[lld][WebAssembly] Perform data relocations during start function
[llvm-project.git] / lldb / source / Symbol / DWARFCallFrameInfo.cpp
blobf0dce8f4793a145ec5b2be377d5fd2ff8c23d0d2
1 //===-- DWARFCallFrameInfo.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "lldb/Symbol/DWARFCallFrameInfo.h"
10 #include "lldb/Core/Module.h"
11 #include "lldb/Core/Section.h"
12 #include "lldb/Core/dwarf.h"
13 #include "lldb/Host/Host.h"
14 #include "lldb/Symbol/ObjectFile.h"
15 #include "lldb/Symbol/UnwindPlan.h"
16 #include "lldb/Target/RegisterContext.h"
17 #include "lldb/Target/Thread.h"
18 #include "lldb/Utility/ArchSpec.h"
19 #include "lldb/Utility/Log.h"
20 #include "lldb/Utility/Timer.h"
21 #include <list>
22 #include <cstring>
24 using namespace lldb;
25 using namespace lldb_private;
27 // GetDwarfEHPtr
29 // Used for calls when the value type is specified by a DWARF EH Frame pointer
30 // encoding.
31 static uint64_t
32 GetGNUEHPointer(const DataExtractor &DE, offset_t *offset_ptr,
33 uint32_t eh_ptr_enc, addr_t pc_rel_addr, addr_t text_addr,
34 addr_t data_addr) //, BSDRelocs *data_relocs) const
36 if (eh_ptr_enc == DW_EH_PE_omit)
37 return ULLONG_MAX; // Value isn't in the buffer...
39 uint64_t baseAddress = 0;
40 uint64_t addressValue = 0;
41 const uint32_t addr_size = DE.GetAddressByteSize();
42 assert(addr_size == 4 || addr_size == 8);
44 bool signExtendValue = false;
45 // Decode the base part or adjust our offset
46 switch (eh_ptr_enc & 0x70) {
47 case DW_EH_PE_pcrel:
48 signExtendValue = true;
49 baseAddress = *offset_ptr;
50 if (pc_rel_addr != LLDB_INVALID_ADDRESS)
51 baseAddress += pc_rel_addr;
52 // else
53 // Log::GlobalWarning ("PC relative pointer encoding found with
54 // invalid pc relative address.");
55 break;
57 case DW_EH_PE_textrel:
58 signExtendValue = true;
59 if (text_addr != LLDB_INVALID_ADDRESS)
60 baseAddress = text_addr;
61 // else
62 // Log::GlobalWarning ("text relative pointer encoding being
63 // decoded with invalid text section address, setting base address
64 // to zero.");
65 break;
67 case DW_EH_PE_datarel:
68 signExtendValue = true;
69 if (data_addr != LLDB_INVALID_ADDRESS)
70 baseAddress = data_addr;
71 // else
72 // Log::GlobalWarning ("data relative pointer encoding being
73 // decoded with invalid data section address, setting base address
74 // to zero.");
75 break;
77 case DW_EH_PE_funcrel:
78 signExtendValue = true;
79 break;
81 case DW_EH_PE_aligned: {
82 // SetPointerSize should be called prior to extracting these so the pointer
83 // size is cached
84 assert(addr_size != 0);
85 if (addr_size) {
86 // Align to a address size boundary first
87 uint32_t alignOffset = *offset_ptr % addr_size;
88 if (alignOffset)
89 offset_ptr += addr_size - alignOffset;
91 } break;
93 default:
94 break;
97 // Decode the value part
98 switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING) {
99 case DW_EH_PE_absptr: {
100 addressValue = DE.GetAddress(offset_ptr);
101 // if (data_relocs)
102 // addressValue = data_relocs->Relocate(*offset_ptr -
103 // addr_size, *this, addressValue);
104 } break;
105 case DW_EH_PE_uleb128:
106 addressValue = DE.GetULEB128(offset_ptr);
107 break;
108 case DW_EH_PE_udata2:
109 addressValue = DE.GetU16(offset_ptr);
110 break;
111 case DW_EH_PE_udata4:
112 addressValue = DE.GetU32(offset_ptr);
113 break;
114 case DW_EH_PE_udata8:
115 addressValue = DE.GetU64(offset_ptr);
116 break;
117 case DW_EH_PE_sleb128:
118 addressValue = DE.GetSLEB128(offset_ptr);
119 break;
120 case DW_EH_PE_sdata2:
121 addressValue = (int16_t)DE.GetU16(offset_ptr);
122 break;
123 case DW_EH_PE_sdata4:
124 addressValue = (int32_t)DE.GetU32(offset_ptr);
125 break;
126 case DW_EH_PE_sdata8:
127 addressValue = (int64_t)DE.GetU64(offset_ptr);
128 break;
129 default:
130 // Unhandled encoding type
131 assert(eh_ptr_enc);
132 break;
135 // Since we promote everything to 64 bit, we may need to sign extend
136 if (signExtendValue && addr_size < sizeof(baseAddress)) {
137 uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull);
138 if (sign_bit & addressValue) {
139 uint64_t mask = ~sign_bit + 1;
140 addressValue |= mask;
143 return baseAddress + addressValue;
146 DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile &objfile,
147 SectionSP &section_sp, Type type)
148 : m_objfile(objfile), m_section_sp(section_sp), m_type(type) {}
150 bool DWARFCallFrameInfo::GetUnwindPlan(const Address &addr,
151 UnwindPlan &unwind_plan) {
152 return GetUnwindPlan(AddressRange(addr, 1), unwind_plan);
155 bool DWARFCallFrameInfo::GetUnwindPlan(const AddressRange &range,
156 UnwindPlan &unwind_plan) {
157 FDEEntryMap::Entry fde_entry;
158 Address addr = range.GetBaseAddress();
160 // Make sure that the Address we're searching for is the same object file as
161 // this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
162 ModuleSP module_sp = addr.GetModule();
163 if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
164 module_sp->GetObjectFile() != &m_objfile)
165 return false;
167 if (llvm::Optional<FDEEntryMap::Entry> entry = GetFirstFDEEntryInRange(range))
168 return FDEToUnwindPlan(entry->data, addr, unwind_plan);
169 return false;
172 bool DWARFCallFrameInfo::GetAddressRange(Address addr, AddressRange &range) {
174 // Make sure that the Address we're searching for is the same object file as
175 // this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
176 ModuleSP module_sp = addr.GetModule();
177 if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
178 module_sp->GetObjectFile() != &m_objfile)
179 return false;
181 if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
182 return false;
183 GetFDEIndex();
184 FDEEntryMap::Entry *fde_entry =
185 m_fde_index.FindEntryThatContains(addr.GetFileAddress());
186 if (!fde_entry)
187 return false;
189 range = AddressRange(fde_entry->base, fde_entry->size,
190 m_objfile.GetSectionList());
191 return true;
194 llvm::Optional<DWARFCallFrameInfo::FDEEntryMap::Entry>
195 DWARFCallFrameInfo::GetFirstFDEEntryInRange(const AddressRange &range) {
196 if (!m_section_sp || m_section_sp->IsEncrypted())
197 return llvm::None;
199 GetFDEIndex();
201 addr_t start_file_addr = range.GetBaseAddress().GetFileAddress();
202 const FDEEntryMap::Entry *fde =
203 m_fde_index.FindEntryThatContainsOrFollows(start_file_addr);
204 if (fde && fde->DoesIntersect(
205 FDEEntryMap::Range(start_file_addr, range.GetByteSize())))
206 return *fde;
208 return llvm::None;
211 void DWARFCallFrameInfo::GetFunctionAddressAndSizeVector(
212 FunctionAddressAndSizeVector &function_info) {
213 GetFDEIndex();
214 const size_t count = m_fde_index.GetSize();
215 function_info.Clear();
216 if (count > 0)
217 function_info.Reserve(count);
218 for (size_t i = 0; i < count; ++i) {
219 const FDEEntryMap::Entry *func_offset_data_entry =
220 m_fde_index.GetEntryAtIndex(i);
221 if (func_offset_data_entry) {
222 FunctionAddressAndSizeVector::Entry function_offset_entry(
223 func_offset_data_entry->base, func_offset_data_entry->size);
224 function_info.Append(function_offset_entry);
229 const DWARFCallFrameInfo::CIE *
230 DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset) {
231 cie_map_t::iterator pos = m_cie_map.find(cie_offset);
233 if (pos != m_cie_map.end()) {
234 // Parse and cache the CIE
235 if (pos->second == nullptr)
236 pos->second = ParseCIE(cie_offset);
238 return pos->second.get();
240 return nullptr;
243 DWARFCallFrameInfo::CIESP
244 DWARFCallFrameInfo::ParseCIE(const dw_offset_t cie_offset) {
245 CIESP cie_sp(new CIE(cie_offset));
246 lldb::offset_t offset = cie_offset;
247 if (!m_cfi_data_initialized)
248 GetCFIData();
249 uint32_t length = m_cfi_data.GetU32(&offset);
250 dw_offset_t cie_id, end_offset;
251 bool is_64bit = (length == UINT32_MAX);
252 if (is_64bit) {
253 length = m_cfi_data.GetU64(&offset);
254 cie_id = m_cfi_data.GetU64(&offset);
255 end_offset = cie_offset + length + 12;
256 } else {
257 cie_id = m_cfi_data.GetU32(&offset);
258 end_offset = cie_offset + length + 4;
260 if (length > 0 && ((m_type == DWARF && cie_id == UINT32_MAX) ||
261 (m_type == EH && cie_id == 0ul))) {
262 size_t i;
263 // cie.offset = cie_offset;
264 // cie.length = length;
265 // cie.cieID = cieID;
266 cie_sp->ptr_encoding = DW_EH_PE_absptr; // default
267 cie_sp->version = m_cfi_data.GetU8(&offset);
268 if (cie_sp->version > CFI_VERSION4) {
269 Host::SystemLog(Host::eSystemLogError,
270 "CIE parse error: CFI version %d is not supported\n",
271 cie_sp->version);
272 return nullptr;
275 for (i = 0; i < CFI_AUG_MAX_SIZE; ++i) {
276 cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
277 if (cie_sp->augmentation[i] == '\0') {
278 // Zero out remaining bytes in augmentation string
279 for (size_t j = i + 1; j < CFI_AUG_MAX_SIZE; ++j)
280 cie_sp->augmentation[j] = '\0';
282 break;
286 if (i == CFI_AUG_MAX_SIZE &&
287 cie_sp->augmentation[CFI_AUG_MAX_SIZE - 1] != '\0') {
288 Host::SystemLog(Host::eSystemLogError,
289 "CIE parse error: CIE augmentation string was too large "
290 "for the fixed sized buffer of %d bytes.\n",
291 CFI_AUG_MAX_SIZE);
292 return nullptr;
295 // m_cfi_data uses address size from target architecture of the process may
296 // ignore these fields?
297 if (m_type == DWARF && cie_sp->version >= CFI_VERSION4) {
298 cie_sp->address_size = m_cfi_data.GetU8(&offset);
299 cie_sp->segment_size = m_cfi_data.GetU8(&offset);
302 cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
303 cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
305 cie_sp->return_addr_reg_num =
306 m_type == DWARF && cie_sp->version >= CFI_VERSION3
307 ? static_cast<uint32_t>(m_cfi_data.GetULEB128(&offset))
308 : m_cfi_data.GetU8(&offset);
310 if (cie_sp->augmentation[0]) {
311 // Get the length of the eh_frame augmentation data which starts with a
312 // ULEB128 length in bytes
313 const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
314 const size_t aug_data_end = offset + aug_data_len;
315 const size_t aug_str_len = strlen(cie_sp->augmentation);
316 // A 'z' may be present as the first character of the string.
317 // If present, the Augmentation Data field shall be present. The contents
318 // of the Augmentation Data shall be interpreted according to other
319 // characters in the Augmentation String.
320 if (cie_sp->augmentation[0] == 'z') {
321 // Extract the Augmentation Data
322 size_t aug_str_idx = 0;
323 for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++) {
324 char aug = cie_sp->augmentation[aug_str_idx];
325 switch (aug) {
326 case 'L':
327 // Indicates the presence of one argument in the Augmentation Data
328 // of the CIE, and a corresponding argument in the Augmentation
329 // Data of the FDE. The argument in the Augmentation Data of the
330 // CIE is 1-byte and represents the pointer encoding used for the
331 // argument in the Augmentation Data of the FDE, which is the
332 // address of a language-specific data area (LSDA). The size of the
333 // LSDA pointer is specified by the pointer encoding used.
334 cie_sp->lsda_addr_encoding = m_cfi_data.GetU8(&offset);
335 break;
337 case 'P':
338 // Indicates the presence of two arguments in the Augmentation Data
339 // of the CIE. The first argument is 1-byte and represents the
340 // pointer encoding used for the second argument, which is the
341 // address of a personality routine handler. The size of the
342 // personality routine pointer is specified by the pointer encoding
343 // used.
345 // The address of the personality function will be stored at this
346 // location. Pre-execution, it will be all zero's so don't read it
347 // until we're trying to do an unwind & the reloc has been
348 // resolved.
350 uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
351 const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
352 cie_sp->personality_loc = GetGNUEHPointer(
353 m_cfi_data, &offset, arg_ptr_encoding, pc_rel_addr,
354 LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
356 break;
358 case 'R':
359 // A 'R' may be present at any position after the
360 // first character of the string. The Augmentation Data shall
361 // include a 1 byte argument that represents the pointer encoding
362 // for the address pointers used in the FDE. Example: 0x1B ==
363 // DW_EH_PE_pcrel | DW_EH_PE_sdata4
364 cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
365 break;
368 } else if (strcmp(cie_sp->augmentation, "eh") == 0) {
369 // If the Augmentation string has the value "eh", then the EH Data
370 // field shall be present
373 // Set the offset to be the end of the augmentation data just in case we
374 // didn't understand any of the data.
375 offset = (uint32_t)aug_data_end;
378 if (end_offset > offset) {
379 cie_sp->inst_offset = offset;
380 cie_sp->inst_length = end_offset - offset;
382 while (offset < end_offset) {
383 uint8_t inst = m_cfi_data.GetU8(&offset);
384 uint8_t primary_opcode = inst & 0xC0;
385 uint8_t extended_opcode = inst & 0x3F;
387 if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode,
388 cie_sp->data_align, offset,
389 cie_sp->initial_row))
390 break; // Stop if we hit an unrecognized opcode
394 return cie_sp;
397 void DWARFCallFrameInfo::GetCFIData() {
398 if (!m_cfi_data_initialized) {
399 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND));
400 if (log)
401 m_objfile.GetModule()->LogMessage(log, "Reading EH frame info");
402 m_objfile.ReadSectionData(m_section_sp.get(), m_cfi_data);
403 m_cfi_data_initialized = true;
406 // Scan through the eh_frame or debug_frame section looking for FDEs and noting
407 // the start/end addresses of the functions and a pointer back to the
408 // function's FDE for later expansion. Internalize CIEs as we come across them.
410 void DWARFCallFrameInfo::GetFDEIndex() {
411 if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
412 return;
414 if (m_fde_index_initialized)
415 return;
417 std::lock_guard<std::mutex> guard(m_fde_index_mutex);
419 if (m_fde_index_initialized) // if two threads hit the locker
420 return;
422 LLDB_SCOPED_TIMERF("%s - %s", LLVM_PRETTY_FUNCTION,
423 m_objfile.GetFileSpec().GetFilename().AsCString(""));
425 bool clear_address_zeroth_bit = false;
426 if (ArchSpec arch = m_objfile.GetArchitecture()) {
427 if (arch.GetTriple().getArch() == llvm::Triple::arm ||
428 arch.GetTriple().getArch() == llvm::Triple::thumb)
429 clear_address_zeroth_bit = true;
432 lldb::offset_t offset = 0;
433 if (!m_cfi_data_initialized)
434 GetCFIData();
435 while (m_cfi_data.ValidOffsetForDataOfSize(offset, 8)) {
436 const dw_offset_t current_entry = offset;
437 dw_offset_t cie_id, next_entry, cie_offset;
438 uint32_t len = m_cfi_data.GetU32(&offset);
439 bool is_64bit = (len == UINT32_MAX);
440 if (is_64bit) {
441 len = m_cfi_data.GetU64(&offset);
442 cie_id = m_cfi_data.GetU64(&offset);
443 next_entry = current_entry + len + 12;
444 cie_offset = current_entry + 12 - cie_id;
445 } else {
446 cie_id = m_cfi_data.GetU32(&offset);
447 next_entry = current_entry + len + 4;
448 cie_offset = current_entry + 4 - cie_id;
451 if (next_entry > m_cfi_data.GetByteSize() + 1) {
452 Host::SystemLog(Host::eSystemLogError, "error: Invalid fde/cie next "
453 "entry offset of 0x%x found in "
454 "cie/fde at 0x%x\n",
455 next_entry, current_entry);
456 // Don't trust anything in this eh_frame section if we find blatantly
457 // invalid data.
458 m_fde_index.Clear();
459 m_fde_index_initialized = true;
460 return;
463 // An FDE entry contains CIE_pointer in debug_frame in same place as cie_id
464 // in eh_frame. CIE_pointer is an offset into the .debug_frame section. So,
465 // variable cie_offset should be equal to cie_id for debug_frame.
466 // FDE entries with cie_id == 0 shouldn't be ignored for it.
467 if ((cie_id == 0 && m_type == EH) || cie_id == UINT32_MAX || len == 0) {
468 auto cie_sp = ParseCIE(current_entry);
469 if (!cie_sp) {
470 // Cannot parse, the reason is already logged
471 m_fde_index.Clear();
472 m_fde_index_initialized = true;
473 return;
476 m_cie_map[current_entry] = std::move(cie_sp);
477 offset = next_entry;
478 continue;
481 if (m_type == DWARF)
482 cie_offset = cie_id;
484 if (cie_offset > m_cfi_data.GetByteSize()) {
485 Host::SystemLog(Host::eSystemLogError,
486 "error: Invalid cie offset of 0x%x "
487 "found in cie/fde at 0x%x\n",
488 cie_offset, current_entry);
489 // Don't trust anything in this eh_frame section if we find blatantly
490 // invalid data.
491 m_fde_index.Clear();
492 m_fde_index_initialized = true;
493 return;
496 const CIE *cie = GetCIE(cie_offset);
497 if (cie) {
498 const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
499 const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
500 const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
502 lldb::addr_t addr =
503 GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
504 text_addr, data_addr);
505 if (clear_address_zeroth_bit)
506 addr &= ~1ull;
508 lldb::addr_t length = GetGNUEHPointer(
509 m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
510 pc_rel_addr, text_addr, data_addr);
511 FDEEntryMap::Entry fde(addr, length, current_entry);
512 m_fde_index.Append(fde);
513 } else {
514 Host::SystemLog(Host::eSystemLogError, "error: unable to find CIE at "
515 "0x%8.8x for cie_id = 0x%8.8x for "
516 "entry at 0x%8.8x.\n",
517 cie_offset, cie_id, current_entry);
519 offset = next_entry;
521 m_fde_index.Sort();
522 m_fde_index_initialized = true;
525 bool DWARFCallFrameInfo::FDEToUnwindPlan(dw_offset_t dwarf_offset,
526 Address startaddr,
527 UnwindPlan &unwind_plan) {
528 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND);
529 lldb::offset_t offset = dwarf_offset;
530 lldb::offset_t current_entry = offset;
532 if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
533 return false;
535 if (!m_cfi_data_initialized)
536 GetCFIData();
538 uint32_t length = m_cfi_data.GetU32(&offset);
539 dw_offset_t cie_offset;
540 bool is_64bit = (length == UINT32_MAX);
541 if (is_64bit) {
542 length = m_cfi_data.GetU64(&offset);
543 cie_offset = m_cfi_data.GetU64(&offset);
544 } else {
545 cie_offset = m_cfi_data.GetU32(&offset);
548 // FDE entries with zeroth cie_offset may occur for debug_frame.
549 assert(!(m_type == EH && 0 == cie_offset) && cie_offset != UINT32_MAX);
551 // Translate the CIE_id from the eh_frame format, which is relative to the
552 // FDE offset, into a __eh_frame section offset
553 if (m_type == EH) {
554 unwind_plan.SetSourceName("eh_frame CFI");
555 cie_offset = current_entry + (is_64bit ? 12 : 4) - cie_offset;
556 unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
557 } else {
558 unwind_plan.SetSourceName("DWARF CFI");
559 // In theory the debug_frame info should be valid at all call sites
560 // ("asynchronous unwind info" as it is sometimes called) but in practice
561 // gcc et al all emit call frame info for the prologue and call sites, but
562 // not for the epilogue or all the other locations during the function
563 // reliably.
564 unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
566 unwind_plan.SetSourcedFromCompiler(eLazyBoolYes);
568 const CIE *cie = GetCIE(cie_offset);
569 assert(cie != nullptr);
571 const dw_offset_t end_offset = current_entry + length + (is_64bit ? 12 : 4);
573 const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
574 const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
575 const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
576 lldb::addr_t range_base =
577 GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
578 text_addr, data_addr);
579 lldb::addr_t range_len = GetGNUEHPointer(
580 m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
581 pc_rel_addr, text_addr, data_addr);
582 AddressRange range(range_base, m_objfile.GetAddressByteSize(),
583 m_objfile.GetSectionList());
584 range.SetByteSize(range_len);
586 addr_t lsda_data_file_address = LLDB_INVALID_ADDRESS;
588 if (cie->augmentation[0] == 'z') {
589 uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
590 if (aug_data_len != 0 && cie->lsda_addr_encoding != DW_EH_PE_omit) {
591 offset_t saved_offset = offset;
592 lsda_data_file_address =
593 GetGNUEHPointer(m_cfi_data, &offset, cie->lsda_addr_encoding,
594 pc_rel_addr, text_addr, data_addr);
595 if (offset - saved_offset != aug_data_len) {
596 // There is more in the augmentation region than we know how to process;
597 // don't read anything.
598 lsda_data_file_address = LLDB_INVALID_ADDRESS;
600 offset = saved_offset;
602 offset += aug_data_len;
604 unwind_plan.SetUnwindPlanForSignalTrap(
605 strchr(cie->augmentation, 'S') ? eLazyBoolYes : eLazyBoolNo);
607 Address lsda_data;
608 Address personality_function_ptr;
610 if (lsda_data_file_address != LLDB_INVALID_ADDRESS &&
611 cie->personality_loc != LLDB_INVALID_ADDRESS) {
612 m_objfile.GetModule()->ResolveFileAddress(lsda_data_file_address,
613 lsda_data);
614 m_objfile.GetModule()->ResolveFileAddress(cie->personality_loc,
615 personality_function_ptr);
618 if (lsda_data.IsValid() && personality_function_ptr.IsValid()) {
619 unwind_plan.SetLSDAAddress(lsda_data);
620 unwind_plan.SetPersonalityFunctionPtr(personality_function_ptr);
623 uint32_t code_align = cie->code_align;
624 int32_t data_align = cie->data_align;
626 unwind_plan.SetPlanValidAddressRange(range);
627 UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
628 *cie_initial_row = cie->initial_row;
629 UnwindPlan::RowSP row(cie_initial_row);
631 unwind_plan.SetRegisterKind(GetRegisterKind());
632 unwind_plan.SetReturnAddressRegister(cie->return_addr_reg_num);
634 std::vector<UnwindPlan::RowSP> stack;
636 UnwindPlan::Row::RegisterLocation reg_location;
637 while (m_cfi_data.ValidOffset(offset) && offset < end_offset) {
638 uint8_t inst = m_cfi_data.GetU8(&offset);
639 uint8_t primary_opcode = inst & 0xC0;
640 uint8_t extended_opcode = inst & 0x3F;
642 if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, data_align,
643 offset, *row)) {
644 if (primary_opcode) {
645 switch (primary_opcode) {
646 case DW_CFA_advance_loc: // (Row Creation Instruction)
647 { // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
648 // takes a single argument that represents a constant delta. The
649 // required action is to create a new table row with a location value
650 // that is computed by taking the current entry's location value and
651 // adding (delta * code_align). All other values in the new row are
652 // initially identical to the current row.
653 unwind_plan.AppendRow(row);
654 UnwindPlan::Row *newrow = new UnwindPlan::Row;
655 *newrow = *row.get();
656 row.reset(newrow);
657 row->SlideOffset(extended_opcode * code_align);
658 break;
661 case DW_CFA_restore: { // 0xC0 - high 2 bits are 0x3, lower 6 bits are
662 // register
663 // takes a single argument that represents a register number. The
664 // required action is to change the rule for the indicated register
665 // to the rule assigned it by the initial_instructions in the CIE.
666 uint32_t reg_num = extended_opcode;
667 // We only keep enough register locations around to unwind what is in
668 // our thread, and these are organized by the register index in that
669 // state, so we need to convert our eh_frame register number from the
670 // EH frame info, to a register index
672 if (unwind_plan.IsValidRowIndex(0) &&
673 unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
674 reg_location))
675 row->SetRegisterInfo(reg_num, reg_location);
676 break;
679 } else {
680 switch (extended_opcode) {
681 case DW_CFA_set_loc: // 0x1 (Row Creation Instruction)
683 // DW_CFA_set_loc takes a single argument that represents an address.
684 // The required action is to create a new table row using the
685 // specified address as the location. All other values in the new row
686 // are initially identical to the current row. The new location value
687 // should always be greater than the current one.
688 unwind_plan.AppendRow(row);
689 UnwindPlan::Row *newrow = new UnwindPlan::Row;
690 *newrow = *row.get();
691 row.reset(newrow);
692 row->SetOffset(m_cfi_data.GetAddress(&offset) -
693 startaddr.GetFileAddress());
694 break;
697 case DW_CFA_advance_loc1: // 0x2 (Row Creation Instruction)
699 // takes a single uword argument that represents a constant delta.
700 // This instruction is identical to DW_CFA_advance_loc except for the
701 // encoding and size of the delta argument.
702 unwind_plan.AppendRow(row);
703 UnwindPlan::Row *newrow = new UnwindPlan::Row;
704 *newrow = *row.get();
705 row.reset(newrow);
706 row->SlideOffset(m_cfi_data.GetU8(&offset) * code_align);
707 break;
710 case DW_CFA_advance_loc2: // 0x3 (Row Creation Instruction)
712 // takes a single uword argument that represents a constant delta.
713 // This instruction is identical to DW_CFA_advance_loc except for the
714 // encoding and size of the delta argument.
715 unwind_plan.AppendRow(row);
716 UnwindPlan::Row *newrow = new UnwindPlan::Row;
717 *newrow = *row.get();
718 row.reset(newrow);
719 row->SlideOffset(m_cfi_data.GetU16(&offset) * code_align);
720 break;
723 case DW_CFA_advance_loc4: // 0x4 (Row Creation Instruction)
725 // takes a single uword argument that represents a constant delta.
726 // This instruction is identical to DW_CFA_advance_loc except for the
727 // encoding and size of the delta argument.
728 unwind_plan.AppendRow(row);
729 UnwindPlan::Row *newrow = new UnwindPlan::Row;
730 *newrow = *row.get();
731 row.reset(newrow);
732 row->SlideOffset(m_cfi_data.GetU32(&offset) * code_align);
733 break;
736 case DW_CFA_restore_extended: // 0x6
738 // takes a single unsigned LEB128 argument that represents a register
739 // number. This instruction is identical to DW_CFA_restore except for
740 // the encoding and size of the register argument.
741 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
742 if (unwind_plan.IsValidRowIndex(0) &&
743 unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
744 reg_location))
745 row->SetRegisterInfo(reg_num, reg_location);
746 break;
749 case DW_CFA_remember_state: // 0xA
751 // These instructions define a stack of information. Encountering the
752 // DW_CFA_remember_state instruction means to save the rules for
753 // every register on the current row on the stack. Encountering the
754 // DW_CFA_restore_state instruction means to pop the set of rules off
755 // the stack and place them in the current row. (This operation is
756 // useful for compilers that move epilogue code into the body of a
757 // function.)
758 stack.push_back(row);
759 UnwindPlan::Row *newrow = new UnwindPlan::Row;
760 *newrow = *row.get();
761 row.reset(newrow);
762 break;
765 case DW_CFA_restore_state: // 0xB
767 // These instructions define a stack of information. Encountering the
768 // DW_CFA_remember_state instruction means to save the rules for
769 // every register on the current row on the stack. Encountering the
770 // DW_CFA_restore_state instruction means to pop the set of rules off
771 // the stack and place them in the current row. (This operation is
772 // useful for compilers that move epilogue code into the body of a
773 // function.)
774 if (stack.empty()) {
775 LLDB_LOGF(log,
776 "DWARFCallFrameInfo::%s(dwarf_offset: %" PRIx32
777 ", startaddr: %" PRIx64
778 " encountered DW_CFA_restore_state but state stack "
779 "is empty. Corrupt unwind info?",
780 __FUNCTION__, dwarf_offset, startaddr.GetFileAddress());
781 break;
783 lldb::addr_t offset = row->GetOffset();
784 row = stack.back();
785 stack.pop_back();
786 row->SetOffset(offset);
787 break;
790 case DW_CFA_GNU_args_size: // 0x2e
792 // The DW_CFA_GNU_args_size instruction takes an unsigned LEB128
793 // operand representing an argument size. This instruction specifies
794 // the total of the size of the arguments which have been pushed onto
795 // the stack.
797 // TODO: Figure out how we should handle this.
798 m_cfi_data.GetULEB128(&offset);
799 break;
802 case DW_CFA_val_offset: // 0x14
803 case DW_CFA_val_offset_sf: // 0x15
804 default:
805 break;
810 unwind_plan.AppendRow(row);
812 return true;
815 bool DWARFCallFrameInfo::HandleCommonDwarfOpcode(uint8_t primary_opcode,
816 uint8_t extended_opcode,
817 int32_t data_align,
818 lldb::offset_t &offset,
819 UnwindPlan::Row &row) {
820 UnwindPlan::Row::RegisterLocation reg_location;
822 if (primary_opcode) {
823 switch (primary_opcode) {
824 case DW_CFA_offset: { // 0x80 - high 2 bits are 0x2, lower 6 bits are
825 // register
826 // takes two arguments: an unsigned LEB128 constant representing a
827 // factored offset and a register number. The required action is to
828 // change the rule for the register indicated by the register number to
829 // be an offset(N) rule with a value of (N = factored offset *
830 // data_align).
831 uint8_t reg_num = extended_opcode;
832 int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
833 reg_location.SetAtCFAPlusOffset(op_offset);
834 row.SetRegisterInfo(reg_num, reg_location);
835 return true;
838 } else {
839 switch (extended_opcode) {
840 case DW_CFA_nop: // 0x0
841 return true;
843 case DW_CFA_offset_extended: // 0x5
845 // takes two unsigned LEB128 arguments representing a register number and
846 // a factored offset. This instruction is identical to DW_CFA_offset
847 // except for the encoding and size of the register argument.
848 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
849 int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
850 UnwindPlan::Row::RegisterLocation reg_location;
851 reg_location.SetAtCFAPlusOffset(op_offset);
852 row.SetRegisterInfo(reg_num, reg_location);
853 return true;
856 case DW_CFA_undefined: // 0x7
858 // takes a single unsigned LEB128 argument that represents a register
859 // number. The required action is to set the rule for the specified
860 // register to undefined.
861 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
862 UnwindPlan::Row::RegisterLocation reg_location;
863 reg_location.SetUndefined();
864 row.SetRegisterInfo(reg_num, reg_location);
865 return true;
868 case DW_CFA_same_value: // 0x8
870 // takes a single unsigned LEB128 argument that represents a register
871 // number. The required action is to set the rule for the specified
872 // register to same value.
873 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
874 UnwindPlan::Row::RegisterLocation reg_location;
875 reg_location.SetSame();
876 row.SetRegisterInfo(reg_num, reg_location);
877 return true;
880 case DW_CFA_register: // 0x9
882 // takes two unsigned LEB128 arguments representing register numbers. The
883 // required action is to set the rule for the first register to be the
884 // second register.
885 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
886 uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
887 UnwindPlan::Row::RegisterLocation reg_location;
888 reg_location.SetInRegister(other_reg_num);
889 row.SetRegisterInfo(reg_num, reg_location);
890 return true;
893 case DW_CFA_def_cfa: // 0xC (CFA Definition Instruction)
895 // Takes two unsigned LEB128 operands representing a register number and
896 // a (non-factored) offset. The required action is to define the current
897 // CFA rule to use the provided register and offset.
898 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
899 int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
900 row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
901 return true;
904 case DW_CFA_def_cfa_register: // 0xD (CFA Definition Instruction)
906 // takes a single unsigned LEB128 argument representing a register
907 // number. The required action is to define the current CFA rule to use
908 // the provided register (but to keep the old offset).
909 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
910 row.GetCFAValue().SetIsRegisterPlusOffset(reg_num,
911 row.GetCFAValue().GetOffset());
912 return true;
915 case DW_CFA_def_cfa_offset: // 0xE (CFA Definition Instruction)
917 // Takes a single unsigned LEB128 operand representing a (non-factored)
918 // offset. The required action is to define the current CFA rule to use
919 // the provided offset (but to keep the old register).
920 int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
921 row.GetCFAValue().SetIsRegisterPlusOffset(
922 row.GetCFAValue().GetRegisterNumber(), op_offset);
923 return true;
926 case DW_CFA_def_cfa_expression: // 0xF (CFA Definition Instruction)
928 size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
929 const uint8_t *block_data =
930 static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
931 row.GetCFAValue().SetIsDWARFExpression(block_data, block_len);
932 return true;
935 case DW_CFA_expression: // 0x10
937 // Takes two operands: an unsigned LEB128 value representing a register
938 // number, and a DW_FORM_block value representing a DWARF expression. The
939 // required action is to change the rule for the register indicated by
940 // the register number to be an expression(E) rule where E is the DWARF
941 // expression. That is, the DWARF expression computes the address. The
942 // value of the CFA is pushed on the DWARF evaluation stack prior to
943 // execution of the DWARF expression.
944 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
945 uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
946 const uint8_t *block_data =
947 static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
948 UnwindPlan::Row::RegisterLocation reg_location;
949 reg_location.SetAtDWARFExpression(block_data, block_len);
950 row.SetRegisterInfo(reg_num, reg_location);
951 return true;
954 case DW_CFA_offset_extended_sf: // 0x11
956 // takes two operands: an unsigned LEB128 value representing a register
957 // number and a signed LEB128 factored offset. This instruction is
958 // identical to DW_CFA_offset_extended except that the second operand is
959 // signed and factored.
960 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
961 int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
962 UnwindPlan::Row::RegisterLocation reg_location;
963 reg_location.SetAtCFAPlusOffset(op_offset);
964 row.SetRegisterInfo(reg_num, reg_location);
965 return true;
968 case DW_CFA_def_cfa_sf: // 0x12 (CFA Definition Instruction)
970 // Takes two operands: an unsigned LEB128 value representing a register
971 // number and a signed LEB128 factored offset. This instruction is
972 // identical to DW_CFA_def_cfa except that the second operand is signed
973 // and factored.
974 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
975 int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
976 row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
977 return true;
980 case DW_CFA_def_cfa_offset_sf: // 0x13 (CFA Definition Instruction)
982 // takes a signed LEB128 operand representing a factored offset. This
983 // instruction is identical to DW_CFA_def_cfa_offset except that the
984 // operand is signed and factored.
985 int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
986 uint32_t cfa_regnum = row.GetCFAValue().GetRegisterNumber();
987 row.GetCFAValue().SetIsRegisterPlusOffset(cfa_regnum, op_offset);
988 return true;
991 case DW_CFA_val_expression: // 0x16
993 // takes two operands: an unsigned LEB128 value representing a register
994 // number, and a DW_FORM_block value representing a DWARF expression. The
995 // required action is to change the rule for the register indicated by
996 // the register number to be a val_expression(E) rule where E is the
997 // DWARF expression. That is, the DWARF expression computes the value of
998 // the given register. The value of the CFA is pushed on the DWARF
999 // evaluation stack prior to execution of the DWARF expression.
1000 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
1001 uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
1002 const uint8_t *block_data =
1003 (const uint8_t *)m_cfi_data.GetData(&offset, block_len);
1004 reg_location.SetIsDWARFExpression(block_data, block_len);
1005 row.SetRegisterInfo(reg_num, reg_location);
1006 return true;
1010 return false;
1013 void DWARFCallFrameInfo::ForEachFDEEntries(
1014 const std::function<bool(lldb::addr_t, uint32_t, dw_offset_t)> &callback) {
1015 GetFDEIndex();
1017 for (size_t i = 0, c = m_fde_index.GetSize(); i < c; ++i) {
1018 const FDEEntryMap::Entry &entry = m_fde_index.GetEntryRef(i);
1019 if (!callback(entry.base, entry.size, entry.data))
1020 break;