[MemProf] Templatize CallStackRadixTreeBuilder (NFC) (#117014)
[llvm-project.git] / flang / lib / Semantics / tools.cpp
blob379d5d0eb3eef030f16b5662b9e989a39e48b14d
1 //===-- lib/Semantics/tools.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "flang/Parser/tools.h"
10 #include "flang/Common/Fortran.h"
11 #include "flang/Common/indirection.h"
12 #include "flang/Parser/dump-parse-tree.h"
13 #include "flang/Parser/message.h"
14 #include "flang/Parser/parse-tree.h"
15 #include "flang/Semantics/scope.h"
16 #include "flang/Semantics/semantics.h"
17 #include "flang/Semantics/symbol.h"
18 #include "flang/Semantics/tools.h"
19 #include "flang/Semantics/type.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include <algorithm>
22 #include <set>
23 #include <variant>
25 namespace Fortran::semantics {
27 // Find this or containing scope that matches predicate
28 static const Scope *FindScopeContaining(
29 const Scope &start, std::function<bool(const Scope &)> predicate) {
30 for (const Scope *scope{&start};; scope = &scope->parent()) {
31 if (predicate(*scope)) {
32 return scope;
34 if (scope->IsTopLevel()) {
35 return nullptr;
40 const Scope &GetTopLevelUnitContaining(const Scope &start) {
41 CHECK(!start.IsTopLevel());
42 return DEREF(FindScopeContaining(
43 start, [](const Scope &scope) { return scope.parent().IsTopLevel(); }));
46 const Scope &GetTopLevelUnitContaining(const Symbol &symbol) {
47 return GetTopLevelUnitContaining(symbol.owner());
50 const Scope *FindModuleContaining(const Scope &start) {
51 return FindScopeContaining(
52 start, [](const Scope &scope) { return scope.IsModule(); });
55 const Scope *FindModuleFileContaining(const Scope &start) {
56 return FindScopeContaining(
57 start, [](const Scope &scope) { return scope.IsModuleFile(); });
60 const Scope &GetProgramUnitContaining(const Scope &start) {
61 CHECK(!start.IsTopLevel());
62 return DEREF(FindScopeContaining(start, [](const Scope &scope) {
63 switch (scope.kind()) {
64 case Scope::Kind::Module:
65 case Scope::Kind::MainProgram:
66 case Scope::Kind::Subprogram:
67 case Scope::Kind::BlockData:
68 return true;
69 default:
70 return false;
72 }));
75 const Scope &GetProgramUnitContaining(const Symbol &symbol) {
76 return GetProgramUnitContaining(symbol.owner());
79 const Scope &GetProgramUnitOrBlockConstructContaining(const Scope &start) {
80 CHECK(!start.IsTopLevel());
81 return DEREF(FindScopeContaining(start, [](const Scope &scope) {
82 switch (scope.kind()) {
83 case Scope::Kind::Module:
84 case Scope::Kind::MainProgram:
85 case Scope::Kind::Subprogram:
86 case Scope::Kind::BlockData:
87 case Scope::Kind::BlockConstruct:
88 return true;
89 default:
90 return false;
92 }));
95 const Scope &GetProgramUnitOrBlockConstructContaining(const Symbol &symbol) {
96 return GetProgramUnitOrBlockConstructContaining(symbol.owner());
99 const Scope *FindPureProcedureContaining(const Scope &start) {
100 // N.B. We only need to examine the innermost containing program unit
101 // because an internal subprogram of a pure subprogram must also
102 // be pure (C1592).
103 if (start.IsTopLevel()) {
104 return nullptr;
105 } else {
106 const Scope &scope{GetProgramUnitContaining(start)};
107 return IsPureProcedure(scope) ? &scope : nullptr;
111 const Scope *FindOpenACCConstructContaining(const Scope *scope) {
112 return scope ? FindScopeContaining(*scope,
113 [](const Scope &s) {
114 return s.kind() == Scope::Kind::OpenACCConstruct;
116 : nullptr;
119 // 7.5.2.4 "same derived type" test -- rely on IsTkCompatibleWith() and its
120 // infrastructure to detect and handle comparisons on distinct (but "same")
121 // sequence/bind(C) derived types
122 static bool MightBeSameDerivedType(
123 const std::optional<evaluate::DynamicType> &lhsType,
124 const std::optional<evaluate::DynamicType> &rhsType) {
125 return lhsType && rhsType && lhsType->IsTkCompatibleWith(*rhsType);
128 Tristate IsDefinedAssignment(
129 const std::optional<evaluate::DynamicType> &lhsType, int lhsRank,
130 const std::optional<evaluate::DynamicType> &rhsType, int rhsRank) {
131 if (!lhsType || !rhsType) {
132 return Tristate::No; // error or rhs is untyped
134 if (lhsType->IsUnlimitedPolymorphic()) {
135 return Tristate::No;
137 if (rhsType->IsUnlimitedPolymorphic()) {
138 return Tristate::Maybe;
140 TypeCategory lhsCat{lhsType->category()};
141 TypeCategory rhsCat{rhsType->category()};
142 if (rhsRank > 0 && lhsRank != rhsRank) {
143 return Tristate::Yes;
144 } else if (lhsCat != TypeCategory::Derived) {
145 return ToTristate(lhsCat != rhsCat &&
146 (!IsNumericTypeCategory(lhsCat) || !IsNumericTypeCategory(rhsCat)));
147 } else if (MightBeSameDerivedType(lhsType, rhsType)) {
148 return Tristate::Maybe; // TYPE(t) = TYPE(t) can be defined or intrinsic
149 } else {
150 return Tristate::Yes;
154 bool IsIntrinsicRelational(common::RelationalOperator opr,
155 const evaluate::DynamicType &type0, int rank0,
156 const evaluate::DynamicType &type1, int rank1) {
157 if (!evaluate::AreConformable(rank0, rank1)) {
158 return false;
159 } else {
160 auto cat0{type0.category()};
161 auto cat1{type1.category()};
162 if (IsNumericTypeCategory(cat0) && IsNumericTypeCategory(cat1)) {
163 // numeric types: EQ/NE always ok, others ok for non-complex
164 return opr == common::RelationalOperator::EQ ||
165 opr == common::RelationalOperator::NE ||
166 (cat0 != TypeCategory::Complex && cat1 != TypeCategory::Complex);
167 } else {
168 // not both numeric: only Character is ok
169 return cat0 == TypeCategory::Character && cat1 == TypeCategory::Character;
174 bool IsIntrinsicNumeric(const evaluate::DynamicType &type0) {
175 return IsNumericTypeCategory(type0.category());
177 bool IsIntrinsicNumeric(const evaluate::DynamicType &type0, int rank0,
178 const evaluate::DynamicType &type1, int rank1) {
179 return evaluate::AreConformable(rank0, rank1) &&
180 IsNumericTypeCategory(type0.category()) &&
181 IsNumericTypeCategory(type1.category());
184 bool IsIntrinsicLogical(const evaluate::DynamicType &type0) {
185 return type0.category() == TypeCategory::Logical;
187 bool IsIntrinsicLogical(const evaluate::DynamicType &type0, int rank0,
188 const evaluate::DynamicType &type1, int rank1) {
189 return evaluate::AreConformable(rank0, rank1) &&
190 type0.category() == TypeCategory::Logical &&
191 type1.category() == TypeCategory::Logical;
194 bool IsIntrinsicConcat(const evaluate::DynamicType &type0, int rank0,
195 const evaluate::DynamicType &type1, int rank1) {
196 return evaluate::AreConformable(rank0, rank1) &&
197 type0.category() == TypeCategory::Character &&
198 type1.category() == TypeCategory::Character &&
199 type0.kind() == type1.kind();
202 bool IsGenericDefinedOp(const Symbol &symbol) {
203 const Symbol &ultimate{symbol.GetUltimate()};
204 if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) {
205 return generic->kind().IsDefinedOperator();
206 } else if (const auto *misc{ultimate.detailsIf<MiscDetails>()}) {
207 return misc->kind() == MiscDetails::Kind::TypeBoundDefinedOp;
208 } else {
209 return false;
213 bool IsDefinedOperator(SourceName name) {
214 const char *begin{name.begin()};
215 const char *end{name.end()};
216 return begin != end && begin[0] == '.' && end[-1] == '.';
219 std::string MakeOpName(SourceName name) {
220 std::string result{name.ToString()};
221 return IsDefinedOperator(name) ? "OPERATOR(" + result + ")"
222 : result.find("operator(", 0) == 0 ? parser::ToUpperCaseLetters(result)
223 : result;
226 bool IsCommonBlockContaining(const Symbol &block, const Symbol &object) {
227 const auto &objects{block.get<CommonBlockDetails>().objects()};
228 return llvm::is_contained(objects, object);
231 bool IsUseAssociated(const Symbol &symbol, const Scope &scope) {
232 const Scope &owner{GetTopLevelUnitContaining(symbol.GetUltimate().owner())};
233 return owner.kind() == Scope::Kind::Module &&
234 owner != GetTopLevelUnitContaining(scope);
237 bool DoesScopeContain(
238 const Scope *maybeAncestor, const Scope &maybeDescendent) {
239 return maybeAncestor && !maybeDescendent.IsTopLevel() &&
240 FindScopeContaining(maybeDescendent.parent(),
241 [&](const Scope &scope) { return &scope == maybeAncestor; });
244 bool DoesScopeContain(const Scope *maybeAncestor, const Symbol &symbol) {
245 return DoesScopeContain(maybeAncestor, symbol.owner());
248 static const Symbol &FollowHostAssoc(const Symbol &symbol) {
249 for (const Symbol *s{&symbol};;) {
250 const auto *details{s->detailsIf<HostAssocDetails>()};
251 if (!details) {
252 return *s;
254 s = &details->symbol();
258 bool IsHostAssociated(const Symbol &symbol, const Scope &scope) {
259 const Symbol &base{FollowHostAssoc(symbol)};
260 return base.owner().IsTopLevel() ||
261 DoesScopeContain(&GetProgramUnitOrBlockConstructContaining(base),
262 GetProgramUnitOrBlockConstructContaining(scope));
265 bool IsHostAssociatedIntoSubprogram(const Symbol &symbol, const Scope &scope) {
266 const Symbol &base{FollowHostAssoc(symbol)};
267 return base.owner().IsTopLevel() ||
268 DoesScopeContain(&GetProgramUnitOrBlockConstructContaining(base),
269 GetProgramUnitContaining(scope));
272 bool IsInStmtFunction(const Symbol &symbol) {
273 if (const Symbol * function{symbol.owner().symbol()}) {
274 return IsStmtFunction(*function);
276 return false;
279 bool IsStmtFunctionDummy(const Symbol &symbol) {
280 return IsDummy(symbol) && IsInStmtFunction(symbol);
283 bool IsStmtFunctionResult(const Symbol &symbol) {
284 return IsFunctionResult(symbol) && IsInStmtFunction(symbol);
287 bool IsPointerDummy(const Symbol &symbol) {
288 return IsPointer(symbol) && IsDummy(symbol);
291 bool IsBindCProcedure(const Symbol &original) {
292 const Symbol &symbol{original.GetUltimate()};
293 if (const auto *procDetails{symbol.detailsIf<ProcEntityDetails>()}) {
294 if (procDetails->procInterface()) {
295 // procedure component with a BIND(C) interface
296 return IsBindCProcedure(*procDetails->procInterface());
299 return symbol.attrs().test(Attr::BIND_C) && IsProcedure(symbol);
302 bool IsBindCProcedure(const Scope &scope) {
303 if (const Symbol * symbol{scope.GetSymbol()}) {
304 return IsBindCProcedure(*symbol);
305 } else {
306 return false;
310 static const Symbol *FindPointerComponent(
311 const Scope &scope, std::set<const Scope *> &visited) {
312 if (!scope.IsDerivedType()) {
313 return nullptr;
315 if (!visited.insert(&scope).second) {
316 return nullptr;
318 // If there's a top-level pointer component, return it for clearer error
319 // messaging.
320 for (const auto &pair : scope) {
321 const Symbol &symbol{*pair.second};
322 if (IsPointer(symbol)) {
323 return &symbol;
326 for (const auto &pair : scope) {
327 const Symbol &symbol{*pair.second};
328 if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
329 if (const DeclTypeSpec * type{details->type()}) {
330 if (const DerivedTypeSpec * derived{type->AsDerived()}) {
331 if (const Scope * nested{derived->scope()}) {
332 if (const Symbol *
333 pointer{FindPointerComponent(*nested, visited)}) {
334 return pointer;
341 return nullptr;
344 const Symbol *FindPointerComponent(const Scope &scope) {
345 std::set<const Scope *> visited;
346 return FindPointerComponent(scope, visited);
349 const Symbol *FindPointerComponent(const DerivedTypeSpec &derived) {
350 if (const Scope * scope{derived.scope()}) {
351 return FindPointerComponent(*scope);
352 } else {
353 return nullptr;
357 const Symbol *FindPointerComponent(const DeclTypeSpec &type) {
358 if (const DerivedTypeSpec * derived{type.AsDerived()}) {
359 return FindPointerComponent(*derived);
360 } else {
361 return nullptr;
365 const Symbol *FindPointerComponent(const DeclTypeSpec *type) {
366 return type ? FindPointerComponent(*type) : nullptr;
369 const Symbol *FindPointerComponent(const Symbol &symbol) {
370 return IsPointer(symbol) ? &symbol : FindPointerComponent(symbol.GetType());
373 // C1594 specifies several ways by which an object might be globally visible.
374 const Symbol *FindExternallyVisibleObject(
375 const Symbol &object, const Scope &scope, bool isPointerDefinition) {
376 // TODO: Storage association with any object for which this predicate holds,
377 // once EQUIVALENCE is supported.
378 const Symbol &ultimate{GetAssociationRoot(object)};
379 if (IsDummy(ultimate)) {
380 if (IsIntentIn(ultimate)) {
381 return &ultimate;
383 if (!isPointerDefinition && IsPointer(ultimate) &&
384 IsPureProcedure(ultimate.owner()) && IsFunction(ultimate.owner())) {
385 return &ultimate;
387 } else if (ultimate.owner().IsDerivedType()) {
388 return nullptr;
389 } else if (&GetProgramUnitContaining(ultimate) !=
390 &GetProgramUnitContaining(scope)) {
391 return &object;
392 } else if (const Symbol * block{FindCommonBlockContaining(ultimate)}) {
393 return block;
395 return nullptr;
398 const Symbol &BypassGeneric(const Symbol &symbol) {
399 const Symbol &ultimate{symbol.GetUltimate()};
400 if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) {
401 if (const Symbol * specific{generic->specific()}) {
402 return *specific;
405 return symbol;
408 const Symbol &GetCrayPointer(const Symbol &crayPointee) {
409 const Symbol *found{nullptr};
410 for (const auto &[pointee, pointer] :
411 crayPointee.GetUltimate().owner().crayPointers()) {
412 if (pointee == crayPointee.name()) {
413 found = &pointer.get();
414 break;
417 return DEREF(found);
420 bool ExprHasTypeCategory(
421 const SomeExpr &expr, const common::TypeCategory &type) {
422 auto dynamicType{expr.GetType()};
423 return dynamicType && dynamicType->category() == type;
426 bool ExprTypeKindIsDefault(
427 const SomeExpr &expr, const SemanticsContext &context) {
428 auto dynamicType{expr.GetType()};
429 return dynamicType &&
430 dynamicType->category() != common::TypeCategory::Derived &&
431 dynamicType->kind() == context.GetDefaultKind(dynamicType->category());
434 // If an analyzed expr or assignment is missing, dump the node and die.
435 template <typename T>
436 static void CheckMissingAnalysis(
437 bool crash, SemanticsContext *context, const T &x) {
438 if (crash && !(context && context->AnyFatalError())) {
439 std::string buf;
440 llvm::raw_string_ostream ss{buf};
441 ss << "node has not been analyzed:\n";
442 parser::DumpTree(ss, x);
443 common::die(buf.c_str());
447 const SomeExpr *GetExprHelper::Get(const parser::Expr &x) {
448 CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x);
449 return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr;
451 const SomeExpr *GetExprHelper::Get(const parser::Variable &x) {
452 CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x);
453 return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr;
455 const SomeExpr *GetExprHelper::Get(const parser::DataStmtConstant &x) {
456 CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x);
457 return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr;
459 const SomeExpr *GetExprHelper::Get(const parser::AllocateObject &x) {
460 CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x);
461 return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr;
463 const SomeExpr *GetExprHelper::Get(const parser::PointerObject &x) {
464 CheckMissingAnalysis(crashIfNoExpr_ && !x.typedExpr, context_, x);
465 return x.typedExpr ? common::GetPtrFromOptional(x.typedExpr->v) : nullptr;
468 const evaluate::Assignment *GetAssignment(const parser::AssignmentStmt &x) {
469 return x.typedAssignment ? common::GetPtrFromOptional(x.typedAssignment->v)
470 : nullptr;
472 const evaluate::Assignment *GetAssignment(
473 const parser::PointerAssignmentStmt &x) {
474 return x.typedAssignment ? common::GetPtrFromOptional(x.typedAssignment->v)
475 : nullptr;
478 const Symbol *FindInterface(const Symbol &symbol) {
479 return common::visit(
480 common::visitors{
481 [](const ProcEntityDetails &details) {
482 const Symbol *interface{details.procInterface()};
483 return interface ? FindInterface(*interface) : nullptr;
485 [](const ProcBindingDetails &details) {
486 return FindInterface(details.symbol());
488 [&](const SubprogramDetails &) { return &symbol; },
489 [](const UseDetails &details) {
490 return FindInterface(details.symbol());
492 [](const HostAssocDetails &details) {
493 return FindInterface(details.symbol());
495 [](const GenericDetails &details) {
496 return details.specific() ? FindInterface(*details.specific())
497 : nullptr;
499 [](const auto &) -> const Symbol * { return nullptr; },
501 symbol.details());
504 const Symbol *FindSubprogram(const Symbol &symbol) {
505 return common::visit(
506 common::visitors{
507 [&](const ProcEntityDetails &details) -> const Symbol * {
508 if (details.procInterface()) {
509 return FindSubprogram(*details.procInterface());
510 } else {
511 return &symbol;
514 [](const ProcBindingDetails &details) {
515 return FindSubprogram(details.symbol());
517 [&](const SubprogramDetails &) { return &symbol; },
518 [](const UseDetails &details) {
519 return FindSubprogram(details.symbol());
521 [](const HostAssocDetails &details) {
522 return FindSubprogram(details.symbol());
524 [](const GenericDetails &details) {
525 return details.specific() ? FindSubprogram(*details.specific())
526 : nullptr;
528 [](const auto &) -> const Symbol * { return nullptr; },
530 symbol.details());
533 const Symbol *FindOverriddenBinding(
534 const Symbol &symbol, bool &isInaccessibleDeferred) {
535 isInaccessibleDeferred = false;
536 if (symbol.has<ProcBindingDetails>()) {
537 if (const DeclTypeSpec * parentType{FindParentTypeSpec(symbol.owner())}) {
538 if (const DerivedTypeSpec * parentDerived{parentType->AsDerived()}) {
539 if (const Scope * parentScope{parentDerived->typeSymbol().scope()}) {
540 if (const Symbol *
541 overridden{parentScope->FindComponent(symbol.name())}) {
542 // 7.5.7.3 p1: only accessible bindings are overridden
543 if (!overridden->attrs().test(Attr::PRIVATE) ||
544 FindModuleContaining(overridden->owner()) ==
545 FindModuleContaining(symbol.owner())) {
546 return overridden;
547 } else if (overridden->attrs().test(Attr::DEFERRED)) {
548 isInaccessibleDeferred = true;
549 return overridden;
556 return nullptr;
559 const Symbol *FindGlobal(const Symbol &original) {
560 const Symbol &ultimate{original.GetUltimate()};
561 if (ultimate.owner().IsGlobal()) {
562 return &ultimate;
564 bool isLocal{false};
565 if (IsDummy(ultimate)) {
566 } else if (IsPointer(ultimate)) {
567 } else if (ultimate.has<ProcEntityDetails>()) {
568 isLocal = IsExternal(ultimate);
569 } else if (const auto *subp{ultimate.detailsIf<SubprogramDetails>()}) {
570 isLocal = subp->isInterface();
572 if (isLocal) {
573 const std::string *bind{ultimate.GetBindName()};
574 if (!bind || ultimate.name() == *bind) {
575 const Scope &globalScope{ultimate.owner().context().globalScope()};
576 if (auto iter{globalScope.find(ultimate.name())};
577 iter != globalScope.end()) {
578 const Symbol &global{*iter->second};
579 const std::string *globalBind{global.GetBindName()};
580 if (!globalBind || global.name() == *globalBind) {
581 return &global;
586 return nullptr;
589 const DeclTypeSpec *FindParentTypeSpec(const DerivedTypeSpec &derived) {
590 return FindParentTypeSpec(derived.typeSymbol());
593 const DeclTypeSpec *FindParentTypeSpec(const DeclTypeSpec &decl) {
594 if (const DerivedTypeSpec * derived{decl.AsDerived()}) {
595 return FindParentTypeSpec(*derived);
596 } else {
597 return nullptr;
601 const DeclTypeSpec *FindParentTypeSpec(const Scope &scope) {
602 if (scope.kind() == Scope::Kind::DerivedType) {
603 if (const auto *symbol{scope.symbol()}) {
604 return FindParentTypeSpec(*symbol);
607 return nullptr;
610 const DeclTypeSpec *FindParentTypeSpec(const Symbol &symbol) {
611 if (const Scope * scope{symbol.scope()}) {
612 if (const auto *details{symbol.detailsIf<DerivedTypeDetails>()}) {
613 if (const Symbol * parent{details->GetParentComponent(*scope)}) {
614 return parent->GetType();
618 return nullptr;
621 const EquivalenceSet *FindEquivalenceSet(const Symbol &symbol) {
622 const Symbol &ultimate{symbol.GetUltimate()};
623 for (const EquivalenceSet &set : ultimate.owner().equivalenceSets()) {
624 for (const EquivalenceObject &object : set) {
625 if (object.symbol == ultimate) {
626 return &set;
630 return nullptr;
633 bool IsOrContainsEventOrLockComponent(const Symbol &original) {
634 const Symbol &symbol{ResolveAssociations(original)};
635 if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
636 if (const DeclTypeSpec * type{details->type()}) {
637 if (const DerivedTypeSpec * derived{type->AsDerived()}) {
638 return IsEventTypeOrLockType(derived) ||
639 FindEventOrLockPotentialComponent(*derived);
643 return false;
646 // Check this symbol suitable as a type-bound procedure - C769
647 bool CanBeTypeBoundProc(const Symbol &symbol) {
648 if (IsDummy(symbol) || IsProcedurePointer(symbol)) {
649 return false;
650 } else if (symbol.has<SubprogramNameDetails>()) {
651 return symbol.owner().kind() == Scope::Kind::Module;
652 } else if (auto *details{symbol.detailsIf<SubprogramDetails>()}) {
653 if (details->isInterface()) {
654 return !symbol.attrs().test(Attr::ABSTRACT);
655 } else {
656 return symbol.owner().kind() == Scope::Kind::Module;
658 } else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
659 return !symbol.attrs().test(Attr::INTRINSIC) &&
660 proc->HasExplicitInterface();
661 } else {
662 return false;
666 bool HasDeclarationInitializer(const Symbol &symbol) {
667 if (IsNamedConstant(symbol)) {
668 return false;
669 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
670 return object->init().has_value();
671 } else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
672 return proc->init().has_value();
673 } else {
674 return false;
678 bool IsInitialized(const Symbol &symbol, bool ignoreDataStatements,
679 bool ignoreAllocatable, bool ignorePointer) {
680 if (!ignoreAllocatable && IsAllocatable(symbol)) {
681 return true;
682 } else if (!ignoreDataStatements && symbol.test(Symbol::Flag::InDataStmt)) {
683 return true;
684 } else if (HasDeclarationInitializer(symbol)) {
685 return true;
686 } else if (IsPointer(symbol)) {
687 return !ignorePointer;
688 } else if (IsNamedConstant(symbol)) {
689 return false;
690 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
691 if ((!object->isDummy() || IsIntentOut(symbol)) && object->type()) {
692 if (const auto *derived{object->type()->AsDerived()}) {
693 return derived->HasDefaultInitialization(
694 ignoreAllocatable, ignorePointer);
698 return false;
701 bool IsDestructible(const Symbol &symbol, const Symbol *derivedTypeSymbol) {
702 if (IsAllocatable(symbol) || IsAutomatic(symbol)) {
703 return true;
704 } else if (IsNamedConstant(symbol) || IsFunctionResult(symbol) ||
705 IsPointer(symbol)) {
706 return false;
707 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
708 if ((!object->isDummy() || IsIntentOut(symbol)) && object->type()) {
709 if (const auto *derived{object->type()->AsDerived()}) {
710 return &derived->typeSymbol() != derivedTypeSymbol &&
711 derived->HasDestruction();
715 return false;
718 bool HasIntrinsicTypeName(const Symbol &symbol) {
719 std::string name{symbol.name().ToString()};
720 if (name == "doubleprecision") {
721 return true;
722 } else if (name == "derived") {
723 return false;
724 } else {
725 for (int i{0}; i != common::TypeCategory_enumSize; ++i) {
726 if (name == parser::ToLowerCaseLetters(EnumToString(TypeCategory{i}))) {
727 return true;
730 return false;
734 bool IsSeparateModuleProcedureInterface(const Symbol *symbol) {
735 if (symbol && symbol->attrs().test(Attr::MODULE)) {
736 if (auto *details{symbol->detailsIf<SubprogramDetails>()}) {
737 return details->isInterface();
740 return false;
743 SymbolVector FinalsForDerivedTypeInstantiation(const DerivedTypeSpec &spec) {
744 SymbolVector result;
745 const Symbol &typeSymbol{spec.typeSymbol()};
746 if (const auto *derived{typeSymbol.detailsIf<DerivedTypeDetails>()}) {
747 for (const auto &pair : derived->finals()) {
748 const Symbol &subr{*pair.second};
749 // Errors in FINAL subroutines are caught in CheckFinal
750 // in check-declarations.cpp.
751 if (const auto *subprog{subr.detailsIf<SubprogramDetails>()};
752 subprog && subprog->dummyArgs().size() == 1) {
753 if (const Symbol * arg{subprog->dummyArgs()[0]}) {
754 if (const DeclTypeSpec * type{arg->GetType()}) {
755 if (type->category() == DeclTypeSpec::TypeDerived &&
756 evaluate::AreSameDerivedType(spec, type->derivedTypeSpec())) {
757 result.emplace_back(subr);
764 return result;
767 const Symbol *IsFinalizable(const Symbol &symbol,
768 std::set<const DerivedTypeSpec *> *inProgress, bool withImpureFinalizer) {
769 if (IsPointer(symbol) || evaluate::IsAssumedRank(symbol)) {
770 return nullptr;
772 if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
773 if (object->isDummy() && !IsIntentOut(symbol)) {
774 return nullptr;
776 const DeclTypeSpec *type{object->type()};
777 if (const DerivedTypeSpec * typeSpec{type ? type->AsDerived() : nullptr}) {
778 return IsFinalizable(
779 *typeSpec, inProgress, withImpureFinalizer, symbol.Rank());
782 return nullptr;
785 const Symbol *IsFinalizable(const DerivedTypeSpec &derived,
786 std::set<const DerivedTypeSpec *> *inProgress, bool withImpureFinalizer,
787 std::optional<int> rank) {
788 const Symbol *elemental{nullptr};
789 for (auto ref : FinalsForDerivedTypeInstantiation(derived)) {
790 const Symbol *symbol{&ref->GetUltimate()};
791 if (const auto *binding{symbol->detailsIf<ProcBindingDetails>()}) {
792 symbol = &binding->symbol();
794 if (const auto *proc{symbol->detailsIf<ProcEntityDetails>()}) {
795 symbol = proc->procInterface();
797 if (!symbol) {
798 } else if (IsElementalProcedure(*symbol)) {
799 elemental = symbol;
800 } else {
801 if (rank) {
802 if (const SubprogramDetails *
803 subp{symbol->detailsIf<SubprogramDetails>()}) {
804 if (const auto &args{subp->dummyArgs()}; !args.empty() &&
805 args.at(0) && !evaluate::IsAssumedRank(*args.at(0)) &&
806 args.at(0)->Rank() != *rank) {
807 continue; // not a finalizer for this rank
811 if (!withImpureFinalizer || !IsPureProcedure(*symbol)) {
812 return symbol;
814 // Found non-elemental pure finalizer of matching rank, but still
815 // need to check components for an impure finalizer.
816 elemental = nullptr;
817 break;
820 if (elemental && (!withImpureFinalizer || !IsPureProcedure(*elemental))) {
821 return elemental;
823 // Check components (including ancestors)
824 std::set<const DerivedTypeSpec *> basis;
825 if (inProgress) {
826 if (inProgress->find(&derived) != inProgress->end()) {
827 return nullptr; // don't loop on recursive type
829 } else {
830 inProgress = &basis;
832 auto iterator{inProgress->insert(&derived).first};
833 const Symbol *result{nullptr};
834 for (const Symbol &component : PotentialComponentIterator{derived}) {
835 result = IsFinalizable(component, inProgress, withImpureFinalizer);
836 if (result) {
837 break;
840 inProgress->erase(iterator);
841 return result;
844 static const Symbol *HasImpureFinal(
845 const DerivedTypeSpec &derived, std::optional<int> rank) {
846 return IsFinalizable(derived, nullptr, /*withImpureFinalizer=*/true, rank);
849 const Symbol *HasImpureFinal(const Symbol &original, std::optional<int> rank) {
850 const Symbol &symbol{ResolveAssociations(original)};
851 if (symbol.has<ObjectEntityDetails>()) {
852 if (const DeclTypeSpec * symType{symbol.GetType()}) {
853 if (const DerivedTypeSpec * derived{symType->AsDerived()}) {
854 if (evaluate::IsAssumedRank(symbol)) {
855 // finalizable assumed-rank not allowed (C839)
856 return nullptr;
857 } else {
858 int actualRank{rank.value_or(symbol.Rank())};
859 return HasImpureFinal(*derived, actualRank);
864 return nullptr;
867 bool MayRequireFinalization(const DerivedTypeSpec &derived) {
868 return IsFinalizable(derived) ||
869 FindPolymorphicAllocatablePotentialComponent(derived);
872 bool HasAllocatableDirectComponent(const DerivedTypeSpec &derived) {
873 DirectComponentIterator directs{derived};
874 return std::any_of(directs.begin(), directs.end(), IsAllocatable);
877 bool IsAssumedLengthCharacter(const Symbol &symbol) {
878 if (const DeclTypeSpec * type{symbol.GetType()}) {
879 return type->category() == DeclTypeSpec::Character &&
880 type->characterTypeSpec().length().isAssumed();
881 } else {
882 return false;
886 bool IsInBlankCommon(const Symbol &symbol) {
887 const Symbol *block{FindCommonBlockContaining(symbol)};
888 return block && block->name().empty();
891 // C722 and C723: For a function to be assumed length, it must be external and
892 // of CHARACTER type
893 bool IsExternal(const Symbol &symbol) {
894 return ClassifyProcedure(symbol) == ProcedureDefinitionClass::External;
897 // Most scopes have no EQUIVALENCE, and this function is a fast no-op for them.
898 std::list<std::list<SymbolRef>> GetStorageAssociations(const Scope &scope) {
899 UnorderedSymbolSet distinct;
900 for (const EquivalenceSet &set : scope.equivalenceSets()) {
901 for (const EquivalenceObject &object : set) {
902 distinct.emplace(object.symbol);
905 // This set is ordered by ascending offsets, with ties broken by greatest
906 // size. A multiset is used here because multiple symbols may have the
907 // same offset and size; the symbols in the set, however, are distinct.
908 std::multiset<SymbolRef, SymbolOffsetCompare> associated;
909 for (SymbolRef ref : distinct) {
910 associated.emplace(*ref);
912 std::list<std::list<SymbolRef>> result;
913 std::size_t limit{0};
914 const Symbol *currentCommon{nullptr};
915 for (const Symbol &symbol : associated) {
916 const Symbol *thisCommon{FindCommonBlockContaining(symbol)};
917 if (result.empty() || symbol.offset() >= limit ||
918 thisCommon != currentCommon) {
919 // Start a new group
920 result.emplace_back(std::list<SymbolRef>{});
921 limit = 0;
922 currentCommon = thisCommon;
924 result.back().emplace_back(symbol);
925 limit = std::max(limit, symbol.offset() + symbol.size());
927 return result;
930 bool IsModuleProcedure(const Symbol &symbol) {
931 return ClassifyProcedure(symbol) == ProcedureDefinitionClass::Module;
934 class ImageControlStmtHelper {
935 using ImageControlStmts =
936 std::variant<parser::ChangeTeamConstruct, parser::CriticalConstruct,
937 parser::EventPostStmt, parser::EventWaitStmt, parser::FormTeamStmt,
938 parser::LockStmt, parser::SyncAllStmt, parser::SyncImagesStmt,
939 parser::SyncMemoryStmt, parser::SyncTeamStmt, parser::UnlockStmt>;
941 public:
942 template <typename T> bool operator()(const T &) {
943 return common::HasMember<T, ImageControlStmts>;
945 template <typename T> bool operator()(const common::Indirection<T> &x) {
946 return (*this)(x.value());
948 template <typename A> bool operator()(const parser::Statement<A> &x) {
949 return (*this)(x.statement);
951 bool operator()(const parser::AllocateStmt &stmt) {
952 const auto &allocationList{std::get<std::list<parser::Allocation>>(stmt.t)};
953 for (const auto &allocation : allocationList) {
954 const auto &allocateObject{
955 std::get<parser::AllocateObject>(allocation.t)};
956 if (IsCoarrayObject(allocateObject)) {
957 return true;
960 return false;
962 bool operator()(const parser::DeallocateStmt &stmt) {
963 const auto &allocateObjectList{
964 std::get<std::list<parser::AllocateObject>>(stmt.t)};
965 for (const auto &allocateObject : allocateObjectList) {
966 if (IsCoarrayObject(allocateObject)) {
967 return true;
970 return false;
972 bool operator()(const parser::CallStmt &stmt) {
973 const auto &procedureDesignator{
974 std::get<parser::ProcedureDesignator>(stmt.call.t)};
975 if (auto *name{std::get_if<parser::Name>(&procedureDesignator.u)}) {
976 // TODO: also ensure that the procedure is, in fact, an intrinsic
977 if (name->source == "move_alloc") {
978 const auto &args{
979 std::get<std::list<parser::ActualArgSpec>>(stmt.call.t)};
980 if (!args.empty()) {
981 const parser::ActualArg &actualArg{
982 std::get<parser::ActualArg>(args.front().t)};
983 if (const auto *argExpr{
984 std::get_if<common::Indirection<parser::Expr>>(
985 &actualArg.u)}) {
986 return HasCoarray(argExpr->value());
991 return false;
993 bool operator()(const parser::StopStmt &stmt) {
994 // STOP is an image control statement; ERROR STOP is not
995 return std::get<parser::StopStmt::Kind>(stmt.t) ==
996 parser::StopStmt::Kind::Stop;
998 bool operator()(const parser::IfStmt &stmt) {
999 return (*this)(
1000 std::get<parser::UnlabeledStatement<parser::ActionStmt>>(stmt.t)
1001 .statement);
1003 bool operator()(const parser::ActionStmt &stmt) {
1004 return common::visit(*this, stmt.u);
1007 private:
1008 bool IsCoarrayObject(const parser::AllocateObject &allocateObject) {
1009 const parser::Name &name{GetLastName(allocateObject)};
1010 return name.symbol && evaluate::IsCoarray(*name.symbol);
1014 bool IsImageControlStmt(const parser::ExecutableConstruct &construct) {
1015 return common::visit(ImageControlStmtHelper{}, construct.u);
1018 std::optional<parser::MessageFixedText> GetImageControlStmtCoarrayMsg(
1019 const parser::ExecutableConstruct &construct) {
1020 if (const auto *actionStmt{
1021 std::get_if<parser::Statement<parser::ActionStmt>>(&construct.u)}) {
1022 return common::visit(
1023 common::visitors{
1024 [](const common::Indirection<parser::AllocateStmt> &)
1025 -> std::optional<parser::MessageFixedText> {
1026 return "ALLOCATE of a coarray is an image control"
1027 " statement"_en_US;
1029 [](const common::Indirection<parser::DeallocateStmt> &)
1030 -> std::optional<parser::MessageFixedText> {
1031 return "DEALLOCATE of a coarray is an image control"
1032 " statement"_en_US;
1034 [](const common::Indirection<parser::CallStmt> &)
1035 -> std::optional<parser::MessageFixedText> {
1036 return "MOVE_ALLOC of a coarray is an image control"
1037 " statement "_en_US;
1039 [](const auto &) -> std::optional<parser::MessageFixedText> {
1040 return std::nullopt;
1043 actionStmt->statement.u);
1045 return std::nullopt;
1048 parser::CharBlock GetImageControlStmtLocation(
1049 const parser::ExecutableConstruct &executableConstruct) {
1050 return common::visit(
1051 common::visitors{
1052 [](const common::Indirection<parser::ChangeTeamConstruct>
1053 &construct) {
1054 return std::get<parser::Statement<parser::ChangeTeamStmt>>(
1055 construct.value().t)
1056 .source;
1058 [](const common::Indirection<parser::CriticalConstruct> &construct) {
1059 return std::get<parser::Statement<parser::CriticalStmt>>(
1060 construct.value().t)
1061 .source;
1063 [](const parser::Statement<parser::ActionStmt> &actionStmt) {
1064 return actionStmt.source;
1066 [](const auto &) { return parser::CharBlock{}; },
1068 executableConstruct.u);
1071 bool HasCoarray(const parser::Expr &expression) {
1072 if (const auto *expr{GetExpr(nullptr, expression)}) {
1073 for (const Symbol &symbol : evaluate::CollectSymbols(*expr)) {
1074 if (evaluate::IsCoarray(symbol)) {
1075 return true;
1079 return false;
1082 bool IsAssumedType(const Symbol &symbol) {
1083 if (const DeclTypeSpec * type{symbol.GetType()}) {
1084 return type->IsAssumedType();
1086 return false;
1089 bool IsPolymorphic(const Symbol &symbol) {
1090 if (const DeclTypeSpec * type{symbol.GetType()}) {
1091 return type->IsPolymorphic();
1093 return false;
1096 bool IsUnlimitedPolymorphic(const Symbol &symbol) {
1097 if (const DeclTypeSpec * type{symbol.GetType()}) {
1098 return type->IsUnlimitedPolymorphic();
1100 return false;
1103 bool IsPolymorphicAllocatable(const Symbol &symbol) {
1104 return IsAllocatable(symbol) && IsPolymorphic(symbol);
1107 const Scope *FindCUDADeviceContext(const Scope *scope) {
1108 return !scope ? nullptr : FindScopeContaining(*scope, [](const Scope &s) {
1109 return IsCUDADeviceContext(&s);
1113 std::optional<common::CUDADataAttr> GetCUDADataAttr(const Symbol *symbol) {
1114 const auto *object{
1115 symbol ? symbol->detailsIf<ObjectEntityDetails>() : nullptr};
1116 return object ? object->cudaDataAttr() : std::nullopt;
1119 std::optional<parser::MessageFormattedText> CheckAccessibleSymbol(
1120 const Scope &scope, const Symbol &symbol) {
1121 if (symbol.attrs().test(Attr::PRIVATE)) {
1122 if (FindModuleFileContaining(scope)) {
1123 // Don't enforce component accessibility checks in module files;
1124 // there may be forward-substituted named constants of derived type
1125 // whose structure constructors reference private components.
1126 } else if (const Scope *
1127 moduleScope{FindModuleContaining(symbol.owner())}) {
1128 if (!moduleScope->Contains(scope)) {
1129 return parser::MessageFormattedText{
1130 "PRIVATE name '%s' is only accessible within module '%s'"_err_en_US,
1131 symbol.name(), moduleScope->GetName().value()};
1135 return std::nullopt;
1138 SymbolVector OrderParameterNames(const Symbol &typeSymbol) {
1139 SymbolVector result;
1140 if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) {
1141 result = OrderParameterNames(spec->typeSymbol());
1143 const auto &paramNames{typeSymbol.get<DerivedTypeDetails>().paramNameOrder()};
1144 result.insert(result.end(), paramNames.begin(), paramNames.end());
1145 return result;
1148 SymbolVector OrderParameterDeclarations(const Symbol &typeSymbol) {
1149 SymbolVector result;
1150 if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) {
1151 result = OrderParameterDeclarations(spec->typeSymbol());
1153 const auto &paramDecls{typeSymbol.get<DerivedTypeDetails>().paramDeclOrder()};
1154 result.insert(result.end(), paramDecls.begin(), paramDecls.end());
1155 return result;
1158 const DeclTypeSpec &FindOrInstantiateDerivedType(
1159 Scope &scope, DerivedTypeSpec &&spec, DeclTypeSpec::Category category) {
1160 spec.EvaluateParameters(scope.context());
1161 if (const DeclTypeSpec *
1162 type{scope.FindInstantiatedDerivedType(spec, category)}) {
1163 return *type;
1165 // Create a new instantiation of this parameterized derived type
1166 // for this particular distinct set of actual parameter values.
1167 DeclTypeSpec &type{scope.MakeDerivedType(category, std::move(spec))};
1168 type.derivedTypeSpec().Instantiate(scope);
1169 return type;
1172 const Symbol *FindSeparateModuleSubprogramInterface(const Symbol *proc) {
1173 if (proc) {
1174 if (const auto *subprogram{proc->detailsIf<SubprogramDetails>()}) {
1175 if (const Symbol * iface{subprogram->moduleInterface()}) {
1176 return iface;
1180 return nullptr;
1183 ProcedureDefinitionClass ClassifyProcedure(const Symbol &symbol) { // 15.2.2
1184 const Symbol &ultimate{symbol.GetUltimate()};
1185 if (!IsProcedure(ultimate)) {
1186 return ProcedureDefinitionClass::None;
1187 } else if (ultimate.attrs().test(Attr::INTRINSIC)) {
1188 return ProcedureDefinitionClass::Intrinsic;
1189 } else if (IsDummy(ultimate)) {
1190 return ProcedureDefinitionClass::Dummy;
1191 } else if (IsProcedurePointer(symbol)) {
1192 return ProcedureDefinitionClass::Pointer;
1193 } else if (ultimate.attrs().test(Attr::EXTERNAL)) {
1194 return ProcedureDefinitionClass::External;
1195 } else if (const auto *nameDetails{
1196 ultimate.detailsIf<SubprogramNameDetails>()}) {
1197 switch (nameDetails->kind()) {
1198 case SubprogramKind::Module:
1199 return ProcedureDefinitionClass::Module;
1200 case SubprogramKind::Internal:
1201 return ProcedureDefinitionClass::Internal;
1203 } else if (const Symbol * subp{FindSubprogram(symbol)}) {
1204 if (const auto *subpDetails{subp->detailsIf<SubprogramDetails>()}) {
1205 if (subpDetails->stmtFunction()) {
1206 return ProcedureDefinitionClass::StatementFunction;
1209 switch (ultimate.owner().kind()) {
1210 case Scope::Kind::Global:
1211 case Scope::Kind::IntrinsicModules:
1212 return ProcedureDefinitionClass::External;
1213 case Scope::Kind::Module:
1214 return ProcedureDefinitionClass::Module;
1215 case Scope::Kind::MainProgram:
1216 case Scope::Kind::Subprogram:
1217 return ProcedureDefinitionClass::Internal;
1218 default:
1219 break;
1222 return ProcedureDefinitionClass::None;
1225 // ComponentIterator implementation
1227 template <ComponentKind componentKind>
1228 typename ComponentIterator<componentKind>::const_iterator
1229 ComponentIterator<componentKind>::const_iterator::Create(
1230 const DerivedTypeSpec &derived) {
1231 const_iterator it{};
1232 it.componentPath_.emplace_back(derived);
1233 it.Increment(); // cue up first relevant component, if any
1234 return it;
1237 template <ComponentKind componentKind>
1238 const DerivedTypeSpec *
1239 ComponentIterator<componentKind>::const_iterator::PlanComponentTraversal(
1240 const Symbol &component) const {
1241 if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) {
1242 if (const DeclTypeSpec * type{details->type()}) {
1243 if (const auto *derived{type->AsDerived()}) {
1244 bool traverse{false};
1245 if constexpr (componentKind == ComponentKind::Ordered) {
1246 // Order Component (only visit parents)
1247 traverse = component.test(Symbol::Flag::ParentComp);
1248 } else if constexpr (componentKind == ComponentKind::Direct) {
1249 traverse = !IsAllocatableOrObjectPointer(&component);
1250 } else if constexpr (componentKind == ComponentKind::Ultimate) {
1251 traverse = !IsAllocatableOrObjectPointer(&component);
1252 } else if constexpr (componentKind == ComponentKind::Potential) {
1253 traverse = !IsPointer(component);
1254 } else if constexpr (componentKind == ComponentKind::Scope) {
1255 traverse = !IsAllocatableOrObjectPointer(&component);
1256 } else if constexpr (componentKind ==
1257 ComponentKind::PotentialAndPointer) {
1258 traverse = !IsPointer(component);
1260 if (traverse) {
1261 const Symbol &newTypeSymbol{derived->typeSymbol()};
1262 // Avoid infinite loop if the type is already part of the types
1263 // being visited. It is possible to have "loops in type" because
1264 // C744 does not forbid to use not yet declared type for
1265 // ALLOCATABLE or POINTER components.
1266 for (const auto &node : componentPath_) {
1267 if (&newTypeSymbol == &node.GetTypeSymbol()) {
1268 return nullptr;
1271 return derived;
1274 } // intrinsic & unlimited polymorphic not traversable
1276 return nullptr;
1279 template <ComponentKind componentKind>
1280 static bool StopAtComponentPre(const Symbol &component) {
1281 if constexpr (componentKind == ComponentKind::Ordered) {
1282 // Parent components need to be iterated upon after their
1283 // sub-components in structure constructor analysis.
1284 return !component.test(Symbol::Flag::ParentComp);
1285 } else if constexpr (componentKind == ComponentKind::Direct) {
1286 return true;
1287 } else if constexpr (componentKind == ComponentKind::Ultimate) {
1288 return component.has<ProcEntityDetails>() ||
1289 IsAllocatableOrObjectPointer(&component) ||
1290 (component.has<ObjectEntityDetails>() &&
1291 component.get<ObjectEntityDetails>().type() &&
1292 component.get<ObjectEntityDetails>().type()->AsIntrinsic());
1293 } else if constexpr (componentKind == ComponentKind::Potential) {
1294 return !IsPointer(component);
1295 } else if constexpr (componentKind == ComponentKind::PotentialAndPointer) {
1296 return true;
1297 } else {
1298 DIE("unexpected ComponentKind");
1302 template <ComponentKind componentKind>
1303 static bool StopAtComponentPost(const Symbol &component) {
1304 return componentKind == ComponentKind::Ordered &&
1305 component.test(Symbol::Flag::ParentComp);
1308 template <ComponentKind componentKind>
1309 void ComponentIterator<componentKind>::const_iterator::Increment() {
1310 while (!componentPath_.empty()) {
1311 ComponentPathNode &deepest{componentPath_.back()};
1312 if (deepest.component()) {
1313 if (!deepest.descended()) {
1314 deepest.set_descended(true);
1315 if (const DerivedTypeSpec *
1316 derived{PlanComponentTraversal(*deepest.component())}) {
1317 componentPath_.emplace_back(*derived);
1318 continue;
1320 } else if (!deepest.visited()) {
1321 deepest.set_visited(true);
1322 return; // this is the next component to visit, after descending
1325 auto &nameIterator{deepest.nameIterator()};
1326 if (nameIterator == deepest.nameEnd()) {
1327 componentPath_.pop_back();
1328 } else if constexpr (componentKind == ComponentKind::Scope) {
1329 deepest.set_component(*nameIterator++->second);
1330 deepest.set_descended(false);
1331 deepest.set_visited(true);
1332 return; // this is the next component to visit, before descending
1333 } else {
1334 const Scope &scope{deepest.GetScope()};
1335 auto scopeIter{scope.find(*nameIterator++)};
1336 if (scopeIter != scope.cend()) {
1337 const Symbol &component{*scopeIter->second};
1338 deepest.set_component(component);
1339 deepest.set_descended(false);
1340 if (StopAtComponentPre<componentKind>(component)) {
1341 deepest.set_visited(true);
1342 return; // this is the next component to visit, before descending
1343 } else {
1344 deepest.set_visited(!StopAtComponentPost<componentKind>(component));
1351 template <ComponentKind componentKind>
1352 std::string
1353 ComponentIterator<componentKind>::const_iterator::BuildResultDesignatorName()
1354 const {
1355 std::string designator;
1356 for (const auto &node : componentPath_) {
1357 designator += "%"s + DEREF(node.component()).name().ToString();
1359 return designator;
1362 template class ComponentIterator<ComponentKind::Ordered>;
1363 template class ComponentIterator<ComponentKind::Direct>;
1364 template class ComponentIterator<ComponentKind::Ultimate>;
1365 template class ComponentIterator<ComponentKind::Potential>;
1366 template class ComponentIterator<ComponentKind::Scope>;
1367 template class ComponentIterator<ComponentKind::PotentialAndPointer>;
1369 UltimateComponentIterator::const_iterator FindCoarrayUltimateComponent(
1370 const DerivedTypeSpec &derived) {
1371 UltimateComponentIterator ultimates{derived};
1372 return std::find_if(ultimates.begin(), ultimates.end(),
1373 [](const Symbol &symbol) { return evaluate::IsCoarray(symbol); });
1376 UltimateComponentIterator::const_iterator FindPointerUltimateComponent(
1377 const DerivedTypeSpec &derived) {
1378 UltimateComponentIterator ultimates{derived};
1379 return std::find_if(ultimates.begin(), ultimates.end(), IsPointer);
1382 PotentialComponentIterator::const_iterator FindEventOrLockPotentialComponent(
1383 const DerivedTypeSpec &derived) {
1384 PotentialComponentIterator potentials{derived};
1385 return std::find_if(
1386 potentials.begin(), potentials.end(), [](const Symbol &component) {
1387 if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) {
1388 const DeclTypeSpec *type{details->type()};
1389 return type && IsEventTypeOrLockType(type->AsDerived());
1391 return false;
1395 UltimateComponentIterator::const_iterator FindAllocatableUltimateComponent(
1396 const DerivedTypeSpec &derived) {
1397 UltimateComponentIterator ultimates{derived};
1398 return std::find_if(ultimates.begin(), ultimates.end(), IsAllocatable);
1401 DirectComponentIterator::const_iterator FindAllocatableOrPointerDirectComponent(
1402 const DerivedTypeSpec &derived) {
1403 DirectComponentIterator directs{derived};
1404 return std::find_if(directs.begin(), directs.end(), IsAllocatableOrPointer);
1407 PotentialComponentIterator::const_iterator
1408 FindPolymorphicAllocatablePotentialComponent(const DerivedTypeSpec &derived) {
1409 PotentialComponentIterator potentials{derived};
1410 return std::find_if(
1411 potentials.begin(), potentials.end(), IsPolymorphicAllocatable);
1414 const Symbol *FindUltimateComponent(const DerivedTypeSpec &derived,
1415 const std::function<bool(const Symbol &)> &predicate) {
1416 UltimateComponentIterator ultimates{derived};
1417 if (auto it{std::find_if(ultimates.begin(), ultimates.end(),
1418 [&predicate](const Symbol &component) -> bool {
1419 return predicate(component);
1420 })}) {
1421 return &*it;
1423 return nullptr;
1426 const Symbol *FindUltimateComponent(const Symbol &symbol,
1427 const std::function<bool(const Symbol &)> &predicate) {
1428 if (predicate(symbol)) {
1429 return &symbol;
1430 } else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
1431 if (const auto *type{object->type()}) {
1432 if (const auto *derived{type->AsDerived()}) {
1433 return FindUltimateComponent(*derived, predicate);
1437 return nullptr;
1440 const Symbol *FindImmediateComponent(const DerivedTypeSpec &type,
1441 const std::function<bool(const Symbol &)> &predicate) {
1442 if (const Scope * scope{type.scope()}) {
1443 const Symbol *parent{nullptr};
1444 for (const auto &pair : *scope) {
1445 const Symbol *symbol{&*pair.second};
1446 if (predicate(*symbol)) {
1447 return symbol;
1449 if (symbol->test(Symbol::Flag::ParentComp)) {
1450 parent = symbol;
1453 if (parent) {
1454 if (const auto *object{parent->detailsIf<ObjectEntityDetails>()}) {
1455 if (const auto *type{object->type()}) {
1456 if (const auto *derived{type->AsDerived()}) {
1457 return FindImmediateComponent(*derived, predicate);
1463 return nullptr;
1466 const Symbol *IsFunctionResultWithSameNameAsFunction(const Symbol &symbol) {
1467 if (IsFunctionResult(symbol)) {
1468 if (const Symbol * function{symbol.owner().symbol()}) {
1469 if (symbol.name() == function->name()) {
1470 return function;
1473 // Check ENTRY result symbols too
1474 const Scope &outer{symbol.owner().parent()};
1475 auto iter{outer.find(symbol.name())};
1476 if (iter != outer.end()) {
1477 const Symbol &outerSym{*iter->second};
1478 if (const auto *subp{outerSym.detailsIf<SubprogramDetails>()}) {
1479 if (subp->entryScope() == &symbol.owner() &&
1480 symbol.name() == outerSym.name()) {
1481 return &outerSym;
1486 return nullptr;
1489 void LabelEnforce::Post(const parser::GotoStmt &gotoStmt) {
1490 CheckLabelUse(gotoStmt.v);
1492 void LabelEnforce::Post(const parser::ComputedGotoStmt &computedGotoStmt) {
1493 for (auto &i : std::get<std::list<parser::Label>>(computedGotoStmt.t)) {
1494 CheckLabelUse(i);
1498 void LabelEnforce::Post(const parser::ArithmeticIfStmt &arithmeticIfStmt) {
1499 CheckLabelUse(std::get<1>(arithmeticIfStmt.t));
1500 CheckLabelUse(std::get<2>(arithmeticIfStmt.t));
1501 CheckLabelUse(std::get<3>(arithmeticIfStmt.t));
1504 void LabelEnforce::Post(const parser::AssignStmt &assignStmt) {
1505 CheckLabelUse(std::get<parser::Label>(assignStmt.t));
1508 void LabelEnforce::Post(const parser::AssignedGotoStmt &assignedGotoStmt) {
1509 for (auto &i : std::get<std::list<parser::Label>>(assignedGotoStmt.t)) {
1510 CheckLabelUse(i);
1514 void LabelEnforce::Post(const parser::AltReturnSpec &altReturnSpec) {
1515 CheckLabelUse(altReturnSpec.v);
1518 void LabelEnforce::Post(const parser::ErrLabel &errLabel) {
1519 CheckLabelUse(errLabel.v);
1521 void LabelEnforce::Post(const parser::EndLabel &endLabel) {
1522 CheckLabelUse(endLabel.v);
1524 void LabelEnforce::Post(const parser::EorLabel &eorLabel) {
1525 CheckLabelUse(eorLabel.v);
1528 void LabelEnforce::CheckLabelUse(const parser::Label &labelUsed) {
1529 if (labels_.find(labelUsed) == labels_.end()) {
1530 SayWithConstruct(context_, currentStatementSourcePosition_,
1531 parser::MessageFormattedText{
1532 "Control flow escapes from %s"_err_en_US, construct_},
1533 constructSourcePosition_);
1537 parser::MessageFormattedText LabelEnforce::GetEnclosingConstructMsg() {
1538 return {"Enclosing %s statement"_en_US, construct_};
1541 void LabelEnforce::SayWithConstruct(SemanticsContext &context,
1542 parser::CharBlock stmtLocation, parser::MessageFormattedText &&message,
1543 parser::CharBlock constructLocation) {
1544 context.Say(stmtLocation, message)
1545 .Attach(constructLocation, GetEnclosingConstructMsg());
1548 bool HasAlternateReturns(const Symbol &subprogram) {
1549 for (const auto *dummyArg : subprogram.get<SubprogramDetails>().dummyArgs()) {
1550 if (!dummyArg) {
1551 return true;
1554 return false;
1557 bool IsAutomaticallyDestroyed(const Symbol &symbol) {
1558 return symbol.has<ObjectEntityDetails>() &&
1559 (symbol.owner().kind() == Scope::Kind::Subprogram ||
1560 symbol.owner().kind() == Scope::Kind::BlockConstruct) &&
1561 !IsNamedConstant(symbol) && (!IsDummy(symbol) || IsIntentOut(symbol)) &&
1562 !IsPointer(symbol) && !IsSaved(symbol) &&
1563 !FindCommonBlockContaining(symbol);
1566 const std::optional<parser::Name> &MaybeGetNodeName(
1567 const ConstructNode &construct) {
1568 return common::visit(
1569 common::visitors{
1570 [&](const parser::BlockConstruct *blockConstruct)
1571 -> const std::optional<parser::Name> & {
1572 return std::get<0>(blockConstruct->t).statement.v;
1574 [&](const auto *a) -> const std::optional<parser::Name> & {
1575 return std::get<0>(std::get<0>(a->t).statement.t);
1578 construct);
1581 std::optional<ArraySpec> ToArraySpec(
1582 evaluate::FoldingContext &context, const evaluate::Shape &shape) {
1583 if (auto extents{evaluate::AsConstantExtents(context, shape)}) {
1584 ArraySpec result;
1585 for (const auto &extent : *extents) {
1586 result.emplace_back(ShapeSpec::MakeExplicit(Bound{extent}));
1588 return {std::move(result)};
1589 } else {
1590 return std::nullopt;
1594 std::optional<ArraySpec> ToArraySpec(evaluate::FoldingContext &context,
1595 const std::optional<evaluate::Shape> &shape) {
1596 return shape ? ToArraySpec(context, *shape) : std::nullopt;
1599 static const DeclTypeSpec *GetDtvArgTypeSpec(const Symbol &proc) {
1600 if (const auto *subp{proc.detailsIf<SubprogramDetails>()};
1601 subp && !subp->dummyArgs().empty()) {
1602 if (const auto *arg{subp->dummyArgs()[0]}) {
1603 return arg->GetType();
1606 return nullptr;
1609 const DerivedTypeSpec *GetDtvArgDerivedType(const Symbol &proc) {
1610 if (const auto *type{GetDtvArgTypeSpec(proc)}) {
1611 return type->AsDerived();
1612 } else {
1613 return nullptr;
1617 bool HasDefinedIo(common::DefinedIo which, const DerivedTypeSpec &derived,
1618 const Scope *scope) {
1619 if (const Scope * dtScope{derived.scope()}) {
1620 for (const auto &pair : *dtScope) {
1621 const Symbol &symbol{*pair.second};
1622 if (const auto *generic{symbol.detailsIf<GenericDetails>()}) {
1623 GenericKind kind{generic->kind()};
1624 if (const auto *io{std::get_if<common::DefinedIo>(&kind.u)}) {
1625 if (*io == which) {
1626 return true; // type-bound GENERIC exists
1632 if (scope) {
1633 SourceName name{GenericKind::AsFortran(which)};
1634 evaluate::DynamicType dyDerived{derived};
1635 for (; scope && !scope->IsGlobal(); scope = &scope->parent()) {
1636 auto iter{scope->find(name)};
1637 if (iter != scope->end()) {
1638 const auto &generic{iter->second->GetUltimate().get<GenericDetails>()};
1639 for (auto ref : generic.specificProcs()) {
1640 const Symbol &procSym{ref->GetUltimate()};
1641 if (const DeclTypeSpec * dtSpec{GetDtvArgTypeSpec(procSym)}) {
1642 if (auto dyDummy{evaluate::DynamicType::From(*dtSpec)}) {
1643 if (dyDummy->IsTkCompatibleWith(dyDerived)) {
1644 return true; // GENERIC or INTERFACE not in type
1652 // Check for inherited defined I/O
1653 const auto *parentType{derived.typeSymbol().GetParentTypeSpec()};
1654 return parentType && HasDefinedIo(which, *parentType, scope);
1657 template <typename E>
1658 std::forward_list<std::string> GetOperatorNames(
1659 const SemanticsContext &context, E opr) {
1660 std::forward_list<std::string> result;
1661 for (const char *name : context.languageFeatures().GetNames(opr)) {
1662 result.emplace_front("operator("s + name + ')');
1664 return result;
1667 std::forward_list<std::string> GetAllNames(
1668 const SemanticsContext &context, const SourceName &name) {
1669 std::string str{name.ToString()};
1670 if (!name.empty() && name.end()[-1] == ')' &&
1671 name.ToString().rfind("operator(", 0) == 0) {
1672 for (int i{0}; i != common::LogicalOperator_enumSize; ++i) {
1673 auto names{GetOperatorNames(context, common::LogicalOperator{i})};
1674 if (llvm::is_contained(names, str)) {
1675 return names;
1678 for (int i{0}; i != common::RelationalOperator_enumSize; ++i) {
1679 auto names{GetOperatorNames(context, common::RelationalOperator{i})};
1680 if (llvm::is_contained(names, str)) {
1681 return names;
1685 return {str};
1688 void WarnOnDeferredLengthCharacterScalar(SemanticsContext &context,
1689 const SomeExpr *expr, parser::CharBlock at, const char *what) {
1690 if (context.languageFeatures().ShouldWarn(
1691 common::UsageWarning::F202XAllocatableBreakingChange)) {
1692 if (const Symbol *
1693 symbol{evaluate::UnwrapWholeSymbolOrComponentDataRef(expr)}) {
1694 const Symbol &ultimate{ResolveAssociations(*symbol)};
1695 if (const DeclTypeSpec * type{ultimate.GetType()}; type &&
1696 type->category() == DeclTypeSpec::Category::Character &&
1697 type->characterTypeSpec().length().isDeferred() &&
1698 IsAllocatable(ultimate) && ultimate.Rank() == 0) {
1699 context.Say(at,
1700 "The deferred length allocatable character scalar variable '%s' may be reallocated to a different length under the new Fortran 202X standard semantics for %s"_port_en_US,
1701 symbol->name(), what);
1707 bool CouldBeDataPointerValuedFunction(const Symbol *original) {
1708 if (original) {
1709 const Symbol &ultimate{original->GetUltimate()};
1710 if (const Symbol * result{FindFunctionResult(ultimate)}) {
1711 return IsPointer(*result) && !IsProcedure(*result);
1713 if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) {
1714 for (const SymbolRef &ref : generic->specificProcs()) {
1715 if (CouldBeDataPointerValuedFunction(&*ref)) {
1716 return true;
1721 return false;
1724 std::string GetModuleOrSubmoduleName(const Symbol &symbol) {
1725 const auto &details{symbol.get<ModuleDetails>()};
1726 std::string result{symbol.name().ToString()};
1727 if (details.ancestor() && details.ancestor()->symbol()) {
1728 result = details.ancestor()->symbol()->name().ToString() + ':' + result;
1730 return result;
1733 std::string GetCommonBlockObjectName(const Symbol &common, bool underscoring) {
1734 if (const std::string * bind{common.GetBindName()}) {
1735 return *bind;
1737 if (common.name().empty()) {
1738 return Fortran::common::blankCommonObjectName;
1740 return underscoring ? common.name().ToString() + "_"s
1741 : common.name().ToString();
1744 bool HadUseError(
1745 SemanticsContext &context, SourceName at, const Symbol *symbol) {
1746 if (const auto *details{
1747 symbol ? symbol->detailsIf<UseErrorDetails>() : nullptr}) {
1748 auto &msg{context.Say(
1749 at, "Reference to '%s' is ambiguous"_err_en_US, symbol->name())};
1750 for (const auto &[location, module] : details->occurrences()) {
1751 msg.Attach(location, "'%s' was use-associated from module '%s'"_en_US, at,
1752 module->GetName().value());
1754 context.SetError(*symbol);
1755 return true;
1756 } else {
1757 return false;
1761 } // namespace Fortran::semantics