[memprof] Upgrade a unit test to MemProf Version 3 (#117063)
[llvm-project.git] / clang / utils / TableGen / MveEmitter.cpp
blob8ebd0bb800feff1e219df2bd45521528118d6dc1
1 //===-- MveEmitter.cpp - Generate arm_mve.h for use with clang ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This set of linked tablegen backends is responsible for emitting the bits
10 // and pieces that implement <arm_mve.h>, which is defined by the ACLE standard
11 // and provides a set of types and functions for (more or less) direct access
12 // to the MVE instruction set, including the scalar shifts as well as the
13 // vector instructions.
15 // MVE's standard intrinsic functions are unusual in that they have a system of
16 // polymorphism. For example, the function vaddq() can behave like vaddq_u16(),
17 // vaddq_f32(), vaddq_s8(), etc., depending on the types of the vector
18 // arguments you give it.
20 // This constrains the implementation strategies. The usual approach to making
21 // the user-facing functions polymorphic would be to either use
22 // __attribute__((overloadable)) to make a set of vaddq() functions that are
23 // all inline wrappers on the underlying clang builtins, or to define a single
24 // vaddq() macro which expands to an instance of _Generic.
26 // The inline-wrappers approach would work fine for most intrinsics, except for
27 // the ones that take an argument required to be a compile-time constant,
28 // because if you wrap an inline function around a call to a builtin, the
29 // constant nature of the argument is not passed through.
31 // The _Generic approach can be made to work with enough effort, but it takes a
32 // lot of machinery, because of the design feature of _Generic that even the
33 // untaken branches are required to pass all front-end validity checks such as
34 // type-correctness. You can work around that by nesting further _Generics all
35 // over the place to coerce things to the right type in untaken branches, but
36 // what you get out is complicated, hard to guarantee its correctness, and
37 // worst of all, gives _completely unreadable_ error messages if the user gets
38 // the types wrong for an intrinsic call.
40 // Therefore, my strategy is to introduce a new __attribute__ that allows a
41 // function to be mapped to a clang builtin even though it doesn't have the
42 // same name, and then declare all the user-facing MVE function names with that
43 // attribute, mapping each one directly to the clang builtin. And the
44 // polymorphic ones have __attribute__((overloadable)) as well. So once the
45 // compiler has resolved the overload, it knows the internal builtin ID of the
46 // selected function, and can check the immediate arguments against that; and
47 // if the user gets the types wrong in a call to a polymorphic intrinsic, they
48 // get a completely clear error message showing all the declarations of that
49 // function in the header file and explaining why each one doesn't fit their
50 // call.
52 // The downside of this is that if every clang builtin has to correspond
53 // exactly to a user-facing ACLE intrinsic, then you can't save work in the
54 // frontend by doing it in the header file: CGBuiltin.cpp has to do the entire
55 // job of converting an ACLE intrinsic call into LLVM IR. So the Tablegen
56 // description for an MVE intrinsic has to contain a full description of the
57 // sequence of IRBuilder calls that clang will need to make.
59 //===----------------------------------------------------------------------===//
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/StringRef.h"
63 #include "llvm/ADT/StringSwitch.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/TableGen/Error.h"
67 #include "llvm/TableGen/Record.h"
68 #include "llvm/TableGen/StringToOffsetTable.h"
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <list>
73 #include <map>
74 #include <memory>
75 #include <set>
76 #include <string>
77 #include <vector>
79 using namespace llvm;
81 namespace {
83 class EmitterBase;
84 class Result;
86 // -----------------------------------------------------------------------------
87 // A system of classes to represent all the types we'll need to deal with in
88 // the prototypes of intrinsics.
90 // Query methods include finding out the C name of a type; the "LLVM name" in
91 // the sense of a C++ code snippet that can be used in the codegen function;
92 // the suffix that represents the type in the ACLE intrinsic naming scheme
93 // (e.g. 's32' represents int32_t in intrinsics such as vaddq_s32); whether the
94 // type is floating-point related (hence should be under #ifdef in the MVE
95 // header so that it isn't included in integer-only MVE mode); and the type's
96 // size in bits. Not all subtypes support all these queries.
98 class Type {
99 public:
100 enum class TypeKind {
101 // Void appears as a return type (for store intrinsics, which are pure
102 // side-effect). It's also used as the parameter type in the Tablegen
103 // when an intrinsic doesn't need to come in various suffixed forms like
104 // vfooq_s8,vfooq_u16,vfooq_f32.
105 Void,
107 // Scalar is used for ordinary int and float types of all sizes.
108 Scalar,
110 // Vector is used for anything that occupies exactly one MVE vector
111 // register, i.e. {uint,int,float}NxM_t.
112 Vector,
114 // MultiVector is used for the {uint,int,float}NxMxK_t types used by the
115 // interleaving load/store intrinsics v{ld,st}{2,4}q.
116 MultiVector,
118 // Predicate is used by all the predicated intrinsics. Its C
119 // representation is mve_pred16_t (which is just an alias for uint16_t).
120 // But we give more detail here, by indicating that a given predicate
121 // instruction is logically regarded as a vector of i1 containing the
122 // same number of lanes as the input vector type. So our Predicate type
123 // comes with a lane count, which we use to decide which kind of <n x i1>
124 // we'll invoke the pred_i2v IR intrinsic to translate it into.
125 Predicate,
127 // Pointer is used for pointer types (obviously), and comes with a flag
128 // indicating whether it's a pointer to a const or mutable instance of
129 // the pointee type.
130 Pointer,
133 private:
134 const TypeKind TKind;
136 protected:
137 Type(TypeKind K) : TKind(K) {}
139 public:
140 TypeKind typeKind() const { return TKind; }
141 virtual ~Type() = default;
142 virtual bool requiresFloat() const = 0;
143 virtual bool requiresMVE() const = 0;
144 virtual unsigned sizeInBits() const = 0;
145 virtual std::string cName() const = 0;
146 virtual std::string llvmName() const {
147 PrintFatalError("no LLVM type name available for type " + cName());
149 virtual std::string acleSuffix(std::string) const {
150 PrintFatalError("no ACLE suffix available for this type");
154 enum class ScalarTypeKind { SignedInt, UnsignedInt, Float };
155 inline std::string toLetter(ScalarTypeKind kind) {
156 switch (kind) {
157 case ScalarTypeKind::SignedInt:
158 return "s";
159 case ScalarTypeKind::UnsignedInt:
160 return "u";
161 case ScalarTypeKind::Float:
162 return "f";
164 llvm_unreachable("Unhandled ScalarTypeKind enum");
166 inline std::string toCPrefix(ScalarTypeKind kind) {
167 switch (kind) {
168 case ScalarTypeKind::SignedInt:
169 return "int";
170 case ScalarTypeKind::UnsignedInt:
171 return "uint";
172 case ScalarTypeKind::Float:
173 return "float";
175 llvm_unreachable("Unhandled ScalarTypeKind enum");
178 class VoidType : public Type {
179 public:
180 VoidType() : Type(TypeKind::Void) {}
181 unsigned sizeInBits() const override { return 0; }
182 bool requiresFloat() const override { return false; }
183 bool requiresMVE() const override { return false; }
184 std::string cName() const override { return "void"; }
186 static bool classof(const Type *T) { return T->typeKind() == TypeKind::Void; }
187 std::string acleSuffix(std::string) const override { return ""; }
190 class PointerType : public Type {
191 const Type *Pointee;
192 bool Const;
194 public:
195 PointerType(const Type *Pointee, bool Const)
196 : Type(TypeKind::Pointer), Pointee(Pointee), Const(Const) {}
197 unsigned sizeInBits() const override { return 32; }
198 bool requiresFloat() const override { return Pointee->requiresFloat(); }
199 bool requiresMVE() const override { return Pointee->requiresMVE(); }
200 std::string cName() const override {
201 std::string Name = Pointee->cName();
203 // The syntax for a pointer in C is different when the pointee is
204 // itself a pointer. The MVE intrinsics don't contain any double
205 // pointers, so we don't need to worry about that wrinkle.
206 assert(!isa<PointerType>(Pointee) && "Pointer to pointer not supported");
208 if (Const)
209 Name = "const " + Name;
210 return Name + " *";
212 std::string llvmName() const override {
213 return "llvm::PointerType::getUnqual(" + Pointee->llvmName() + ")";
215 const Type *getPointeeType() const { return Pointee; }
217 static bool classof(const Type *T) {
218 return T->typeKind() == TypeKind::Pointer;
222 // Base class for all the types that have a name of the form
223 // [prefix][numbers]_t, like int32_t, uint16x8_t, float32x4x2_t.
225 // For this sub-hierarchy we invent a cNameBase() method which returns the
226 // whole name except for the trailing "_t", so that Vector and MultiVector can
227 // append an extra "x2" or whatever to their element type's cNameBase(). Then
228 // the main cName() query method puts "_t" on the end for the final type name.
230 class CRegularNamedType : public Type {
231 using Type::Type;
232 virtual std::string cNameBase() const = 0;
234 public:
235 std::string cName() const override { return cNameBase() + "_t"; }
238 class ScalarType : public CRegularNamedType {
239 ScalarTypeKind Kind;
240 unsigned Bits;
241 std::string NameOverride;
243 public:
244 ScalarType(const Record *Record) : CRegularNamedType(TypeKind::Scalar) {
245 Kind = StringSwitch<ScalarTypeKind>(Record->getValueAsString("kind"))
246 .Case("s", ScalarTypeKind::SignedInt)
247 .Case("u", ScalarTypeKind::UnsignedInt)
248 .Case("f", ScalarTypeKind::Float);
249 Bits = Record->getValueAsInt("size");
250 NameOverride = std::string(Record->getValueAsString("nameOverride"));
252 unsigned sizeInBits() const override { return Bits; }
253 ScalarTypeKind kind() const { return Kind; }
254 std::string suffix() const { return toLetter(Kind) + utostr(Bits); }
255 std::string cNameBase() const override {
256 return toCPrefix(Kind) + utostr(Bits);
258 std::string cName() const override {
259 if (NameOverride.empty())
260 return CRegularNamedType::cName();
261 return NameOverride;
263 std::string llvmName() const override {
264 if (Kind == ScalarTypeKind::Float) {
265 if (Bits == 16)
266 return "HalfTy";
267 if (Bits == 32)
268 return "FloatTy";
269 if (Bits == 64)
270 return "DoubleTy";
271 PrintFatalError("bad size for floating type");
273 return "Int" + utostr(Bits) + "Ty";
275 std::string acleSuffix(std::string overrideLetter) const override {
276 return "_" + (overrideLetter.size() ? overrideLetter : toLetter(Kind))
277 + utostr(Bits);
279 bool isInteger() const { return Kind != ScalarTypeKind::Float; }
280 bool requiresFloat() const override { return !isInteger(); }
281 bool requiresMVE() const override { return false; }
282 bool hasNonstandardName() const { return !NameOverride.empty(); }
284 static bool classof(const Type *T) {
285 return T->typeKind() == TypeKind::Scalar;
289 class VectorType : public CRegularNamedType {
290 const ScalarType *Element;
291 unsigned Lanes;
293 public:
294 VectorType(const ScalarType *Element, unsigned Lanes)
295 : CRegularNamedType(TypeKind::Vector), Element(Element), Lanes(Lanes) {}
296 unsigned sizeInBits() const override { return Lanes * Element->sizeInBits(); }
297 unsigned lanes() const { return Lanes; }
298 bool requiresFloat() const override { return Element->requiresFloat(); }
299 bool requiresMVE() const override { return true; }
300 std::string cNameBase() const override {
301 return Element->cNameBase() + "x" + utostr(Lanes);
303 std::string llvmName() const override {
304 return "llvm::FixedVectorType::get(" + Element->llvmName() + ", " +
305 utostr(Lanes) + ")";
308 static bool classof(const Type *T) {
309 return T->typeKind() == TypeKind::Vector;
313 class MultiVectorType : public CRegularNamedType {
314 const VectorType *Element;
315 unsigned Registers;
317 public:
318 MultiVectorType(unsigned Registers, const VectorType *Element)
319 : CRegularNamedType(TypeKind::MultiVector), Element(Element),
320 Registers(Registers) {}
321 unsigned sizeInBits() const override {
322 return Registers * Element->sizeInBits();
324 unsigned registers() const { return Registers; }
325 bool requiresFloat() const override { return Element->requiresFloat(); }
326 bool requiresMVE() const override { return true; }
327 std::string cNameBase() const override {
328 return Element->cNameBase() + "x" + utostr(Registers);
331 // MultiVectorType doesn't override llvmName, because we don't expect to do
332 // automatic code generation for the MVE intrinsics that use it: the {vld2,
333 // vld4, vst2, vst4} family are the only ones that use these types, so it was
334 // easier to hand-write the codegen for dealing with these structs than to
335 // build in lots of extra automatic machinery that would only be used once.
337 static bool classof(const Type *T) {
338 return T->typeKind() == TypeKind::MultiVector;
342 class PredicateType : public CRegularNamedType {
343 unsigned Lanes;
345 public:
346 PredicateType(unsigned Lanes)
347 : CRegularNamedType(TypeKind::Predicate), Lanes(Lanes) {}
348 unsigned sizeInBits() const override { return 16; }
349 std::string cNameBase() const override { return "mve_pred16"; }
350 bool requiresFloat() const override { return false; };
351 bool requiresMVE() const override { return true; }
352 std::string llvmName() const override {
353 return "llvm::FixedVectorType::get(Builder.getInt1Ty(), " + utostr(Lanes) +
354 ")";
357 static bool classof(const Type *T) {
358 return T->typeKind() == TypeKind::Predicate;
362 // -----------------------------------------------------------------------------
363 // Class to facilitate merging together the code generation for many intrinsics
364 // by means of varying a few constant or type parameters.
366 // Most obviously, the intrinsics in a single parametrised family will have
367 // code generation sequences that only differ in a type or two, e.g. vaddq_s8
368 // and vaddq_u16 will look the same apart from putting a different vector type
369 // in the call to CGM.getIntrinsic(). But also, completely different intrinsics
370 // will often code-generate in the same way, with only a different choice of
371 // _which_ IR intrinsic they lower to (e.g. vaddq_m_s8 and vmulq_m_s8), but
372 // marshalling the arguments and return values of the IR intrinsic in exactly
373 // the same way. And others might differ only in some other kind of constant,
374 // such as a lane index.
376 // So, when we generate the IR-building code for all these intrinsics, we keep
377 // track of every value that could possibly be pulled out of the code and
378 // stored ahead of time in a local variable. Then we group together intrinsics
379 // by textual equivalence of the code that would result if _all_ those
380 // parameters were stored in local variables. That gives us maximal sets that
381 // can be implemented by a single piece of IR-building code by changing
382 // parameter values ahead of time.
384 // After we've done that, we do a second pass in which we only allocate _some_
385 // of the parameters into local variables, by tracking which ones have the same
386 // values as each other (so that a single variable can be reused) and which
387 // ones are the same across the whole set (so that no variable is needed at
388 // all).
390 // Hence the class below. Its allocParam method is invoked during code
391 // generation by every method of a Result subclass (see below) that wants to
392 // give it the opportunity to pull something out into a switchable parameter.
393 // It returns a variable name for the parameter, or (if it's being used in the
394 // second pass once we've decided that some parameters don't need to be stored
395 // in variables after all) it might just return the input expression unchanged.
397 struct CodeGenParamAllocator {
398 // Accumulated during code generation
399 std::vector<std::string> *ParamTypes = nullptr;
400 std::vector<std::string> *ParamValues = nullptr;
402 // Provided ahead of time in pass 2, to indicate which parameters are being
403 // assigned to what. This vector contains an entry for each call to
404 // allocParam expected during code gen (which we counted up in pass 1), and
405 // indicates the number of the parameter variable that should be returned, or
406 // -1 if this call shouldn't allocate a parameter variable at all.
408 // We rely on the recursive code generation working identically in passes 1
409 // and 2, so that the same list of calls to allocParam happen in the same
410 // order. That guarantees that the parameter numbers recorded in pass 1 will
411 // match the entries in this vector that store what EmitterBase::EmitBuiltinCG
412 // decided to do about each one in pass 2.
413 std::vector<int> *ParamNumberMap = nullptr;
415 // Internally track how many things we've allocated
416 unsigned nparams = 0;
418 std::string allocParam(StringRef Type, StringRef Value) {
419 unsigned ParamNumber;
421 if (!ParamNumberMap) {
422 // In pass 1, unconditionally assign a new parameter variable to every
423 // value we're asked to process.
424 ParamNumber = nparams++;
425 } else {
426 // In pass 2, consult the map provided by the caller to find out which
427 // variable we should be keeping things in.
428 int MapValue = (*ParamNumberMap)[nparams++];
429 if (MapValue < 0)
430 return std::string(Value);
431 ParamNumber = MapValue;
434 // If we've allocated a new parameter variable for the first time, store
435 // its type and value to be retrieved after codegen.
436 if (ParamTypes && ParamTypes->size() == ParamNumber)
437 ParamTypes->push_back(std::string(Type));
438 if (ParamValues && ParamValues->size() == ParamNumber)
439 ParamValues->push_back(std::string(Value));
441 // Unimaginative naming scheme for parameter variables.
442 return "Param" + utostr(ParamNumber);
446 // -----------------------------------------------------------------------------
447 // System of classes that represent all the intermediate values used during
448 // code-generation for an intrinsic.
450 // The base class 'Result' can represent a value of the LLVM type 'Value', or
451 // sometimes 'Address' (for loads/stores, including an alignment requirement).
453 // In the case where the Tablegen provides a value in the codegen dag as a
454 // plain integer literal, the Result object we construct here will be one that
455 // returns true from hasIntegerConstantValue(). This allows the generated C++
456 // code to use the constant directly in contexts which can take a literal
457 // integer, such as Builder.CreateExtractValue(thing, 1), without going to the
458 // effort of calling llvm::ConstantInt::get() and then pulling the constant
459 // back out of the resulting llvm:Value later.
461 class Result {
462 public:
463 // Convenient shorthand for the pointer type we'll be using everywhere.
464 using Ptr = std::shared_ptr<Result>;
466 private:
467 Ptr Predecessor;
468 std::string VarName;
469 bool VarNameUsed = false;
470 unsigned Visited = 0;
472 public:
473 virtual ~Result() = default;
474 using Scope = std::map<std::string, Ptr, std::less<>>;
475 virtual void genCode(raw_ostream &OS, CodeGenParamAllocator &) const = 0;
476 virtual bool hasIntegerConstantValue() const { return false; }
477 virtual uint32_t integerConstantValue() const { return 0; }
478 virtual bool hasIntegerValue() const { return false; }
479 virtual std::string getIntegerValue(const std::string &) {
480 llvm_unreachable("non-working Result::getIntegerValue called");
482 virtual std::string typeName() const { return "Value *"; }
484 // Mostly, when a code-generation operation has a dependency on prior
485 // operations, it's because it uses the output values of those operations as
486 // inputs. But there's one exception, which is the use of 'seq' in Tablegen
487 // to indicate that operations have to be performed in sequence regardless of
488 // whether they use each others' output values.
490 // So, the actual generation of code is done by depth-first search, using the
491 // prerequisites() method to get a list of all the other Results that have to
492 // be computed before this one. That method divides into the 'predecessor',
493 // set by setPredecessor() while processing a 'seq' dag node, and the list
494 // returned by 'morePrerequisites', which each subclass implements to return
495 // a list of the Results it uses as input to whatever its own computation is
496 // doing.
498 virtual void morePrerequisites(std::vector<Ptr> &output) const {}
499 std::vector<Ptr> prerequisites() const {
500 std::vector<Ptr> ToRet;
501 if (Predecessor)
502 ToRet.push_back(Predecessor);
503 morePrerequisites(ToRet);
504 return ToRet;
507 void setPredecessor(Ptr p) {
508 // If the user has nested one 'seq' node inside another, and this
509 // method is called on the return value of the inner 'seq' (i.e.
510 // the final item inside it), then we can't link _this_ node to p,
511 // because it already has a predecessor. Instead, walk the chain
512 // until we find the first item in the inner seq, and link that to
513 // p, so that nesting seqs has the obvious effect of linking
514 // everything together into one long sequential chain.
515 Result *r = this;
516 while (r->Predecessor)
517 r = r->Predecessor.get();
518 r->Predecessor = p;
521 // Each Result will be assigned a variable name in the output code, but not
522 // all those variable names will actually be used (e.g. the return value of
523 // Builder.CreateStore has void type, so nobody will want to refer to it). To
524 // prevent annoying compiler warnings, we track whether each Result's
525 // variable name was ever actually mentioned in subsequent statements, so
526 // that it can be left out of the final generated code.
527 std::string varname() {
528 VarNameUsed = true;
529 return VarName;
531 void setVarname(const StringRef s) { VarName = std::string(s); }
532 bool varnameUsed() const { return VarNameUsed; }
534 // Emit code to generate this result as a Value *.
535 virtual std::string asValue() {
536 return varname();
539 // Code generation happens in multiple passes. This method tracks whether a
540 // Result has yet been visited in a given pass, without the need for a
541 // tedious loop in between passes that goes through and resets a 'visited'
542 // flag back to false: you just set Pass=1 the first time round, and Pass=2
543 // the second time.
544 bool needsVisiting(unsigned Pass) {
545 bool ToRet = Visited < Pass;
546 Visited = Pass;
547 return ToRet;
551 // Result subclass that retrieves one of the arguments to the clang builtin
552 // function. In cases where the argument has pointer type, we call
553 // EmitPointerWithAlignment and store the result in a variable of type Address,
554 // so that load and store IR nodes can know the right alignment. Otherwise, we
555 // call EmitScalarExpr.
557 // There are aggregate parameters in the MVE intrinsics API, but we don't deal
558 // with them in this Tablegen back end: they only arise in the vld2q/vld4q and
559 // vst2q/vst4q family, which is few enough that we just write the code by hand
560 // for those in CGBuiltin.cpp.
561 class BuiltinArgResult : public Result {
562 public:
563 unsigned ArgNum;
564 bool AddressType;
565 bool Immediate;
566 BuiltinArgResult(unsigned ArgNum, bool AddressType, bool Immediate)
567 : ArgNum(ArgNum), AddressType(AddressType), Immediate(Immediate) {}
568 void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
569 OS << (AddressType ? "EmitPointerWithAlignment" : "EmitScalarExpr")
570 << "(E->getArg(" << ArgNum << "))";
572 std::string typeName() const override {
573 return AddressType ? "Address" : Result::typeName();
575 // Emit code to generate this result as a Value *.
576 std::string asValue() override {
577 if (AddressType)
578 return "(" + varname() + ".emitRawPointer(*this))";
579 return Result::asValue();
581 bool hasIntegerValue() const override { return Immediate; }
582 std::string getIntegerValue(const std::string &IntType) override {
583 return "GetIntegerConstantValue<" + IntType + ">(E->getArg(" +
584 utostr(ArgNum) + "), getContext())";
588 // Result subclass for an integer literal appearing in Tablegen. This may need
589 // to be turned into an llvm::Result by means of llvm::ConstantInt::get(), or
590 // it may be used directly as an integer, depending on which IRBuilder method
591 // it's being passed to.
592 class IntLiteralResult : public Result {
593 public:
594 const ScalarType *IntegerType;
595 uint32_t IntegerValue;
596 IntLiteralResult(const ScalarType *IntegerType, uint32_t IntegerValue)
597 : IntegerType(IntegerType), IntegerValue(IntegerValue) {}
598 void genCode(raw_ostream &OS,
599 CodeGenParamAllocator &ParamAlloc) const override {
600 OS << "llvm::ConstantInt::get("
601 << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName())
602 << ", ";
603 OS << ParamAlloc.allocParam(IntegerType->cName(), utostr(IntegerValue))
604 << ")";
606 bool hasIntegerConstantValue() const override { return true; }
607 uint32_t integerConstantValue() const override { return IntegerValue; }
610 // Result subclass representing a cast between different integer types. We use
611 // our own ScalarType abstraction as the representation of the target type,
612 // which gives both size and signedness.
613 class IntCastResult : public Result {
614 public:
615 const ScalarType *IntegerType;
616 Ptr V;
617 IntCastResult(const ScalarType *IntegerType, Ptr V)
618 : IntegerType(IntegerType), V(V) {}
619 void genCode(raw_ostream &OS,
620 CodeGenParamAllocator &ParamAlloc) const override {
621 OS << "Builder.CreateIntCast(" << V->varname() << ", "
622 << ParamAlloc.allocParam("llvm::Type *", IntegerType->llvmName()) << ", "
623 << ParamAlloc.allocParam("bool",
624 IntegerType->kind() == ScalarTypeKind::SignedInt
625 ? "true"
626 : "false")
627 << ")";
629 void morePrerequisites(std::vector<Ptr> &output) const override {
630 output.push_back(V);
634 // Result subclass representing a cast between different pointer types.
635 class PointerCastResult : public Result {
636 public:
637 const PointerType *PtrType;
638 Ptr V;
639 PointerCastResult(const PointerType *PtrType, Ptr V)
640 : PtrType(PtrType), V(V) {}
641 void genCode(raw_ostream &OS,
642 CodeGenParamAllocator &ParamAlloc) const override {
643 OS << "Builder.CreatePointerCast(" << V->asValue() << ", "
644 << ParamAlloc.allocParam("llvm::Type *", PtrType->llvmName()) << ")";
646 void morePrerequisites(std::vector<Ptr> &output) const override {
647 output.push_back(V);
651 // Result subclass representing a call to an IRBuilder method. Each IRBuilder
652 // method we want to use will have a Tablegen record giving the method name and
653 // describing any important details of how to call it, such as whether a
654 // particular argument should be an integer constant instead of an llvm::Value.
655 class IRBuilderResult : public Result {
656 public:
657 StringRef CallPrefix;
658 std::vector<Ptr> Args;
659 std::set<unsigned> AddressArgs;
660 std::map<unsigned, std::string> IntegerArgs;
661 IRBuilderResult(StringRef CallPrefix, const std::vector<Ptr> &Args,
662 const std::set<unsigned> &AddressArgs,
663 const std::map<unsigned, std::string> &IntegerArgs)
664 : CallPrefix(CallPrefix), Args(Args), AddressArgs(AddressArgs),
665 IntegerArgs(IntegerArgs) {}
666 void genCode(raw_ostream &OS,
667 CodeGenParamAllocator &ParamAlloc) const override {
668 OS << CallPrefix;
669 const char *Sep = "";
670 for (unsigned i = 0, e = Args.size(); i < e; ++i) {
671 Ptr Arg = Args[i];
672 auto it = IntegerArgs.find(i);
674 OS << Sep;
675 Sep = ", ";
677 if (it != IntegerArgs.end()) {
678 if (Arg->hasIntegerConstantValue())
679 OS << "static_cast<" << it->second << ">("
680 << ParamAlloc.allocParam(it->second,
681 utostr(Arg->integerConstantValue()))
682 << ")";
683 else if (Arg->hasIntegerValue())
684 OS << ParamAlloc.allocParam(it->second,
685 Arg->getIntegerValue(it->second));
686 } else {
687 OS << Arg->varname();
690 OS << ")";
692 void morePrerequisites(std::vector<Ptr> &output) const override {
693 for (unsigned i = 0, e = Args.size(); i < e; ++i) {
694 Ptr Arg = Args[i];
695 if (IntegerArgs.find(i) != IntegerArgs.end())
696 continue;
697 output.push_back(Arg);
702 // Result subclass representing making an Address out of a Value.
703 class AddressResult : public Result {
704 public:
705 Ptr Arg;
706 const Type *Ty;
707 unsigned Align;
708 AddressResult(Ptr Arg, const Type *Ty, unsigned Align)
709 : Arg(Arg), Ty(Ty), Align(Align) {}
710 void genCode(raw_ostream &OS,
711 CodeGenParamAllocator &ParamAlloc) const override {
712 OS << "Address(" << Arg->varname() << ", " << Ty->llvmName()
713 << ", CharUnits::fromQuantity(" << Align << "))";
715 std::string typeName() const override {
716 return "Address";
718 void morePrerequisites(std::vector<Ptr> &output) const override {
719 output.push_back(Arg);
723 // Result subclass representing a call to an IR intrinsic, which we first have
724 // to look up using an Intrinsic::ID constant and an array of types.
725 class IRIntrinsicResult : public Result {
726 public:
727 std::string IntrinsicID;
728 std::vector<const Type *> ParamTypes;
729 std::vector<Ptr> Args;
730 IRIntrinsicResult(StringRef IntrinsicID,
731 const std::vector<const Type *> &ParamTypes,
732 const std::vector<Ptr> &Args)
733 : IntrinsicID(std::string(IntrinsicID)), ParamTypes(ParamTypes),
734 Args(Args) {}
735 void genCode(raw_ostream &OS,
736 CodeGenParamAllocator &ParamAlloc) const override {
737 std::string IntNo = ParamAlloc.allocParam(
738 "Intrinsic::ID", "Intrinsic::" + IntrinsicID);
739 OS << "Builder.CreateCall(CGM.getIntrinsic(" << IntNo;
740 if (!ParamTypes.empty()) {
741 OS << ", {";
742 const char *Sep = "";
743 for (auto T : ParamTypes) {
744 OS << Sep << ParamAlloc.allocParam("llvm::Type *", T->llvmName());
745 Sep = ", ";
747 OS << "}";
749 OS << "), {";
750 const char *Sep = "";
751 for (auto Arg : Args) {
752 OS << Sep << Arg->asValue();
753 Sep = ", ";
755 OS << "})";
757 void morePrerequisites(std::vector<Ptr> &output) const override {
758 output.insert(output.end(), Args.begin(), Args.end());
762 // Result subclass that specifies a type, for use in IRBuilder operations such
763 // as CreateBitCast that take a type argument.
764 class TypeResult : public Result {
765 public:
766 const Type *T;
767 TypeResult(const Type *T) : T(T) {}
768 void genCode(raw_ostream &OS, CodeGenParamAllocator &) const override {
769 OS << T->llvmName();
771 std::string typeName() const override {
772 return "llvm::Type *";
776 // -----------------------------------------------------------------------------
777 // Class that describes a single ACLE intrinsic.
779 // A Tablegen record will typically describe more than one ACLE intrinsic, by
780 // means of setting the 'list<Type> Params' field to a list of multiple
781 // parameter types, so as to define vaddq_{s8,u8,...,f16,f32} all in one go.
782 // We'll end up with one instance of ACLEIntrinsic for *each* parameter type,
783 // rather than a single one for all of them. Hence, the constructor takes both
784 // a Tablegen record and the current value of the parameter type.
786 class ACLEIntrinsic {
787 // Structure documenting that one of the intrinsic's arguments is required to
788 // be a compile-time constant integer, and what constraints there are on its
789 // value. Used when generating Sema checking code.
790 struct ImmediateArg {
791 enum class BoundsType { ExplicitRange, UInt };
792 BoundsType boundsType;
793 int64_t i1, i2;
794 StringRef ExtraCheckType, ExtraCheckArgs;
795 const Type *ArgType;
798 // For polymorphic intrinsics, FullName is the explicit name that uniquely
799 // identifies this variant of the intrinsic, and ShortName is the name it
800 // shares with at least one other intrinsic.
801 std::string ShortName, FullName;
803 // Name of the architecture extension, used in the Clang builtin name
804 StringRef BuiltinExtension;
806 // A very small number of intrinsics _only_ have a polymorphic
807 // variant (vuninitializedq taking an unevaluated argument).
808 bool PolymorphicOnly;
810 // Another rarely-used flag indicating that the builtin doesn't
811 // evaluate its argument(s) at all.
812 bool NonEvaluating;
814 // True if the intrinsic needs only the C header part (no codegen, semantic
815 // checks, etc). Used for redeclaring MVE intrinsics in the arm_cde.h header.
816 bool HeaderOnly;
818 const Type *ReturnType;
819 std::vector<const Type *> ArgTypes;
820 std::map<unsigned, ImmediateArg> ImmediateArgs;
821 Result::Ptr Code;
823 std::map<std::string, std::string> CustomCodeGenArgs;
825 // Recursive function that does the internals of code generation.
826 void genCodeDfs(Result::Ptr V, std::list<Result::Ptr> &Used,
827 unsigned Pass) const {
828 if (!V->needsVisiting(Pass))
829 return;
831 for (Result::Ptr W : V->prerequisites())
832 genCodeDfs(W, Used, Pass);
834 Used.push_back(V);
837 public:
838 const std::string &shortName() const { return ShortName; }
839 const std::string &fullName() const { return FullName; }
840 StringRef builtinExtension() const { return BuiltinExtension; }
841 const Type *returnType() const { return ReturnType; }
842 const std::vector<const Type *> &argTypes() const { return ArgTypes; }
843 bool requiresFloat() const {
844 if (ReturnType->requiresFloat())
845 return true;
846 for (const Type *T : ArgTypes)
847 if (T->requiresFloat())
848 return true;
849 return false;
851 bool requiresMVE() const {
852 return ReturnType->requiresMVE() ||
853 any_of(ArgTypes, [](const Type *T) { return T->requiresMVE(); });
855 bool polymorphic() const { return ShortName != FullName; }
856 bool polymorphicOnly() const { return PolymorphicOnly; }
857 bool nonEvaluating() const { return NonEvaluating; }
858 bool headerOnly() const { return HeaderOnly; }
860 // External entry point for code generation, called from EmitterBase.
861 void genCode(raw_ostream &OS, CodeGenParamAllocator &ParamAlloc,
862 unsigned Pass) const {
863 assert(!headerOnly() && "Called genCode for header-only intrinsic");
864 if (!hasCode()) {
865 for (auto kv : CustomCodeGenArgs)
866 OS << " " << kv.first << " = " << kv.second << ";\n";
867 OS << " break; // custom code gen\n";
868 return;
870 std::list<Result::Ptr> Used;
871 genCodeDfs(Code, Used, Pass);
873 unsigned varindex = 0;
874 for (Result::Ptr V : Used)
875 if (V->varnameUsed())
876 V->setVarname("Val" + utostr(varindex++));
878 for (Result::Ptr V : Used) {
879 OS << " ";
880 if (V == Used.back()) {
881 assert(!V->varnameUsed());
882 OS << "return "; // FIXME: what if the top-level thing is void?
883 } else if (V->varnameUsed()) {
884 std::string Type = V->typeName();
885 OS << V->typeName();
886 if (!StringRef(Type).ends_with("*"))
887 OS << " ";
888 OS << V->varname() << " = ";
890 V->genCode(OS, ParamAlloc);
891 OS << ";\n";
894 bool hasCode() const { return Code != nullptr; }
896 static std::string signedHexLiteral(const APInt &iOrig) {
897 APInt i = iOrig.trunc(64);
898 SmallString<40> s;
899 i.toString(s, 16, true, true);
900 return std::string(s);
903 std::string genSema() const {
904 assert(!headerOnly() && "Called genSema for header-only intrinsic");
905 std::vector<std::string> SemaChecks;
907 for (const auto &kv : ImmediateArgs) {
908 const ImmediateArg &IA = kv.second;
910 APInt lo(128, 0), hi(128, 0);
911 switch (IA.boundsType) {
912 case ImmediateArg::BoundsType::ExplicitRange:
913 lo = IA.i1;
914 hi = IA.i2;
915 break;
916 case ImmediateArg::BoundsType::UInt:
917 lo = 0;
918 hi = APInt::getMaxValue(IA.i1).zext(128);
919 break;
922 std::string Index = utostr(kv.first);
924 // Emit a range check if the legal range of values for the
925 // immediate is smaller than the _possible_ range of values for
926 // its type.
927 unsigned ArgTypeBits = IA.ArgType->sizeInBits();
928 APInt ArgTypeRange = APInt::getMaxValue(ArgTypeBits).zext(128);
929 APInt ActualRange = (hi - lo).trunc(64).sext(128);
930 if (ActualRange.ult(ArgTypeRange))
931 SemaChecks.push_back("SemaRef.BuiltinConstantArgRange(TheCall, " +
932 Index + ", " + signedHexLiteral(lo) + ", " +
933 signedHexLiteral(hi) + ")");
935 if (!IA.ExtraCheckType.empty()) {
936 std::string Suffix;
937 if (!IA.ExtraCheckArgs.empty()) {
938 std::string tmp;
939 StringRef Arg = IA.ExtraCheckArgs;
940 if (Arg == "!lanesize") {
941 tmp = utostr(IA.ArgType->sizeInBits());
942 Arg = tmp;
944 Suffix = (Twine(", ") + Arg).str();
946 SemaChecks.push_back((Twine("SemaRef.BuiltinConstantArg") +
947 IA.ExtraCheckType + "(TheCall, " + Index +
948 Suffix + ")")
949 .str());
952 assert(!SemaChecks.empty());
954 if (SemaChecks.empty())
955 return "";
956 return join(std::begin(SemaChecks), std::end(SemaChecks),
957 " ||\n ") +
958 ";\n";
961 ACLEIntrinsic(EmitterBase &ME, const Record *R, const Type *Param);
964 // -----------------------------------------------------------------------------
965 // The top-level class that holds all the state from analyzing the entire
966 // Tablegen input.
968 class EmitterBase {
969 protected:
970 // EmitterBase holds a collection of all the types we've instantiated.
971 VoidType Void;
972 std::map<std::string, std::unique_ptr<ScalarType>> ScalarTypes;
973 std::map<std::tuple<ScalarTypeKind, unsigned, unsigned>,
974 std::unique_ptr<VectorType>>
975 VectorTypes;
976 std::map<std::pair<std::string, unsigned>, std::unique_ptr<MultiVectorType>>
977 MultiVectorTypes;
978 std::map<unsigned, std::unique_ptr<PredicateType>> PredicateTypes;
979 std::map<std::string, std::unique_ptr<PointerType>> PointerTypes;
981 // And all the ACLEIntrinsic instances we've created.
982 std::map<std::string, std::unique_ptr<ACLEIntrinsic>> ACLEIntrinsics;
984 public:
985 // Methods to create a Type object, or return the right existing one from the
986 // maps stored in this object.
987 const VoidType *getVoidType() { return &Void; }
988 const ScalarType *getScalarType(StringRef Name) {
989 return ScalarTypes[std::string(Name)].get();
991 const ScalarType *getScalarType(const Record *R) {
992 return getScalarType(R->getName());
994 const VectorType *getVectorType(const ScalarType *ST, unsigned Lanes) {
995 std::tuple<ScalarTypeKind, unsigned, unsigned> key(ST->kind(),
996 ST->sizeInBits(), Lanes);
997 auto [It, Inserted] = VectorTypes.try_emplace(key);
998 if (Inserted)
999 It->second = std::make_unique<VectorType>(ST, Lanes);
1000 return It->second.get();
1002 const VectorType *getVectorType(const ScalarType *ST) {
1003 return getVectorType(ST, 128 / ST->sizeInBits());
1005 const MultiVectorType *getMultiVectorType(unsigned Registers,
1006 const VectorType *VT) {
1007 std::pair<std::string, unsigned> key(VT->cNameBase(), Registers);
1008 auto [It, Inserted] = MultiVectorTypes.try_emplace(key);
1009 if (Inserted)
1010 It->second = std::make_unique<MultiVectorType>(Registers, VT);
1011 return It->second.get();
1013 const PredicateType *getPredicateType(unsigned Lanes) {
1014 unsigned key = Lanes;
1015 auto [It, Inserted] = PredicateTypes.try_emplace(key);
1016 if (Inserted)
1017 It->second = std::make_unique<PredicateType>(Lanes);
1018 return It->second.get();
1020 const PointerType *getPointerType(const Type *T, bool Const) {
1021 PointerType PT(T, Const);
1022 std::string key = PT.cName();
1023 auto [It, Inserted] = PointerTypes.try_emplace(key);
1024 if (Inserted)
1025 It->second = std::make_unique<PointerType>(PT);
1026 return It->second.get();
1029 // Methods to construct a type from various pieces of Tablegen. These are
1030 // always called in the context of setting up a particular ACLEIntrinsic, so
1031 // there's always an ambient parameter type (because we're iterating through
1032 // the Params list in the Tablegen record for the intrinsic), which is used
1033 // to expand Tablegen classes like 'Vector' which mean something different in
1034 // each member of a parametric family.
1035 const Type *getType(const Record *R, const Type *Param);
1036 const Type *getType(const DagInit *D, const Type *Param);
1037 const Type *getType(const Init *I, const Type *Param);
1039 // Functions that translate the Tablegen representation of an intrinsic's
1040 // code generation into a collection of Value objects (which will then be
1041 // reprocessed to read out the actual C++ code included by CGBuiltin.cpp).
1042 Result::Ptr getCodeForDag(const DagInit *D, const Result::Scope &Scope,
1043 const Type *Param);
1044 Result::Ptr getCodeForDagArg(const DagInit *D, unsigned ArgNum,
1045 const Result::Scope &Scope, const Type *Param);
1046 Result::Ptr getCodeForArg(unsigned ArgNum, const Type *ArgType, bool Promote,
1047 bool Immediate);
1049 void GroupSemaChecks(std::map<std::string, std::set<std::string>> &Checks);
1051 // Constructor and top-level functions.
1053 EmitterBase(const RecordKeeper &Records);
1054 virtual ~EmitterBase() = default;
1056 virtual void EmitHeader(raw_ostream &OS) = 0;
1057 virtual void EmitBuiltinDef(raw_ostream &OS) = 0;
1058 virtual void EmitBuiltinSema(raw_ostream &OS) = 0;
1059 void EmitBuiltinCG(raw_ostream &OS);
1060 void EmitBuiltinAliases(raw_ostream &OS);
1063 const Type *EmitterBase::getType(const Init *I, const Type *Param) {
1064 if (const auto *Dag = dyn_cast<DagInit>(I))
1065 return getType(Dag, Param);
1066 if (const auto *Def = dyn_cast<DefInit>(I))
1067 return getType(Def->getDef(), Param);
1069 PrintFatalError("Could not convert this value into a type");
1072 const Type *EmitterBase::getType(const Record *R, const Type *Param) {
1073 // Pass to a subfield of any wrapper records. We don't expect more than one
1074 // of these: immediate operands are used as plain numbers rather than as
1075 // llvm::Value, so it's meaningless to promote their type anyway.
1076 if (R->isSubClassOf("Immediate"))
1077 R = R->getValueAsDef("type");
1078 else if (R->isSubClassOf("unpromoted"))
1079 R = R->getValueAsDef("underlying_type");
1081 if (R->getName() == "Void")
1082 return getVoidType();
1083 if (R->isSubClassOf("PrimitiveType"))
1084 return getScalarType(R);
1085 if (R->isSubClassOf("ComplexType"))
1086 return getType(R->getValueAsDag("spec"), Param);
1088 PrintFatalError(R->getLoc(), "Could not convert this record into a type");
1091 const Type *EmitterBase::getType(const DagInit *D, const Type *Param) {
1092 // The meat of the getType system: types in the Tablegen are represented by a
1093 // dag whose operators select sub-cases of this function.
1095 const Record *Op = cast<DefInit>(D->getOperator())->getDef();
1096 if (!Op->isSubClassOf("ComplexTypeOp"))
1097 PrintFatalError(
1098 "Expected ComplexTypeOp as dag operator in type expression");
1100 if (Op->getName() == "CTO_Parameter") {
1101 if (isa<VoidType>(Param))
1102 PrintFatalError("Parametric type in unparametrised context");
1103 return Param;
1106 if (Op->getName() == "CTO_Vec") {
1107 const Type *Element = getType(D->getArg(0), Param);
1108 if (D->getNumArgs() == 1) {
1109 return getVectorType(cast<ScalarType>(Element));
1110 } else {
1111 const Type *ExistingVector = getType(D->getArg(1), Param);
1112 return getVectorType(cast<ScalarType>(Element),
1113 cast<VectorType>(ExistingVector)->lanes());
1117 if (Op->getName() == "CTO_Pred") {
1118 const Type *Element = getType(D->getArg(0), Param);
1119 return getPredicateType(128 / Element->sizeInBits());
1122 if (Op->isSubClassOf("CTO_Tuple")) {
1123 unsigned Registers = Op->getValueAsInt("n");
1124 const Type *Element = getType(D->getArg(0), Param);
1125 return getMultiVectorType(Registers, cast<VectorType>(Element));
1128 if (Op->isSubClassOf("CTO_Pointer")) {
1129 const Type *Pointee = getType(D->getArg(0), Param);
1130 return getPointerType(Pointee, Op->getValueAsBit("const"));
1133 if (Op->getName() == "CTO_CopyKind") {
1134 const ScalarType *STSize = cast<ScalarType>(getType(D->getArg(0), Param));
1135 const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(1), Param));
1136 for (const auto &kv : ScalarTypes) {
1137 const ScalarType *RT = kv.second.get();
1138 if (RT->kind() == STKind->kind() && RT->sizeInBits() == STSize->sizeInBits())
1139 return RT;
1141 PrintFatalError("Cannot find a type to satisfy CopyKind");
1144 if (Op->isSubClassOf("CTO_ScaleSize")) {
1145 const ScalarType *STKind = cast<ScalarType>(getType(D->getArg(0), Param));
1146 int Num = Op->getValueAsInt("num"), Denom = Op->getValueAsInt("denom");
1147 unsigned DesiredSize = STKind->sizeInBits() * Num / Denom;
1148 for (const auto &kv : ScalarTypes) {
1149 const ScalarType *RT = kv.second.get();
1150 if (RT->kind() == STKind->kind() && RT->sizeInBits() == DesiredSize)
1151 return RT;
1153 PrintFatalError("Cannot find a type to satisfy ScaleSize");
1156 PrintFatalError("Bad operator in type dag expression");
1159 Result::Ptr EmitterBase::getCodeForDag(const DagInit *D,
1160 const Result::Scope &Scope,
1161 const Type *Param) {
1162 const Record *Op = cast<DefInit>(D->getOperator())->getDef();
1164 if (Op->getName() == "seq") {
1165 Result::Scope SubScope = Scope;
1166 Result::Ptr PrevV = nullptr;
1167 for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i) {
1168 // We don't use getCodeForDagArg here, because the argument name
1169 // has different semantics in a seq
1170 Result::Ptr V =
1171 getCodeForDag(cast<DagInit>(D->getArg(i)), SubScope, Param);
1172 StringRef ArgName = D->getArgNameStr(i);
1173 if (!ArgName.empty())
1174 SubScope[std::string(ArgName)] = V;
1175 if (PrevV)
1176 V->setPredecessor(PrevV);
1177 PrevV = V;
1179 return PrevV;
1180 } else if (Op->isSubClassOf("Type")) {
1181 if (D->getNumArgs() != 1)
1182 PrintFatalError("Type casts should have exactly one argument");
1183 const Type *CastType = getType(Op, Param);
1184 Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
1185 if (const auto *ST = dyn_cast<ScalarType>(CastType)) {
1186 if (!ST->requiresFloat()) {
1187 if (Arg->hasIntegerConstantValue())
1188 return std::make_shared<IntLiteralResult>(
1189 ST, Arg->integerConstantValue());
1190 else
1191 return std::make_shared<IntCastResult>(ST, Arg);
1193 } else if (const auto *PT = dyn_cast<PointerType>(CastType)) {
1194 return std::make_shared<PointerCastResult>(PT, Arg);
1196 PrintFatalError("Unsupported type cast");
1197 } else if (Op->getName() == "address") {
1198 if (D->getNumArgs() != 2)
1199 PrintFatalError("'address' should have two arguments");
1200 Result::Ptr Arg = getCodeForDagArg(D, 0, Scope, Param);
1202 const Type *Ty = nullptr;
1203 if (const auto *DI = dyn_cast<DagInit>(D->getArg(0)))
1204 if (auto *PTy = dyn_cast<PointerType>(getType(DI->getOperator(), Param)))
1205 Ty = PTy->getPointeeType();
1206 if (!Ty)
1207 PrintFatalError("'address' pointer argument should be a pointer");
1209 unsigned Alignment;
1210 if (const auto *II = dyn_cast<IntInit>(D->getArg(1))) {
1211 Alignment = II->getValue();
1212 } else {
1213 PrintFatalError("'address' alignment argument should be an integer");
1215 return std::make_shared<AddressResult>(Arg, Ty, Alignment);
1216 } else if (Op->getName() == "unsignedflag") {
1217 if (D->getNumArgs() != 1)
1218 PrintFatalError("unsignedflag should have exactly one argument");
1219 const Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
1220 if (!TypeRec->isSubClassOf("Type"))
1221 PrintFatalError("unsignedflag's argument should be a type");
1222 if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
1223 return std::make_shared<IntLiteralResult>(
1224 getScalarType("u32"), ST->kind() == ScalarTypeKind::UnsignedInt);
1225 } else {
1226 PrintFatalError("unsignedflag's argument should be a scalar type");
1228 } else if (Op->getName() == "bitsize") {
1229 if (D->getNumArgs() != 1)
1230 PrintFatalError("bitsize should have exactly one argument");
1231 const Record *TypeRec = cast<DefInit>(D->getArg(0))->getDef();
1232 if (!TypeRec->isSubClassOf("Type"))
1233 PrintFatalError("bitsize's argument should be a type");
1234 if (const auto *ST = dyn_cast<ScalarType>(getType(TypeRec, Param))) {
1235 return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1236 ST->sizeInBits());
1237 } else {
1238 PrintFatalError("bitsize's argument should be a scalar type");
1240 } else {
1241 std::vector<Result::Ptr> Args;
1242 for (unsigned i = 0, e = D->getNumArgs(); i < e; ++i)
1243 Args.push_back(getCodeForDagArg(D, i, Scope, Param));
1244 if (Op->isSubClassOf("IRBuilderBase")) {
1245 std::set<unsigned> AddressArgs;
1246 std::map<unsigned, std::string> IntegerArgs;
1247 for (const Record *sp : Op->getValueAsListOfDefs("special_params")) {
1248 unsigned Index = sp->getValueAsInt("index");
1249 if (sp->isSubClassOf("IRBuilderAddrParam")) {
1250 AddressArgs.insert(Index);
1251 } else if (sp->isSubClassOf("IRBuilderIntParam")) {
1252 IntegerArgs[Index] = std::string(sp->getValueAsString("type"));
1255 return std::make_shared<IRBuilderResult>(Op->getValueAsString("prefix"),
1256 Args, AddressArgs, IntegerArgs);
1257 } else if (Op->isSubClassOf("IRIntBase")) {
1258 std::vector<const Type *> ParamTypes;
1259 for (const Record *RParam : Op->getValueAsListOfDefs("params"))
1260 ParamTypes.push_back(getType(RParam, Param));
1261 std::string IntName = std::string(Op->getValueAsString("intname"));
1262 if (Op->getValueAsBit("appendKind"))
1263 IntName += "_" + toLetter(cast<ScalarType>(Param)->kind());
1264 return std::make_shared<IRIntrinsicResult>(IntName, ParamTypes, Args);
1265 } else {
1266 PrintFatalError("Unsupported dag node " + Op->getName());
1271 Result::Ptr EmitterBase::getCodeForDagArg(const DagInit *D, unsigned ArgNum,
1272 const Result::Scope &Scope,
1273 const Type *Param) {
1274 const Init *Arg = D->getArg(ArgNum);
1275 StringRef Name = D->getArgNameStr(ArgNum);
1277 if (!Name.empty()) {
1278 if (!isa<UnsetInit>(Arg))
1279 PrintFatalError(
1280 "dag operator argument should not have both a value and a name");
1281 auto it = Scope.find(Name);
1282 if (it == Scope.end())
1283 PrintFatalError("unrecognized variable name '" + Name + "'");
1284 return it->second;
1287 // Sometimes the Arg is a bit. Prior to multiclass template argument
1288 // checking, integers would sneak through the bit declaration,
1289 // but now they really are bits.
1290 if (const auto *BI = dyn_cast<BitInit>(Arg))
1291 return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1292 BI->getValue());
1294 if (const auto *II = dyn_cast<IntInit>(Arg))
1295 return std::make_shared<IntLiteralResult>(getScalarType("u32"),
1296 II->getValue());
1298 if (const auto *DI = dyn_cast<DagInit>(Arg))
1299 return getCodeForDag(DI, Scope, Param);
1301 if (const auto *DI = dyn_cast<DefInit>(Arg)) {
1302 const Record *Rec = DI->getDef();
1303 if (Rec->isSubClassOf("Type")) {
1304 const Type *T = getType(Rec, Param);
1305 return std::make_shared<TypeResult>(T);
1309 PrintError("bad DAG argument type for code generation");
1310 PrintNote("DAG: " + D->getAsString());
1311 if (const auto *Typed = dyn_cast<TypedInit>(Arg))
1312 PrintNote("argument type: " + Typed->getType()->getAsString());
1313 PrintFatalNote("argument number " + Twine(ArgNum) + ": " + Arg->getAsString());
1316 Result::Ptr EmitterBase::getCodeForArg(unsigned ArgNum, const Type *ArgType,
1317 bool Promote, bool Immediate) {
1318 Result::Ptr V = std::make_shared<BuiltinArgResult>(
1319 ArgNum, isa<PointerType>(ArgType), Immediate);
1321 if (Promote) {
1322 if (const auto *ST = dyn_cast<ScalarType>(ArgType)) {
1323 if (ST->isInteger() && ST->sizeInBits() < 32)
1324 V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
1325 } else if (const auto *PT = dyn_cast<PredicateType>(ArgType)) {
1326 V = std::make_shared<IntCastResult>(getScalarType("u32"), V);
1327 V = std::make_shared<IRIntrinsicResult>("arm_mve_pred_i2v",
1328 std::vector<const Type *>{PT},
1329 std::vector<Result::Ptr>{V});
1333 return V;
1336 ACLEIntrinsic::ACLEIntrinsic(EmitterBase &ME, const Record *R,
1337 const Type *Param)
1338 : ReturnType(ME.getType(R->getValueAsDef("ret"), Param)) {
1339 // Derive the intrinsic's full name, by taking the name of the
1340 // Tablegen record (or override) and appending the suffix from its
1341 // parameter type. (If the intrinsic is unparametrised, its
1342 // parameter type will be given as Void, which returns the empty
1343 // string for acleSuffix.)
1344 StringRef BaseName =
1345 (R->isSubClassOf("NameOverride") ? R->getValueAsString("basename")
1346 : R->getName());
1347 StringRef overrideLetter = R->getValueAsString("overrideKindLetter");
1348 FullName =
1349 (Twine(BaseName) + Param->acleSuffix(std::string(overrideLetter))).str();
1351 // Derive the intrinsic's polymorphic name, by removing components from the
1352 // full name as specified by its 'pnt' member ('polymorphic name type'),
1353 // which indicates how many type suffixes to remove, and any other piece of
1354 // the name that should be removed.
1355 const Record *PolymorphicNameType = R->getValueAsDef("pnt");
1356 SmallVector<StringRef, 8> NameParts;
1357 StringRef(FullName).split(NameParts, '_');
1358 for (unsigned i = 0, e = PolymorphicNameType->getValueAsInt(
1359 "NumTypeSuffixesToDiscard");
1360 i < e; ++i)
1361 NameParts.pop_back();
1362 if (!PolymorphicNameType->isValueUnset("ExtraSuffixToDiscard")) {
1363 StringRef ExtraSuffix =
1364 PolymorphicNameType->getValueAsString("ExtraSuffixToDiscard");
1365 auto it = NameParts.end();
1366 while (it != NameParts.begin()) {
1367 --it;
1368 if (*it == ExtraSuffix) {
1369 NameParts.erase(it);
1370 break;
1374 ShortName = join(std::begin(NameParts), std::end(NameParts), "_");
1376 BuiltinExtension = R->getValueAsString("builtinExtension");
1378 PolymorphicOnly = R->getValueAsBit("polymorphicOnly");
1379 NonEvaluating = R->getValueAsBit("nonEvaluating");
1380 HeaderOnly = R->getValueAsBit("headerOnly");
1382 // Process the intrinsic's argument list.
1383 const DagInit *ArgsDag = R->getValueAsDag("args");
1384 Result::Scope Scope;
1385 for (unsigned i = 0, e = ArgsDag->getNumArgs(); i < e; ++i) {
1386 const Init *TypeInit = ArgsDag->getArg(i);
1388 bool Promote = true;
1389 if (const auto *TypeDI = dyn_cast<DefInit>(TypeInit))
1390 if (TypeDI->getDef()->isSubClassOf("unpromoted"))
1391 Promote = false;
1393 // Work out the type of the argument, for use in the function prototype in
1394 // the header file.
1395 const Type *ArgType = ME.getType(TypeInit, Param);
1396 ArgTypes.push_back(ArgType);
1398 // If the argument is a subclass of Immediate, record the details about
1399 // what values it can take, for Sema checking.
1400 bool Immediate = false;
1401 if (const auto *TypeDI = dyn_cast<DefInit>(TypeInit)) {
1402 const Record *TypeRec = TypeDI->getDef();
1403 if (TypeRec->isSubClassOf("Immediate")) {
1404 Immediate = true;
1406 const Record *Bounds = TypeRec->getValueAsDef("bounds");
1407 ImmediateArg &IA = ImmediateArgs[i];
1408 if (Bounds->isSubClassOf("IB_ConstRange")) {
1409 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1410 IA.i1 = Bounds->getValueAsInt("lo");
1411 IA.i2 = Bounds->getValueAsInt("hi");
1412 } else if (Bounds->getName() == "IB_UEltValue") {
1413 IA.boundsType = ImmediateArg::BoundsType::UInt;
1414 IA.i1 = Param->sizeInBits();
1415 } else if (Bounds->getName() == "IB_LaneIndex") {
1416 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1417 IA.i1 = 0;
1418 IA.i2 = 128 / Param->sizeInBits() - 1;
1419 } else if (Bounds->isSubClassOf("IB_EltBit")) {
1420 IA.boundsType = ImmediateArg::BoundsType::ExplicitRange;
1421 IA.i1 = Bounds->getValueAsInt("base");
1422 const Type *T = ME.getType(Bounds->getValueAsDef("type"), Param);
1423 IA.i2 = IA.i1 + T->sizeInBits() - 1;
1424 } else {
1425 PrintFatalError("unrecognised ImmediateBounds subclass");
1428 IA.ArgType = ArgType;
1430 if (!TypeRec->isValueUnset("extra")) {
1431 IA.ExtraCheckType = TypeRec->getValueAsString("extra");
1432 if (!TypeRec->isValueUnset("extraarg"))
1433 IA.ExtraCheckArgs = TypeRec->getValueAsString("extraarg");
1438 // The argument will usually have a name in the arguments dag, which goes
1439 // into the variable-name scope that the code gen will refer to.
1440 StringRef ArgName = ArgsDag->getArgNameStr(i);
1441 if (!ArgName.empty())
1442 Scope[std::string(ArgName)] =
1443 ME.getCodeForArg(i, ArgType, Promote, Immediate);
1446 // Finally, go through the codegen dag and translate it into a Result object
1447 // (with an arbitrary DAG of depended-on Results hanging off it).
1448 const DagInit *CodeDag = R->getValueAsDag("codegen");
1449 const Record *MainOp = cast<DefInit>(CodeDag->getOperator())->getDef();
1450 if (MainOp->isSubClassOf("CustomCodegen")) {
1451 // Or, if it's the special case of CustomCodegen, just accumulate
1452 // a list of parameters we're going to assign to variables before
1453 // breaking from the loop.
1454 CustomCodeGenArgs["CustomCodeGenType"] =
1455 (Twine("CustomCodeGen::") + MainOp->getValueAsString("type")).str();
1456 for (unsigned i = 0, e = CodeDag->getNumArgs(); i < e; ++i) {
1457 StringRef Name = CodeDag->getArgNameStr(i);
1458 if (Name.empty()) {
1459 PrintFatalError("Operands to CustomCodegen should have names");
1460 } else if (const auto *II = dyn_cast<IntInit>(CodeDag->getArg(i))) {
1461 CustomCodeGenArgs[std::string(Name)] = itostr(II->getValue());
1462 } else if (const auto *SI = dyn_cast<StringInit>(CodeDag->getArg(i))) {
1463 CustomCodeGenArgs[std::string(Name)] = std::string(SI->getValue());
1464 } else {
1465 PrintFatalError("Operands to CustomCodegen should be integers");
1468 } else {
1469 Code = ME.getCodeForDag(CodeDag, Scope, Param);
1473 EmitterBase::EmitterBase(const RecordKeeper &Records) {
1474 // Construct the whole EmitterBase.
1476 // First, look up all the instances of PrimitiveType. This gives us the list
1477 // of vector typedefs we have to put in arm_mve.h, and also allows us to
1478 // collect all the useful ScalarType instances into a big list so that we can
1479 // use it for operations such as 'find the unsigned version of this signed
1480 // integer type'.
1481 for (const Record *R : Records.getAllDerivedDefinitions("PrimitiveType"))
1482 ScalarTypes[std::string(R->getName())] = std::make_unique<ScalarType>(R);
1484 // Now go through the instances of Intrinsic, and for each one, iterate
1485 // through its list of type parameters making an ACLEIntrinsic for each one.
1486 for (const Record *R : Records.getAllDerivedDefinitions("Intrinsic")) {
1487 for (const Record *RParam : R->getValueAsListOfDefs("params")) {
1488 const Type *Param = getType(RParam, getVoidType());
1489 auto Intrinsic = std::make_unique<ACLEIntrinsic>(*this, R, Param);
1490 ACLEIntrinsics[Intrinsic->fullName()] = std::move(Intrinsic);
1495 /// A wrapper on raw_string_ostream that contains its own buffer rather than
1496 /// having to point it at one elsewhere. (In other words, it works just like
1497 /// std::ostringstream; also, this makes it convenient to declare a whole array
1498 /// of them at once.)
1500 /// We have to set this up using multiple inheritance, to ensure that the
1501 /// string member has been constructed before raw_string_ostream's constructor
1502 /// is given a pointer to it.
1503 class string_holder {
1504 protected:
1505 std::string S;
1507 class raw_self_contained_string_ostream : private string_holder,
1508 public raw_string_ostream {
1509 public:
1510 raw_self_contained_string_ostream() : raw_string_ostream(S) {}
1513 const char LLVMLicenseHeader[] =
1514 " *\n"
1515 " *\n"
1516 " * Part of the LLVM Project, under the Apache License v2.0 with LLVM"
1517 " Exceptions.\n"
1518 " * See https://llvm.org/LICENSE.txt for license information.\n"
1519 " * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception\n"
1520 " *\n"
1521 " *===-----------------------------------------------------------------"
1522 "------===\n"
1523 " */\n"
1524 "\n";
1526 // Machinery for the grouping of intrinsics by similar codegen.
1528 // The general setup is that 'MergeableGroup' stores the things that a set of
1529 // similarly shaped intrinsics have in common: the text of their code
1530 // generation, and the number and type of their parameter variables.
1531 // MergeableGroup is the key in a std::map whose value is a set of
1532 // OutputIntrinsic, which stores the ways in which a particular intrinsic
1533 // specializes the MergeableGroup's generic description: the function name and
1534 // the _values_ of the parameter variables.
1536 struct ComparableStringVector : std::vector<std::string> {
1537 // Infrastructure: a derived class of vector<string> which comes with an
1538 // ordering, so that it can be used as a key in maps and an element in sets.
1539 // There's no requirement on the ordering beyond being deterministic.
1540 bool operator<(const ComparableStringVector &rhs) const {
1541 if (size() != rhs.size())
1542 return size() < rhs.size();
1543 for (size_t i = 0, e = size(); i < e; ++i)
1544 if ((*this)[i] != rhs[i])
1545 return (*this)[i] < rhs[i];
1546 return false;
1550 struct OutputIntrinsic {
1551 const ACLEIntrinsic *Int;
1552 std::string Name;
1553 ComparableStringVector ParamValues;
1554 bool operator<(const OutputIntrinsic &rhs) const {
1555 if (Name != rhs.Name)
1556 return Name < rhs.Name;
1557 return ParamValues < rhs.ParamValues;
1560 struct MergeableGroup {
1561 std::string Code;
1562 ComparableStringVector ParamTypes;
1563 bool operator<(const MergeableGroup &rhs) const {
1564 if (Code != rhs.Code)
1565 return Code < rhs.Code;
1566 return ParamTypes < rhs.ParamTypes;
1570 void EmitterBase::EmitBuiltinCG(raw_ostream &OS) {
1571 // Pass 1: generate code for all the intrinsics as if every type or constant
1572 // that can possibly be abstracted out into a parameter variable will be.
1573 // This identifies the sets of intrinsics we'll group together into a single
1574 // piece of code generation.
1576 std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroupsPrelim;
1578 for (const auto &kv : ACLEIntrinsics) {
1579 const ACLEIntrinsic &Int = *kv.second;
1580 if (Int.headerOnly())
1581 continue;
1583 MergeableGroup MG;
1584 OutputIntrinsic OI;
1586 OI.Int = &Int;
1587 OI.Name = Int.fullName();
1588 CodeGenParamAllocator ParamAllocPrelim{&MG.ParamTypes, &OI.ParamValues};
1589 raw_string_ostream OS(MG.Code);
1590 Int.genCode(OS, ParamAllocPrelim, 1);
1592 MergeableGroupsPrelim[MG].insert(OI);
1595 // Pass 2: for each of those groups, optimize the parameter variable set by
1596 // eliminating 'parameters' that are the same for all intrinsics in the
1597 // group, and merging together pairs of parameter variables that take the
1598 // same values as each other for all intrinsics in the group.
1600 std::map<MergeableGroup, std::set<OutputIntrinsic>> MergeableGroups;
1602 for (const auto &kv : MergeableGroupsPrelim) {
1603 const MergeableGroup &MG = kv.first;
1604 std::vector<int> ParamNumbers;
1605 std::map<ComparableStringVector, int> ParamNumberMap;
1607 // Loop over the parameters for this group.
1608 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
1609 // Is this parameter the same for all intrinsics in the group?
1610 const OutputIntrinsic &OI_first = *kv.second.begin();
1611 bool Constant = all_of(kv.second, [&](const OutputIntrinsic &OI) {
1612 return OI.ParamValues[i] == OI_first.ParamValues[i];
1615 // If so, record it as -1, meaning 'no parameter variable needed'. Then
1616 // the corresponding call to allocParam in pass 2 will not generate a
1617 // variable at all, and just use the value inline.
1618 if (Constant) {
1619 ParamNumbers.push_back(-1);
1620 continue;
1623 // Otherwise, make a list of the values this parameter takes for each
1624 // intrinsic, and see if that value vector matches anything we already
1625 // have. We also record the parameter type, so that we don't accidentally
1626 // match up two parameter variables with different types. (Not that
1627 // there's much chance of them having textually equivalent values, but in
1628 // _principle_ it could happen.)
1629 ComparableStringVector key;
1630 key.push_back(MG.ParamTypes[i]);
1631 for (const auto &OI : kv.second)
1632 key.push_back(OI.ParamValues[i]);
1634 auto Found = ParamNumberMap.find(key);
1635 if (Found != ParamNumberMap.end()) {
1636 // Yes, an existing parameter variable can be reused for this.
1637 ParamNumbers.push_back(Found->second);
1638 continue;
1641 // No, we need a new parameter variable.
1642 int ExistingIndex = ParamNumberMap.size();
1643 ParamNumberMap[key] = ExistingIndex;
1644 ParamNumbers.push_back(ExistingIndex);
1647 // Now we're ready to do the pass 2 code generation, which will emit the
1648 // reduced set of parameter variables we've just worked out.
1650 for (const auto &OI_prelim : kv.second) {
1651 const ACLEIntrinsic *Int = OI_prelim.Int;
1653 MergeableGroup MG;
1654 OutputIntrinsic OI;
1656 OI.Int = OI_prelim.Int;
1657 OI.Name = OI_prelim.Name;
1658 CodeGenParamAllocator ParamAlloc{&MG.ParamTypes, &OI.ParamValues,
1659 &ParamNumbers};
1660 raw_string_ostream OS(MG.Code);
1661 Int->genCode(OS, ParamAlloc, 2);
1663 MergeableGroups[MG].insert(OI);
1667 // Output the actual C++ code.
1669 for (const auto &kv : MergeableGroups) {
1670 const MergeableGroup &MG = kv.first;
1672 // List of case statements in the main switch on BuiltinID, and an open
1673 // brace.
1674 const char *prefix = "";
1675 for (const auto &OI : kv.second) {
1676 OS << prefix << "case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
1677 << "_" << OI.Name << ":";
1679 prefix = "\n";
1681 OS << " {\n";
1683 if (!MG.ParamTypes.empty()) {
1684 // If we've got some parameter variables, then emit their declarations...
1685 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i) {
1686 StringRef Type = MG.ParamTypes[i];
1687 OS << " " << Type;
1688 if (!Type.ends_with("*"))
1689 OS << " ";
1690 OS << " Param" << utostr(i) << ";\n";
1693 // ... and an inner switch on BuiltinID that will fill them in with each
1694 // individual intrinsic's values.
1695 OS << " switch (BuiltinID) {\n";
1696 for (const auto &OI : kv.second) {
1697 OS << " case ARM::BI__builtin_arm_" << OI.Int->builtinExtension()
1698 << "_" << OI.Name << ":\n";
1699 for (size_t i = 0, e = MG.ParamTypes.size(); i < e; ++i)
1700 OS << " Param" << utostr(i) << " = " << OI.ParamValues[i] << ";\n";
1701 OS << " break;\n";
1703 OS << " }\n";
1706 // And finally, output the code, and close the outer pair of braces. (The
1707 // code will always end with a 'return' statement, so we need not insert a
1708 // 'break' here.)
1709 OS << MG.Code << "}\n";
1713 void EmitterBase::EmitBuiltinAliases(raw_ostream &OS) {
1714 // Build a sorted table of:
1715 // - intrinsic id number
1716 // - full name
1717 // - polymorphic name or -1
1718 StringToOffsetTable StringTable;
1719 OS << "static const IntrinToName MapData[] = {\n";
1720 for (const auto &kv : ACLEIntrinsics) {
1721 const ACLEIntrinsic &Int = *kv.second;
1722 if (Int.headerOnly())
1723 continue;
1724 int32_t ShortNameOffset =
1725 Int.polymorphic() ? StringTable.GetOrAddStringOffset(Int.shortName())
1726 : -1;
1727 OS << " { ARM::BI__builtin_arm_" << Int.builtinExtension() << "_"
1728 << Int.fullName() << ", "
1729 << StringTable.GetOrAddStringOffset(Int.fullName()) << ", "
1730 << ShortNameOffset << "},\n";
1732 OS << "};\n\n";
1734 OS << "ArrayRef<IntrinToName> Map(MapData);\n\n";
1736 OS << "static const char IntrinNames[] = {\n";
1737 StringTable.EmitString(OS);
1738 OS << "};\n\n";
1741 void EmitterBase::GroupSemaChecks(
1742 std::map<std::string, std::set<std::string>> &Checks) {
1743 for (const auto &kv : ACLEIntrinsics) {
1744 const ACLEIntrinsic &Int = *kv.second;
1745 if (Int.headerOnly())
1746 continue;
1747 std::string Check = Int.genSema();
1748 if (!Check.empty())
1749 Checks[Check].insert(Int.fullName());
1753 // -----------------------------------------------------------------------------
1754 // The class used for generating arm_mve.h and related Clang bits
1757 class MveEmitter : public EmitterBase {
1758 public:
1759 MveEmitter(const RecordKeeper &Records) : EmitterBase(Records) {}
1760 void EmitHeader(raw_ostream &OS) override;
1761 void EmitBuiltinDef(raw_ostream &OS) override;
1762 void EmitBuiltinSema(raw_ostream &OS) override;
1765 void MveEmitter::EmitHeader(raw_ostream &OS) {
1766 // Accumulate pieces of the header file that will be enabled under various
1767 // different combinations of #ifdef. The index into parts[] is made up of
1768 // the following bit flags.
1769 constexpr unsigned Float = 1;
1770 constexpr unsigned UseUserNamespace = 2;
1772 constexpr unsigned NumParts = 4;
1773 raw_self_contained_string_ostream parts[NumParts];
1775 // Write typedefs for all the required vector types, and a few scalar
1776 // types that don't already have the name we want them to have.
1778 parts[0] << "typedef uint16_t mve_pred16_t;\n";
1779 parts[Float] << "typedef __fp16 float16_t;\n"
1780 "typedef float float32_t;\n";
1781 for (const auto &kv : ScalarTypes) {
1782 const ScalarType *ST = kv.second.get();
1783 if (ST->hasNonstandardName())
1784 continue;
1785 raw_ostream &OS = parts[ST->requiresFloat() ? Float : 0];
1786 const VectorType *VT = getVectorType(ST);
1788 OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
1789 << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
1790 << VT->cName() << ";\n";
1792 // Every vector type also comes with a pair of multi-vector types for
1793 // the VLD2 and VLD4 instructions.
1794 for (unsigned n = 2; n <= 4; n += 2) {
1795 const MultiVectorType *MT = getMultiVectorType(n, VT);
1796 OS << "typedef struct { " << VT->cName() << " val[" << n << "]; } "
1797 << MT->cName() << ";\n";
1800 parts[0] << "\n";
1801 parts[Float] << "\n";
1803 // Write declarations for all the intrinsics.
1805 for (const auto &kv : ACLEIntrinsics) {
1806 const ACLEIntrinsic &Int = *kv.second;
1808 // We generate each intrinsic twice, under its full unambiguous
1809 // name and its shorter polymorphic name (if the latter exists).
1810 for (bool Polymorphic : {false, true}) {
1811 if (Polymorphic && !Int.polymorphic())
1812 continue;
1813 if (!Polymorphic && Int.polymorphicOnly())
1814 continue;
1816 // We also generate each intrinsic under a name like __arm_vfooq
1817 // (which is in C language implementation namespace, so it's
1818 // safe to define in any conforming user program) and a shorter
1819 // one like vfooq (which is in user namespace, so a user might
1820 // reasonably have used it for something already). If so, they
1821 // can #define __ARM_MVE_PRESERVE_USER_NAMESPACE before
1822 // including the header, which will suppress the shorter names
1823 // and leave only the implementation-namespace ones. Then they
1824 // have to write __arm_vfooq everywhere, of course.
1826 for (bool UserNamespace : {false, true}) {
1827 raw_ostream &OS = parts[(Int.requiresFloat() ? Float : 0) |
1828 (UserNamespace ? UseUserNamespace : 0)];
1830 // Make the name of the function in this declaration.
1832 std::string FunctionName =
1833 Polymorphic ? Int.shortName() : Int.fullName();
1834 if (!UserNamespace)
1835 FunctionName = "__arm_" + FunctionName;
1837 // Make strings for the types involved in the function's
1838 // prototype.
1840 std::string RetTypeName = Int.returnType()->cName();
1841 if (!StringRef(RetTypeName).ends_with("*"))
1842 RetTypeName += " ";
1844 std::vector<std::string> ArgTypeNames;
1845 for (const Type *ArgTypePtr : Int.argTypes())
1846 ArgTypeNames.push_back(ArgTypePtr->cName());
1847 std::string ArgTypesString =
1848 join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");
1850 // Emit the actual declaration. All these functions are
1851 // declared 'static inline' without a body, which is fine
1852 // provided clang recognizes them as builtins, and has the
1853 // effect that this type signature is used in place of the one
1854 // that Builtins.td didn't provide. That's how we can get
1855 // structure types that weren't defined until this header was
1856 // included to be part of the type signature of a builtin that
1857 // was known to clang already.
1859 // The declarations use __attribute__(__clang_arm_builtin_alias),
1860 // so that each function declared will be recognized as the
1861 // appropriate MVE builtin in spite of its user-facing name.
1863 // (That's better than making them all wrapper functions,
1864 // partly because it avoids any compiler error message citing
1865 // the wrapper function definition instead of the user's code,
1866 // and mostly because some MVE intrinsics have arguments
1867 // required to be compile-time constants, and that property
1868 // can't be propagated through a wrapper function. It can be
1869 // propagated through a macro, but macros can't be overloaded
1870 // on argument types very easily - you have to use _Generic,
1871 // which makes error messages very confusing when the user
1872 // gets it wrong.)
1874 // Finally, the polymorphic versions of the intrinsics are
1875 // also defined with __attribute__(overloadable), so that when
1876 // the same name is defined with several type signatures, the
1877 // right thing happens. Each one of the overloaded
1878 // declarations is given a different builtin id, which
1879 // has exactly the effect we want: first clang resolves the
1880 // overload to the right function, then it knows which builtin
1881 // it's referring to, and then the Sema checking for that
1882 // builtin can check further things like the constant
1883 // arguments.
1885 // One more subtlety is the newline just before the return
1886 // type name. That's a cosmetic tweak to make the error
1887 // messages legible if the user gets the types wrong in a call
1888 // to a polymorphic function: this way, clang will print just
1889 // the _final_ line of each declaration in the header, to show
1890 // the type signatures that would have been legal. So all the
1891 // confusing machinery with __attribute__ is left out of the
1892 // error message, and the user sees something that's more or
1893 // less self-documenting: "here's a list of actually readable
1894 // type signatures for vfooq(), and here's why each one didn't
1895 // match your call".
1897 OS << "static __inline__ __attribute__(("
1898 << (Polymorphic ? "__overloadable__, " : "")
1899 << "__clang_arm_builtin_alias(__builtin_arm_mve_" << Int.fullName()
1900 << ")))\n"
1901 << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
1905 for (auto &part : parts)
1906 part << "\n";
1908 // Now we've finished accumulating bits and pieces into the parts[] array.
1909 // Put it all together to write the final output file.
1911 OS << "/*===---- arm_mve.h - ARM MVE intrinsics "
1912 "-----------------------------------===\n"
1913 << LLVMLicenseHeader
1914 << "#ifndef __ARM_MVE_H\n"
1915 "#define __ARM_MVE_H\n"
1916 "\n"
1917 "#if !__ARM_FEATURE_MVE\n"
1918 "#error \"MVE support not enabled\"\n"
1919 "#endif\n"
1920 "\n"
1921 "#include <stdint.h>\n"
1922 "\n"
1923 "#ifdef __cplusplus\n"
1924 "extern \"C\" {\n"
1925 "#endif\n"
1926 "\n";
1928 for (size_t i = 0; i < NumParts; ++i) {
1929 std::vector<std::string> conditions;
1930 if (i & Float)
1931 conditions.push_back("(__ARM_FEATURE_MVE & 2)");
1932 if (i & UseUserNamespace)
1933 conditions.push_back("(!defined __ARM_MVE_PRESERVE_USER_NAMESPACE)");
1935 std::string condition =
1936 join(std::begin(conditions), std::end(conditions), " && ");
1937 if (!condition.empty())
1938 OS << "#if " << condition << "\n\n";
1939 OS << parts[i].str();
1940 if (!condition.empty())
1941 OS << "#endif /* " << condition << " */\n\n";
1944 OS << "#ifdef __cplusplus\n"
1945 "} /* extern \"C\" */\n"
1946 "#endif\n"
1947 "\n"
1948 "#endif /* __ARM_MVE_H */\n";
1951 void MveEmitter::EmitBuiltinDef(raw_ostream &OS) {
1952 for (const auto &kv : ACLEIntrinsics) {
1953 const ACLEIntrinsic &Int = *kv.second;
1954 OS << "BUILTIN(__builtin_arm_mve_" << Int.fullName()
1955 << ", \"\", \"n\")\n";
1958 std::set<std::string> ShortNamesSeen;
1960 for (const auto &kv : ACLEIntrinsics) {
1961 const ACLEIntrinsic &Int = *kv.second;
1962 if (Int.polymorphic()) {
1963 StringRef Name = Int.shortName();
1964 if (ShortNamesSeen.find(std::string(Name)) == ShortNamesSeen.end()) {
1965 OS << "BUILTIN(__builtin_arm_mve_" << Name << ", \"vi.\", \"nt";
1966 if (Int.nonEvaluating())
1967 OS << "u"; // indicate that this builtin doesn't evaluate its args
1968 OS << "\")\n";
1969 ShortNamesSeen.insert(std::string(Name));
1975 void MveEmitter::EmitBuiltinSema(raw_ostream &OS) {
1976 std::map<std::string, std::set<std::string>> Checks;
1977 GroupSemaChecks(Checks);
1979 for (const auto &kv : Checks) {
1980 for (StringRef Name : kv.second)
1981 OS << "case ARM::BI__builtin_arm_mve_" << Name << ":\n";
1982 OS << " return " << kv.first;
1986 // -----------------------------------------------------------------------------
1987 // Class that describes an ACLE intrinsic implemented as a macro.
1989 // This class is used when the intrinsic is polymorphic in 2 or 3 types, but we
1990 // want to avoid a combinatorial explosion by reinterpreting the arguments to
1991 // fixed types.
1993 class FunctionMacro {
1994 std::vector<StringRef> Params;
1995 StringRef Definition;
1997 public:
1998 FunctionMacro(const Record &R);
2000 const std::vector<StringRef> &getParams() const { return Params; }
2001 StringRef getDefinition() const { return Definition; }
2004 FunctionMacro::FunctionMacro(const Record &R) {
2005 Params = R.getValueAsListOfStrings("params");
2006 Definition = R.getValueAsString("definition");
2009 // -----------------------------------------------------------------------------
2010 // The class used for generating arm_cde.h and related Clang bits
2013 class CdeEmitter : public EmitterBase {
2014 std::map<StringRef, FunctionMacro> FunctionMacros;
2016 public:
2017 CdeEmitter(const RecordKeeper &Records);
2018 void EmitHeader(raw_ostream &OS) override;
2019 void EmitBuiltinDef(raw_ostream &OS) override;
2020 void EmitBuiltinSema(raw_ostream &OS) override;
2023 CdeEmitter::CdeEmitter(const RecordKeeper &Records) : EmitterBase(Records) {
2024 for (const Record *R : Records.getAllDerivedDefinitions("FunctionMacro"))
2025 FunctionMacros.emplace(R->getName(), FunctionMacro(*R));
2028 void CdeEmitter::EmitHeader(raw_ostream &OS) {
2029 // Accumulate pieces of the header file that will be enabled under various
2030 // different combinations of #ifdef. The index into parts[] is one of the
2031 // following:
2032 constexpr unsigned None = 0;
2033 constexpr unsigned MVE = 1;
2034 constexpr unsigned MVEFloat = 2;
2036 constexpr unsigned NumParts = 3;
2037 raw_self_contained_string_ostream parts[NumParts];
2039 // Write typedefs for all the required vector types, and a few scalar
2040 // types that don't already have the name we want them to have.
2042 parts[MVE] << "typedef uint16_t mve_pred16_t;\n";
2043 parts[MVEFloat] << "typedef __fp16 float16_t;\n"
2044 "typedef float float32_t;\n";
2045 for (const auto &kv : ScalarTypes) {
2046 const ScalarType *ST = kv.second.get();
2047 if (ST->hasNonstandardName())
2048 continue;
2049 // We don't have float64x2_t
2050 if (ST->kind() == ScalarTypeKind::Float && ST->sizeInBits() == 64)
2051 continue;
2052 raw_ostream &OS = parts[ST->requiresFloat() ? MVEFloat : MVE];
2053 const VectorType *VT = getVectorType(ST);
2055 OS << "typedef __attribute__((__neon_vector_type__(" << VT->lanes()
2056 << "), __clang_arm_mve_strict_polymorphism)) " << ST->cName() << " "
2057 << VT->cName() << ";\n";
2059 parts[MVE] << "\n";
2060 parts[MVEFloat] << "\n";
2062 // Write declarations for all the intrinsics.
2064 for (const auto &kv : ACLEIntrinsics) {
2065 const ACLEIntrinsic &Int = *kv.second;
2067 // We generate each intrinsic twice, under its full unambiguous
2068 // name and its shorter polymorphic name (if the latter exists).
2069 for (bool Polymorphic : {false, true}) {
2070 if (Polymorphic && !Int.polymorphic())
2071 continue;
2072 if (!Polymorphic && Int.polymorphicOnly())
2073 continue;
2075 raw_ostream &OS =
2076 parts[Int.requiresFloat() ? MVEFloat
2077 : Int.requiresMVE() ? MVE : None];
2079 // Make the name of the function in this declaration.
2080 std::string FunctionName =
2081 "__arm_" + (Polymorphic ? Int.shortName() : Int.fullName());
2083 // Make strings for the types involved in the function's
2084 // prototype.
2085 std::string RetTypeName = Int.returnType()->cName();
2086 if (!StringRef(RetTypeName).ends_with("*"))
2087 RetTypeName += " ";
2089 std::vector<std::string> ArgTypeNames;
2090 for (const Type *ArgTypePtr : Int.argTypes())
2091 ArgTypeNames.push_back(ArgTypePtr->cName());
2092 std::string ArgTypesString =
2093 join(std::begin(ArgTypeNames), std::end(ArgTypeNames), ", ");
2095 // Emit the actual declaration. See MveEmitter::EmitHeader for detailed
2096 // comments
2097 OS << "static __inline__ __attribute__(("
2098 << (Polymorphic ? "__overloadable__, " : "")
2099 << "__clang_arm_builtin_alias(__builtin_arm_" << Int.builtinExtension()
2100 << "_" << Int.fullName() << ")))\n"
2101 << RetTypeName << FunctionName << "(" << ArgTypesString << ");\n";
2105 for (const auto &kv : FunctionMacros) {
2106 StringRef Name = kv.first;
2107 const FunctionMacro &FM = kv.second;
2109 raw_ostream &OS = parts[MVE];
2110 OS << "#define "
2111 << "__arm_" << Name << "(" << join(FM.getParams(), ", ") << ") "
2112 << FM.getDefinition() << "\n";
2115 for (auto &part : parts)
2116 part << "\n";
2118 // Now we've finished accumulating bits and pieces into the parts[] array.
2119 // Put it all together to write the final output file.
2121 OS << "/*===---- arm_cde.h - ARM CDE intrinsics "
2122 "-----------------------------------===\n"
2123 << LLVMLicenseHeader
2124 << "#ifndef __ARM_CDE_H\n"
2125 "#define __ARM_CDE_H\n"
2126 "\n"
2127 "#if !__ARM_FEATURE_CDE\n"
2128 "#error \"CDE support not enabled\"\n"
2129 "#endif\n"
2130 "\n"
2131 "#include <stdint.h>\n"
2132 "\n"
2133 "#ifdef __cplusplus\n"
2134 "extern \"C\" {\n"
2135 "#endif\n"
2136 "\n";
2138 for (size_t i = 0; i < NumParts; ++i) {
2139 std::string condition;
2140 if (i == MVEFloat)
2141 condition = "__ARM_FEATURE_MVE & 2";
2142 else if (i == MVE)
2143 condition = "__ARM_FEATURE_MVE";
2145 if (!condition.empty())
2146 OS << "#if " << condition << "\n\n";
2147 OS << parts[i].str();
2148 if (!condition.empty())
2149 OS << "#endif /* " << condition << " */\n\n";
2152 OS << "#ifdef __cplusplus\n"
2153 "} /* extern \"C\" */\n"
2154 "#endif\n"
2155 "\n"
2156 "#endif /* __ARM_CDE_H */\n";
2159 void CdeEmitter::EmitBuiltinDef(raw_ostream &OS) {
2160 for (const auto &kv : ACLEIntrinsics) {
2161 if (kv.second->headerOnly())
2162 continue;
2163 const ACLEIntrinsic &Int = *kv.second;
2164 OS << "BUILTIN(__builtin_arm_cde_" << Int.fullName()
2165 << ", \"\", \"ncU\")\n";
2169 void CdeEmitter::EmitBuiltinSema(raw_ostream &OS) {
2170 std::map<std::string, std::set<std::string>> Checks;
2171 GroupSemaChecks(Checks);
2173 for (const auto &kv : Checks) {
2174 for (StringRef Name : kv.second)
2175 OS << "case ARM::BI__builtin_arm_cde_" << Name << ":\n";
2176 OS << " Err = " << kv.first << " break;\n";
2180 } // namespace
2182 namespace clang {
2184 // MVE
2186 void EmitMveHeader(const RecordKeeper &Records, raw_ostream &OS) {
2187 MveEmitter(Records).EmitHeader(OS);
2190 void EmitMveBuiltinDef(const RecordKeeper &Records, raw_ostream &OS) {
2191 MveEmitter(Records).EmitBuiltinDef(OS);
2194 void EmitMveBuiltinSema(const RecordKeeper &Records, raw_ostream &OS) {
2195 MveEmitter(Records).EmitBuiltinSema(OS);
2198 void EmitMveBuiltinCG(const RecordKeeper &Records, raw_ostream &OS) {
2199 MveEmitter(Records).EmitBuiltinCG(OS);
2202 void EmitMveBuiltinAliases(const RecordKeeper &Records, raw_ostream &OS) {
2203 MveEmitter(Records).EmitBuiltinAliases(OS);
2206 // CDE
2208 void EmitCdeHeader(const RecordKeeper &Records, raw_ostream &OS) {
2209 CdeEmitter(Records).EmitHeader(OS);
2212 void EmitCdeBuiltinDef(const RecordKeeper &Records, raw_ostream &OS) {
2213 CdeEmitter(Records).EmitBuiltinDef(OS);
2216 void EmitCdeBuiltinSema(const RecordKeeper &Records, raw_ostream &OS) {
2217 CdeEmitter(Records).EmitBuiltinSema(OS);
2220 void EmitCdeBuiltinCG(const RecordKeeper &Records, raw_ostream &OS) {
2221 CdeEmitter(Records).EmitBuiltinCG(OS);
2224 void EmitCdeBuiltinAliases(const RecordKeeper &Records, raw_ostream &OS) {
2225 CdeEmitter(Records).EmitBuiltinAliases(OS);
2228 } // end namespace clang