[Hexagon] Handle 64-bit operands when lowering ADDO/SUBO
[llvm-project.git] / llvm / lib / Target / Hexagon / HexagonISelLowering.cpp
blobdb2d2eb9813c4e6c6b8c092ea648f2992d68f4f3
1 //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interfaces that Hexagon uses to lower LLVM code
10 // into a selection DAG.
12 //===----------------------------------------------------------------------===//
14 #include "HexagonISelLowering.h"
15 #include "Hexagon.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "HexagonTargetMachine.h"
20 #include "HexagonTargetObjectFile.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RuntimeLibcalls.h"
31 #include "llvm/CodeGen/SelectionDAG.h"
32 #include "llvm/CodeGen/TargetCallingConv.h"
33 #include "llvm/CodeGen/ValueTypes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/IR/DiagnosticPrinter.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GlobalValue.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/IntrinsicsHexagon.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/MC/MCRegisterInfo.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CodeGen.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetMachine.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstddef>
63 #include <cstdint>
64 #include <limits>
65 #include <utility>
67 using namespace llvm;
69 #define DEBUG_TYPE "hexagon-lowering"
71 static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
72 cl::init(true), cl::Hidden,
73 cl::desc("Control jump table emission on Hexagon target"));
75 static cl::opt<bool>
76 EnableHexSDNodeSched("enable-hexagon-sdnode-sched", cl::Hidden,
77 cl::desc("Enable Hexagon SDNode scheduling"));
79 static cl::opt<bool> EnableFastMath("ffast-math", cl::Hidden,
80 cl::desc("Enable Fast Math processing"));
82 static cl::opt<int> MinimumJumpTables("minimum-jump-tables", cl::Hidden,
83 cl::init(5),
84 cl::desc("Set minimum jump tables"));
86 static cl::opt<int>
87 MaxStoresPerMemcpyCL("max-store-memcpy", cl::Hidden, cl::init(6),
88 cl::desc("Max #stores to inline memcpy"));
90 static cl::opt<int>
91 MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os", cl::Hidden, cl::init(4),
92 cl::desc("Max #stores to inline memcpy"));
94 static cl::opt<int>
95 MaxStoresPerMemmoveCL("max-store-memmove", cl::Hidden, cl::init(6),
96 cl::desc("Max #stores to inline memmove"));
98 static cl::opt<int>
99 MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os", cl::Hidden,
100 cl::init(4),
101 cl::desc("Max #stores to inline memmove"));
103 static cl::opt<int>
104 MaxStoresPerMemsetCL("max-store-memset", cl::Hidden, cl::init(8),
105 cl::desc("Max #stores to inline memset"));
107 static cl::opt<int>
108 MaxStoresPerMemsetOptSizeCL("max-store-memset-Os", cl::Hidden, cl::init(4),
109 cl::desc("Max #stores to inline memset"));
111 static cl::opt<bool> AlignLoads("hexagon-align-loads",
112 cl::Hidden, cl::init(false),
113 cl::desc("Rewrite unaligned loads as a pair of aligned loads"));
115 static cl::opt<bool>
116 DisableArgsMinAlignment("hexagon-disable-args-min-alignment", cl::Hidden,
117 cl::init(false),
118 cl::desc("Disable minimum alignment of 1 for "
119 "arguments passed by value on stack"));
121 namespace {
123 class HexagonCCState : public CCState {
124 unsigned NumNamedVarArgParams = 0;
126 public:
127 HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
128 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
129 unsigned NumNamedArgs)
130 : CCState(CC, IsVarArg, MF, locs, C),
131 NumNamedVarArgParams(NumNamedArgs) {}
132 unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
135 } // end anonymous namespace
138 // Implement calling convention for Hexagon.
140 static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
141 CCValAssign::LocInfo &LocInfo,
142 ISD::ArgFlagsTy &ArgFlags, CCState &State) {
143 static const MCPhysReg ArgRegs[] = {
144 Hexagon::R0, Hexagon::R1, Hexagon::R2,
145 Hexagon::R3, Hexagon::R4, Hexagon::R5
147 const unsigned NumArgRegs = std::size(ArgRegs);
148 unsigned RegNum = State.getFirstUnallocated(ArgRegs);
150 // RegNum is an index into ArgRegs: skip a register if RegNum is odd.
151 if (RegNum != NumArgRegs && RegNum % 2 == 1)
152 State.AllocateReg(ArgRegs[RegNum]);
154 // Always return false here, as this function only makes sure that the first
155 // unallocated register has an even register number and does not actually
156 // allocate a register for the current argument.
157 return false;
160 #include "HexagonGenCallingConv.inc"
163 SDValue
164 HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
165 const {
166 return SDValue();
169 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
170 /// by "Src" to address "Dst" of size "Size". Alignment information is
171 /// specified by the specific parameter attribute. The copy will be passed as
172 /// a byval function parameter. Sometimes what we are copying is the end of a
173 /// larger object, the part that does not fit in registers.
174 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
175 SDValue Chain, ISD::ArgFlagsTy Flags,
176 SelectionDAG &DAG, const SDLoc &dl) {
177 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
178 return DAG.getMemcpy(
179 Chain, dl, Dst, Src, SizeNode, Flags.getNonZeroByValAlign(),
180 /*isVolatile=*/false, /*AlwaysInline=*/false,
181 /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo());
184 bool
185 HexagonTargetLowering::CanLowerReturn(
186 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
187 const SmallVectorImpl<ISD::OutputArg> &Outs,
188 LLVMContext &Context) const {
189 SmallVector<CCValAssign, 16> RVLocs;
190 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
192 if (MF.getSubtarget<HexagonSubtarget>().useHVXOps())
193 return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX);
194 return CCInfo.CheckReturn(Outs, RetCC_Hexagon);
197 // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
198 // passed by value, the function prototype is modified to return void and
199 // the value is stored in memory pointed by a pointer passed by caller.
200 SDValue
201 HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
202 bool IsVarArg,
203 const SmallVectorImpl<ISD::OutputArg> &Outs,
204 const SmallVectorImpl<SDValue> &OutVals,
205 const SDLoc &dl, SelectionDAG &DAG) const {
206 // CCValAssign - represent the assignment of the return value to locations.
207 SmallVector<CCValAssign, 16> RVLocs;
209 // CCState - Info about the registers and stack slot.
210 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
211 *DAG.getContext());
213 // Analyze return values of ISD::RET
214 if (Subtarget.useHVXOps())
215 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX);
216 else
217 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
219 SDValue Glue;
220 SmallVector<SDValue, 4> RetOps(1, Chain);
222 // Copy the result values into the output registers.
223 for (unsigned i = 0; i != RVLocs.size(); ++i) {
224 CCValAssign &VA = RVLocs[i];
225 SDValue Val = OutVals[i];
227 switch (VA.getLocInfo()) {
228 default:
229 // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
230 llvm_unreachable("Unknown loc info!");
231 case CCValAssign::Full:
232 break;
233 case CCValAssign::BCvt:
234 Val = DAG.getBitcast(VA.getLocVT(), Val);
235 break;
236 case CCValAssign::SExt:
237 Val = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Val);
238 break;
239 case CCValAssign::ZExt:
240 Val = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Val);
241 break;
242 case CCValAssign::AExt:
243 Val = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Val);
244 break;
247 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Val, Glue);
249 // Guarantee that all emitted copies are stuck together with flags.
250 Glue = Chain.getValue(1);
251 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
254 RetOps[0] = Chain; // Update chain.
256 // Add the glue if we have it.
257 if (Glue.getNode())
258 RetOps.push_back(Glue);
260 return DAG.getNode(HexagonISD::RET_GLUE, dl, MVT::Other, RetOps);
263 bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
264 // If either no tail call or told not to tail call at all, don't.
265 return CI->isTailCall();
268 Register HexagonTargetLowering::getRegisterByName(
269 const char* RegName, LLT VT, const MachineFunction &) const {
270 // Just support r19, the linux kernel uses it.
271 Register Reg = StringSwitch<Register>(RegName)
272 .Case("r0", Hexagon::R0)
273 .Case("r1", Hexagon::R1)
274 .Case("r2", Hexagon::R2)
275 .Case("r3", Hexagon::R3)
276 .Case("r4", Hexagon::R4)
277 .Case("r5", Hexagon::R5)
278 .Case("r6", Hexagon::R6)
279 .Case("r7", Hexagon::R7)
280 .Case("r8", Hexagon::R8)
281 .Case("r9", Hexagon::R9)
282 .Case("r10", Hexagon::R10)
283 .Case("r11", Hexagon::R11)
284 .Case("r12", Hexagon::R12)
285 .Case("r13", Hexagon::R13)
286 .Case("r14", Hexagon::R14)
287 .Case("r15", Hexagon::R15)
288 .Case("r16", Hexagon::R16)
289 .Case("r17", Hexagon::R17)
290 .Case("r18", Hexagon::R18)
291 .Case("r19", Hexagon::R19)
292 .Case("r20", Hexagon::R20)
293 .Case("r21", Hexagon::R21)
294 .Case("r22", Hexagon::R22)
295 .Case("r23", Hexagon::R23)
296 .Case("r24", Hexagon::R24)
297 .Case("r25", Hexagon::R25)
298 .Case("r26", Hexagon::R26)
299 .Case("r27", Hexagon::R27)
300 .Case("r28", Hexagon::R28)
301 .Case("r29", Hexagon::R29)
302 .Case("r30", Hexagon::R30)
303 .Case("r31", Hexagon::R31)
304 .Case("r1:0", Hexagon::D0)
305 .Case("r3:2", Hexagon::D1)
306 .Case("r5:4", Hexagon::D2)
307 .Case("r7:6", Hexagon::D3)
308 .Case("r9:8", Hexagon::D4)
309 .Case("r11:10", Hexagon::D5)
310 .Case("r13:12", Hexagon::D6)
311 .Case("r15:14", Hexagon::D7)
312 .Case("r17:16", Hexagon::D8)
313 .Case("r19:18", Hexagon::D9)
314 .Case("r21:20", Hexagon::D10)
315 .Case("r23:22", Hexagon::D11)
316 .Case("r25:24", Hexagon::D12)
317 .Case("r27:26", Hexagon::D13)
318 .Case("r29:28", Hexagon::D14)
319 .Case("r31:30", Hexagon::D15)
320 .Case("sp", Hexagon::R29)
321 .Case("fp", Hexagon::R30)
322 .Case("lr", Hexagon::R31)
323 .Case("p0", Hexagon::P0)
324 .Case("p1", Hexagon::P1)
325 .Case("p2", Hexagon::P2)
326 .Case("p3", Hexagon::P3)
327 .Case("sa0", Hexagon::SA0)
328 .Case("lc0", Hexagon::LC0)
329 .Case("sa1", Hexagon::SA1)
330 .Case("lc1", Hexagon::LC1)
331 .Case("m0", Hexagon::M0)
332 .Case("m1", Hexagon::M1)
333 .Case("usr", Hexagon::USR)
334 .Case("ugp", Hexagon::UGP)
335 .Case("cs0", Hexagon::CS0)
336 .Case("cs1", Hexagon::CS1)
337 .Default(Register());
338 if (Reg)
339 return Reg;
341 report_fatal_error("Invalid register name global variable");
344 /// LowerCallResult - Lower the result values of an ISD::CALL into the
345 /// appropriate copies out of appropriate physical registers. This assumes that
346 /// Chain/Glue are the input chain/glue to use, and that TheCall is the call
347 /// being lowered. Returns a SDNode with the same number of values as the
348 /// ISD::CALL.
349 SDValue HexagonTargetLowering::LowerCallResult(
350 SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg,
351 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
352 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
353 const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
354 // Assign locations to each value returned by this call.
355 SmallVector<CCValAssign, 16> RVLocs;
357 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
358 *DAG.getContext());
360 if (Subtarget.useHVXOps())
361 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX);
362 else
363 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
365 // Copy all of the result registers out of their specified physreg.
366 for (unsigned i = 0; i != RVLocs.size(); ++i) {
367 SDValue RetVal;
368 if (RVLocs[i].getValVT() == MVT::i1) {
369 // Return values of type MVT::i1 require special handling. The reason
370 // is that MVT::i1 is associated with the PredRegs register class, but
371 // values of that type are still returned in R0. Generate an explicit
372 // copy into a predicate register from R0, and treat the value of the
373 // predicate register as the call result.
374 auto &MRI = DAG.getMachineFunction().getRegInfo();
375 SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
376 MVT::i32, Glue);
377 // FR0 = (Value, Chain, Glue)
378 Register PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
379 SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
380 FR0.getValue(0), FR0.getValue(2));
381 // TPR = (Chain, Glue)
382 // Don't glue this CopyFromReg, because it copies from a virtual
383 // register. If it is glued to the call, InstrEmitter will add it
384 // as an implicit def to the call (EmitMachineNode).
385 RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1);
386 Glue = TPR.getValue(1);
387 Chain = TPR.getValue(0);
388 } else {
389 RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
390 RVLocs[i].getValVT(), Glue);
391 Glue = RetVal.getValue(2);
392 Chain = RetVal.getValue(1);
394 InVals.push_back(RetVal.getValue(0));
397 return Chain;
400 /// LowerCall - Functions arguments are copied from virtual regs to
401 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
402 SDValue
403 HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
404 SmallVectorImpl<SDValue> &InVals) const {
405 SelectionDAG &DAG = CLI.DAG;
406 SDLoc &dl = CLI.DL;
407 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
408 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
409 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
410 SDValue Chain = CLI.Chain;
411 SDValue Callee = CLI.Callee;
412 CallingConv::ID CallConv = CLI.CallConv;
413 bool IsVarArg = CLI.IsVarArg;
414 bool DoesNotReturn = CLI.DoesNotReturn;
416 bool IsStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
417 MachineFunction &MF = DAG.getMachineFunction();
418 MachineFrameInfo &MFI = MF.getFrameInfo();
419 auto PtrVT = getPointerTy(MF.getDataLayout());
421 unsigned NumParams = CLI.CB ? CLI.CB->getFunctionType()->getNumParams() : 0;
422 if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee))
423 Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32);
425 // Linux ABI treats var-arg calls the same way as regular ones.
426 bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg;
428 // Analyze operands of the call, assigning locations to each operand.
429 SmallVector<CCValAssign, 16> ArgLocs;
430 HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs, *DAG.getContext(),
431 NumParams);
433 if (Subtarget.useHVXOps())
434 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX);
435 else if (DisableArgsMinAlignment)
436 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_Legacy);
437 else
438 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
440 if (CLI.IsTailCall) {
441 bool StructAttrFlag = MF.getFunction().hasStructRetAttr();
442 CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
443 IsVarArg, IsStructRet, StructAttrFlag, Outs,
444 OutVals, Ins, DAG);
445 for (const CCValAssign &VA : ArgLocs) {
446 if (VA.isMemLoc()) {
447 CLI.IsTailCall = false;
448 break;
451 LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n"
452 : "Argument must be passed on stack. "
453 "Not eligible for Tail Call\n"));
455 // Get a count of how many bytes are to be pushed on the stack.
456 unsigned NumBytes = CCInfo.getStackSize();
457 SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
458 SmallVector<SDValue, 8> MemOpChains;
460 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
461 SDValue StackPtr =
462 DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
464 bool NeedsArgAlign = false;
465 Align LargestAlignSeen;
466 // Walk the register/memloc assignments, inserting copies/loads.
467 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
468 CCValAssign &VA = ArgLocs[i];
469 SDValue Arg = OutVals[i];
470 ISD::ArgFlagsTy Flags = Outs[i].Flags;
471 // Record if we need > 8 byte alignment on an argument.
472 bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT());
473 NeedsArgAlign |= ArgAlign;
475 // Promote the value if needed.
476 switch (VA.getLocInfo()) {
477 default:
478 // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
479 llvm_unreachable("Unknown loc info!");
480 case CCValAssign::Full:
481 break;
482 case CCValAssign::BCvt:
483 Arg = DAG.getBitcast(VA.getLocVT(), Arg);
484 break;
485 case CCValAssign::SExt:
486 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
487 break;
488 case CCValAssign::ZExt:
489 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
490 break;
491 case CCValAssign::AExt:
492 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
493 break;
496 if (VA.isMemLoc()) {
497 unsigned LocMemOffset = VA.getLocMemOffset();
498 SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
499 StackPtr.getValueType());
500 MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
501 if (ArgAlign)
502 LargestAlignSeen = std::max(
503 LargestAlignSeen, Align(VA.getLocVT().getStoreSizeInBits() / 8));
504 if (Flags.isByVal()) {
505 // The argument is a struct passed by value. According to LLVM, "Arg"
506 // is a pointer.
507 MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
508 Flags, DAG, dl));
509 } else {
510 MachinePointerInfo LocPI = MachinePointerInfo::getStack(
511 DAG.getMachineFunction(), LocMemOffset);
512 SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
513 MemOpChains.push_back(S);
515 continue;
518 // Arguments that can be passed on register must be kept at RegsToPass
519 // vector.
520 if (VA.isRegLoc())
521 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
524 if (NeedsArgAlign && Subtarget.hasV60Ops()) {
525 LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
526 Align VecAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
527 LargestAlignSeen = std::max(LargestAlignSeen, VecAlign);
528 MFI.ensureMaxAlignment(LargestAlignSeen);
530 // Transform all store nodes into one single node because all store
531 // nodes are independent of each other.
532 if (!MemOpChains.empty())
533 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
535 SDValue Glue;
536 if (!CLI.IsTailCall) {
537 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
538 Glue = Chain.getValue(1);
541 // Build a sequence of copy-to-reg nodes chained together with token
542 // chain and flag operands which copy the outgoing args into registers.
543 // The Glue is necessary since all emitted instructions must be
544 // stuck together.
545 if (!CLI.IsTailCall) {
546 for (const auto &R : RegsToPass) {
547 Chain = DAG.getCopyToReg(Chain, dl, R.first, R.second, Glue);
548 Glue = Chain.getValue(1);
550 } else {
551 // For tail calls lower the arguments to the 'real' stack slot.
553 // Force all the incoming stack arguments to be loaded from the stack
554 // before any new outgoing arguments are stored to the stack, because the
555 // outgoing stack slots may alias the incoming argument stack slots, and
556 // the alias isn't otherwise explicit. This is slightly more conservative
557 // than necessary, because it means that each store effectively depends
558 // on every argument instead of just those arguments it would clobber.
560 // Do not flag preceding copytoreg stuff together with the following stuff.
561 Glue = SDValue();
562 for (const auto &R : RegsToPass) {
563 Chain = DAG.getCopyToReg(Chain, dl, R.first, R.second, Glue);
564 Glue = Chain.getValue(1);
566 Glue = SDValue();
569 bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
570 unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;
572 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
573 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
574 // node so that legalize doesn't hack it.
575 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
576 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
577 } else if (ExternalSymbolSDNode *S =
578 dyn_cast<ExternalSymbolSDNode>(Callee)) {
579 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
582 // Returns a chain & a flag for retval copy to use.
583 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
584 SmallVector<SDValue, 8> Ops;
585 Ops.push_back(Chain);
586 Ops.push_back(Callee);
588 // Add argument registers to the end of the list so that they are
589 // known live into the call.
590 for (const auto &R : RegsToPass)
591 Ops.push_back(DAG.getRegister(R.first, R.second.getValueType()));
593 const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv);
594 assert(Mask && "Missing call preserved mask for calling convention");
595 Ops.push_back(DAG.getRegisterMask(Mask));
597 if (Glue.getNode())
598 Ops.push_back(Glue);
600 if (CLI.IsTailCall) {
601 MFI.setHasTailCall();
602 return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
605 // Set this here because we need to know this for "hasFP" in frame lowering.
606 // The target-independent code calls getFrameRegister before setting it, and
607 // getFrameRegister uses hasFP to determine whether the function has FP.
608 MFI.setHasCalls(true);
610 unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
611 Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
612 Glue = Chain.getValue(1);
614 // Create the CALLSEQ_END node.
615 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, dl);
616 Glue = Chain.getValue(1);
618 // Handle result values, copying them out of physregs into vregs that we
619 // return.
620 return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
621 InVals, OutVals, Callee);
624 /// Returns true by value, base pointer and offset pointer and addressing
625 /// mode by reference if this node can be combined with a load / store to
626 /// form a post-indexed load / store.
627 bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
628 SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM,
629 SelectionDAG &DAG) const {
630 LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N);
631 if (!LSN)
632 return false;
633 EVT VT = LSN->getMemoryVT();
634 if (!VT.isSimple())
635 return false;
636 bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
637 VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 ||
638 VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 ||
639 VT == MVT::v4i16 || VT == MVT::v8i8 ||
640 Subtarget.isHVXVectorType(VT.getSimpleVT());
641 if (!IsLegalType)
642 return false;
644 if (Op->getOpcode() != ISD::ADD)
645 return false;
646 Base = Op->getOperand(0);
647 Offset = Op->getOperand(1);
648 if (!isa<ConstantSDNode>(Offset.getNode()))
649 return false;
650 AM = ISD::POST_INC;
652 int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
653 return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V);
656 SDValue
657 HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
658 MachineFunction &MF = DAG.getMachineFunction();
659 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
660 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
661 unsigned LR = HRI.getRARegister();
663 if ((Op.getOpcode() != ISD::INLINEASM &&
664 Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR())
665 return Op;
667 unsigned NumOps = Op.getNumOperands();
668 if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue)
669 --NumOps; // Ignore the flag operand.
671 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
672 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
673 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
674 ++i; // Skip the ID value.
676 switch (InlineAsm::getKind(Flags)) {
677 default:
678 llvm_unreachable("Bad flags!");
679 case InlineAsm::Kind_RegUse:
680 case InlineAsm::Kind_Imm:
681 case InlineAsm::Kind_Mem:
682 i += NumVals;
683 break;
684 case InlineAsm::Kind_Clobber:
685 case InlineAsm::Kind_RegDef:
686 case InlineAsm::Kind_RegDefEarlyClobber: {
687 for (; NumVals; --NumVals, ++i) {
688 Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
689 if (Reg != LR)
690 continue;
691 HMFI.setHasClobberLR(true);
692 return Op;
694 break;
699 return Op;
702 // Need to transform ISD::PREFETCH into something that doesn't inherit
703 // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
704 // SDNPMayStore.
705 SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
706 SelectionDAG &DAG) const {
707 SDValue Chain = Op.getOperand(0);
708 SDValue Addr = Op.getOperand(1);
709 // Lower it to DCFETCH($reg, #0). A "pat" will try to merge the offset in,
710 // if the "reg" is fed by an "add".
711 SDLoc DL(Op);
712 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
713 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
716 // Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode
717 // is marked as having side-effects, while the register read on Hexagon does
718 // not have any. TableGen refuses to accept the direct pattern from that node
719 // to the A4_tfrcpp.
720 SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
721 SelectionDAG &DAG) const {
722 SDValue Chain = Op.getOperand(0);
723 SDLoc dl(Op);
724 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
725 return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain);
728 SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
729 SelectionDAG &DAG) const {
730 SDValue Chain = Op.getOperand(0);
731 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
732 // Lower the hexagon_prefetch builtin to DCFETCH, as above.
733 if (IntNo == Intrinsic::hexagon_prefetch) {
734 SDValue Addr = Op.getOperand(2);
735 SDLoc DL(Op);
736 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
737 return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
739 return SDValue();
742 SDValue
743 HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
744 SelectionDAG &DAG) const {
745 SDValue Chain = Op.getOperand(0);
746 SDValue Size = Op.getOperand(1);
747 SDValue Align = Op.getOperand(2);
748 SDLoc dl(Op);
750 ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
751 assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
753 unsigned A = AlignConst->getSExtValue();
754 auto &HFI = *Subtarget.getFrameLowering();
755 // "Zero" means natural stack alignment.
756 if (A == 0)
757 A = HFI.getStackAlign().value();
759 LLVM_DEBUG({
760 dbgs () << __func__ << " Align: " << A << " Size: ";
761 Size.getNode()->dump(&DAG);
762 dbgs() << "\n";
765 SDValue AC = DAG.getConstant(A, dl, MVT::i32);
766 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
767 SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
769 DAG.ReplaceAllUsesOfValueWith(Op, AA);
770 return AA;
773 SDValue HexagonTargetLowering::LowerFormalArguments(
774 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
775 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
776 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
777 MachineFunction &MF = DAG.getMachineFunction();
778 MachineFrameInfo &MFI = MF.getFrameInfo();
779 MachineRegisterInfo &MRI = MF.getRegInfo();
781 // Linux ABI treats var-arg calls the same way as regular ones.
782 bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg;
784 // Assign locations to all of the incoming arguments.
785 SmallVector<CCValAssign, 16> ArgLocs;
786 HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs,
787 *DAG.getContext(),
788 MF.getFunction().getFunctionType()->getNumParams());
790 if (Subtarget.useHVXOps())
791 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX);
792 else if (DisableArgsMinAlignment)
793 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_Legacy);
794 else
795 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
797 // For LLVM, in the case when returning a struct by value (>8byte),
798 // the first argument is a pointer that points to the location on caller's
799 // stack where the return value will be stored. For Hexagon, the location on
800 // caller's stack is passed only when the struct size is smaller than (and
801 // equal to) 8 bytes. If not, no address will be passed into callee and
802 // callee return the result direclty through R0/R1.
803 auto NextSingleReg = [] (const TargetRegisterClass &RC, unsigned Reg) {
804 switch (RC.getID()) {
805 case Hexagon::IntRegsRegClassID:
806 return Reg - Hexagon::R0 + 1;
807 case Hexagon::DoubleRegsRegClassID:
808 return (Reg - Hexagon::D0 + 1) * 2;
809 case Hexagon::HvxVRRegClassID:
810 return Reg - Hexagon::V0 + 1;
811 case Hexagon::HvxWRRegClassID:
812 return (Reg - Hexagon::W0 + 1) * 2;
814 llvm_unreachable("Unexpected register class");
817 auto &HFL = const_cast<HexagonFrameLowering&>(*Subtarget.getFrameLowering());
818 auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
819 HFL.FirstVarArgSavedReg = 0;
820 HMFI.setFirstNamedArgFrameIndex(-int(MFI.getNumFixedObjects()));
822 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
823 CCValAssign &VA = ArgLocs[i];
824 ISD::ArgFlagsTy Flags = Ins[i].Flags;
825 bool ByVal = Flags.isByVal();
827 // Arguments passed in registers:
828 // 1. 32- and 64-bit values and HVX vectors are passed directly,
829 // 2. Large structs are passed via an address, and the address is
830 // passed in a register.
831 if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8)
832 llvm_unreachable("ByValSize must be bigger than 8 bytes");
834 bool InReg = VA.isRegLoc() &&
835 (!ByVal || (ByVal && Flags.getByValSize() > 8));
837 if (InReg) {
838 MVT RegVT = VA.getLocVT();
839 if (VA.getLocInfo() == CCValAssign::BCvt)
840 RegVT = VA.getValVT();
842 const TargetRegisterClass *RC = getRegClassFor(RegVT);
843 Register VReg = MRI.createVirtualRegister(RC);
844 SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
846 // Treat values of type MVT::i1 specially: they are passed in
847 // registers of type i32, but they need to remain as values of
848 // type i1 for consistency of the argument lowering.
849 if (VA.getValVT() == MVT::i1) {
850 assert(RegVT.getSizeInBits() <= 32);
851 SDValue T = DAG.getNode(ISD::AND, dl, RegVT,
852 Copy, DAG.getConstant(1, dl, RegVT));
853 Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT),
854 ISD::SETNE);
855 } else {
856 #ifndef NDEBUG
857 unsigned RegSize = RegVT.getSizeInBits();
858 assert(RegSize == 32 || RegSize == 64 ||
859 Subtarget.isHVXVectorType(RegVT));
860 #endif
862 InVals.push_back(Copy);
863 MRI.addLiveIn(VA.getLocReg(), VReg);
864 HFL.FirstVarArgSavedReg = NextSingleReg(*RC, VA.getLocReg());
865 } else {
866 assert(VA.isMemLoc() && "Argument should be passed in memory");
868 // If it's a byval parameter, then we need to compute the
869 // "real" size, not the size of the pointer.
870 unsigned ObjSize = Flags.isByVal()
871 ? Flags.getByValSize()
872 : VA.getLocVT().getStoreSizeInBits() / 8;
874 // Create the frame index object for this incoming parameter.
875 int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
876 int FI = MFI.CreateFixedObject(ObjSize, Offset, true);
877 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
879 if (Flags.isByVal()) {
880 // If it's a pass-by-value aggregate, then do not dereference the stack
881 // location. Instead, we should generate a reference to the stack
882 // location.
883 InVals.push_back(FIN);
884 } else {
885 SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
886 MachinePointerInfo::getFixedStack(MF, FI, 0));
887 InVals.push_back(L);
892 if (IsVarArg && Subtarget.isEnvironmentMusl()) {
893 for (int i = HFL.FirstVarArgSavedReg; i < 6; i++)
894 MRI.addLiveIn(Hexagon::R0+i);
897 if (IsVarArg && Subtarget.isEnvironmentMusl()) {
898 HMFI.setFirstNamedArgFrameIndex(HMFI.getFirstNamedArgFrameIndex() - 1);
899 HMFI.setLastNamedArgFrameIndex(-int(MFI.getNumFixedObjects()));
901 // Create Frame index for the start of register saved area.
902 int NumVarArgRegs = 6 - HFL.FirstVarArgSavedReg;
903 bool RequiresPadding = (NumVarArgRegs & 1);
904 int RegSaveAreaSizePlusPadding = RequiresPadding
905 ? (NumVarArgRegs + 1) * 4
906 : NumVarArgRegs * 4;
908 if (RegSaveAreaSizePlusPadding > 0) {
909 // The offset to saved register area should be 8 byte aligned.
910 int RegAreaStart = HEXAGON_LRFP_SIZE + CCInfo.getStackSize();
911 if (!(RegAreaStart % 8))
912 RegAreaStart = (RegAreaStart + 7) & -8;
914 int RegSaveAreaFrameIndex =
915 MFI.CreateFixedObject(RegSaveAreaSizePlusPadding, RegAreaStart, true);
916 HMFI.setRegSavedAreaStartFrameIndex(RegSaveAreaFrameIndex);
918 // This will point to the next argument passed via stack.
919 int Offset = RegAreaStart + RegSaveAreaSizePlusPadding;
920 int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
921 HMFI.setVarArgsFrameIndex(FI);
922 } else {
923 // This will point to the next argument passed via stack, when
924 // there is no saved register area.
925 int Offset = HEXAGON_LRFP_SIZE + CCInfo.getStackSize();
926 int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
927 HMFI.setRegSavedAreaStartFrameIndex(FI);
928 HMFI.setVarArgsFrameIndex(FI);
933 if (IsVarArg && !Subtarget.isEnvironmentMusl()) {
934 // This will point to the next argument passed via stack.
935 int Offset = HEXAGON_LRFP_SIZE + CCInfo.getStackSize();
936 int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
937 HMFI.setVarArgsFrameIndex(FI);
940 return Chain;
943 SDValue
944 HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
945 // VASTART stores the address of the VarArgsFrameIndex slot into the
946 // memory location argument.
947 MachineFunction &MF = DAG.getMachineFunction();
948 HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
949 SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
950 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
952 if (!Subtarget.isEnvironmentMusl()) {
953 return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
954 MachinePointerInfo(SV));
956 auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>();
957 auto &HFL = *Subtarget.getFrameLowering();
958 SDLoc DL(Op);
959 SmallVector<SDValue, 8> MemOps;
961 // Get frame index of va_list.
962 SDValue FIN = Op.getOperand(1);
964 // If first Vararg register is odd, add 4 bytes to start of
965 // saved register area to point to the first register location.
966 // This is because the saved register area has to be 8 byte aligned.
967 // Incase of an odd start register, there will be 4 bytes of padding in
968 // the beginning of saved register area. If all registers area used up,
969 // the following condition will handle it correctly.
970 SDValue SavedRegAreaStartFrameIndex =
971 DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(), MVT::i32);
973 auto PtrVT = getPointerTy(DAG.getDataLayout());
975 if (HFL.FirstVarArgSavedReg & 1)
976 SavedRegAreaStartFrameIndex =
977 DAG.getNode(ISD::ADD, DL, PtrVT,
978 DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(),
979 MVT::i32),
980 DAG.getIntPtrConstant(4, DL));
982 // Store the saved register area start pointer.
983 SDValue Store =
984 DAG.getStore(Op.getOperand(0), DL,
985 SavedRegAreaStartFrameIndex,
986 FIN, MachinePointerInfo(SV));
987 MemOps.push_back(Store);
989 // Store saved register area end pointer.
990 FIN = DAG.getNode(ISD::ADD, DL, PtrVT,
991 FIN, DAG.getIntPtrConstant(4, DL));
992 Store = DAG.getStore(Op.getOperand(0), DL,
993 DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(),
994 PtrVT),
995 FIN, MachinePointerInfo(SV, 4));
996 MemOps.push_back(Store);
998 // Store overflow area pointer.
999 FIN = DAG.getNode(ISD::ADD, DL, PtrVT,
1000 FIN, DAG.getIntPtrConstant(4, DL));
1001 Store = DAG.getStore(Op.getOperand(0), DL,
1002 DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(),
1003 PtrVT),
1004 FIN, MachinePointerInfo(SV, 8));
1005 MemOps.push_back(Store);
1007 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
1010 SDValue
1011 HexagonTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
1012 // Assert that the linux ABI is enabled for the current compilation.
1013 assert(Subtarget.isEnvironmentMusl() && "Linux ABI should be enabled");
1014 SDValue Chain = Op.getOperand(0);
1015 SDValue DestPtr = Op.getOperand(1);
1016 SDValue SrcPtr = Op.getOperand(2);
1017 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1018 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1019 SDLoc DL(Op);
1020 // Size of the va_list is 12 bytes as it has 3 pointers. Therefore,
1021 // we need to memcopy 12 bytes from va_list to another similar list.
1022 return DAG.getMemcpy(Chain, DL, DestPtr, SrcPtr,
1023 DAG.getIntPtrConstant(12, DL), Align(4),
1024 /*isVolatile*/ false, false, false,
1025 MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
1028 SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1029 const SDLoc &dl(Op);
1030 SDValue LHS = Op.getOperand(0);
1031 SDValue RHS = Op.getOperand(1);
1032 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1033 MVT ResTy = ty(Op);
1034 MVT OpTy = ty(LHS);
1036 if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
1037 MVT ElemTy = OpTy.getVectorElementType();
1038 assert(ElemTy.isScalarInteger());
1039 MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
1040 OpTy.getVectorNumElements());
1041 return DAG.getSetCC(dl, ResTy,
1042 DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy),
1043 DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC);
1046 // Treat all other vector types as legal.
1047 if (ResTy.isVector())
1048 return Op;
1050 // Comparisons of short integers should use sign-extend, not zero-extend,
1051 // since we can represent small negative values in the compare instructions.
1052 // The LLVM default is to use zero-extend arbitrarily in these cases.
1053 auto isSExtFree = [this](SDValue N) {
1054 switch (N.getOpcode()) {
1055 case ISD::TRUNCATE: {
1056 // A sign-extend of a truncate of a sign-extend is free.
1057 SDValue Op = N.getOperand(0);
1058 if (Op.getOpcode() != ISD::AssertSext)
1059 return false;
1060 EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT();
1061 unsigned ThisBW = ty(N).getSizeInBits();
1062 unsigned OrigBW = OrigTy.getSizeInBits();
1063 // The type that was sign-extended to get the AssertSext must be
1064 // narrower than the type of N (so that N has still the same value
1065 // as the original).
1066 return ThisBW >= OrigBW;
1068 case ISD::LOAD:
1069 // We have sign-extended loads.
1070 return true;
1072 return false;
1075 if (OpTy == MVT::i8 || OpTy == MVT::i16) {
1076 ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
1077 bool IsNegative = C && C->getAPIntValue().isNegative();
1078 if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS))
1079 return DAG.getSetCC(dl, ResTy,
1080 DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32),
1081 DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC);
1084 return SDValue();
1087 SDValue
1088 HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
1089 SDValue PredOp = Op.getOperand(0);
1090 SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
1091 MVT OpTy = ty(Op1);
1092 const SDLoc &dl(Op);
1094 if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
1095 MVT ElemTy = OpTy.getVectorElementType();
1096 assert(ElemTy.isScalarInteger());
1097 MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
1098 OpTy.getVectorNumElements());
1099 // Generate (trunc (select (_, sext, sext))).
1100 return DAG.getSExtOrTrunc(
1101 DAG.getSelect(dl, WideTy, PredOp,
1102 DAG.getSExtOrTrunc(Op1, dl, WideTy),
1103 DAG.getSExtOrTrunc(Op2, dl, WideTy)),
1104 dl, OpTy);
1107 return SDValue();
1110 SDValue
1111 HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
1112 EVT ValTy = Op.getValueType();
1113 ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
1114 Constant *CVal = nullptr;
1115 bool isVTi1Type = false;
1116 if (auto *CV = dyn_cast<ConstantVector>(CPN->getConstVal())) {
1117 if (cast<VectorType>(CV->getType())->getElementType()->isIntegerTy(1)) {
1118 IRBuilder<> IRB(CV->getContext());
1119 SmallVector<Constant*, 128> NewConst;
1120 unsigned VecLen = CV->getNumOperands();
1121 assert(isPowerOf2_32(VecLen) &&
1122 "conversion only supported for pow2 VectorSize");
1123 for (unsigned i = 0; i < VecLen; ++i)
1124 NewConst.push_back(IRB.getInt8(CV->getOperand(i)->isZeroValue()));
1126 CVal = ConstantVector::get(NewConst);
1127 isVTi1Type = true;
1130 Align Alignment = CPN->getAlign();
1131 bool IsPositionIndependent = isPositionIndependent();
1132 unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;
1134 unsigned Offset = 0;
1135 SDValue T;
1136 if (CPN->isMachineConstantPoolEntry())
1137 T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Alignment,
1138 Offset, TF);
1139 else if (isVTi1Type)
1140 T = DAG.getTargetConstantPool(CVal, ValTy, Alignment, Offset, TF);
1141 else
1142 T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Alignment, Offset,
1143 TF);
1145 assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
1146 "Inconsistent target flag encountered");
1148 if (IsPositionIndependent)
1149 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
1150 return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
1153 SDValue
1154 HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1155 EVT VT = Op.getValueType();
1156 int Idx = cast<JumpTableSDNode>(Op)->getIndex();
1157 if (isPositionIndependent()) {
1158 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
1159 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
1162 SDValue T = DAG.getTargetJumpTable(Idx, VT);
1163 return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
1166 SDValue
1167 HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
1168 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1169 MachineFunction &MF = DAG.getMachineFunction();
1170 MachineFrameInfo &MFI = MF.getFrameInfo();
1171 MFI.setReturnAddressIsTaken(true);
1173 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1174 return SDValue();
1176 EVT VT = Op.getValueType();
1177 SDLoc dl(Op);
1178 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1179 if (Depth) {
1180 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1181 SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
1182 return DAG.getLoad(VT, dl, DAG.getEntryNode(),
1183 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
1184 MachinePointerInfo());
1187 // Return LR, which contains the return address. Mark it an implicit live-in.
1188 Register Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
1189 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
1192 SDValue
1193 HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1194 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1195 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1196 MFI.setFrameAddressIsTaken(true);
1198 EVT VT = Op.getValueType();
1199 SDLoc dl(Op);
1200 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1201 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1202 HRI.getFrameRegister(), VT);
1203 while (Depth--)
1204 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1205 MachinePointerInfo());
1206 return FrameAddr;
1209 SDValue
1210 HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
1211 SDLoc dl(Op);
1212 return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1215 SDValue
1216 HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
1217 SDLoc dl(Op);
1218 auto *GAN = cast<GlobalAddressSDNode>(Op);
1219 auto PtrVT = getPointerTy(DAG.getDataLayout());
1220 auto *GV = GAN->getGlobal();
1221 int64_t Offset = GAN->getOffset();
1223 auto &HLOF = *HTM.getObjFileLowering();
1224 Reloc::Model RM = HTM.getRelocationModel();
1226 if (RM == Reloc::Static) {
1227 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
1228 const GlobalObject *GO = GV->getAliaseeObject();
1229 if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM))
1230 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
1231 return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
1234 bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
1235 if (UsePCRel) {
1236 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
1237 HexagonII::MO_PCREL);
1238 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
1241 // Use GOT index.
1242 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1243 SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
1244 SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
1245 return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
1248 // Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
1249 SDValue
1250 HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1251 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1252 SDLoc dl(Op);
1253 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1255 Reloc::Model RM = HTM.getRelocationModel();
1256 if (RM == Reloc::Static) {
1257 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
1258 return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
1261 SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
1262 return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
1265 SDValue
1266 HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
1267 const {
1268 EVT PtrVT = getPointerTy(DAG.getDataLayout());
1269 SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
1270 HexagonII::MO_PCREL);
1271 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
1274 SDValue
1275 HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
1276 GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg,
1277 unsigned char OperandFlags) const {
1278 MachineFunction &MF = DAG.getMachineFunction();
1279 MachineFrameInfo &MFI = MF.getFrameInfo();
1280 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1281 SDLoc dl(GA);
1282 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
1283 GA->getValueType(0),
1284 GA->getOffset(),
1285 OperandFlags);
1286 // Create Operands for the call.The Operands should have the following:
1287 // 1. Chain SDValue
1288 // 2. Callee which in this case is the Global address value.
1289 // 3. Registers live into the call.In this case its R0, as we
1290 // have just one argument to be passed.
1291 // 4. Glue.
1292 // Note: The order is important.
1294 const auto &HRI = *Subtarget.getRegisterInfo();
1295 const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C);
1296 assert(Mask && "Missing call preserved mask for calling convention");
1297 SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT),
1298 DAG.getRegisterMask(Mask), Glue };
1299 Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
1301 // Inform MFI that function has calls.
1302 MFI.setAdjustsStack(true);
1304 Glue = Chain.getValue(1);
1305 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue);
1309 // Lower using the intial executable model for TLS addresses
1311 SDValue
1312 HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
1313 SelectionDAG &DAG) const {
1314 SDLoc dl(GA);
1315 int64_t Offset = GA->getOffset();
1316 auto PtrVT = getPointerTy(DAG.getDataLayout());
1318 // Get the thread pointer.
1319 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1321 bool IsPositionIndependent = isPositionIndependent();
1322 unsigned char TF =
1323 IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;
1325 // First generate the TLS symbol address
1326 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
1327 Offset, TF);
1329 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1331 if (IsPositionIndependent) {
1332 // Generate the GOT pointer in case of position independent code
1333 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);
1335 // Add the TLS Symbol address to GOT pointer.This gives
1336 // GOT relative relocation for the symbol.
1337 Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1340 // Load the offset value for TLS symbol.This offset is relative to
1341 // thread pointer.
1342 SDValue LoadOffset =
1343 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());
1345 // Address of the thread local variable is the add of thread
1346 // pointer and the offset of the variable.
1347 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
1351 // Lower using the local executable model for TLS addresses
1353 SDValue
1354 HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
1355 SelectionDAG &DAG) const {
1356 SDLoc dl(GA);
1357 int64_t Offset = GA->getOffset();
1358 auto PtrVT = getPointerTy(DAG.getDataLayout());
1360 // Get the thread pointer.
1361 SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1362 // Generate the TLS symbol address
1363 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1364 HexagonII::MO_TPREL);
1365 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1367 // Address of the thread local variable is the add of thread
1368 // pointer and the offset of the variable.
1369 return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
1373 // Lower using the general dynamic model for TLS addresses
1375 SDValue
1376 HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1377 SelectionDAG &DAG) const {
1378 SDLoc dl(GA);
1379 int64_t Offset = GA->getOffset();
1380 auto PtrVT = getPointerTy(DAG.getDataLayout());
1382 // First generate the TLS symbol address
1383 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1384 HexagonII::MO_GDGOT);
1386 // Then, generate the GOT pointer
1387 SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);
1389 // Add the TLS symbol and the GOT pointer
1390 SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1391 SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1393 // Copy over the argument to R0
1394 SDValue InGlue;
1395 Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InGlue);
1396 InGlue = Chain.getValue(1);
1398 unsigned Flags = DAG.getSubtarget<HexagonSubtarget>().useLongCalls()
1399 ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended
1400 : HexagonII::MO_GDPLT;
1402 return GetDynamicTLSAddr(DAG, Chain, GA, InGlue, PtrVT,
1403 Hexagon::R0, Flags);
1407 // Lower TLS addresses.
1409 // For now for dynamic models, we only support the general dynamic model.
1411 SDValue
1412 HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1413 SelectionDAG &DAG) const {
1414 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1416 switch (HTM.getTLSModel(GA->getGlobal())) {
1417 case TLSModel::GeneralDynamic:
1418 case TLSModel::LocalDynamic:
1419 return LowerToTLSGeneralDynamicModel(GA, DAG);
1420 case TLSModel::InitialExec:
1421 return LowerToTLSInitialExecModel(GA, DAG);
1422 case TLSModel::LocalExec:
1423 return LowerToTLSLocalExecModel(GA, DAG);
1425 llvm_unreachable("Bogus TLS model");
1428 //===----------------------------------------------------------------------===//
1429 // TargetLowering Implementation
1430 //===----------------------------------------------------------------------===//
1432 HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
1433 const HexagonSubtarget &ST)
1434 : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
1435 Subtarget(ST) {
1436 auto &HRI = *Subtarget.getRegisterInfo();
1438 setPrefLoopAlignment(Align(16));
1439 setMinFunctionAlignment(Align(4));
1440 setPrefFunctionAlignment(Align(16));
1441 setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
1442 setBooleanContents(TargetLoweringBase::UndefinedBooleanContent);
1443 setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent);
1445 setMaxAtomicSizeInBitsSupported(64);
1446 setMinCmpXchgSizeInBits(32);
1448 if (EnableHexSDNodeSched)
1449 setSchedulingPreference(Sched::VLIW);
1450 else
1451 setSchedulingPreference(Sched::Source);
1453 // Limits for inline expansion of memcpy/memmove
1454 MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
1455 MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
1456 MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
1457 MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
1458 MaxStoresPerMemset = MaxStoresPerMemsetCL;
1459 MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
1462 // Set up register classes.
1465 addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass);
1466 addRegisterClass(MVT::v2i1, &Hexagon::PredRegsRegClass); // bbbbaaaa
1467 addRegisterClass(MVT::v4i1, &Hexagon::PredRegsRegClass); // ddccbbaa
1468 addRegisterClass(MVT::v8i1, &Hexagon::PredRegsRegClass); // hgfedcba
1469 addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass);
1470 addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
1471 addRegisterClass(MVT::v4i8, &Hexagon::IntRegsRegClass);
1472 addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass);
1473 addRegisterClass(MVT::v8i8, &Hexagon::DoubleRegsRegClass);
1474 addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
1475 addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
1477 addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1478 addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1481 // Handling of scalar operations.
1483 // All operations default to "legal", except:
1484 // - indexed loads and stores (pre-/post-incremented),
1485 // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
1486 // ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
1487 // FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
1488 // FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
1489 // which default to "expand" for at least one type.
1491 // Misc operations.
1492 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
1493 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
1494 setOperationAction(ISD::TRAP, MVT::Other, Legal);
1495 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
1496 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
1497 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
1498 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1499 setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
1500 setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom);
1501 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
1502 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1503 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1504 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
1505 setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
1506 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1507 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
1509 // Custom legalize GlobalAddress nodes into CONST32.
1510 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1511 setOperationAction(ISD::GlobalAddress, MVT::i8, Custom);
1512 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1514 // Hexagon needs to optimize cases with negative constants.
1515 setOperationAction(ISD::SETCC, MVT::i8, Custom);
1516 setOperationAction(ISD::SETCC, MVT::i16, Custom);
1517 setOperationAction(ISD::SETCC, MVT::v4i8, Custom);
1518 setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1520 // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1521 setOperationAction(ISD::VASTART, MVT::Other, Custom);
1522 setOperationAction(ISD::VAEND, MVT::Other, Expand);
1523 setOperationAction(ISD::VAARG, MVT::Other, Expand);
1524 if (Subtarget.isEnvironmentMusl())
1525 setOperationAction(ISD::VACOPY, MVT::Other, Custom);
1526 else
1527 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
1529 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1530 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1531 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1533 if (EmitJumpTables)
1534 setMinimumJumpTableEntries(MinimumJumpTables);
1535 else
1536 setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max());
1537 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1539 for (unsigned LegalIntOp :
1540 {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) {
1541 setOperationAction(LegalIntOp, MVT::i32, Legal);
1542 setOperationAction(LegalIntOp, MVT::i64, Legal);
1545 // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit,
1546 // but they only operate on i64.
1547 for (MVT VT : MVT::integer_valuetypes()) {
1548 setOperationAction(ISD::UADDO, VT, Custom);
1549 setOperationAction(ISD::USUBO, VT, Custom);
1550 setOperationAction(ISD::SADDO, VT, Expand);
1551 setOperationAction(ISD::SSUBO, VT, Expand);
1552 setOperationAction(ISD::UADDO_CARRY, VT, Expand);
1553 setOperationAction(ISD::USUBO_CARRY, VT, Expand);
1555 setOperationAction(ISD::UADDO_CARRY, MVT::i64, Custom);
1556 setOperationAction(ISD::USUBO_CARRY, MVT::i64, Custom);
1558 setOperationAction(ISD::CTLZ, MVT::i8, Promote);
1559 setOperationAction(ISD::CTLZ, MVT::i16, Promote);
1560 setOperationAction(ISD::CTTZ, MVT::i8, Promote);
1561 setOperationAction(ISD::CTTZ, MVT::i16, Promote);
1563 // Popcount can count # of 1s in i64 but returns i32.
1564 setOperationAction(ISD::CTPOP, MVT::i8, Promote);
1565 setOperationAction(ISD::CTPOP, MVT::i16, Promote);
1566 setOperationAction(ISD::CTPOP, MVT::i32, Promote);
1567 setOperationAction(ISD::CTPOP, MVT::i64, Legal);
1569 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1570 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
1571 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
1572 setOperationAction(ISD::BSWAP, MVT::i64, Legal);
1574 setOperationAction(ISD::FSHL, MVT::i32, Legal);
1575 setOperationAction(ISD::FSHL, MVT::i64, Legal);
1576 setOperationAction(ISD::FSHR, MVT::i32, Legal);
1577 setOperationAction(ISD::FSHR, MVT::i64, Legal);
1579 for (unsigned IntExpOp :
1580 {ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM,
1581 ISD::SDIVREM, ISD::UDIVREM, ISD::ROTL, ISD::ROTR,
1582 ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
1583 ISD::SMUL_LOHI, ISD::UMUL_LOHI}) {
1584 for (MVT VT : MVT::integer_valuetypes())
1585 setOperationAction(IntExpOp, VT, Expand);
1588 for (unsigned FPExpOp :
1589 {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
1590 ISD::FPOW, ISD::FCOPYSIGN}) {
1591 for (MVT VT : MVT::fp_valuetypes())
1592 setOperationAction(FPExpOp, VT, Expand);
1595 // No extending loads from i32.
1596 for (MVT VT : MVT::integer_valuetypes()) {
1597 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
1598 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
1599 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
1601 // Turn FP truncstore into trunc + store.
1602 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1603 // Turn FP extload into load/fpextend.
1604 for (MVT VT : MVT::fp_valuetypes())
1605 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1607 // Expand BR_CC and SELECT_CC for all integer and fp types.
1608 for (MVT VT : MVT::integer_valuetypes()) {
1609 setOperationAction(ISD::BR_CC, VT, Expand);
1610 setOperationAction(ISD::SELECT_CC, VT, Expand);
1612 for (MVT VT : MVT::fp_valuetypes()) {
1613 setOperationAction(ISD::BR_CC, VT, Expand);
1614 setOperationAction(ISD::SELECT_CC, VT, Expand);
1616 setOperationAction(ISD::BR_CC, MVT::Other, Expand);
1619 // Handling of vector operations.
1622 // Set the action for vector operations to "expand", then override it with
1623 // either "custom" or "legal" for specific cases.
1624 static const unsigned VectExpOps[] = {
1625 // Integer arithmetic:
1626 ISD::ADD, ISD::SUB, ISD::MUL, ISD::SDIV, ISD::UDIV,
1627 ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::SADDO,
1628 ISD::UADDO, ISD::SSUBO, ISD::USUBO, ISD::SMUL_LOHI, ISD::UMUL_LOHI,
1629 // Logical/bit:
1630 ISD::AND, ISD::OR, ISD::XOR, ISD::ROTL, ISD::ROTR,
1631 ISD::CTPOP, ISD::CTLZ, ISD::CTTZ, ISD::BSWAP, ISD::BITREVERSE,
1632 // Floating point arithmetic/math functions:
1633 ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV,
1634 ISD::FREM, ISD::FNEG, ISD::FABS, ISD::FSQRT, ISD::FSIN,
1635 ISD::FCOS, ISD::FPOW, ISD::FLOG, ISD::FLOG2,
1636 ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FCEIL, ISD::FTRUNC,
1637 ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FFLOOR,
1638 ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS, ISD::FLDEXP,
1639 // Misc:
1640 ISD::BR_CC, ISD::SELECT_CC, ISD::ConstantPool,
1641 // Vector:
1642 ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR,
1643 ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT,
1644 ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR,
1645 ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE,
1646 ISD::SPLAT_VECTOR,
1649 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1650 for (unsigned VectExpOp : VectExpOps)
1651 setOperationAction(VectExpOp, VT, Expand);
1653 // Expand all extending loads and truncating stores:
1654 for (MVT TargetVT : MVT::fixedlen_vector_valuetypes()) {
1655 if (TargetVT == VT)
1656 continue;
1657 setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
1658 setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand);
1659 setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand);
1660 setTruncStoreAction(VT, TargetVT, Expand);
1663 // Normalize all inputs to SELECT to be vectors of i32.
1664 if (VT.getVectorElementType() != MVT::i32) {
1665 MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
1666 setOperationAction(ISD::SELECT, VT, Promote);
1667 AddPromotedToType(ISD::SELECT, VT, VT32);
1669 setOperationAction(ISD::SRA, VT, Custom);
1670 setOperationAction(ISD::SHL, VT, Custom);
1671 setOperationAction(ISD::SRL, VT, Custom);
1674 // Extending loads from (native) vectors of i8 into (native) vectors of i16
1675 // are legal.
1676 setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1677 setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1678 setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1679 setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1680 setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1681 setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1683 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal);
1684 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1685 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1687 // Types natively supported:
1688 for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8,
1689 MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1690 setOperationAction(ISD::BUILD_VECTOR, NativeVT, Custom);
1691 setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
1692 setOperationAction(ISD::INSERT_VECTOR_ELT, NativeVT, Custom);
1693 setOperationAction(ISD::EXTRACT_SUBVECTOR, NativeVT, Custom);
1694 setOperationAction(ISD::INSERT_SUBVECTOR, NativeVT, Custom);
1695 setOperationAction(ISD::CONCAT_VECTORS, NativeVT, Custom);
1697 setOperationAction(ISD::ADD, NativeVT, Legal);
1698 setOperationAction(ISD::SUB, NativeVT, Legal);
1699 setOperationAction(ISD::MUL, NativeVT, Legal);
1700 setOperationAction(ISD::AND, NativeVT, Legal);
1701 setOperationAction(ISD::OR, NativeVT, Legal);
1702 setOperationAction(ISD::XOR, NativeVT, Legal);
1704 if (NativeVT.getVectorElementType() != MVT::i1) {
1705 setOperationAction(ISD::SPLAT_VECTOR, NativeVT, Legal);
1706 setOperationAction(ISD::BSWAP, NativeVT, Legal);
1707 setOperationAction(ISD::BITREVERSE, NativeVT, Legal);
1711 for (MVT VT : {MVT::v8i8, MVT::v4i16, MVT::v2i32}) {
1712 setOperationAction(ISD::SMIN, VT, Legal);
1713 setOperationAction(ISD::SMAX, VT, Legal);
1714 setOperationAction(ISD::UMIN, VT, Legal);
1715 setOperationAction(ISD::UMAX, VT, Legal);
1718 // Custom lower unaligned loads.
1719 // Also, for both loads and stores, verify the alignment of the address
1720 // in case it is a compile-time constant. This is a usability feature to
1721 // provide a meaningful error message to users.
1722 for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8,
1723 MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1724 setOperationAction(ISD::LOAD, VT, Custom);
1725 setOperationAction(ISD::STORE, VT, Custom);
1728 // Custom-lower load/stores of boolean vectors.
1729 for (MVT VT : {MVT::v2i1, MVT::v4i1, MVT::v8i1}) {
1730 setOperationAction(ISD::LOAD, VT, Custom);
1731 setOperationAction(ISD::STORE, VT, Custom);
1734 // Normalize integer compares to EQ/GT/UGT
1735 for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v8i8, MVT::v2i32, MVT::v4i16,
1736 MVT::v2i32}) {
1737 setCondCodeAction(ISD::SETNE, VT, Expand);
1738 setCondCodeAction(ISD::SETLE, VT, Expand);
1739 setCondCodeAction(ISD::SETGE, VT, Expand);
1740 setCondCodeAction(ISD::SETLT, VT, Expand);
1741 setCondCodeAction(ISD::SETULE, VT, Expand);
1742 setCondCodeAction(ISD::SETUGE, VT, Expand);
1743 setCondCodeAction(ISD::SETULT, VT, Expand);
1746 // Normalize boolean compares to [U]LE/[U]LT
1747 for (MVT VT : {MVT::i1, MVT::v2i1, MVT::v4i1, MVT::v8i1}) {
1748 setCondCodeAction(ISD::SETGE, VT, Expand);
1749 setCondCodeAction(ISD::SETGT, VT, Expand);
1750 setCondCodeAction(ISD::SETUGE, VT, Expand);
1751 setCondCodeAction(ISD::SETUGT, VT, Expand);
1754 // Custom-lower bitcasts from i8 to v8i1.
1755 setOperationAction(ISD::BITCAST, MVT::i8, Custom);
1756 setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1757 setOperationAction(ISD::VSELECT, MVT::v4i8, Custom);
1758 setOperationAction(ISD::VSELECT, MVT::v2i16, Custom);
1759 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8, Custom);
1760 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
1761 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
1763 // V5+.
1764 setOperationAction(ISD::FMA, MVT::f64, Expand);
1765 setOperationAction(ISD::FADD, MVT::f64, Expand);
1766 setOperationAction(ISD::FSUB, MVT::f64, Expand);
1767 setOperationAction(ISD::FMUL, MVT::f64, Expand);
1769 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1770 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1772 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
1773 setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
1774 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
1775 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
1776 setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
1777 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
1778 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
1779 setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote);
1780 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
1781 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
1782 setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote);
1783 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
1785 // Special handling for half-precision floating point conversions.
1786 // Lower half float conversions into library calls.
1787 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1788 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1789 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1790 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1792 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
1793 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
1794 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1795 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1797 // Handling of indexed loads/stores: default is "expand".
1799 for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64,
1800 MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) {
1801 setIndexedLoadAction(ISD::POST_INC, VT, Legal);
1802 setIndexedStoreAction(ISD::POST_INC, VT, Legal);
1805 // Subtarget-specific operation actions.
1807 if (Subtarget.hasV60Ops()) {
1808 setOperationAction(ISD::ROTL, MVT::i32, Legal);
1809 setOperationAction(ISD::ROTL, MVT::i64, Legal);
1810 setOperationAction(ISD::ROTR, MVT::i32, Legal);
1811 setOperationAction(ISD::ROTR, MVT::i64, Legal);
1813 if (Subtarget.hasV66Ops()) {
1814 setOperationAction(ISD::FADD, MVT::f64, Legal);
1815 setOperationAction(ISD::FSUB, MVT::f64, Legal);
1817 if (Subtarget.hasV67Ops()) {
1818 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1819 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1820 setOperationAction(ISD::FMUL, MVT::f64, Legal);
1823 setTargetDAGCombine(ISD::OR);
1824 setTargetDAGCombine(ISD::TRUNCATE);
1825 setTargetDAGCombine(ISD::VSELECT);
1827 if (Subtarget.useHVXOps())
1828 initializeHVXLowering();
1830 computeRegisterProperties(&HRI);
1833 // Library calls for unsupported operations
1835 bool FastMath = EnableFastMath;
1837 setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
1838 setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
1839 setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
1840 setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
1841 setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
1842 setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
1843 setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
1844 setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
1846 setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
1847 setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
1848 setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
1849 setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
1850 setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
1851 setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
1853 // This is the only fast library function for sqrtd.
1854 if (FastMath)
1855 setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
1857 // Prefix is: nothing for "slow-math",
1858 // "fast2_" for V5+ fast-math double-precision
1859 // (actually, keep fast-math and fast-math2 separate for now)
1860 if (FastMath) {
1861 setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
1862 setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
1863 setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
1864 setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
1865 setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
1866 } else {
1867 setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
1868 setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1869 setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
1870 setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
1871 setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
1874 if (FastMath)
1875 setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
1876 else
1877 setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
1879 // Routines to handle fp16 storage type.
1880 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1881 setLibcallName(RTLIB::FPROUND_F64_F16, "__truncdfhf2");
1882 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1884 // These cause problems when the shift amount is non-constant.
1885 setLibcallName(RTLIB::SHL_I128, nullptr);
1886 setLibcallName(RTLIB::SRL_I128, nullptr);
1887 setLibcallName(RTLIB::SRA_I128, nullptr);
1890 const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
1891 switch ((HexagonISD::NodeType)Opcode) {
1892 case HexagonISD::ADDC: return "HexagonISD::ADDC";
1893 case HexagonISD::SUBC: return "HexagonISD::SUBC";
1894 case HexagonISD::ALLOCA: return "HexagonISD::ALLOCA";
1895 case HexagonISD::AT_GOT: return "HexagonISD::AT_GOT";
1896 case HexagonISD::AT_PCREL: return "HexagonISD::AT_PCREL";
1897 case HexagonISD::BARRIER: return "HexagonISD::BARRIER";
1898 case HexagonISD::CALL: return "HexagonISD::CALL";
1899 case HexagonISD::CALLnr: return "HexagonISD::CALLnr";
1900 case HexagonISD::CALLR: return "HexagonISD::CALLR";
1901 case HexagonISD::COMBINE: return "HexagonISD::COMBINE";
1902 case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP";
1903 case HexagonISD::CONST32: return "HexagonISD::CONST32";
1904 case HexagonISD::CP: return "HexagonISD::CP";
1905 case HexagonISD::DCFETCH: return "HexagonISD::DCFETCH";
1906 case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN";
1907 case HexagonISD::TSTBIT: return "HexagonISD::TSTBIT";
1908 case HexagonISD::EXTRACTU: return "HexagonISD::EXTRACTU";
1909 case HexagonISD::INSERT: return "HexagonISD::INSERT";
1910 case HexagonISD::JT: return "HexagonISD::JT";
1911 case HexagonISD::RET_GLUE: return "HexagonISD::RET_GLUE";
1912 case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN";
1913 case HexagonISD::VASL: return "HexagonISD::VASL";
1914 case HexagonISD::VASR: return "HexagonISD::VASR";
1915 case HexagonISD::VLSR: return "HexagonISD::VLSR";
1916 case HexagonISD::MFSHL: return "HexagonISD::MFSHL";
1917 case HexagonISD::MFSHR: return "HexagonISD::MFSHR";
1918 case HexagonISD::SSAT: return "HexagonISD::SSAT";
1919 case HexagonISD::USAT: return "HexagonISD::USAT";
1920 case HexagonISD::SMUL_LOHI: return "HexagonISD::SMUL_LOHI";
1921 case HexagonISD::UMUL_LOHI: return "HexagonISD::UMUL_LOHI";
1922 case HexagonISD::USMUL_LOHI: return "HexagonISD::USMUL_LOHI";
1923 case HexagonISD::VEXTRACTW: return "HexagonISD::VEXTRACTW";
1924 case HexagonISD::VINSERTW0: return "HexagonISD::VINSERTW0";
1925 case HexagonISD::VROR: return "HexagonISD::VROR";
1926 case HexagonISD::READCYCLE: return "HexagonISD::READCYCLE";
1927 case HexagonISD::PTRUE: return "HexagonISD::PTRUE";
1928 case HexagonISD::PFALSE: return "HexagonISD::PFALSE";
1929 case HexagonISD::D2P: return "HexagonISD::D2P";
1930 case HexagonISD::P2D: return "HexagonISD::P2D";
1931 case HexagonISD::V2Q: return "HexagonISD::V2Q";
1932 case HexagonISD::Q2V: return "HexagonISD::Q2V";
1933 case HexagonISD::QCAT: return "HexagonISD::QCAT";
1934 case HexagonISD::QTRUE: return "HexagonISD::QTRUE";
1935 case HexagonISD::QFALSE: return "HexagonISD::QFALSE";
1936 case HexagonISD::TL_EXTEND: return "HexagonISD::TL_EXTEND";
1937 case HexagonISD::TL_TRUNCATE: return "HexagonISD::TL_TRUNCATE";
1938 case HexagonISD::TYPECAST: return "HexagonISD::TYPECAST";
1939 case HexagonISD::VALIGN: return "HexagonISD::VALIGN";
1940 case HexagonISD::VALIGNADDR: return "HexagonISD::VALIGNADDR";
1941 case HexagonISD::ISEL: return "HexagonISD::ISEL";
1942 case HexagonISD::OP_END: break;
1944 return nullptr;
1947 bool
1948 HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, Align NeedAlign,
1949 const SDLoc &dl, SelectionDAG &DAG) const {
1950 auto *CA = dyn_cast<ConstantSDNode>(Ptr);
1951 if (!CA)
1952 return true;
1953 unsigned Addr = CA->getZExtValue();
1954 Align HaveAlign =
1955 Addr != 0 ? Align(1ull << llvm::countr_zero(Addr)) : NeedAlign;
1956 if (HaveAlign >= NeedAlign)
1957 return true;
1959 static int DK_MisalignedTrap = llvm::getNextAvailablePluginDiagnosticKind();
1961 struct DiagnosticInfoMisalignedTrap : public DiagnosticInfo {
1962 DiagnosticInfoMisalignedTrap(StringRef M)
1963 : DiagnosticInfo(DK_MisalignedTrap, DS_Remark), Msg(M) {}
1964 void print(DiagnosticPrinter &DP) const override {
1965 DP << Msg;
1967 static bool classof(const DiagnosticInfo *DI) {
1968 return DI->getKind() == DK_MisalignedTrap;
1970 StringRef Msg;
1973 std::string ErrMsg;
1974 raw_string_ostream O(ErrMsg);
1975 O << "Misaligned constant address: " << format_hex(Addr, 10)
1976 << " has alignment " << HaveAlign.value()
1977 << ", but the memory access requires " << NeedAlign.value();
1978 if (DebugLoc DL = dl.getDebugLoc())
1979 DL.print(O << ", at ");
1980 O << ". The instruction has been replaced with a trap.";
1982 DAG.getContext()->diagnose(DiagnosticInfoMisalignedTrap(O.str()));
1983 return false;
1986 SDValue
1987 HexagonTargetLowering::replaceMemWithUndef(SDValue Op, SelectionDAG &DAG)
1988 const {
1989 const SDLoc &dl(Op);
1990 auto *LS = cast<LSBaseSDNode>(Op.getNode());
1991 assert(!LS->isIndexed() && "Not expecting indexed ops on constant address");
1993 SDValue Chain = LS->getChain();
1994 SDValue Trap = DAG.getNode(ISD::TRAP, dl, MVT::Other, Chain);
1995 if (LS->getOpcode() == ISD::LOAD)
1996 return DAG.getMergeValues({DAG.getUNDEF(ty(Op)), Trap}, dl);
1997 return Trap;
2000 // Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load
2001 // intrinsic.
2002 static bool isBrevLdIntrinsic(const Value *Inst) {
2003 unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID();
2004 return (ID == Intrinsic::hexagon_L2_loadrd_pbr ||
2005 ID == Intrinsic::hexagon_L2_loadri_pbr ||
2006 ID == Intrinsic::hexagon_L2_loadrh_pbr ||
2007 ID == Intrinsic::hexagon_L2_loadruh_pbr ||
2008 ID == Intrinsic::hexagon_L2_loadrb_pbr ||
2009 ID == Intrinsic::hexagon_L2_loadrub_pbr);
2012 // Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous
2013 // instruction. So far we only handle bitcast, extract value and bit reverse
2014 // load intrinsic instructions. Should we handle CGEP ?
2015 static Value *getBrevLdObject(Value *V) {
2016 if (Operator::getOpcode(V) == Instruction::ExtractValue ||
2017 Operator::getOpcode(V) == Instruction::BitCast)
2018 V = cast<Operator>(V)->getOperand(0);
2019 else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V))
2020 V = cast<Instruction>(V)->getOperand(0);
2021 return V;
2024 // Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or
2025 // a back edge. If the back edge comes from the intrinsic itself, the incoming
2026 // edge is returned.
2027 static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) {
2028 const BasicBlock *Parent = PN->getParent();
2029 int Idx = -1;
2030 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
2031 BasicBlock *Blk = PN->getIncomingBlock(i);
2032 // Determine if the back edge is originated from intrinsic.
2033 if (Blk == Parent) {
2034 Value *BackEdgeVal = PN->getIncomingValue(i);
2035 Value *BaseVal;
2036 // Loop over till we return the same Value or we hit the IntrBaseVal.
2037 do {
2038 BaseVal = BackEdgeVal;
2039 BackEdgeVal = getBrevLdObject(BackEdgeVal);
2040 } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal));
2041 // If the getBrevLdObject returns IntrBaseVal, we should return the
2042 // incoming edge.
2043 if (IntrBaseVal == BackEdgeVal)
2044 continue;
2045 Idx = i;
2046 break;
2047 } else // Set the node to incoming edge.
2048 Idx = i;
2050 assert(Idx >= 0 && "Unexpected index to incoming argument in PHI");
2051 return PN->getIncomingValue(Idx);
2054 // Bit-reverse Load Intrinsic: Figure out the underlying object the base
2055 // pointer points to, for the bit-reverse load intrinsic. Setting this to
2056 // memoperand might help alias analysis to figure out the dependencies.
2057 static Value *getUnderLyingObjectForBrevLdIntr(Value *V) {
2058 Value *IntrBaseVal = V;
2059 Value *BaseVal;
2060 // Loop over till we return the same Value, implies we either figure out
2061 // the object or we hit a PHI
2062 do {
2063 BaseVal = V;
2064 V = getBrevLdObject(V);
2065 } while (BaseVal != V);
2067 // Identify the object from PHINode.
2068 if (const PHINode *PN = dyn_cast<PHINode>(V))
2069 return returnEdge(PN, IntrBaseVal);
2070 // For non PHI nodes, the object is the last value returned by getBrevLdObject
2071 else
2072 return V;
2075 /// Given an intrinsic, checks if on the target the intrinsic will need to map
2076 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
2077 /// true and store the intrinsic information into the IntrinsicInfo that was
2078 /// passed to the function.
2079 bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
2080 const CallInst &I,
2081 MachineFunction &MF,
2082 unsigned Intrinsic) const {
2083 switch (Intrinsic) {
2084 case Intrinsic::hexagon_L2_loadrd_pbr:
2085 case Intrinsic::hexagon_L2_loadri_pbr:
2086 case Intrinsic::hexagon_L2_loadrh_pbr:
2087 case Intrinsic::hexagon_L2_loadruh_pbr:
2088 case Intrinsic::hexagon_L2_loadrb_pbr:
2089 case Intrinsic::hexagon_L2_loadrub_pbr: {
2090 Info.opc = ISD::INTRINSIC_W_CHAIN;
2091 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
2092 auto &Cont = I.getCalledFunction()->getParent()->getContext();
2093 // The intrinsic function call is of the form { ElTy, i8* }
2094 // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type
2095 // should be derived from ElTy.
2096 Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0);
2097 Info.memVT = MVT::getVT(ElTy);
2098 llvm::Value *BasePtrVal = I.getOperand(0);
2099 Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal);
2100 // The offset value comes through Modifier register. For now, assume the
2101 // offset is 0.
2102 Info.offset = 0;
2103 Info.align = DL.getABITypeAlign(Info.memVT.getTypeForEVT(Cont));
2104 Info.flags = MachineMemOperand::MOLoad;
2105 return true;
2107 case Intrinsic::hexagon_V6_vgathermw:
2108 case Intrinsic::hexagon_V6_vgathermw_128B:
2109 case Intrinsic::hexagon_V6_vgathermh:
2110 case Intrinsic::hexagon_V6_vgathermh_128B:
2111 case Intrinsic::hexagon_V6_vgathermhw:
2112 case Intrinsic::hexagon_V6_vgathermhw_128B:
2113 case Intrinsic::hexagon_V6_vgathermwq:
2114 case Intrinsic::hexagon_V6_vgathermwq_128B:
2115 case Intrinsic::hexagon_V6_vgathermhq:
2116 case Intrinsic::hexagon_V6_vgathermhq_128B:
2117 case Intrinsic::hexagon_V6_vgathermhwq:
2118 case Intrinsic::hexagon_V6_vgathermhwq_128B: {
2119 const Module &M = *I.getParent()->getParent()->getParent();
2120 Info.opc = ISD::INTRINSIC_W_CHAIN;
2121 Type *VecTy = I.getArgOperand(1)->getType();
2122 Info.memVT = MVT::getVT(VecTy);
2123 Info.ptrVal = I.getArgOperand(0);
2124 Info.offset = 0;
2125 Info.align =
2126 MaybeAlign(M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8);
2127 Info.flags = MachineMemOperand::MOLoad |
2128 MachineMemOperand::MOStore |
2129 MachineMemOperand::MOVolatile;
2130 return true;
2132 default:
2133 break;
2135 return false;
2138 bool HexagonTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
2139 return X.getValueType().isScalarInteger(); // 'tstbit'
2142 bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
2143 return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2));
2146 bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
2147 if (!VT1.isSimple() || !VT2.isSimple())
2148 return false;
2149 return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32;
2152 bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(
2153 const MachineFunction &MF, EVT VT) const {
2154 return isOperationLegalOrCustom(ISD::FMA, VT);
2157 // Should we expand the build vector with shuffles?
2158 bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
2159 unsigned DefinedValues) const {
2160 return false;
2163 bool HexagonTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
2164 unsigned Index) const {
2165 assert(ResVT.getVectorElementType() == SrcVT.getVectorElementType());
2166 if (!ResVT.isSimple() || !SrcVT.isSimple())
2167 return false;
2169 MVT ResTy = ResVT.getSimpleVT(), SrcTy = SrcVT.getSimpleVT();
2170 if (ResTy.getVectorElementType() != MVT::i1)
2171 return true;
2173 // Non-HVX bool vectors are relatively cheap.
2174 return SrcTy.getVectorNumElements() <= 8;
2177 bool HexagonTargetLowering::isTargetCanonicalConstantNode(SDValue Op) const {
2178 return Op.getOpcode() == ISD::CONCAT_VECTORS ||
2179 TargetLowering::isTargetCanonicalConstantNode(Op);
2182 bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask,
2183 EVT VT) const {
2184 return true;
2187 TargetLoweringBase::LegalizeTypeAction
2188 HexagonTargetLowering::getPreferredVectorAction(MVT VT) const {
2189 unsigned VecLen = VT.getVectorMinNumElements();
2190 MVT ElemTy = VT.getVectorElementType();
2192 if (VecLen == 1 || VT.isScalableVector())
2193 return TargetLoweringBase::TypeScalarizeVector;
2195 if (Subtarget.useHVXOps()) {
2196 unsigned Action = getPreferredHvxVectorAction(VT);
2197 if (Action != ~0u)
2198 return static_cast<TargetLoweringBase::LegalizeTypeAction>(Action);
2201 // Always widen (remaining) vectors of i1.
2202 if (ElemTy == MVT::i1)
2203 return TargetLoweringBase::TypeWidenVector;
2204 // Widen non-power-of-2 vectors. Such types cannot be split right now,
2205 // and computeRegisterProperties will override "split" with "widen",
2206 // which can cause other issues.
2207 if (!isPowerOf2_32(VecLen))
2208 return TargetLoweringBase::TypeWidenVector;
2210 return TargetLoweringBase::TypeSplitVector;
2213 TargetLoweringBase::LegalizeAction
2214 HexagonTargetLowering::getCustomOperationAction(SDNode &Op) const {
2215 if (Subtarget.useHVXOps()) {
2216 unsigned Action = getCustomHvxOperationAction(Op);
2217 if (Action != ~0u)
2218 return static_cast<TargetLoweringBase::LegalizeAction>(Action);
2220 return TargetLoweringBase::Legal;
2223 std::pair<SDValue, int>
2224 HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const {
2225 if (Addr.getOpcode() == ISD::ADD) {
2226 SDValue Op1 = Addr.getOperand(1);
2227 if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode()))
2228 return { Addr.getOperand(0), CN->getSExtValue() };
2230 return { Addr, 0 };
2233 // Lower a vector shuffle (V1, V2, V3). V1 and V2 are the two vectors
2234 // to select data from, V3 is the permutation.
2235 SDValue
2236 HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
2237 const {
2238 const auto *SVN = cast<ShuffleVectorSDNode>(Op);
2239 ArrayRef<int> AM = SVN->getMask();
2240 assert(AM.size() <= 8 && "Unexpected shuffle mask");
2241 unsigned VecLen = AM.size();
2243 MVT VecTy = ty(Op);
2244 assert(!Subtarget.isHVXVectorType(VecTy, true) &&
2245 "HVX shuffles should be legal");
2246 assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length");
2248 SDValue Op0 = Op.getOperand(0);
2249 SDValue Op1 = Op.getOperand(1);
2250 const SDLoc &dl(Op);
2252 // If the inputs are not the same as the output, bail. This is not an
2253 // error situation, but complicates the handling and the default expansion
2254 // (into BUILD_VECTOR) should be adequate.
2255 if (ty(Op0) != VecTy || ty(Op1) != VecTy)
2256 return SDValue();
2258 // Normalize the mask so that the first non-negative index comes from
2259 // the first operand.
2260 SmallVector<int,8> Mask(AM.begin(), AM.end());
2261 unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data();
2262 if (F == AM.size())
2263 return DAG.getUNDEF(VecTy);
2264 if (AM[F] >= int(VecLen)) {
2265 ShuffleVectorSDNode::commuteMask(Mask);
2266 std::swap(Op0, Op1);
2269 // Express the shuffle mask in terms of bytes.
2270 SmallVector<int,8> ByteMask;
2271 unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8;
2272 for (int M : Mask) {
2273 if (M < 0) {
2274 for (unsigned j = 0; j != ElemBytes; ++j)
2275 ByteMask.push_back(-1);
2276 } else {
2277 for (unsigned j = 0; j != ElemBytes; ++j)
2278 ByteMask.push_back(M*ElemBytes + j);
2281 assert(ByteMask.size() <= 8);
2283 // All non-undef (non-negative) indexes are well within [0..127], so they
2284 // fit in a single byte. Build two 64-bit words:
2285 // - MaskIdx where each byte is the corresponding index (for non-negative
2286 // indexes), and 0xFF for negative indexes, and
2287 // - MaskUnd that has 0xFF for each negative index.
2288 uint64_t MaskIdx = 0;
2289 uint64_t MaskUnd = 0;
2290 for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) {
2291 unsigned S = 8*i;
2292 uint64_t M = ByteMask[i] & 0xFF;
2293 if (M == 0xFF)
2294 MaskUnd |= M << S;
2295 MaskIdx |= M << S;
2298 if (ByteMask.size() == 4) {
2299 // Identity.
2300 if (MaskIdx == (0x03020100 | MaskUnd))
2301 return Op0;
2302 // Byte swap.
2303 if (MaskIdx == (0x00010203 | MaskUnd)) {
2304 SDValue T0 = DAG.getBitcast(MVT::i32, Op0);
2305 SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0);
2306 return DAG.getBitcast(VecTy, T1);
2309 // Byte packs.
2310 SDValue Concat10 =
2311 getCombine(Op1, Op0, dl, typeJoin({ty(Op1), ty(Op0)}), DAG);
2312 if (MaskIdx == (0x06040200 | MaskUnd))
2313 return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG);
2314 if (MaskIdx == (0x07050301 | MaskUnd))
2315 return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG);
2317 SDValue Concat01 =
2318 getCombine(Op0, Op1, dl, typeJoin({ty(Op0), ty(Op1)}), DAG);
2319 if (MaskIdx == (0x02000604 | MaskUnd))
2320 return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG);
2321 if (MaskIdx == (0x03010705 | MaskUnd))
2322 return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG);
2325 if (ByteMask.size() == 8) {
2326 // Identity.
2327 if (MaskIdx == (0x0706050403020100ull | MaskUnd))
2328 return Op0;
2329 // Byte swap.
2330 if (MaskIdx == (0x0001020304050607ull | MaskUnd)) {
2331 SDValue T0 = DAG.getBitcast(MVT::i64, Op0);
2332 SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0);
2333 return DAG.getBitcast(VecTy, T1);
2336 // Halfword picks.
2337 if (MaskIdx == (0x0d0c050409080100ull | MaskUnd))
2338 return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG);
2339 if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd))
2340 return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG);
2341 if (MaskIdx == (0x0d0c090805040100ull | MaskUnd))
2342 return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG);
2343 if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd))
2344 return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG);
2345 if (MaskIdx == (0x0706030205040100ull | MaskUnd)) {
2346 VectorPair P = opSplit(Op0, dl, DAG);
2347 return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG);
2350 // Byte packs.
2351 if (MaskIdx == (0x0e060c040a020800ull | MaskUnd))
2352 return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG);
2353 if (MaskIdx == (0x0f070d050b030901ull | MaskUnd))
2354 return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG);
2357 return SDValue();
2360 SDValue
2361 HexagonTargetLowering::getSplatValue(SDValue Op, SelectionDAG &DAG) const {
2362 switch (Op.getOpcode()) {
2363 case ISD::BUILD_VECTOR:
2364 if (SDValue S = cast<BuildVectorSDNode>(Op)->getSplatValue())
2365 return S;
2366 break;
2367 case ISD::SPLAT_VECTOR:
2368 return Op.getOperand(0);
2370 return SDValue();
2373 // Create a Hexagon-specific node for shifting a vector by an integer.
2374 SDValue
2375 HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG)
2376 const {
2377 unsigned NewOpc;
2378 switch (Op.getOpcode()) {
2379 case ISD::SHL:
2380 NewOpc = HexagonISD::VASL;
2381 break;
2382 case ISD::SRA:
2383 NewOpc = HexagonISD::VASR;
2384 break;
2385 case ISD::SRL:
2386 NewOpc = HexagonISD::VLSR;
2387 break;
2388 default:
2389 llvm_unreachable("Unexpected shift opcode");
2392 if (SDValue Sp = getSplatValue(Op.getOperand(1), DAG))
2393 return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), Sp);
2394 return SDValue();
2397 SDValue
2398 HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
2399 const SDLoc &dl(Op);
2401 // First try to convert the shift (by vector) to a shift by a scalar.
2402 // If we first split the shift, the shift amount will become 'extract
2403 // subvector', and will no longer be recognized as scalar.
2404 SDValue Res = Op;
2405 if (SDValue S = getVectorShiftByInt(Op, DAG))
2406 Res = S;
2408 unsigned Opc = Res.getOpcode();
2409 switch (Opc) {
2410 case HexagonISD::VASR:
2411 case HexagonISD::VLSR:
2412 case HexagonISD::VASL:
2413 break;
2414 default:
2415 // No instructions for shifts by non-scalars.
2416 return SDValue();
2419 MVT ResTy = ty(Res);
2420 if (ResTy.getVectorElementType() != MVT::i8)
2421 return Res;
2423 // For shifts of i8, extend the inputs to i16, then truncate back to i8.
2424 assert(ResTy.getVectorElementType() == MVT::i8);
2425 SDValue Val = Res.getOperand(0), Amt = Res.getOperand(1);
2427 auto ShiftPartI8 = [&dl, &DAG, this](unsigned Opc, SDValue V, SDValue A) {
2428 MVT Ty = ty(V);
2429 MVT ExtTy = MVT::getVectorVT(MVT::i16, Ty.getVectorNumElements());
2430 SDValue ExtV = Opc == HexagonISD::VASR ? DAG.getSExtOrTrunc(V, dl, ExtTy)
2431 : DAG.getZExtOrTrunc(V, dl, ExtTy);
2432 SDValue ExtS = DAG.getNode(Opc, dl, ExtTy, {ExtV, A});
2433 return DAG.getZExtOrTrunc(ExtS, dl, Ty);
2436 if (ResTy.getSizeInBits() == 32)
2437 return ShiftPartI8(Opc, Val, Amt);
2439 auto [LoV, HiV] = opSplit(Val, dl, DAG);
2440 return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy,
2441 {ShiftPartI8(Opc, LoV, Amt), ShiftPartI8(Opc, HiV, Amt)});
2444 SDValue
2445 HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
2446 if (isa<ConstantSDNode>(Op.getOperand(1).getNode()))
2447 return Op;
2448 return SDValue();
2451 SDValue
2452 HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
2453 MVT ResTy = ty(Op);
2454 SDValue InpV = Op.getOperand(0);
2455 MVT InpTy = ty(InpV);
2456 assert(ResTy.getSizeInBits() == InpTy.getSizeInBits());
2457 const SDLoc &dl(Op);
2459 // Handle conversion from i8 to v8i1.
2460 if (InpTy == MVT::i8) {
2461 if (ResTy == MVT::v8i1) {
2462 SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV);
2463 SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32);
2464 return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG);
2466 return SDValue();
2469 return Op;
2472 bool
2473 HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values,
2474 MVT VecTy, SelectionDAG &DAG,
2475 MutableArrayRef<ConstantInt*> Consts) const {
2476 MVT ElemTy = VecTy.getVectorElementType();
2477 unsigned ElemWidth = ElemTy.getSizeInBits();
2478 IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth);
2479 bool AllConst = true;
2481 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2482 SDValue V = Values[i];
2483 if (V.isUndef()) {
2484 Consts[i] = ConstantInt::get(IntTy, 0);
2485 continue;
2487 // Make sure to always cast to IntTy.
2488 if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) {
2489 const ConstantInt *CI = CN->getConstantIntValue();
2490 Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue());
2491 } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) {
2492 const ConstantFP *CF = CN->getConstantFPValue();
2493 APInt A = CF->getValueAPF().bitcastToAPInt();
2494 Consts[i] = ConstantInt::get(IntTy, A.getZExtValue());
2495 } else {
2496 AllConst = false;
2499 return AllConst;
2502 SDValue
2503 HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl,
2504 MVT VecTy, SelectionDAG &DAG) const {
2505 MVT ElemTy = VecTy.getVectorElementType();
2506 assert(VecTy.getVectorNumElements() == Elem.size());
2508 SmallVector<ConstantInt*,4> Consts(Elem.size());
2509 bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2511 unsigned First, Num = Elem.size();
2512 for (First = 0; First != Num; ++First) {
2513 if (!isUndef(Elem[First]))
2514 break;
2516 if (First == Num)
2517 return DAG.getUNDEF(VecTy);
2519 if (AllConst &&
2520 llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2521 return getZero(dl, VecTy, DAG);
2523 if (ElemTy == MVT::i16 || ElemTy == MVT::f16) {
2524 assert(Elem.size() == 2);
2525 if (AllConst) {
2526 // The 'Consts' array will have all values as integers regardless
2527 // of the vector element type.
2528 uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) |
2529 Consts[1]->getZExtValue() << 16;
2530 return DAG.getBitcast(VecTy, DAG.getConstant(V, dl, MVT::i32));
2532 SDValue E0, E1;
2533 if (ElemTy == MVT::f16) {
2534 E0 = DAG.getZExtOrTrunc(DAG.getBitcast(MVT::i16, Elem[0]), dl, MVT::i32);
2535 E1 = DAG.getZExtOrTrunc(DAG.getBitcast(MVT::i16, Elem[1]), dl, MVT::i32);
2536 } else {
2537 E0 = Elem[0];
2538 E1 = Elem[1];
2540 SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {E1, E0}, DAG);
2541 return DAG.getBitcast(VecTy, N);
2544 if (ElemTy == MVT::i8) {
2545 // First try generating a constant.
2546 if (AllConst) {
2547 int32_t V = (Consts[0]->getZExtValue() & 0xFF) |
2548 (Consts[1]->getZExtValue() & 0xFF) << 8 |
2549 (Consts[2]->getZExtValue() & 0xFF) << 16 |
2550 Consts[3]->getZExtValue() << 24;
2551 return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32));
2554 // Then try splat.
2555 bool IsSplat = true;
2556 for (unsigned i = First+1; i != Num; ++i) {
2557 if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2558 continue;
2559 IsSplat = false;
2560 break;
2562 if (IsSplat) {
2563 // Legalize the operand of SPLAT_VECTOR.
2564 SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2565 return DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Ext);
2568 // Generate
2569 // (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) |
2570 // (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16
2571 assert(Elem.size() == 4);
2572 SDValue Vs[4];
2573 for (unsigned i = 0; i != 4; ++i) {
2574 Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32);
2575 Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8);
2577 SDValue S8 = DAG.getConstant(8, dl, MVT::i32);
2578 SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8});
2579 SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8});
2580 SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0});
2581 SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1});
2583 SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG);
2584 return DAG.getBitcast(MVT::v4i8, R);
2587 #ifndef NDEBUG
2588 dbgs() << "VecTy: " << VecTy << '\n';
2589 #endif
2590 llvm_unreachable("Unexpected vector element type");
2593 SDValue
2594 HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl,
2595 MVT VecTy, SelectionDAG &DAG) const {
2596 MVT ElemTy = VecTy.getVectorElementType();
2597 assert(VecTy.getVectorNumElements() == Elem.size());
2599 SmallVector<ConstantInt*,8> Consts(Elem.size());
2600 bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2602 unsigned First, Num = Elem.size();
2603 for (First = 0; First != Num; ++First) {
2604 if (!isUndef(Elem[First]))
2605 break;
2607 if (First == Num)
2608 return DAG.getUNDEF(VecTy);
2610 if (AllConst &&
2611 llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2612 return getZero(dl, VecTy, DAG);
2614 // First try splat if possible.
2615 if (ElemTy == MVT::i16 || ElemTy == MVT::f16) {
2616 bool IsSplat = true;
2617 for (unsigned i = First+1; i != Num; ++i) {
2618 if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2619 continue;
2620 IsSplat = false;
2621 break;
2623 if (IsSplat) {
2624 // Legalize the operand of SPLAT_VECTOR
2625 SDValue S = ElemTy == MVT::f16 ? DAG.getBitcast(MVT::i16, Elem[First])
2626 : Elem[First];
2627 SDValue Ext = DAG.getZExtOrTrunc(S, dl, MVT::i32);
2628 return DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Ext);
2632 // Then try constant.
2633 if (AllConst) {
2634 uint64_t Val = 0;
2635 unsigned W = ElemTy.getSizeInBits();
2636 uint64_t Mask = (1ull << W) - 1;
2637 for (unsigned i = 0; i != Num; ++i)
2638 Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask);
2639 SDValue V0 = DAG.getConstant(Val, dl, MVT::i64);
2640 return DAG.getBitcast(VecTy, V0);
2643 // Build two 32-bit vectors and concatenate.
2644 MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2);
2645 SDValue L = (ElemTy == MVT::i32)
2646 ? Elem[0]
2647 : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG);
2648 SDValue H = (ElemTy == MVT::i32)
2649 ? Elem[1]
2650 : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG);
2651 return getCombine(H, L, dl, VecTy, DAG);
2654 SDValue
2655 HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV,
2656 const SDLoc &dl, MVT ValTy, MVT ResTy,
2657 SelectionDAG &DAG) const {
2658 MVT VecTy = ty(VecV);
2659 assert(!ValTy.isVector() ||
2660 VecTy.getVectorElementType() == ValTy.getVectorElementType());
2661 if (VecTy.getVectorElementType() == MVT::i1)
2662 return extractVectorPred(VecV, IdxV, dl, ValTy, ResTy, DAG);
2664 unsigned VecWidth = VecTy.getSizeInBits();
2665 unsigned ValWidth = ValTy.getSizeInBits();
2666 unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits();
2667 assert((VecWidth % ElemWidth) == 0);
2668 assert(VecWidth == 32 || VecWidth == 64);
2670 // Cast everything to scalar integer types.
2671 MVT ScalarTy = tyScalar(VecTy);
2672 VecV = DAG.getBitcast(ScalarTy, VecV);
2674 SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2675 SDValue ExtV;
2677 if (auto *IdxN = dyn_cast<ConstantSDNode>(IdxV)) {
2678 unsigned Off = IdxN->getZExtValue() * ElemWidth;
2679 if (VecWidth == 64 && ValWidth == 32) {
2680 assert(Off == 0 || Off == 32);
2681 ExtV = Off == 0 ? LoHalf(VecV, DAG) : HiHalf(VecV, DAG);
2682 } else if (Off == 0 && (ValWidth % 8) == 0) {
2683 ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy));
2684 } else {
2685 SDValue OffV = DAG.getConstant(Off, dl, MVT::i32);
2686 // The return type of EXTRACTU must be the same as the type of the
2687 // input vector.
2688 ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2689 {VecV, WidthV, OffV});
2691 } else {
2692 if (ty(IdxV) != MVT::i32)
2693 IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2694 SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2695 DAG.getConstant(ElemWidth, dl, MVT::i32));
2696 ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2697 {VecV, WidthV, OffV});
2700 // Cast ExtV to the requested result type.
2701 ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy));
2702 ExtV = DAG.getBitcast(ResTy, ExtV);
2703 return ExtV;
2706 SDValue
2707 HexagonTargetLowering::extractVectorPred(SDValue VecV, SDValue IdxV,
2708 const SDLoc &dl, MVT ValTy, MVT ResTy,
2709 SelectionDAG &DAG) const {
2710 // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon
2711 // without any coprocessors).
2712 MVT VecTy = ty(VecV);
2713 unsigned VecWidth = VecTy.getSizeInBits();
2714 unsigned ValWidth = ValTy.getSizeInBits();
2715 assert(VecWidth == VecTy.getVectorNumElements() &&
2716 "Vector elements should equal vector width size");
2717 assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2);
2719 // Check if this is an extract of the lowest bit.
2720 if (auto *IdxN = dyn_cast<ConstantSDNode>(IdxV)) {
2721 // Extracting the lowest bit is a no-op, but it changes the type,
2722 // so it must be kept as an operation to avoid errors related to
2723 // type mismatches.
2724 if (IdxN->isZero() && ValTy.getSizeInBits() == 1)
2725 return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV);
2728 // If the value extracted is a single bit, use tstbit.
2729 if (ValWidth == 1) {
2730 SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2731 SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32);
2732 SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0);
2733 return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0);
2736 // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in
2737 // a predicate register. The elements of the vector are repeated
2738 // in the register (if necessary) so that the total number is 8.
2739 // The extracted subvector will need to be expanded in such a way.
2740 unsigned Scale = VecWidth / ValWidth;
2742 // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to
2743 // position 0.
2744 assert(ty(IdxV) == MVT::i32);
2745 unsigned VecRep = 8 / VecWidth;
2746 SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2747 DAG.getConstant(8*VecRep, dl, MVT::i32));
2748 SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2749 SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0);
2750 while (Scale > 1) {
2751 // The longest possible subvector is at most 32 bits, so it is always
2752 // contained in the low subregister.
2753 T1 = LoHalf(T1, DAG);
2754 T1 = expandPredicate(T1, dl, DAG);
2755 Scale /= 2;
2758 return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1);
2761 SDValue
2762 HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
2763 const SDLoc &dl, MVT ValTy,
2764 SelectionDAG &DAG) const {
2765 MVT VecTy = ty(VecV);
2766 if (VecTy.getVectorElementType() == MVT::i1)
2767 return insertVectorPred(VecV, ValV, IdxV, dl, ValTy, DAG);
2769 unsigned VecWidth = VecTy.getSizeInBits();
2770 unsigned ValWidth = ValTy.getSizeInBits();
2771 assert(VecWidth == 32 || VecWidth == 64);
2772 assert((VecWidth % ValWidth) == 0);
2774 // Cast everything to scalar integer types.
2775 MVT ScalarTy = MVT::getIntegerVT(VecWidth);
2776 // The actual type of ValV may be different than ValTy (which is related
2777 // to the vector type).
2778 unsigned VW = ty(ValV).getSizeInBits();
2779 ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV);
2780 VecV = DAG.getBitcast(ScalarTy, VecV);
2781 if (VW != VecWidth)
2782 ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy);
2784 SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2785 SDValue InsV;
2787 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) {
2788 unsigned W = C->getZExtValue() * ValWidth;
2789 SDValue OffV = DAG.getConstant(W, dl, MVT::i32);
2790 InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2791 {VecV, ValV, WidthV, OffV});
2792 } else {
2793 if (ty(IdxV) != MVT::i32)
2794 IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2795 SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV);
2796 InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2797 {VecV, ValV, WidthV, OffV});
2800 return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV);
2803 SDValue
2804 HexagonTargetLowering::insertVectorPred(SDValue VecV, SDValue ValV,
2805 SDValue IdxV, const SDLoc &dl,
2806 MVT ValTy, SelectionDAG &DAG) const {
2807 MVT VecTy = ty(VecV);
2808 unsigned VecLen = VecTy.getVectorNumElements();
2810 if (ValTy == MVT::i1) {
2811 SDValue ToReg = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2812 SDValue Ext = DAG.getSExtOrTrunc(ValV, dl, MVT::i32);
2813 SDValue Width = DAG.getConstant(8 / VecLen, dl, MVT::i32);
2814 SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, Width);
2815 SDValue Ins =
2816 DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, {ToReg, Ext, Width, Idx});
2817 return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Ins}, DAG);
2820 assert(ValTy.getVectorElementType() == MVT::i1);
2821 SDValue ValR = ValTy.isVector()
2822 ? DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV)
2823 : DAG.getSExtOrTrunc(ValV, dl, MVT::i64);
2825 unsigned Scale = VecLen / ValTy.getVectorNumElements();
2826 assert(Scale > 1);
2828 for (unsigned R = Scale; R > 1; R /= 2) {
2829 ValR = contractPredicate(ValR, dl, DAG);
2830 ValR = getCombine(DAG.getUNDEF(MVT::i32), ValR, dl, MVT::i64, DAG);
2833 SDValue Width = DAG.getConstant(64 / Scale, dl, MVT::i32);
2834 SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, Width);
2835 SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2836 SDValue Ins =
2837 DAG.getNode(HexagonISD::INSERT, dl, MVT::i64, {VecR, ValR, Width, Idx});
2838 return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins);
2841 SDValue
2842 HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl,
2843 SelectionDAG &DAG) const {
2844 assert(ty(Vec32).getSizeInBits() == 32);
2845 if (isUndef(Vec32))
2846 return DAG.getUNDEF(MVT::i64);
2847 SDValue P = DAG.getBitcast(MVT::v4i8, Vec32);
2848 SDValue X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i16, P);
2849 return DAG.getBitcast(MVT::i64, X);
2852 SDValue
2853 HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl,
2854 SelectionDAG &DAG) const {
2855 assert(ty(Vec64).getSizeInBits() == 64);
2856 if (isUndef(Vec64))
2857 return DAG.getUNDEF(MVT::i32);
2858 // Collect even bytes:
2859 SDValue A = DAG.getBitcast(MVT::v8i8, Vec64);
2860 SDValue S = DAG.getVectorShuffle(MVT::v8i8, dl, A, DAG.getUNDEF(MVT::v8i8),
2861 {0, 2, 4, 6, 1, 3, 5, 7});
2862 return extractVector(S, DAG.getConstant(0, dl, MVT::i32), dl, MVT::v4i8,
2863 MVT::i32, DAG);
2866 SDValue
2867 HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG)
2868 const {
2869 if (Ty.isVector()) {
2870 unsigned W = Ty.getSizeInBits();
2871 if (W <= 64)
2872 return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W)));
2873 return DAG.getNode(ISD::SPLAT_VECTOR, dl, Ty, getZero(dl, MVT::i32, DAG));
2876 if (Ty.isInteger())
2877 return DAG.getConstant(0, dl, Ty);
2878 if (Ty.isFloatingPoint())
2879 return DAG.getConstantFP(0.0, dl, Ty);
2880 llvm_unreachable("Invalid type for zero");
2883 SDValue
2884 HexagonTargetLowering::appendUndef(SDValue Val, MVT ResTy, SelectionDAG &DAG)
2885 const {
2886 MVT ValTy = ty(Val);
2887 assert(ValTy.getVectorElementType() == ResTy.getVectorElementType());
2889 unsigned ValLen = ValTy.getVectorNumElements();
2890 unsigned ResLen = ResTy.getVectorNumElements();
2891 if (ValLen == ResLen)
2892 return Val;
2894 const SDLoc &dl(Val);
2895 assert(ValLen < ResLen);
2896 assert(ResLen % ValLen == 0);
2898 SmallVector<SDValue, 4> Concats = {Val};
2899 for (unsigned i = 1, e = ResLen / ValLen; i < e; ++i)
2900 Concats.push_back(DAG.getUNDEF(ValTy));
2902 return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, Concats);
2905 SDValue
2906 HexagonTargetLowering::getCombine(SDValue Hi, SDValue Lo, const SDLoc &dl,
2907 MVT ResTy, SelectionDAG &DAG) const {
2908 MVT ElemTy = ty(Hi);
2909 assert(ElemTy == ty(Lo));
2911 if (!ElemTy.isVector()) {
2912 assert(ElemTy.isScalarInteger());
2913 MVT PairTy = MVT::getIntegerVT(2 * ElemTy.getSizeInBits());
2914 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, PairTy, Lo, Hi);
2915 return DAG.getBitcast(ResTy, Pair);
2918 unsigned Width = ElemTy.getSizeInBits();
2919 MVT IntTy = MVT::getIntegerVT(Width);
2920 MVT PairTy = MVT::getIntegerVT(2 * Width);
2921 SDValue Pair =
2922 DAG.getNode(ISD::BUILD_PAIR, dl, PairTy,
2923 {DAG.getBitcast(IntTy, Lo), DAG.getBitcast(IntTy, Hi)});
2924 return DAG.getBitcast(ResTy, Pair);
2927 SDValue
2928 HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
2929 MVT VecTy = ty(Op);
2930 unsigned BW = VecTy.getSizeInBits();
2931 const SDLoc &dl(Op);
2932 SmallVector<SDValue,8> Ops;
2933 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
2934 Ops.push_back(Op.getOperand(i));
2936 if (BW == 32)
2937 return buildVector32(Ops, dl, VecTy, DAG);
2938 if (BW == 64)
2939 return buildVector64(Ops, dl, VecTy, DAG);
2941 if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) {
2942 // Check if this is a special case or all-0 or all-1.
2943 bool All0 = true, All1 = true;
2944 for (SDValue P : Ops) {
2945 auto *CN = dyn_cast<ConstantSDNode>(P.getNode());
2946 if (CN == nullptr) {
2947 All0 = All1 = false;
2948 break;
2950 uint32_t C = CN->getZExtValue();
2951 All0 &= (C == 0);
2952 All1 &= (C == 1);
2954 if (All0)
2955 return DAG.getNode(HexagonISD::PFALSE, dl, VecTy);
2956 if (All1)
2957 return DAG.getNode(HexagonISD::PTRUE, dl, VecTy);
2959 // For each i1 element in the resulting predicate register, put 1
2960 // shifted by the index of the element into a general-purpose register,
2961 // then or them together and transfer it back into a predicate register.
2962 SDValue Rs[8];
2963 SDValue Z = getZero(dl, MVT::i32, DAG);
2964 // Always produce 8 bits, repeat inputs if necessary.
2965 unsigned Rep = 8 / VecTy.getVectorNumElements();
2966 for (unsigned i = 0; i != 8; ++i) {
2967 SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32);
2968 Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z);
2970 for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) {
2971 for (unsigned i = 0, e = A.size()/2; i != e; ++i)
2972 Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]);
2974 // Move the value directly to a predicate register.
2975 return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG);
2978 return SDValue();
2981 SDValue
2982 HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
2983 SelectionDAG &DAG) const {
2984 MVT VecTy = ty(Op);
2985 const SDLoc &dl(Op);
2986 if (VecTy.getSizeInBits() == 64) {
2987 assert(Op.getNumOperands() == 2);
2988 return getCombine(Op.getOperand(1), Op.getOperand(0), dl, VecTy, DAG);
2991 MVT ElemTy = VecTy.getVectorElementType();
2992 if (ElemTy == MVT::i1) {
2993 assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1);
2994 MVT OpTy = ty(Op.getOperand(0));
2995 // Scale is how many times the operands need to be contracted to match
2996 // the representation in the target register.
2997 unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements();
2998 assert(Scale == Op.getNumOperands() && Scale > 1);
3000 // First, convert all bool vectors to integers, then generate pairwise
3001 // inserts to form values of doubled length. Up until there are only
3002 // two values left to concatenate, all of these values will fit in a
3003 // 32-bit integer, so keep them as i32 to use 32-bit inserts.
3004 SmallVector<SDValue,4> Words[2];
3005 unsigned IdxW = 0;
3007 for (SDValue P : Op.getNode()->op_values()) {
3008 SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P);
3009 for (unsigned R = Scale; R > 1; R /= 2) {
3010 W = contractPredicate(W, dl, DAG);
3011 W = getCombine(DAG.getUNDEF(MVT::i32), W, dl, MVT::i64, DAG);
3013 W = LoHalf(W, DAG);
3014 Words[IdxW].push_back(W);
3017 while (Scale > 2) {
3018 SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32);
3019 Words[IdxW ^ 1].clear();
3021 for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) {
3022 SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1];
3023 // Insert W1 into W0 right next to the significant bits of W0.
3024 SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
3025 {W0, W1, WidthV, WidthV});
3026 Words[IdxW ^ 1].push_back(T);
3028 IdxW ^= 1;
3029 Scale /= 2;
3032 // At this point there should only be two words left, and Scale should be 2.
3033 assert(Scale == 2 && Words[IdxW].size() == 2);
3035 SDValue WW = getCombine(Words[IdxW][1], Words[IdxW][0], dl, MVT::i64, DAG);
3036 return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW);
3039 return SDValue();
3042 SDValue
3043 HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
3044 SelectionDAG &DAG) const {
3045 SDValue Vec = Op.getOperand(0);
3046 MVT ElemTy = ty(Vec).getVectorElementType();
3047 return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG);
3050 SDValue
3051 HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
3052 SelectionDAG &DAG) const {
3053 return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op),
3054 ty(Op), ty(Op), DAG);
3057 SDValue
3058 HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
3059 SelectionDAG &DAG) const {
3060 return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
3061 SDLoc(Op), ty(Op).getVectorElementType(), DAG);
3064 SDValue
3065 HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
3066 SelectionDAG &DAG) const {
3067 SDValue ValV = Op.getOperand(1);
3068 return insertVector(Op.getOperand(0), ValV, Op.getOperand(2),
3069 SDLoc(Op), ty(ValV), DAG);
3072 bool
3073 HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
3074 // Assuming the caller does not have either a signext or zeroext modifier, and
3075 // only one value is accepted, any reasonable truncation is allowed.
3076 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
3077 return false;
3079 // FIXME: in principle up to 64-bit could be made safe, but it would be very
3080 // fragile at the moment: any support for multiple value returns would be
3081 // liable to disallow tail calls involving i64 -> iN truncation in many cases.
3082 return Ty1->getPrimitiveSizeInBits() <= 32;
3085 SDValue
3086 HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const {
3087 MVT Ty = ty(Op);
3088 const SDLoc &dl(Op);
3089 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
3090 MVT MemTy = LN->getMemoryVT().getSimpleVT();
3091 ISD::LoadExtType ET = LN->getExtensionType();
3093 bool LoadPred = MemTy == MVT::v2i1 || MemTy == MVT::v4i1 || MemTy == MVT::v8i1;
3094 if (LoadPred) {
3095 SDValue NL = DAG.getLoad(
3096 LN->getAddressingMode(), ISD::ZEXTLOAD, MVT::i32, dl, LN->getChain(),
3097 LN->getBasePtr(), LN->getOffset(), LN->getPointerInfo(),
3098 /*MemoryVT*/ MVT::i8, LN->getAlign(), LN->getMemOperand()->getFlags(),
3099 LN->getAAInfo(), LN->getRanges());
3100 LN = cast<LoadSDNode>(NL.getNode());
3103 Align ClaimAlign = LN->getAlign();
3104 if (!validateConstPtrAlignment(LN->getBasePtr(), ClaimAlign, dl, DAG))
3105 return replaceMemWithUndef(Op, DAG);
3107 // Call LowerUnalignedLoad for all loads, it recognizes loads that
3108 // don't need extra aligning.
3109 SDValue LU = LowerUnalignedLoad(SDValue(LN, 0), DAG);
3110 if (LoadPred) {
3111 SDValue TP = getInstr(Hexagon::C2_tfrrp, dl, MemTy, {LU}, DAG);
3112 if (ET == ISD::SEXTLOAD) {
3113 TP = DAG.getSExtOrTrunc(TP, dl, Ty);
3114 } else if (ET != ISD::NON_EXTLOAD) {
3115 TP = DAG.getZExtOrTrunc(TP, dl, Ty);
3117 SDValue Ch = cast<LoadSDNode>(LU.getNode())->getChain();
3118 return DAG.getMergeValues({TP, Ch}, dl);
3120 return LU;
3123 SDValue
3124 HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const {
3125 const SDLoc &dl(Op);
3126 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
3127 SDValue Val = SN->getValue();
3128 MVT Ty = ty(Val);
3130 if (Ty == MVT::v2i1 || Ty == MVT::v4i1 || Ty == MVT::v8i1) {
3131 // Store the exact predicate (all bits).
3132 SDValue TR = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {Val}, DAG);
3133 SDValue NS = DAG.getTruncStore(SN->getChain(), dl, TR, SN->getBasePtr(),
3134 MVT::i8, SN->getMemOperand());
3135 if (SN->isIndexed()) {
3136 NS = DAG.getIndexedStore(NS, dl, SN->getBasePtr(), SN->getOffset(),
3137 SN->getAddressingMode());
3139 SN = cast<StoreSDNode>(NS.getNode());
3142 Align ClaimAlign = SN->getAlign();
3143 if (!validateConstPtrAlignment(SN->getBasePtr(), ClaimAlign, dl, DAG))
3144 return replaceMemWithUndef(Op, DAG);
3146 MVT StoreTy = SN->getMemoryVT().getSimpleVT();
3147 Align NeedAlign = Subtarget.getTypeAlignment(StoreTy);
3148 if (ClaimAlign < NeedAlign)
3149 return expandUnalignedStore(SN, DAG);
3150 return SDValue(SN, 0);
3153 SDValue
3154 HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG)
3155 const {
3156 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
3157 MVT LoadTy = ty(Op);
3158 unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy).value();
3159 unsigned HaveAlign = LN->getAlign().value();
3160 if (HaveAlign >= NeedAlign)
3161 return Op;
3163 const SDLoc &dl(Op);
3164 const DataLayout &DL = DAG.getDataLayout();
3165 LLVMContext &Ctx = *DAG.getContext();
3167 // If the load aligning is disabled or the load can be broken up into two
3168 // smaller legal loads, do the default (target-independent) expansion.
3169 bool DoDefault = false;
3170 // Handle it in the default way if this is an indexed load.
3171 if (!LN->isUnindexed())
3172 DoDefault = true;
3174 if (!AlignLoads) {
3175 if (allowsMemoryAccessForAlignment(Ctx, DL, LN->getMemoryVT(),
3176 *LN->getMemOperand()))
3177 return Op;
3178 DoDefault = true;
3180 if (!DoDefault && (2 * HaveAlign) == NeedAlign) {
3181 // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)".
3182 MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign)
3183 : MVT::getVectorVT(MVT::i8, HaveAlign);
3184 DoDefault =
3185 allowsMemoryAccessForAlignment(Ctx, DL, PartTy, *LN->getMemOperand());
3187 if (DoDefault) {
3188 std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG);
3189 return DAG.getMergeValues({P.first, P.second}, dl);
3192 // The code below generates two loads, both aligned as NeedAlign, and
3193 // with the distance of NeedAlign between them. For that to cover the
3194 // bits that need to be loaded (and without overlapping), the size of
3195 // the loads should be equal to NeedAlign. This is true for all loadable
3196 // types, but add an assertion in case something changes in the future.
3197 assert(LoadTy.getSizeInBits() == 8*NeedAlign);
3199 unsigned LoadLen = NeedAlign;
3200 SDValue Base = LN->getBasePtr();
3201 SDValue Chain = LN->getChain();
3202 auto BO = getBaseAndOffset(Base);
3203 unsigned BaseOpc = BO.first.getOpcode();
3204 if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0)
3205 return Op;
3207 if (BO.second % LoadLen != 0) {
3208 BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first,
3209 DAG.getConstant(BO.second % LoadLen, dl, MVT::i32));
3210 BO.second -= BO.second % LoadLen;
3212 SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR)
3213 ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first,
3214 DAG.getConstant(NeedAlign, dl, MVT::i32))
3215 : BO.first;
3216 SDValue Base0 =
3217 DAG.getMemBasePlusOffset(BaseNoOff, TypeSize::Fixed(BO.second), dl);
3218 SDValue Base1 = DAG.getMemBasePlusOffset(
3219 BaseNoOff, TypeSize::Fixed(BO.second + LoadLen), dl);
3221 MachineMemOperand *WideMMO = nullptr;
3222 if (MachineMemOperand *MMO = LN->getMemOperand()) {
3223 MachineFunction &MF = DAG.getMachineFunction();
3224 WideMMO = MF.getMachineMemOperand(
3225 MMO->getPointerInfo(), MMO->getFlags(), 2 * LoadLen, Align(LoadLen),
3226 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
3227 MMO->getSuccessOrdering(), MMO->getFailureOrdering());
3230 SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO);
3231 SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO);
3233 SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy,
3234 {Load1, Load0, BaseNoOff.getOperand(0)});
3235 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3236 Load0.getValue(1), Load1.getValue(1));
3237 SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl);
3238 return M;
3241 SDValue
3242 HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const {
3243 SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
3244 auto *CY = dyn_cast<ConstantSDNode>(Y);
3245 if (!CY)
3246 return SDValue();
3248 const SDLoc &dl(Op);
3249 SDVTList VTs = Op.getNode()->getVTList();
3250 assert(VTs.NumVTs == 2);
3251 assert(VTs.VTs[1] == MVT::i1);
3252 unsigned Opc = Op.getOpcode();
3254 if (CY) {
3255 uint64_t VY = CY->getZExtValue();
3256 assert(VY != 0 && "This should have been folded");
3257 // X +/- 1
3258 if (VY != 1)
3259 return SDValue();
3261 if (Opc == ISD::UADDO) {
3262 SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y});
3263 SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG),
3264 ISD::SETEQ);
3265 return DAG.getMergeValues({Op, Ov}, dl);
3267 if (Opc == ISD::USUBO) {
3268 SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y});
3269 SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op,
3270 DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ);
3271 return DAG.getMergeValues({Op, Ov}, dl);
3275 return SDValue();
3278 SDValue HexagonTargetLowering::LowerUAddSubOCarry(SDValue Op,
3279 SelectionDAG &DAG) const {
3280 const SDLoc &dl(Op);
3281 unsigned Opc = Op.getOpcode();
3282 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2);
3284 if (Opc == ISD::UADDO_CARRY)
3285 return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(),
3286 { X, Y, C });
3288 EVT CarryTy = C.getValueType();
3289 SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(),
3290 { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) });
3291 SDValue Out[] = { SubC.getValue(0),
3292 DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) };
3293 return DAG.getMergeValues(Out, dl);
3296 SDValue
3297 HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
3298 SDValue Chain = Op.getOperand(0);
3299 SDValue Offset = Op.getOperand(1);
3300 SDValue Handler = Op.getOperand(2);
3301 SDLoc dl(Op);
3302 auto PtrVT = getPointerTy(DAG.getDataLayout());
3304 // Mark function as containing a call to EH_RETURN.
3305 HexagonMachineFunctionInfo *FuncInfo =
3306 DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
3307 FuncInfo->setHasEHReturn();
3309 unsigned OffsetReg = Hexagon::R28;
3311 SDValue StoreAddr =
3312 DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
3313 DAG.getIntPtrConstant(4, dl));
3314 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
3315 Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
3317 // Not needed we already use it as explict input to EH_RETURN.
3318 // MF.getRegInfo().addLiveOut(OffsetReg);
3320 return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
3323 SDValue
3324 HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3325 unsigned Opc = Op.getOpcode();
3327 // Handle INLINEASM first.
3328 if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR)
3329 return LowerINLINEASM(Op, DAG);
3331 if (isHvxOperation(Op.getNode(), DAG)) {
3332 // If HVX lowering returns nothing, try the default lowering.
3333 if (SDValue V = LowerHvxOperation(Op, DAG))
3334 return V;
3337 switch (Opc) {
3338 default:
3339 #ifndef NDEBUG
3340 Op.getNode()->dumpr(&DAG);
3341 if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
3342 errs() << "Error: check for a non-legal type in this operation\n";
3343 #endif
3344 llvm_unreachable("Should not custom lower this!");
3345 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
3346 case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG);
3347 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
3348 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
3349 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3350 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
3351 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3352 case ISD::BITCAST: return LowerBITCAST(Op, DAG);
3353 case ISD::LOAD: return LowerLoad(Op, DAG);
3354 case ISD::STORE: return LowerStore(Op, DAG);
3355 case ISD::UADDO:
3356 case ISD::USUBO: return LowerUAddSubO(Op, DAG);
3357 case ISD::UADDO_CARRY:
3358 case ISD::USUBO_CARRY: return LowerUAddSubOCarry(Op, DAG);
3359 case ISD::SRA:
3360 case ISD::SHL:
3361 case ISD::SRL: return LowerVECTOR_SHIFT(Op, DAG);
3362 case ISD::ROTL: return LowerROTL(Op, DAG);
3363 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
3364 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
3365 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
3366 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
3367 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
3368 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
3369 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
3370 case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG);
3371 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
3372 case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
3373 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
3374 case ISD::VASTART: return LowerVASTART(Op, DAG);
3375 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
3376 case ISD::SETCC: return LowerSETCC(Op, DAG);
3377 case ISD::VSELECT: return LowerVSELECT(Op, DAG);
3378 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3379 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
3380 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG);
3381 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
3382 break;
3385 return SDValue();
3388 void
3389 HexagonTargetLowering::LowerOperationWrapper(SDNode *N,
3390 SmallVectorImpl<SDValue> &Results,
3391 SelectionDAG &DAG) const {
3392 if (isHvxOperation(N, DAG)) {
3393 LowerHvxOperationWrapper(N, Results, DAG);
3394 if (!Results.empty())
3395 return;
3398 SDValue Op(N, 0);
3399 unsigned Opc = N->getOpcode();
3401 switch (Opc) {
3402 case HexagonISD::SSAT:
3403 case HexagonISD::USAT:
3404 Results.push_back(opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG));
3405 break;
3406 case ISD::STORE:
3407 // We are only custom-lowering stores to verify the alignment of the
3408 // address if it is a compile-time constant. Since a store can be
3409 // modified during type-legalization (the value being stored may need
3410 // legalization), return empty Results here to indicate that we don't
3411 // really make any changes in the custom lowering.
3412 return;
3413 default:
3414 TargetLowering::LowerOperationWrapper(N, Results, DAG);
3415 break;
3419 void
3420 HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
3421 SmallVectorImpl<SDValue> &Results,
3422 SelectionDAG &DAG) const {
3423 if (isHvxOperation(N, DAG)) {
3424 ReplaceHvxNodeResults(N, Results, DAG);
3425 if (!Results.empty())
3426 return;
3429 const SDLoc &dl(N);
3430 switch (N->getOpcode()) {
3431 case ISD::SRL:
3432 case ISD::SRA:
3433 case ISD::SHL:
3434 return;
3435 case ISD::BITCAST:
3436 // Handle a bitcast from v8i1 to i8.
3437 if (N->getValueType(0) == MVT::i8) {
3438 if (N->getOperand(0).getValueType() == MVT::v8i1) {
3439 SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32,
3440 N->getOperand(0), DAG);
3441 SDValue T = DAG.getAnyExtOrTrunc(P, dl, MVT::i8);
3442 Results.push_back(T);
3445 break;
3449 SDValue
3450 HexagonTargetLowering::PerformDAGCombine(SDNode *N,
3451 DAGCombinerInfo &DCI) const {
3452 if (isHvxOperation(N, DCI.DAG)) {
3453 if (SDValue V = PerformHvxDAGCombine(N, DCI))
3454 return V;
3455 return SDValue();
3458 SDValue Op(N, 0);
3459 const SDLoc &dl(Op);
3460 unsigned Opc = Op.getOpcode();
3462 if (Opc == ISD::TRUNCATE) {
3463 SDValue Op0 = Op.getOperand(0);
3464 // fold (truncate (build pair x, y)) -> (truncate x) or x
3465 if (Op0.getOpcode() == ISD::BUILD_PAIR) {
3466 EVT TruncTy = Op.getValueType();
3467 SDValue Elem0 = Op0.getOperand(0);
3468 // if we match the low element of the pair, just return it.
3469 if (Elem0.getValueType() == TruncTy)
3470 return Elem0;
3471 // otherwise, if the low part is still too large, apply the truncate.
3472 if (Elem0.getValueType().bitsGT(TruncTy))
3473 return DCI.DAG.getNode(ISD::TRUNCATE, dl, TruncTy, Elem0);
3477 if (DCI.isBeforeLegalizeOps())
3478 return SDValue();
3480 if (Opc == HexagonISD::P2D) {
3481 SDValue P = Op.getOperand(0);
3482 switch (P.getOpcode()) {
3483 case HexagonISD::PTRUE:
3484 return DCI.DAG.getConstant(-1, dl, ty(Op));
3485 case HexagonISD::PFALSE:
3486 return getZero(dl, ty(Op), DCI.DAG);
3487 default:
3488 break;
3490 } else if (Opc == ISD::VSELECT) {
3491 // This is pretty much duplicated in HexagonISelLoweringHVX...
3493 // (vselect (xor x, ptrue), v0, v1) -> (vselect x, v1, v0)
3494 SDValue Cond = Op.getOperand(0);
3495 if (Cond->getOpcode() == ISD::XOR) {
3496 SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
3497 if (C1->getOpcode() == HexagonISD::PTRUE) {
3498 SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0,
3499 Op.getOperand(2), Op.getOperand(1));
3500 return VSel;
3503 } else if (Opc == ISD::TRUNCATE) {
3504 SDValue Op0 = Op.getOperand(0);
3505 // fold (truncate (build pair x, y)) -> (truncate x) or x
3506 if (Op0.getOpcode() == ISD::BUILD_PAIR) {
3507 MVT TruncTy = ty(Op);
3508 SDValue Elem0 = Op0.getOperand(0);
3509 // if we match the low element of the pair, just return it.
3510 if (ty(Elem0) == TruncTy)
3511 return Elem0;
3512 // otherwise, if the low part is still too large, apply the truncate.
3513 if (ty(Elem0).bitsGT(TruncTy))
3514 return DCI.DAG.getNode(ISD::TRUNCATE, dl, TruncTy, Elem0);
3516 } else if (Opc == ISD::OR) {
3517 // fold (or (shl xx, s), (zext y)) -> (COMBINE (shl xx, s-32), y)
3518 // if s >= 32
3519 auto fold0 = [&, this](SDValue Op) {
3520 if (ty(Op) != MVT::i64)
3521 return SDValue();
3522 SDValue Shl = Op.getOperand(0);
3523 SDValue Zxt = Op.getOperand(1);
3524 if (Shl.getOpcode() != ISD::SHL)
3525 std::swap(Shl, Zxt);
3527 if (Shl.getOpcode() != ISD::SHL || Zxt.getOpcode() != ISD::ZERO_EXTEND)
3528 return SDValue();
3530 SDValue Z = Zxt.getOperand(0);
3531 auto *Amt = dyn_cast<ConstantSDNode>(Shl.getOperand(1));
3532 if (Amt && Amt->getZExtValue() >= 32 && ty(Z).getSizeInBits() <= 32) {
3533 unsigned A = Amt->getZExtValue();
3534 SDValue S = Shl.getOperand(0);
3535 SDValue T0 = DCI.DAG.getNode(ISD::SHL, dl, ty(S), S,
3536 DCI.DAG.getConstant(32 - A, dl, MVT::i32));
3537 SDValue T1 = DCI.DAG.getZExtOrTrunc(T0, dl, MVT::i32);
3538 SDValue T2 = DCI.DAG.getZExtOrTrunc(Z, dl, MVT::i32);
3539 return DCI.DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, {T1, T2});
3541 return SDValue();
3544 if (SDValue R = fold0(Op))
3545 return R;
3548 return SDValue();
3551 /// Returns relocation base for the given PIC jumptable.
3552 SDValue
3553 HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3554 SelectionDAG &DAG) const {
3555 int Idx = cast<JumpTableSDNode>(Table)->getIndex();
3556 EVT VT = Table.getValueType();
3557 SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
3558 return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
3561 //===----------------------------------------------------------------------===//
3562 // Inline Assembly Support
3563 //===----------------------------------------------------------------------===//
3565 TargetLowering::ConstraintType
3566 HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
3567 if (Constraint.size() == 1) {
3568 switch (Constraint[0]) {
3569 case 'q':
3570 case 'v':
3571 if (Subtarget.useHVXOps())
3572 return C_RegisterClass;
3573 break;
3574 case 'a':
3575 return C_RegisterClass;
3576 default:
3577 break;
3580 return TargetLowering::getConstraintType(Constraint);
3583 std::pair<unsigned, const TargetRegisterClass*>
3584 HexagonTargetLowering::getRegForInlineAsmConstraint(
3585 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
3587 if (Constraint.size() == 1) {
3588 switch (Constraint[0]) {
3589 case 'r': // R0-R31
3590 switch (VT.SimpleTy) {
3591 default:
3592 return {0u, nullptr};
3593 case MVT::i1:
3594 case MVT::i8:
3595 case MVT::i16:
3596 case MVT::i32:
3597 case MVT::f32:
3598 return {0u, &Hexagon::IntRegsRegClass};
3599 case MVT::i64:
3600 case MVT::f64:
3601 return {0u, &Hexagon::DoubleRegsRegClass};
3603 break;
3604 case 'a': // M0-M1
3605 if (VT != MVT::i32)
3606 return {0u, nullptr};
3607 return {0u, &Hexagon::ModRegsRegClass};
3608 case 'q': // q0-q3
3609 switch (VT.getSizeInBits()) {
3610 default:
3611 return {0u, nullptr};
3612 case 64:
3613 case 128:
3614 return {0u, &Hexagon::HvxQRRegClass};
3616 break;
3617 case 'v': // V0-V31
3618 switch (VT.getSizeInBits()) {
3619 default:
3620 return {0u, nullptr};
3621 case 512:
3622 return {0u, &Hexagon::HvxVRRegClass};
3623 case 1024:
3624 if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps())
3625 return {0u, &Hexagon::HvxVRRegClass};
3626 return {0u, &Hexagon::HvxWRRegClass};
3627 case 2048:
3628 return {0u, &Hexagon::HvxWRRegClass};
3630 break;
3631 default:
3632 return {0u, nullptr};
3636 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3639 /// isFPImmLegal - Returns true if the target can instruction select the
3640 /// specified FP immediate natively. If false, the legalizer will
3641 /// materialize the FP immediate as a load from a constant pool.
3642 bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
3643 bool ForCodeSize) const {
3644 return true;
3647 /// isLegalAddressingMode - Return true if the addressing mode represented by
3648 /// AM is legal for this target, for a load/store of the specified type.
3649 bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
3650 const AddrMode &AM, Type *Ty,
3651 unsigned AS, Instruction *I) const {
3652 if (Ty->isSized()) {
3653 // When LSR detects uses of the same base address to access different
3654 // types (e.g. unions), it will assume a conservative type for these
3655 // uses:
3656 // LSR Use: Kind=Address of void in addrspace(4294967295), ...
3657 // The type Ty passed here would then be "void". Skip the alignment
3658 // checks, but do not return false right away, since that confuses
3659 // LSR into crashing.
3660 Align A = DL.getABITypeAlign(Ty);
3661 // The base offset must be a multiple of the alignment.
3662 if (!isAligned(A, AM.BaseOffs))
3663 return false;
3664 // The shifted offset must fit in 11 bits.
3665 if (!isInt<11>(AM.BaseOffs >> Log2(A)))
3666 return false;
3669 // No global is ever allowed as a base.
3670 if (AM.BaseGV)
3671 return false;
3673 int Scale = AM.Scale;
3674 if (Scale < 0)
3675 Scale = -Scale;
3676 switch (Scale) {
3677 case 0: // No scale reg, "r+i", "r", or just "i".
3678 break;
3679 default: // No scaled addressing mode.
3680 return false;
3682 return true;
3685 /// Return true if folding a constant offset with the given GlobalAddress is
3686 /// legal. It is frequently not legal in PIC relocation models.
3687 bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
3688 const {
3689 return HTM.getRelocationModel() == Reloc::Static;
3692 /// isLegalICmpImmediate - Return true if the specified immediate is legal
3693 /// icmp immediate, that is the target has icmp instructions which can compare
3694 /// a register against the immediate without having to materialize the
3695 /// immediate into a register.
3696 bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
3697 return Imm >= -512 && Imm <= 511;
3700 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3701 /// for tail call optimization. Targets which want to do tail call
3702 /// optimization should implement this function.
3703 bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
3704 SDValue Callee,
3705 CallingConv::ID CalleeCC,
3706 bool IsVarArg,
3707 bool IsCalleeStructRet,
3708 bool IsCallerStructRet,
3709 const SmallVectorImpl<ISD::OutputArg> &Outs,
3710 const SmallVectorImpl<SDValue> &OutVals,
3711 const SmallVectorImpl<ISD::InputArg> &Ins,
3712 SelectionDAG& DAG) const {
3713 const Function &CallerF = DAG.getMachineFunction().getFunction();
3714 CallingConv::ID CallerCC = CallerF.getCallingConv();
3715 bool CCMatch = CallerCC == CalleeCC;
3717 // ***************************************************************************
3718 // Look for obvious safe cases to perform tail call optimization that do not
3719 // require ABI changes.
3720 // ***************************************************************************
3722 // If this is a tail call via a function pointer, then don't do it!
3723 if (!isa<GlobalAddressSDNode>(Callee) &&
3724 !isa<ExternalSymbolSDNode>(Callee)) {
3725 return false;
3728 // Do not optimize if the calling conventions do not match and the conventions
3729 // used are not C or Fast.
3730 if (!CCMatch) {
3731 bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
3732 bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
3733 // If R & E, then ok.
3734 if (!R || !E)
3735 return false;
3738 // Do not tail call optimize vararg calls.
3739 if (IsVarArg)
3740 return false;
3742 // Also avoid tail call optimization if either caller or callee uses struct
3743 // return semantics.
3744 if (IsCalleeStructRet || IsCallerStructRet)
3745 return false;
3747 // In addition to the cases above, we also disable Tail Call Optimization if
3748 // the calling convention code that at least one outgoing argument needs to
3749 // go on the stack. We cannot check that here because at this point that
3750 // information is not available.
3751 return true;
3754 /// Returns the target specific optimal type for load and store operations as
3755 /// a result of memset, memcpy, and memmove lowering.
3757 /// If DstAlign is zero that means it's safe to destination alignment can
3758 /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
3759 /// a need to check it against alignment requirement, probably because the
3760 /// source does not need to be loaded. If 'IsMemset' is true, that means it's
3761 /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
3762 /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
3763 /// does not need to be loaded. It returns EVT::Other if the type should be
3764 /// determined using generic target-independent logic.
3765 EVT HexagonTargetLowering::getOptimalMemOpType(
3766 const MemOp &Op, const AttributeList &FuncAttributes) const {
3767 if (Op.size() >= 8 && Op.isAligned(Align(8)))
3768 return MVT::i64;
3769 if (Op.size() >= 4 && Op.isAligned(Align(4)))
3770 return MVT::i32;
3771 if (Op.size() >= 2 && Op.isAligned(Align(2)))
3772 return MVT::i16;
3773 return MVT::Other;
3776 bool HexagonTargetLowering::allowsMemoryAccess(
3777 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
3778 Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
3779 MVT SVT = VT.getSimpleVT();
3780 if (Subtarget.isHVXVectorType(SVT, true))
3781 return allowsHvxMemoryAccess(SVT, Flags, Fast);
3782 return TargetLoweringBase::allowsMemoryAccess(
3783 Context, DL, VT, AddrSpace, Alignment, Flags, Fast);
3786 bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(
3787 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
3788 unsigned *Fast) const {
3789 MVT SVT = VT.getSimpleVT();
3790 if (Subtarget.isHVXVectorType(SVT, true))
3791 return allowsHvxMisalignedMemoryAccesses(SVT, Flags, Fast);
3792 if (Fast)
3793 *Fast = 0;
3794 return false;
3797 std::pair<const TargetRegisterClass*, uint8_t>
3798 HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
3799 MVT VT) const {
3800 if (Subtarget.isHVXVectorType(VT, true)) {
3801 unsigned BitWidth = VT.getSizeInBits();
3802 unsigned VecWidth = Subtarget.getVectorLength() * 8;
3804 if (VT.getVectorElementType() == MVT::i1)
3805 return std::make_pair(&Hexagon::HvxQRRegClass, 1);
3806 if (BitWidth == VecWidth)
3807 return std::make_pair(&Hexagon::HvxVRRegClass, 1);
3808 assert(BitWidth == 2 * VecWidth);
3809 return std::make_pair(&Hexagon::HvxWRRegClass, 1);
3812 return TargetLowering::findRepresentativeClass(TRI, VT);
3815 bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load,
3816 ISD::LoadExtType ExtTy, EVT NewVT) const {
3817 // TODO: This may be worth removing. Check regression tests for diffs.
3818 if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
3819 return false;
3821 auto *L = cast<LoadSDNode>(Load);
3822 std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr());
3823 // Small-data object, do not shrink.
3824 if (BO.first.getOpcode() == HexagonISD::CONST32_GP)
3825 return false;
3826 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) {
3827 auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine());
3828 const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal());
3829 return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM);
3831 return true;
3834 void HexagonTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
3835 SDNode *Node) const {
3836 AdjustHvxInstrPostInstrSelection(MI, Node);
3839 Value *HexagonTargetLowering::emitLoadLinked(IRBuilderBase &Builder,
3840 Type *ValueTy, Value *Addr,
3841 AtomicOrdering Ord) const {
3842 BasicBlock *BB = Builder.GetInsertBlock();
3843 Module *M = BB->getParent()->getParent();
3844 unsigned SZ = ValueTy->getPrimitiveSizeInBits();
3845 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
3846 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
3847 : Intrinsic::hexagon_L4_loadd_locked;
3848 Function *Fn = Intrinsic::getDeclaration(M, IntID);
3850 auto PtrTy = cast<PointerType>(Addr->getType());
3851 PointerType *NewPtrTy =
3852 Builder.getIntNTy(SZ)->getPointerTo(PtrTy->getAddressSpace());
3853 Addr = Builder.CreateBitCast(Addr, NewPtrTy);
3855 Value *Call = Builder.CreateCall(Fn, Addr, "larx");
3857 return Builder.CreateBitCast(Call, ValueTy);
3860 /// Perform a store-conditional operation to Addr. Return the status of the
3861 /// store. This should be 0 if the store succeeded, non-zero otherwise.
3862 Value *HexagonTargetLowering::emitStoreConditional(IRBuilderBase &Builder,
3863 Value *Val, Value *Addr,
3864 AtomicOrdering Ord) const {
3865 BasicBlock *BB = Builder.GetInsertBlock();
3866 Module *M = BB->getParent()->getParent();
3867 Type *Ty = Val->getType();
3868 unsigned SZ = Ty->getPrimitiveSizeInBits();
3870 Type *CastTy = Builder.getIntNTy(SZ);
3871 assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
3872 Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
3873 : Intrinsic::hexagon_S4_stored_locked;
3874 Function *Fn = Intrinsic::getDeclaration(M, IntID);
3876 unsigned AS = Addr->getType()->getPointerAddressSpace();
3877 Addr = Builder.CreateBitCast(Addr, CastTy->getPointerTo(AS));
3878 Val = Builder.CreateBitCast(Val, CastTy);
3880 Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
3881 Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
3882 Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
3883 return Ext;
3886 TargetLowering::AtomicExpansionKind
3887 HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
3888 // Do not expand loads and stores that don't exceed 64 bits.
3889 return LI->getType()->getPrimitiveSizeInBits() > 64
3890 ? AtomicExpansionKind::LLOnly
3891 : AtomicExpansionKind::None;
3894 TargetLowering::AtomicExpansionKind
3895 HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
3896 // Do not expand loads and stores that don't exceed 64 bits.
3897 return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64
3898 ? AtomicExpansionKind::Expand
3899 : AtomicExpansionKind::None;
3902 TargetLowering::AtomicExpansionKind
3903 HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
3904 AtomicCmpXchgInst *AI) const {
3905 return AtomicExpansionKind::LLSC;