1 //===-- X86InstrInfo.h - X86 Instruction Information ------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_TARGET_X86_X86INSTRINFO_H
14 #define LLVM_LIB_TARGET_X86_X86INSTRINFO_H
16 #include "MCTargetDesc/X86BaseInfo.h"
17 #include "X86InstrFMA3Info.h"
18 #include "X86RegisterInfo.h"
19 #include "llvm/CodeGen/ISDOpcodes.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #define GET_INSTRINFO_HEADER
24 #include "X86GenInstrInfo.inc"
32 // For instr that was compressed from EVEX to VEX.
33 AC_EVEX_2_VEX
= MachineInstr::TAsmComments
36 /// Return a pair of condition code for the given predicate and whether
37 /// the instruction operands should be swaped to match the condition code.
38 std::pair
<CondCode
, bool> getX86ConditionCode(CmpInst::Predicate Predicate
);
40 /// Return a cmov opcode for the given register size in bytes, and operand type.
41 unsigned getCMovOpcode(unsigned RegBytes
, bool HasMemoryOperand
= false);
43 /// Return the source operand # for condition code by \p MCID. If the
44 /// instruction doesn't have a condition code, return -1.
45 int getCondSrcNoFromDesc(const MCInstrDesc
&MCID
);
47 /// Return the condition code of the instruction. If the instruction doesn't
48 /// have a condition code, return X86::COND_INVALID.
49 CondCode
getCondFromMI(const MachineInstr
&MI
);
51 // Turn JCC instruction into condition code.
52 CondCode
getCondFromBranch(const MachineInstr
&MI
);
54 // Turn SETCC instruction into condition code.
55 CondCode
getCondFromSETCC(const MachineInstr
&MI
);
57 // Turn CMOV instruction into condition code.
58 CondCode
getCondFromCMov(const MachineInstr
&MI
);
60 /// GetOppositeBranchCondition - Return the inverse of the specified cond,
61 /// e.g. turning COND_E to COND_NE.
62 CondCode
GetOppositeBranchCondition(CondCode CC
);
64 /// Get the VPCMP immediate for the given condition.
65 unsigned getVPCMPImmForCond(ISD::CondCode CC
);
67 /// Get the VPCMP immediate if the opcodes are swapped.
68 unsigned getSwappedVPCMPImm(unsigned Imm
);
70 /// Get the VPCOM immediate if the opcodes are swapped.
71 unsigned getSwappedVPCOMImm(unsigned Imm
);
73 /// Get the VCMP immediate if the opcodes are swapped.
74 unsigned getSwappedVCMPImm(unsigned Imm
);
76 /// Check if the instruction is X87 instruction.
77 bool isX87Instruction(MachineInstr
&MI
);
80 /// isGlobalStubReference - Return true if the specified TargetFlag operand is
81 /// a reference to a stub for a global, not the global itself.
82 inline static bool isGlobalStubReference(unsigned char TargetFlag
) {
84 case X86II::MO_DLLIMPORT
: // dllimport stub.
85 case X86II::MO_GOTPCREL
: // rip-relative GOT reference.
86 case X86II::MO_GOTPCREL_NORELAX
: // rip-relative GOT reference.
87 case X86II::MO_GOT
: // normal GOT reference.
88 case X86II::MO_DARWIN_NONLAZY_PIC_BASE
: // Normal $non_lazy_ptr ref.
89 case X86II::MO_DARWIN_NONLAZY
: // Normal $non_lazy_ptr ref.
90 case X86II::MO_COFFSTUB
: // COFF .refptr stub.
97 /// isGlobalRelativeToPICBase - Return true if the specified global value
98 /// reference is relative to a 32-bit PIC base (X86ISD::GlobalBaseReg). If this
99 /// is true, the addressing mode has the PIC base register added in (e.g. EBX).
100 inline static bool isGlobalRelativeToPICBase(unsigned char TargetFlag
) {
101 switch (TargetFlag
) {
102 case X86II::MO_GOTOFF
: // isPICStyleGOT: local global.
103 case X86II::MO_GOT
: // isPICStyleGOT: other global.
104 case X86II::MO_PIC_BASE_OFFSET
: // Darwin local global.
105 case X86II::MO_DARWIN_NONLAZY_PIC_BASE
: // Darwin/32 external global.
106 case X86II::MO_TLVP
: // ??? Pretty sure..
113 inline static bool isScale(const MachineOperand
&MO
) {
114 return MO
.isImm() && (MO
.getImm() == 1 || MO
.getImm() == 2 ||
115 MO
.getImm() == 4 || MO
.getImm() == 8);
118 inline static bool isLeaMem(const MachineInstr
&MI
, unsigned Op
) {
119 if (MI
.getOperand(Op
).isFI())
121 return Op
+ X86::AddrSegmentReg
<= MI
.getNumOperands() &&
122 MI
.getOperand(Op
+ X86::AddrBaseReg
).isReg() &&
123 isScale(MI
.getOperand(Op
+ X86::AddrScaleAmt
)) &&
124 MI
.getOperand(Op
+ X86::AddrIndexReg
).isReg() &&
125 (MI
.getOperand(Op
+ X86::AddrDisp
).isImm() ||
126 MI
.getOperand(Op
+ X86::AddrDisp
).isGlobal() ||
127 MI
.getOperand(Op
+ X86::AddrDisp
).isCPI() ||
128 MI
.getOperand(Op
+ X86::AddrDisp
).isJTI());
131 inline static bool isMem(const MachineInstr
&MI
, unsigned Op
) {
132 if (MI
.getOperand(Op
).isFI())
134 return Op
+ X86::AddrNumOperands
<= MI
.getNumOperands() &&
135 MI
.getOperand(Op
+ X86::AddrSegmentReg
).isReg() && isLeaMem(MI
, Op
);
138 class X86InstrInfo final
: public X86GenInstrInfo
{
139 X86Subtarget
&Subtarget
;
140 const X86RegisterInfo RI
;
142 virtual void anchor();
144 bool AnalyzeBranchImpl(MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
,
145 MachineBasicBlock
*&FBB
,
146 SmallVectorImpl
<MachineOperand
> &Cond
,
147 SmallVectorImpl
<MachineInstr
*> &CondBranches
,
148 bool AllowModify
) const;
151 explicit X86InstrInfo(X86Subtarget
&STI
);
153 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
154 /// such, whenever a client has an instance of instruction info, it should
155 /// always be able to get register info as well (through this method).
157 const X86RegisterInfo
&getRegisterInfo() const { return RI
; }
159 /// Returns the stack pointer adjustment that happens inside the frame
160 /// setup..destroy sequence (e.g. by pushes, or inside the callee).
161 int64_t getFrameAdjustment(const MachineInstr
&I
) const {
162 assert(isFrameInstr(I
));
164 return I
.getOperand(2).getImm();
165 return I
.getOperand(1).getImm();
168 /// Sets the stack pointer adjustment made inside the frame made up by this
170 void setFrameAdjustment(MachineInstr
&I
, int64_t V
) const {
171 assert(isFrameInstr(I
));
173 I
.getOperand(2).setImm(V
);
175 I
.getOperand(1).setImm(V
);
178 /// getSPAdjust - This returns the stack pointer adjustment made by
179 /// this instruction. For x86, we need to handle more complex call
180 /// sequences involving PUSHes.
181 int getSPAdjust(const MachineInstr
&MI
) const override
;
183 /// isCoalescableExtInstr - Return true if the instruction is a "coalescable"
184 /// extension instruction. That is, it's like a copy where it's legal for the
185 /// source to overlap the destination. e.g. X86::MOVSX64rr32. If this returns
186 /// true, then it's expected the pre-extension value is available as a subreg
187 /// of the result register. This also returns the sub-register index in
189 bool isCoalescableExtInstr(const MachineInstr
&MI
, Register
&SrcReg
,
190 Register
&DstReg
, unsigned &SubIdx
) const override
;
192 /// Returns true if the instruction has no behavior (specified or otherwise)
193 /// that is based on the value of any of its register operands
195 /// Instructions are considered data invariant even if they set EFLAGS.
197 /// A classical example of something that is inherently not data invariant is
198 /// an indirect jump -- the destination is loaded into icache based on the
199 /// bits set in the jump destination register.
201 /// FIXME: This should become part of our instruction tables.
202 static bool isDataInvariant(MachineInstr
&MI
);
204 /// Returns true if the instruction has no behavior (specified or otherwise)
205 /// that is based on the value loaded from memory or the value of any
206 /// non-address register operands.
208 /// For example, if the latency of the instruction is dependent on the
209 /// particular bits set in any of the registers *or* any of the bits loaded
212 /// Instructions are considered data invariant even if they set EFLAGS.
214 /// A classical example of something that is inherently not data invariant is
215 /// an indirect jump -- the destination is loaded into icache based on the
216 /// bits set in the jump destination register.
218 /// FIXME: This should become part of our instruction tables.
219 static bool isDataInvariantLoad(MachineInstr
&MI
);
221 unsigned isLoadFromStackSlot(const MachineInstr
&MI
,
222 int &FrameIndex
) const override
;
223 unsigned isLoadFromStackSlot(const MachineInstr
&MI
,
225 unsigned &MemBytes
) const override
;
226 /// isLoadFromStackSlotPostFE - Check for post-frame ptr elimination
227 /// stack locations as well. This uses a heuristic so it isn't
228 /// reliable for correctness.
229 unsigned isLoadFromStackSlotPostFE(const MachineInstr
&MI
,
230 int &FrameIndex
) const override
;
232 unsigned isStoreToStackSlot(const MachineInstr
&MI
,
233 int &FrameIndex
) const override
;
234 unsigned isStoreToStackSlot(const MachineInstr
&MI
,
236 unsigned &MemBytes
) const override
;
237 /// isStoreToStackSlotPostFE - Check for post-frame ptr elimination
238 /// stack locations as well. This uses a heuristic so it isn't
239 /// reliable for correctness.
240 unsigned isStoreToStackSlotPostFE(const MachineInstr
&MI
,
241 int &FrameIndex
) const override
;
243 bool isReallyTriviallyReMaterializable(const MachineInstr
&MI
) const override
;
244 void reMaterialize(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
245 Register DestReg
, unsigned SubIdx
,
246 const MachineInstr
&Orig
,
247 const TargetRegisterInfo
&TRI
) const override
;
249 /// Given an operand within a MachineInstr, insert preceding code to put it
250 /// into the right format for a particular kind of LEA instruction. This may
251 /// involve using an appropriate super-register instead (with an implicit use
252 /// of the original) or creating a new virtual register and inserting COPY
253 /// instructions to get the data into the right class.
255 /// Reference parameters are set to indicate how caller should add this
256 /// operand to the LEA instruction.
257 bool classifyLEAReg(MachineInstr
&MI
, const MachineOperand
&Src
,
258 unsigned LEAOpcode
, bool AllowSP
, Register
&NewSrc
,
259 bool &isKill
, MachineOperand
&ImplicitOp
,
260 LiveVariables
*LV
, LiveIntervals
*LIS
) const;
262 /// convertToThreeAddress - This method must be implemented by targets that
263 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
264 /// may be able to convert a two-address instruction into a true
265 /// three-address instruction on demand. This allows the X86 target (for
266 /// example) to convert ADD and SHL instructions into LEA instructions if they
267 /// would require register copies due to two-addressness.
269 /// This method returns a null pointer if the transformation cannot be
270 /// performed, otherwise it returns the new instruction.
272 MachineInstr
*convertToThreeAddress(MachineInstr
&MI
, LiveVariables
*LV
,
273 LiveIntervals
*LIS
) const override
;
275 /// Returns true iff the routine could find two commutable operands in the
276 /// given machine instruction.
277 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
278 /// input values can be re-defined in this method only if the input values
279 /// are not pre-defined, which is designated by the special value
280 /// 'CommuteAnyOperandIndex' assigned to it.
281 /// If both of indices are pre-defined and refer to some operands, then the
282 /// method simply returns true if the corresponding operands are commutable
283 /// and returns false otherwise.
285 /// For example, calling this method this way:
286 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
287 /// findCommutedOpIndices(MI, Op1, Op2);
288 /// can be interpreted as a query asking to find an operand that would be
289 /// commutable with the operand#1.
290 bool findCommutedOpIndices(const MachineInstr
&MI
, unsigned &SrcOpIdx1
,
291 unsigned &SrcOpIdx2
) const override
;
293 /// Returns true if we have preference on the operands order in MI, the
294 /// commute decision is returned in Commute.
295 bool hasCommutePreference(MachineInstr
&MI
, bool &Commute
) const override
;
297 /// Returns an adjusted FMA opcode that must be used in FMA instruction that
298 /// performs the same computations as the given \p MI but which has the
299 /// operands \p SrcOpIdx1 and \p SrcOpIdx2 commuted.
300 /// It may return 0 if it is unsafe to commute the operands.
301 /// Note that a machine instruction (instead of its opcode) is passed as the
302 /// first parameter to make it possible to analyze the instruction's uses and
303 /// commute the first operand of FMA even when it seems unsafe when you look
304 /// at the opcode. For example, it is Ok to commute the first operand of
305 /// VFMADD*SD_Int, if ONLY the lowest 64-bit element of the result is used.
307 /// The returned FMA opcode may differ from the opcode in the given \p MI.
308 /// For example, commuting the operands #1 and #3 in the following FMA
309 /// FMA213 #1, #2, #3
310 /// results into instruction with adjusted opcode:
311 /// FMA231 #3, #2, #1
313 getFMA3OpcodeToCommuteOperands(const MachineInstr
&MI
, unsigned SrcOpIdx1
,
315 const X86InstrFMA3Group
&FMA3Group
) const;
318 bool isUnconditionalTailCall(const MachineInstr
&MI
) const override
;
319 bool canMakeTailCallConditional(SmallVectorImpl
<MachineOperand
> &Cond
,
320 const MachineInstr
&TailCall
) const override
;
321 void replaceBranchWithTailCall(MachineBasicBlock
&MBB
,
322 SmallVectorImpl
<MachineOperand
> &Cond
,
323 const MachineInstr
&TailCall
) const override
;
325 bool analyzeBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
,
326 MachineBasicBlock
*&FBB
,
327 SmallVectorImpl
<MachineOperand
> &Cond
,
328 bool AllowModify
) const override
;
330 int getJumpTableIndex(const MachineInstr
&MI
) const override
;
332 std::optional
<ExtAddrMode
>
333 getAddrModeFromMemoryOp(const MachineInstr
&MemI
,
334 const TargetRegisterInfo
*TRI
) const override
;
336 bool getConstValDefinedInReg(const MachineInstr
&MI
, const Register Reg
,
337 int64_t &ImmVal
) const override
;
339 bool preservesZeroValueInReg(const MachineInstr
*MI
,
340 const Register NullValueReg
,
341 const TargetRegisterInfo
*TRI
) const override
;
343 bool getMemOperandsWithOffsetWidth(
344 const MachineInstr
&LdSt
,
345 SmallVectorImpl
<const MachineOperand
*> &BaseOps
, int64_t &Offset
,
346 bool &OffsetIsScalable
, unsigned &Width
,
347 const TargetRegisterInfo
*TRI
) const override
;
348 bool analyzeBranchPredicate(MachineBasicBlock
&MBB
,
349 TargetInstrInfo::MachineBranchPredicate
&MBP
,
350 bool AllowModify
= false) const override
;
352 unsigned removeBranch(MachineBasicBlock
&MBB
,
353 int *BytesRemoved
= nullptr) const override
;
354 unsigned insertBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*TBB
,
355 MachineBasicBlock
*FBB
, ArrayRef
<MachineOperand
> Cond
,
357 int *BytesAdded
= nullptr) const override
;
358 bool canInsertSelect(const MachineBasicBlock
&, ArrayRef
<MachineOperand
> Cond
,
359 Register
, Register
, Register
, int &, int &,
360 int &) const override
;
361 void insertSelect(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
362 const DebugLoc
&DL
, Register DstReg
,
363 ArrayRef
<MachineOperand
> Cond
, Register TrueReg
,
364 Register FalseReg
) const override
;
365 void copyPhysReg(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
366 const DebugLoc
&DL
, MCRegister DestReg
, MCRegister SrcReg
,
367 bool KillSrc
) const override
;
368 void storeRegToStackSlot(MachineBasicBlock
&MBB
,
369 MachineBasicBlock::iterator MI
, Register SrcReg
,
370 bool isKill
, int FrameIndex
,
371 const TargetRegisterClass
*RC
,
372 const TargetRegisterInfo
*TRI
,
373 Register VReg
) const override
;
375 void loadRegFromStackSlot(MachineBasicBlock
&MBB
,
376 MachineBasicBlock::iterator MI
, Register DestReg
,
377 int FrameIndex
, const TargetRegisterClass
*RC
,
378 const TargetRegisterInfo
*TRI
,
379 Register VReg
) const override
;
381 void loadStoreTileReg(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
382 unsigned Opc
, Register Reg
, int FrameIdx
,
383 bool isKill
= false) const;
385 bool expandPostRAPseudo(MachineInstr
&MI
) const override
;
387 /// Check whether the target can fold a load that feeds a subreg operand
388 /// (or a subreg operand that feeds a store).
389 bool isSubregFoldable() const override
{ return true; }
391 /// foldMemoryOperand - If this target supports it, fold a load or store of
392 /// the specified stack slot into the specified machine instruction for the
393 /// specified operand(s). If this is possible, the target should perform the
394 /// folding and return true, otherwise it should return false. If it folds
395 /// the instruction, it is likely that the MachineInstruction the iterator
396 /// references has been changed.
398 foldMemoryOperandImpl(MachineFunction
&MF
, MachineInstr
&MI
,
399 ArrayRef
<unsigned> Ops
,
400 MachineBasicBlock::iterator InsertPt
, int FrameIndex
,
401 LiveIntervals
*LIS
= nullptr,
402 VirtRegMap
*VRM
= nullptr) const override
;
404 /// foldMemoryOperand - Same as the previous version except it allows folding
405 /// of any load and store from / to any address, not just from a specific
407 MachineInstr
*foldMemoryOperandImpl(
408 MachineFunction
&MF
, MachineInstr
&MI
, ArrayRef
<unsigned> Ops
,
409 MachineBasicBlock::iterator InsertPt
, MachineInstr
&LoadMI
,
410 LiveIntervals
*LIS
= nullptr) const override
;
412 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
413 /// a store or a load and a store into two or more instruction. If this is
414 /// possible, returns true as well as the new instructions by reference.
416 unfoldMemoryOperand(MachineFunction
&MF
, MachineInstr
&MI
, unsigned Reg
,
417 bool UnfoldLoad
, bool UnfoldStore
,
418 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const override
;
420 bool unfoldMemoryOperand(SelectionDAG
&DAG
, SDNode
*N
,
421 SmallVectorImpl
<SDNode
*> &NewNodes
) const override
;
423 /// getOpcodeAfterMemoryUnfold - Returns the opcode of the would be new
424 /// instruction after load / store are unfolded from an instruction of the
425 /// specified opcode. It returns zero if the specified unfolding is not
426 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
427 /// index of the operand which will hold the register holding the loaded
430 getOpcodeAfterMemoryUnfold(unsigned Opc
, bool UnfoldLoad
, bool UnfoldStore
,
431 unsigned *LoadRegIndex
= nullptr) const override
;
433 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler
434 /// to determine if two loads are loading from the same base address. It
435 /// should only return true if the base pointers are the same and the
436 /// only differences between the two addresses are the offset. It also returns
437 /// the offsets by reference.
438 bool areLoadsFromSameBasePtr(SDNode
*Load1
, SDNode
*Load2
, int64_t &Offset1
,
439 int64_t &Offset2
) const override
;
441 /// isSchedulingBoundary - Overrides the isSchedulingBoundary from
442 /// Codegen/TargetInstrInfo.cpp to make it capable of identifying ENDBR
443 /// intructions and prevent it from being re-scheduled.
444 bool isSchedulingBoundary(const MachineInstr
&MI
,
445 const MachineBasicBlock
*MBB
,
446 const MachineFunction
&MF
) const override
;
448 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
449 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads
450 /// should be scheduled togther. On some targets if two loads are loading from
451 /// addresses in the same cache line, it's better if they are scheduled
452 /// together. This function takes two integers that represent the load offsets
453 /// from the common base address. It returns true if it decides it's desirable
454 /// to schedule the two loads together. "NumLoads" is the number of loads that
455 /// have already been scheduled after Load1.
456 bool shouldScheduleLoadsNear(SDNode
*Load1
, SDNode
*Load2
, int64_t Offset1
,
458 unsigned NumLoads
) const override
;
460 MCInst
getNop() const override
;
463 reverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const override
;
465 /// isSafeToMoveRegClassDefs - Return true if it's safe to move a machine
466 /// instruction that defines the specified register class.
467 bool isSafeToMoveRegClassDefs(const TargetRegisterClass
*RC
) const override
;
469 /// True if MI has a condition code def, e.g. EFLAGS, that is
471 bool hasLiveCondCodeDef(MachineInstr
&MI
) const;
473 /// getGlobalBaseReg - Return a virtual register initialized with the
474 /// the global base register value. Output instructions required to
475 /// initialize the register in the function entry block, if necessary.
477 unsigned getGlobalBaseReg(MachineFunction
*MF
) const;
479 std::pair
<uint16_t, uint16_t>
480 getExecutionDomain(const MachineInstr
&MI
) const override
;
482 uint16_t getExecutionDomainCustom(const MachineInstr
&MI
) const;
484 void setExecutionDomain(MachineInstr
&MI
, unsigned Domain
) const override
;
486 bool setExecutionDomainCustom(MachineInstr
&MI
, unsigned Domain
) const;
489 getPartialRegUpdateClearance(const MachineInstr
&MI
, unsigned OpNum
,
490 const TargetRegisterInfo
*TRI
) const override
;
491 unsigned getUndefRegClearance(const MachineInstr
&MI
, unsigned OpNum
,
492 const TargetRegisterInfo
*TRI
) const override
;
493 void breakPartialRegDependency(MachineInstr
&MI
, unsigned OpNum
,
494 const TargetRegisterInfo
*TRI
) const override
;
496 MachineInstr
*foldMemoryOperandImpl(MachineFunction
&MF
, MachineInstr
&MI
,
498 ArrayRef
<MachineOperand
> MOs
,
499 MachineBasicBlock::iterator InsertPt
,
500 unsigned Size
, Align Alignment
,
501 bool AllowCommute
) const;
503 bool isHighLatencyDef(int opc
) const override
;
505 bool hasHighOperandLatency(const TargetSchedModel
&SchedModel
,
506 const MachineRegisterInfo
*MRI
,
507 const MachineInstr
&DefMI
, unsigned DefIdx
,
508 const MachineInstr
&UseMI
,
509 unsigned UseIdx
) const override
;
511 bool useMachineCombiner() const override
{ return true; }
513 bool isAssociativeAndCommutative(const MachineInstr
&Inst
,
514 bool Invert
) const override
;
516 bool hasReassociableOperands(const MachineInstr
&Inst
,
517 const MachineBasicBlock
*MBB
) const override
;
519 void setSpecialOperandAttr(MachineInstr
&OldMI1
, MachineInstr
&OldMI2
,
520 MachineInstr
&NewMI1
,
521 MachineInstr
&NewMI2
) const override
;
523 /// analyzeCompare - For a comparison instruction, return the source registers
524 /// in SrcReg and SrcReg2 if having two register operands, and the value it
525 /// compares against in CmpValue. Return true if the comparison instruction
527 bool analyzeCompare(const MachineInstr
&MI
, Register
&SrcReg
,
528 Register
&SrcReg2
, int64_t &CmpMask
,
529 int64_t &CmpValue
) const override
;
531 /// optimizeCompareInstr - Check if there exists an earlier instruction that
532 /// operates on the same source operands and sets flags in the same way as
533 /// Compare; remove Compare if possible.
534 bool optimizeCompareInstr(MachineInstr
&CmpInstr
, Register SrcReg
,
535 Register SrcReg2
, int64_t CmpMask
, int64_t CmpValue
,
536 const MachineRegisterInfo
*MRI
) const override
;
538 /// optimizeLoadInstr - Try to remove the load by folding it to a register
539 /// operand at the use. We fold the load instructions if and only if the
540 /// def and use are in the same BB. We only look at one load and see
541 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
542 /// defined by the load we are trying to fold. DefMI returns the machine
543 /// instruction that defines FoldAsLoadDefReg, and the function returns
544 /// the machine instruction generated due to folding.
545 MachineInstr
*optimizeLoadInstr(MachineInstr
&MI
,
546 const MachineRegisterInfo
*MRI
,
547 Register
&FoldAsLoadDefReg
,
548 MachineInstr
*&DefMI
) const override
;
550 std::pair
<unsigned, unsigned>
551 decomposeMachineOperandsTargetFlags(unsigned TF
) const override
;
553 ArrayRef
<std::pair
<unsigned, const char *>>
554 getSerializableDirectMachineOperandTargetFlags() const override
;
556 std::optional
<outliner::OutlinedFunction
> getOutliningCandidateInfo(
557 std::vector
<outliner::Candidate
> &RepeatedSequenceLocs
) const override
;
559 bool isFunctionSafeToOutlineFrom(MachineFunction
&MF
,
560 bool OutlineFromLinkOnceODRs
) const override
;
563 getOutliningTypeImpl(MachineBasicBlock::iterator
&MIT
, unsigned Flags
) const override
;
565 void buildOutlinedFrame(MachineBasicBlock
&MBB
, MachineFunction
&MF
,
566 const outliner::OutlinedFunction
&OF
) const override
;
568 MachineBasicBlock::iterator
569 insertOutlinedCall(Module
&M
, MachineBasicBlock
&MBB
,
570 MachineBasicBlock::iterator
&It
, MachineFunction
&MF
,
571 outliner::Candidate
&C
) const override
;
573 bool verifyInstruction(const MachineInstr
&MI
,
574 StringRef
&ErrInfo
) const override
;
575 #define GET_INSTRINFO_HELPER_DECLS
576 #include "X86GenInstrInfo.inc"
578 static bool hasLockPrefix(const MachineInstr
&MI
) {
579 return MI
.getDesc().TSFlags
& X86II::LOCK
;
582 std::optional
<ParamLoadedValue
>
583 describeLoadedValue(const MachineInstr
&MI
, Register Reg
) const override
;
586 /// Commutes the operands in the given instruction by changing the operands
587 /// order and/or changing the instruction's opcode and/or the immediate value
590 /// The arguments 'CommuteOpIdx1' and 'CommuteOpIdx2' specify the operands
593 /// Do not call this method for a non-commutable instruction or
594 /// non-commutable operands.
595 /// Even though the instruction is commutable, the method may still
596 /// fail to commute the operands, null pointer is returned in such cases.
597 MachineInstr
*commuteInstructionImpl(MachineInstr
&MI
, bool NewMI
,
598 unsigned CommuteOpIdx1
,
599 unsigned CommuteOpIdx2
) const override
;
601 /// If the specific machine instruction is a instruction that moves/copies
602 /// value from one register to another register return destination and source
603 /// registers as machine operands.
604 std::optional
<DestSourcePair
>
605 isCopyInstrImpl(const MachineInstr
&MI
) const override
;
607 /// Return true when there is potentially a faster code sequence for an
608 /// instruction chain ending in \p Root. All potential patterns are listed in
609 /// the \p Pattern vector. Pattern should be sorted in priority order since
610 /// the pattern evaluator stops checking as soon as it finds a faster
613 getMachineCombinerPatterns(MachineInstr
&Root
,
614 SmallVectorImpl
<MachineCombinerPattern
> &Patterns
,
615 bool DoRegPressureReduce
) const override
;
617 /// When getMachineCombinerPatterns() finds potential patterns,
618 /// this function generates the instructions that could replace the
619 /// original code sequence.
620 void genAlternativeCodeSequence(
621 MachineInstr
&Root
, MachineCombinerPattern Pattern
,
622 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
623 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
624 DenseMap
<unsigned, unsigned> &InstrIdxForVirtReg
) const override
;
626 /// When calculate the latency of the root instruction, accumulate the
627 /// latency of the sequence to the root latency.
628 /// \param Root - Instruction that could be combined with one of its operands
629 /// For X86 instruction (vpmaddwd + vpmaddwd) -> vpdpwssd, the vpmaddwd
630 /// is not in the critical path, so the root latency only include vpmaddwd.
631 bool accumulateInstrSeqToRootLatency(MachineInstr
&Root
) const override
{
636 /// This is a helper for convertToThreeAddress for 8 and 16-bit instructions.
637 /// We use 32-bit LEA to form 3-address code by promoting to a 32-bit
638 /// super-register and then truncating back down to a 8/16-bit sub-register.
639 MachineInstr
*convertToThreeAddressWithLEA(unsigned MIOpc
, MachineInstr
&MI
,
642 bool Is8BitOp
) const;
644 /// Handles memory folding for special case instructions, for instance those
645 /// requiring custom manipulation of the address.
646 MachineInstr
*foldMemoryOperandCustom(MachineFunction
&MF
, MachineInstr
&MI
,
648 ArrayRef
<MachineOperand
> MOs
,
649 MachineBasicBlock::iterator InsertPt
,
650 unsigned Size
, Align Alignment
) const;
652 /// isFrameOperand - Return true and the FrameIndex if the specified
653 /// operand and follow operands form a reference to the stack frame.
654 bool isFrameOperand(const MachineInstr
&MI
, unsigned int Op
,
655 int &FrameIndex
) const;
657 /// Returns true iff the routine could find two commutable operands in the
658 /// given machine instruction with 3 vector inputs.
659 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments. Their
660 /// input values can be re-defined in this method only if the input values
661 /// are not pre-defined, which is designated by the special value
662 /// 'CommuteAnyOperandIndex' assigned to it.
663 /// If both of indices are pre-defined and refer to some operands, then the
664 /// method simply returns true if the corresponding operands are commutable
665 /// and returns false otherwise.
667 /// For example, calling this method this way:
668 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
669 /// findThreeSrcCommutedOpIndices(MI, Op1, Op2);
670 /// can be interpreted as a query asking to find an operand that would be
671 /// commutable with the operand#1.
673 /// If IsIntrinsic is set, operand 1 will be ignored for commuting.
674 bool findThreeSrcCommutedOpIndices(const MachineInstr
&MI
,
677 bool IsIntrinsic
= false) const;
679 /// Returns true when instruction \p FlagI produces the same flags as \p OI.
680 /// The caller should pass in the results of calling analyzeCompare on \p OI:
681 /// \p SrcReg, \p SrcReg2, \p ImmMask, \p ImmValue.
682 /// If the flags match \p OI as if it had the input operands swapped then the
683 /// function succeeds and sets \p IsSwapped to true.
685 /// Examples of OI, FlagI pairs returning true:
686 /// CMP %1, 42 and CMP %1, 42
687 /// CMP %1, %2 and %3 = SUB %1, %2
688 /// TEST %1, %1 and %2 = SUB %1, 0
689 /// CMP %1, %2 and %3 = SUB %2, %1 ; IsSwapped=true
690 bool isRedundantFlagInstr(const MachineInstr
&FlagI
, Register SrcReg
,
691 Register SrcReg2
, int64_t ImmMask
, int64_t ImmValue
,
692 const MachineInstr
&OI
, bool *IsSwapped
,
693 int64_t *ImmDelta
) const;