[mlir][linalg] Add support for masked vectorization of `tensor.insert_slice` (1/N...
[llvm-project.git] / llvm / lib / ProfileData / InstrProf.cpp
blob819ddd02a24ce22041f454b4bac2662f8b0adaa7
1 //===- InstrProf.cpp - Instrumented profiling format support --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for clang's instrumentation based PGO and
10 // coverage.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ProfileData/InstrProf.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Config/config.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/GlobalValue.h"
24 #include "llvm/IR/GlobalVariable.h"
25 #include "llvm/IR/Instruction.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/MDBuilder.h"
28 #include "llvm/IR/Metadata.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/ProfileData/InstrProfReader.h"
32 #include "llvm/Support/Casting.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Compiler.h"
35 #include "llvm/Support/Compression.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/Endian.h"
38 #include "llvm/Support/Error.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/LEB128.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/Support/Path.h"
43 #include "llvm/Support/SwapByteOrder.h"
44 #include "llvm/Support/VirtualFileSystem.h"
45 #include "llvm/TargetParser/Triple.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstddef>
49 #include <cstdint>
50 #include <cstring>
51 #include <memory>
52 #include <string>
53 #include <system_error>
54 #include <type_traits>
55 #include <utility>
56 #include <vector>
58 using namespace llvm;
60 #define DEBUG_TYPE "instrprof"
62 static cl::opt<bool> StaticFuncFullModulePrefix(
63 "static-func-full-module-prefix", cl::init(true), cl::Hidden,
64 cl::desc("Use full module build paths in the profile counter names for "
65 "static functions."));
67 // This option is tailored to users that have different top-level directory in
68 // profile-gen and profile-use compilation. Users need to specific the number
69 // of levels to strip. A value larger than the number of directories in the
70 // source file will strip all the directory names and only leave the basename.
72 // Note current ThinLTO module importing for the indirect-calls assumes
73 // the source directory name not being stripped. A non-zero option value here
74 // can potentially prevent some inter-module indirect-call-promotions.
75 static cl::opt<unsigned> StaticFuncStripDirNamePrefix(
76 "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden,
77 cl::desc("Strip specified level of directory name from source path in "
78 "the profile counter name for static functions."));
80 static std::string getInstrProfErrString(instrprof_error Err,
81 const std::string &ErrMsg = "") {
82 std::string Msg;
83 raw_string_ostream OS(Msg);
85 switch (Err) {
86 case instrprof_error::success:
87 OS << "success";
88 break;
89 case instrprof_error::eof:
90 OS << "end of File";
91 break;
92 case instrprof_error::unrecognized_format:
93 OS << "unrecognized instrumentation profile encoding format";
94 break;
95 case instrprof_error::bad_magic:
96 OS << "invalid instrumentation profile data (bad magic)";
97 break;
98 case instrprof_error::bad_header:
99 OS << "invalid instrumentation profile data (file header is corrupt)";
100 break;
101 case instrprof_error::unsupported_version:
102 OS << "unsupported instrumentation profile format version";
103 break;
104 case instrprof_error::unsupported_hash_type:
105 OS << "unsupported instrumentation profile hash type";
106 break;
107 case instrprof_error::too_large:
108 OS << "too much profile data";
109 break;
110 case instrprof_error::truncated:
111 OS << "truncated profile data";
112 break;
113 case instrprof_error::malformed:
114 OS << "malformed instrumentation profile data";
115 break;
116 case instrprof_error::missing_correlation_info:
117 OS << "debug info/binary for correlation is required";
118 break;
119 case instrprof_error::unexpected_correlation_info:
120 OS << "debug info/binary for correlation is not necessary";
121 break;
122 case instrprof_error::unable_to_correlate_profile:
123 OS << "unable to correlate profile";
124 break;
125 case instrprof_error::invalid_prof:
126 OS << "invalid profile created. Please file a bug "
127 "at: " BUG_REPORT_URL
128 " and include the profraw files that caused this error.";
129 break;
130 case instrprof_error::unknown_function:
131 OS << "no profile data available for function";
132 break;
133 case instrprof_error::hash_mismatch:
134 OS << "function control flow change detected (hash mismatch)";
135 break;
136 case instrprof_error::count_mismatch:
137 OS << "function basic block count change detected (counter mismatch)";
138 break;
139 case instrprof_error::bitmap_mismatch:
140 OS << "function bitmap size change detected (bitmap size mismatch)";
141 break;
142 case instrprof_error::counter_overflow:
143 OS << "counter overflow";
144 break;
145 case instrprof_error::value_site_count_mismatch:
146 OS << "function value site count change detected (counter mismatch)";
147 break;
148 case instrprof_error::compress_failed:
149 OS << "failed to compress data (zlib)";
150 break;
151 case instrprof_error::uncompress_failed:
152 OS << "failed to uncompress data (zlib)";
153 break;
154 case instrprof_error::empty_raw_profile:
155 OS << "empty raw profile file";
156 break;
157 case instrprof_error::zlib_unavailable:
158 OS << "profile uses zlib compression but the profile reader was built "
159 "without zlib support";
160 break;
161 case instrprof_error::raw_profile_version_mismatch:
162 OS << "raw profile version mismatch";
163 break;
164 case instrprof_error::counter_value_too_large:
165 OS << "excessively large counter value suggests corrupted profile data";
166 break;
169 // If optional error message is not empty, append it to the message.
170 if (!ErrMsg.empty())
171 OS << ": " << ErrMsg;
173 return OS.str();
176 namespace {
178 // FIXME: This class is only here to support the transition to llvm::Error. It
179 // will be removed once this transition is complete. Clients should prefer to
180 // deal with the Error value directly, rather than converting to error_code.
181 class InstrProfErrorCategoryType : public std::error_category {
182 const char *name() const noexcept override { return "llvm.instrprof"; }
184 std::string message(int IE) const override {
185 return getInstrProfErrString(static_cast<instrprof_error>(IE));
189 } // end anonymous namespace
191 const std::error_category &llvm::instrprof_category() {
192 static InstrProfErrorCategoryType ErrorCategory;
193 return ErrorCategory;
196 namespace {
198 const char *InstrProfSectNameCommon[] = {
199 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
200 SectNameCommon,
201 #include "llvm/ProfileData/InstrProfData.inc"
204 const char *InstrProfSectNameCoff[] = {
205 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
206 SectNameCoff,
207 #include "llvm/ProfileData/InstrProfData.inc"
210 const char *InstrProfSectNamePrefix[] = {
211 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
212 Prefix,
213 #include "llvm/ProfileData/InstrProfData.inc"
216 } // namespace
218 namespace llvm {
220 cl::opt<bool> DoInstrProfNameCompression(
221 "enable-name-compression",
222 cl::desc("Enable name/filename string compression"), cl::init(true));
224 cl::opt<bool> EnableVTableValueProfiling(
225 "enable-vtable-value-profiling", cl::init(false),
226 cl::desc("If true, the virtual table address will be instrumented to know "
227 "the types of a C++ pointer. The information is used in indirect "
228 "call promotion to do selective vtable-based comparison."));
230 cl::opt<bool> EnableVTableProfileUse(
231 "enable-vtable-profile-use", cl::init(false),
232 cl::desc("If ThinLTO and WPD is enabled and this option is true, vtable "
233 "profiles will be used by ICP pass for more efficient indirect "
234 "call sequence. If false, type profiles won't be used."));
236 std::string getInstrProfSectionName(InstrProfSectKind IPSK,
237 Triple::ObjectFormatType OF,
238 bool AddSegmentInfo) {
239 std::string SectName;
241 if (OF == Triple::MachO && AddSegmentInfo)
242 SectName = InstrProfSectNamePrefix[IPSK];
244 if (OF == Triple::COFF)
245 SectName += InstrProfSectNameCoff[IPSK];
246 else
247 SectName += InstrProfSectNameCommon[IPSK];
249 if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo)
250 SectName += ",regular,live_support";
252 return SectName;
255 std::string InstrProfError::message() const {
256 return getInstrProfErrString(Err, Msg);
259 char InstrProfError::ID = 0;
261 std::string getPGOFuncName(StringRef Name, GlobalValue::LinkageTypes Linkage,
262 StringRef FileName,
263 uint64_t Version LLVM_ATTRIBUTE_UNUSED) {
264 // Value names may be prefixed with a binary '1' to indicate
265 // that the backend should not modify the symbols due to any platform
266 // naming convention. Do not include that '1' in the PGO profile name.
267 if (Name[0] == '\1')
268 Name = Name.substr(1);
270 std::string NewName = std::string(Name);
271 if (llvm::GlobalValue::isLocalLinkage(Linkage)) {
272 // For local symbols, prepend the main file name to distinguish them.
273 // Do not include the full path in the file name since there's no guarantee
274 // that it will stay the same, e.g., if the files are checked out from
275 // version control in different locations.
276 if (FileName.empty())
277 NewName = NewName.insert(0, "<unknown>:");
278 else
279 NewName = NewName.insert(0, FileName.str() + ":");
281 return NewName;
284 // Strip NumPrefix level of directory name from PathNameStr. If the number of
285 // directory separators is less than NumPrefix, strip all the directories and
286 // leave base file name only.
287 static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) {
288 uint32_t Count = NumPrefix;
289 uint32_t Pos = 0, LastPos = 0;
290 for (const auto &CI : PathNameStr) {
291 ++Pos;
292 if (llvm::sys::path::is_separator(CI)) {
293 LastPos = Pos;
294 --Count;
296 if (Count == 0)
297 break;
299 return PathNameStr.substr(LastPos);
302 static StringRef getStrippedSourceFileName(const GlobalObject &GO) {
303 StringRef FileName(GO.getParent()->getSourceFileName());
304 uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1;
305 if (StripLevel < StaticFuncStripDirNamePrefix)
306 StripLevel = StaticFuncStripDirNamePrefix;
307 if (StripLevel)
308 FileName = stripDirPrefix(FileName, StripLevel);
309 return FileName;
312 // The PGO name has the format [<filepath>;]<mangled-name> where <filepath>; is
313 // provided if linkage is local and is used to discriminate possibly identical
314 // mangled names. ";" is used because it is unlikely to be found in either
315 // <filepath> or <mangled-name>.
317 // Older compilers used getPGOFuncName() which has the format
318 // [<filepath>:]<mangled-name>. This caused trouble for Objective-C functions
319 // which commonly have :'s in their names. We still need to compute this name to
320 // lookup functions from profiles built by older compilers.
321 static std::string
322 getIRPGONameForGlobalObject(const GlobalObject &GO,
323 GlobalValue::LinkageTypes Linkage,
324 StringRef FileName) {
325 return GlobalValue::getGlobalIdentifier(GO.getName(), Linkage, FileName);
328 static std::optional<std::string> lookupPGONameFromMetadata(MDNode *MD) {
329 if (MD != nullptr) {
330 StringRef S = cast<MDString>(MD->getOperand(0))->getString();
331 return S.str();
333 return {};
336 // Returns the PGO object name. This function has some special handling
337 // when called in LTO optimization. The following only applies when calling in
338 // LTO passes (when \c InLTO is true): LTO's internalization privatizes many
339 // global linkage symbols. This happens after value profile annotation, but
340 // those internal linkage functions should not have a source prefix.
341 // Additionally, for ThinLTO mode, exported internal functions are promoted
342 // and renamed. We need to ensure that the original internal PGO name is
343 // used when computing the GUID that is compared against the profiled GUIDs.
344 // To differentiate compiler generated internal symbols from original ones,
345 // PGOFuncName meta data are created and attached to the original internal
346 // symbols in the value profile annotation step
347 // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta
348 // data, its original linkage must be non-internal.
349 static std::string getIRPGOObjectName(const GlobalObject &GO, bool InLTO,
350 MDNode *PGONameMetadata) {
351 if (!InLTO) {
352 auto FileName = getStrippedSourceFileName(GO);
353 return getIRPGONameForGlobalObject(GO, GO.getLinkage(), FileName);
356 // In LTO mode (when InLTO is true), first check if there is a meta data.
357 if (auto IRPGOFuncName = lookupPGONameFromMetadata(PGONameMetadata))
358 return *IRPGOFuncName;
360 // If there is no meta data, the function must be a global before the value
361 // profile annotation pass. Its current linkage may be internal if it is
362 // internalized in LTO mode.
363 return getIRPGONameForGlobalObject(GO, GlobalValue::ExternalLinkage, "");
366 // Returns the IRPGO function name and does special handling when called
367 // in LTO optimization. See the comments of `getIRPGOObjectName` for details.
368 std::string getIRPGOFuncName(const Function &F, bool InLTO) {
369 return getIRPGOObjectName(F, InLTO, getPGOFuncNameMetadata(F));
372 // Please use getIRPGOFuncName for LLVM IR instrumentation. This function is
373 // for front-end (Clang, etc) instrumentation.
374 // The implementation is kept for profile matching from older profiles.
375 // This is similar to `getIRPGOFuncName` except that this function calls
376 // 'getPGOFuncName' to get a name and `getIRPGOFuncName` calls
377 // 'getIRPGONameForGlobalObject'. See the difference between two callees in the
378 // comments of `getIRPGONameForGlobalObject`.
379 std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) {
380 if (!InLTO) {
381 auto FileName = getStrippedSourceFileName(F);
382 return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version);
385 // In LTO mode (when InLTO is true), first check if there is a meta data.
386 if (auto PGOFuncName = lookupPGONameFromMetadata(getPGOFuncNameMetadata(F)))
387 return *PGOFuncName;
389 // If there is no meta data, the function must be a global before the value
390 // profile annotation pass. Its current linkage may be internal if it is
391 // internalized in LTO mode.
392 return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, "");
395 std::string getPGOName(const GlobalVariable &V, bool InLTO) {
396 // PGONameMetadata should be set by compiler at profile use time
397 // and read by symtab creation to look up symbols corresponding to
398 // a MD5 hash.
399 return getIRPGOObjectName(V, InLTO, V.getMetadata(getPGONameMetadataName()));
402 // See getIRPGOObjectName() for a discription of the format.
403 std::pair<StringRef, StringRef> getParsedIRPGOName(StringRef IRPGOName) {
404 auto [FileName, MangledName] = IRPGOName.split(GlobalIdentifierDelimiter);
405 if (MangledName.empty())
406 return std::make_pair(StringRef(), IRPGOName);
407 return std::make_pair(FileName, MangledName);
410 StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) {
411 if (FileName.empty())
412 return PGOFuncName;
413 // Drop the file name including ':' or ';'. See getIRPGONameForGlobalObject as
414 // well.
415 if (PGOFuncName.starts_with(FileName))
416 PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1);
417 return PGOFuncName;
420 // \p FuncName is the string used as profile lookup key for the function. A
421 // symbol is created to hold the name. Return the legalized symbol name.
422 std::string getPGOFuncNameVarName(StringRef FuncName,
423 GlobalValue::LinkageTypes Linkage) {
424 std::string VarName = std::string(getInstrProfNameVarPrefix());
425 VarName += FuncName;
427 if (!GlobalValue::isLocalLinkage(Linkage))
428 return VarName;
430 // Now fix up illegal chars in local VarName that may upset the assembler.
431 const char InvalidChars[] = "-:;<>/\"'";
432 size_t FoundPos = VarName.find_first_of(InvalidChars);
433 while (FoundPos != std::string::npos) {
434 VarName[FoundPos] = '_';
435 FoundPos = VarName.find_first_of(InvalidChars, FoundPos + 1);
437 return VarName;
440 bool isGPUProfTarget(const Module &M) {
441 const auto &T = Triple(M.getTargetTriple());
442 return T.isAMDGPU() || T.isNVPTX();
445 void setPGOFuncVisibility(Module &M, GlobalVariable *FuncNameVar) {
446 // If the target is a GPU, make the symbol protected so it can
447 // be read from the host device
448 if (isGPUProfTarget(M))
449 FuncNameVar->setVisibility(GlobalValue::ProtectedVisibility);
450 // Hide the symbol so that we correctly get a copy for each executable.
451 else if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage()))
452 FuncNameVar->setVisibility(GlobalValue::HiddenVisibility);
455 GlobalVariable *createPGOFuncNameVar(Module &M,
456 GlobalValue::LinkageTypes Linkage,
457 StringRef PGOFuncName) {
458 // Ensure profiling variables on GPU are visible to be read from host
459 if (isGPUProfTarget(M))
460 Linkage = GlobalValue::ExternalLinkage;
461 // We generally want to match the function's linkage, but available_externally
462 // and extern_weak both have the wrong semantics, and anything that doesn't
463 // need to link across compilation units doesn't need to be visible at all.
464 else if (Linkage == GlobalValue::ExternalWeakLinkage)
465 Linkage = GlobalValue::LinkOnceAnyLinkage;
466 else if (Linkage == GlobalValue::AvailableExternallyLinkage)
467 Linkage = GlobalValue::LinkOnceODRLinkage;
468 else if (Linkage == GlobalValue::InternalLinkage ||
469 Linkage == GlobalValue::ExternalLinkage)
470 Linkage = GlobalValue::PrivateLinkage;
472 auto *Value =
473 ConstantDataArray::getString(M.getContext(), PGOFuncName, false);
474 auto *FuncNameVar =
475 new GlobalVariable(M, Value->getType(), true, Linkage, Value,
476 getPGOFuncNameVarName(PGOFuncName, Linkage));
478 setPGOFuncVisibility(M, FuncNameVar);
479 return FuncNameVar;
482 GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) {
483 return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName);
486 Error InstrProfSymtab::create(Module &M, bool InLTO, bool AddCanonical) {
487 for (Function &F : M) {
488 // Function may not have a name: like using asm("") to overwrite the name.
489 // Ignore in this case.
490 if (!F.hasName())
491 continue;
492 if (Error E = addFuncWithName(F, getIRPGOFuncName(F, InLTO), AddCanonical))
493 return E;
494 // Also use getPGOFuncName() so that we can find records from older profiles
495 if (Error E = addFuncWithName(F, getPGOFuncName(F, InLTO), AddCanonical))
496 return E;
499 SmallVector<MDNode *, 2> Types;
500 for (GlobalVariable &G : M.globals()) {
501 if (!G.hasName() || !G.hasMetadata(LLVMContext::MD_type))
502 continue;
503 if (Error E = addVTableWithName(G, getPGOName(G, InLTO)))
504 return E;
507 Sorted = false;
508 finalizeSymtab();
509 return Error::success();
512 Error InstrProfSymtab::addVTableWithName(GlobalVariable &VTable,
513 StringRef VTablePGOName) {
514 auto NameToGUIDMap = [&](StringRef Name) -> Error {
515 if (Error E = addSymbolName(Name))
516 return E;
518 bool Inserted = true;
519 std::tie(std::ignore, Inserted) =
520 MD5VTableMap.try_emplace(GlobalValue::getGUID(Name), &VTable);
521 if (!Inserted)
522 LLVM_DEBUG(dbgs() << "GUID conflict within one module");
523 return Error::success();
525 if (Error E = NameToGUIDMap(VTablePGOName))
526 return E;
528 StringRef CanonicalName = getCanonicalName(VTablePGOName);
529 if (CanonicalName != VTablePGOName)
530 return NameToGUIDMap(CanonicalName);
532 return Error::success();
535 /// \c NameStrings is a string composed of one of more possibly encoded
536 /// sub-strings. The substrings are separated by 0 or more zero bytes. This
537 /// method decodes the string and calls `NameCallback` for each substring.
538 static Error
539 readAndDecodeStrings(StringRef NameStrings,
540 std::function<Error(StringRef)> NameCallback) {
541 const uint8_t *P = NameStrings.bytes_begin();
542 const uint8_t *EndP = NameStrings.bytes_end();
543 while (P < EndP) {
544 uint32_t N;
545 uint64_t UncompressedSize = decodeULEB128(P, &N);
546 P += N;
547 uint64_t CompressedSize = decodeULEB128(P, &N);
548 P += N;
549 const bool IsCompressed = (CompressedSize != 0);
550 SmallVector<uint8_t, 128> UncompressedNameStrings;
551 StringRef NameStrings;
552 if (IsCompressed) {
553 if (!llvm::compression::zlib::isAvailable())
554 return make_error<InstrProfError>(instrprof_error::zlib_unavailable);
556 if (Error E = compression::zlib::decompress(ArrayRef(P, CompressedSize),
557 UncompressedNameStrings,
558 UncompressedSize)) {
559 consumeError(std::move(E));
560 return make_error<InstrProfError>(instrprof_error::uncompress_failed);
562 P += CompressedSize;
563 NameStrings = toStringRef(UncompressedNameStrings);
564 } else {
565 NameStrings =
566 StringRef(reinterpret_cast<const char *>(P), UncompressedSize);
567 P += UncompressedSize;
569 // Now parse the name strings.
570 SmallVector<StringRef, 0> Names;
571 NameStrings.split(Names, getInstrProfNameSeparator());
572 for (StringRef &Name : Names)
573 if (Error E = NameCallback(Name))
574 return E;
576 while (P < EndP && *P == 0)
577 P++;
579 return Error::success();
582 Error InstrProfSymtab::create(StringRef NameStrings) {
583 return readAndDecodeStrings(
584 NameStrings,
585 std::bind(&InstrProfSymtab::addFuncName, this, std::placeholders::_1));
588 Error InstrProfSymtab::create(StringRef FuncNameStrings,
589 StringRef VTableNameStrings) {
590 if (Error E = readAndDecodeStrings(FuncNameStrings,
591 std::bind(&InstrProfSymtab::addFuncName,
592 this, std::placeholders::_1)))
593 return E;
595 return readAndDecodeStrings(
596 VTableNameStrings,
597 std::bind(&InstrProfSymtab::addVTableName, this, std::placeholders::_1));
600 Error InstrProfSymtab::initVTableNamesFromCompressedStrings(
601 StringRef CompressedVTableStrings) {
602 return readAndDecodeStrings(
603 CompressedVTableStrings,
604 std::bind(&InstrProfSymtab::addVTableName, this, std::placeholders::_1));
607 StringRef InstrProfSymtab::getCanonicalName(StringRef PGOName) {
608 // In ThinLTO, local function may have been promoted to global and have
609 // suffix ".llvm." added to the function name. We need to add the
610 // stripped function name to the symbol table so that we can find a match
611 // from profile.
613 // ".__uniq." suffix is used to differentiate internal linkage functions in
614 // different modules and should be kept. This is the only suffix with the
615 // pattern ".xxx" which is kept before matching, other suffixes similar as
616 // ".llvm." will be stripped.
617 const std::string UniqSuffix = ".__uniq.";
618 size_t Pos = PGOName.find(UniqSuffix);
619 if (Pos != StringRef::npos)
620 Pos += UniqSuffix.length();
621 else
622 Pos = 0;
624 // Search '.' after ".__uniq." if ".__uniq." exists, otherwise search '.' from
625 // the beginning.
626 Pos = PGOName.find('.', Pos);
627 if (Pos != StringRef::npos && Pos != 0)
628 return PGOName.substr(0, Pos);
630 return PGOName;
633 Error InstrProfSymtab::addFuncWithName(Function &F, StringRef PGOFuncName,
634 bool AddCanonical) {
635 auto NameToGUIDMap = [&](StringRef Name) -> Error {
636 if (Error E = addFuncName(Name))
637 return E;
638 MD5FuncMap.emplace_back(Function::getGUID(Name), &F);
639 return Error::success();
641 if (Error E = NameToGUIDMap(PGOFuncName))
642 return E;
644 if (!AddCanonical)
645 return Error::success();
647 StringRef CanonicalFuncName = getCanonicalName(PGOFuncName);
648 if (CanonicalFuncName != PGOFuncName)
649 return NameToGUIDMap(CanonicalFuncName);
651 return Error::success();
654 uint64_t InstrProfSymtab::getVTableHashFromAddress(uint64_t Address) {
655 // Given a runtime address, look up the hash value in the interval map, and
656 // fallback to value 0 if a hash value is not found.
657 return VTableAddrMap.lookup(Address, 0);
660 uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) {
661 finalizeSymtab();
662 auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) {
663 return A.first < Address;
665 // Raw function pointer collected by value profiler may be from
666 // external functions that are not instrumented. They won't have
667 // mapping data to be used by the deserializer. Force the value to
668 // be 0 in this case.
669 if (It != AddrToMD5Map.end() && It->first == Address)
670 return (uint64_t)It->second;
671 return 0;
674 void InstrProfSymtab::dumpNames(raw_ostream &OS) const {
675 SmallVector<StringRef, 0> Sorted(NameTab.keys());
676 llvm::sort(Sorted);
677 for (StringRef S : Sorted)
678 OS << S << '\n';
681 Error collectGlobalObjectNameStrings(ArrayRef<std::string> NameStrs,
682 bool DoCompression, std::string &Result) {
683 assert(!NameStrs.empty() && "No name data to emit");
685 uint8_t Header[20], *P = Header;
686 std::string UncompressedNameStrings =
687 join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator());
689 assert(StringRef(UncompressedNameStrings)
690 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) &&
691 "PGO name is invalid (contains separator token)");
693 unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P);
694 P += EncLen;
696 auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) {
697 EncLen = encodeULEB128(CompressedLen, P);
698 P += EncLen;
699 char *HeaderStr = reinterpret_cast<char *>(&Header[0]);
700 unsigned HeaderLen = P - &Header[0];
701 Result.append(HeaderStr, HeaderLen);
702 Result += InputStr;
703 return Error::success();
706 if (!DoCompression) {
707 return WriteStringToResult(0, UncompressedNameStrings);
710 SmallVector<uint8_t, 128> CompressedNameStrings;
711 compression::zlib::compress(arrayRefFromStringRef(UncompressedNameStrings),
712 CompressedNameStrings,
713 compression::zlib::BestSizeCompression);
715 return WriteStringToResult(CompressedNameStrings.size(),
716 toStringRef(CompressedNameStrings));
719 StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) {
720 auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer());
721 StringRef NameStr =
722 Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
723 return NameStr;
726 Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars,
727 std::string &Result, bool DoCompression) {
728 std::vector<std::string> NameStrs;
729 for (auto *NameVar : NameVars) {
730 NameStrs.push_back(std::string(getPGOFuncNameVarInitializer(NameVar)));
732 return collectGlobalObjectNameStrings(
733 NameStrs, compression::zlib::isAvailable() && DoCompression, Result);
736 Error collectVTableStrings(ArrayRef<GlobalVariable *> VTables,
737 std::string &Result, bool DoCompression) {
738 std::vector<std::string> VTableNameStrs;
739 for (auto *VTable : VTables)
740 VTableNameStrs.push_back(getPGOName(*VTable));
741 return collectGlobalObjectNameStrings(
742 VTableNameStrs, compression::zlib::isAvailable() && DoCompression,
743 Result);
746 void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const {
747 uint64_t FuncSum = 0;
748 Sum.NumEntries += Counts.size();
749 for (uint64_t Count : Counts)
750 FuncSum += Count;
751 Sum.CountSum += FuncSum;
753 for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) {
754 uint64_t KindSum = 0;
755 uint32_t NumValueSites = getNumValueSites(VK);
756 for (size_t I = 0; I < NumValueSites; ++I) {
757 for (const auto &V : getValueArrayForSite(VK, I))
758 KindSum += V.Count;
760 Sum.ValueCounts[VK] += KindSum;
764 void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input,
765 uint32_t ValueKind,
766 OverlapStats &Overlap,
767 OverlapStats &FuncLevelOverlap) {
768 this->sortByTargetValues();
769 Input.sortByTargetValues();
770 double Score = 0.0f, FuncLevelScore = 0.0f;
771 auto I = ValueData.begin();
772 auto IE = ValueData.end();
773 auto J = Input.ValueData.begin();
774 auto JE = Input.ValueData.end();
775 while (I != IE && J != JE) {
776 if (I->Value == J->Value) {
777 Score += OverlapStats::score(I->Count, J->Count,
778 Overlap.Base.ValueCounts[ValueKind],
779 Overlap.Test.ValueCounts[ValueKind]);
780 FuncLevelScore += OverlapStats::score(
781 I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind],
782 FuncLevelOverlap.Test.ValueCounts[ValueKind]);
783 ++I;
784 } else if (I->Value < J->Value) {
785 ++I;
786 continue;
788 ++J;
790 Overlap.Overlap.ValueCounts[ValueKind] += Score;
791 FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore;
794 // Return false on mismatch.
795 void InstrProfRecord::overlapValueProfData(uint32_t ValueKind,
796 InstrProfRecord &Other,
797 OverlapStats &Overlap,
798 OverlapStats &FuncLevelOverlap) {
799 uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
800 assert(ThisNumValueSites == Other.getNumValueSites(ValueKind));
801 if (!ThisNumValueSites)
802 return;
804 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
805 getOrCreateValueSitesForKind(ValueKind);
806 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
807 Other.getValueSitesForKind(ValueKind);
808 for (uint32_t I = 0; I < ThisNumValueSites; I++)
809 ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap,
810 FuncLevelOverlap);
813 void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap,
814 OverlapStats &FuncLevelOverlap,
815 uint64_t ValueCutoff) {
816 // FuncLevel CountSum for other should already computed and nonzero.
817 assert(FuncLevelOverlap.Test.CountSum >= 1.0f);
818 accumulateCounts(FuncLevelOverlap.Base);
819 bool Mismatch = (Counts.size() != Other.Counts.size());
821 // Check if the value profiles mismatch.
822 if (!Mismatch) {
823 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
824 uint32_t ThisNumValueSites = getNumValueSites(Kind);
825 uint32_t OtherNumValueSites = Other.getNumValueSites(Kind);
826 if (ThisNumValueSites != OtherNumValueSites) {
827 Mismatch = true;
828 break;
832 if (Mismatch) {
833 Overlap.addOneMismatch(FuncLevelOverlap.Test);
834 return;
837 // Compute overlap for value counts.
838 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
839 overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap);
841 double Score = 0.0;
842 uint64_t MaxCount = 0;
843 // Compute overlap for edge counts.
844 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
845 Score += OverlapStats::score(Counts[I], Other.Counts[I],
846 Overlap.Base.CountSum, Overlap.Test.CountSum);
847 MaxCount = std::max(Other.Counts[I], MaxCount);
849 Overlap.Overlap.CountSum += Score;
850 Overlap.Overlap.NumEntries += 1;
852 if (MaxCount >= ValueCutoff) {
853 double FuncScore = 0.0;
854 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I)
855 FuncScore += OverlapStats::score(Counts[I], Other.Counts[I],
856 FuncLevelOverlap.Base.CountSum,
857 FuncLevelOverlap.Test.CountSum);
858 FuncLevelOverlap.Overlap.CountSum = FuncScore;
859 FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size();
860 FuncLevelOverlap.Valid = true;
864 void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input,
865 uint64_t Weight,
866 function_ref<void(instrprof_error)> Warn) {
867 this->sortByTargetValues();
868 Input.sortByTargetValues();
869 auto I = ValueData.begin();
870 auto IE = ValueData.end();
871 std::vector<InstrProfValueData> Merged;
872 Merged.reserve(std::max(ValueData.size(), Input.ValueData.size()));
873 for (const InstrProfValueData &J : Input.ValueData) {
874 while (I != IE && I->Value < J.Value) {
875 Merged.push_back(*I);
876 ++I;
878 if (I != IE && I->Value == J.Value) {
879 bool Overflowed;
880 I->Count = SaturatingMultiplyAdd(J.Count, Weight, I->Count, &Overflowed);
881 if (Overflowed)
882 Warn(instrprof_error::counter_overflow);
883 Merged.push_back(*I);
884 ++I;
885 continue;
887 Merged.push_back(J);
889 Merged.insert(Merged.end(), I, IE);
890 ValueData = std::move(Merged);
893 void InstrProfValueSiteRecord::scale(uint64_t N, uint64_t D,
894 function_ref<void(instrprof_error)> Warn) {
895 for (InstrProfValueData &I : ValueData) {
896 bool Overflowed;
897 I.Count = SaturatingMultiply(I.Count, N, &Overflowed) / D;
898 if (Overflowed)
899 Warn(instrprof_error::counter_overflow);
903 // Merge Value Profile data from Src record to this record for ValueKind.
904 // Scale merged value counts by \p Weight.
905 void InstrProfRecord::mergeValueProfData(
906 uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight,
907 function_ref<void(instrprof_error)> Warn) {
908 uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
909 uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind);
910 if (ThisNumValueSites != OtherNumValueSites) {
911 Warn(instrprof_error::value_site_count_mismatch);
912 return;
914 if (!ThisNumValueSites)
915 return;
916 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
917 getOrCreateValueSitesForKind(ValueKind);
918 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
919 Src.getValueSitesForKind(ValueKind);
920 for (uint32_t I = 0; I < ThisNumValueSites; I++)
921 ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn);
924 void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight,
925 function_ref<void(instrprof_error)> Warn) {
926 // If the number of counters doesn't match we either have bad data
927 // or a hash collision.
928 if (Counts.size() != Other.Counts.size()) {
929 Warn(instrprof_error::count_mismatch);
930 return;
933 // Special handling of the first count as the PseudoCount.
934 CountPseudoKind OtherKind = Other.getCountPseudoKind();
935 CountPseudoKind ThisKind = getCountPseudoKind();
936 if (OtherKind != NotPseudo || ThisKind != NotPseudo) {
937 // We don't allow the merge of a profile with pseudo counts and
938 // a normal profile (i.e. without pesudo counts).
939 // Profile supplimenation should be done after the profile merge.
940 if (OtherKind == NotPseudo || ThisKind == NotPseudo) {
941 Warn(instrprof_error::count_mismatch);
942 return;
944 if (OtherKind == PseudoHot || ThisKind == PseudoHot)
945 setPseudoCount(PseudoHot);
946 else
947 setPseudoCount(PseudoWarm);
948 return;
951 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
952 bool Overflowed;
953 uint64_t Value =
954 SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed);
955 if (Value > getInstrMaxCountValue()) {
956 Value = getInstrMaxCountValue();
957 Overflowed = true;
959 Counts[I] = Value;
960 if (Overflowed)
961 Warn(instrprof_error::counter_overflow);
964 // If the number of bitmap bytes doesn't match we either have bad data
965 // or a hash collision.
966 if (BitmapBytes.size() != Other.BitmapBytes.size()) {
967 Warn(instrprof_error::bitmap_mismatch);
968 return;
971 // Bitmap bytes are merged by simply ORing them together.
972 for (size_t I = 0, E = Other.BitmapBytes.size(); I < E; ++I) {
973 BitmapBytes[I] = Other.BitmapBytes[I] | BitmapBytes[I];
976 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
977 mergeValueProfData(Kind, Other, Weight, Warn);
980 void InstrProfRecord::scaleValueProfData(
981 uint32_t ValueKind, uint64_t N, uint64_t D,
982 function_ref<void(instrprof_error)> Warn) {
983 for (auto &R : getValueSitesForKind(ValueKind))
984 R.scale(N, D, Warn);
987 void InstrProfRecord::scale(uint64_t N, uint64_t D,
988 function_ref<void(instrprof_error)> Warn) {
989 assert(D != 0 && "D cannot be 0");
990 for (auto &Count : this->Counts) {
991 bool Overflowed;
992 Count = SaturatingMultiply(Count, N, &Overflowed) / D;
993 if (Count > getInstrMaxCountValue()) {
994 Count = getInstrMaxCountValue();
995 Overflowed = true;
997 if (Overflowed)
998 Warn(instrprof_error::counter_overflow);
1000 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
1001 scaleValueProfData(Kind, N, D, Warn);
1004 // Map indirect call target name hash to name string.
1005 uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind,
1006 InstrProfSymtab *SymTab) {
1007 if (!SymTab)
1008 return Value;
1010 if (ValueKind == IPVK_IndirectCallTarget)
1011 return SymTab->getFunctionHashFromAddress(Value);
1013 if (ValueKind == IPVK_VTableTarget)
1014 return SymTab->getVTableHashFromAddress(Value);
1016 return Value;
1019 void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site,
1020 ArrayRef<InstrProfValueData> VData,
1021 InstrProfSymtab *ValueMap) {
1022 // Remap values.
1023 std::vector<InstrProfValueData> RemappedVD;
1024 RemappedVD.reserve(VData.size());
1025 for (const auto &V : VData) {
1026 uint64_t NewValue = remapValue(V.Value, ValueKind, ValueMap);
1027 RemappedVD.push_back({NewValue, V.Count});
1030 std::vector<InstrProfValueSiteRecord> &ValueSites =
1031 getOrCreateValueSitesForKind(ValueKind);
1032 assert(ValueSites.size() == Site);
1034 // Add a new value site with remapped value profiling data.
1035 ValueSites.emplace_back(std::move(RemappedVD));
1038 void TemporalProfTraceTy::createBPFunctionNodes(
1039 ArrayRef<TemporalProfTraceTy> Traces, std::vector<BPFunctionNode> &Nodes,
1040 bool RemoveOutlierUNs) {
1041 using IDT = BPFunctionNode::IDT;
1042 using UtilityNodeT = BPFunctionNode::UtilityNodeT;
1043 UtilityNodeT MaxUN = 0;
1044 DenseMap<IDT, size_t> IdToFirstTimestamp;
1045 DenseMap<IDT, UtilityNodeT> IdToFirstUN;
1046 DenseMap<IDT, SmallVector<UtilityNodeT>> IdToUNs;
1047 // TODO: We need to use the Trace.Weight field to give more weight to more
1048 // important utilities
1049 for (auto &Trace : Traces) {
1050 size_t CutoffTimestamp = 1;
1051 for (size_t Timestamp = 0; Timestamp < Trace.FunctionNameRefs.size();
1052 Timestamp++) {
1053 IDT Id = Trace.FunctionNameRefs[Timestamp];
1054 auto [It, WasInserted] = IdToFirstTimestamp.try_emplace(Id, Timestamp);
1055 if (!WasInserted)
1056 It->getSecond() = std::min<size_t>(It->getSecond(), Timestamp);
1057 if (Timestamp >= CutoffTimestamp) {
1058 ++MaxUN;
1059 CutoffTimestamp = 2 * Timestamp;
1061 IdToFirstUN.try_emplace(Id, MaxUN);
1063 for (auto &[Id, FirstUN] : IdToFirstUN)
1064 for (auto UN = FirstUN; UN <= MaxUN; ++UN)
1065 IdToUNs[Id].push_back(UN);
1066 ++MaxUN;
1067 IdToFirstUN.clear();
1070 if (RemoveOutlierUNs) {
1071 DenseMap<UtilityNodeT, unsigned> UNFrequency;
1072 for (auto &[Id, UNs] : IdToUNs)
1073 for (auto &UN : UNs)
1074 ++UNFrequency[UN];
1075 // Filter out utility nodes that are too infrequent or too prevalent to make
1076 // BalancedPartitioning more effective.
1077 for (auto &[Id, UNs] : IdToUNs)
1078 llvm::erase_if(UNs, [&](auto &UN) {
1079 return UNFrequency[UN] <= 1 || 2 * UNFrequency[UN] > IdToUNs.size();
1083 for (auto &[Id, UNs] : IdToUNs)
1084 Nodes.emplace_back(Id, UNs);
1086 // Since BalancedPartitioning is sensitive to the initial order, we explicitly
1087 // order nodes by their earliest timestamp.
1088 llvm::sort(Nodes, [&](auto &L, auto &R) {
1089 return std::make_pair(IdToFirstTimestamp[L.Id], L.Id) <
1090 std::make_pair(IdToFirstTimestamp[R.Id], R.Id);
1094 #define INSTR_PROF_COMMON_API_IMPL
1095 #include "llvm/ProfileData/InstrProfData.inc"
1098 * ValueProfRecordClosure Interface implementation for InstrProfRecord
1099 * class. These C wrappers are used as adaptors so that C++ code can be
1100 * invoked as callbacks.
1102 uint32_t getNumValueKindsInstrProf(const void *Record) {
1103 return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds();
1106 uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) {
1107 return reinterpret_cast<const InstrProfRecord *>(Record)
1108 ->getNumValueSites(VKind);
1111 uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) {
1112 return reinterpret_cast<const InstrProfRecord *>(Record)
1113 ->getNumValueData(VKind);
1116 uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK,
1117 uint32_t S) {
1118 const auto *IPR = reinterpret_cast<const InstrProfRecord *>(R);
1119 return IPR->getValueArrayForSite(VK, S).size();
1122 void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst,
1123 uint32_t K, uint32_t S) {
1124 const auto *IPR = reinterpret_cast<const InstrProfRecord *>(R);
1125 llvm::copy(IPR->getValueArrayForSite(K, S), Dst);
1128 ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) {
1129 ValueProfData *VD =
1130 (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData());
1131 memset(VD, 0, TotalSizeInBytes);
1132 return VD;
1135 static ValueProfRecordClosure InstrProfRecordClosure = {
1136 nullptr,
1137 getNumValueKindsInstrProf,
1138 getNumValueSitesInstrProf,
1139 getNumValueDataInstrProf,
1140 getNumValueDataForSiteInstrProf,
1141 nullptr,
1142 getValueForSiteInstrProf,
1143 allocValueProfDataInstrProf};
1145 // Wrapper implementation using the closure mechanism.
1146 uint32_t ValueProfData::getSize(const InstrProfRecord &Record) {
1147 auto Closure = InstrProfRecordClosure;
1148 Closure.Record = &Record;
1149 return getValueProfDataSize(&Closure);
1152 // Wrapper implementation using the closure mechanism.
1153 std::unique_ptr<ValueProfData>
1154 ValueProfData::serializeFrom(const InstrProfRecord &Record) {
1155 InstrProfRecordClosure.Record = &Record;
1157 std::unique_ptr<ValueProfData> VPD(
1158 serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr));
1159 return VPD;
1162 void ValueProfRecord::deserializeTo(InstrProfRecord &Record,
1163 InstrProfSymtab *SymTab) {
1164 Record.reserveSites(Kind, NumValueSites);
1166 InstrProfValueData *ValueData = getValueProfRecordValueData(this);
1167 for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) {
1168 uint8_t ValueDataCount = this->SiteCountArray[VSite];
1169 ArrayRef<InstrProfValueData> VDs(ValueData, ValueDataCount);
1170 Record.addValueData(Kind, VSite, VDs, SymTab);
1171 ValueData += ValueDataCount;
1175 // For writing/serializing, Old is the host endianness, and New is
1176 // byte order intended on disk. For Reading/deserialization, Old
1177 // is the on-disk source endianness, and New is the host endianness.
1178 void ValueProfRecord::swapBytes(llvm::endianness Old, llvm::endianness New) {
1179 using namespace support;
1181 if (Old == New)
1182 return;
1184 if (llvm::endianness::native != Old) {
1185 sys::swapByteOrder<uint32_t>(NumValueSites);
1186 sys::swapByteOrder<uint32_t>(Kind);
1188 uint32_t ND = getValueProfRecordNumValueData(this);
1189 InstrProfValueData *VD = getValueProfRecordValueData(this);
1191 // No need to swap byte array: SiteCountArrray.
1192 for (uint32_t I = 0; I < ND; I++) {
1193 sys::swapByteOrder<uint64_t>(VD[I].Value);
1194 sys::swapByteOrder<uint64_t>(VD[I].Count);
1196 if (llvm::endianness::native == Old) {
1197 sys::swapByteOrder<uint32_t>(NumValueSites);
1198 sys::swapByteOrder<uint32_t>(Kind);
1202 void ValueProfData::deserializeTo(InstrProfRecord &Record,
1203 InstrProfSymtab *SymTab) {
1204 if (NumValueKinds == 0)
1205 return;
1207 ValueProfRecord *VR = getFirstValueProfRecord(this);
1208 for (uint32_t K = 0; K < NumValueKinds; K++) {
1209 VR->deserializeTo(Record, SymTab);
1210 VR = getValueProfRecordNext(VR);
1214 static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) {
1215 return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize))
1216 ValueProfData());
1219 Error ValueProfData::checkIntegrity() {
1220 if (NumValueKinds > IPVK_Last + 1)
1221 return make_error<InstrProfError>(
1222 instrprof_error::malformed, "number of value profile kinds is invalid");
1223 // Total size needs to be multiple of quadword size.
1224 if (TotalSize % sizeof(uint64_t))
1225 return make_error<InstrProfError>(
1226 instrprof_error::malformed, "total size is not multiples of quardword");
1228 ValueProfRecord *VR = getFirstValueProfRecord(this);
1229 for (uint32_t K = 0; K < this->NumValueKinds; K++) {
1230 if (VR->Kind > IPVK_Last)
1231 return make_error<InstrProfError>(instrprof_error::malformed,
1232 "value kind is invalid");
1233 VR = getValueProfRecordNext(VR);
1234 if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize)
1235 return make_error<InstrProfError>(
1236 instrprof_error::malformed,
1237 "value profile address is greater than total size");
1239 return Error::success();
1242 Expected<std::unique_ptr<ValueProfData>>
1243 ValueProfData::getValueProfData(const unsigned char *D,
1244 const unsigned char *const BufferEnd,
1245 llvm::endianness Endianness) {
1246 using namespace support;
1248 if (D + sizeof(ValueProfData) > BufferEnd)
1249 return make_error<InstrProfError>(instrprof_error::truncated);
1251 const unsigned char *Header = D;
1252 uint32_t TotalSize = endian::readNext<uint32_t>(Header, Endianness);
1254 if (D + TotalSize > BufferEnd)
1255 return make_error<InstrProfError>(instrprof_error::too_large);
1257 std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize);
1258 memcpy(VPD.get(), D, TotalSize);
1259 // Byte swap.
1260 VPD->swapBytesToHost(Endianness);
1262 Error E = VPD->checkIntegrity();
1263 if (E)
1264 return std::move(E);
1266 return std::move(VPD);
1269 void ValueProfData::swapBytesToHost(llvm::endianness Endianness) {
1270 using namespace support;
1272 if (Endianness == llvm::endianness::native)
1273 return;
1275 sys::swapByteOrder<uint32_t>(TotalSize);
1276 sys::swapByteOrder<uint32_t>(NumValueKinds);
1278 ValueProfRecord *VR = getFirstValueProfRecord(this);
1279 for (uint32_t K = 0; K < NumValueKinds; K++) {
1280 VR->swapBytes(Endianness, llvm::endianness::native);
1281 VR = getValueProfRecordNext(VR);
1285 void ValueProfData::swapBytesFromHost(llvm::endianness Endianness) {
1286 using namespace support;
1288 if (Endianness == llvm::endianness::native)
1289 return;
1291 ValueProfRecord *VR = getFirstValueProfRecord(this);
1292 for (uint32_t K = 0; K < NumValueKinds; K++) {
1293 ValueProfRecord *NVR = getValueProfRecordNext(VR);
1294 VR->swapBytes(llvm::endianness::native, Endianness);
1295 VR = NVR;
1297 sys::swapByteOrder<uint32_t>(TotalSize);
1298 sys::swapByteOrder<uint32_t>(NumValueKinds);
1301 void annotateValueSite(Module &M, Instruction &Inst,
1302 const InstrProfRecord &InstrProfR,
1303 InstrProfValueKind ValueKind, uint32_t SiteIdx,
1304 uint32_t MaxMDCount) {
1305 auto VDs = InstrProfR.getValueArrayForSite(ValueKind, SiteIdx);
1306 if (VDs.empty())
1307 return;
1308 uint64_t Sum = 0;
1309 for (const InstrProfValueData &V : VDs)
1310 Sum = SaturatingAdd(Sum, V.Count);
1311 annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount);
1314 void annotateValueSite(Module &M, Instruction &Inst,
1315 ArrayRef<InstrProfValueData> VDs,
1316 uint64_t Sum, InstrProfValueKind ValueKind,
1317 uint32_t MaxMDCount) {
1318 if (VDs.empty())
1319 return;
1320 LLVMContext &Ctx = M.getContext();
1321 MDBuilder MDHelper(Ctx);
1322 SmallVector<Metadata *, 3> Vals;
1323 // Tag
1324 Vals.push_back(MDHelper.createString("VP"));
1325 // Value Kind
1326 Vals.push_back(MDHelper.createConstant(
1327 ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind)));
1328 // Total Count
1329 Vals.push_back(
1330 MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum)));
1332 // Value Profile Data
1333 uint32_t MDCount = MaxMDCount;
1334 for (const auto &VD : VDs) {
1335 Vals.push_back(MDHelper.createConstant(
1336 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value)));
1337 Vals.push_back(MDHelper.createConstant(
1338 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count)));
1339 if (--MDCount == 0)
1340 break;
1342 Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals));
1345 MDNode *mayHaveValueProfileOfKind(const Instruction &Inst,
1346 InstrProfValueKind ValueKind) {
1347 MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof);
1348 if (!MD)
1349 return nullptr;
1351 if (MD->getNumOperands() < 5)
1352 return nullptr;
1354 MDString *Tag = cast<MDString>(MD->getOperand(0));
1355 if (!Tag || Tag->getString() != "VP")
1356 return nullptr;
1358 // Now check kind:
1359 ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
1360 if (!KindInt)
1361 return nullptr;
1362 if (KindInt->getZExtValue() != ValueKind)
1363 return nullptr;
1365 return MD;
1368 SmallVector<InstrProfValueData, 4>
1369 getValueProfDataFromInst(const Instruction &Inst, InstrProfValueKind ValueKind,
1370 uint32_t MaxNumValueData, uint64_t &TotalC,
1371 bool GetNoICPValue) {
1372 // Four inline elements seem to work well in practice. With MaxNumValueData,
1373 // this array won't grow very big anyway.
1374 SmallVector<InstrProfValueData, 4> ValueData;
1375 MDNode *MD = mayHaveValueProfileOfKind(Inst, ValueKind);
1376 if (!MD)
1377 return ValueData;
1378 const unsigned NOps = MD->getNumOperands();
1379 // Get total count
1380 ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
1381 if (!TotalCInt)
1382 return ValueData;
1383 TotalC = TotalCInt->getZExtValue();
1385 ValueData.reserve((NOps - 3) / 2);
1386 for (unsigned I = 3; I < NOps; I += 2) {
1387 if (ValueData.size() >= MaxNumValueData)
1388 break;
1389 ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I));
1390 ConstantInt *Count =
1391 mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1));
1392 if (!Value || !Count) {
1393 ValueData.clear();
1394 return ValueData;
1396 uint64_t CntValue = Count->getZExtValue();
1397 if (!GetNoICPValue && (CntValue == NOMORE_ICP_MAGICNUM))
1398 continue;
1399 InstrProfValueData V;
1400 V.Value = Value->getZExtValue();
1401 V.Count = CntValue;
1402 ValueData.push_back(V);
1404 return ValueData;
1407 MDNode *getPGOFuncNameMetadata(const Function &F) {
1408 return F.getMetadata(getPGOFuncNameMetadataName());
1411 static void createPGONameMetadata(GlobalObject &GO, StringRef MetadataName,
1412 StringRef PGOName) {
1413 // Only for internal linkage functions or global variables. The name is not
1414 // the same as PGO name for these global objects.
1415 if (GO.getName() == PGOName)
1416 return;
1418 // Don't create duplicated metadata.
1419 if (GO.getMetadata(MetadataName))
1420 return;
1422 LLVMContext &C = GO.getContext();
1423 MDNode *N = MDNode::get(C, MDString::get(C, PGOName));
1424 GO.setMetadata(MetadataName, N);
1427 void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) {
1428 return createPGONameMetadata(F, getPGOFuncNameMetadataName(), PGOFuncName);
1431 void createPGONameMetadata(GlobalObject &GO, StringRef PGOName) {
1432 return createPGONameMetadata(GO, getPGONameMetadataName(), PGOName);
1435 bool needsComdatForCounter(const GlobalObject &GO, const Module &M) {
1436 if (GO.hasComdat())
1437 return true;
1439 if (!Triple(M.getTargetTriple()).supportsCOMDAT())
1440 return false;
1442 // See createPGOFuncNameVar for more details. To avoid link errors, profile
1443 // counters for function with available_externally linkage needs to be changed
1444 // to linkonce linkage. On ELF based systems, this leads to weak symbols to be
1445 // created. Without using comdat, duplicate entries won't be removed by the
1446 // linker leading to increased data segement size and raw profile size. Even
1447 // worse, since the referenced counter from profile per-function data object
1448 // will be resolved to the common strong definition, the profile counts for
1449 // available_externally functions will end up being duplicated in raw profile
1450 // data. This can result in distorted profile as the counts of those dups
1451 // will be accumulated by the profile merger.
1452 GlobalValue::LinkageTypes Linkage = GO.getLinkage();
1453 if (Linkage != GlobalValue::ExternalWeakLinkage &&
1454 Linkage != GlobalValue::AvailableExternallyLinkage)
1455 return false;
1457 return true;
1460 // Check if INSTR_PROF_RAW_VERSION_VAR is defined.
1461 bool isIRPGOFlagSet(const Module *M) {
1462 const GlobalVariable *IRInstrVar =
1463 M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
1464 if (!IRInstrVar || IRInstrVar->hasLocalLinkage())
1465 return false;
1467 // For CSPGO+LTO, this variable might be marked as non-prevailing and we only
1468 // have the decl.
1469 if (IRInstrVar->isDeclaration())
1470 return true;
1472 // Check if the flag is set.
1473 if (!IRInstrVar->hasInitializer())
1474 return false;
1476 auto *InitVal = dyn_cast_or_null<ConstantInt>(IRInstrVar->getInitializer());
1477 if (!InitVal)
1478 return false;
1479 return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0;
1482 // Check if we can safely rename this Comdat function.
1483 bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) {
1484 if (F.getName().empty())
1485 return false;
1486 if (!needsComdatForCounter(F, *(F.getParent())))
1487 return false;
1488 // Unsafe to rename the address-taken function (which can be used in
1489 // function comparison).
1490 if (CheckAddressTaken && F.hasAddressTaken())
1491 return false;
1492 // Only safe to do if this function may be discarded if it is not used
1493 // in the compilation unit.
1494 if (!GlobalValue::isDiscardableIfUnused(F.getLinkage()))
1495 return false;
1497 // For AvailableExternallyLinkage functions.
1498 if (!F.hasComdat()) {
1499 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
1500 return true;
1502 return true;
1505 // Create the variable for the profile file name.
1506 void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) {
1507 if (InstrProfileOutput.empty())
1508 return;
1509 Constant *ProfileNameConst =
1510 ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true);
1511 GlobalVariable *ProfileNameVar = new GlobalVariable(
1512 M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage,
1513 ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR));
1514 ProfileNameVar->setVisibility(GlobalValue::HiddenVisibility);
1515 Triple TT(M.getTargetTriple());
1516 if (TT.supportsCOMDAT()) {
1517 ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
1518 ProfileNameVar->setComdat(M.getOrInsertComdat(
1519 StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR))));
1523 Error OverlapStats::accumulateCounts(const std::string &BaseFilename,
1524 const std::string &TestFilename,
1525 bool IsCS) {
1526 auto GetProfileSum = [IsCS](const std::string &Filename,
1527 CountSumOrPercent &Sum) -> Error {
1528 // This function is only used from llvm-profdata that doesn't use any kind
1529 // of VFS. Just create a default RealFileSystem to read profiles.
1530 auto FS = vfs::getRealFileSystem();
1531 auto ReaderOrErr = InstrProfReader::create(Filename, *FS);
1532 if (Error E = ReaderOrErr.takeError()) {
1533 return E;
1535 auto Reader = std::move(ReaderOrErr.get());
1536 Reader->accumulateCounts(Sum, IsCS);
1537 return Error::success();
1539 auto Ret = GetProfileSum(BaseFilename, Base);
1540 if (Ret)
1541 return Ret;
1542 Ret = GetProfileSum(TestFilename, Test);
1543 if (Ret)
1544 return Ret;
1545 this->BaseFilename = &BaseFilename;
1546 this->TestFilename = &TestFilename;
1547 Valid = true;
1548 return Error::success();
1551 void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) {
1552 Mismatch.NumEntries += 1;
1553 Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum;
1554 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1555 if (Test.ValueCounts[I] >= 1.0f)
1556 Mismatch.ValueCounts[I] +=
1557 MismatchFunc.ValueCounts[I] / Test.ValueCounts[I];
1561 void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) {
1562 Unique.NumEntries += 1;
1563 Unique.CountSum += UniqueFunc.CountSum / Test.CountSum;
1564 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1565 if (Test.ValueCounts[I] >= 1.0f)
1566 Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I];
1570 void OverlapStats::dump(raw_fd_ostream &OS) const {
1571 if (!Valid)
1572 return;
1574 const char *EntryName =
1575 (Level == ProgramLevel ? "functions" : "edge counters");
1576 if (Level == ProgramLevel) {
1577 OS << "Profile overlap infomation for base_profile: " << *BaseFilename
1578 << " and test_profile: " << *TestFilename << "\nProgram level:\n";
1579 } else {
1580 OS << "Function level:\n"
1581 << " Function: " << FuncName << " (Hash=" << FuncHash << ")\n";
1584 OS << " # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n";
1585 if (Mismatch.NumEntries)
1586 OS << " # of " << EntryName << " mismatch: " << Mismatch.NumEntries
1587 << "\n";
1588 if (Unique.NumEntries)
1589 OS << " # of " << EntryName
1590 << " only in test_profile: " << Unique.NumEntries << "\n";
1592 OS << " Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100)
1593 << "\n";
1594 if (Mismatch.NumEntries)
1595 OS << " Mismatched count percentage (Edge): "
1596 << format("%.3f%%", Mismatch.CountSum * 100) << "\n";
1597 if (Unique.NumEntries)
1598 OS << " Percentage of Edge profile only in test_profile: "
1599 << format("%.3f%%", Unique.CountSum * 100) << "\n";
1600 OS << " Edge profile base count sum: " << format("%.0f", Base.CountSum)
1601 << "\n"
1602 << " Edge profile test count sum: " << format("%.0f", Test.CountSum)
1603 << "\n";
1605 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1606 if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f)
1607 continue;
1608 char ProfileKindName[20] = {0};
1609 switch (I) {
1610 case IPVK_IndirectCallTarget:
1611 strncpy(ProfileKindName, "IndirectCall", 19);
1612 break;
1613 case IPVK_MemOPSize:
1614 strncpy(ProfileKindName, "MemOP", 19);
1615 break;
1616 case IPVK_VTableTarget:
1617 strncpy(ProfileKindName, "VTable", 19);
1618 break;
1619 default:
1620 snprintf(ProfileKindName, 19, "VP[%d]", I);
1621 break;
1623 OS << " " << ProfileKindName
1624 << " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100)
1625 << "\n";
1626 if (Mismatch.NumEntries)
1627 OS << " Mismatched count percentage (" << ProfileKindName
1628 << "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n";
1629 if (Unique.NumEntries)
1630 OS << " Percentage of " << ProfileKindName
1631 << " profile only in test_profile: "
1632 << format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n";
1633 OS << " " << ProfileKindName
1634 << " profile base count sum: " << format("%.0f", Base.ValueCounts[I])
1635 << "\n"
1636 << " " << ProfileKindName
1637 << " profile test count sum: " << format("%.0f", Test.ValueCounts[I])
1638 << "\n";
1642 namespace IndexedInstrProf {
1643 Expected<Header> Header::readFromBuffer(const unsigned char *Buffer) {
1644 using namespace support;
1645 static_assert(std::is_standard_layout_v<Header>,
1646 "Use standard layout for Header for simplicity");
1647 Header H;
1649 H.Magic = endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
1650 // Check the magic number.
1651 if (H.Magic != IndexedInstrProf::Magic)
1652 return make_error<InstrProfError>(instrprof_error::bad_magic);
1654 // Read the version.
1655 H.Version = endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
1656 if (H.getIndexedProfileVersion() >
1657 IndexedInstrProf::ProfVersion::CurrentVersion)
1658 return make_error<InstrProfError>(instrprof_error::unsupported_version);
1660 static_assert(IndexedInstrProf::ProfVersion::CurrentVersion == Version12,
1661 "Please update the reader as needed when a new field is added "
1662 "or when indexed profile version gets bumped.");
1664 Buffer += sizeof(uint64_t); // Skip Header.Unused field.
1665 H.HashType = endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
1666 H.HashOffset = endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
1667 if (H.getIndexedProfileVersion() >= 8)
1668 H.MemProfOffset =
1669 endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
1670 if (H.getIndexedProfileVersion() >= 9)
1671 H.BinaryIdOffset =
1672 endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
1673 // Version 11 is handled by this condition.
1674 if (H.getIndexedProfileVersion() >= 10)
1675 H.TemporalProfTracesOffset =
1676 endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
1677 if (H.getIndexedProfileVersion() >= 12)
1678 H.VTableNamesOffset =
1679 endian::readNext<uint64_t, llvm::endianness::little>(Buffer);
1680 return H;
1683 uint64_t Header::getIndexedProfileVersion() const {
1684 return GET_VERSION(Version);
1687 size_t Header::size() const {
1688 switch (getIndexedProfileVersion()) {
1689 // To retain backward compatibility, new fields must be appended to the end
1690 // of the header, and byte offset of existing fields shouldn't change when
1691 // indexed profile version gets incremented.
1692 static_assert(
1693 IndexedInstrProf::ProfVersion::CurrentVersion == Version12,
1694 "Please update the size computation below if a new field has "
1695 "been added to the header; for a version bump without new "
1696 "fields, add a case statement to fall through to the latest version.");
1697 case 12ull:
1698 return 72;
1699 case 11ull:
1700 [[fallthrough]];
1701 case 10ull:
1702 return 64;
1703 case 9ull:
1704 return 56;
1705 case 8ull:
1706 return 48;
1707 default: // Version7 (when the backwards compatible header was introduced).
1708 return 40;
1712 } // namespace IndexedInstrProf
1714 } // end namespace llvm