[NewPM] Remove GuardWideningLegacyPass (#72810)
[llvm-project.git] / llvm / lib / Transforms / Scalar / GuardWidening.cpp
blob0dd99f45f670d1323466876eb8d8a05aae89e4b7
1 //===- GuardWidening.cpp - ---- Guard widening ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the guard widening pass. The semantics of the
10 // @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails
11 // more often that it did before the transform. This optimization is called
12 // "widening" and can be used hoist and common runtime checks in situations like
13 // these:
15 // %cmp0 = 7 u< Length
16 // call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
17 // call @unknown_side_effects()
18 // %cmp1 = 9 u< Length
19 // call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ]
20 // ...
22 // =>
24 // %cmp0 = 9 u< Length
25 // call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
26 // call @unknown_side_effects()
27 // ...
29 // If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a
30 // generic implementation of the same function, which will have the correct
31 // semantics from that point onward. It is always _legal_ to deoptimize (so
32 // replacing %cmp0 with false is "correct"), though it may not always be
33 // profitable to do so.
35 // NB! This pass is a work in progress. It hasn't been tuned to be "production
36 // ready" yet. It is known to have quadriatic running time and will not scale
37 // to large numbers of guards
39 //===----------------------------------------------------------------------===//
41 #include "llvm/Transforms/Scalar/GuardWidening.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/DepthFirstIterator.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/Analysis/AssumptionCache.h"
46 #include "llvm/Analysis/GuardUtils.h"
47 #include "llvm/Analysis/LoopInfo.h"
48 #include "llvm/Analysis/LoopPass.h"
49 #include "llvm/Analysis/MemorySSAUpdater.h"
50 #include "llvm/Analysis/PostDominators.h"
51 #include "llvm/Analysis/ValueTracking.h"
52 #include "llvm/IR/ConstantRange.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/KnownBits.h"
62 #include "llvm/Transforms/Scalar.h"
63 #include "llvm/Transforms/Utils/GuardUtils.h"
64 #include "llvm/Transforms/Utils/LoopUtils.h"
65 #include <functional>
67 using namespace llvm;
69 #define DEBUG_TYPE "guard-widening"
71 STATISTIC(GuardsEliminated, "Number of eliminated guards");
72 STATISTIC(CondBranchEliminated, "Number of eliminated conditional branches");
73 STATISTIC(FreezeAdded, "Number of freeze instruction introduced");
75 static cl::opt<bool>
76 WidenBranchGuards("guard-widening-widen-branch-guards", cl::Hidden,
77 cl::desc("Whether or not we should widen guards "
78 "expressed as branches by widenable conditions"),
79 cl::init(true));
81 namespace {
83 // Get the condition of \p I. It can either be a guard or a conditional branch.
84 static Value *getCondition(Instruction *I) {
85 if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
86 assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
87 "Bad guard intrinsic?");
88 return GI->getArgOperand(0);
90 Value *Cond, *WC;
91 BasicBlock *IfTrueBB, *IfFalseBB;
92 if (parseWidenableBranch(I, Cond, WC, IfTrueBB, IfFalseBB))
93 return Cond;
95 return cast<BranchInst>(I)->getCondition();
98 // Set the condition for \p I to \p NewCond. \p I can either be a guard or a
99 // conditional branch.
100 static void setCondition(Instruction *I, Value *NewCond) {
101 if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
102 assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
103 "Bad guard intrinsic?");
104 GI->setArgOperand(0, NewCond);
105 return;
107 cast<BranchInst>(I)->setCondition(NewCond);
110 // Eliminates the guard instruction properly.
111 static void eliminateGuard(Instruction *GuardInst, MemorySSAUpdater *MSSAU) {
112 GuardInst->eraseFromParent();
113 if (MSSAU)
114 MSSAU->removeMemoryAccess(GuardInst);
115 ++GuardsEliminated;
118 /// Find a point at which the widened condition of \p Guard should be inserted.
119 /// When it is represented as intrinsic call, we can do it right before the call
120 /// instruction. However, when we are dealing with widenable branch, we must
121 /// account for the following situation: widening should not turn a
122 /// loop-invariant condition into a loop-variant. It means that if
123 /// widenable.condition() call is invariant (w.r.t. any loop), the new wide
124 /// condition should stay invariant. Otherwise there can be a miscompile, like
125 /// the one described at https://github.com/llvm/llvm-project/issues/60234. The
126 /// safest way to do it is to expand the new condition at WC's block.
127 static Instruction *findInsertionPointForWideCondition(Instruction *WCOrGuard) {
128 if (isGuard(WCOrGuard))
129 return WCOrGuard;
130 if (auto WC = extractWidenableCondition(WCOrGuard))
131 return cast<Instruction>(WC);
132 return nullptr;
135 class GuardWideningImpl {
136 DominatorTree &DT;
137 PostDominatorTree *PDT;
138 LoopInfo &LI;
139 AssumptionCache &AC;
140 MemorySSAUpdater *MSSAU;
142 /// Together, these describe the region of interest. This might be all of
143 /// the blocks within a function, or only a given loop's blocks and preheader.
144 DomTreeNode *Root;
145 std::function<bool(BasicBlock*)> BlockFilter;
147 /// The set of guards and conditional branches whose conditions have been
148 /// widened into dominating guards.
149 SmallVector<Instruction *, 16> EliminatedGuardsAndBranches;
151 /// The set of guards which have been widened to include conditions to other
152 /// guards.
153 DenseSet<Instruction *> WidenedGuards;
155 /// Try to eliminate instruction \p Instr by widening it into an earlier
156 /// dominating guard. \p DFSI is the DFS iterator on the dominator tree that
157 /// is currently visiting the block containing \p Guard, and \p GuardsPerBlock
158 /// maps BasicBlocks to the set of guards seen in that block.
159 bool eliminateInstrViaWidening(
160 Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
161 const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>>
162 &GuardsPerBlock);
164 /// Used to keep track of which widening potential is more effective.
165 enum WideningScore {
166 /// Don't widen.
167 WS_IllegalOrNegative,
169 /// Widening is performance neutral as far as the cycles spent in check
170 /// conditions goes (but can still help, e.g., code layout, having less
171 /// deopt state).
172 WS_Neutral,
174 /// Widening is profitable.
175 WS_Positive,
177 /// Widening is very profitable. Not significantly different from \c
178 /// WS_Positive, except by the order.
179 WS_VeryPositive
182 static StringRef scoreTypeToString(WideningScore WS);
184 /// Compute the score for widening the condition in \p DominatedInstr
185 /// into \p WideningPoint.
186 WideningScore computeWideningScore(Instruction *DominatedInstr,
187 Instruction *ToWiden,
188 Instruction *WideningPoint,
189 SmallVectorImpl<Value *> &ChecksToHoist,
190 SmallVectorImpl<Value *> &ChecksToWiden);
192 /// Helper to check if \p V can be hoisted to \p InsertPos.
193 bool canBeHoistedTo(const Value *V, const Instruction *InsertPos) const {
194 SmallPtrSet<const Instruction *, 8> Visited;
195 return canBeHoistedTo(V, InsertPos, Visited);
198 bool canBeHoistedTo(const Value *V, const Instruction *InsertPos,
199 SmallPtrSetImpl<const Instruction *> &Visited) const;
201 bool canBeHoistedTo(const SmallVectorImpl<Value *> &Checks,
202 const Instruction *InsertPos) const {
203 return all_of(Checks,
204 [&](const Value *V) { return canBeHoistedTo(V, InsertPos); });
206 /// Helper to hoist \p V to \p InsertPos. Guaranteed to succeed if \c
207 /// canBeHoistedTo returned true.
208 void makeAvailableAt(Value *V, Instruction *InsertPos) const;
210 void makeAvailableAt(const SmallVectorImpl<Value *> &Checks,
211 Instruction *InsertPos) const {
212 for (Value *V : Checks)
213 makeAvailableAt(V, InsertPos);
216 /// Common helper used by \c widenGuard and \c isWideningCondProfitable. Try
217 /// to generate an expression computing the logical AND of \p ChecksToHoist
218 /// and \p ChecksToWiden. Return true if the expression computing the AND is
219 /// only as expensive as computing one of the set of expressions. If \p
220 /// InsertPt is true then actually generate the resulting expression, make it
221 /// available at \p InsertPt and return it in \p Result (else no change to the
222 /// IR is made).
223 std::optional<Value *> mergeChecks(SmallVectorImpl<Value *> &ChecksToHoist,
224 SmallVectorImpl<Value *> &ChecksToWiden,
225 Instruction *InsertPt);
227 /// Generate the logical AND of \p ChecksToHoist and \p OldCondition and make
228 /// it available at InsertPt
229 Value *hoistChecks(SmallVectorImpl<Value *> &ChecksToHoist,
230 Value *OldCondition, Instruction *InsertPt);
232 /// Adds freeze to Orig and push it as far as possible very aggressively.
233 /// Also replaces all uses of frozen instruction with frozen version.
234 Value *freezeAndPush(Value *Orig, Instruction *InsertPt);
236 /// Represents a range check of the form \c Base + \c Offset u< \c Length,
237 /// with the constraint that \c Length is not negative. \c CheckInst is the
238 /// pre-existing instruction in the IR that computes the result of this range
239 /// check.
240 class RangeCheck {
241 const Value *Base;
242 const ConstantInt *Offset;
243 const Value *Length;
244 ICmpInst *CheckInst;
246 public:
247 explicit RangeCheck(const Value *Base, const ConstantInt *Offset,
248 const Value *Length, ICmpInst *CheckInst)
249 : Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {}
251 void setBase(const Value *NewBase) { Base = NewBase; }
252 void setOffset(const ConstantInt *NewOffset) { Offset = NewOffset; }
254 const Value *getBase() const { return Base; }
255 const ConstantInt *getOffset() const { return Offset; }
256 const APInt &getOffsetValue() const { return getOffset()->getValue(); }
257 const Value *getLength() const { return Length; };
258 ICmpInst *getCheckInst() const { return CheckInst; }
260 void print(raw_ostream &OS, bool PrintTypes = false) {
261 OS << "Base: ";
262 Base->printAsOperand(OS, PrintTypes);
263 OS << " Offset: ";
264 Offset->printAsOperand(OS, PrintTypes);
265 OS << " Length: ";
266 Length->printAsOperand(OS, PrintTypes);
269 LLVM_DUMP_METHOD void dump() {
270 print(dbgs());
271 dbgs() << "\n";
275 /// Parse \p ToParse into a conjunction (logical-and) of range checks; and
276 /// append them to \p Checks. Returns true on success, may clobber \c Checks
277 /// on failure.
278 bool parseRangeChecks(SmallVectorImpl<Value *> &ToParse,
279 SmallVectorImpl<RangeCheck> &Checks) {
280 for (auto CheckCond : ToParse) {
281 if (!parseRangeChecks(CheckCond, Checks))
282 return false;
284 return true;
287 bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks);
289 /// Combine the checks in \p Checks into a smaller set of checks and append
290 /// them into \p CombinedChecks. Return true on success (i.e. all of checks
291 /// in \p Checks were combined into \p CombinedChecks). Clobbers \p Checks
292 /// and \p CombinedChecks on success and on failure.
293 bool combineRangeChecks(SmallVectorImpl<RangeCheck> &Checks,
294 SmallVectorImpl<RangeCheck> &CombinedChecks) const;
296 /// Can we compute the logical AND of \p ChecksToHoist and \p ChecksToWiden
297 /// for the price of computing only one of the set of expressions?
298 bool isWideningCondProfitable(SmallVectorImpl<Value *> &ChecksToHoist,
299 SmallVectorImpl<Value *> &ChecksToWiden) {
300 return mergeChecks(ChecksToHoist, ChecksToWiden, /*InsertPt=*/nullptr)
301 .has_value();
304 /// Widen \p ChecksToWiden to fail if any of \p ChecksToHoist is false
305 void widenGuard(SmallVectorImpl<Value *> &ChecksToHoist,
306 SmallVectorImpl<Value *> &ChecksToWiden,
307 Instruction *ToWiden) {
308 Instruction *InsertPt = findInsertionPointForWideCondition(ToWiden);
309 auto MergedCheck = mergeChecks(ChecksToHoist, ChecksToWiden, InsertPt);
310 Value *Result = MergedCheck ? *MergedCheck
311 : hoistChecks(ChecksToHoist,
312 getCondition(ToWiden), InsertPt);
314 if (isGuardAsWidenableBranch(ToWiden)) {
315 setWidenableBranchCond(cast<BranchInst>(ToWiden), Result);
316 return;
318 setCondition(ToWiden, Result);
321 public:
322 explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree *PDT,
323 LoopInfo &LI, AssumptionCache &AC,
324 MemorySSAUpdater *MSSAU, DomTreeNode *Root,
325 std::function<bool(BasicBlock *)> BlockFilter)
326 : DT(DT), PDT(PDT), LI(LI), AC(AC), MSSAU(MSSAU), Root(Root),
327 BlockFilter(BlockFilter) {}
329 /// The entry point for this pass.
330 bool run();
334 static bool isSupportedGuardInstruction(const Instruction *Insn) {
335 if (isGuard(Insn))
336 return true;
337 if (WidenBranchGuards && isGuardAsWidenableBranch(Insn))
338 return true;
339 return false;
342 bool GuardWideningImpl::run() {
343 DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> GuardsInBlock;
344 bool Changed = false;
345 for (auto DFI = df_begin(Root), DFE = df_end(Root);
346 DFI != DFE; ++DFI) {
347 auto *BB = (*DFI)->getBlock();
348 if (!BlockFilter(BB))
349 continue;
351 auto &CurrentList = GuardsInBlock[BB];
353 for (auto &I : *BB)
354 if (isSupportedGuardInstruction(&I))
355 CurrentList.push_back(cast<Instruction>(&I));
357 for (auto *II : CurrentList)
358 Changed |= eliminateInstrViaWidening(II, DFI, GuardsInBlock);
361 assert(EliminatedGuardsAndBranches.empty() || Changed);
362 for (auto *I : EliminatedGuardsAndBranches)
363 if (!WidenedGuards.count(I)) {
364 assert(isa<ConstantInt>(getCondition(I)) && "Should be!");
365 if (isSupportedGuardInstruction(I))
366 eliminateGuard(I, MSSAU);
367 else {
368 assert(isa<BranchInst>(I) &&
369 "Eliminated something other than guard or branch?");
370 ++CondBranchEliminated;
374 return Changed;
377 bool GuardWideningImpl::eliminateInstrViaWidening(
378 Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
379 const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>>
380 &GuardsInBlock) {
381 SmallVector<Value *> ChecksToHoist;
382 parseWidenableGuard(Instr, ChecksToHoist);
383 // Ignore trivial true or false conditions. These instructions will be
384 // trivially eliminated by any cleanup pass. Do not erase them because other
385 // guards can possibly be widened into them.
386 if (ChecksToHoist.empty() ||
387 (ChecksToHoist.size() == 1 && isa<ConstantInt>(ChecksToHoist.front())))
388 return false;
390 Instruction *BestSoFar = nullptr;
391 auto BestScoreSoFar = WS_IllegalOrNegative;
393 // In the set of dominating guards, find the one we can merge GuardInst with
394 // for the most profit.
395 for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) {
396 auto *CurBB = DFSI.getPath(i)->getBlock();
397 if (!BlockFilter(CurBB))
398 break;
399 assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!");
400 const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second;
402 auto I = GuardsInCurBB.begin();
403 auto E = Instr->getParent() == CurBB ? find(GuardsInCurBB, Instr)
404 : GuardsInCurBB.end();
406 #ifndef NDEBUG
408 unsigned Index = 0;
409 for (auto &I : *CurBB) {
410 if (Index == GuardsInCurBB.size())
411 break;
412 if (GuardsInCurBB[Index] == &I)
413 Index++;
415 assert(Index == GuardsInCurBB.size() &&
416 "Guards expected to be in order!");
418 #endif
420 assert((i == (e - 1)) == (Instr->getParent() == CurBB) && "Bad DFS?");
422 for (auto *Candidate : make_range(I, E)) {
423 auto *WideningPoint = findInsertionPointForWideCondition(Candidate);
424 if (!WideningPoint)
425 continue;
426 SmallVector<Value *> CandidateChecks;
427 parseWidenableGuard(Candidate, CandidateChecks);
428 auto Score = computeWideningScore(Instr, Candidate, WideningPoint,
429 ChecksToHoist, CandidateChecks);
430 LLVM_DEBUG(dbgs() << "Score between " << *Instr << " and " << *Candidate
431 << " is " << scoreTypeToString(Score) << "\n");
432 if (Score > BestScoreSoFar) {
433 BestScoreSoFar = Score;
434 BestSoFar = Candidate;
439 if (BestScoreSoFar == WS_IllegalOrNegative) {
440 LLVM_DEBUG(dbgs() << "Did not eliminate guard " << *Instr << "\n");
441 return false;
444 assert(BestSoFar != Instr && "Should have never visited same guard!");
445 assert(DT.dominates(BestSoFar, Instr) && "Should be!");
447 LLVM_DEBUG(dbgs() << "Widening " << *Instr << " into " << *BestSoFar
448 << " with score " << scoreTypeToString(BestScoreSoFar)
449 << "\n");
450 SmallVector<Value *> ChecksToWiden;
451 parseWidenableGuard(BestSoFar, ChecksToWiden);
452 widenGuard(ChecksToHoist, ChecksToWiden, BestSoFar);
453 auto NewGuardCondition = ConstantInt::getTrue(Instr->getContext());
454 setCondition(Instr, NewGuardCondition);
455 EliminatedGuardsAndBranches.push_back(Instr);
456 WidenedGuards.insert(BestSoFar);
457 return true;
460 GuardWideningImpl::WideningScore GuardWideningImpl::computeWideningScore(
461 Instruction *DominatedInstr, Instruction *ToWiden,
462 Instruction *WideningPoint, SmallVectorImpl<Value *> &ChecksToHoist,
463 SmallVectorImpl<Value *> &ChecksToWiden) {
464 Loop *DominatedInstrLoop = LI.getLoopFor(DominatedInstr->getParent());
465 Loop *DominatingGuardLoop = LI.getLoopFor(WideningPoint->getParent());
466 bool HoistingOutOfLoop = false;
468 if (DominatingGuardLoop != DominatedInstrLoop) {
469 // Be conservative and don't widen into a sibling loop. TODO: If the
470 // sibling is colder, we should consider allowing this.
471 if (DominatingGuardLoop &&
472 !DominatingGuardLoop->contains(DominatedInstrLoop))
473 return WS_IllegalOrNegative;
475 HoistingOutOfLoop = true;
478 if (!canBeHoistedTo(ChecksToHoist, WideningPoint))
479 return WS_IllegalOrNegative;
480 // Further in the GuardWideningImpl::hoistChecks the entire condition might be
481 // widened, not the parsed list of checks. So we need to check the possibility
482 // of that condition hoisting.
483 if (!canBeHoistedTo(getCondition(ToWiden), WideningPoint))
484 return WS_IllegalOrNegative;
486 // If the guard was conditional executed, it may never be reached
487 // dynamically. There are two potential downsides to hoisting it out of the
488 // conditionally executed region: 1) we may spuriously deopt without need and
489 // 2) we have the extra cost of computing the guard condition in the common
490 // case. At the moment, we really only consider the second in our heuristic
491 // here. TODO: evaluate cost model for spurious deopt
492 // NOTE: As written, this also lets us hoist right over another guard which
493 // is essentially just another spelling for control flow.
494 if (isWideningCondProfitable(ChecksToHoist, ChecksToWiden))
495 return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive;
497 if (HoistingOutOfLoop)
498 return WS_Positive;
500 // For a given basic block \p BB, return its successor which is guaranteed or
501 // highly likely will be taken as its successor.
502 auto GetLikelySuccessor = [](const BasicBlock * BB)->const BasicBlock * {
503 if (auto *UniqueSucc = BB->getUniqueSuccessor())
504 return UniqueSucc;
505 auto *Term = BB->getTerminator();
506 Value *Cond = nullptr;
507 const BasicBlock *IfTrue = nullptr, *IfFalse = nullptr;
508 using namespace PatternMatch;
509 if (!match(Term, m_Br(m_Value(Cond), m_BasicBlock(IfTrue),
510 m_BasicBlock(IfFalse))))
511 return nullptr;
512 // For constant conditions, only one dynamical successor is possible
513 if (auto *ConstCond = dyn_cast<ConstantInt>(Cond))
514 return ConstCond->isAllOnesValue() ? IfTrue : IfFalse;
515 // If one of successors ends with deopt, another one is likely.
516 if (IfFalse->getPostdominatingDeoptimizeCall())
517 return IfTrue;
518 if (IfTrue->getPostdominatingDeoptimizeCall())
519 return IfFalse;
520 // TODO: Use branch frequency metatada to allow hoisting through non-deopt
521 // branches?
522 return nullptr;
525 // Returns true if we might be hoisting above explicit control flow into a
526 // considerably hotter block. Note that this completely ignores implicit
527 // control flow (guards, calls which throw, etc...). That choice appears
528 // arbitrary (we assume that implicit control flow exits are all rare).
529 auto MaybeHoistingToHotterBlock = [&]() {
530 const auto *DominatingBlock = WideningPoint->getParent();
531 const auto *DominatedBlock = DominatedInstr->getParent();
533 // Descend as low as we can, always taking the likely successor.
534 assert(DT.isReachableFromEntry(DominatingBlock) && "Unreached code");
535 assert(DT.isReachableFromEntry(DominatedBlock) && "Unreached code");
536 assert(DT.dominates(DominatingBlock, DominatedBlock) && "No dominance");
537 while (DominatedBlock != DominatingBlock) {
538 auto *LikelySucc = GetLikelySuccessor(DominatingBlock);
539 // No likely successor?
540 if (!LikelySucc)
541 break;
542 // Only go down the dominator tree.
543 if (!DT.properlyDominates(DominatingBlock, LikelySucc))
544 break;
545 DominatingBlock = LikelySucc;
548 // Found?
549 if (DominatedBlock == DominatingBlock)
550 return false;
551 // We followed the likely successor chain and went past the dominated
552 // block. It means that the dominated guard is in dead/very cold code.
553 if (!DT.dominates(DominatingBlock, DominatedBlock))
554 return true;
555 // TODO: diamond, triangle cases
556 if (!PDT)
557 return true;
558 return !PDT->dominates(DominatedBlock, DominatingBlock);
561 return MaybeHoistingToHotterBlock() ? WS_IllegalOrNegative : WS_Neutral;
564 bool GuardWideningImpl::canBeHoistedTo(
565 const Value *V, const Instruction *Loc,
566 SmallPtrSetImpl<const Instruction *> &Visited) const {
567 auto *Inst = dyn_cast<Instruction>(V);
568 if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst))
569 return true;
571 if (!isSafeToSpeculativelyExecute(Inst, Loc, &AC, &DT) ||
572 Inst->mayReadFromMemory())
573 return false;
575 Visited.insert(Inst);
577 // We only want to go _up_ the dominance chain when recursing.
578 assert(!isa<PHINode>(Loc) &&
579 "PHIs should return false for isSafeToSpeculativelyExecute");
580 assert(DT.isReachableFromEntry(Inst->getParent()) &&
581 "We did a DFS from the block entry!");
582 return all_of(Inst->operands(),
583 [&](Value *Op) { return canBeHoistedTo(Op, Loc, Visited); });
586 void GuardWideningImpl::makeAvailableAt(Value *V, Instruction *Loc) const {
587 auto *Inst = dyn_cast<Instruction>(V);
588 if (!Inst || DT.dominates(Inst, Loc))
589 return;
591 assert(isSafeToSpeculativelyExecute(Inst, Loc, &AC, &DT) &&
592 !Inst->mayReadFromMemory() &&
593 "Should've checked with canBeHoistedTo!");
595 for (Value *Op : Inst->operands())
596 makeAvailableAt(Op, Loc);
598 Inst->moveBefore(Loc);
601 // Return Instruction before which we can insert freeze for the value V as close
602 // to def as possible. If there is no place to add freeze, return nullptr.
603 static Instruction *getFreezeInsertPt(Value *V, const DominatorTree &DT) {
604 auto *I = dyn_cast<Instruction>(V);
605 if (!I)
606 return &*DT.getRoot()->getFirstNonPHIOrDbgOrAlloca();
608 auto *Res = I->getInsertionPointAfterDef();
609 // If there is no place to add freeze - return nullptr.
610 if (!Res || !DT.dominates(I, Res))
611 return nullptr;
613 // If there is a User dominated by original I, then it should be dominated
614 // by Freeze instruction as well.
615 if (any_of(I->users(), [&](User *U) {
616 Instruction *User = cast<Instruction>(U);
617 return Res != User && DT.dominates(I, User) && !DT.dominates(Res, User);
619 return nullptr;
620 return Res;
623 Value *GuardWideningImpl::freezeAndPush(Value *Orig, Instruction *InsertPt) {
624 if (isGuaranteedNotToBePoison(Orig, nullptr, InsertPt, &DT))
625 return Orig;
626 Instruction *InsertPtAtDef = getFreezeInsertPt(Orig, DT);
627 if (!InsertPtAtDef)
628 return new FreezeInst(Orig, "gw.freeze", InsertPt);
629 if (isa<Constant>(Orig) || isa<GlobalValue>(Orig))
630 return new FreezeInst(Orig, "gw.freeze", InsertPtAtDef);
632 SmallSet<Value *, 16> Visited;
633 SmallVector<Value *, 16> Worklist;
634 SmallSet<Instruction *, 16> DropPoisonFlags;
635 SmallVector<Value *, 16> NeedFreeze;
636 DenseMap<Value *, FreezeInst *> CacheOfFreezes;
638 // A bit overloaded data structures. Visited contains constant/GV
639 // if we already met it. In this case CacheOfFreezes has a freeze if it is
640 // required.
641 auto handleConstantOrGlobal = [&](Use &U) {
642 Value *Def = U.get();
643 if (!isa<Constant>(Def) && !isa<GlobalValue>(Def))
644 return false;
646 if (Visited.insert(Def).second) {
647 if (isGuaranteedNotToBePoison(Def, nullptr, InsertPt, &DT))
648 return true;
649 CacheOfFreezes[Def] = new FreezeInst(Def, Def->getName() + ".gw.fr",
650 getFreezeInsertPt(Def, DT));
653 if (CacheOfFreezes.count(Def))
654 U.set(CacheOfFreezes[Def]);
655 return true;
658 Worklist.push_back(Orig);
659 while (!Worklist.empty()) {
660 Value *V = Worklist.pop_back_val();
661 if (!Visited.insert(V).second)
662 continue;
664 if (isGuaranteedNotToBePoison(V, nullptr, InsertPt, &DT))
665 continue;
667 Instruction *I = dyn_cast<Instruction>(V);
668 if (!I || canCreateUndefOrPoison(cast<Operator>(I),
669 /*ConsiderFlagsAndMetadata*/ false)) {
670 NeedFreeze.push_back(V);
671 continue;
673 // Check all operands. If for any of them we cannot insert Freeze,
674 // stop here. Otherwise, iterate.
675 if (any_of(I->operands(), [&](Value *Op) {
676 return isa<Instruction>(Op) && !getFreezeInsertPt(Op, DT);
677 })) {
678 NeedFreeze.push_back(I);
679 continue;
681 DropPoisonFlags.insert(I);
682 for (Use &U : I->operands())
683 if (!handleConstantOrGlobal(U))
684 Worklist.push_back(U.get());
686 for (Instruction *I : DropPoisonFlags)
687 I->dropPoisonGeneratingFlagsAndMetadata();
689 Value *Result = Orig;
690 for (Value *V : NeedFreeze) {
691 auto *FreezeInsertPt = getFreezeInsertPt(V, DT);
692 FreezeInst *FI = new FreezeInst(V, V->getName() + ".gw.fr", FreezeInsertPt);
693 ++FreezeAdded;
694 if (V == Orig)
695 Result = FI;
696 V->replaceUsesWithIf(
697 FI, [&](const Use & U)->bool { return U.getUser() != FI; });
700 return Result;
703 std::optional<Value *>
704 GuardWideningImpl::mergeChecks(SmallVectorImpl<Value *> &ChecksToHoist,
705 SmallVectorImpl<Value *> &ChecksToWiden,
706 Instruction *InsertPt) {
707 using namespace llvm::PatternMatch;
709 Value *Result = nullptr;
711 // L >u C0 && L >u C1 -> L >u max(C0, C1)
712 ConstantInt *RHS0, *RHS1;
713 Value *LHS;
714 ICmpInst::Predicate Pred0, Pred1;
715 // TODO: Support searching for pairs to merge from both whole lists of
716 // ChecksToHoist and ChecksToWiden.
717 if (ChecksToWiden.size() == 1 && ChecksToHoist.size() == 1 &&
718 match(ChecksToWiden.front(),
719 m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) &&
720 match(ChecksToHoist.front(),
721 m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) {
723 ConstantRange CR0 =
724 ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue());
725 ConstantRange CR1 =
726 ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue());
728 // Given what we're doing here and the semantics of guards, it would
729 // be correct to use a subset intersection, but that may be too
730 // aggressive in cases we care about.
731 if (std::optional<ConstantRange> Intersect =
732 CR0.exactIntersectWith(CR1)) {
733 APInt NewRHSAP;
734 CmpInst::Predicate Pred;
735 if (Intersect->getEquivalentICmp(Pred, NewRHSAP)) {
736 if (InsertPt) {
737 ConstantInt *NewRHS =
738 ConstantInt::get(InsertPt->getContext(), NewRHSAP);
739 assert(canBeHoistedTo(LHS, InsertPt) && "must be");
740 makeAvailableAt(LHS, InsertPt);
741 Result = new ICmpInst(InsertPt, Pred, LHS, NewRHS, "wide.chk");
743 return Result;
750 SmallVector<GuardWideningImpl::RangeCheck, 4> Checks, CombinedChecks;
751 if (parseRangeChecks(ChecksToWiden, Checks) &&
752 parseRangeChecks(ChecksToHoist, Checks) &&
753 combineRangeChecks(Checks, CombinedChecks)) {
754 if (InsertPt) {
755 for (auto &RC : CombinedChecks) {
756 makeAvailableAt(RC.getCheckInst(), InsertPt);
757 if (Result)
758 Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "",
759 InsertPt);
760 else
761 Result = RC.getCheckInst();
763 assert(Result && "Failed to find result value");
764 Result->setName("wide.chk");
765 Result = freezeAndPush(Result, InsertPt);
767 return Result;
770 // We were not able to compute ChecksToHoist AND ChecksToWiden for the price
771 // of one.
772 return std::nullopt;
775 Value *GuardWideningImpl::hoistChecks(SmallVectorImpl<Value *> &ChecksToHoist,
776 Value *OldCondition,
777 Instruction *InsertPt) {
778 assert(!ChecksToHoist.empty());
779 IRBuilder<> Builder(InsertPt);
780 makeAvailableAt(ChecksToHoist, InsertPt);
781 makeAvailableAt(OldCondition, InsertPt);
782 Value *Result = Builder.CreateAnd(ChecksToHoist);
783 Result = freezeAndPush(Result, InsertPt);
784 Result = Builder.CreateAnd(OldCondition, Result);
785 Result->setName("wide.chk");
786 return Result;
789 bool GuardWideningImpl::parseRangeChecks(
790 Value *CheckCond, SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks) {
791 using namespace llvm::PatternMatch;
793 auto *IC = dyn_cast<ICmpInst>(CheckCond);
794 if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() ||
795 (IC->getPredicate() != ICmpInst::ICMP_ULT &&
796 IC->getPredicate() != ICmpInst::ICMP_UGT))
797 return false;
799 const Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1);
800 if (IC->getPredicate() == ICmpInst::ICMP_UGT)
801 std::swap(CmpLHS, CmpRHS);
803 auto &DL = IC->getModule()->getDataLayout();
805 GuardWideningImpl::RangeCheck Check(
806 CmpLHS, cast<ConstantInt>(ConstantInt::getNullValue(CmpRHS->getType())),
807 CmpRHS, IC);
809 if (!isKnownNonNegative(Check.getLength(), DL))
810 return false;
812 // What we have in \c Check now is a correct interpretation of \p CheckCond.
813 // Try to see if we can move some constant offsets into the \c Offset field.
815 bool Changed;
816 auto &Ctx = CheckCond->getContext();
818 do {
819 Value *OpLHS;
820 ConstantInt *OpRHS;
821 Changed = false;
823 #ifndef NDEBUG
824 auto *BaseInst = dyn_cast<Instruction>(Check.getBase());
825 assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) &&
826 "Unreachable instruction?");
827 #endif
829 if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
830 Check.setBase(OpLHS);
831 APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
832 Check.setOffset(ConstantInt::get(Ctx, NewOffset));
833 Changed = true;
834 } else if (match(Check.getBase(),
835 m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
836 KnownBits Known = computeKnownBits(OpLHS, DL);
837 if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) {
838 Check.setBase(OpLHS);
839 APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
840 Check.setOffset(ConstantInt::get(Ctx, NewOffset));
841 Changed = true;
844 } while (Changed);
846 Checks.push_back(Check);
847 return true;
850 bool GuardWideningImpl::combineRangeChecks(
851 SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
852 SmallVectorImpl<GuardWideningImpl::RangeCheck> &RangeChecksOut) const {
853 unsigned OldCount = Checks.size();
854 while (!Checks.empty()) {
855 // Pick all of the range checks with a specific base and length, and try to
856 // merge them.
857 const Value *CurrentBase = Checks.front().getBase();
858 const Value *CurrentLength = Checks.front().getLength();
860 SmallVector<GuardWideningImpl::RangeCheck, 3> CurrentChecks;
862 auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) {
863 return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength;
866 copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck);
867 erase_if(Checks, IsCurrentCheck);
869 assert(CurrentChecks.size() != 0 && "We know we have at least one!");
871 if (CurrentChecks.size() < 3) {
872 llvm::append_range(RangeChecksOut, CurrentChecks);
873 continue;
876 // CurrentChecks.size() will typically be 3 here, but so far there has been
877 // no need to hard-code that fact.
879 llvm::sort(CurrentChecks, [&](const GuardWideningImpl::RangeCheck &LHS,
880 const GuardWideningImpl::RangeCheck &RHS) {
881 return LHS.getOffsetValue().slt(RHS.getOffsetValue());
884 // Note: std::sort should not invalidate the ChecksStart iterator.
886 const ConstantInt *MinOffset = CurrentChecks.front().getOffset();
887 const ConstantInt *MaxOffset = CurrentChecks.back().getOffset();
889 unsigned BitWidth = MaxOffset->getValue().getBitWidth();
890 if ((MaxOffset->getValue() - MinOffset->getValue())
891 .ugt(APInt::getSignedMinValue(BitWidth)))
892 return false;
894 APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue();
895 const APInt &HighOffset = MaxOffset->getValue();
896 auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) {
897 return (HighOffset - RC.getOffsetValue()).ult(MaxDiff);
900 if (MaxDiff.isMinValue() || !all_of(drop_begin(CurrentChecks), OffsetOK))
901 return false;
903 // We have a series of f+1 checks as:
905 // I+k_0 u< L ... Chk_0
906 // I+k_1 u< L ... Chk_1
907 // ...
908 // I+k_f u< L ... Chk_f
910 // with forall i in [0,f]: k_f-k_i u< k_f-k_0 ... Precond_0
911 // k_f-k_0 u< INT_MIN+k_f ... Precond_1
912 // k_f != k_0 ... Precond_2
914 // Claim:
915 // Chk_0 AND Chk_f implies all the other checks
917 // Informal proof sketch:
919 // We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap
920 // (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and
921 // thus I+k_f is the greatest unsigned value in that range.
923 // This combined with Ckh_(f+1) shows that everything in that range is u< L.
924 // Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1)
925 // lie in [I+k_0,I+k_f], this proving our claim.
927 // To see that [I+k_0,I+k_f] is not a wrapping range, note that there are
928 // two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal
929 // since k_0 != k_f). In the former case, [I+k_0,I+k_f] is not a wrapping
930 // range by definition, and the latter case is impossible:
932 // 0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1)
933 // xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
935 // For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted
936 // with 'x' above) to be at least >u INT_MIN.
938 RangeChecksOut.emplace_back(CurrentChecks.front());
939 RangeChecksOut.emplace_back(CurrentChecks.back());
942 assert(RangeChecksOut.size() <= OldCount && "We pessimized!");
943 return RangeChecksOut.size() != OldCount;
946 #ifndef NDEBUG
947 StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) {
948 switch (WS) {
949 case WS_IllegalOrNegative:
950 return "IllegalOrNegative";
951 case WS_Neutral:
952 return "Neutral";
953 case WS_Positive:
954 return "Positive";
955 case WS_VeryPositive:
956 return "VeryPositive";
959 llvm_unreachable("Fully covered switch above!");
961 #endif
963 PreservedAnalyses GuardWideningPass::run(Function &F,
964 FunctionAnalysisManager &AM) {
965 // Avoid requesting analyses if there are no guards or widenable conditions.
966 auto *GuardDecl = F.getParent()->getFunction(
967 Intrinsic::getName(Intrinsic::experimental_guard));
968 bool HasIntrinsicGuards = GuardDecl && !GuardDecl->use_empty();
969 auto *WCDecl = F.getParent()->getFunction(
970 Intrinsic::getName(Intrinsic::experimental_widenable_condition));
971 bool HasWidenableConditions = WCDecl && !WCDecl->use_empty();
972 if (!HasIntrinsicGuards && !HasWidenableConditions)
973 return PreservedAnalyses::all();
974 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
975 auto &LI = AM.getResult<LoopAnalysis>(F);
976 auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
977 auto &AC = AM.getResult<AssumptionAnalysis>(F);
978 auto *MSSAA = AM.getCachedResult<MemorySSAAnalysis>(F);
979 std::unique_ptr<MemorySSAUpdater> MSSAU;
980 if (MSSAA)
981 MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAA->getMSSA());
982 if (!GuardWideningImpl(DT, &PDT, LI, AC, MSSAU ? MSSAU.get() : nullptr,
983 DT.getRootNode(), [](BasicBlock *) { return true; })
984 .run())
985 return PreservedAnalyses::all();
987 PreservedAnalyses PA;
988 PA.preserveSet<CFGAnalyses>();
989 PA.preserve<MemorySSAAnalysis>();
990 return PA;
993 PreservedAnalyses GuardWideningPass::run(Loop &L, LoopAnalysisManager &AM,
994 LoopStandardAnalysisResults &AR,
995 LPMUpdater &U) {
996 BasicBlock *RootBB = L.getLoopPredecessor();
997 if (!RootBB)
998 RootBB = L.getHeader();
999 auto BlockFilter = [&](BasicBlock *BB) {
1000 return BB == RootBB || L.contains(BB);
1002 std::unique_ptr<MemorySSAUpdater> MSSAU;
1003 if (AR.MSSA)
1004 MSSAU = std::make_unique<MemorySSAUpdater>(AR.MSSA);
1005 if (!GuardWideningImpl(AR.DT, nullptr, AR.LI, AR.AC,
1006 MSSAU ? MSSAU.get() : nullptr, AR.DT.getNode(RootBB),
1007 BlockFilter)
1008 .run())
1009 return PreservedAnalyses::all();
1011 auto PA = getLoopPassPreservedAnalyses();
1012 if (AR.MSSA)
1013 PA.preserve<MemorySSAAnalysis>();
1014 return PA;
1017 namespace {
1018 /// Restricted to a single loop at a time. Can be
1019 /// scheduled with other loop passes w/o breaking out of LPM
1020 struct LoopGuardWideningLegacyPass : public LoopPass {
1021 static char ID;
1023 LoopGuardWideningLegacyPass() : LoopPass(ID) {
1024 initializeLoopGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
1027 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1028 if (skipLoop(L))
1029 return false;
1030 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1031 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1032 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
1033 *L->getHeader()->getParent());
1034 auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
1035 auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
1036 auto *MSSAWP = getAnalysisIfAvailable<MemorySSAWrapperPass>();
1037 std::unique_ptr<MemorySSAUpdater> MSSAU;
1038 if (MSSAWP)
1039 MSSAU = std::make_unique<MemorySSAUpdater>(&MSSAWP->getMSSA());
1041 BasicBlock *RootBB = L->getLoopPredecessor();
1042 if (!RootBB)
1043 RootBB = L->getHeader();
1044 auto BlockFilter = [&](BasicBlock *BB) {
1045 return BB == RootBB || L->contains(BB);
1047 return GuardWideningImpl(DT, PDT, LI, AC, MSSAU ? MSSAU.get() : nullptr,
1048 DT.getNode(RootBB), BlockFilter)
1049 .run();
1052 void getAnalysisUsage(AnalysisUsage &AU) const override {
1053 AU.setPreservesCFG();
1054 getLoopAnalysisUsage(AU);
1055 AU.addPreserved<PostDominatorTreeWrapperPass>();
1056 AU.addPreserved<MemorySSAWrapperPass>();
1061 char LoopGuardWideningLegacyPass::ID = 0;
1063 INITIALIZE_PASS_BEGIN(LoopGuardWideningLegacyPass, "loop-guard-widening",
1064 "Widen guards (within a single loop, as a loop pass)",
1065 false, false)
1066 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1067 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
1068 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1069 INITIALIZE_PASS_END(LoopGuardWideningLegacyPass, "loop-guard-widening",
1070 "Widen guards (within a single loop, as a loop pass)",
1071 false, false)
1073 Pass *llvm::createLoopGuardWideningPass() {
1074 return new LoopGuardWideningLegacyPass();