1 //===--- EasilySwappableParametersCheck.cpp - clang-tidy ------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "EasilySwappableParametersCheck.h"
10 #include "../utils/OptionsUtils.h"
11 #include "clang/AST/ASTContext.h"
12 #include "clang/AST/RecursiveASTVisitor.h"
13 #include "clang/ASTMatchers/ASTMatchFinder.h"
14 #include "clang/Lex/Lexer.h"
15 #include "llvm/ADT/SmallSet.h"
17 #define DEBUG_TYPE "EasilySwappableParametersCheck"
18 #include "llvm/Support/Debug.h"
21 namespace optutils
= clang::tidy::utils::options
;
23 /// The default value for the MinimumLength check option.
24 static constexpr std::size_t DefaultMinimumLength
= 2;
26 /// The default value for ignored parameter names.
27 static constexpr llvm::StringLiteral DefaultIgnoredParameterNames
= "\"\";"
43 /// The default value for ignored parameter type suffixes.
44 static constexpr llvm::StringLiteral DefaultIgnoredParameterTypeSuffixes
=
68 "reverse_const_iterator;"
69 "ConstReverseIterator;"
70 "Const_Reverse_Iterator;"
71 "const_reverse_iterator;"
72 "Constreverseiterator;"
73 "constreverseiterator";
75 /// The default value for the QualifiersMix check option.
76 static constexpr bool DefaultQualifiersMix
= false;
78 /// The default value for the ModelImplicitConversions check option.
79 static constexpr bool DefaultModelImplicitConversions
= true;
81 /// The default value for suppressing diagnostics about parameters that are
83 static constexpr bool DefaultSuppressParametersUsedTogether
= true;
85 /// The default value for the NamePrefixSuffixSilenceDissimilarityTreshold
87 static constexpr std::size_t
88 DefaultNamePrefixSuffixSilenceDissimilarityTreshold
= 1;
90 using namespace clang::ast_matchers
;
92 namespace clang::tidy::bugprone
{
94 using TheCheck
= EasilySwappableParametersCheck
;
97 class SimilarlyUsedParameterPairSuppressor
;
99 static bool isIgnoredParameter(const TheCheck
&Check
, const ParmVarDecl
*Node
);
101 isSimilarlyUsedParameter(const SimilarlyUsedParameterPairSuppressor
&Suppressor
,
102 const ParmVarDecl
*Param1
, const ParmVarDecl
*Param2
);
103 static bool prefixSuffixCoverUnderThreshold(std::size_t Threshold
,
104 StringRef Str1
, StringRef Str2
);
105 } // namespace filter
109 /// The language features involved in allowing the mix between two parameters.
110 enum class MixFlags
: unsigned char {
111 Invalid
= 0, ///< Sentinel bit pattern. DO NOT USE!
113 /// Certain constructs (such as pointers to noexcept/non-noexcept functions)
114 /// have the same CanonicalType, which would result in false positives.
115 /// During the recursive modelling call, this flag is set if a later diagnosed
116 /// canonical type equivalence should be thrown away.
117 WorkaroundDisableCanonicalEquivalence
= 1,
119 None
= 2, ///< Mix between the two parameters is not possible.
120 Trivial
= 4, ///< The two mix trivially, and are the exact same type.
121 Canonical
= 8, ///< The two mix because the types refer to the same
122 /// CanonicalType, but we do not elaborate as to how.
123 TypeAlias
= 16, ///< The path from one type to the other involves
124 /// desugaring type aliases.
125 ReferenceBind
= 32, ///< The mix involves the binding power of "const &".
126 Qualifiers
= 64, ///< The mix involves change in the qualifiers.
127 ImplicitConversion
= 128, ///< The mixing of the parameters is possible
128 /// through implicit conversions between the types.
130 LLVM_MARK_AS_BITMASK_ENUM(/* LargestValue =*/ImplicitConversion
)
132 LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
134 /// Returns whether the SearchedFlag is turned on in the Data.
135 static inline bool hasFlag(MixFlags Data
, MixFlags SearchedFlag
) {
136 assert(SearchedFlag
!= MixFlags::Invalid
&&
137 "can't be used to detect lack of all bits!");
139 // "Data & SearchedFlag" would need static_cast<bool>() in conditions.
140 return (Data
& SearchedFlag
) == SearchedFlag
;
145 // The modelling logic of this check is more complex than usual, and
146 // potentially hard to understand without the ability to see into the
147 // representation during the recursive descent. This debug code is only
148 // compiled in 'Debug' mode, or if LLVM_ENABLE_ASSERTIONS config is turned on.
150 /// Formats the MixFlags enum into a useful, user-readable representation.
151 static inline std::string
formatMixFlags(MixFlags F
) {
152 if (F
== MixFlags::Invalid
)
155 SmallString
<8> Str
{"-------"};
157 if (hasFlag(F
, MixFlags::None
))
158 // Shows the None bit explicitly, as it can be applied in the recursion
159 // even if other bits are set.
161 if (hasFlag(F
, MixFlags::Trivial
))
163 if (hasFlag(F
, MixFlags::Canonical
))
165 if (hasFlag(F
, MixFlags::TypeAlias
))
167 if (hasFlag(F
, MixFlags::ReferenceBind
))
169 if (hasFlag(F
, MixFlags::Qualifiers
))
171 if (hasFlag(F
, MixFlags::ImplicitConversion
))
174 if (hasFlag(F
, MixFlags::WorkaroundDisableCanonicalEquivalence
))
177 return Str
.str().str();
182 /// The results of the steps of an Implicit Conversion Sequence is saved in
183 /// an instance of this record.
185 /// A ConversionSequence maps the steps of the conversion with a member for
186 /// each type involved in the conversion. Imagine going from a hypothetical
187 /// Complex class to projecting it to the real part as a const double.
192 /// operator double() const;
195 /// void functionBeingAnalysed(Complex C, const double R);
197 /// we will get the following sequence:
201 /// The first standard conversion is a qualification adjustment.
202 /// (AfterFirstStandard=) const Complex
204 /// Then the user-defined conversion is executed.
205 /// (UDConvOp.ConversionOperatorResultType=) double
207 /// Then this 'double' is qualifier-adjusted to 'const double'.
208 /// (AfterSecondStandard=) double
210 /// The conversion's result has now been calculated, so it ends here.
213 /// Explicit storing of Begin and End in this record is needed, because
214 /// getting to what Begin and End here are needs further resolution of types,
215 /// e.g. in the case of typedefs:
217 /// using Comp = Complex;
218 /// using CD = const double;
219 /// void functionBeingAnalysed2(Comp C, CD R);
221 /// In this case, the user will be diagnosed with a potential conversion
222 /// between the two typedefs as written in the code, but to elaborate the
223 /// reasoning behind this conversion, we also need to show what the typedefs
224 /// mean. See FormattedConversionSequence towards the bottom of this file!
225 struct ConversionSequence
{
226 enum UserDefinedConversionKind
{ UDCK_None
, UDCK_Ctor
, UDCK_Oper
};
228 struct UserDefinedConvertingConstructor
{
229 const CXXConstructorDecl
*Fun
;
230 QualType ConstructorParameterType
;
231 QualType UserDefinedType
;
234 struct UserDefinedConversionOperator
{
235 const CXXConversionDecl
*Fun
;
236 QualType UserDefinedType
;
237 QualType ConversionOperatorResultType
;
240 /// The type the conversion stared from.
243 /// The intermediate type after the first Standard Conversion Sequence.
244 QualType AfterFirstStandard
;
246 /// The details of the user-defined conversion involved, as a tagged union.
249 UserDefinedConvertingConstructor UDConvCtor
;
250 UserDefinedConversionOperator UDConvOp
;
252 UserDefinedConversionKind UDConvKind
;
254 /// The intermediate type after performing the second Standard Conversion
256 QualType AfterSecondStandard
;
258 /// The result type the conversion targeted.
261 ConversionSequence() : None(0), UDConvKind(UDCK_None
) {}
262 ConversionSequence(QualType From
, QualType To
)
263 : Begin(From
), None(0), UDConvKind(UDCK_None
), End(To
) {}
265 explicit operator bool() const {
266 return !AfterFirstStandard
.isNull() || UDConvKind
!= UDCK_None
||
267 !AfterSecondStandard
.isNull();
270 /// Returns all the "steps" (non-unique and non-similar) types involved in
271 /// the conversion sequence. This method does **NOT** return Begin and End.
272 SmallVector
<QualType
, 4> getInvolvedTypesInSequence() const {
273 SmallVector
<QualType
, 4> Ret
;
274 auto EmplaceIfDifferent
= [&Ret
](QualType QT
) {
278 Ret
.emplace_back(QT
);
279 else if (Ret
.back() != QT
)
280 Ret
.emplace_back(QT
);
283 EmplaceIfDifferent(AfterFirstStandard
);
284 switch (UDConvKind
) {
286 EmplaceIfDifferent(UDConvCtor
.ConstructorParameterType
);
287 EmplaceIfDifferent(UDConvCtor
.UserDefinedType
);
290 EmplaceIfDifferent(UDConvOp
.UserDefinedType
);
291 EmplaceIfDifferent(UDConvOp
.ConversionOperatorResultType
);
296 EmplaceIfDifferent(AfterSecondStandard
);
301 /// Updates the steps of the conversion sequence with the steps from the
304 /// \note This method does not check if the resulting conversion sequence is
306 ConversionSequence
&update(const ConversionSequence
&RHS
) {
307 if (!RHS
.AfterFirstStandard
.isNull())
308 AfterFirstStandard
= RHS
.AfterFirstStandard
;
309 switch (RHS
.UDConvKind
) {
311 UDConvKind
= UDCK_Ctor
;
312 UDConvCtor
= RHS
.UDConvCtor
;
315 UDConvKind
= UDCK_Oper
;
316 UDConvOp
= RHS
.UDConvOp
;
321 if (!RHS
.AfterSecondStandard
.isNull())
322 AfterSecondStandard
= RHS
.AfterSecondStandard
;
327 /// Sets the user-defined conversion to the given constructor.
328 void setConversion(const UserDefinedConvertingConstructor
&UDCC
) {
329 UDConvKind
= UDCK_Ctor
;
333 /// Sets the user-defined conversion to the given operator.
334 void setConversion(const UserDefinedConversionOperator
&UDCO
) {
335 UDConvKind
= UDCK_Oper
;
339 /// Returns the type in the conversion that's formally "in our hands" once
340 /// the user-defined conversion is executed.
341 QualType
getTypeAfterUserDefinedConversion() const {
342 switch (UDConvKind
) {
344 return UDConvCtor
.UserDefinedType
;
346 return UDConvOp
.ConversionOperatorResultType
;
350 llvm_unreachable("Invalid UDConv kind.");
353 const CXXMethodDecl
*getUserDefinedConversionFunction() const {
354 switch (UDConvKind
) {
356 return UDConvCtor
.Fun
;
362 llvm_unreachable("Invalid UDConv kind.");
365 /// Returns the SourceRange in the text that corresponds to the interesting
366 /// part of the user-defined conversion. This is either the parameter type
367 /// in a converting constructor, or the conversion result type in a conversion
369 SourceRange
getUserDefinedConversionHighlight() const {
370 switch (UDConvKind
) {
372 return UDConvCtor
.Fun
->getParamDecl(0)->getSourceRange();
374 // getReturnTypeSourceRange() does not work for CXXConversionDecls as the
375 // returned type is physically behind the declaration's name ("operator").
376 if (const FunctionTypeLoc FTL
= UDConvOp
.Fun
->getFunctionTypeLoc())
377 if (const TypeLoc RetLoc
= FTL
.getReturnLoc())
378 return RetLoc
.getSourceRange();
383 llvm_unreachable("Invalid UDConv kind.");
387 /// Contains the metadata for the mixability result between two types,
388 /// independently of which parameters they were calculated from.
390 /// The flag bits of the mix indicating what language features allow for it.
391 MixFlags Flags
= MixFlags::Invalid
;
393 /// A potentially calculated common underlying type after desugaring, that
394 /// both sides of the mix can originate from.
397 /// The steps an implicit conversion performs to get from one type to the
399 ConversionSequence Conversion
, ConversionRTL
;
401 /// True if the MixData was specifically created with only a one-way
402 /// conversion modelled.
403 bool CreatedFromOneWayConversion
= false;
405 MixData(MixFlags Flags
) : Flags(Flags
) {}
406 MixData(MixFlags Flags
, QualType CommonType
)
407 : Flags(Flags
), CommonType(CommonType
) {}
408 MixData(MixFlags Flags
, ConversionSequence Conv
)
409 : Flags(Flags
), Conversion(Conv
), CreatedFromOneWayConversion(true) {}
410 MixData(MixFlags Flags
, ConversionSequence LTR
, ConversionSequence RTL
)
411 : Flags(Flags
), Conversion(LTR
), ConversionRTL(RTL
) {}
412 MixData(MixFlags Flags
, QualType CommonType
, ConversionSequence LTR
,
413 ConversionSequence RTL
)
414 : Flags(Flags
), CommonType(CommonType
), Conversion(LTR
),
415 ConversionRTL(RTL
) {}
418 assert(Flags
!= MixFlags::Invalid
&& "sanitize() called on invalid bitvec");
420 MixFlags CanonicalAndWorkaround
=
421 MixFlags::Canonical
| MixFlags::WorkaroundDisableCanonicalEquivalence
;
422 if ((Flags
& CanonicalAndWorkaround
) == CanonicalAndWorkaround
) {
423 // A workaround for too eagerly equivalent canonical types was requested,
424 // and a canonical equivalence was proven. Fulfill the request and throw
426 Flags
= MixFlags::None
;
430 if (hasFlag(Flags
, MixFlags::None
)) {
431 // If anywhere down the recursion a potential mix "path" is deemed
432 // impossible, throw away all the other bits because the mix is not
434 Flags
= MixFlags::None
;
438 if (Flags
== MixFlags::Trivial
)
441 if (static_cast<bool>(Flags
^ MixFlags::Trivial
))
442 // If the mix involves somewhere trivial equivalence but down the
443 // recursion other bit(s) were set, remove the trivial bit, as it is not
445 Flags
&= ~MixFlags::Trivial
;
447 bool ShouldHaveImplicitConvFlag
= false;
448 if (CreatedFromOneWayConversion
&& Conversion
)
449 ShouldHaveImplicitConvFlag
= true;
450 else if (!CreatedFromOneWayConversion
&& Conversion
&& ConversionRTL
)
451 // Only say that we have implicit conversion mix possibility if it is
452 // bidirectional. Otherwise, the compiler would report an *actual* swap
454 ShouldHaveImplicitConvFlag
= true;
456 if (ShouldHaveImplicitConvFlag
)
457 Flags
|= MixFlags::ImplicitConversion
;
459 Flags
&= ~MixFlags::ImplicitConversion
;
462 bool isValid() const { return Flags
>= MixFlags::None
; }
464 bool indicatesMixability() const { return Flags
> MixFlags::None
; }
466 /// Add the specified flag bits to the flags.
467 MixData
operator|(MixFlags EnableFlags
) const {
468 if (CreatedFromOneWayConversion
) {
469 MixData M
{Flags
| EnableFlags
, Conversion
};
470 M
.CommonType
= CommonType
;
473 return {Flags
| EnableFlags
, CommonType
, Conversion
, ConversionRTL
};
476 /// Add the specified flag bits to the flags.
477 MixData
&operator|=(MixFlags EnableFlags
) {
478 Flags
|= EnableFlags
;
482 template <typename F
> MixData
withCommonTypeTransformed(const F
&Func
) const {
483 if (CommonType
.isNull())
486 QualType NewCommonType
= Func(CommonType
);
488 if (CreatedFromOneWayConversion
) {
489 MixData M
{Flags
, Conversion
};
490 M
.CommonType
= NewCommonType
;
494 return {Flags
, NewCommonType
, Conversion
, ConversionRTL
};
498 /// A named tuple that contains the information for a mix between two concrete
501 const ParmVarDecl
*First
, *Second
;
504 Mix(const ParmVarDecl
*F
, const ParmVarDecl
*S
, MixData Data
)
505 : First(F
), Second(S
), Data(std::move(Data
)) {}
507 void sanitize() { Data
.sanitize(); }
508 MixFlags
flags() const { return Data
.Flags
; }
509 bool flagsValid() const { return Data
.isValid(); }
510 bool mixable() const { return Data
.indicatesMixability(); }
511 QualType
commonUnderlyingType() const { return Data
.CommonType
; }
512 const ConversionSequence
&leftToRightConversionSequence() const {
513 return Data
.Conversion
;
515 const ConversionSequence
&rightToLeftConversionSequence() const {
516 return Data
.ConversionRTL
;
520 // NOLINTNEXTLINE(misc-redundant-expression): Seems to be a bogus warning.
521 static_assert(std::is_trivially_copyable_v
<Mix
> &&
522 std::is_trivially_move_constructible_v
<Mix
> &&
523 std::is_trivially_move_assignable_v
<Mix
>,
524 "Keep frequently used data simple!");
526 struct MixableParameterRange
{
527 /// A container for Mixes.
528 using MixVector
= SmallVector
<Mix
, 8>;
530 /// The number of parameters iterated to build the instance.
531 std::size_t NumParamsChecked
= 0;
533 /// The individual flags and supporting information for the mixes.
536 /// Gets the leftmost parameter of the range.
537 const ParmVarDecl
*getFirstParam() const {
538 // The first element is the LHS of the very first mix in the range.
539 assert(!Mixes
.empty());
540 return Mixes
.front().First
;
543 /// Gets the rightmost parameter of the range.
544 const ParmVarDecl
*getLastParam() const {
545 // The builder function breaks building an instance of this type if it
546 // finds something that can not be mixed with the rest, by going *forward*
547 // in the list of parameters. So at any moment of break, the RHS of the last
548 // element of the mix vector is also the last element of the mixing range.
549 assert(!Mixes
.empty());
550 return Mixes
.back().Second
;
554 /// Helper enum for the recursive calls in the modelling that toggle what kinds
555 /// of implicit conversions are to be modelled.
556 enum class ImplicitConversionModellingMode
: unsigned char {
557 ///< No implicit conversions are modelled.
560 ///< The full implicit conversion sequence is modelled.
563 ///< Only model a unidirectional implicit conversion and within it only one
564 /// standard conversion sequence.
565 OneWaySingleStandardOnly
569 isLRefEquallyBindingToType(const TheCheck
&Check
,
570 const LValueReferenceType
*LRef
, QualType Ty
,
571 const ASTContext
&Ctx
, bool IsRefRHS
,
572 ImplicitConversionModellingMode ImplicitMode
);
575 approximateImplicitConversion(const TheCheck
&Check
, QualType LType
,
576 QualType RType
, const ASTContext
&Ctx
,
577 ImplicitConversionModellingMode ImplicitMode
);
579 static inline bool isUselessSugar(const Type
*T
) {
580 return isa
<AttributedType
, DecayedType
, ElaboratedType
, ParenType
>(T
);
585 struct NonCVRQualifiersResult
{
586 /// True if the types are qualified in a way that even after equating or
587 /// removing local CVR qualification, even if the unqualified types
588 /// themselves would mix, the qualified ones don't, because there are some
589 /// other local qualifiers that are not equal.
590 bool HasMixabilityBreakingQualifiers
;
592 /// The set of equal qualifiers between the two types.
593 Qualifiers CommonQualifiers
;
598 /// Returns if the two types are qualified in a way that ever after equating or
599 /// removing local CVR qualification, even if the unqualified types would mix,
600 /// the qualified ones don't, because there are some other local qualifiers
601 /// that aren't equal.
602 static NonCVRQualifiersResult
603 getNonCVRQualifiers(const ASTContext
&Ctx
, QualType LType
, QualType RType
) {
604 LLVM_DEBUG(llvm::dbgs() << ">>> getNonCVRQualifiers for LType:\n";
605 LType
.dump(llvm::dbgs(), Ctx
); llvm::dbgs() << "\nand RType:\n";
606 RType
.dump(llvm::dbgs(), Ctx
); llvm::dbgs() << '\n';);
607 Qualifiers LQual
= LType
.getLocalQualifiers(),
608 RQual
= RType
.getLocalQualifiers();
610 // Strip potential CVR. That is handled by the check option QualifiersMix.
611 LQual
.removeCVRQualifiers();
612 RQual
.removeCVRQualifiers();
614 NonCVRQualifiersResult Ret
;
615 Ret
.CommonQualifiers
= Qualifiers::removeCommonQualifiers(LQual
, RQual
);
617 LLVM_DEBUG(llvm::dbgs() << "--- hasNonCVRMixabilityBreakingQualifiers. "
618 "Removed common qualifiers: ";
619 Ret
.CommonQualifiers
.print(llvm::dbgs(), Ctx
.getPrintingPolicy());
620 llvm::dbgs() << "\n\tremaining on LType: ";
621 LQual
.print(llvm::dbgs(), Ctx
.getPrintingPolicy());
622 llvm::dbgs() << "\n\tremaining on RType: ";
623 RQual
.print(llvm::dbgs(), Ctx
.getPrintingPolicy());
624 llvm::dbgs() << '\n';);
626 // If there are no other non-cvr non-common qualifiers left, we can deduce
627 // that mixability isn't broken.
628 Ret
.HasMixabilityBreakingQualifiers
=
629 LQual
.hasQualifiers() || RQual
.hasQualifiers();
634 /// Approximate the way how LType and RType might refer to "essentially the
635 /// same" type, in a sense that at a particular call site, an expression of
636 /// type LType and RType might be successfully passed to a variable (in our
637 /// specific case, a parameter) of type RType and LType, respectively.
638 /// Note the swapped order!
640 /// The returned data structure is not guaranteed to be properly set, as this
641 /// function is potentially recursive. It is the caller's responsibility to
642 /// call sanitize() on the result once the recursion is over.
644 calculateMixability(const TheCheck
&Check
, QualType LType
, QualType RType
,
645 const ASTContext
&Ctx
,
646 ImplicitConversionModellingMode ImplicitMode
) {
647 LLVM_DEBUG(llvm::dbgs() << ">>> calculateMixability for LType:\n";
648 LType
.dump(llvm::dbgs(), Ctx
); llvm::dbgs() << "\nand RType:\n";
649 RType
.dump(llvm::dbgs(), Ctx
); llvm::dbgs() << '\n';);
650 if (LType
== RType
) {
651 LLVM_DEBUG(llvm::dbgs() << "<<< calculateMixability. Trivial equality.\n");
652 return {MixFlags::Trivial
, LType
};
655 // Dissolve certain type sugars that do not affect the mixability of one type
656 // with the other, and also do not require any sort of elaboration for the
657 // user to understand.
658 if (isUselessSugar(LType
.getTypePtr())) {
659 LLVM_DEBUG(llvm::dbgs()
660 << "--- calculateMixability. LHS is useless sugar.\n");
661 return calculateMixability(Check
, LType
.getSingleStepDesugaredType(Ctx
),
662 RType
, Ctx
, ImplicitMode
);
664 if (isUselessSugar(RType
.getTypePtr())) {
665 LLVM_DEBUG(llvm::dbgs()
666 << "--- calculateMixability. RHS is useless sugar.\n");
667 return calculateMixability(
668 Check
, LType
, RType
.getSingleStepDesugaredType(Ctx
), Ctx
, ImplicitMode
);
671 const auto *LLRef
= LType
->getAs
<LValueReferenceType
>();
672 const auto *RLRef
= RType
->getAs
<LValueReferenceType
>();
673 if (LLRef
&& RLRef
) {
674 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. LHS and RHS are &.\n");
676 return calculateMixability(Check
, LLRef
->getPointeeType(),
677 RLRef
->getPointeeType(), Ctx
, ImplicitMode
)
678 .withCommonTypeTransformed(
679 [&Ctx
](QualType QT
) { return Ctx
.getLValueReferenceType(QT
); });
681 // At a particular call site, what could be passed to a 'T' or 'const T' might
682 // also be passed to a 'const T &' without the call site putting a direct
683 // side effect on the passed expressions.
685 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. LHS is &.\n");
686 return isLRefEquallyBindingToType(Check
, LLRef
, RType
, Ctx
, false,
688 MixFlags::ReferenceBind
;
691 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. RHS is &.\n");
692 return isLRefEquallyBindingToType(Check
, RLRef
, LType
, Ctx
, true,
694 MixFlags::ReferenceBind
;
697 if (LType
->getAs
<TypedefType
>()) {
698 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. LHS is typedef.\n");
699 return calculateMixability(Check
, LType
.getSingleStepDesugaredType(Ctx
),
700 RType
, Ctx
, ImplicitMode
) |
703 if (RType
->getAs
<TypedefType
>()) {
704 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. RHS is typedef.\n");
705 return calculateMixability(Check
, LType
,
706 RType
.getSingleStepDesugaredType(Ctx
), Ctx
,
711 // A parameter of type 'cvr1 T' and another of potentially differently
712 // qualified 'cvr2 T' may bind with the same power, if the user so requested.
714 // Whether to do this check for the inner unqualified types.
715 bool CompareUnqualifiedTypes
= false;
716 if (LType
.getLocalCVRQualifiers() != RType
.getLocalCVRQualifiers()) {
717 LLVM_DEBUG(if (LType
.getLocalCVRQualifiers()) {
718 llvm::dbgs() << "--- calculateMixability. LHS has CVR-Qualifiers: ";
719 Qualifiers::fromCVRMask(LType
.getLocalCVRQualifiers())
720 .print(llvm::dbgs(), Ctx
.getPrintingPolicy());
721 llvm::dbgs() << '\n';
723 LLVM_DEBUG(if (RType
.getLocalCVRQualifiers()) {
724 llvm::dbgs() << "--- calculateMixability. RHS has CVR-Qualifiers: ";
725 Qualifiers::fromCVRMask(RType
.getLocalCVRQualifiers())
726 .print(llvm::dbgs(), Ctx
.getPrintingPolicy());
727 llvm::dbgs() << '\n';
730 if (!Check
.QualifiersMix
) {
731 LLVM_DEBUG(llvm::dbgs()
732 << "<<< calculateMixability. QualifiersMix turned off - not "
734 return {MixFlags::None
};
737 CompareUnqualifiedTypes
= true;
739 // Whether the two types had the same CVR qualifiers.
740 bool OriginallySameQualifiers
= false;
741 if (LType
.getLocalCVRQualifiers() == RType
.getLocalCVRQualifiers() &&
742 LType
.getLocalCVRQualifiers() != 0) {
743 LLVM_DEBUG(if (LType
.getLocalCVRQualifiers()) {
745 << "--- calculateMixability. LHS and RHS have same CVR-Qualifiers: ";
746 Qualifiers::fromCVRMask(LType
.getLocalCVRQualifiers())
747 .print(llvm::dbgs(), Ctx
.getPrintingPolicy());
748 llvm::dbgs() << '\n';
751 CompareUnqualifiedTypes
= true;
752 OriginallySameQualifiers
= true;
755 if (CompareUnqualifiedTypes
) {
756 NonCVRQualifiersResult AdditionalQuals
=
757 getNonCVRQualifiers(Ctx
, LType
, RType
);
758 if (AdditionalQuals
.HasMixabilityBreakingQualifiers
) {
759 LLVM_DEBUG(llvm::dbgs() << "<<< calculateMixability. Additional "
760 "non-equal incompatible qualifiers.\n");
761 return {MixFlags::None
};
764 MixData UnqualifiedMixability
=
765 calculateMixability(Check
, LType
.getLocalUnqualifiedType(),
766 RType
.getLocalUnqualifiedType(), Ctx
, ImplicitMode
)
767 .withCommonTypeTransformed([&AdditionalQuals
, &Ctx
](QualType QT
) {
768 // Once the mixability was deduced, apply the qualifiers common
769 // to the two type back onto the diagnostic printout.
770 return Ctx
.getQualifiedType(QT
, AdditionalQuals
.CommonQualifiers
);
773 if (!OriginallySameQualifiers
)
774 // User-enabled qualifier change modelled for the mix.
775 return UnqualifiedMixability
| MixFlags::Qualifiers
;
777 // Apply the same qualifier back into the found common type if they were
779 return UnqualifiedMixability
.withCommonTypeTransformed(
780 [&Ctx
, LType
](QualType QT
) {
781 return Ctx
.getQualifiedType(QT
, LType
.getLocalQualifiers());
785 // Certain constructs match on the last catch-all getCanonicalType() equality,
786 // which is perhaps something not what we want. If this variable is true,
787 // the canonical type equality will be ignored.
788 bool RecursiveReturnDiscardingCanonicalType
= false;
790 if (LType
->isPointerType() && RType
->isPointerType()) {
791 // If both types are pointers, and pointed to the exact same type,
792 // LType == RType took care of that. Try to see if the pointee type has
793 // some other match. However, this must not consider implicit conversions.
794 LLVM_DEBUG(llvm::dbgs()
795 << "--- calculateMixability. LHS and RHS are Ptrs.\n");
796 MixData MixOfPointee
=
797 calculateMixability(Check
, LType
->getPointeeType(),
798 RType
->getPointeeType(), Ctx
,
799 ImplicitConversionModellingMode::None
)
800 .withCommonTypeTransformed(
801 [&Ctx
](QualType QT
) { return Ctx
.getPointerType(QT
); });
802 if (hasFlag(MixOfPointee
.Flags
,
803 MixFlags::WorkaroundDisableCanonicalEquivalence
))
804 RecursiveReturnDiscardingCanonicalType
= true;
806 MixOfPointee
.sanitize();
807 if (MixOfPointee
.indicatesMixability()) {
808 LLVM_DEBUG(llvm::dbgs()
809 << "<<< calculateMixability. Pointees are mixable.\n");
814 if (ImplicitMode
> ImplicitConversionModellingMode::None
) {
815 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. Start implicit...\n");
817 approximateImplicitConversion(Check
, LType
, RType
, Ctx
, ImplicitMode
);
819 if (hasFlag(MixLTR
.Flags
, MixFlags::ImplicitConversion
)) llvm::dbgs()
820 << "--- calculateMixability. Implicit Left -> Right found.\n";);
823 ImplicitConversionModellingMode::OneWaySingleStandardOnly
&&
824 MixLTR
.Conversion
&& !MixLTR
.Conversion
.AfterFirstStandard
.isNull() &&
825 MixLTR
.Conversion
.UDConvKind
== ConversionSequence::UDCK_None
&&
826 MixLTR
.Conversion
.AfterSecondStandard
.isNull()) {
827 // The invoker of the method requested only modelling a single standard
828 // conversion, in only the forward direction, and they got just that.
829 LLVM_DEBUG(llvm::dbgs() << "<<< calculateMixability. Implicit "
830 "conversion, one-way, standard-only.\n");
831 return {MixFlags::ImplicitConversion
, MixLTR
.Conversion
};
834 // Otherwise if the invoker requested a full modelling, do the other
835 // direction as well.
837 approximateImplicitConversion(Check
, RType
, LType
, Ctx
, ImplicitMode
);
839 if (hasFlag(MixRTL
.Flags
, MixFlags::ImplicitConversion
)) llvm::dbgs()
840 << "--- calculateMixability. Implicit Right -> Left found.\n";);
842 if (MixLTR
.Conversion
&& MixRTL
.Conversion
) {
845 << "<<< calculateMixability. Implicit conversion, bidirectional.\n");
846 return {MixFlags::ImplicitConversion
, MixLTR
.Conversion
,
851 if (RecursiveReturnDiscardingCanonicalType
)
852 LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. Before CanonicalType, "
853 "Discard was enabled.\n");
855 // Certain kinds unfortunately need to be side-stepped for canonical type
857 if (LType
->getAs
<FunctionProtoType
>() || RType
->getAs
<FunctionProtoType
>()) {
858 // Unfortunately, the canonical type of a function pointer becomes the
859 // same even if exactly one is "noexcept" and the other isn't, making us
860 // give a false positive report irrespective of implicit conversions.
861 LLVM_DEBUG(llvm::dbgs()
862 << "--- calculateMixability. Discarding potential canonical "
863 "equivalence on FunctionProtoTypes.\n");
864 RecursiveReturnDiscardingCanonicalType
= true;
867 MixData MixToReturn
{MixFlags::None
};
869 // If none of the previous logic found a match, try if Clang otherwise
870 // believes the types to be the same.
871 QualType LCanonical
= LType
.getCanonicalType();
872 if (LCanonical
== RType
.getCanonicalType()) {
873 LLVM_DEBUG(llvm::dbgs()
874 << "<<< calculateMixability. Same CanonicalType.\n");
875 MixToReturn
= {MixFlags::Canonical
, LCanonical
};
878 if (RecursiveReturnDiscardingCanonicalType
)
879 MixToReturn
|= MixFlags::WorkaroundDisableCanonicalEquivalence
;
881 LLVM_DEBUG(if (MixToReturn
.Flags
== MixFlags::None
) llvm::dbgs()
882 << "<<< calculateMixability. No match found.\n");
886 /// Calculates if the reference binds an expression of the given type. This is
887 /// true iff 'LRef' is some 'const T &' type, and the 'Ty' is 'T' or 'const T'.
889 /// \param ImplicitMode is forwarded in the possible recursive call to
890 /// calculateMixability.
892 isLRefEquallyBindingToType(const TheCheck
&Check
,
893 const LValueReferenceType
*LRef
, QualType Ty
,
894 const ASTContext
&Ctx
, bool IsRefRHS
,
895 ImplicitConversionModellingMode ImplicitMode
) {
896 LLVM_DEBUG(llvm::dbgs() << ">>> isLRefEquallyBindingToType for LRef:\n";
897 LRef
->dump(llvm::dbgs(), Ctx
); llvm::dbgs() << "\nand Type:\n";
898 Ty
.dump(llvm::dbgs(), Ctx
); llvm::dbgs() << '\n';);
900 QualType ReferredType
= LRef
->getPointeeType();
901 if (!ReferredType
.isLocalConstQualified() &&
902 ReferredType
->getAs
<TypedefType
>()) {
905 << "--- isLRefEquallyBindingToType. Non-const LRef to Typedef.\n");
906 ReferredType
= ReferredType
.getDesugaredType(Ctx
);
907 if (!ReferredType
.isLocalConstQualified()) {
908 LLVM_DEBUG(llvm::dbgs()
909 << "<<< isLRefEquallyBindingToType. Typedef is not const.\n");
910 return {MixFlags::None
};
913 LLVM_DEBUG(llvm::dbgs() << "--- isLRefEquallyBindingToType. Typedef is "
914 "const, considering as const LRef.\n");
915 } else if (!ReferredType
.isLocalConstQualified()) {
916 LLVM_DEBUG(llvm::dbgs()
917 << "<<< isLRefEquallyBindingToType. Not const LRef.\n");
918 return {MixFlags::None
};
921 assert(ReferredType
.isLocalConstQualified() &&
922 "Reaching this point means we are sure LRef is effectively a const&.");
924 if (ReferredType
== Ty
) {
927 << "<<< isLRefEquallyBindingToType. Type of referred matches.\n");
928 return {MixFlags::Trivial
, ReferredType
};
931 QualType NonConstReferredType
= ReferredType
;
932 NonConstReferredType
.removeLocalConst();
933 if (NonConstReferredType
== Ty
) {
934 LLVM_DEBUG(llvm::dbgs() << "<<< isLRefEquallyBindingToType. Type of "
935 "referred matches to non-const qualified.\n");
936 return {MixFlags::Trivial
, NonConstReferredType
};
941 << "--- isLRefEquallyBindingToType. Checking mix for underlying type.\n");
942 return IsRefRHS
? calculateMixability(Check
, Ty
, NonConstReferredType
, Ctx
,
944 : calculateMixability(Check
, NonConstReferredType
, Ty
, Ctx
,
948 static inline bool isDerivedToBase(const CXXRecordDecl
*Derived
,
949 const CXXRecordDecl
*Base
) {
950 return Derived
&& Base
&& Derived
->isCompleteDefinition() &&
951 Base
->isCompleteDefinition() && Derived
->isDerivedFrom(Base
);
954 static std::optional
<QualType
>
955 approximateStandardConversionSequence(const TheCheck
&Check
, QualType From
,
956 QualType To
, const ASTContext
&Ctx
) {
957 LLVM_DEBUG(llvm::dbgs() << ">>> approximateStdConv for LType:\n";
958 From
.dump(llvm::dbgs(), Ctx
); llvm::dbgs() << "\nand RType:\n";
959 To
.dump(llvm::dbgs(), Ctx
); llvm::dbgs() << '\n';);
961 // A standard conversion sequence consists of the following, in order:
962 // * Maybe either LValue->RValue conv., Array->Ptr conv., Function->Ptr conv.
963 // * Maybe Numeric promotion or conversion.
964 // * Maybe function pointer conversion.
965 // * Maybe qualifier adjustments.
966 QualType WorkType
= From
;
967 // Get out the qualifiers of the original type. This will always be
968 // re-applied to the WorkType to ensure it is the same qualification as the
969 // original From was.
970 auto QualifiersToApply
= From
.split().Quals
.getAsOpaqueValue();
972 // LValue->RValue is irrelevant for the check, because it is a thing to be
973 // done at a call site, and will be performed if need be performed.
975 // Array->Pointer decay is handled by the main method in desugaring
976 // the parameter's DecayedType as "useless sugar".
978 // Function->Pointer conversions are also irrelevant, because a
979 // "FunctionType" cannot be the type of a parameter variable, so this
980 // conversion is only meaningful at call sites.
982 // Numeric promotions and conversions.
983 const auto *FromBuiltin
= WorkType
->getAs
<BuiltinType
>();
984 const auto *ToBuiltin
= To
->getAs
<BuiltinType
>();
985 bool FromNumeric
= FromBuiltin
&& (FromBuiltin
->isIntegerType() ||
986 FromBuiltin
->isFloatingType());
988 ToBuiltin
&& (ToBuiltin
->isIntegerType() || ToBuiltin
->isFloatingType());
989 if (FromNumeric
&& ToNumeric
) {
990 // If both are integral types, the numeric conversion is performed.
991 // Reapply the qualifiers of the original type, however, so
992 // "const int -> double" in this case moves over to
993 // "const double -> double".
994 LLVM_DEBUG(llvm::dbgs()
995 << "--- approximateStdConv. Conversion between numerics.\n");
996 WorkType
= QualType
{ToBuiltin
, QualifiersToApply
};
999 const auto *FromEnum
= WorkType
->getAs
<EnumType
>();
1000 const auto *ToEnum
= To
->getAs
<EnumType
>();
1001 if (FromEnum
&& ToNumeric
&& FromEnum
->isUnscopedEnumerationType()) {
1002 // Unscoped enumerations (or enumerations in C) convert to numerics.
1003 LLVM_DEBUG(llvm::dbgs()
1004 << "--- approximateStdConv. Unscoped enum to numeric.\n");
1005 WorkType
= QualType
{ToBuiltin
, QualifiersToApply
};
1006 } else if (FromNumeric
&& ToEnum
&& ToEnum
->isUnscopedEnumerationType()) {
1007 // Numeric types convert to enumerations only in C.
1008 if (Ctx
.getLangOpts().CPlusPlus
) {
1009 LLVM_DEBUG(llvm::dbgs() << "<<< approximateStdConv. Numeric to unscoped "
1010 "enum, not possible in C++!\n");
1014 LLVM_DEBUG(llvm::dbgs()
1015 << "--- approximateStdConv. Numeric to unscoped enum.\n");
1016 WorkType
= QualType
{ToEnum
, QualifiersToApply
};
1019 // Check for pointer conversions.
1020 const auto *FromPtr
= WorkType
->getAs
<PointerType
>();
1021 const auto *ToPtr
= To
->getAs
<PointerType
>();
1022 if (FromPtr
&& ToPtr
) {
1023 if (ToPtr
->isVoidPointerType()) {
1024 LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. To void pointer.\n");
1025 WorkType
= QualType
{ToPtr
, QualifiersToApply
};
1028 const auto *FromRecordPtr
= FromPtr
->getPointeeCXXRecordDecl();
1029 const auto *ToRecordPtr
= ToPtr
->getPointeeCXXRecordDecl();
1030 if (isDerivedToBase(FromRecordPtr
, ToRecordPtr
)) {
1031 LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. Derived* to Base*\n");
1032 WorkType
= QualType
{ToPtr
, QualifiersToApply
};
1036 // Model the slicing Derived-to-Base too, as "BaseT temporary = derived;"
1037 // can also be compiled.
1038 const auto *FromRecord
= WorkType
->getAsCXXRecordDecl();
1039 const auto *ToRecord
= To
->getAsCXXRecordDecl();
1040 if (isDerivedToBase(FromRecord
, ToRecord
)) {
1041 LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. Derived To Base.\n");
1042 WorkType
= QualType
{ToRecord
->getTypeForDecl(), QualifiersToApply
};
1045 if (Ctx
.getLangOpts().CPlusPlus17
&& FromPtr
&& ToPtr
) {
1046 // Function pointer conversion: A noexcept function pointer can be passed
1047 // to a non-noexcept one.
1048 const auto *FromFunctionPtr
=
1049 FromPtr
->getPointeeType()->getAs
<FunctionProtoType
>();
1050 const auto *ToFunctionPtr
=
1051 ToPtr
->getPointeeType()->getAs
<FunctionProtoType
>();
1052 if (FromFunctionPtr
&& ToFunctionPtr
&&
1053 FromFunctionPtr
->hasNoexceptExceptionSpec() &&
1054 !ToFunctionPtr
->hasNoexceptExceptionSpec()) {
1055 LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. noexcept function "
1056 "pointer to non-noexcept.\n");
1057 WorkType
= QualType
{ToPtr
, QualifiersToApply
};
1061 // Qualifier adjustments are modelled according to the user's request in
1062 // the QualifiersMix check config.
1063 LLVM_DEBUG(llvm::dbgs()
1064 << "--- approximateStdConv. Trying qualifier adjustment...\n");
1065 MixData QualConv
= calculateMixability(Check
, WorkType
, To
, Ctx
,
1066 ImplicitConversionModellingMode::None
);
1067 QualConv
.sanitize();
1068 if (hasFlag(QualConv
.Flags
, MixFlags::Qualifiers
)) {
1069 LLVM_DEBUG(llvm::dbgs()
1070 << "<<< approximateStdConv. Qualifiers adjusted.\n");
1074 if (WorkType
== To
) {
1075 LLVM_DEBUG(llvm::dbgs() << "<<< approximateStdConv. Reached 'To' type.\n");
1079 LLVM_DEBUG(llvm::dbgs() << "<<< approximateStdConv. Did not reach 'To'.\n");
1085 /// Helper class for storing possible user-defined conversion calls that
1086 /// *could* take place in an implicit conversion, and selecting the one that
1087 /// most likely *does*, if any.
1088 class UserDefinedConversionSelector
{
1090 /// The conversion associated with a conversion function, together with the
1091 /// mixability flags of the conversion function's parameter or return type
1092 /// to the rest of the sequence the selector is used in, and the sequence
1093 /// that applied through the conversion itself.
1094 struct PreparedConversion
{
1095 const CXXMethodDecl
*ConversionFun
;
1097 ConversionSequence Seq
;
1099 PreparedConversion(const CXXMethodDecl
*CMD
, MixFlags F
,
1100 ConversionSequence S
)
1101 : ConversionFun(CMD
), Flags(F
), Seq(S
) {}
1104 UserDefinedConversionSelector(const TheCheck
&Check
) : Check(Check
) {}
1106 /// Adds the conversion between the two types for the given function into
1107 /// the possible implicit conversion set. FromType and ToType is either:
1108 /// * the result of a standard sequence and a converting ctor parameter
1109 /// * the return type of a conversion operator and the expected target of
1110 /// an implicit conversion.
1111 void addConversion(const CXXMethodDecl
*ConvFun
, QualType FromType
,
1113 // Try to go from the FromType to the ToType with only a single implicit
1114 // conversion, to see if the conversion function is applicable.
1115 MixData Mix
= calculateMixability(
1116 Check
, FromType
, ToType
, ConvFun
->getASTContext(),
1117 ImplicitConversionModellingMode::OneWaySingleStandardOnly
);
1119 if (!Mix
.indicatesMixability())
1122 LLVM_DEBUG(llvm::dbgs() << "--- tryConversion. Found viable with flags: "
1123 << formatMixFlags(Mix
.Flags
) << '\n');
1124 FlaggedConversions
.emplace_back(ConvFun
, Mix
.Flags
, Mix
.Conversion
);
1127 /// Selects the best conversion function that is applicable from the
1128 /// prepared set of potential conversion functions taken.
1129 std::optional
<PreparedConversion
> operator()() const {
1130 if (FlaggedConversions
.empty()) {
1131 LLVM_DEBUG(llvm::dbgs() << "--- selectUserDefinedConv. Empty.\n");
1134 if (FlaggedConversions
.size() == 1) {
1135 LLVM_DEBUG(llvm::dbgs() << "--- selectUserDefinedConv. Single.\n");
1136 return FlaggedConversions
.front();
1139 std::optional
<PreparedConversion
> BestConversion
;
1140 unsigned short HowManyGoodConversions
= 0;
1141 for (const auto &Prepared
: FlaggedConversions
) {
1142 LLVM_DEBUG(llvm::dbgs() << "--- selectUserDefinedConv. Candidate flags: "
1143 << formatMixFlags(Prepared
.Flags
) << '\n');
1144 if (!BestConversion
) {
1145 BestConversion
= Prepared
;
1146 ++HowManyGoodConversions
;
1150 bool BestConversionHasImplicit
=
1151 hasFlag(BestConversion
->Flags
, MixFlags::ImplicitConversion
);
1152 bool ThisConversionHasImplicit
=
1153 hasFlag(Prepared
.Flags
, MixFlags::ImplicitConversion
);
1154 if (!BestConversionHasImplicit
&& ThisConversionHasImplicit
)
1155 // This is a worse conversion, because a better one was found earlier.
1158 if (BestConversionHasImplicit
&& !ThisConversionHasImplicit
) {
1159 // If the so far best selected conversion needs a previous implicit
1160 // conversion to match the user-defined converting function, but this
1161 // conversion does not, this is a better conversion, and we can throw
1162 // away the previously selected conversion(s).
1163 BestConversion
= Prepared
;
1164 HowManyGoodConversions
= 1;
1168 if (BestConversionHasImplicit
== ThisConversionHasImplicit
)
1169 // The current conversion is the same in term of goodness than the
1170 // already selected one.
1171 ++HowManyGoodConversions
;
1174 if (HowManyGoodConversions
== 1) {
1175 LLVM_DEBUG(llvm::dbgs()
1176 << "--- selectUserDefinedConv. Unique result. Flags: "
1177 << formatMixFlags(BestConversion
->Flags
) << '\n');
1178 return BestConversion
;
1181 LLVM_DEBUG(llvm::dbgs()
1182 << "--- selectUserDefinedConv. No, or ambiguous.\n");
1187 llvm::SmallVector
<PreparedConversion
, 2> FlaggedConversions
;
1188 const TheCheck
&Check
;
1193 static std::optional
<ConversionSequence
>
1194 tryConversionOperators(const TheCheck
&Check
, const CXXRecordDecl
*RD
,
1196 if (!RD
|| !RD
->isCompleteDefinition())
1198 RD
= RD
->getDefinition();
1200 LLVM_DEBUG(llvm::dbgs() << ">>> tryConversionOperators: " << RD
->getName()
1202 ToType
.dump(llvm::dbgs(), RD
->getASTContext());
1203 llvm::dbgs() << '\n';);
1205 UserDefinedConversionSelector ConversionSet
{Check
};
1207 for (const NamedDecl
*Method
: RD
->getVisibleConversionFunctions()) {
1208 const auto *Con
= dyn_cast
<CXXConversionDecl
>(Method
);
1209 if (!Con
|| Con
->isExplicit())
1211 LLVM_DEBUG(llvm::dbgs() << "--- tryConversionOperators. Trying:\n";
1212 Con
->dump(llvm::dbgs()); llvm::dbgs() << '\n';);
1214 // Try to go from the result of conversion operator to the expected type,
1215 // without calculating another user-defined conversion.
1216 ConversionSet
.addConversion(Con
, Con
->getConversionType(), ToType
);
1219 if (std::optional
<UserDefinedConversionSelector::PreparedConversion
>
1220 SelectedConversion
= ConversionSet()) {
1221 QualType RecordType
{RD
->getTypeForDecl(), 0};
1223 ConversionSequence Result
{RecordType
, ToType
};
1224 // The conversion from the operator call's return type to ToType was
1225 // modelled as a "pre-conversion" in the operator call, but it is the
1226 // "post-conversion" from the point of view of the original conversion
1227 // we are modelling.
1228 Result
.AfterSecondStandard
= SelectedConversion
->Seq
.AfterFirstStandard
;
1230 ConversionSequence::UserDefinedConversionOperator ConvOp
;
1231 ConvOp
.Fun
= cast
<CXXConversionDecl
>(SelectedConversion
->ConversionFun
);
1232 ConvOp
.UserDefinedType
= RecordType
;
1233 ConvOp
.ConversionOperatorResultType
= ConvOp
.Fun
->getConversionType();
1234 Result
.setConversion(ConvOp
);
1236 LLVM_DEBUG(llvm::dbgs() << "<<< tryConversionOperators. Found result.\n");
1240 LLVM_DEBUG(llvm::dbgs() << "<<< tryConversionOperators. No conversion.\n");
1244 static std::optional
<ConversionSequence
>
1245 tryConvertingConstructors(const TheCheck
&Check
, QualType FromType
,
1246 const CXXRecordDecl
*RD
) {
1247 if (!RD
|| !RD
->isCompleteDefinition())
1249 RD
= RD
->getDefinition();
1251 LLVM_DEBUG(llvm::dbgs() << ">>> tryConveringConstructors: " << RD
->getName()
1253 FromType
.dump(llvm::dbgs(), RD
->getASTContext());
1254 llvm::dbgs() << '\n';);
1256 UserDefinedConversionSelector ConversionSet
{Check
};
1258 for (const CXXConstructorDecl
*Con
: RD
->ctors()) {
1259 if (Con
->isCopyOrMoveConstructor() ||
1260 !Con
->isConvertingConstructor(/* AllowExplicit =*/false))
1262 LLVM_DEBUG(llvm::dbgs() << "--- tryConvertingConstructors. Trying:\n";
1263 Con
->dump(llvm::dbgs()); llvm::dbgs() << '\n';);
1265 // Try to go from the original FromType to the converting constructor's
1266 // parameter type without another user-defined conversion.
1267 ConversionSet
.addConversion(Con
, FromType
, Con
->getParamDecl(0)->getType());
1270 if (std::optional
<UserDefinedConversionSelector::PreparedConversion
>
1271 SelectedConversion
= ConversionSet()) {
1272 QualType RecordType
{RD
->getTypeForDecl(), 0};
1274 ConversionSequence Result
{FromType
, RecordType
};
1275 Result
.AfterFirstStandard
= SelectedConversion
->Seq
.AfterFirstStandard
;
1277 ConversionSequence::UserDefinedConvertingConstructor Ctor
;
1278 Ctor
.Fun
= cast
<CXXConstructorDecl
>(SelectedConversion
->ConversionFun
);
1279 Ctor
.ConstructorParameterType
= Ctor
.Fun
->getParamDecl(0)->getType();
1280 Ctor
.UserDefinedType
= RecordType
;
1281 Result
.setConversion(Ctor
);
1283 LLVM_DEBUG(llvm::dbgs()
1284 << "<<< tryConvertingConstructors. Found result.\n");
1288 LLVM_DEBUG(llvm::dbgs() << "<<< tryConvertingConstructors. No conversion.\n");
1292 /// Returns whether an expression of LType can be used in an RType context, as
1293 /// per the implicit conversion rules.
1295 /// Note: the result of this operation, unlike that of calculateMixability, is
1296 /// **NOT** symmetric.
1298 approximateImplicitConversion(const TheCheck
&Check
, QualType LType
,
1299 QualType RType
, const ASTContext
&Ctx
,
1300 ImplicitConversionModellingMode ImplicitMode
) {
1301 LLVM_DEBUG(llvm::dbgs() << ">>> approximateImplicitConversion for LType:\n";
1302 LType
.dump(llvm::dbgs(), Ctx
); llvm::dbgs() << "\nand RType:\n";
1303 RType
.dump(llvm::dbgs(), Ctx
);
1304 llvm::dbgs() << "\nimplicit mode: "; switch (ImplicitMode
) {
1305 case ImplicitConversionModellingMode::None
:
1306 llvm::dbgs() << "None";
1308 case ImplicitConversionModellingMode::All
:
1309 llvm::dbgs() << "All";
1311 case ImplicitConversionModellingMode::OneWaySingleStandardOnly
:
1312 llvm::dbgs() << "OneWay, Single, STD Only";
1314 } llvm::dbgs() << '\n';);
1316 return {MixFlags::Trivial
, LType
};
1318 // An implicit conversion sequence consists of the following, in order:
1319 // * Maybe standard conversion sequence.
1320 // * Maybe user-defined conversion.
1321 // * Maybe standard conversion sequence.
1322 ConversionSequence ImplicitSeq
{LType
, RType
};
1323 QualType WorkType
= LType
;
1325 std::optional
<QualType
> AfterFirstStdConv
=
1326 approximateStandardConversionSequence(Check
, LType
, RType
, Ctx
);
1327 if (AfterFirstStdConv
) {
1328 LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Standard "
1329 "Pre-Conversion found!\n");
1330 ImplicitSeq
.AfterFirstStandard
= *AfterFirstStdConv
;
1331 WorkType
= ImplicitSeq
.AfterFirstStandard
;
1334 if (ImplicitMode
== ImplicitConversionModellingMode::OneWaySingleStandardOnly
)
1335 // If the caller only requested modelling of a standard conversion, bail.
1336 return {ImplicitSeq
.AfterFirstStandard
.isNull()
1338 : MixFlags::ImplicitConversion
,
1341 if (Ctx
.getLangOpts().CPlusPlus
) {
1342 bool FoundConversionOperator
= false, FoundConvertingCtor
= false;
1344 if (const auto *LRD
= WorkType
->getAsCXXRecordDecl()) {
1345 std::optional
<ConversionSequence
> ConversionOperatorResult
=
1346 tryConversionOperators(Check
, LRD
, RType
);
1347 if (ConversionOperatorResult
) {
1348 LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Found "
1349 "conversion operator.\n");
1350 ImplicitSeq
.update(*ConversionOperatorResult
);
1351 WorkType
= ImplicitSeq
.getTypeAfterUserDefinedConversion();
1352 FoundConversionOperator
= true;
1356 if (const auto *RRD
= RType
->getAsCXXRecordDecl()) {
1357 // Use the original "LType" here, and not WorkType, because the
1358 // conversion to the converting constructors' parameters will be
1359 // modelled in the recursive call.
1360 std::optional
<ConversionSequence
> ConvCtorResult
=
1361 tryConvertingConstructors(Check
, LType
, RRD
);
1362 if (ConvCtorResult
) {
1363 LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Found "
1364 "converting constructor.\n");
1365 ImplicitSeq
.update(*ConvCtorResult
);
1366 WorkType
= ImplicitSeq
.getTypeAfterUserDefinedConversion();
1367 FoundConvertingCtor
= true;
1371 if (FoundConversionOperator
&& FoundConvertingCtor
) {
1372 // If both an operator and a ctor matches, the sequence is ambiguous.
1373 LLVM_DEBUG(llvm::dbgs()
1374 << "<<< approximateImplicitConversion. Found both "
1375 "user-defined conversion kinds in the same sequence!\n");
1376 return {MixFlags::None
};
1380 // After the potential user-defined conversion, another standard conversion
1381 // sequence might exist.
1384 << "--- approximateImplicitConversion. Try to find post-conversion.\n");
1385 MixData SecondStdConv
= approximateImplicitConversion(
1386 Check
, WorkType
, RType
, Ctx
,
1387 ImplicitConversionModellingMode::OneWaySingleStandardOnly
);
1388 if (SecondStdConv
.indicatesMixability()) {
1389 LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Standard "
1390 "Post-Conversion found!\n");
1392 // The single-step modelling puts the modelled conversion into the "PreStd"
1393 // variable in the recursive call, but from the PoV of this function, it is
1394 // the post-conversion.
1395 ImplicitSeq
.AfterSecondStandard
=
1396 SecondStdConv
.Conversion
.AfterFirstStandard
;
1397 WorkType
= ImplicitSeq
.AfterSecondStandard
;
1401 LLVM_DEBUG(llvm::dbgs()
1402 << "<<< approximateImplicitConversion. Found a conversion.\n");
1403 return {MixFlags::ImplicitConversion
, ImplicitSeq
};
1407 llvm::dbgs() << "<<< approximateImplicitConversion. No match found.\n");
1408 return {MixFlags::None
};
1411 static MixableParameterRange
modelMixingRange(
1412 const TheCheck
&Check
, const FunctionDecl
*FD
, std::size_t StartIndex
,
1413 const filter::SimilarlyUsedParameterPairSuppressor
&UsageBasedSuppressor
) {
1414 std::size_t NumParams
= FD
->getNumParams();
1415 assert(StartIndex
< NumParams
&& "out of bounds for start");
1416 const ASTContext
&Ctx
= FD
->getASTContext();
1418 MixableParameterRange Ret
;
1419 // A parameter at index 'StartIndex' had been trivially "checked".
1420 Ret
.NumParamsChecked
= 1;
1422 for (std::size_t I
= StartIndex
+ 1; I
< NumParams
; ++I
) {
1423 const ParmVarDecl
*Ith
= FD
->getParamDecl(I
);
1424 StringRef ParamName
= Ith
->getName();
1425 LLVM_DEBUG(llvm::dbgs()
1426 << "Check param #" << I
<< " '" << ParamName
<< "'...\n");
1427 if (filter::isIgnoredParameter(Check
, Ith
)) {
1428 LLVM_DEBUG(llvm::dbgs() << "Param #" << I
<< " is ignored. Break!\n");
1432 StringRef PrevParamName
= FD
->getParamDecl(I
- 1)->getName();
1433 if (!ParamName
.empty() && !PrevParamName
.empty() &&
1434 filter::prefixSuffixCoverUnderThreshold(
1435 Check
.NamePrefixSuffixSilenceDissimilarityTreshold
, PrevParamName
,
1437 LLVM_DEBUG(llvm::dbgs() << "Parameter '" << ParamName
1438 << "' follows a pattern with previous parameter '"
1439 << PrevParamName
<< "'. Break!\n");
1443 // Now try to go forward and build the range of [Start, ..., I, I + 1, ...]
1444 // parameters that can be messed up at a call site.
1445 MixableParameterRange::MixVector MixesOfIth
;
1446 for (std::size_t J
= StartIndex
; J
< I
; ++J
) {
1447 const ParmVarDecl
*Jth
= FD
->getParamDecl(J
);
1448 LLVM_DEBUG(llvm::dbgs()
1449 << "Check mix of #" << J
<< " against #" << I
<< "...\n");
1451 if (isSimilarlyUsedParameter(UsageBasedSuppressor
, Ith
, Jth
)) {
1452 // Consider the two similarly used parameters to not be possible in a
1453 // mix-up at the user's request, if they enabled this heuristic.
1454 LLVM_DEBUG(llvm::dbgs() << "Parameters #" << I
<< " and #" << J
1455 << " deemed related, ignoring...\n");
1457 // If the parameter #I and #J mixes, then I is mixable with something
1458 // in the current range, so the range has to be broken and I not
1465 calculateMixability(Check
, Jth
->getType(), Ith
->getType(), Ctx
,
1466 Check
.ModelImplicitConversions
1467 ? ImplicitConversionModellingMode::All
1468 : ImplicitConversionModellingMode::None
)};
1469 LLVM_DEBUG(llvm::dbgs() << "Mix flags (raw) : "
1470 << formatMixFlags(M
.flags()) << '\n');
1472 LLVM_DEBUG(llvm::dbgs() << "Mix flags (after sanitize): "
1473 << formatMixFlags(M
.flags()) << '\n');
1475 assert(M
.flagsValid() && "All flags decayed!");
1478 MixesOfIth
.emplace_back(std::move(M
));
1481 if (MixesOfIth
.empty()) {
1482 // If there weren't any new mixes stored for Ith, the range is
1484 LLVM_DEBUG(llvm::dbgs()
1486 << " does not mix with any in the current range. Break!\n");
1490 Ret
.Mixes
.insert(Ret
.Mixes
.end(), MixesOfIth
.begin(), MixesOfIth
.end());
1491 ++Ret
.NumParamsChecked
; // Otherwise a new param was iterated.
1497 } // namespace model
1499 /// Matches DeclRefExprs and their ignorable wrappers to ParmVarDecls.
1500 AST_MATCHER_FUNCTION(ast_matchers::internal::Matcher
<Stmt
>, paramRefExpr
) {
1501 return expr(ignoringParenImpCasts(ignoringElidableConstructorCall(
1502 declRefExpr(to(parmVarDecl().bind("param"))))));
1507 /// Returns whether the parameter's name or the parameter's type's name is
1508 /// configured by the user to be ignored from analysis and diagnostic.
1509 static bool isIgnoredParameter(const TheCheck
&Check
, const ParmVarDecl
*Node
) {
1510 LLVM_DEBUG(llvm::dbgs() << "Checking if '" << Node
->getName()
1511 << "' is ignored.\n");
1513 if (!Node
->getIdentifier())
1514 return llvm::is_contained(Check
.IgnoredParameterNames
, "\"\"");
1516 StringRef NodeName
= Node
->getName();
1517 if (llvm::is_contained(Check
.IgnoredParameterNames
, NodeName
)) {
1518 LLVM_DEBUG(llvm::dbgs() << "\tName ignored.\n");
1522 StringRef NodeTypeName
= [Node
] {
1523 const ASTContext
&Ctx
= Node
->getASTContext();
1524 const SourceManager
&SM
= Ctx
.getSourceManager();
1525 SourceLocation B
= Node
->getTypeSpecStartLoc();
1526 SourceLocation E
= Node
->getTypeSpecEndLoc();
1529 LLVM_DEBUG(llvm::dbgs() << "\tType name code is '"
1530 << Lexer::getSourceText(
1531 CharSourceRange::getTokenRange(B
, E
), SM
, LO
)
1533 if (B
.isMacroID()) {
1534 LLVM_DEBUG(llvm::dbgs() << "\t\tBeginning is macro.\n");
1535 B
= SM
.getTopMacroCallerLoc(B
);
1537 if (E
.isMacroID()) {
1538 LLVM_DEBUG(llvm::dbgs() << "\t\tEnding is macro.\n");
1539 E
= Lexer::getLocForEndOfToken(SM
.getTopMacroCallerLoc(E
), 0, SM
, LO
);
1541 LLVM_DEBUG(llvm::dbgs() << "\tType name code is '"
1542 << Lexer::getSourceText(
1543 CharSourceRange::getTokenRange(B
, E
), SM
, LO
)
1546 return Lexer::getSourceText(CharSourceRange::getTokenRange(B
, E
), SM
, LO
);
1549 LLVM_DEBUG(llvm::dbgs() << "\tType name is '" << NodeTypeName
<< "'\n");
1550 if (!NodeTypeName
.empty()) {
1551 if (llvm::any_of(Check
.IgnoredParameterTypeSuffixes
,
1552 [NodeTypeName
](StringRef E
) {
1553 return !E
.empty() && NodeTypeName
.endswith(E
);
1555 LLVM_DEBUG(llvm::dbgs() << "\tType suffix ignored.\n");
1563 /// This namespace contains the implementations for the suppression of
1564 /// diagnostics from similarly-used ("related") parameters.
1565 namespace relatedness_heuristic
{
1567 static constexpr std::size_t SmallDataStructureSize
= 4;
1569 template <typename T
, std::size_t N
= SmallDataStructureSize
>
1570 using ParamToSmallSetMap
=
1571 llvm::DenseMap
<const ParmVarDecl
*, llvm::SmallSet
<T
, N
>>;
1573 /// Returns whether the sets mapped to the two elements in the map have at
1574 /// least one element in common.
1575 template <typename MapTy
, typename ElemTy
>
1576 bool lazyMapOfSetsIntersectionExists(const MapTy
&Map
, const ElemTy
&E1
,
1578 auto E1Iterator
= Map
.find(E1
);
1579 auto E2Iterator
= Map
.find(E2
);
1580 if (E1Iterator
== Map
.end() || E2Iterator
== Map
.end())
1583 for (const auto &E1SetElem
: E1Iterator
->second
)
1584 if (E2Iterator
->second
.contains(E1SetElem
))
1590 /// Implements the heuristic that marks two parameters related if there is
1591 /// a usage for both in the same strict expression subtree. A strict
1592 /// expression subtree is a tree which only includes Expr nodes, i.e. no
1593 /// Stmts and no Decls.
1594 class AppearsInSameExpr
: public RecursiveASTVisitor
<AppearsInSameExpr
> {
1595 using Base
= RecursiveASTVisitor
<AppearsInSameExpr
>;
1597 const FunctionDecl
*FD
;
1598 const Expr
*CurrentExprOnlyTreeRoot
= nullptr;
1599 llvm::DenseMap
<const ParmVarDecl
*,
1600 llvm::SmallPtrSet
<const Expr
*, SmallDataStructureSize
>>
1601 ParentExprsForParamRefs
;
1604 void setup(const FunctionDecl
*FD
) {
1606 TraverseFunctionDecl(const_cast<FunctionDecl
*>(FD
));
1609 bool operator()(const ParmVarDecl
*Param1
, const ParmVarDecl
*Param2
) const {
1610 return lazyMapOfSetsIntersectionExists(ParentExprsForParamRefs
, Param1
,
1614 bool TraverseDecl(Decl
*D
) {
1615 CurrentExprOnlyTreeRoot
= nullptr;
1616 return Base::TraverseDecl(D
);
1619 bool TraverseStmt(Stmt
*S
, DataRecursionQueue
*Queue
= nullptr) {
1620 if (auto *E
= dyn_cast_or_null
<Expr
>(S
)) {
1621 bool RootSetInCurrentStackFrame
= false;
1622 if (!CurrentExprOnlyTreeRoot
) {
1623 CurrentExprOnlyTreeRoot
= E
;
1624 RootSetInCurrentStackFrame
= true;
1627 bool Ret
= Base::TraverseStmt(S
);
1629 if (RootSetInCurrentStackFrame
)
1630 CurrentExprOnlyTreeRoot
= nullptr;
1635 // A Stmt breaks the strictly Expr subtree.
1636 CurrentExprOnlyTreeRoot
= nullptr;
1637 return Base::TraverseStmt(S
);
1640 bool VisitDeclRefExpr(DeclRefExpr
*DRE
) {
1641 if (!CurrentExprOnlyTreeRoot
)
1644 if (auto *PVD
= dyn_cast
<ParmVarDecl
>(DRE
->getDecl()))
1645 if (llvm::find(FD
->parameters(), PVD
))
1646 ParentExprsForParamRefs
[PVD
].insert(CurrentExprOnlyTreeRoot
);
1652 /// Implements the heuristic that marks two parameters related if there are
1653 /// two separate calls to the same function (overload) and the parameters are
1654 /// passed to the same index in both calls, i.e f(a, b) and f(a, c) passes
1655 /// b and c to the same index (2) of f(), marking them related.
1656 class PassedToSameFunction
{
1657 ParamToSmallSetMap
<std::pair
<const FunctionDecl
*, unsigned>> TargetParams
;
1660 void setup(const FunctionDecl
*FD
) {
1661 auto ParamsAsArgsInFnCalls
=
1662 match(functionDecl(forEachDescendant(
1663 callExpr(forEachArgumentWithParam(
1664 paramRefExpr(), parmVarDecl().bind("passed-to")))
1665 .bind("call-expr"))),
1666 *FD
, FD
->getASTContext());
1667 for (const auto &Match
: ParamsAsArgsInFnCalls
) {
1668 const auto *PassedParamOfThisFn
= Match
.getNodeAs
<ParmVarDecl
>("param");
1669 const auto *CE
= Match
.getNodeAs
<CallExpr
>("call-expr");
1670 const auto *PassedToParam
= Match
.getNodeAs
<ParmVarDecl
>("passed-to");
1671 assert(PassedParamOfThisFn
&& CE
&& PassedToParam
);
1673 const FunctionDecl
*CalledFn
= CE
->getDirectCallee();
1677 std::optional
<unsigned> TargetIdx
;
1678 unsigned NumFnParams
= CalledFn
->getNumParams();
1679 for (unsigned Idx
= 0; Idx
< NumFnParams
; ++Idx
)
1680 if (CalledFn
->getParamDecl(Idx
) == PassedToParam
)
1681 TargetIdx
.emplace(Idx
);
1683 assert(TargetIdx
&& "Matched, but didn't find index?");
1684 TargetParams
[PassedParamOfThisFn
].insert(
1685 {CalledFn
->getCanonicalDecl(), *TargetIdx
});
1689 bool operator()(const ParmVarDecl
*Param1
, const ParmVarDecl
*Param2
) const {
1690 return lazyMapOfSetsIntersectionExists(TargetParams
, Param1
, Param2
);
1694 /// Implements the heuristic that marks two parameters related if the same
1695 /// member is accessed (referred to) inside the current function's body.
1696 class AccessedSameMemberOf
{
1697 ParamToSmallSetMap
<const Decl
*> AccessedMembers
;
1700 void setup(const FunctionDecl
*FD
) {
1701 auto MembersCalledOnParams
= match(
1702 functionDecl(forEachDescendant(
1703 memberExpr(hasObjectExpression(paramRefExpr())).bind("mem-expr"))),
1704 *FD
, FD
->getASTContext());
1706 for (const auto &Match
: MembersCalledOnParams
) {
1707 const auto *AccessedParam
= Match
.getNodeAs
<ParmVarDecl
>("param");
1708 const auto *ME
= Match
.getNodeAs
<MemberExpr
>("mem-expr");
1709 assert(AccessedParam
&& ME
);
1710 AccessedMembers
[AccessedParam
].insert(
1711 ME
->getMemberDecl()->getCanonicalDecl());
1715 bool operator()(const ParmVarDecl
*Param1
, const ParmVarDecl
*Param2
) const {
1716 return lazyMapOfSetsIntersectionExists(AccessedMembers
, Param1
, Param2
);
1720 /// Implements the heuristic that marks two parameters related if different
1721 /// ReturnStmts return them from the function.
1723 llvm::SmallVector
<const ParmVarDecl
*, SmallDataStructureSize
> ReturnedParams
;
1726 void setup(const FunctionDecl
*FD
) {
1727 // TODO: Handle co_return.
1728 auto ParamReturns
= match(functionDecl(forEachDescendant(
1729 returnStmt(hasReturnValue(paramRefExpr())))),
1730 *FD
, FD
->getASTContext());
1731 for (const auto &Match
: ParamReturns
) {
1732 const auto *ReturnedParam
= Match
.getNodeAs
<ParmVarDecl
>("param");
1733 assert(ReturnedParam
);
1735 if (find(FD
->parameters(), ReturnedParam
) == FD
->param_end())
1736 // Inside the subtree of a FunctionDecl there might be ReturnStmts of
1737 // a parameter that isn't the parameter of the function, e.g. in the
1741 ReturnedParams
.emplace_back(ReturnedParam
);
1745 bool operator()(const ParmVarDecl
*Param1
, const ParmVarDecl
*Param2
) const {
1746 return llvm::is_contained(ReturnedParams
, Param1
) &&
1747 llvm::is_contained(ReturnedParams
, Param2
);
1751 } // namespace relatedness_heuristic
1753 /// Helper class that is used to detect if two parameters of the same function
1754 /// are used in a similar fashion, to suppress the result.
1755 class SimilarlyUsedParameterPairSuppressor
{
1757 relatedness_heuristic::AppearsInSameExpr SameExpr
;
1758 relatedness_heuristic::PassedToSameFunction PassToFun
;
1759 relatedness_heuristic::AccessedSameMemberOf SameMember
;
1760 relatedness_heuristic::Returned Returns
;
1763 SimilarlyUsedParameterPairSuppressor(const FunctionDecl
*FD
, bool Enable
)
1769 PassToFun
.setup(FD
);
1770 SameMember
.setup(FD
);
1774 /// Returns whether the specified two parameters are deemed similarly used
1775 /// or related by the heuristics.
1776 bool operator()(const ParmVarDecl
*Param1
, const ParmVarDecl
*Param2
) const {
1780 LLVM_DEBUG(llvm::dbgs()
1781 << "::: Matching similar usage / relatedness heuristic...\n");
1783 if (SameExpr(Param1
, Param2
)) {
1784 LLVM_DEBUG(llvm::dbgs() << "::: Used in the same expression.\n");
1788 if (PassToFun(Param1
, Param2
)) {
1789 LLVM_DEBUG(llvm::dbgs()
1790 << "::: Passed to same function in different calls.\n");
1794 if (SameMember(Param1
, Param2
)) {
1795 LLVM_DEBUG(llvm::dbgs()
1796 << "::: Same member field access or method called.\n");
1800 if (Returns(Param1
, Param2
)) {
1801 LLVM_DEBUG(llvm::dbgs() << "::: Both parameter returned.\n");
1805 LLVM_DEBUG(llvm::dbgs() << "::: None.\n");
1810 // (This function hoists the call to operator() of the wrapper, so we do not
1811 // need to define the previous class at the top of the file.)
1813 isSimilarlyUsedParameter(const SimilarlyUsedParameterPairSuppressor
&Suppressor
,
1814 const ParmVarDecl
*Param1
, const ParmVarDecl
*Param2
) {
1815 return Suppressor(Param1
, Param2
);
1818 static void padStringAtEnd(SmallVectorImpl
<char> &Str
, std::size_t ToLen
) {
1819 while (Str
.size() < ToLen
)
1820 Str
.emplace_back('\0');
1823 static void padStringAtBegin(SmallVectorImpl
<char> &Str
, std::size_t ToLen
) {
1824 while (Str
.size() < ToLen
)
1825 Str
.insert(Str
.begin(), '\0');
1828 static bool isCommonPrefixWithoutSomeCharacters(std::size_t N
, StringRef S1
,
1830 assert(S1
.size() >= N
&& S2
.size() >= N
);
1831 StringRef S1Prefix
= S1
.take_front(S1
.size() - N
),
1832 S2Prefix
= S2
.take_front(S2
.size() - N
);
1833 return S1Prefix
== S2Prefix
&& !S1Prefix
.empty();
1836 static bool isCommonSuffixWithoutSomeCharacters(std::size_t N
, StringRef S1
,
1838 assert(S1
.size() >= N
&& S2
.size() >= N
);
1839 StringRef S1Suffix
= S1
.take_back(S1
.size() - N
),
1840 S2Suffix
= S2
.take_back(S2
.size() - N
);
1841 return S1Suffix
== S2Suffix
&& !S1Suffix
.empty();
1844 /// Returns whether the two strings are prefixes or suffixes of each other with
1845 /// at most Threshold characters differing on the non-common end.
1846 static bool prefixSuffixCoverUnderThreshold(std::size_t Threshold
,
1847 StringRef Str1
, StringRef Str2
) {
1851 // Pad the two strings to the longer length.
1852 std::size_t BiggerLength
= std::max(Str1
.size(), Str2
.size());
1854 if (BiggerLength
<= Threshold
)
1855 // If the length of the strings is still smaller than the threshold, they
1856 // would be covered by an empty prefix/suffix with the rest differing.
1857 // (E.g. "A" and "X" with Threshold = 1 would mean we think they are
1858 // similar and do not warn about them, which is a too eager assumption.)
1861 SmallString
<32> S1PadE
{Str1
}, S2PadE
{Str2
};
1862 padStringAtEnd(S1PadE
, BiggerLength
);
1863 padStringAtEnd(S2PadE
, BiggerLength
);
1865 if (isCommonPrefixWithoutSomeCharacters(
1866 Threshold
, StringRef
{S1PadE
.begin(), BiggerLength
},
1867 StringRef
{S2PadE
.begin(), BiggerLength
}))
1870 SmallString
<32> S1PadB
{Str1
}, S2PadB
{Str2
};
1871 padStringAtBegin(S1PadB
, BiggerLength
);
1872 padStringAtBegin(S2PadB
, BiggerLength
);
1874 if (isCommonSuffixWithoutSomeCharacters(
1875 Threshold
, StringRef
{S1PadB
.begin(), BiggerLength
},
1876 StringRef
{S2PadB
.begin(), BiggerLength
}))
1882 } // namespace filter
1884 /// Matches functions that have at least the specified amount of parameters.
1885 AST_MATCHER_P(FunctionDecl
, parameterCountGE
, unsigned, N
) {
1886 return Node
.getNumParams() >= N
;
1889 /// Matches *any* overloaded unary and binary operators.
1890 AST_MATCHER(FunctionDecl
, isOverloadedUnaryOrBinaryOperator
) {
1891 switch (Node
.getOverloadedOperator()) {
1896 case OO_Array_Delete
:
1897 case OO_Conditional
:
1902 return Node
.getNumParams() <= 2;
1906 /// Returns the DefaultMinimumLength if the Value of requested minimum length
1907 /// is less than 2. Minimum lengths of 0 or 1 are not accepted.
1908 static inline unsigned clampMinimumLength(const unsigned Value
) {
1909 return Value
< 2 ? DefaultMinimumLength
: Value
;
1912 // FIXME: Maybe unneeded, getNameForDiagnostic() is expected to change to return
1913 // a crafted location when the node itself is unnamed. (See D84658, D85033.)
1914 /// Returns the diagnostic-friendly name of the node, or empty string.
1915 static SmallString
<64> getName(const NamedDecl
*ND
) {
1916 SmallString
<64> Name
;
1917 llvm::raw_svector_ostream OS
{Name
};
1918 ND
->getNameForDiagnostic(OS
, ND
->getASTContext().getPrintingPolicy(), false);
1922 /// Returns the diagnostic-friendly name of the node, or a constant value.
1923 static SmallString
<64> getNameOrUnnamed(const NamedDecl
*ND
) {
1924 auto Name
= getName(ND
);
1930 /// Returns whether a particular Mix between two parameters should have the
1931 /// types involved diagnosed to the user. This is only a flag check.
1932 static inline bool needsToPrintTypeInDiagnostic(const model::Mix
&M
) {
1933 using namespace model
;
1934 return static_cast<bool>(
1936 (MixFlags::TypeAlias
| MixFlags::ReferenceBind
| MixFlags::Qualifiers
));
1939 /// Returns whether a particular Mix between the two parameters should have
1940 /// implicit conversions elaborated.
1941 static inline bool needsToElaborateImplicitConversion(const model::Mix
&M
) {
1942 return hasFlag(M
.flags(), model::MixFlags::ImplicitConversion
);
1947 /// This class formats a conversion sequence into a "Ty1 -> Ty2 -> Ty3" line
1948 /// that can be used in diagnostics.
1949 struct FormattedConversionSequence
{
1950 std::string DiagnosticText
;
1952 /// The formatted sequence is trivial if it is "Ty1 -> Ty2", but Ty1 and
1953 /// Ty2 are the types that are shown in the code. A trivial diagnostic
1954 /// does not need to be printed.
1955 bool Trivial
= true;
1957 FormattedConversionSequence(const PrintingPolicy
&PP
,
1958 StringRef StartTypeAsDiagnosed
,
1959 const model::ConversionSequence
&Conv
,
1960 StringRef DestinationTypeAsDiagnosed
) {
1961 llvm::raw_string_ostream OS
{DiagnosticText
};
1963 // Print the type name as it is printed in other places in the diagnostic.
1964 OS
<< '\'' << StartTypeAsDiagnosed
<< '\'';
1965 std::string LastAddedType
= StartTypeAsDiagnosed
.str();
1966 std::size_t NumElementsAdded
= 1;
1968 // However, the parameter's defined type might not be what the implicit
1969 // conversion started with, e.g. if a typedef is found to convert.
1970 std::string SeqBeginTypeStr
= Conv
.Begin
.getAsString(PP
);
1971 std::string SeqEndTypeStr
= Conv
.End
.getAsString(PP
);
1972 if (StartTypeAsDiagnosed
!= SeqBeginTypeStr
) {
1973 OS
<< " (as '" << SeqBeginTypeStr
<< "')";
1974 LastAddedType
= SeqBeginTypeStr
;
1978 auto AddType
= [&](StringRef ToAdd
) {
1979 if (LastAddedType
!= ToAdd
&& ToAdd
!= SeqEndTypeStr
) {
1980 OS
<< " -> '" << ToAdd
<< "'";
1981 LastAddedType
= ToAdd
.str();
1985 for (QualType InvolvedType
: Conv
.getInvolvedTypesInSequence())
1986 // Print every type that's unique in the sequence into the diagnosis.
1987 AddType(InvolvedType
.getAsString(PP
));
1989 if (LastAddedType
!= DestinationTypeAsDiagnosed
) {
1990 OS
<< " -> '" << DestinationTypeAsDiagnosed
<< "'";
1991 LastAddedType
= DestinationTypeAsDiagnosed
.str();
1995 // Same reasoning as with the Begin, e.g. if the converted-to type is a
1996 // typedef, it will not be the same inside the conversion sequence (where
1997 // the model already tore off typedefs) as in the code.
1998 if (DestinationTypeAsDiagnosed
!= SeqEndTypeStr
) {
1999 OS
<< " (as '" << SeqEndTypeStr
<< "')";
2000 LastAddedType
= SeqEndTypeStr
;
2004 if (Trivial
&& NumElementsAdded
> 2)
2005 // If the thing is still marked trivial but we have more than the
2006 // from and to types added, it should not be trivial, and elaborated
2007 // when printing the diagnostic.
2012 /// Retains the elements called with and returns whether the call is done with
2014 template <typename E
, std::size_t N
> class InsertOnce
{
2015 llvm::SmallSet
<E
, N
> CalledWith
;
2018 bool operator()(E El
) { return CalledWith
.insert(std::move(El
)).second
; }
2020 bool calledWith(const E
&El
) const { return CalledWith
.contains(El
); }
2023 struct SwappedEqualQualTypePair
{
2024 QualType LHSType
, RHSType
;
2026 bool operator==(const SwappedEqualQualTypePair
&Other
) const {
2027 return (LHSType
== Other
.LHSType
&& RHSType
== Other
.RHSType
) ||
2028 (LHSType
== Other
.RHSType
&& RHSType
== Other
.LHSType
);
2031 bool operator<(const SwappedEqualQualTypePair
&Other
) const {
2032 return LHSType
< Other
.LHSType
&& RHSType
< Other
.RHSType
;
2036 struct TypeAliasDiagnosticTuple
{
2037 QualType LHSType
, RHSType
, CommonType
;
2039 bool operator==(const TypeAliasDiagnosticTuple
&Other
) const {
2040 return CommonType
== Other
.CommonType
&&
2041 ((LHSType
== Other
.LHSType
&& RHSType
== Other
.RHSType
) ||
2042 (LHSType
== Other
.RHSType
&& RHSType
== Other
.LHSType
));
2045 bool operator<(const TypeAliasDiagnosticTuple
&Other
) const {
2046 return CommonType
< Other
.CommonType
&& LHSType
< Other
.LHSType
&&
2047 RHSType
< Other
.RHSType
;
2051 /// Helper class to only emit a diagnostic related to MixFlags::TypeAlias once.
2052 class UniqueTypeAliasDiagnosticHelper
2053 : public InsertOnce
<TypeAliasDiagnosticTuple
, 8> {
2054 using Base
= InsertOnce
<TypeAliasDiagnosticTuple
, 8>;
2057 /// Returns whether the diagnostic for LHSType and RHSType which are both
2058 /// referring to CommonType being the same has not been emitted already.
2059 bool operator()(QualType LHSType
, QualType RHSType
, QualType CommonType
) {
2060 if (CommonType
.isNull() || CommonType
== LHSType
|| CommonType
== RHSType
)
2061 return Base::operator()({LHSType
, RHSType
, {}});
2063 TypeAliasDiagnosticTuple ThreeTuple
{LHSType
, RHSType
, CommonType
};
2064 if (!Base::operator()(ThreeTuple
))
2067 bool AlreadySaidLHSAndCommonIsSame
= calledWith({LHSType
, CommonType
, {}});
2068 bool AlreadySaidRHSAndCommonIsSame
= calledWith({RHSType
, CommonType
, {}});
2069 if (AlreadySaidLHSAndCommonIsSame
&& AlreadySaidRHSAndCommonIsSame
) {
2070 // "SomeInt == int" && "SomeOtherInt == int" => "Common(SomeInt,
2071 // SomeOtherInt) == int", no need to diagnose it. Save the 3-tuple only
2072 // for shortcut if it ever appears again.
2082 EasilySwappableParametersCheck::EasilySwappableParametersCheck(
2083 StringRef Name
, ClangTidyContext
*Context
)
2084 : ClangTidyCheck(Name
, Context
),
2085 MinimumLength(clampMinimumLength(
2086 Options
.get("MinimumLength", DefaultMinimumLength
))),
2087 IgnoredParameterNames(optutils::parseStringList(
2088 Options
.get("IgnoredParameterNames", DefaultIgnoredParameterNames
))),
2089 IgnoredParameterTypeSuffixes(optutils::parseStringList(
2090 Options
.get("IgnoredParameterTypeSuffixes",
2091 DefaultIgnoredParameterTypeSuffixes
))),
2092 QualifiersMix(Options
.get("QualifiersMix", DefaultQualifiersMix
)),
2093 ModelImplicitConversions(Options
.get("ModelImplicitConversions",
2094 DefaultModelImplicitConversions
)),
2095 SuppressParametersUsedTogether(
2096 Options
.get("SuppressParametersUsedTogether",
2097 DefaultSuppressParametersUsedTogether
)),
2098 NamePrefixSuffixSilenceDissimilarityTreshold(
2099 Options
.get("NamePrefixSuffixSilenceDissimilarityTreshold",
2100 DefaultNamePrefixSuffixSilenceDissimilarityTreshold
)) {}
2102 void EasilySwappableParametersCheck::storeOptions(
2103 ClangTidyOptions::OptionMap
&Opts
) {
2104 Options
.store(Opts
, "MinimumLength", MinimumLength
);
2105 Options
.store(Opts
, "IgnoredParameterNames",
2106 optutils::serializeStringList(IgnoredParameterNames
));
2107 Options
.store(Opts
, "IgnoredParameterTypeSuffixes",
2108 optutils::serializeStringList(IgnoredParameterTypeSuffixes
));
2109 Options
.store(Opts
, "QualifiersMix", QualifiersMix
);
2110 Options
.store(Opts
, "ModelImplicitConversions", ModelImplicitConversions
);
2111 Options
.store(Opts
, "SuppressParametersUsedTogether",
2112 SuppressParametersUsedTogether
);
2113 Options
.store(Opts
, "NamePrefixSuffixSilenceDissimilarityTreshold",
2114 NamePrefixSuffixSilenceDissimilarityTreshold
);
2117 void EasilySwappableParametersCheck::registerMatchers(MatchFinder
*Finder
) {
2118 const auto BaseConstraints
= functionDecl(
2119 // Only report for definition nodes, as fixing the issues reported
2120 // requires the user to be able to change code.
2121 isDefinition(), parameterCountGE(MinimumLength
),
2122 unless(isOverloadedUnaryOrBinaryOperator()));
2125 functionDecl(BaseConstraints
,
2126 unless(ast_matchers::isTemplateInstantiation()))
2130 functionDecl(BaseConstraints
, isExplicitTemplateSpecialization())
2135 void EasilySwappableParametersCheck::check(
2136 const MatchFinder::MatchResult
&Result
) {
2137 using namespace model
;
2138 using namespace filter
;
2140 const auto *FD
= Result
.Nodes
.getNodeAs
<FunctionDecl
>("func");
2143 const PrintingPolicy
&PP
= FD
->getASTContext().getPrintingPolicy();
2144 std::size_t NumParams
= FD
->getNumParams();
2145 std::size_t MixableRangeStartIndex
= 0;
2147 // Spawn one suppressor and if the user requested, gather information from
2148 // the AST for the parameters' usages.
2149 filter::SimilarlyUsedParameterPairSuppressor UsageBasedSuppressor
{
2150 FD
, SuppressParametersUsedTogether
};
2152 LLVM_DEBUG(llvm::dbgs() << "Begin analysis of " << getName(FD
) << " with "
2153 << NumParams
<< " parameters...\n");
2154 while (MixableRangeStartIndex
< NumParams
) {
2155 if (isIgnoredParameter(*this, FD
->getParamDecl(MixableRangeStartIndex
))) {
2156 LLVM_DEBUG(llvm::dbgs()
2157 << "Parameter #" << MixableRangeStartIndex
<< " ignored.\n");
2158 ++MixableRangeStartIndex
;
2162 MixableParameterRange R
= modelMixingRange(
2163 *this, FD
, MixableRangeStartIndex
, UsageBasedSuppressor
);
2164 assert(R
.NumParamsChecked
> 0 && "Ensure forward progress!");
2165 MixableRangeStartIndex
+= R
.NumParamsChecked
;
2166 if (R
.NumParamsChecked
< MinimumLength
) {
2167 LLVM_DEBUG(llvm::dbgs() << "Ignoring range of " << R
.NumParamsChecked
2168 << " lower than limit.\n");
2172 bool NeedsAnyTypeNote
= llvm::any_of(R
.Mixes
, needsToPrintTypeInDiagnostic
);
2173 bool HasAnyImplicits
=
2174 llvm::any_of(R
.Mixes
, needsToElaborateImplicitConversion
);
2175 const ParmVarDecl
*First
= R
.getFirstParam(), *Last
= R
.getLastParam();
2176 std::string FirstParamTypeAsWritten
= First
->getType().getAsString(PP
);
2180 if (HasAnyImplicits
)
2181 DiagText
= "%0 adjacent parameters of %1 of convertible types are "
2182 "easily swapped by mistake";
2183 else if (NeedsAnyTypeNote
)
2184 DiagText
= "%0 adjacent parameters of %1 of similar type are easily "
2185 "swapped by mistake";
2187 DiagText
= "%0 adjacent parameters of %1 of similar type ('%2') are "
2188 "easily swapped by mistake";
2190 auto Diag
= diag(First
->getOuterLocStart(), DiagText
)
2191 << static_cast<unsigned>(R
.NumParamsChecked
) << FD
;
2192 if (!NeedsAnyTypeNote
)
2193 Diag
<< FirstParamTypeAsWritten
;
2195 CharSourceRange HighlightRange
= CharSourceRange::getTokenRange(
2196 First
->getBeginLoc(), Last
->getEndLoc());
2197 Diag
<< HighlightRange
;
2200 // There is a chance that the previous highlight did not succeed, e.g. when
2201 // the two parameters are on different lines. For clarity, show the user
2202 // the involved variable explicitly.
2203 diag(First
->getLocation(), "the first parameter in the range is '%0'",
2204 DiagnosticIDs::Note
)
2205 << getNameOrUnnamed(First
)
2206 << CharSourceRange::getTokenRange(First
->getLocation(),
2207 First
->getLocation());
2208 diag(Last
->getLocation(), "the last parameter in the range is '%0'",
2209 DiagnosticIDs::Note
)
2210 << getNameOrUnnamed(Last
)
2211 << CharSourceRange::getTokenRange(Last
->getLocation(),
2212 Last
->getLocation());
2214 // Helper classes to silence elaborative diagnostic notes that would be
2216 UniqueTypeAliasDiagnosticHelper UniqueTypeAlias
;
2217 InsertOnce
<SwappedEqualQualTypePair
, 8> UniqueBindPower
;
2218 InsertOnce
<SwappedEqualQualTypePair
, 8> UniqueImplicitConversion
;
2220 for (const model::Mix
&M
: R
.Mixes
) {
2221 assert(M
.mixable() && "Sentinel or false mix in result.");
2222 if (!needsToPrintTypeInDiagnostic(M
) &&
2223 !needsToElaborateImplicitConversion(M
))
2226 // Typedefs might result in the type of the variable needing to be
2227 // emitted to a note diagnostic, so prepare it.
2228 const ParmVarDecl
*LVar
= M
.First
;
2229 const ParmVarDecl
*RVar
= M
.Second
;
2230 QualType LType
= LVar
->getType();
2231 QualType RType
= RVar
->getType();
2232 QualType CommonType
= M
.commonUnderlyingType();
2233 std::string LTypeStr
= LType
.getAsString(PP
);
2234 std::string RTypeStr
= RType
.getAsString(PP
);
2235 std::string CommonTypeStr
= CommonType
.getAsString(PP
);
2237 if (hasFlag(M
.flags(), MixFlags::TypeAlias
) &&
2238 UniqueTypeAlias(LType
, RType
, CommonType
)) {
2240 bool ExplicitlyPrintCommonType
= false;
2241 if (LTypeStr
== CommonTypeStr
|| RTypeStr
== CommonTypeStr
) {
2242 if (hasFlag(M
.flags(), MixFlags::Qualifiers
))
2243 DiagText
= "after resolving type aliases, '%0' and '%1' share a "
2247 "after resolving type aliases, '%0' and '%1' are the same";
2248 } else if (!CommonType
.isNull()) {
2249 DiagText
= "after resolving type aliases, the common type of '%0' "
2251 ExplicitlyPrintCommonType
= true;
2255 diag(LVar
->getOuterLocStart(), DiagText
, DiagnosticIDs::Note
)
2256 << LTypeStr
<< RTypeStr
;
2257 if (ExplicitlyPrintCommonType
)
2258 Diag
<< CommonTypeStr
;
2261 if ((hasFlag(M
.flags(), MixFlags::ReferenceBind
) ||
2262 hasFlag(M
.flags(), MixFlags::Qualifiers
)) &&
2263 UniqueBindPower({LType
, RType
})) {
2264 StringRef DiagText
= "'%0' and '%1' parameters accept and bind the "
2265 "same kind of values";
2266 diag(RVar
->getOuterLocStart(), DiagText
, DiagnosticIDs::Note
)
2267 << LTypeStr
<< RTypeStr
;
2270 if (needsToElaborateImplicitConversion(M
) &&
2271 UniqueImplicitConversion({LType
, RType
})) {
2272 const model::ConversionSequence
<R
=
2273 M
.leftToRightConversionSequence();
2274 const model::ConversionSequence
&RTL
=
2275 M
.rightToLeftConversionSequence();
2276 FormattedConversionSequence LTRFmt
{PP
, LTypeStr
, LTR
, RTypeStr
};
2277 FormattedConversionSequence RTLFmt
{PP
, RTypeStr
, RTL
, LTypeStr
};
2279 StringRef DiagText
= "'%0' and '%1' may be implicitly converted";
2280 if (!LTRFmt
.Trivial
|| !RTLFmt
.Trivial
)
2281 DiagText
= "'%0' and '%1' may be implicitly converted: %2, %3";
2285 diag(RVar
->getOuterLocStart(), DiagText
, DiagnosticIDs::Note
)
2286 << LTypeStr
<< RTypeStr
;
2288 if (!LTRFmt
.Trivial
|| !RTLFmt
.Trivial
)
2289 Diag
<< LTRFmt
.DiagnosticText
<< RTLFmt
.DiagnosticText
;
2292 StringRef ConversionFunctionDiagText
=
2293 "the implicit conversion involves the "
2294 "%select{|converting constructor|conversion operator}0 "
2296 if (const FunctionDecl
*LFD
= LTR
.getUserDefinedConversionFunction())
2297 diag(LFD
->getLocation(), ConversionFunctionDiagText
,
2298 DiagnosticIDs::Note
)
2299 << static_cast<unsigned>(LTR
.UDConvKind
)
2300 << LTR
.getUserDefinedConversionHighlight();
2301 if (const FunctionDecl
*RFD
= RTL
.getUserDefinedConversionFunction())
2302 diag(RFD
->getLocation(), ConversionFunctionDiagText
,
2303 DiagnosticIDs::Note
)
2304 << static_cast<unsigned>(RTL
.UDConvKind
)
2305 << RTL
.getUserDefinedConversionHighlight();
2311 } // namespace clang::tidy::bugprone