
.ValueExprMap
)),
13659 PendingLoopPredicates(std::move(Arg
.PendingLoopPredicates
)),
13660 PendingPhiRanges(std::move(Arg
.PendingPhiRanges
)),
13661 PendingMerges(std::move(Arg
.PendingMerges
)),
13662 ConstantMultipleCache(std::move(Arg
.ConstantMultipleCache
)),
13663 BackedgeTakenCounts(std::move(Arg
.BackedgeTakenCounts
)),
13664 PredicatedBackedgeTakenCounts(
13665 std::move(Arg
.PredicatedBackedgeTakenCounts
)),
13666 BECountUsers(std::move(Arg
.BECountUsers
)),
13667 ConstantEvolutionLoopExitValue(
13668 std::move(Arg
.ConstantEvolutionLoopExitValue
)),
13669 ValuesAtScopes(std::move(Arg
.ValuesAtScopes
)),
13670 ValuesAtScopesUsers(std::move(Arg
.ValuesAtScopesUsers
)),
13671 LoopDispositions(std::move(Arg
.LoopDispositions
)),
13672 LoopPropertiesCache(std::move(Arg
.LoopPropertiesCache
)),
13673 BlockDispositions(std::move(Arg
.BlockDispositions
)),
13674 SCEVUsers(std::move(Arg
.SCEVUsers
)),
13675 UnsignedRanges(std::move(Arg
.UnsignedRanges
)),
13676 SignedRanges(std::move(Arg
.SignedRanges
)),
13677 UniqueSCEVs(std::move(Arg
.UniqueSCEVs
)),
13678 UniquePreds(std::move(Arg
.UniquePreds
)),
13679 SCEVAllocator(std::move(Arg
.SCEVAllocator
)),
13680 LoopUsers(std::move(Arg
.LoopUsers
)),
13681 PredicatedSCEVRewrites(std::move(Arg
.PredicatedSCEVRewrites
)),
13682 FirstUnknown(Arg
.FirstUnknown
) {
13683 Arg
.FirstUnknown
= nullptr;
13686 ScalarEvolution::~ScalarEvolution() {
13687 // Iterate through all the SCEVUnknown instances and call their
13688 // destructors, so that they release their references to their values.
13689 for (SCEVUnknown
*U
= FirstUnknown
; U
;) {
13690 SCEVUnknown
*Tmp
= U
;
13692 Tmp
->~SCEVUnknown();
13694 FirstUnknown
= nullptr;
13696 ExprValueMap
.clear();
13697 ValueExprMap
.clear();
13699 BackedgeTakenCounts
.clear();
13700 PredicatedBackedgeTakenCounts
.clear();
13702 assert(PendingLoopPredicates
.empty() && "isImpliedCond garbage");
13703 assert(PendingPhiRanges
.empty() && "getRangeRef garbage");
13704 assert(PendingMerges
.empty() && "isImpliedViaMerge garbage");
13705 assert(!WalkingBEDominatingConds
&& "isLoopBackedgeGuardedByCond garbage!");
13706 assert(!ProvingSplitPredicate
&& "ProvingSplitPredicate garbage!");
13709 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop
*L
) {
13710 return !isa
<SCEVCouldNotCompute
>(getBackedgeTakenCount(L
));
13713 /// When printing a top-level SCEV for trip counts, it's helpful to include
13714 /// a type for constants which are otherwise hard to disambiguate.
13715 static void PrintSCEVWithTypeHint(raw_ostream
&OS
, const SCEV
* S
) {
13716 if (isa
<SCEVConstant
>(S
))
13717 OS
<< *S
->getType() << " ";
13721 static void PrintLoopInfo(raw_ostream
&OS
, ScalarEvolution
*SE
,
13723 // Print all inner loops first
13725 PrintLoopInfo(OS
, SE
, I
);
13728 L
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
13731 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
13732 L
->getExitingBlocks(ExitingBlocks
);
13733 if (ExitingBlocks
.size() != 1)
13734 OS
<< "<multiple exits> ";
13736 auto *BTC
= SE
->getBackedgeTakenCount(L
);
13737 if (!isa
<SCEVCouldNotCompute
>(BTC
)) {
13738 OS
<< "backedge-taken count is ";
13739 PrintSCEVWithTypeHint(OS
, BTC
);
13741 OS
<< "Unpredictable backedge-taken count.";
13744 if (ExitingBlocks
.size() > 1)
13745 for (BasicBlock
*ExitingBlock
: ExitingBlocks
) {
13746 OS
<< " exit count for " << ExitingBlock
->getName() << ": ";
13747 const SCEV
*EC
= SE
->getExitCount(L
, ExitingBlock
);
13748 PrintSCEVWithTypeHint(OS
, EC
);
13749 if (isa
<SCEVCouldNotCompute
>(EC
)) {
13750 // Retry with predicates.
13751 SmallVector
<const SCEVPredicate
*> Predicates
;
13752 EC
= SE
->getPredicatedExitCount(L
, ExitingBlock
, &Predicates
);
13753 if (!isa
<SCEVCouldNotCompute
>(EC
)) {
13754 OS
<< "\n predicated exit count for " << ExitingBlock
->getName()
13756 PrintSCEVWithTypeHint(OS
, EC
);
13757 OS
<< "\n Predicates:\n";
13758 for (const auto *P
: Predicates
)
13766 L
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
13769 auto *ConstantBTC
= SE
->getConstantMaxBackedgeTakenCount(L
);
13770 if (!isa
<SCEVCouldNotCompute
>(ConstantBTC
)) {
13771 OS
<< "constant max backedge-taken count is ";
13772 PrintSCEVWithTypeHint(OS
, ConstantBTC
);
13773 if (SE
->isBackedgeTakenCountMaxOrZero(L
))
13774 OS
<< ", actual taken count either this or zero.";
13776 OS
<< "Unpredictable constant max backedge-taken count. ";
13781 L
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
13784 auto *SymbolicBTC
= SE
->getSymbolicMaxBackedgeTakenCount(L
);
13785 if (!isa
<SCEVCouldNotCompute
>(SymbolicBTC
)) {
13786 OS
<< "symbolic max backedge-taken count is ";
13787 PrintSCEVWithTypeHint(OS
, SymbolicBTC
);
13788 if (SE
->isBackedgeTakenCountMaxOrZero(L
))
13789 OS
<< ", actual taken count either this or zero.";
13791 OS
<< "Unpredictable symbolic max backedge-taken count. ";
13795 if (ExitingBlocks
.size() > 1)
13796 for (BasicBlock
*ExitingBlock
: ExitingBlocks
) {
13797 OS
<< " symbolic max exit count for " << ExitingBlock
->getName() << ": ";
13798 auto *ExitBTC
= SE
->getExitCount(L
, ExitingBlock
,
13799 ScalarEvolution::SymbolicMaximum
);
13800 PrintSCEVWithTypeHint(OS
, ExitBTC
);
13801 if (isa
<SCEVCouldNotCompute
>(ExitBTC
)) {
13802 // Retry with predicates.
13803 SmallVector
<const SCEVPredicate
*> Predicates
;
13804 ExitBTC
= SE
->getPredicatedExitCount(L
, ExitingBlock
, &Predicates
,
13805 ScalarEvolution::SymbolicMaximum
);
13806 if (!isa
<SCEVCouldNotCompute
>(ExitBTC
)) {
13807 OS
<< "\n predicated symbolic max exit count for "
13808 << ExitingBlock
->getName() << ": ";
13809 PrintSCEVWithTypeHint(OS
, ExitBTC
);
13810 OS
<< "\n Predicates:\n";
13811 for (const auto *P
: Predicates
)
13818 SmallVector
<const SCEVPredicate
*, 4> Preds
;
13819 auto *PBT
= SE
->getPredicatedBackedgeTakenCount(L
, Preds
);
13821 assert(!Preds
.empty() && "Different predicated BTC, but no predicates");
13823 L
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
13825 if (!isa
<SCEVCouldNotCompute
>(PBT
)) {
13826 OS
<< "Predicated backedge-taken count is ";
13827 PrintSCEVWithTypeHint(OS
, PBT
);
13829 OS
<< "Unpredictable predicated backedge-taken count.";
13831 OS
<< " Predicates:\n";
13832 for (const auto *P
: Preds
)
13837 auto *PredConstantMax
=
13838 SE
->getPredicatedConstantMaxBackedgeTakenCount(L
, Preds
);
13839 if (PredConstantMax
!= ConstantBTC
) {
13840 assert(!Preds
.empty() &&
13841 "different predicated constant max BTC but no predicates");
13843 L
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
13845 if (!isa
<SCEVCouldNotCompute
>(PredConstantMax
)) {
13846 OS
<< "Predicated constant max backedge-taken count is ";
13847 PrintSCEVWithTypeHint(OS
, PredConstantMax
);
13849 OS
<< "Unpredictable predicated constant max backedge-taken count.";
13851 OS
<< " Predicates:\n";
13852 for (const auto *P
: Preds
)
13857 auto *PredSymbolicMax
=
13858 SE
->getPredicatedSymbolicMaxBackedgeTakenCount(L
, Preds
);
13859 if (SymbolicBTC
!= PredSymbolicMax
) {
13860 assert(!Preds
.empty() &&
13861 "Different predicated symbolic max BTC, but no predicates");
13863 L
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
13865 if (!isa
<SCEVCouldNotCompute
>(PredSymbolicMax
)) {
13866 OS
<< "Predicated symbolic max backedge-taken count is ";
13867 PrintSCEVWithTypeHint(OS
, PredSymbolicMax
);
13869 OS
<< "Unpredictable predicated symbolic max backedge-taken count.";
13871 OS
<< " Predicates:\n";
13872 for (const auto *P
: Preds
)
13876 if (SE
->hasLoopInvariantBackedgeTakenCount(L
)) {
13878 L
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
13880 OS
<< "Trip multiple is " << SE
->getSmallConstantTripMultiple(L
) << "\n";
13885 raw_ostream
&operator<<(raw_ostream
&OS
, ScalarEvolution::LoopDisposition LD
) {
13887 case ScalarEvolution::LoopVariant
:
13890 case ScalarEvolution::LoopInvariant
:
13893 case ScalarEvolution::LoopComputable
:
13894 OS
<< "Computable";
13900 raw_ostream
&operator<<(raw_ostream
&OS
, ScalarEvolution::BlockDisposition BD
) {
13902 case ScalarEvolution::DoesNotDominateBlock
:
13903 OS
<< "DoesNotDominate";
13905 case ScalarEvolution::DominatesBlock
:
13908 case ScalarEvolution::ProperlyDominatesBlock
:
13909 OS
<< "ProperlyDominates";
13914 } // namespace llvm
13916 void ScalarEvolution::print(raw_ostream
&OS
) const {
13917 // ScalarEvolution's implementation of the print method is to print
13918 // out SCEV values of all instructions that are interesting. Doing
13919 // this potentially causes it to create new SCEV objects though,
13920 // which technically conflicts with the const qualifier. This isn't
13921 // observable from outside the class though, so casting away the
13922 // const isn't dangerous.
13923 ScalarEvolution
&SE
= *const_cast<ScalarEvolution
*>(this);
13925 if (ClassifyExpressions
) {
13926 OS
<< "Classifying expressions for: ";
13927 F
.printAsOperand(OS
, /*PrintType=*/false);
13929 for (Instruction
&I
: instructions(F
))
13930 if (isSCEVable(I
.getType()) && !isa
<CmpInst
>(I
)) {
13933 const SCEV
*SV
= SE
.getSCEV(&I
);
13935 if (!isa
<SCEVCouldNotCompute
>(SV
)) {
13937 SE
.getUnsignedRange(SV
).print(OS
);
13939 SE
.getSignedRange(SV
).print(OS
);
13942 const Loop
*L
= LI
.getLoopFor(I
.getParent());
13944 const SCEV
*AtUse
= SE
.getSCEVAtScope(SV
, L
);
13948 if (!isa
<SCEVCouldNotCompute
>(AtUse
)) {
13950 SE
.getUnsignedRange(AtUse
).print(OS
);
13952 SE
.getSignedRange(AtUse
).print(OS
);
13957 OS
<< "\t\t" "Exits: ";
13958 const SCEV
*ExitValue
= SE
.getSCEVAtScope(SV
, L
->getParentLoop());
13959 if (!SE
.isLoopInvariant(ExitValue
, L
)) {
13960 OS
<< "<<Unknown>>";
13966 for (const auto *Iter
= L
; Iter
; Iter
= Iter
->getParentLoop()) {
13968 OS
<< "\t\t" "LoopDispositions: { ";
13974 Iter
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
13975 OS
<< ": " << SE
.getLoopDisposition(SV
, Iter
);
13978 for (const auto *InnerL
: depth_first(L
)) {
13982 OS
<< "\t\t" "LoopDispositions: { ";
13988 InnerL
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
13989 OS
<< ": " << SE
.getLoopDisposition(SV
, InnerL
);
13999 OS
<< "Determining loop execution counts for: ";
14000 F
.printAsOperand(OS
, /*PrintType=*/false);
14003 PrintLoopInfo(OS
, &SE
, I
);
14006 ScalarEvolution::LoopDisposition
14007 ScalarEvolution::getLoopDisposition(const SCEV
*S
, const Loop
*L
) {
14008 auto &Values
= LoopDispositions
[S
];
14009 for (auto &V
: Values
) {
14010 if (V
.getPointer() == L
)
14013 Values
.emplace_back(L
, LoopVariant
);
14014 LoopDisposition D
= computeLoopDisposition(S
, L
);
14015 auto &Values2
= LoopDispositions
[S
];
14016 for (auto &V
: llvm::reverse(Values2
)) {
14017 if (V
.getPointer() == L
) {
14025 ScalarEvolution::LoopDisposition
14026 ScalarEvolution::computeLoopDisposition(const SCEV
*S
, const Loop
*L
) {
14027 switch (S
->getSCEVType()) {
14030 return LoopInvariant
;
14031 case scAddRecExpr
: {
14032 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(S
);
14034 // If L is the addrec's loop, it's computable.
14035 if (AR
->getLoop() == L
)
14036 return LoopComputable
;
14038 // Add recurrences are never invariant in the function-body (null loop).
14040 return LoopVariant
;
14042 // Everything that is not defined at loop entry is variant.
14043 if (DT
.dominates(L
->getHeader(), AR
->getLoop()->getHeader()))
14044 return LoopVariant
;
14045 assert(!L
->contains(AR
->getLoop()) && "Containing loop's header does not"
14046 " dominate the contained loop's header?");
14048 // This recurrence is invariant w.r.t. L if AR's loop contains L.
14049 if (AR
->getLoop()->contains(L
))
14050 return LoopInvariant
;
14052 // This recurrence is variant w.r.t. L if any of its operands
14054 for (const auto *Op
: AR
->operands())
14055 if (!isLoopInvariant(Op
, L
))
14056 return LoopVariant
;
14058 // Otherwise it's loop-invariant.
14059 return LoopInvariant
;
14072 case scSequentialUMinExpr
: {
14073 bool HasVarying
= false;
14074 for (const auto *Op
: S
->operands()) {
14075 LoopDisposition D
= getLoopDisposition(Op
, L
);
14076 if (D
== LoopVariant
)
14077 return LoopVariant
;
14078 if (D
== LoopComputable
)
14081 return HasVarying
? LoopComputable
: LoopInvariant
;
14084 // All non-instruction values are loop invariant. All instructions are loop
14085 // invariant if they are not contained in the specified loop.
14086 // Instructions are never considered invariant in the function body
14087 // (null loop) because they are defined within the "loop".
14088 if (auto *I
= dyn_cast
<Instruction
>(cast
<SCEVUnknown
>(S
)->getValue()))
14089 return (L
&& !L
->contains(I
)) ? LoopInvariant
: LoopVariant
;
14090 return LoopInvariant
;
14091 case scCouldNotCompute
:
14092 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
14094 llvm_unreachable("Unknown SCEV kind!");
14097 bool ScalarEvolution::isLoopInvariant(const SCEV
*S
, const Loop
*L
) {
14098 return getLoopDisposition(S
, L
) == LoopInvariant
;
14101 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV
*S
, const Loop
*L
) {
14102 return getLoopDisposition(S
, L
) == LoopComputable
;
14105 ScalarEvolution::BlockDisposition
14106 ScalarEvolution::getBlockDisposition(const SCEV
*S
, const BasicBlock
*BB
) {
14107 auto &Values
= BlockDispositions
[S
];
14108 for (auto &V
: Values
) {
14109 if (V
.getPointer() == BB
)
14112 Values
.emplace_back(BB
, DoesNotDominateBlock
);
14113 BlockDisposition D
= computeBlockDisposition(S
, BB
);
14114 auto &Values2
= BlockDispositions
[S
];
14115 for (auto &V
: llvm::reverse(Values2
)) {
14116 if (V
.getPointer() == BB
) {
14124 ScalarEvolution::BlockDisposition
14125 ScalarEvolution::computeBlockDisposition(const SCEV
*S
, const BasicBlock
*BB
) {
14126 switch (S
->getSCEVType()) {
14129 return ProperlyDominatesBlock
;
14130 case scAddRecExpr
: {
14131 // This uses a "dominates" query instead of "properly dominates" query
14132 // to test for proper dominance too, because the instruction which
14133 // produces the addrec's value is a PHI, and a PHI effectively properly
14134 // dominates its entire containing block.
14135 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(S
);
14136 if (!DT
.dominates(AR
->getLoop()->getHeader(), BB
))
14137 return DoesNotDominateBlock
;
14139 // Fall through into SCEVNAryExpr handling.
14153 case scSequentialUMinExpr
: {
14154 bool Proper
= true;
14155 for (const SCEV
*NAryOp
: S
->operands()) {
14156 BlockDisposition D
= getBlockDisposition(NAryOp
, BB
);
14157 if (D
== DoesNotDominateBlock
)
14158 return DoesNotDominateBlock
;
14159 if (D
== DominatesBlock
)
14162 return Proper
? ProperlyDominatesBlock
: DominatesBlock
;
14165 if (Instruction
*I
=
14166 dyn_cast
<Instruction
>(cast
<SCEVUnknown
>(S
)->getValue())) {
14167 if (I
->getParent() == BB
)
14168 return DominatesBlock
;
14169 if (DT
.properlyDominates(I
->getParent(), BB
))
14170 return ProperlyDominatesBlock
;
14171 return DoesNotDominateBlock
;
14173 return ProperlyDominatesBlock
;
14174 case scCouldNotCompute
:
14175 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
14177 llvm_unreachable("Unknown SCEV kind!");
14180 bool ScalarEvolution::dominates(const SCEV
*S
, const BasicBlock
*BB
) {
14181 return getBlockDisposition(S
, BB
) >= DominatesBlock
;
14184 bool ScalarEvolution::properlyDominates(const SCEV
*S
, const BasicBlock
*BB
) {
14185 return getBlockDisposition(S
, BB
) == ProperlyDominatesBlock
;
14188 bool ScalarEvolution::hasOperand(const SCEV
*S
, const SCEV
*Op
) const {
14189 return SCEVExprContains(S
, [&](const SCEV
*Expr
) { return Expr
== Op
; });
14192 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop
*L
,
14195 Predicated
? PredicatedBackedgeTakenCounts
: BackedgeTakenCounts
;
14196 auto It
= BECounts
.find(L
);
14197 if (It
!= BECounts
.end()) {
14198 for (const ExitNotTakenInfo
&ENT
: It
->second
.ExitNotTaken
) {
14199 for (const SCEV
*S
: {ENT
.ExactNotTaken
, ENT
.SymbolicMaxNotTaken
}) {
14200 if (!isa
<SCEVConstant
>(S
)) {
14201 auto UserIt
= BECountUsers
.find(S
);
14202 assert(UserIt
!= BECountUsers
.end());
14203 UserIt
->second
.erase({L
, Predicated
});
14207 BECounts
.erase(It
);
14211 void ScalarEvolution::forgetMemoizedResults(ArrayRef
<const SCEV
*> SCEVs
) {
14212 SmallPtrSet
<const SCEV
*, 8> ToForget(SCEVs
.begin(), SCEVs
.end());
14213 SmallVector
<const SCEV
*, 8> Worklist(ToForget
.begin(), ToForget
.end());
14215 while (!Worklist
.empty()) {
14216 const SCEV
*Curr
= Worklist
.pop_back_val();
14217 auto Users
= SCEVUsers
.find(Curr
);
14218 if (Users
!= SCEVUsers
.end())
14219 for (const auto *User
: Users
->second
)
14220 if (ToForget
.insert(User
).second
)
14221 Worklist
.push_back(User
);
14224 for (const auto *S
: ToForget
)
14225 forgetMemoizedResultsImpl(S
);
14227 for (auto I
= PredicatedSCEVRewrites
.begin();
14228 I
!= PredicatedSCEVRewrites
.end();) {
14229 std::pair
<const SCEV
*, const Loop
*> Entry
= I
->first
;
14230 if (ToForget
.count(Entry
.first
))
14231 PredicatedSCEVRewrites
.erase(I
++);
14237 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV
*S
) {
14238 LoopDispositions
.erase(S
);
14239 BlockDispositions
.erase(S
);
14240 UnsignedRanges
.erase(S
);
14241 SignedRanges
.erase(S
);
14242 HasRecMap
.erase(S
);
14243 ConstantMultipleCache
.erase(S
);
14245 if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
14246 UnsignedWrapViaInductionTried
.erase(AR
);
14247 SignedWrapViaInductionTried
.erase(AR
);
14250 auto ExprIt
= ExprValueMap
.find(S
);
14251 if (ExprIt
!= ExprValueMap
.end()) {
14252 for (Value
*V
: ExprIt
->second
) {
14253 auto ValueIt
= ValueExprMap
.find_as(V
);
14254 if (ValueIt
!= ValueExprMap
.end())
14255 ValueExprMap
.erase(ValueIt
);
14257 ExprValueMap
.erase(ExprIt
);
14260 auto ScopeIt
= ValuesAtScopes
.find(S
);
14261 if (ScopeIt
!= ValuesAtScopes
.end()) {
14262 for (const auto &Pair
: ScopeIt
->second
)
14263 if (!isa_and_nonnull
<SCEVConstant
>(Pair
.second
))
14264 llvm::erase(ValuesAtScopesUsers
[Pair
.second
],
14265 std::make_pair(Pair
.first
, S
));
14266 ValuesAtScopes
.erase(ScopeIt
);
14269 auto ScopeUserIt
= ValuesAtScopesUsers
.find(S
);
14270 if (ScopeUserIt
!= ValuesAtScopesUsers
.end()) {
14271 for (const auto &Pair
: ScopeUserIt
->second
)
14272 llvm::erase(ValuesAtScopes
[Pair
.second
], std::make_pair(Pair
.first
, S
));
14273 ValuesAtScopesUsers
.erase(ScopeUserIt
);
14276 auto BEUsersIt
= BECountUsers
.find(S
);
14277 if (BEUsersIt
!= BECountUsers
.end()) {
14278 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original.
14279 auto Copy
= BEUsersIt
->second
;
14280 for (const auto &Pair
: Copy
)
14281 forgetBackedgeTakenCounts(Pair
.getPointer(), Pair
.getInt());
14282 BECountUsers
.erase(BEUsersIt
);
14285 auto FoldUser
= FoldCacheUser
.find(S
);
14286 if (FoldUser
!= FoldCacheUser
.end())
14287 for (auto &KV
: FoldUser
->second
)
14288 FoldCache
.erase(KV
);
14289 FoldCacheUser
.erase(S
);
14293 ScalarEvolution::getUsedLoops(const SCEV
*S
,
14294 SmallPtrSetImpl
<const Loop
*> &LoopsUsed
) {
14295 struct FindUsedLoops
{
14296 FindUsedLoops(SmallPtrSetImpl
<const Loop
*> &LoopsUsed
)
14297 : LoopsUsed(LoopsUsed
) {}
14298 SmallPtrSetImpl
<const Loop
*> &LoopsUsed
;
14299 bool follow(const SCEV
*S
) {
14300 if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(S
))
14301 LoopsUsed
.insert(AR
->getLoop());
14305 bool isDone() const { return false; }
14308 FindUsedLoops
F(LoopsUsed
);
14309 SCEVTraversal
<FindUsedLoops
>(F
).visitAll(S
);
14312 void ScalarEvolution::getReachableBlocks(
14313 SmallPtrSetImpl
<BasicBlock
*> &Reachable
, Function
&F
) {
14314 SmallVector
<BasicBlock
*> Worklist
;
14315 Worklist
.push_back(&F
.getEntryBlock());
14316 while (!Worklist
.empty()) {
14317 BasicBlock
*BB
= Worklist
.pop_back_val();
14318 if (!Reachable
.insert(BB
).second
)
14322 BasicBlock
*TrueBB
, *FalseBB
;
14323 if (match(BB
->getTerminator(), m_Br(m_Value(Cond
), m_BasicBlock(TrueBB
),
14324 m_BasicBlock(FalseBB
)))) {
14325 if (auto *C
= dyn_cast
<ConstantInt
>(Cond
)) {
14326 Worklist
.push_back(C
->isOne() ? TrueBB
: FalseBB
);
14330 if (auto *Cmp
= dyn_cast
<ICmpInst
>(Cond
)) {
14331 const SCEV
*L
= getSCEV(Cmp
->getOperand(0));
14332 const SCEV
*R
= getSCEV(Cmp
->getOperand(1));
14333 if (isKnownPredicateViaConstantRanges(Cmp
->getCmpPredicate(), L
, R
)) {
14334 Worklist
.push_back(TrueBB
);
14337 if (isKnownPredicateViaConstantRanges(Cmp
->getInverseCmpPredicate(), L
,
14339 Worklist
.push_back(FalseBB
);
14345 append_range(Worklist
, successors(BB
));
14349 void ScalarEvolution::verify() const {
14350 ScalarEvolution
&SE
= *const_cast<ScalarEvolution
*>(this);
14351 ScalarEvolution
SE2(F
, TLI
, AC
, DT
, LI
);
14353 SmallVector
<Loop
*, 8> LoopStack(LI
.begin(), LI
.end());
14355 // Map's SCEV expressions from one ScalarEvolution "universe" to another.
14356 struct SCEVMapper
: public SCEVRewriteVisitor
<SCEVMapper
> {
14357 SCEVMapper(ScalarEvolution
&SE
) : SCEVRewriteVisitor
<SCEVMapper
>(SE
) {}
14359 const SCEV
*visitConstant(const SCEVConstant
*Constant
) {
14360 return SE
.getConstant(Constant
->getAPInt());
14363 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
14364 return SE
.getUnknown(Expr
->getValue());
14367 const SCEV
*visitCouldNotCompute(const SCEVCouldNotCompute
*Expr
) {
14368 return SE
.getCouldNotCompute();
14372 SCEVMapper
SCM(SE2
);
14373 SmallPtrSet
<BasicBlock
*, 16> ReachableBlocks
;
14374 SE2
.getReachableBlocks(ReachableBlocks
, F
);
14376 auto GetDelta
= [&](const SCEV
*Old
, const SCEV
*New
) -> const SCEV
* {
14377 if (containsUndefs(Old
) || containsUndefs(New
)) {
14378 // SCEV treats "undef" as an unknown but consistent value (i.e. it does
14379 // not propagate undef aggressively). This means we can (and do) fail
14380 // verification in cases where a transform makes a value go from "undef"
14381 // to "undef+1" (say). The transform is fine, since in both cases the
14382 // result is "undef", but SCEV thinks the value increased by 1.
14386 // Unless VerifySCEVStrict is set, we only compare constant deltas.
14387 const SCEV
*Delta
= SE2
.getMinusSCEV(Old
, New
);
14388 if (!VerifySCEVStrict
&& !isa
<SCEVConstant
>(Delta
))
14394 while (!LoopStack
.empty()) {
14395 auto *L
= LoopStack
.pop_back_val();
14396 llvm::append_range(LoopStack
, *L
);
14398 // Only verify BECounts in reachable loops. For an unreachable loop,
14399 // any BECount is legal.
14400 if (!ReachableBlocks
.contains(L
->getHeader()))
14403 // Only verify cached BECounts. Computing new BECounts may change the
14404 // results of subsequent SCEV uses.
14405 auto It
= BackedgeTakenCounts
.find(L
);
14406 if (It
== BackedgeTakenCounts
.end())
14410 SCM
.visit(It
->second
.getExact(L
, const_cast<ScalarEvolution
*>(this)));
14411 auto *NewBECount
= SE2
.getBackedgeTakenCount(L
);
14413 if (CurBECount
== SE2
.getCouldNotCompute() ||
14414 NewBECount
== SE2
.getCouldNotCompute()) {
14415 // NB! This situation is legal, but is very suspicious -- whatever pass
14416 // change the loop to make a trip count go from could not compute to
14417 // computable or vice-versa *should have* invalidated SCEV. However, we
14418 // choose not to assert here (for now) since we don't want false
14423 if (SE
.getTypeSizeInBits(CurBECount
->getType()) >
14424 SE
.getTypeSizeInBits(NewBECount
->getType()))
14425 NewBECount
= SE2
.getZeroExtendExpr(NewBECount
, CurBECount
->getType());
14426 else if (SE
.getTypeSizeInBits(CurBECount
->getType()) <
14427 SE
.getTypeSizeInBits(NewBECount
->getType()))
14428 CurBECount
= SE2
.getZeroExtendExpr(CurBECount
, NewBECount
->getType());
14430 const SCEV
*Delta
= GetDelta(CurBECount
, NewBECount
);
14431 if (Delta
&& !Delta
->isZero()) {
14432 dbgs() << "Trip Count for " << *L
<< " Changed!\n";
14433 dbgs() << "Old: " << *CurBECount
<< "\n";
14434 dbgs() << "New: " << *NewBECount
<< "\n";
14435 dbgs() << "Delta: " << *Delta
<< "\n";
14440 // Collect all valid loops currently in LoopInfo.
14441 SmallPtrSet
<Loop
*, 32> ValidLoops
;
14442 SmallVector
<Loop
*, 32> Worklist(LI
.begin(), LI
.end());
14443 while (!Worklist
.empty()) {
14444 Loop
*L
= Worklist
.pop_back_val();
14445 if (ValidLoops
.insert(L
).second
)
14446 Worklist
.append(L
->begin(), L
->end());
14448 for (const auto &KV
: ValueExprMap
) {
14450 // Check for SCEV expressions referencing invalid/deleted loops.
14451 if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(KV
.second
)) {
14452 assert(ValidLoops
.contains(AR
->getLoop()) &&
14453 "AddRec references invalid loop");
14457 // Check that the value is also part of the reverse map.
14458 auto It
= ExprValueMap
.find(KV
.second
);
14459 if (It
== ExprValueMap
.end() || !It
->second
.contains(KV
.first
)) {
14460 dbgs() << "Value " << *KV
.first
14461 << " is in ValueExprMap but not in ExprValueMap\n";
14465 if (auto *I
= dyn_cast
<Instruction
>(&*KV
.first
)) {
14466 if (!ReachableBlocks
.contains(I
->getParent()))
14468 const SCEV
*OldSCEV
= SCM
.visit(KV
.second
);
14469 const SCEV
*NewSCEV
= SE2
.getSCEV(I
);
14470 const SCEV
*Delta
= GetDelta(OldSCEV
, NewSCEV
);
14471 if (Delta
&& !Delta
->isZero()) {
14472 dbgs() << "SCEV for value " << *I
<< " changed!\n"
14473 << "Old: " << *OldSCEV
<< "\n"
14474 << "New: " << *NewSCEV
<< "\n"
14475 << "Delta: " << *Delta
<< "\n";
14481 for (const auto &KV
: ExprValueMap
) {
14482 for (Value
*V
: KV
.second
) {
14483 auto It
= ValueExprMap
.find_as(V
);
14484 if (It
== ValueExprMap
.end()) {
14485 dbgs() << "Value " << *V
14486 << " is in ExprValueMap but not in ValueExprMap\n";
14489 if (It
->second
!= KV
.first
) {
14490 dbgs() << "Value " << *V
<< " mapped to " << *It
->second
14491 << " rather than " << *KV
.first
<< "\n";
14497 // Verify integrity of SCEV users.
14498 for (const auto &S
: UniqueSCEVs
) {
14499 for (const auto *Op
: S
.operands()) {
14500 // We do not store dependencies of constants.
14501 if (isa
<SCEVConstant
>(Op
))
14503 auto It
= SCEVUsers
.find(Op
);
14504 if (It
!= SCEVUsers
.end() && It
->second
.count(&S
))
14506 dbgs() << "Use of operand " << *Op
<< " by user " << S
14507 << " is not being tracked!\n";
14512 // Verify integrity of ValuesAtScopes users.
14513 for (const auto &ValueAndVec
: ValuesAtScopes
) {
14514 const SCEV
*Value
= ValueAndVec
.first
;
14515 for (const auto &LoopAndValueAtScope
: ValueAndVec
.second
) {
14516 const Loop
*L
= LoopAndValueAtScope
.first
;
14517 const SCEV
*ValueAtScope
= LoopAndValueAtScope
.second
;
14518 if (!isa
<SCEVConstant
>(ValueAtScope
)) {
14519 auto It
= ValuesAtScopesUsers
.find(ValueAtScope
);
14520 if (It
!= ValuesAtScopesUsers
.end() &&
14521 is_contained(It
->second
, std::make_pair(L
, Value
)))
14523 dbgs() << "Value: " << *Value
<< ", Loop: " << *L
<< ", ValueAtScope: "
14524 << *ValueAtScope
<< " missing in ValuesAtScopesUsers\n";
14530 for (const auto &ValueAtScopeAndVec
: ValuesAtScopesUsers
) {
14531 const SCEV
*ValueAtScope
= ValueAtScopeAndVec
.first
;
14532 for (const auto &LoopAndValue
: ValueAtScopeAndVec
.second
) {
14533 const Loop
*L
= LoopAndValue
.first
;
14534 const SCEV
*Value
= LoopAndValue
.second
;
14535 assert(!isa
<SCEVConstant
>(Value
));
14536 auto It
= ValuesAtScopes
.find(Value
);
14537 if (It
!= ValuesAtScopes
.end() &&
14538 is_contained(It
->second
, std::make_pair(L
, ValueAtScope
)))
14540 dbgs() << "Value: " << *Value
<< ", Loop: " << *L
<< ", ValueAtScope: "
14541 << *ValueAtScope
<< " missing in ValuesAtScopes\n";
14546 // Verify integrity of BECountUsers.
14547 auto VerifyBECountUsers
= [&](bool Predicated
) {
14549 Predicated
? PredicatedBackedgeTakenCounts
: BackedgeTakenCounts
;
14550 for (const auto &LoopAndBEInfo
: BECounts
) {
14551 for (const ExitNotTakenInfo
&ENT
: LoopAndBEInfo
.second
.ExitNotTaken
) {
14552 for (const SCEV
*S
: {ENT
.ExactNotTaken
, ENT
.SymbolicMaxNotTaken
}) {
14553 if (!isa
<SCEVConstant
>(S
)) {
14554 auto UserIt
= BECountUsers
.find(S
);
14555 if (UserIt
!= BECountUsers
.end() &&
14556 UserIt
->second
.contains({ LoopAndBEInfo
.first
, Predicated
}))
14558 dbgs() << "Value " << *S
<< " for loop " << *LoopAndBEInfo
.first
14559 << " missing from BECountUsers\n";
14566 VerifyBECountUsers(/* Predicated */ false);
14567 VerifyBECountUsers(/* Predicated */ true);
14569 // Verify intergity of loop disposition cache.
14570 for (auto &[S
, Values
] : LoopDispositions
) {
14571 for (auto [Loop
, CachedDisposition
] : Values
) {
14572 const auto RecomputedDisposition
= SE2
.getLoopDisposition(S
, Loop
);
14573 if (CachedDisposition
!= RecomputedDisposition
) {
14574 dbgs() << "Cached disposition of " << *S
<< " for loop " << *Loop
14575 << " is incorrect: cached " << CachedDisposition
<< ", actual "
14576 << RecomputedDisposition
<< "\n";
14582 // Verify integrity of the block disposition cache.
14583 for (auto &[S
, Values
] : BlockDispositions
) {
14584 for (auto [BB
, CachedDisposition
] : Values
) {
14585 const auto RecomputedDisposition
= SE2
.getBlockDisposition(S
, BB
);
14586 if (CachedDisposition
!= RecomputedDisposition
) {
14587 dbgs() << "Cached disposition of " << *S
<< " for block %"
14588 << BB
->getName() << " is incorrect: cached " << CachedDisposition
14589 << ", actual " << RecomputedDisposition
<< "\n";
14595 // Verify FoldCache/FoldCacheUser caches.
14596 for (auto [FoldID
, Expr
] : FoldCache
) {
14597 auto I
= FoldCacheUser
.find(Expr
);
14598 if (I
== FoldCacheUser
.end()) {
14599 dbgs() << "Missing entry in FoldCacheUser for cached expression " << *Expr
14603 if (!is_contained(I
->second
, FoldID
)) {
14604 dbgs() << "Missing FoldID in cached users of " << *Expr
<< "!\n";
14608 for (auto [Expr
, IDs
] : FoldCacheUser
) {
14609 for (auto &FoldID
: IDs
) {
14610 auto I
= FoldCache
.find(FoldID
);
14611 if (I
== FoldCache
.end()) {
14612 dbgs() << "Missing entry in FoldCache for expression " << *Expr
14616 if (I
->second
!= Expr
) {
14617 dbgs() << "Entry in FoldCache doesn't match FoldCacheUser: "
14618 << *I
->second
<< " != " << *Expr
<< "!\n";
14624 // Verify that ConstantMultipleCache computations are correct. We check that
14625 // cached multiples and recomputed multiples are multiples of each other to
14626 // verify correctness. It is possible that a recomputed multiple is different
14627 // from the cached multiple due to strengthened no wrap flags or changes in
14628 // KnownBits computations.
14629 for (auto [S
, Multiple
] : ConstantMultipleCache
) {
14630 APInt RecomputedMultiple
= SE2
.getConstantMultiple(S
);
14631 if ((Multiple
!= 0 && RecomputedMultiple
!= 0 &&
14632 Multiple
.urem(RecomputedMultiple
) != 0 &&
14633 RecomputedMultiple
.urem(Multiple
) != 0)) {
14634 dbgs() << "Incorrect cached computation in ConstantMultipleCache for "
14635 << *S
<< " : Computed " << RecomputedMultiple
14636 << " but cache contains " << Multiple
<< "!\n";
14642 bool ScalarEvolution::invalidate(
14643 Function
&F
, const PreservedAnalyses
&PA
,
14644 FunctionAnalysisManager::Invalidator
&Inv
) {
14645 // Invalidate the ScalarEvolution object whenever it isn't preserved or one
14646 // of its dependencies is invalidated.
14647 auto PAC
= PA
.getChecker
<ScalarEvolutionAnalysis
>();
14648 return !(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Function
>>()) ||
14649 Inv
.invalidate
<AssumptionAnalysis
>(F
, PA
) ||
14650 Inv
.invalidate
<DominatorTreeAnalysis
>(F
, PA
) ||
14651 Inv
.invalidate
<LoopAnalysis
>(F
, PA
);
14654 AnalysisKey
ScalarEvolutionAnalysis::Key
;
14656 ScalarEvolution
ScalarEvolutionAnalysis::run(Function
&F
,
14657 FunctionAnalysisManager
&AM
) {
14658 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
14659 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
14660 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
14661 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
14662 return ScalarEvolution(F
, TLI
, AC
, DT
, LI
);
14666 ScalarEvolutionVerifierPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
14667 AM
.getResult
<ScalarEvolutionAnalysis
>(F
).verify();
14668 return PreservedAnalyses::all();
14672 ScalarEvolutionPrinterPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
14673 // For compatibility with opt's -analyze feature under legacy pass manager
14674 // which was not ported to NPM. This keeps tests using
14675 // update_analyze_test_checks.py working.
14676 OS
<< "Printing analysis 'Scalar Evolution Analysis' for function '"
14677 << F
.getName() << "':\n";
14678 AM
.getResult
<ScalarEvolutionAnalysis
>(F
).print(OS
);
14679 return PreservedAnalyses::all();
14682 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass
, "scalar-evolution",
14683 "Scalar Evolution Analysis", false, true)
14684 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
14685 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
14686 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
14687 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
14688 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass
, "scalar-evolution",
14689 "Scalar Evolution Analysis", false, true)
14691 char ScalarEvolutionWrapperPass::ID
= 0;
14693 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID
) {
14694 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
14697 bool ScalarEvolutionWrapperPass::runOnFunction(Function
&F
) {
14698 SE
.reset(new ScalarEvolution(
14699 F
, getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
),
14700 getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
),
14701 getAnalysis
<DominatorTreeWrapperPass
>().getDomTree(),
14702 getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo()));
14706 void ScalarEvolutionWrapperPass::releaseMemory() { SE
.reset(); }
14708 void ScalarEvolutionWrapperPass::print(raw_ostream
&OS
, const Module
*) const {
14712 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
14719 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
14720 AU
.setPreservesAll();
14721 AU
.addRequiredTransitive
<AssumptionCacheTracker
>();
14722 AU
.addRequiredTransitive
<LoopInfoWrapperPass
>();
14723 AU
.addRequiredTransitive
<DominatorTreeWrapperPass
>();
14724 AU
.addRequiredTransitive
<TargetLibraryInfoWrapperPass
>();
14727 const SCEVPredicate
*ScalarEvolution::getEqualPredicate(const SCEV
*LHS
,
14729 return getComparePredicate(ICmpInst::ICMP_EQ
, LHS
, RHS
);
14732 const SCEVPredicate
*
14733 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred
,
14734 const SCEV
*LHS
, const SCEV
*RHS
) {
14735 FoldingSetNodeID ID
;
14736 assert(LHS
->getType() == RHS
->getType() &&
14737 "Type mismatch between LHS and RHS");
14738 // Unique this node based on the arguments
14739 ID
.AddInteger(SCEVPredicate::P_Compare
);
14740 ID
.AddInteger(Pred
);
14741 ID
.AddPointer(LHS
);
14742 ID
.AddPointer(RHS
);
14743 void *IP
= nullptr;
14744 if (const auto *S
= UniquePreds
.FindNodeOrInsertPos(ID
, IP
))
14746 SCEVComparePredicate
*Eq
= new (SCEVAllocator
)
14747 SCEVComparePredicate(ID
.Intern(SCEVAllocator
), Pred
, LHS
, RHS
);
14748 UniquePreds
.InsertNode(Eq
, IP
);
14752 const SCEVPredicate
*ScalarEvolution::getWrapPredicate(
14753 const SCEVAddRecExpr
*AR
,
14754 SCEVWrapPredicate::IncrementWrapFlags AddedFlags
) {
14755 FoldingSetNodeID ID
;
14756 // Unique this node based on the arguments
14757 ID
.AddInteger(SCEVPredicate::P_Wrap
);
14759 ID
.AddInteger(AddedFlags
);
14760 void *IP
= nullptr;
14761 if (const auto *S
= UniquePreds
.FindNodeOrInsertPos(ID
, IP
))
14763 auto *OF
= new (SCEVAllocator
)
14764 SCEVWrapPredicate(ID
.Intern(SCEVAllocator
), AR
, AddedFlags
);
14765 UniquePreds
.InsertNode(OF
, IP
);
14771 class SCEVPredicateRewriter
: public SCEVRewriteVisitor
<SCEVPredicateRewriter
> {
14774 /// Rewrites \p S in the context of a loop L and the SCEV predication
14775 /// infrastructure.
14777 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
14778 /// equivalences present in \p Pred.
14780 /// If \p NewPreds is non-null, rewrite is free to add further predicates to
14781 /// \p NewPreds such that the result will be an AddRecExpr.
14782 static const SCEV
*rewrite(const SCEV
*S
, const Loop
*L
, ScalarEvolution
&SE
,
14783 SmallVectorImpl
<const SCEVPredicate
*> *NewPreds
,
14784 const SCEVPredicate
*Pred
) {
14785 SCEVPredicateRewriter
Rewriter(L
, SE
, NewPreds
, Pred
);
14786 return Rewriter
.visit(S
);
14789 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
14791 if (auto *U
= dyn_cast
<SCEVUnionPredicate
>(Pred
)) {
14792 for (const auto *Pred
: U
->getPredicates())
14793 if (const auto *IPred
= dyn_cast
<SCEVComparePredicate
>(Pred
))
14794 if (IPred
->getLHS() == Expr
&&
14795 IPred
->getPredicate() == ICmpInst::ICMP_EQ
)
14796 return IPred
->getRHS();
14797 } else if (const auto *IPred
= dyn_cast
<SCEVComparePredicate
>(Pred
)) {
14798 if (IPred
->getLHS() == Expr
&&
14799 IPred
->getPredicate() == ICmpInst::ICMP_EQ
)
14800 return IPred
->getRHS();
14803 return convertToAddRecWithPreds(Expr
);
14806 const SCEV
*visitZeroExtendExpr(const SCEVZeroExtendExpr
*Expr
) {
14807 const SCEV
*Operand
= visit(Expr
->getOperand());
14808 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Operand
);
14809 if (AR
&& AR
->getLoop() == L
&& AR
->isAffine()) {
14810 // This couldn't be folded because the operand didn't have the nuw
14811 // flag. Add the nusw flag as an assumption that we could make.
14812 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
14813 Type
*Ty
= Expr
->getType();
14814 if (addOverflowAssumption(AR
, SCEVWrapPredicate::IncrementNUSW
))
14815 return SE
.getAddRecExpr(SE
.getZeroExtendExpr(AR
->getStart(), Ty
),
14816 SE
.getSignExtendExpr(Step
, Ty
), L
,
14817 AR
->getNoWrapFlags());
14819 return SE
.getZeroExtendExpr(Operand
, Expr
->getType());
14822 const SCEV
*visitSignExtendExpr(const SCEVSignExtendExpr
*Expr
) {
14823 const SCEV
*Operand
= visit(Expr
->getOperand());
14824 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Operand
);
14825 if (AR
&& AR
->getLoop() == L
&& AR
->isAffine()) {
14826 // This couldn't be folded because the operand didn't have the nsw
14827 // flag. Add the nssw flag as an assumption that we could make.
14828 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
14829 Type
*Ty
= Expr
->getType();
14830 if (addOverflowAssumption(AR
, SCEVWrapPredicate::IncrementNSSW
))
14831 return SE
.getAddRecExpr(SE
.getSignExtendExpr(AR
->getStart(), Ty
),
14832 SE
.getSignExtendExpr(Step
, Ty
), L
,
14833 AR
->getNoWrapFlags());
14835 return SE
.getSignExtendExpr(Operand
, Expr
->getType());
14839 explicit SCEVPredicateRewriter(
14840 const Loop
*L
, ScalarEvolution
&SE
,
14841 SmallVectorImpl
<const SCEVPredicate
*> *NewPreds
,
14842 const SCEVPredicate
*Pred
)
14843 : SCEVRewriteVisitor(SE
), NewPreds(NewPreds
), Pred(Pred
), L(L
) {}
14845 bool addOverflowAssumption(const SCEVPredicate
*P
) {
14847 // Check if we've already made this assumption.
14848 return Pred
&& Pred
->implies(P
, SE
);
14850 NewPreds
->push_back(P
);
14854 bool addOverflowAssumption(const SCEVAddRecExpr
*AR
,
14855 SCEVWrapPredicate::IncrementWrapFlags AddedFlags
) {
14856 auto *A
= SE
.getWrapPredicate(AR
, AddedFlags
);
14857 return addOverflowAssumption(A
);
14860 // If \p Expr represents a PHINode, we try to see if it can be represented
14861 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
14862 // to add this predicate as a runtime overflow check, we return the AddRec.
14863 // If \p Expr does not meet these conditions (is not a PHI node, or we
14864 // couldn't create an AddRec for it, or couldn't add the predicate), we just
14866 const SCEV
*convertToAddRecWithPreds(const SCEVUnknown
*Expr
) {
14867 if (!isa
<PHINode
>(Expr
->getValue()))
14870 std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>>>
14871 PredicatedRewrite
= SE
.createAddRecFromPHIWithCasts(Expr
);
14872 if (!PredicatedRewrite
)
14874 for (const auto *P
: PredicatedRewrite
->second
){
14875 // Wrap predicates from outer loops are not supported.
14876 if (auto *WP
= dyn_cast
<const SCEVWrapPredicate
>(P
)) {
14877 if (L
!= WP
->getExpr()->getLoop())
14880 if (!addOverflowAssumption(P
))
14883 return PredicatedRewrite
->first
;
14886 SmallVectorImpl
<const SCEVPredicate
*> *NewPreds
;
14887 const SCEVPredicate
*Pred
;
14891 } // end anonymous namespace
14894 ScalarEvolution::rewriteUsingPredicate(const SCEV
*S
, const Loop
*L
,
14895 const SCEVPredicate
&Preds
) {
14896 return SCEVPredicateRewriter::rewrite(S
, L
, *this, nullptr, &Preds
);
14899 const SCEVAddRecExpr
*ScalarEvolution::convertSCEVToAddRecWithPredicates(
14900 const SCEV
*S
, const Loop
*L
,
14901 SmallVectorImpl
<const SCEVPredicate
*> &Preds
) {
14902 SmallVector
<const SCEVPredicate
*> TransformPreds
;
14903 S
= SCEVPredicateRewriter::rewrite(S
, L
, *this, &TransformPreds
, nullptr);
14904 auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
);
14909 // Since the transformation was successful, we can now transfer the SCEV
14911 Preds
.append(TransformPreds
.begin(), TransformPreds
.end());
14916 /// SCEV predicates
14917 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID
,
14918 SCEVPredicateKind Kind
)
14919 : FastID(ID
), Kind(Kind
) {}
14921 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID
,
14922 const ICmpInst::Predicate Pred
,
14923 const SCEV
*LHS
, const SCEV
*RHS
)
14924 : SCEVPredicate(ID
, P_Compare
), Pred(Pred
), LHS(LHS
), RHS(RHS
) {
14925 assert(LHS
->getType() == RHS
->getType() && "LHS and RHS types don't match");
14926 assert(LHS
!= RHS
&& "LHS and RHS are the same SCEV");
14929 bool SCEVComparePredicate::implies(const SCEVPredicate
*N
,
14930 ScalarEvolution
&SE
) const {
14931 const auto *Op
= dyn_cast
<SCEVComparePredicate
>(N
);
14936 if (Pred
!= ICmpInst::ICMP_EQ
)
14939 return Op
->LHS
== LHS
&& Op
->RHS
== RHS
;
14942 bool SCEVComparePredicate::isAlwaysTrue() const { return false; }
14944 void SCEVComparePredicate::print(raw_ostream
&OS
, unsigned Depth
) const {
14945 if (Pred
== ICmpInst::ICMP_EQ
)
14946 OS
.indent(Depth
) << "Equal predicate: " << *LHS
<< " == " << *RHS
<< "\n";
14948 OS
.indent(Depth
) << "Compare predicate: " << *LHS
<< " " << Pred
<< ") "
14953 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID
,
14954 const SCEVAddRecExpr
*AR
,
14955 IncrementWrapFlags Flags
)
14956 : SCEVPredicate(ID
, P_Wrap
), AR(AR
), Flags(Flags
) {}
14958 const SCEVAddRecExpr
*SCEVWrapPredicate::getExpr() const { return AR
; }
14960 bool SCEVWrapPredicate::implies(const SCEVPredicate
*N
,
14961 ScalarEvolution
&SE
) const {
14962 const auto *Op
= dyn_cast
<SCEVWrapPredicate
>(N
);
14963 if (!Op
|| setFlags(Flags
, Op
->Flags
) != Flags
)
14969 if (Flags
!= SCEVWrapPredicate::IncrementNSSW
&&
14970 Flags
!= SCEVWrapPredicate::IncrementNUSW
)
14973 const SCEV
*Start
= AR
->getStart();
14974 const SCEV
*OpStart
= Op
->AR
->getStart();
14975 if (Start
->getType()->isPointerTy() != OpStart
->getType()->isPointerTy())
14978 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
14979 const SCEV
*OpStep
= Op
->AR
->getStepRecurrence(SE
);
14980 if (!SE
.isKnownPositive(Step
) || !SE
.isKnownPositive(OpStep
))
14983 // If both steps are positive, this implies N, if N's start and step are
14984 // ULE/SLE (for NSUW/NSSW) than this'.
14985 Type
*WiderTy
= SE
.getWiderType(Step
->getType(), OpStep
->getType());
14986 Step
= SE
.getNoopOrZeroExtend(Step
, WiderTy
);
14987 OpStep
= SE
.getNoopOrZeroExtend(OpStep
, WiderTy
);
14989 bool IsNUW
= Flags
== SCEVWrapPredicate::IncrementNUSW
;
14990 OpStart
= IsNUW
? SE
.getNoopOrZeroExtend(OpStart
, WiderTy
)
14991 : SE
.getNoopOrSignExtend(OpStart
, WiderTy
);
14992 Start
= IsNUW
? SE
.getNoopOrZeroExtend(Start
, WiderTy
)
14993 : SE
.getNoopOrSignExtend(Start
, WiderTy
);
14994 CmpInst::Predicate Pred
= IsNUW
? CmpInst::ICMP_ULE
: CmpInst::ICMP_SLE
;
14995 return SE
.isKnownPredicate(Pred
, OpStep
, Step
) &&
14996 SE
.isKnownPredicate(Pred
, OpStart
, Start
);
14999 bool SCEVWrapPredicate::isAlwaysTrue() const {
15000 SCEV::NoWrapFlags ScevFlags
= AR
->getNoWrapFlags();
15001 IncrementWrapFlags IFlags
= Flags
;
15003 if (ScalarEvolution::setFlags(ScevFlags
, SCEV::FlagNSW
) == ScevFlags
)
15004 IFlags
= clearFlags(IFlags
, IncrementNSSW
);
15006 return IFlags
== IncrementAnyWrap
;
15009 void SCEVWrapPredicate::print(raw_ostream
&OS
, unsigned Depth
) const {
15010 OS
.indent(Depth
) << *getExpr() << " Added Flags: ";
15011 if (SCEVWrapPredicate::IncrementNUSW
& getFlags())
15013 if (SCEVWrapPredicate::IncrementNSSW
& getFlags())
15018 SCEVWrapPredicate::IncrementWrapFlags
15019 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr
*AR
,
15020 ScalarEvolution
&SE
) {
15021 IncrementWrapFlags ImpliedFlags
= IncrementAnyWrap
;
15022 SCEV::NoWrapFlags StaticFlags
= AR
->getNoWrapFlags();
15024 // We can safely transfer the NSW flag as NSSW.
15025 if (ScalarEvolution::setFlags(StaticFlags
, SCEV::FlagNSW
) == StaticFlags
)
15026 ImpliedFlags
= IncrementNSSW
;
15028 if (ScalarEvolution::setFlags(StaticFlags
, SCEV::FlagNUW
) == StaticFlags
) {
15029 // If the increment is positive, the SCEV NUW flag will also imply the
15030 // WrapPredicate NUSW flag.
15031 if (const auto *Step
= dyn_cast
<SCEVConstant
>(AR
->getStepRecurrence(SE
)))
15032 if (Step
->getValue()->getValue().isNonNegative())
15033 ImpliedFlags
= setFlags(ImpliedFlags
, IncrementNUSW
);
15036 return ImpliedFlags
;
15039 /// Union predicates don't get cached so create a dummy set ID for it.
15040 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef
<const SCEVPredicate
*> Preds
,
15041 ScalarEvolution
&SE
)
15042 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union
) {
15043 for (const auto *P
: Preds
)
15047 bool SCEVUnionPredicate::isAlwaysTrue() const {
15048 return all_of(Preds
,
15049 [](const SCEVPredicate
*I
) { return I
->isAlwaysTrue(); });
15052 bool SCEVUnionPredicate::implies(const SCEVPredicate
*N
,
15053 ScalarEvolution
&SE
) const {
15054 if (const auto *Set
= dyn_cast
<SCEVUnionPredicate
>(N
))
15055 return all_of(Set
->Preds
, [this, &SE
](const SCEVPredicate
*I
) {
15056 return this->implies(I
, SE
);
15059 return any_of(Preds
,
15060 [N
, &SE
](const SCEVPredicate
*I
) { return I
->implies(N
, SE
); });
15063 void SCEVUnionPredicate::print(raw_ostream
&OS
, unsigned Depth
) const {
15064 for (const auto *Pred
: Preds
)
15065 Pred
->print(OS
, Depth
);
15068 void SCEVUnionPredicate::add(const SCEVPredicate
*N
, ScalarEvolution
&SE
) {
15069 if (const auto *Set
= dyn_cast
<SCEVUnionPredicate
>(N
)) {
15070 for (const auto *Pred
: Set
->Preds
)
15075 // Only add predicate if it is not already implied by this union predicate.
15076 if (implies(N
, SE
))
15079 // Build a new vector containing the current predicates, except the ones that
15080 // are implied by the new predicate N.
15081 SmallVector
<const SCEVPredicate
*> PrunedPreds
;
15082 for (auto *P
: Preds
) {
15083 if (N
->implies(P
, SE
))
15085 PrunedPreds
.push_back(P
);
15087 Preds
= std::move(PrunedPreds
);
15088 Preds
.push_back(N
);
15091 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution
&SE
,
15094 SmallVector
<const SCEVPredicate
*, 4> Empty
;
15095 Preds
= std::make_unique
<SCEVUnionPredicate
>(Empty
, SE
);
15098 void ScalarEvolution::registerUser(const SCEV
*User
,
15099 ArrayRef
<const SCEV
*> Ops
) {
15100 for (const auto *Op
: Ops
)
15101 // We do not expect that forgetting cached data for SCEVConstants will ever
15102 // open any prospects for sharpening or introduce any correctness issues,
15103 // so we don't bother storing their dependencies.
15104 if (!isa
<SCEVConstant
>(Op
))
15105 SCEVUsers
[Op
].insert(User
);
15108 const SCEV
*PredicatedScalarEvolution::getSCEV(Value
*V
) {
15109 const SCEV
*Expr
= SE
.getSCEV(V
);
15110 RewriteEntry
&Entry
= RewriteMap
[Expr
];
15112 // If we already have an entry and the version matches, return it.
15113 if (Entry
.second
&& Generation
== Entry
.first
)
15114 return Entry
.second
;
15116 // We found an entry but it's stale. Rewrite the stale entry
15117 // according to the current predicate.
15119 Expr
= Entry
.second
;
15121 const SCEV
*NewSCEV
= SE
.rewriteUsingPredicate(Expr
, &L
, *Preds
);
15122 Entry
= {Generation
, NewSCEV
};
15127 const SCEV
*PredicatedScalarEvolution::getBackedgeTakenCount() {
15128 if (!BackedgeCount
) {
15129 SmallVector
<const SCEVPredicate
*, 4> Preds
;
15130 BackedgeCount
= SE
.getPredicatedBackedgeTakenCount(&L
, Preds
);
15131 for (const auto *P
: Preds
)
15134 return BackedgeCount
;
15137 const SCEV
*PredicatedScalarEvolution::getSymbolicMaxBackedgeTakenCount() {
15138 if (!SymbolicMaxBackedgeCount
) {
15139 SmallVector
<const SCEVPredicate
*, 4> Preds
;
15140 SymbolicMaxBackedgeCount
=
15141 SE
.getPredicatedSymbolicMaxBackedgeTakenCount(&L
, Preds
);
15142 for (const auto *P
: Preds
)
15145 return SymbolicMaxBackedgeCount
;
15148 unsigned PredicatedScalarEvolution::getSmallConstantMaxTripCount() {
15149 if (!SmallConstantMaxTripCount
) {
15150 SmallVector
<const SCEVPredicate
*, 4> Preds
;
15151 SmallConstantMaxTripCount
= SE
.getSmallConstantMaxTripCount(&L
, &Preds
);
15152 for (const auto *P
: Preds
)
15155 return *SmallConstantMaxTripCount
;
15158 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate
&Pred
) {
15159 if (Preds
->implies(&Pred
, SE
))
15162 SmallVector
<const SCEVPredicate
*, 4> NewPreds(Preds
->getPredicates());
15163 NewPreds
.push_back(&Pred
);
15164 Preds
= std::make_unique
<SCEVUnionPredicate
>(NewPreds
, SE
);
15165 updateGeneration();
15168 const SCEVPredicate
&PredicatedScalarEvolution::getPredicate() const {
15172 void PredicatedScalarEvolution::updateGeneration() {
15173 // If the generation number wrapped recompute everything.
15174 if (++Generation
== 0) {
15175 for (auto &II
: RewriteMap
) {
15176 const SCEV
*Rewritten
= II
.second
.second
;
15177 II
.second
= {Generation
, SE
.rewriteUsingPredicate(Rewritten
, &L
, *Preds
)};
15182 void PredicatedScalarEvolution::setNoOverflow(
15183 Value
*V
, SCEVWrapPredicate::IncrementWrapFlags Flags
) {
15184 const SCEV
*Expr
= getSCEV(V
);
15185 const auto *AR
= cast
<SCEVAddRecExpr
>(Expr
);
15187 auto ImpliedFlags
= SCEVWrapPredicate::getImpliedFlags(AR
, SE
);
15189 // Clear the statically implied flags.
15190 Flags
= SCEVWrapPredicate::clearFlags(Flags
, ImpliedFlags
);
15191 addPredicate(*SE
.getWrapPredicate(AR
, Flags
));
15193 auto II
= FlagsMap
.insert({V
, Flags
});
15195 II
.first
->second
= SCEVWrapPredicate::setFlags(Flags
, II
.first
->second
);
15198 bool PredicatedScalarEvolution::hasNoOverflow(
15199 Value
*V
, SCEVWrapPredicate::IncrementWrapFlags Flags
) {
15200 const SCEV
*Expr
= getSCEV(V
);
15201 const auto *AR
= cast
<SCEVAddRecExpr
>(Expr
);
15203 Flags
= SCEVWrapPredicate::clearFlags(
15204 Flags
, SCEVWrapPredicate::getImpliedFlags(AR
, SE
));
15206 auto II
= FlagsMap
.find(V
);
15208 if (II
!= FlagsMap
.end())
15209 Flags
= SCEVWrapPredicate::clearFlags(Flags
, II
->second
);
15211 return Flags
== SCEVWrapPredicate::IncrementAnyWrap
;
15214 const SCEVAddRecExpr
*PredicatedScalarEvolution::getAsAddRec(Value
*V
) {
15215 const SCEV
*Expr
= this->getSCEV(V
);
15216 SmallVector
<const SCEVPredicate
*, 4> NewPreds
;
15217 auto *New
= SE
.convertSCEVToAddRecWithPredicates(Expr
, &L
, NewPreds
);
15222 for (const auto *P
: NewPreds
)
15225 RewriteMap
[SE
.getSCEV(V
)] = {Generation
, New
};
15229 PredicatedScalarEvolution::PredicatedScalarEvolution(
15230 const PredicatedScalarEvolution
&Init
)
15231 : RewriteMap(Init
.RewriteMap
), SE(Init
.SE
), L(Init
.L
),
15232 Preds(std::make_unique
<SCEVUnionPredicate
>(Init
.Preds
->getPredicates(),
15234 Generation(Init
.Generation
), BackedgeCount(Init
.BackedgeCount
) {
15235 for (auto I
: Init
.FlagsMap
)
15236 FlagsMap
.insert(I
);
15239 void PredicatedScalarEvolution::print(raw_ostream
&OS
, unsigned Depth
) const {
15241 for (auto *BB
: L
.getBlocks())
15242 for (auto &I
: *BB
) {
15243 if (!SE
.isSCEVable(I
.getType()))
15246 auto *Expr
= SE
.getSCEV(&I
);
15247 auto II
= RewriteMap
.find(Expr
);
15249 if (II
== RewriteMap
.end())
15252 // Don't print things that are not interesting.
15253 if (II
->second
.second
== Expr
)
15256 OS
.indent(Depth
) << "[PSE]" << I
<< ":\n";
15257 OS
.indent(Depth
+ 2) << *Expr
<< "\n";
15258 OS
.indent(Depth
+ 2) << "--> " << *II
->second
.second
<< "\n";
15262 // Match the mathematical pattern A - (A / B) * B, where A and B can be
15263 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
15264 // for URem with constant power-of-2 second operands.
15265 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
15266 // 4, A / B becomes X / 8).
15267 bool ScalarEvolution::matchURem(const SCEV
*Expr
, const SCEV
*&LHS
,
15268 const SCEV
*&RHS
) {
15269 if (Expr
->getType()->isPointerTy())
15272 // Try to match 'zext (trunc A to iB) to iY', which is used
15273 // for URem with constant power-of-2 second operands. Make sure the size of
15274 // the operand A matches the size of the whole expressions.
15275 if (const auto *ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(Expr
))
15276 if (const auto *Trunc
= dyn_cast
<SCEVTruncateExpr
>(ZExt
->getOperand(0))) {
15277 LHS
= Trunc
->getOperand();
15278 // Bail out if the type of the LHS is larger than the type of the
15279 // expression for now.
15280 if (getTypeSizeInBits(LHS
->getType()) >
15281 getTypeSizeInBits(Expr
->getType()))
15283 if (LHS
->getType() != Expr
->getType())
15284 LHS
= getZeroExtendExpr(LHS
, Expr
->getType());
15285 RHS
= getConstant(APInt(getTypeSizeInBits(Expr
->getType()), 1)
15286 << getTypeSizeInBits(Trunc
->getType()));
15289 const auto *Add
= dyn_cast
<SCEVAddExpr
>(Expr
);
15290 if (Add
== nullptr || Add
->getNumOperands() != 2)
15293 const SCEV
*A
= Add
->getOperand(1);
15294 const auto *Mul
= dyn_cast
<SCEVMulExpr
>(Add
->getOperand(0));
15296 if (Mul
== nullptr)
15299 const auto MatchURemWithDivisor
= [&](const SCEV
*B
) {
15300 // (SomeExpr + (-(SomeExpr / B) * B)).
15301 if (Expr
== getURemExpr(A
, B
)) {
15309 // (SomeExpr + (-1 * (SomeExpr / B) * B)).
15310 if (Mul
->getNumOperands() == 3 && isa
<SCEVConstant
>(Mul
->getOperand(0)))
15311 return MatchURemWithDivisor(Mul
->getOperand(1)) ||
15312 MatchURemWithDivisor(Mul
->getOperand(2));
15314 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
15315 if (Mul
->getNumOperands() == 2)
15316 return MatchURemWithDivisor(Mul
->getOperand(1)) ||
15317 MatchURemWithDivisor(Mul
->getOperand(0)) ||
15318 MatchURemWithDivisor(getNegativeSCEV(Mul
->getOperand(1))) ||
15319 MatchURemWithDivisor(getNegativeSCEV(Mul
->getOperand(0)));
15323 ScalarEvolution::LoopGuards
15324 ScalarEvolution::LoopGuards::collect(const Loop
*L
, ScalarEvolution
&SE
) {
15325 BasicBlock
*Header
= L
->getHeader();
15326 BasicBlock
*Pred
= L
->getLoopPredecessor();
15327 LoopGuards
Guards(SE
);
15330 SmallPtrSet
<const BasicBlock
*, 8> VisitedBlocks
;
15331 collectFromBlock(SE
, Guards
, Header
, Pred
, VisitedBlocks
);
15335 void ScalarEvolution::LoopGuards::collectFromPHI(
15336 ScalarEvolution
&SE
, ScalarEvolution::LoopGuards
&Guards
,
15337 const PHINode
&Phi
, SmallPtrSetImpl
<const BasicBlock
*> &VisitedBlocks
,
15338 SmallDenseMap
<const BasicBlock
*, LoopGuards
> &IncomingGuards
,
15340 if (!SE
.isSCEVable(Phi
.getType()))
15343 using MinMaxPattern
= std::pair
<const SCEVConstant
*, SCEVTypes
>;
15344 auto GetMinMaxConst
= [&](unsigned IncomingIdx
) -> MinMaxPattern
{
15345 const BasicBlock
*InBlock
= Phi
.getIncomingBlock(IncomingIdx
);
15346 if (!VisitedBlocks
.insert(InBlock
).second
)
15347 return {nullptr, scCouldNotCompute
};
15348 auto [G
, Inserted
] = IncomingGuards
.try_emplace(InBlock
, LoopGuards(SE
));
15350 collectFromBlock(SE
, G
->second
, Phi
.getParent(), InBlock
, VisitedBlocks
,
15352 auto &RewriteMap
= G
->second
.RewriteMap
;
15353 if (RewriteMap
.empty())
15354 return {nullptr, scCouldNotCompute
};
15355 auto S
= RewriteMap
.find(SE
.getSCEV(Phi
.getIncomingValue(IncomingIdx
)));
15356 if (S
== RewriteMap
.end())
15357 return {nullptr, scCouldNotCompute
};
15358 auto *SM
= dyn_cast_if_present
<SCEVMinMaxExpr
>(S
->second
);
15360 return {nullptr, scCouldNotCompute
};
15361 if (const SCEVConstant
*C0
= dyn_cast
<SCEVConstant
>(SM
->getOperand(0)))
15362 return {C0
, SM
->getSCEVType()};
15363 return {nullptr, scCouldNotCompute
};
15365 auto MergeMinMaxConst
= [](MinMaxPattern P1
,
15366 MinMaxPattern P2
) -> MinMaxPattern
{
15367 auto [C1
, T1
] = P1
;
15368 auto [C2
, T2
] = P2
;
15369 if (!C1
|| !C2
|| T1
!= T2
)
15370 return {nullptr, scCouldNotCompute
};
15373 return {C1
->getAPInt().ult(C2
->getAPInt()) ? C1
: C2
, T1
};
15375 return {C1
->getAPInt().slt(C2
->getAPInt()) ? C1
: C2
, T1
};
15377 return {C1
->getAPInt().ugt(C2
->getAPInt()) ? C1
: C2
, T1
};
15379 return {C1
->getAPInt().sgt(C2
->getAPInt()) ? C1
: C2
, T1
};
15381 llvm_unreachable("Trying to merge non-MinMaxExpr SCEVs.");
15384 auto P
= GetMinMaxConst(0);
15385 for (unsigned int In
= 1; In
< Phi
.getNumIncomingValues(); In
++) {
15388 P
= MergeMinMaxConst(P
, GetMinMaxConst(In
));
15391 const SCEV
*LHS
= SE
.getSCEV(const_cast<PHINode
*>(&Phi
));
15392 SmallVector
<const SCEV
*, 2> Ops({P
.first
, LHS
});
15393 const SCEV
*RHS
= SE
.getMinMaxExpr(P
.second
, Ops
);
15394 Guards
.RewriteMap
.insert({LHS
, RHS
});
15398 void ScalarEvolution::LoopGuards::collectFromBlock(
15399 ScalarEvolution
&SE
, ScalarEvolution::LoopGuards
&Guards
,
15400 const BasicBlock
*Block
, const BasicBlock
*Pred
,
15401 SmallPtrSetImpl
<const BasicBlock
*> &VisitedBlocks
, unsigned Depth
) {
15402 SmallVector
<const SCEV
*> ExprsToRewrite
;
15403 auto CollectCondition
= [&](ICmpInst::Predicate Predicate
, const SCEV
*LHS
,
15405 DenseMap
<const SCEV
*, const SCEV
*>
15407 // WARNING: It is generally unsound to apply any wrap flags to the proposed
15408 // replacement SCEV which isn't directly implied by the structure of that
15409 // SCEV. In particular, using contextual facts to imply flags is *NOT*
15410 // legal. See the scoping rules for flags in the header to understand why.
15412 // If LHS is a constant, apply information to the other expression.
15413 if (isa
<SCEVConstant
>(LHS
)) {
15414 std::swap(LHS
, RHS
);
15415 Predicate
= CmpInst::getSwappedPredicate(Predicate
);
15418 // Check for a condition of the form (-C1 + X < C2). InstCombine will
15419 // create this form when combining two checks of the form (X u< C2 + C1) and
15421 auto MatchRangeCheckIdiom
= [&SE
, Predicate
, LHS
, RHS
, &RewriteMap
,
15422 &ExprsToRewrite
]() {
15423 const SCEVConstant
*C1
;
15424 const SCEVUnknown
*LHSUnknown
;
15425 auto *C2
= dyn_cast
<SCEVConstant
>(RHS
);
15427 m_scev_Add(m_SCEVConstant(C1
), m_SCEVUnknown(LHSUnknown
))) ||
15432 ConstantRange::makeExactICmpRegion(Predicate
, C2
->getAPInt())
15433 .sub(C1
->getAPInt());
15435 // Bail out, unless we have a non-wrapping, monotonic range.
15436 if (ExactRegion
.isWrappedSet() || ExactRegion
.isFullSet())
15438 auto I
= RewriteMap
.find(LHSUnknown
);
15439 const SCEV
*RewrittenLHS
= I
!= RewriteMap
.end() ? I
->second
: LHSUnknown
;
15440 RewriteMap
[LHSUnknown
] = SE
.getUMaxExpr(
15441 SE
.getConstant(ExactRegion
.getUnsignedMin()),
15442 SE
.getUMinExpr(RewrittenLHS
,
15443 SE
.getConstant(ExactRegion
.getUnsignedMax())));
15444 ExprsToRewrite
.push_back(LHSUnknown
);
15447 if (MatchRangeCheckIdiom())
15450 // Return true if \p Expr is a MinMax SCEV expression with a non-negative
15451 // constant operand. If so, return in \p SCTy the SCEV type and in \p RHS
15452 // the non-constant operand and in \p LHS the constant operand.
15453 auto IsMinMaxSCEVWithNonNegativeConstant
=
15454 [&](const SCEV
*Expr
, SCEVTypes
&SCTy
, const SCEV
*&LHS
,
15455 const SCEV
*&RHS
) {
15456 if (auto *MinMax
= dyn_cast
<SCEVMinMaxExpr
>(Expr
)) {
15457 if (MinMax
->getNumOperands() != 2)
15459 if (auto *C
= dyn_cast
<SCEVConstant
>(MinMax
->getOperand(0))) {
15460 if (C
->getAPInt().isNegative())
15462 SCTy
= MinMax
->getSCEVType();
15463 LHS
= MinMax
->getOperand(0);
15464 RHS
= MinMax
->getOperand(1);
15471 // Checks whether Expr is a non-negative constant, and Divisor is a positive
15472 // constant, and returns their APInt in ExprVal and in DivisorVal.
15473 auto GetNonNegExprAndPosDivisor
= [&](const SCEV
*Expr
, const SCEV
*Divisor
,
15474 APInt
&ExprVal
, APInt
&DivisorVal
) {
15475 auto *ConstExpr
= dyn_cast
<SCEVConstant
>(Expr
);
15476 auto *ConstDivisor
= dyn_cast
<SCEVConstant
>(Divisor
);
15477 if (!ConstExpr
|| !ConstDivisor
)
15479 ExprVal
= ConstExpr
->getAPInt();
15480 DivisorVal
= ConstDivisor
->getAPInt();
15481 return ExprVal
.isNonNegative() && !DivisorVal
.isNonPositive();
15484 // Return a new SCEV that modifies \p Expr to the closest number divides by
15485 // \p Divisor and greater or equal than Expr.
15486 // For now, only handle constant Expr and Divisor.
15487 auto GetNextSCEVDividesByDivisor
= [&](const SCEV
*Expr
,
15488 const SCEV
*Divisor
) {
15491 if (!GetNonNegExprAndPosDivisor(Expr
, Divisor
, ExprVal
, DivisorVal
))
15493 APInt Rem
= ExprVal
.urem(DivisorVal
);
15495 // return the SCEV: Expr + Divisor - Expr % Divisor
15496 return SE
.getConstant(ExprVal
+ DivisorVal
- Rem
);
15500 // Return a new SCEV that modifies \p Expr to the closest number divides by
15501 // \p Divisor and less or equal than Expr.
15502 // For now, only handle constant Expr and Divisor.
15503 auto GetPreviousSCEVDividesByDivisor
= [&](const SCEV
*Expr
,
15504 const SCEV
*Divisor
) {
15507 if (!GetNonNegExprAndPosDivisor(Expr
, Divisor
, ExprVal
, DivisorVal
))
15509 APInt Rem
= ExprVal
.urem(DivisorVal
);
15510 // return the SCEV: Expr - Expr % Divisor
15511 return SE
.getConstant(ExprVal
- Rem
);
15514 // Apply divisibilty by \p Divisor on MinMaxExpr with constant values,
15515 // recursively. This is done by aligning up/down the constant value to the
15517 std::function
<const SCEV
*(const SCEV
*, const SCEV
*)>
15518 ApplyDivisibiltyOnMinMaxExpr
= [&](const SCEV
*MinMaxExpr
,
15519 const SCEV
*Divisor
) {
15520 const SCEV
*MinMaxLHS
= nullptr, *MinMaxRHS
= nullptr;
15522 if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr
, SCTy
, MinMaxLHS
,
15526 isa
<SCEVSMinExpr
>(MinMaxExpr
) || isa
<SCEVUMinExpr
>(MinMaxExpr
);
15527 assert(SE
.isKnownNonNegative(MinMaxLHS
) &&
15528 "Expected non-negative operand!");
15529 auto *DivisibleExpr
=
15530 IsMin
? GetPreviousSCEVDividesByDivisor(MinMaxLHS
, Divisor
)
15531 : GetNextSCEVDividesByDivisor(MinMaxLHS
, Divisor
);
15532 SmallVector
<const SCEV
*> Ops
= {
15533 ApplyDivisibiltyOnMinMaxExpr(MinMaxRHS
, Divisor
), DivisibleExpr
};
15534 return SE
.getMinMaxExpr(SCTy
, Ops
);
15537 // If we have LHS == 0, check if LHS is computing a property of some unknown
15538 // SCEV %v which we can rewrite %v to express explicitly.
15539 if (Predicate
== CmpInst::ICMP_EQ
&& match(RHS
, m_scev_Zero())) {
15540 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
15541 // explicitly express that.
15542 const SCEV
*URemLHS
= nullptr;
15543 const SCEV
*URemRHS
= nullptr;
15544 if (SE
.matchURem(LHS
, URemLHS
, URemRHS
)) {
15545 if (const SCEVUnknown
*LHSUnknown
= dyn_cast
<SCEVUnknown
>(URemLHS
)) {
15546 auto I
= RewriteMap
.find(LHSUnknown
);
15547 const SCEV
*RewrittenLHS
=
15548 I
!= RewriteMap
.end() ? I
->second
: LHSUnknown
;
15549 RewrittenLHS
= ApplyDivisibiltyOnMinMaxExpr(RewrittenLHS
, URemRHS
);
15550 const auto *Multiple
=
15551 SE
.getMulExpr(SE
.getUDivExpr(RewrittenLHS
, URemRHS
), URemRHS
);
15552 RewriteMap
[LHSUnknown
] = Multiple
;
15553 ExprsToRewrite
.push_back(LHSUnknown
);
15559 // Do not apply information for constants or if RHS contains an AddRec.
15560 if (isa
<SCEVConstant
>(LHS
) || SE
.containsAddRecurrence(RHS
))
15563 // If RHS is SCEVUnknown, make sure the information is applied to it.
15564 if (!isa
<SCEVUnknown
>(LHS
) && isa
<SCEVUnknown
>(RHS
)) {
15565 std::swap(LHS
, RHS
);
15566 Predicate
= CmpInst::getSwappedPredicate(Predicate
);
15569 // Puts rewrite rule \p From -> \p To into the rewrite map. Also if \p From
15570 // and \p FromRewritten are the same (i.e. there has been no rewrite
15571 // registered for \p From), then puts this value in the list of rewritten
15573 auto AddRewrite
= [&](const SCEV
*From
, const SCEV
*FromRewritten
,
15575 if (From
== FromRewritten
)
15576 ExprsToRewrite
.push_back(From
);
15577 RewriteMap
[From
] = To
;
15580 // Checks whether \p S has already been rewritten. In that case returns the
15581 // existing rewrite because we want to chain further rewrites onto the
15582 // already rewritten value. Otherwise returns \p S.
15583 auto GetMaybeRewritten
= [&](const SCEV
*S
) {
15584 auto I
= RewriteMap
.find(S
);
15585 return I
!= RewriteMap
.end() ? I
->second
: S
;
15588 // Check for the SCEV expression (A /u B) * B while B is a constant, inside
15589 // \p Expr. The check is done recuresively on \p Expr, which is assumed to
15590 // be a composition of Min/Max SCEVs. Return whether the SCEV expression (A
15591 // /u B) * B was found, and return the divisor B in \p DividesBy. For
15592 // example, if Expr = umin (umax ((A /u 8) * 8, 16), 64), return true since
15593 // (A /u 8) * 8 matched the pattern, and return the constant SCEV 8 in \p
15595 std::function
<bool(const SCEV
*, const SCEV
*&)> HasDivisibiltyInfo
=
15596 [&](const SCEV
*Expr
, const SCEV
*&DividesBy
) {
15597 if (auto *Mul
= dyn_cast
<SCEVMulExpr
>(Expr
)) {
15598 if (Mul
->getNumOperands() != 2)
15600 auto *MulLHS
= Mul
->getOperand(0);
15601 auto *MulRHS
= Mul
->getOperand(1);
15602 if (isa
<SCEVConstant
>(MulLHS
))
15603 std::swap(MulLHS
, MulRHS
);
15604 if (auto *Div
= dyn_cast
<SCEVUDivExpr
>(MulLHS
))
15605 if (Div
->getOperand(1) == MulRHS
) {
15606 DividesBy
= MulRHS
;
15610 if (auto *MinMax
= dyn_cast
<SCEVMinMaxExpr
>(Expr
))
15611 return HasDivisibiltyInfo(MinMax
->getOperand(0), DividesBy
) ||
15612 HasDivisibiltyInfo(MinMax
->getOperand(1), DividesBy
);
15616 // Return true if Expr known to divide by \p DividesBy.
15617 std::function
<bool(const SCEV
*, const SCEV
*&)> IsKnownToDivideBy
=
15618 [&](const SCEV
*Expr
, const SCEV
*DividesBy
) {
15619 if (SE
.getURemExpr(Expr
, DividesBy
)->isZero())
15621 if (auto *MinMax
= dyn_cast
<SCEVMinMaxExpr
>(Expr
))
15622 return IsKnownToDivideBy(MinMax
->getOperand(0), DividesBy
) &&
15623 IsKnownToDivideBy(MinMax
->getOperand(1), DividesBy
);
15627 const SCEV
*RewrittenLHS
= GetMaybeRewritten(LHS
);
15628 const SCEV
*DividesBy
= nullptr;
15629 if (HasDivisibiltyInfo(RewrittenLHS
, DividesBy
))
15630 // Check that the whole expression is divided by DividesBy
15632 IsKnownToDivideBy(RewrittenLHS
, DividesBy
) ? DividesBy
: nullptr;
15634 // Collect rewrites for LHS and its transitive operands based on the
15636 // For min/max expressions, also apply the guard to its operands:
15637 // 'min(a, b) >= c' -> '(a >= c) and (b >= c)',
15638 // 'min(a, b) > c' -> '(a > c) and (b > c)',
15639 // 'max(a, b) <= c' -> '(a <= c) and (b <= c)',
15640 // 'max(a, b) < c' -> '(a < c) and (b < c)'.
15642 // We cannot express strict predicates in SCEV, so instead we replace them
15643 // with non-strict ones against plus or minus one of RHS depending on the
15645 const SCEV
*One
= SE
.getOne(RHS
->getType());
15646 switch (Predicate
) {
15647 case CmpInst::ICMP_ULT
:
15648 if (RHS
->getType()->isPointerTy())
15650 RHS
= SE
.getUMaxExpr(RHS
, One
);
15652 case CmpInst::ICMP_SLT
: {
15653 RHS
= SE
.getMinusSCEV(RHS
, One
);
15654 RHS
= DividesBy
? GetPreviousSCEVDividesByDivisor(RHS
, DividesBy
) : RHS
;
15657 case CmpInst::ICMP_UGT
:
15658 case CmpInst::ICMP_SGT
:
15659 RHS
= SE
.getAddExpr(RHS
, One
);
15660 RHS
= DividesBy
? GetNextSCEVDividesByDivisor(RHS
, DividesBy
) : RHS
;
15662 case CmpInst::ICMP_ULE
:
15663 case CmpInst::ICMP_SLE
:
15664 RHS
= DividesBy
? GetPreviousSCEVDividesByDivisor(RHS
, DividesBy
) : RHS
;
15666 case CmpInst::ICMP_UGE
:
15667 case CmpInst::ICMP_SGE
:
15668 RHS
= DividesBy
? GetNextSCEVDividesByDivisor(RHS
, DividesBy
) : RHS
;
15674 SmallVector
<const SCEV
*, 16> Worklist(1, LHS
);
15675 SmallPtrSet
<const SCEV
*, 16> Visited
;
15677 auto EnqueueOperands
= [&Worklist
](const SCEVNAryExpr
*S
) {
15678 append_range(Worklist
, S
->operands());
15681 while (!Worklist
.empty()) {
15682 const SCEV
*From
= Worklist
.pop_back_val();
15683 if (isa
<SCEVConstant
>(From
))
15685 if (!Visited
.insert(From
).second
)
15687 const SCEV
*FromRewritten
= GetMaybeRewritten(From
);
15688 const SCEV
*To
= nullptr;
15690 switch (Predicate
) {
15691 case CmpInst::ICMP_ULT
:
15692 case CmpInst::ICMP_ULE
:
15693 To
= SE
.getUMinExpr(FromRewritten
, RHS
);
15694 if (auto *UMax
= dyn_cast
<SCEVUMaxExpr
>(FromRewritten
))
15695 EnqueueOperands(UMax
);
15697 case CmpInst::ICMP_SLT
:
15698 case CmpInst::ICMP_SLE
:
15699 To
= SE
.getSMinExpr(FromRewritten
, RHS
);
15700 if (auto *SMax
= dyn_cast
<SCEVSMaxExpr
>(FromRewritten
))
15701 EnqueueOperands(SMax
);
15703 case CmpInst::ICMP_UGT
:
15704 case CmpInst::ICMP_UGE
:
15705 To
= SE
.getUMaxExpr(FromRewritten
, RHS
);
15706 if (auto *UMin
= dyn_cast
<SCEVUMinExpr
>(FromRewritten
))
15707 EnqueueOperands(UMin
);
15709 case CmpInst::ICMP_SGT
:
15710 case CmpInst::ICMP_SGE
:
15711 To
= SE
.getSMaxExpr(FromRewritten
, RHS
);
15712 if (auto *SMin
= dyn_cast
<SCEVSMinExpr
>(FromRewritten
))
15713 EnqueueOperands(SMin
);
15715 case CmpInst::ICMP_EQ
:
15716 if (isa
<SCEVConstant
>(RHS
))
15719 case CmpInst::ICMP_NE
:
15720 if (match(RHS
, m_scev_Zero())) {
15721 const SCEV
*OneAlignedUp
=
15722 DividesBy
? GetNextSCEVDividesByDivisor(One
, DividesBy
) : One
;
15723 To
= SE
.getUMaxExpr(FromRewritten
, OneAlignedUp
);
15731 AddRewrite(From
, FromRewritten
, To
);
15735 SmallVector
<PointerIntPair
<Value
*, 1, bool>> Terms
;
15736 // First, collect information from assumptions dominating the loop.
15737 for (auto &AssumeVH
: SE
.AC
.assumptions()) {
15740 auto *AssumeI
= cast
<CallInst
>(AssumeVH
);
15741 if (!SE
.DT
.dominates(AssumeI
, Block
))
15743 Terms
.emplace_back(AssumeI
->getOperand(0), true);
15746 // Second, collect information from llvm.experimental.guards dominating the loop.
15747 auto *GuardDecl
= Intrinsic::getDeclarationIfExists(
15748 SE
.F
.getParent(), Intrinsic::experimental_guard
);
15750 for (const auto *GU
: GuardDecl
->users())
15751 if (const auto *Guard
= dyn_cast
<IntrinsicInst
>(GU
))
15752 if (Guard
->getFunction() == Block
->getParent() &&
15753 SE
.DT
.dominates(Guard
, Block
))
15754 Terms
.emplace_back(Guard
->getArgOperand(0), true);
15756 // Third, collect conditions from dominating branches. Starting at the loop
15757 // predecessor, climb up the predecessor chain, as long as there are
15758 // predecessors that can be found that have unique successors leading to the
15759 // original header.
15760 // TODO: share this logic with isLoopEntryGuardedByCond.
15761 unsigned NumCollectedConditions
= 0;
15762 VisitedBlocks
.insert(Block
);
15763 std::pair
<const BasicBlock
*, const BasicBlock
*> Pair(Pred
, Block
);
15765 Pair
= SE
.getPredecessorWithUniqueSuccessorForBB(Pair
.first
)) {
15766 VisitedBlocks
.insert(Pair
.second
);
15767 const BranchInst
*LoopEntryPredicate
=
15768 dyn_cast
<BranchInst
>(Pair
.first
->getTerminator());
15769 if (!LoopEntryPredicate
|| LoopEntryPredicate
->isUnconditional())
15772 Terms
.emplace_back(LoopEntryPredicate
->getCondition(),
15773 LoopEntryPredicate
->getSuccessor(0) == Pair
.second
);
15774 NumCollectedConditions
++;
15776 // If we are recursively collecting guards stop after 2
15777 // conditions to limit compile-time impact for now.
15778 if (Depth
> 0 && NumCollectedConditions
== 2)
15781 // Finally, if we stopped climbing the predecessor chain because
15782 // there wasn't a unique one to continue, try to collect conditions
15783 // for PHINodes by recursively following all of their incoming
15784 // blocks and try to merge the found conditions to build a new one
15786 if (Pair
.second
->hasNPredecessorsOrMore(2) &&
15787 Depth
< MaxLoopGuardCollectionDepth
) {
15788 SmallDenseMap
<const BasicBlock
*, LoopGuards
> IncomingGuards
;
15789 for (auto &Phi
: Pair
.second
->phis())
15790 collectFromPHI(SE
, Guards
, Phi
, VisitedBlocks
, IncomingGuards
, Depth
);
15793 // Now apply the information from the collected conditions to
15794 // Guards.RewriteMap. Conditions are processed in reverse order, so the
15795 // earliest conditions is processed first. This ensures the SCEVs with the
15796 // shortest dependency chains are constructed first.
15797 for (auto [Term
, EnterIfTrue
] : reverse(Terms
)) {
15798 SmallVector
<Value
*, 8> Worklist
;
15799 SmallPtrSet
<Value
*, 8> Visited
;
15800 Worklist
.push_back(Term
);
15801 while (!Worklist
.empty()) {
15802 Value
*Cond
= Worklist
.pop_back_val();
15803 if (!Visited
.insert(Cond
).second
)
15806 if (auto *Cmp
= dyn_cast
<ICmpInst
>(Cond
)) {
15808 EnterIfTrue
? Cmp
->getPredicate() : Cmp
->getInversePredicate();
15809 const auto *LHS
= SE
.getSCEV(Cmp
->getOperand(0));
15810 const auto *RHS
= SE
.getSCEV(Cmp
->getOperand(1));
15811 CollectCondition(Predicate
, LHS
, RHS
, Guards
.RewriteMap
);
15816 if (EnterIfTrue
? match(Cond
, m_LogicalAnd(m_Value(L
), m_Value(R
)))
15817 : match(Cond
, m_LogicalOr(m_Value(L
), m_Value(R
)))) {
15818 Worklist
.push_back(L
);
15819 Worklist
.push_back(R
);
15824 // Let the rewriter preserve NUW/NSW flags if the unsigned/signed ranges of
15825 // the replacement expressions are contained in the ranges of the replaced
15827 Guards
.PreserveNUW
= true;
15828 Guards
.PreserveNSW
= true;
15829 for (const SCEV
*Expr
: ExprsToRewrite
) {
15830 const SCEV
*RewriteTo
= Guards
.RewriteMap
[Expr
];
15831 Guards
.PreserveNUW
&=
15832 SE
.getUnsignedRange(Expr
).contains(SE
.getUnsignedRange(RewriteTo
));
15833 Guards
.PreserveNSW
&=
15834 SE
.getSignedRange(Expr
).contains(SE
.getSignedRange(RewriteTo
));
15837 // Now that all rewrite information is collect, rewrite the collected
15838 // expressions with the information in the map. This applies information to
15839 // sub-expressions.
15840 if (ExprsToRewrite
.size() > 1) {
15841 for (const SCEV
*Expr
: ExprsToRewrite
) {
15842 const SCEV
*RewriteTo
= Guards
.RewriteMap
[Expr
];
15843 Guards
.RewriteMap
.erase(Expr
);
15844 Guards
.RewriteMap
.insert({Expr
, Guards
.rewrite(RewriteTo
)});
15849 const SCEV
*ScalarEvolution::LoopGuards::rewrite(const SCEV
*Expr
) const {
15850 /// A rewriter to replace SCEV expressions in Map with the corresponding entry
15851 /// in the map. It skips AddRecExpr because we cannot guarantee that the
15852 /// replacement is loop invariant in the loop of the AddRec.
15853 class SCEVLoopGuardRewriter
15854 : public SCEVRewriteVisitor
<SCEVLoopGuardRewriter
> {
15855 const DenseMap
<const SCEV
*, const SCEV
*> &Map
;
15857 SCEV::NoWrapFlags FlagMask
= SCEV::FlagAnyWrap
;
15860 SCEVLoopGuardRewriter(ScalarEvolution
&SE
,
15861 const ScalarEvolution::LoopGuards
&Guards
)
15862 : SCEVRewriteVisitor(SE
), Map(Guards
.RewriteMap
) {
15863 if (Guards
.PreserveNUW
)
15864 FlagMask
= ScalarEvolution::setFlags(FlagMask
, SCEV::FlagNUW
);
15865 if (Guards
.PreserveNSW
)
15866 FlagMask
= ScalarEvolution::setFlags(FlagMask
, SCEV::FlagNSW
);
15869 const SCEV
*visitAddRecExpr(const SCEVAddRecExpr
*Expr
) { return Expr
; }
15871 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
15872 auto I
= Map
.find(Expr
);
15873 if (I
== Map
.end())
15878 const SCEV
*visitZeroExtendExpr(const SCEVZeroExtendExpr
*Expr
) {
15879 auto I
= Map
.find(Expr
);
15880 if (I
== Map
.end()) {
15881 // If we didn't find the extact ZExt expr in the map, check if there's
15882 // an entry for a smaller ZExt we can use instead.
15883 Type
*Ty
= Expr
->getType();
15884 const SCEV
*Op
= Expr
->getOperand(0);
15885 unsigned Bitwidth
= Ty
->getScalarSizeInBits() / 2;
15886 while (Bitwidth
% 8 == 0 && Bitwidth
>= 8 &&
15887 Bitwidth
> Op
->getType()->getScalarSizeInBits()) {
15888 Type
*NarrowTy
= IntegerType::get(SE
.getContext(), Bitwidth
);
15889 auto *NarrowExt
= SE
.getZeroExtendExpr(Op
, NarrowTy
);
15890 auto I
= Map
.find(NarrowExt
);
15891 if (I
!= Map
.end())
15892 return SE
.getZeroExtendExpr(I
->second
, Ty
);
15893 Bitwidth
= Bitwidth
/ 2;
15896 return SCEVRewriteVisitor
<SCEVLoopGuardRewriter
>::visitZeroExtendExpr(
15902 const SCEV
*visitSignExtendExpr(const SCEVSignExtendExpr
*Expr
) {
15903 auto I
= Map
.find(Expr
);
15904 if (I
== Map
.end())
15905 return SCEVRewriteVisitor
<SCEVLoopGuardRewriter
>::visitSignExtendExpr(
15910 const SCEV
*visitUMinExpr(const SCEVUMinExpr
*Expr
) {
15911 auto I
= Map
.find(Expr
);
15912 if (I
== Map
.end())
15913 return SCEVRewriteVisitor
<SCEVLoopGuardRewriter
>::visitUMinExpr(Expr
);
15917 const SCEV
*visitSMinExpr(const SCEVSMinExpr
*Expr
) {
15918 auto I
= Map
.find(Expr
);
15919 if (I
== Map
.end())
15920 return SCEVRewriteVisitor
<SCEVLoopGuardRewriter
>::visitSMinExpr(Expr
);
15924 const SCEV
*visitAddExpr(const SCEVAddExpr
*Expr
) {
15925 SmallVector
<const SCEV
*, 2> Operands
;
15926 bool Changed
= false;
15927 for (const auto *Op
: Expr
->operands()) {
15928 Operands
.push_back(
15929 SCEVRewriteVisitor
<SCEVLoopGuardRewriter
>::visit(Op
));
15930 Changed
|= Op
!= Operands
.back();
15932 // We are only replacing operands with equivalent values, so transfer the
15933 // flags from the original expression.
15934 return !Changed
? Expr
15935 : SE
.getAddExpr(Operands
,
15936 ScalarEvolution::maskFlags(
15937 Expr
->getNoWrapFlags(), FlagMask
));
15940 const SCEV
*visitMulExpr(const SCEVMulExpr
*Expr
) {
15941 SmallVector
<const SCEV
*, 2> Operands
;
15942 bool Changed
= false;
15943 for (const auto *Op
: Expr
->operands()) {
15944 Operands
.push_back(
15945 SCEVRewriteVisitor
<SCEVLoopGuardRewriter
>::visit(Op
));
15946 Changed
|= Op
!= Operands
.back();
15948 // We are only replacing operands with equivalent values, so transfer the
15949 // flags from the original expression.
15950 return !Changed
? Expr
15951 : SE
.getMulExpr(Operands
,
15952 ScalarEvolution::maskFlags(
15953 Expr
->getNoWrapFlags(), FlagMask
));
15957 if (RewriteMap
.empty())
15960 SCEVLoopGuardRewriter
Rewriter(SE
, *this);
15961 return Rewriter
.visit(Expr
);
15964 const SCEV
*ScalarEvolution::applyLoopGuards(const SCEV
*Expr
, const Loop
*L
) {
15965 return applyLoopGuards(Expr
, LoopGuards::collect(L
, *this));
15968 const SCEV
*ScalarEvolution::applyLoopGuards(const SCEV
*Expr
,
15969 const LoopGuards
&Guards
) {
15970 return Guards
.rewrite(Expr
);