1 // polynomial for approximating e^x
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 deg = 5; // poly degree
8 N = 128; // table entries
9 b = log(2)/(2*N); // interval
10 b = b + b*0x1p-16; // increase interval for non-nearest rounding (TOINT_NARROW)
13 // find polynomial with minimal abs error
15 // return p that minimizes |exp(x) - poly(x) - x^d*p(x)|
16 approx = proc(poly,d) {
17 return remez(exp(x)-poly(x), deg-d, [a;b], x^d, 1e-10);
20 // first 2 coeffs are fixed, iteratively find optimal double prec coeffs
22 for i from 2 to deg do {
23 p = roundcoefficients(approx(poly,i), [|D ...|]);
24 poly = poly + x^i*coeff(p,0);
27 display = hexadecimal;
28 print("rel error:", accurateinfnorm(1-poly(x)/exp(x), [a;b], 30));
29 print("abs error:", accurateinfnorm(exp(x)-poly(x), [a;b], 30));
30 print("in [",a,b,"]");
31 // double interval error for non-nearest rounding
32 print("rel2 error:", accurateinfnorm(1-poly(x)/exp(x), [2*a;2*b], 30));
33 print("abs2 error:", accurateinfnorm(exp(x)-poly(x), [2*a;2*b], 30));
34 print("in [",2*a,2*b,"]");
36 for i from 0 to deg do coeff(poly,i);