[MemProf] Templatize CallStackRadixTreeBuilder (NFC) (#117014)
[llvm-project.git] / lld / MachO / ConcatOutputSection.cpp
blobe89cafe0d1e6da11e36178d6295ddce167a464bf
1 //===- ConcatOutputSection.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "ConcatOutputSection.h"
10 #include "Config.h"
11 #include "OutputSegment.h"
12 #include "SymbolTable.h"
13 #include "Symbols.h"
14 #include "SyntheticSections.h"
15 #include "Target.h"
16 #include "lld/Common/CommonLinkerContext.h"
17 #include "llvm/BinaryFormat/MachO.h"
18 #include "llvm/Support/ScopedPrinter.h"
19 #include "llvm/Support/TimeProfiler.h"
21 using namespace llvm;
22 using namespace llvm::MachO;
23 using namespace lld;
24 using namespace lld::macho;
26 MapVector<NamePair, ConcatOutputSection *> macho::concatOutputSections;
28 void ConcatOutputSection::addInput(ConcatInputSection *input) {
29 assert(input->parent == this);
30 if (inputs.empty()) {
31 align = input->align;
32 flags = input->getFlags();
33 } else {
34 align = std::max(align, input->align);
35 finalizeFlags(input);
37 inputs.push_back(input);
40 // Branch-range extension can be implemented in two ways, either through ...
42 // (1) Branch islands: Single branch instructions (also of limited range),
43 // that might be chained in multiple hops to reach the desired
44 // destination. On ARM64, as 16 branch islands are needed to hop between
45 // opposite ends of a 2 GiB program. LD64 uses branch islands exclusively,
46 // even when it needs excessive hops.
48 // (2) Thunks: Instruction(s) to load the destination address into a scratch
49 // register, followed by a register-indirect branch. Thunks are
50 // constructed to reach any arbitrary address, so need not be
51 // chained. Although thunks need not be chained, a program might need
52 // multiple thunks to the same destination distributed throughout a large
53 // program so that all call sites can have one within range.
55 // The optimal approach is to mix islands for destinations within two hops,
56 // and use thunks for destinations at greater distance. For now, we only
57 // implement thunks. TODO: Adding support for branch islands!
59 // Internally -- as expressed in LLD's data structures -- a
60 // branch-range-extension thunk consists of:
62 // (1) new Defined symbol for the thunk named
63 // <FUNCTION>.thunk.<SEQUENCE>, which references ...
64 // (2) new InputSection, which contains ...
65 // (3.1) new data for the instructions to load & branch to the far address +
66 // (3.2) new Relocs on instructions to load the far address, which reference ...
67 // (4.1) existing Defined symbol for the real function in __text, or
68 // (4.2) existing DylibSymbol for the real function in a dylib
70 // Nearly-optimal thunk-placement algorithm features:
72 // * Single pass: O(n) on the number of call sites.
74 // * Accounts for the exact space overhead of thunks - no heuristics
76 // * Exploits the full range of call instructions - forward & backward
78 // Data:
80 // * DenseMap<Symbol *, ThunkInfo> thunkMap: Maps the function symbol
81 // to its thunk bookkeeper.
83 // * struct ThunkInfo (bookkeeper): Call instructions have limited range, and
84 // distant call sites might be unable to reach the same thunk, so multiple
85 // thunks are necessary to serve all call sites in a very large program. A
86 // thunkInfo stores state for all thunks associated with a particular
87 // function:
88 // (a) thunk symbol
89 // (b) input section containing stub code, and
90 // (c) sequence number for the active thunk incarnation.
91 // When an old thunk goes out of range, we increment the sequence number and
92 // create a new thunk named <FUNCTION>.thunk.<SEQUENCE>.
94 // * A thunk consists of
95 // (a) a Defined symbol pointing to
96 // (b) an InputSection holding machine code (similar to a MachO stub), and
97 // (c) relocs referencing the real function for fixing up the stub code.
99 // * std::vector<InputSection *> MergedInputSection::thunks: A vector parallel
100 // to the inputs vector. We store new thunks via cheap vector append, rather
101 // than costly insertion into the inputs vector.
103 // Control Flow:
105 // * During address assignment, MergedInputSection::finalize() examines call
106 // sites by ascending address and creates thunks. When a function is beyond
107 // the range of a call site, we need a thunk. Place it at the largest
108 // available forward address from the call site. Call sites increase
109 // monotonically and thunks are always placed as far forward as possible;
110 // thus, we place thunks at monotonically increasing addresses. Once a thunk
111 // is placed, it and all previous input-section addresses are final.
113 // * ConcatInputSection::finalize() and ConcatInputSection::writeTo() merge
114 // the inputs and thunks vectors (both ordered by ascending address), which
115 // is simple and cheap.
117 DenseMap<Symbol *, ThunkInfo> lld::macho::thunkMap;
119 // Determine whether we need thunks, which depends on the target arch -- RISC
120 // (i.e., ARM) generally does because it has limited-range branch/call
121 // instructions, whereas CISC (i.e., x86) generally doesn't. RISC only needs
122 // thunks for programs so large that branch source & destination addresses
123 // might differ more than the range of branch instruction(s).
124 bool TextOutputSection::needsThunks() const {
125 if (!target->usesThunks())
126 return false;
127 uint64_t isecAddr = addr;
128 for (ConcatInputSection *isec : inputs)
129 isecAddr = alignToPowerOf2(isecAddr, isec->align) + isec->getSize();
130 // Other sections besides __text might be small enough to pass this
131 // test but nevertheless need thunks for calling into other sections.
132 // An imperfect heuristic to use in this case is that if a section
133 // we've already processed in this segment needs thunks, so do the
134 // rest.
135 bool needsThunks = parent && parent->needsThunks;
136 if (!needsThunks &&
137 isecAddr - addr + in.stubs->getSize() <=
138 std::min(target->backwardBranchRange, target->forwardBranchRange))
139 return false;
140 // Yes, this program is large enough to need thunks.
141 if (parent) {
142 parent->needsThunks = true;
144 for (ConcatInputSection *isec : inputs) {
145 for (Reloc &r : isec->relocs) {
146 if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
147 continue;
148 auto *sym = r.referent.get<Symbol *>();
149 // Pre-populate the thunkMap and memoize call site counts for every
150 // InputSection and ThunkInfo. We do this for the benefit of
151 // estimateStubsInRangeVA().
152 ThunkInfo &thunkInfo = thunkMap[sym];
153 // Knowing ThunkInfo call site count will help us know whether or not we
154 // might need to create more for this referent at the time we are
155 // estimating distance to __stubs in estimateStubsInRangeVA().
156 ++thunkInfo.callSiteCount;
157 // We can avoid work on InputSections that have no BRANCH relocs.
158 isec->hasCallSites = true;
161 return true;
164 // Since __stubs is placed after __text, we must estimate the address
165 // beyond which stubs are within range of a simple forward branch.
166 // This is called exactly once, when the last input section has been finalized.
167 uint64_t TextOutputSection::estimateStubsInRangeVA(size_t callIdx) const {
168 // Tally the functions which still have call sites remaining to process,
169 // which yields the maximum number of thunks we might yet place.
170 size_t maxPotentialThunks = 0;
171 for (auto &tp : thunkMap) {
172 ThunkInfo &ti = tp.second;
173 // This overcounts: Only sections that are in forward jump range from the
174 // currently-active section get finalized, and all input sections are
175 // finalized when estimateStubsInRangeVA() is called. So only backward
176 // jumps will need thunks, but we count all jumps.
177 if (ti.callSitesUsed < ti.callSiteCount)
178 maxPotentialThunks += 1;
180 // Tally the total size of input sections remaining to process.
181 uint64_t isecVA = inputs[callIdx]->getVA();
182 uint64_t isecEnd = isecVA;
183 for (size_t i = callIdx; i < inputs.size(); i++) {
184 InputSection *isec = inputs[i];
185 isecEnd = alignToPowerOf2(isecEnd, isec->align) + isec->getSize();
187 // Estimate the address after which call sites can safely call stubs
188 // directly rather than through intermediary thunks.
189 uint64_t forwardBranchRange = target->forwardBranchRange;
190 assert(isecEnd > forwardBranchRange &&
191 "should not run thunk insertion if all code fits in jump range");
192 assert(isecEnd - isecVA <= forwardBranchRange &&
193 "should only finalize sections in jump range");
194 uint64_t stubsInRangeVA = isecEnd + maxPotentialThunks * target->thunkSize +
195 in.stubs->getSize() - forwardBranchRange;
196 log("thunks = " + std::to_string(thunkMap.size()) +
197 ", potential = " + std::to_string(maxPotentialThunks) +
198 ", stubs = " + std::to_string(in.stubs->getSize()) + ", isecVA = " +
199 utohexstr(isecVA) + ", threshold = " + utohexstr(stubsInRangeVA) +
200 ", isecEnd = " + utohexstr(isecEnd) +
201 ", tail = " + utohexstr(isecEnd - isecVA) +
202 ", slop = " + utohexstr(forwardBranchRange - (isecEnd - isecVA)));
203 return stubsInRangeVA;
206 void ConcatOutputSection::finalizeOne(ConcatInputSection *isec) {
207 size = alignToPowerOf2(size, isec->align);
208 fileSize = alignToPowerOf2(fileSize, isec->align);
209 isec->outSecOff = size;
210 isec->isFinal = true;
211 size += isec->getSize();
212 fileSize += isec->getFileSize();
215 void ConcatOutputSection::finalizeContents() {
216 for (ConcatInputSection *isec : inputs)
217 finalizeOne(isec);
220 void TextOutputSection::finalize() {
221 if (!needsThunks()) {
222 for (ConcatInputSection *isec : inputs)
223 finalizeOne(isec);
224 return;
227 uint64_t forwardBranchRange = target->forwardBranchRange;
228 uint64_t backwardBranchRange = target->backwardBranchRange;
229 uint64_t stubsInRangeVA = TargetInfo::outOfRangeVA;
230 size_t thunkSize = target->thunkSize;
231 size_t relocCount = 0;
232 size_t callSiteCount = 0;
233 size_t thunkCallCount = 0;
234 size_t thunkCount = 0;
236 // Walk all sections in order. Finalize all sections that are less than
237 // forwardBranchRange in front of it.
238 // isecVA is the address of the current section.
239 // addr + size is the start address of the first non-finalized section.
241 // inputs[finalIdx] is for finalization (address-assignment)
242 size_t finalIdx = 0;
243 // Kick-off by ensuring that the first input section has an address
244 for (size_t callIdx = 0, endIdx = inputs.size(); callIdx < endIdx;
245 ++callIdx) {
246 if (finalIdx == callIdx)
247 finalizeOne(inputs[finalIdx++]);
248 ConcatInputSection *isec = inputs[callIdx];
249 assert(isec->isFinal);
250 uint64_t isecVA = isec->getVA();
252 // Assign addresses up-to the forward branch-range limit.
253 // Every call instruction needs a small number of bytes (on Arm64: 4),
254 // and each inserted thunk needs a slightly larger number of bytes
255 // (on Arm64: 12). If a section starts with a branch instruction and
256 // contains several branch instructions in succession, then the distance
257 // from the current position to the position where the thunks are inserted
258 // grows. So leave room for a bunch of thunks.
259 unsigned slop = 256 * thunkSize;
260 while (finalIdx < endIdx) {
261 uint64_t expectedNewSize =
262 alignToPowerOf2(addr + size, inputs[finalIdx]->align) +
263 inputs[finalIdx]->getSize();
264 if (expectedNewSize >= isecVA + forwardBranchRange - slop)
265 break;
266 finalizeOne(inputs[finalIdx++]);
269 if (!isec->hasCallSites)
270 continue;
272 if (finalIdx == endIdx && stubsInRangeVA == TargetInfo::outOfRangeVA) {
273 // When we have finalized all input sections, __stubs (destined
274 // to follow __text) comes within range of forward branches and
275 // we can estimate the threshold address after which we can
276 // reach any stub with a forward branch. Note that although it
277 // sits in the middle of a loop, this code executes only once.
278 // It is in the loop because we need to call it at the proper
279 // time: the earliest call site from which the end of __text
280 // (and start of __stubs) comes within range of a forward branch.
281 stubsInRangeVA = estimateStubsInRangeVA(callIdx);
283 // Process relocs by ascending address, i.e., ascending offset within isec
284 std::vector<Reloc> &relocs = isec->relocs;
285 // FIXME: This property does not hold for object files produced by ld64's
286 // `-r` mode.
287 assert(is_sorted(relocs,
288 [](Reloc &a, Reloc &b) { return a.offset > b.offset; }));
289 for (Reloc &r : reverse(relocs)) {
290 ++relocCount;
291 if (!target->hasAttr(r.type, RelocAttrBits::BRANCH))
292 continue;
293 ++callSiteCount;
294 // Calculate branch reachability boundaries
295 uint64_t callVA = isecVA + r.offset;
296 uint64_t lowVA =
297 backwardBranchRange < callVA ? callVA - backwardBranchRange : 0;
298 uint64_t highVA = callVA + forwardBranchRange;
299 // Calculate our call referent address
300 auto *funcSym = r.referent.get<Symbol *>();
301 ThunkInfo &thunkInfo = thunkMap[funcSym];
302 // The referent is not reachable, so we need to use a thunk ...
303 if (funcSym->isInStubs() && callVA >= stubsInRangeVA) {
304 assert(callVA != TargetInfo::outOfRangeVA);
305 // ... Oh, wait! We are close enough to the end that __stubs
306 // are now within range of a simple forward branch.
307 continue;
309 uint64_t funcVA = funcSym->resolveBranchVA();
310 ++thunkInfo.callSitesUsed;
311 if (lowVA <= funcVA && funcVA <= highVA) {
312 // The referent is reachable with a simple call instruction.
313 continue;
315 ++thunkInfo.thunkCallCount;
316 ++thunkCallCount;
317 // If an existing thunk is reachable, use it ...
318 if (thunkInfo.sym) {
319 uint64_t thunkVA = thunkInfo.isec->getVA();
320 if (lowVA <= thunkVA && thunkVA <= highVA) {
321 r.referent = thunkInfo.sym;
322 continue;
325 // ... otherwise, create a new thunk.
326 if (addr + size > highVA) {
327 // There were too many consecutive branch instructions for `slop`
328 // above. If you hit this: For the current algorithm, just bumping up
329 // slop above and trying again is probably simplest. (See also PR51578
330 // comment 5).
331 fatal(Twine(__FUNCTION__) + ": FIXME: thunk range overrun");
333 thunkInfo.isec =
334 makeSyntheticInputSection(isec->getSegName(), isec->getName());
335 thunkInfo.isec->parent = this;
336 assert(thunkInfo.isec->live);
338 StringRef thunkName = saver().save(funcSym->getName() + ".thunk." +
339 std::to_string(thunkInfo.sequence++));
340 if (!isa<Defined>(funcSym) || cast<Defined>(funcSym)->isExternal()) {
341 r.referent = thunkInfo.sym = symtab->addDefined(
342 thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0, thunkSize,
343 /*isWeakDef=*/false, /*isPrivateExtern=*/true,
344 /*isReferencedDynamically=*/false, /*noDeadStrip=*/false,
345 /*isWeakDefCanBeHidden=*/false);
346 } else {
347 r.referent = thunkInfo.sym = make<Defined>(
348 thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0, thunkSize,
349 /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/true,
350 /*includeInSymtab=*/true, /*isReferencedDynamically=*/false,
351 /*noDeadStrip=*/false, /*isWeakDefCanBeHidden=*/false);
353 thunkInfo.sym->used = true;
354 target->populateThunk(thunkInfo.isec, funcSym);
355 finalizeOne(thunkInfo.isec);
356 thunks.push_back(thunkInfo.isec);
357 ++thunkCount;
361 log("thunks for " + parent->name + "," + name +
362 ": funcs = " + std::to_string(thunkMap.size()) +
363 ", relocs = " + std::to_string(relocCount) +
364 ", all calls = " + std::to_string(callSiteCount) +
365 ", thunk calls = " + std::to_string(thunkCallCount) +
366 ", thunks = " + std::to_string(thunkCount));
369 void ConcatOutputSection::writeTo(uint8_t *buf) const {
370 for (ConcatInputSection *isec : inputs)
371 isec->writeTo(buf + isec->outSecOff);
374 void TextOutputSection::writeTo(uint8_t *buf) const {
375 // Merge input sections from thunk & ordinary vectors
376 size_t i = 0, ie = inputs.size();
377 size_t t = 0, te = thunks.size();
378 while (i < ie || t < te) {
379 while (i < ie && (t == te || inputs[i]->empty() ||
380 inputs[i]->outSecOff < thunks[t]->outSecOff)) {
381 inputs[i]->writeTo(buf + inputs[i]->outSecOff);
382 ++i;
384 while (t < te && (i == ie || thunks[t]->outSecOff < inputs[i]->outSecOff)) {
385 thunks[t]->writeTo(buf + thunks[t]->outSecOff);
386 ++t;
391 void ConcatOutputSection::finalizeFlags(InputSection *input) {
392 switch (sectionType(input->getFlags())) {
393 default /*type-unspec'ed*/:
394 // FIXME: Add additional logic here when supporting emitting obj files.
395 break;
396 case S_4BYTE_LITERALS:
397 case S_8BYTE_LITERALS:
398 case S_16BYTE_LITERALS:
399 case S_CSTRING_LITERALS:
400 case S_ZEROFILL:
401 case S_LAZY_SYMBOL_POINTERS:
402 case S_MOD_TERM_FUNC_POINTERS:
403 case S_THREAD_LOCAL_REGULAR:
404 case S_THREAD_LOCAL_ZEROFILL:
405 case S_THREAD_LOCAL_VARIABLES:
406 case S_THREAD_LOCAL_INIT_FUNCTION_POINTERS:
407 case S_THREAD_LOCAL_VARIABLE_POINTERS:
408 case S_NON_LAZY_SYMBOL_POINTERS:
409 case S_SYMBOL_STUBS:
410 flags |= input->getFlags();
411 break;
415 ConcatOutputSection *
416 ConcatOutputSection::getOrCreateForInput(const InputSection *isec) {
417 NamePair names = maybeRenameSection({isec->getSegName(), isec->getName()});
418 ConcatOutputSection *&osec = concatOutputSections[names];
419 if (!osec) {
420 if (isec->getSegName() == segment_names::text &&
421 isec->getName() != section_names::gccExceptTab &&
422 isec->getName() != section_names::ehFrame)
423 osec = make<TextOutputSection>(names.second);
424 else
425 osec = make<ConcatOutputSection>(names.second);
427 return osec;
430 NamePair macho::maybeRenameSection(NamePair key) {
431 auto newNames = config->sectionRenameMap.find(key);
432 if (newNames != config->sectionRenameMap.end())
433 return newNames->second;
434 return key;