2 * kmp_runtime.cpp -- KPTS runtime support library
5 //===----------------------------------------------------------------------===//
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //===----------------------------------------------------------------------===//
14 #include "kmp_affinity.h"
15 #include "kmp_atomic.h"
16 #include "kmp_environment.h"
17 #include "kmp_error.h"
21 #include "kmp_settings.h"
22 #include "kmp_stats.h"
24 #include "kmp_wait_release.h"
25 #include "kmp_wrapper_getpid.h"
26 #include "kmp_dispatch.h"
27 #include "kmp_utils.h"
28 #if KMP_USE_HIER_SCHED
29 #include "kmp_dispatch_hier.h"
33 #include "ompt-specific.h"
36 #include "ompd-specific.h"
39 #if OMP_PROFILING_SUPPORT
40 #include "llvm/Support/TimeProfiler.h"
41 static char *ProfileTraceFile
= nullptr;
44 /* these are temporary issues to be dealt with */
45 #define KMP_USE_PRCTL 0
52 // Windows and WASI do not need these include files as they don't use shared
61 #if defined(KMP_GOMP_COMPAT)
62 char const __kmp_version_alt_comp
[] =
63 KMP_VERSION_PREFIX
"alternative compiler support: yes";
64 #endif /* defined(KMP_GOMP_COMPAT) */
66 char const __kmp_version_omp_api
[] =
67 KMP_VERSION_PREFIX
"API version: 5.0 (201611)";
70 char const __kmp_version_lock
[] =
71 KMP_VERSION_PREFIX
"lock type: run time selectable";
72 #endif /* KMP_DEBUG */
74 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
76 /* ------------------------------------------------------------------------ */
79 kmp_info_t __kmp_monitor
;
82 /* Forward declarations */
84 void __kmp_cleanup(void);
86 static void __kmp_initialize_info(kmp_info_t
*, kmp_team_t
*, int tid
,
88 static void __kmp_initialize_team(kmp_team_t
*team
, int new_nproc
,
89 kmp_internal_control_t
*new_icvs
,
91 #if KMP_AFFINITY_SUPPORTED
92 static void __kmp_partition_places(kmp_team_t
*team
,
93 int update_master_only
= 0);
95 static void __kmp_do_serial_initialize(void);
96 void __kmp_fork_barrier(int gtid
, int tid
);
97 void __kmp_join_barrier(int gtid
);
98 void __kmp_setup_icv_copy(kmp_team_t
*team
, int new_nproc
,
99 kmp_internal_control_t
*new_icvs
, ident_t
*loc
);
101 #ifdef USE_LOAD_BALANCE
102 static int __kmp_load_balance_nproc(kmp_root_t
*root
, int set_nproc
);
105 static int __kmp_expand_threads(int nNeed
);
107 static int __kmp_unregister_root_other_thread(int gtid
);
109 static void __kmp_reap_thread(kmp_info_t
*thread
, int is_root
);
110 kmp_info_t
*__kmp_thread_pool_insert_pt
= NULL
;
112 void __kmp_resize_dist_barrier(kmp_team_t
*team
, int old_nthreads
,
114 void __kmp_add_threads_to_team(kmp_team_t
*team
, int new_nthreads
);
116 static kmp_nested_nthreads_t
*__kmp_override_nested_nth(kmp_info_t
*thr
,
118 kmp_nested_nthreads_t
*new_nested_nth
=
119 (kmp_nested_nthreads_t
*)KMP_INTERNAL_MALLOC(
120 sizeof(kmp_nested_nthreads_t
));
121 int new_size
= level
+ thr
->th
.th_set_nested_nth_sz
;
122 new_nested_nth
->nth
= (int *)KMP_INTERNAL_MALLOC(new_size
* sizeof(int));
123 for (int i
= 0; i
< level
+ 1; ++i
)
124 new_nested_nth
->nth
[i
] = 0;
125 for (int i
= level
+ 1, j
= 1; i
< new_size
; ++i
, ++j
)
126 new_nested_nth
->nth
[i
] = thr
->th
.th_set_nested_nth
[j
];
127 new_nested_nth
->size
= new_nested_nth
->used
= new_size
;
128 return new_nested_nth
;
131 /* Calculate the identifier of the current thread */
132 /* fast (and somewhat portable) way to get unique identifier of executing
133 thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */
134 int __kmp_get_global_thread_id() {
136 kmp_info_t
**other_threads
;
144 ("*** __kmp_get_global_thread_id: entering, nproc=%d all_nproc=%d\n",
145 __kmp_nth
, __kmp_all_nth
));
147 /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to
148 a parallel region, made it return KMP_GTID_DNE to force serial_initialize
149 by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee
150 __kmp_init_gtid for this to work. */
152 if (!TCR_4(__kmp_init_gtid
))
155 #ifdef KMP_TDATA_GTID
156 if (TCR_4(__kmp_gtid_mode
) >= 3) {
157 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n"));
161 if (TCR_4(__kmp_gtid_mode
) >= 2) {
162 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n"));
163 return __kmp_gtid_get_specific();
165 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n"));
167 stack_addr
= (char *)&stack_data
;
168 other_threads
= __kmp_threads
;
170 /* ATT: The code below is a source of potential bugs due to unsynchronized
171 access to __kmp_threads array. For example:
172 1. Current thread loads other_threads[i] to thr and checks it, it is
174 2. Current thread is suspended by OS.
175 3. Another thread unregisters and finishes (debug versions of free()
176 may fill memory with something like 0xEF).
177 4. Current thread is resumed.
178 5. Current thread reads junk from *thr.
179 TODO: Fix it. --ln */
181 for (i
= 0; i
< __kmp_threads_capacity
; i
++) {
183 kmp_info_t
*thr
= (kmp_info_t
*)TCR_SYNC_PTR(other_threads
[i
]);
187 stack_size
= (size_t)TCR_PTR(thr
->th
.th_info
.ds
.ds_stacksize
);
188 stack_base
= (char *)TCR_PTR(thr
->th
.th_info
.ds
.ds_stackbase
);
190 /* stack grows down -- search through all of the active threads */
192 if (stack_addr
<= stack_base
) {
193 size_t stack_diff
= stack_base
- stack_addr
;
195 if (stack_diff
<= stack_size
) {
196 /* The only way we can be closer than the allocated */
197 /* stack size is if we are running on this thread. */
198 // __kmp_gtid_get_specific can return negative value because this
199 // function can be called by thread destructor. However, before the
200 // thread destructor is called, the value of the corresponding
201 // thread-specific data will be reset to NULL.
202 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() < 0 ||
203 __kmp_gtid_get_specific() == i
);
209 /* get specific to try and determine our gtid */
211 ("*** __kmp_get_global_thread_id: internal alg. failed to find "
212 "thread, using TLS\n"));
213 i
= __kmp_gtid_get_specific();
215 /*fprintf( stderr, "=== %d\n", i ); */ /* GROO */
217 /* if we havn't been assigned a gtid, then return code */
221 // other_threads[i] can be nullptr at this point because the corresponding
222 // thread could have already been destructed. It can happen when this function
223 // is called in end library routine.
224 if (!TCR_SYNC_PTR(other_threads
[i
]))
227 /* dynamically updated stack window for uber threads to avoid get_specific
229 if (!TCR_4(other_threads
[i
]->th
.th_info
.ds
.ds_stackgrow
)) {
230 KMP_FATAL(StackOverflow
, i
);
233 stack_base
= (char *)other_threads
[i
]->th
.th_info
.ds
.ds_stackbase
;
234 if (stack_addr
> stack_base
) {
235 TCW_PTR(other_threads
[i
]->th
.th_info
.ds
.ds_stackbase
, stack_addr
);
236 TCW_PTR(other_threads
[i
]->th
.th_info
.ds
.ds_stacksize
,
237 other_threads
[i
]->th
.th_info
.ds
.ds_stacksize
+ stack_addr
-
240 TCW_PTR(other_threads
[i
]->th
.th_info
.ds
.ds_stacksize
,
241 stack_base
- stack_addr
);
244 /* Reprint stack bounds for ubermaster since they have been refined */
245 if (__kmp_storage_map
) {
246 char *stack_end
= (char *)other_threads
[i
]->th
.th_info
.ds
.ds_stackbase
;
247 char *stack_beg
= stack_end
- other_threads
[i
]->th
.th_info
.ds
.ds_stacksize
;
248 __kmp_print_storage_map_gtid(i
, stack_beg
, stack_end
,
249 other_threads
[i
]->th
.th_info
.ds
.ds_stacksize
,
250 "th_%d stack (refinement)", i
);
255 int __kmp_get_global_thread_id_reg() {
258 if (!__kmp_init_serial
) {
261 #ifdef KMP_TDATA_GTID
262 if (TCR_4(__kmp_gtid_mode
) >= 3) {
263 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n"));
267 if (TCR_4(__kmp_gtid_mode
) >= 2) {
268 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n"));
269 gtid
= __kmp_gtid_get_specific();
272 ("*** __kmp_get_global_thread_id_reg: using internal alg.\n"));
273 gtid
= __kmp_get_global_thread_id();
276 /* we must be a new uber master sibling thread */
277 if (gtid
== KMP_GTID_DNE
) {
279 ("__kmp_get_global_thread_id_reg: Encountered new root thread. "
280 "Registering a new gtid.\n"));
281 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock
);
282 if (!__kmp_init_serial
) {
283 __kmp_do_serial_initialize();
284 gtid
= __kmp_gtid_get_specific();
286 gtid
= __kmp_register_root(FALSE
);
288 __kmp_release_bootstrap_lock(&__kmp_initz_lock
);
289 /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */
292 KMP_DEBUG_ASSERT(gtid
>= 0);
297 /* caller must hold forkjoin_lock */
298 void __kmp_check_stack_overlap(kmp_info_t
*th
) {
300 char *stack_beg
= NULL
;
301 char *stack_end
= NULL
;
304 KA_TRACE(10, ("__kmp_check_stack_overlap: called\n"));
305 if (__kmp_storage_map
) {
306 stack_end
= (char *)th
->th
.th_info
.ds
.ds_stackbase
;
307 stack_beg
= stack_end
- th
->th
.th_info
.ds
.ds_stacksize
;
309 gtid
= __kmp_gtid_from_thread(th
);
311 if (gtid
== KMP_GTID_MONITOR
) {
312 __kmp_print_storage_map_gtid(
313 gtid
, stack_beg
, stack_end
, th
->th
.th_info
.ds
.ds_stacksize
,
314 "th_%s stack (%s)", "mon",
315 (th
->th
.th_info
.ds
.ds_stackgrow
) ? "initial" : "actual");
317 __kmp_print_storage_map_gtid(
318 gtid
, stack_beg
, stack_end
, th
->th
.th_info
.ds
.ds_stacksize
,
319 "th_%d stack (%s)", gtid
,
320 (th
->th
.th_info
.ds
.ds_stackgrow
) ? "initial" : "actual");
324 /* No point in checking ubermaster threads since they use refinement and
326 gtid
= __kmp_gtid_from_thread(th
);
327 if (__kmp_env_checks
== TRUE
&& !KMP_UBER_GTID(gtid
)) {
329 ("__kmp_check_stack_overlap: performing extensive checking\n"));
330 if (stack_beg
== NULL
) {
331 stack_end
= (char *)th
->th
.th_info
.ds
.ds_stackbase
;
332 stack_beg
= stack_end
- th
->th
.th_info
.ds
.ds_stacksize
;
335 for (f
= 0; f
< __kmp_threads_capacity
; f
++) {
336 kmp_info_t
*f_th
= (kmp_info_t
*)TCR_SYNC_PTR(__kmp_threads
[f
]);
338 if (f_th
&& f_th
!= th
) {
339 char *other_stack_end
=
340 (char *)TCR_PTR(f_th
->th
.th_info
.ds
.ds_stackbase
);
341 char *other_stack_beg
=
342 other_stack_end
- (size_t)TCR_PTR(f_th
->th
.th_info
.ds
.ds_stacksize
);
343 if ((stack_beg
> other_stack_beg
&& stack_beg
< other_stack_end
) ||
344 (stack_end
> other_stack_beg
&& stack_end
< other_stack_end
)) {
346 /* Print the other stack values before the abort */
347 if (__kmp_storage_map
)
348 __kmp_print_storage_map_gtid(
349 -1, other_stack_beg
, other_stack_end
,
350 (size_t)TCR_PTR(f_th
->th
.th_info
.ds
.ds_stacksize
),
351 "th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th
));
353 __kmp_fatal(KMP_MSG(StackOverlap
), KMP_HNT(ChangeStackLimit
),
359 KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n"));
362 /* ------------------------------------------------------------------------ */
364 void __kmp_infinite_loop(void) {
365 static int done
= FALSE
;
372 #define MAX_MESSAGE 512
374 void __kmp_print_storage_map_gtid(int gtid
, void *p1
, void *p2
, size_t size
,
375 char const *format
, ...) {
376 char buffer
[MAX_MESSAGE
];
379 va_start(ap
, format
);
380 KMP_SNPRINTF(buffer
, sizeof(buffer
), "OMP storage map: %p %p%8lu %s\n", p1
,
381 p2
, (unsigned long)size
, format
);
382 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock
);
383 __kmp_vprintf(kmp_err
, buffer
, ap
);
384 #if KMP_PRINT_DATA_PLACEMENT
387 if (p1
<= p2
&& (char *)p2
- (char *)p1
== size
) {
388 if (__kmp_storage_map_verbose
) {
389 node
= __kmp_get_host_node(p1
);
390 if (node
< 0) /* doesn't work, so don't try this next time */
391 __kmp_storage_map_verbose
= FALSE
;
395 int localProc
= __kmp_get_cpu_from_gtid(gtid
);
397 const int page_size
= KMP_GET_PAGE_SIZE();
399 p1
= (void *)((size_t)p1
& ~((size_t)page_size
- 1));
400 p2
= (void *)(((size_t)p2
- 1) & ~((size_t)page_size
- 1));
402 __kmp_printf_no_lock(" GTID %d localNode %d\n", gtid
,
405 __kmp_printf_no_lock(" GTID %d\n", gtid
);
407 /* The more elaborate format is disabled for now because of the prctl
412 /* This loop collates adjacent pages with the same host node. */
414 (char *)p1
+= page_size
;
415 } while (p1
<= p2
&& (node
= __kmp_get_host_node(p1
)) == lastNode
);
416 __kmp_printf_no_lock(" %p-%p memNode %d\n", last
, (char *)p1
- 1,
420 __kmp_printf_no_lock(" %p-%p memNode %d\n", p1
,
421 (char *)p1
+ (page_size
- 1),
422 __kmp_get_host_node(p1
));
424 __kmp_printf_no_lock(" %p-%p memNode %d\n", p2
,
425 (char *)p2
+ (page_size
- 1),
426 __kmp_get_host_node(p2
));
432 __kmp_printf_no_lock(" %s\n", KMP_I18N_STR(StorageMapWarning
));
434 #endif /* KMP_PRINT_DATA_PLACEMENT */
435 __kmp_release_bootstrap_lock(&__kmp_stdio_lock
);
440 void __kmp_warn(char const *format
, ...) {
441 char buffer
[MAX_MESSAGE
];
444 if (__kmp_generate_warnings
== kmp_warnings_off
) {
448 va_start(ap
, format
);
450 KMP_SNPRINTF(buffer
, sizeof(buffer
), "OMP warning: %s\n", format
);
451 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock
);
452 __kmp_vprintf(kmp_err
, buffer
, ap
);
453 __kmp_release_bootstrap_lock(&__kmp_stdio_lock
);
458 void __kmp_abort_process() {
459 // Later threads may stall here, but that's ok because abort() will kill them.
460 __kmp_acquire_bootstrap_lock(&__kmp_exit_lock
);
462 if (__kmp_debug_buf
) {
463 __kmp_dump_debug_buffer();
467 // Let other threads know of abnormal termination and prevent deadlock
468 // if abort happened during library initialization or shutdown
469 __kmp_global
.g
.g_abort
= SIGABRT
;
471 /* On Windows* OS by default abort() causes pop-up error box, which stalls
472 nightly testing. Unfortunately, we cannot reliably suppress pop-up error
473 boxes. _set_abort_behavior() works well, but this function is not
474 available in VS7 (this is not problem for DLL, but it is a problem for
475 static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not
476 help, at least in some versions of MS C RTL.
478 It seems following sequence is the only way to simulate abort() and
479 avoid pop-up error box. */
481 _exit(3); // Just in case, if signal ignored, exit anyway.
483 __kmp_unregister_library();
487 __kmp_infinite_loop();
488 __kmp_release_bootstrap_lock(&__kmp_exit_lock
);
490 } // __kmp_abort_process
492 void __kmp_abort_thread(void) {
493 // TODO: Eliminate g_abort global variable and this function.
494 // In case of abort just call abort(), it will kill all the threads.
495 __kmp_infinite_loop();
496 } // __kmp_abort_thread
498 /* Print out the storage map for the major kmp_info_t thread data structures
499 that are allocated together. */
501 static void __kmp_print_thread_storage_map(kmp_info_t
*thr
, int gtid
) {
502 __kmp_print_storage_map_gtid(gtid
, thr
, thr
+ 1, sizeof(kmp_info_t
), "th_%d",
505 __kmp_print_storage_map_gtid(gtid
, &thr
->th
.th_info
, &thr
->th
.th_team
,
506 sizeof(kmp_desc_t
), "th_%d.th_info", gtid
);
508 __kmp_print_storage_map_gtid(gtid
, &thr
->th
.th_local
, &thr
->th
.th_pri_head
,
509 sizeof(kmp_local_t
), "th_%d.th_local", gtid
);
511 __kmp_print_storage_map_gtid(
512 gtid
, &thr
->th
.th_bar
[0], &thr
->th
.th_bar
[bs_last_barrier
],
513 sizeof(kmp_balign_t
) * bs_last_barrier
, "th_%d.th_bar", gtid
);
515 __kmp_print_storage_map_gtid(gtid
, &thr
->th
.th_bar
[bs_plain_barrier
],
516 &thr
->th
.th_bar
[bs_plain_barrier
+ 1],
517 sizeof(kmp_balign_t
), "th_%d.th_bar[plain]",
520 __kmp_print_storage_map_gtid(gtid
, &thr
->th
.th_bar
[bs_forkjoin_barrier
],
521 &thr
->th
.th_bar
[bs_forkjoin_barrier
+ 1],
522 sizeof(kmp_balign_t
), "th_%d.th_bar[forkjoin]",
525 #if KMP_FAST_REDUCTION_BARRIER
526 __kmp_print_storage_map_gtid(gtid
, &thr
->th
.th_bar
[bs_reduction_barrier
],
527 &thr
->th
.th_bar
[bs_reduction_barrier
+ 1],
528 sizeof(kmp_balign_t
), "th_%d.th_bar[reduction]",
530 #endif // KMP_FAST_REDUCTION_BARRIER
533 /* Print out the storage map for the major kmp_team_t team data structures
534 that are allocated together. */
536 static void __kmp_print_team_storage_map(const char *header
, kmp_team_t
*team
,
537 int team_id
, int num_thr
) {
538 int num_disp_buff
= team
->t
.t_max_nproc
> 1 ? __kmp_dispatch_num_buffers
: 2;
539 __kmp_print_storage_map_gtid(-1, team
, team
+ 1, sizeof(kmp_team_t
), "%s_%d",
542 __kmp_print_storage_map_gtid(-1, &team
->t
.t_bar
[0],
543 &team
->t
.t_bar
[bs_last_barrier
],
544 sizeof(kmp_balign_team_t
) * bs_last_barrier
,
545 "%s_%d.t_bar", header
, team_id
);
547 __kmp_print_storage_map_gtid(-1, &team
->t
.t_bar
[bs_plain_barrier
],
548 &team
->t
.t_bar
[bs_plain_barrier
+ 1],
549 sizeof(kmp_balign_team_t
), "%s_%d.t_bar[plain]",
552 __kmp_print_storage_map_gtid(-1, &team
->t
.t_bar
[bs_forkjoin_barrier
],
553 &team
->t
.t_bar
[bs_forkjoin_barrier
+ 1],
554 sizeof(kmp_balign_team_t
),
555 "%s_%d.t_bar[forkjoin]", header
, team_id
);
557 #if KMP_FAST_REDUCTION_BARRIER
558 __kmp_print_storage_map_gtid(-1, &team
->t
.t_bar
[bs_reduction_barrier
],
559 &team
->t
.t_bar
[bs_reduction_barrier
+ 1],
560 sizeof(kmp_balign_team_t
),
561 "%s_%d.t_bar[reduction]", header
, team_id
);
562 #endif // KMP_FAST_REDUCTION_BARRIER
564 __kmp_print_storage_map_gtid(
565 -1, &team
->t
.t_dispatch
[0], &team
->t
.t_dispatch
[num_thr
],
566 sizeof(kmp_disp_t
) * num_thr
, "%s_%d.t_dispatch", header
, team_id
);
568 __kmp_print_storage_map_gtid(
569 -1, &team
->t
.t_threads
[0], &team
->t
.t_threads
[num_thr
],
570 sizeof(kmp_info_t
*) * num_thr
, "%s_%d.t_threads", header
, team_id
);
572 __kmp_print_storage_map_gtid(-1, &team
->t
.t_disp_buffer
[0],
573 &team
->t
.t_disp_buffer
[num_disp_buff
],
574 sizeof(dispatch_shared_info_t
) * num_disp_buff
,
575 "%s_%d.t_disp_buffer", header
, team_id
);
578 static void __kmp_init_allocator() {
579 __kmp_init_memkind();
580 __kmp_init_target_mem();
582 static void __kmp_fini_allocator() { __kmp_fini_memkind(); }
584 /* ------------------------------------------------------------------------ */
586 #if ENABLE_LIBOMPTARGET
587 static void __kmp_init_omptarget() {
588 __kmp_init_target_task();
592 /* ------------------------------------------------------------------------ */
597 BOOL WINAPI
DllMain(HINSTANCE hInstDLL
, DWORD fdwReason
, LPVOID lpReserved
) {
598 //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock );
602 case DLL_PROCESS_ATTACH
:
603 KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n"));
607 case DLL_PROCESS_DETACH
:
608 KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific()));
610 // According to Windows* documentation for DllMain entry point:
611 // for DLL_PROCESS_DETACH, lpReserved is used for telling the difference:
612 // lpReserved == NULL when FreeLibrary() is called,
613 // lpReserved != NULL when the process is terminated.
614 // When FreeLibrary() is called, worker threads remain alive. So the
615 // runtime's state is consistent and executing proper shutdown is OK.
616 // When the process is terminated, worker threads have exited or been
617 // forcefully terminated by the OS and only the shutdown thread remains.
618 // This can leave the runtime in an inconsistent state.
619 // Hence, only attempt proper cleanup when FreeLibrary() is called.
620 // Otherwise, rely on OS to reclaim resources.
621 if (lpReserved
== NULL
)
622 __kmp_internal_end_library(__kmp_gtid_get_specific());
626 case DLL_THREAD_ATTACH
:
627 KA_TRACE(10, ("DllMain: THREAD_ATTACH\n"));
629 /* if we want to register new siblings all the time here call
630 * __kmp_get_gtid(); */
633 case DLL_THREAD_DETACH
:
634 KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific()));
636 __kmp_internal_end_thread(__kmp_gtid_get_specific());
643 #endif /* KMP_OS_WINDOWS */
644 #endif /* KMP_DYNAMIC_LIB */
646 /* __kmp_parallel_deo -- Wait until it's our turn. */
647 void __kmp_parallel_deo(int *gtid_ref
, int *cid_ref
, ident_t
*loc_ref
) {
648 int gtid
= *gtid_ref
;
649 #ifdef BUILD_PARALLEL_ORDERED
650 kmp_team_t
*team
= __kmp_team_from_gtid(gtid
);
651 #endif /* BUILD_PARALLEL_ORDERED */
653 if (__kmp_env_consistency_check
) {
654 if (__kmp_threads
[gtid
]->th
.th_root
->r
.r_active
)
655 #if KMP_USE_DYNAMIC_LOCK
656 __kmp_push_sync(gtid
, ct_ordered_in_parallel
, loc_ref
, NULL
, 0);
658 __kmp_push_sync(gtid
, ct_ordered_in_parallel
, loc_ref
, NULL
);
661 #ifdef BUILD_PARALLEL_ORDERED
662 if (!team
->t
.t_serialized
) {
664 KMP_WAIT(&team
->t
.t_ordered
.dt
.t_value
, __kmp_tid_from_gtid(gtid
), KMP_EQ
,
668 #endif /* BUILD_PARALLEL_ORDERED */
671 /* __kmp_parallel_dxo -- Signal the next task. */
672 void __kmp_parallel_dxo(int *gtid_ref
, int *cid_ref
, ident_t
*loc_ref
) {
673 int gtid
= *gtid_ref
;
674 #ifdef BUILD_PARALLEL_ORDERED
675 int tid
= __kmp_tid_from_gtid(gtid
);
676 kmp_team_t
*team
= __kmp_team_from_gtid(gtid
);
677 #endif /* BUILD_PARALLEL_ORDERED */
679 if (__kmp_env_consistency_check
) {
680 if (__kmp_threads
[gtid
]->th
.th_root
->r
.r_active
)
681 __kmp_pop_sync(gtid
, ct_ordered_in_parallel
, loc_ref
);
683 #ifdef BUILD_PARALLEL_ORDERED
684 if (!team
->t
.t_serialized
) {
685 KMP_MB(); /* Flush all pending memory write invalidates. */
687 /* use the tid of the next thread in this team */
688 /* TODO replace with general release procedure */
689 team
->t
.t_ordered
.dt
.t_value
= ((tid
+ 1) % team
->t
.t_nproc
);
691 KMP_MB(); /* Flush all pending memory write invalidates. */
693 #endif /* BUILD_PARALLEL_ORDERED */
696 /* ------------------------------------------------------------------------ */
697 /* The BARRIER for a SINGLE process section is always explicit */
699 int __kmp_enter_single(int gtid
, ident_t
*id_ref
, int push_ws
) {
704 if (!TCR_4(__kmp_init_parallel
))
705 __kmp_parallel_initialize();
706 __kmp_resume_if_soft_paused();
708 th
= __kmp_threads
[gtid
];
709 team
= th
->th
.th_team
;
712 th
->th
.th_ident
= id_ref
;
714 if (team
->t
.t_serialized
) {
717 kmp_int32 old_this
= th
->th
.th_local
.this_construct
;
719 ++th
->th
.th_local
.this_construct
;
720 /* try to set team count to thread count--success means thread got the
722 /* TODO: Should this be acquire or release? */
723 if (team
->t
.t_construct
== old_this
) {
724 status
= __kmp_atomic_compare_store_acq(&team
->t
.t_construct
, old_this
,
725 th
->th
.th_local
.this_construct
);
728 if (__itt_metadata_add_ptr
&& __kmp_forkjoin_frames_mode
== 3 &&
729 KMP_MASTER_GTID(gtid
) && th
->th
.th_teams_microtask
== NULL
&&
730 team
->t
.t_active_level
== 1) {
731 // Only report metadata by primary thread of active team at level 1
732 __kmp_itt_metadata_single(id_ref
);
734 #endif /* USE_ITT_BUILD */
737 if (__kmp_env_consistency_check
) {
738 if (status
&& push_ws
) {
739 __kmp_push_workshare(gtid
, ct_psingle
, id_ref
);
741 __kmp_check_workshare(gtid
, ct_psingle
, id_ref
);
746 __kmp_itt_single_start(gtid
);
748 #endif /* USE_ITT_BUILD */
752 void __kmp_exit_single(int gtid
) {
754 __kmp_itt_single_end(gtid
);
755 #endif /* USE_ITT_BUILD */
756 if (__kmp_env_consistency_check
)
757 __kmp_pop_workshare(gtid
, ct_psingle
, NULL
);
760 /* determine if we can go parallel or must use a serialized parallel region and
761 * how many threads we can use
762 * set_nproc is the number of threads requested for the team
763 * returns 0 if we should serialize or only use one thread,
764 * otherwise the number of threads to use
765 * The forkjoin lock is held by the caller. */
766 static int __kmp_reserve_threads(kmp_root_t
*root
, kmp_team_t
*parent_team
,
767 int master_tid
, int set_nthreads
,
771 KMP_DEBUG_ASSERT(__kmp_init_serial
);
772 KMP_DEBUG_ASSERT(root
&& parent_team
);
773 kmp_info_t
*this_thr
= parent_team
->t
.t_threads
[master_tid
];
775 // If dyn-var is set, dynamically adjust the number of desired threads,
776 // according to the method specified by dynamic_mode.
777 new_nthreads
= set_nthreads
;
778 if (!get__dynamic_2(parent_team
, master_tid
)) {
781 #ifdef USE_LOAD_BALANCE
782 else if (__kmp_global
.g
.g_dynamic_mode
== dynamic_load_balance
) {
783 new_nthreads
= __kmp_load_balance_nproc(root
, set_nthreads
);
784 if (new_nthreads
== 1) {
785 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced "
786 "reservation to 1 thread\n",
790 if (new_nthreads
< set_nthreads
) {
791 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced "
792 "reservation to %d threads\n",
793 master_tid
, new_nthreads
));
796 #endif /* USE_LOAD_BALANCE */
797 else if (__kmp_global
.g
.g_dynamic_mode
== dynamic_thread_limit
) {
798 new_nthreads
= __kmp_avail_proc
- __kmp_nth
+
799 (root
->r
.r_active
? 1 : root
->r
.r_hot_team
->t
.t_nproc
);
800 if (new_nthreads
<= 1) {
801 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced "
802 "reservation to 1 thread\n",
806 if (new_nthreads
< set_nthreads
) {
807 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced "
808 "reservation to %d threads\n",
809 master_tid
, new_nthreads
));
811 new_nthreads
= set_nthreads
;
813 } else if (__kmp_global
.g
.g_dynamic_mode
== dynamic_random
) {
814 if (set_nthreads
> 2) {
815 new_nthreads
= __kmp_get_random(parent_team
->t
.t_threads
[master_tid
]);
816 new_nthreads
= (new_nthreads
% set_nthreads
) + 1;
817 if (new_nthreads
== 1) {
818 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced "
819 "reservation to 1 thread\n",
823 if (new_nthreads
< set_nthreads
) {
824 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced "
825 "reservation to %d threads\n",
826 master_tid
, new_nthreads
));
833 // Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT.
834 if (__kmp_nth
+ new_nthreads
-
835 (root
->r
.r_active
? 1 : root
->r
.r_hot_team
->t
.t_nproc
) >
837 int tl_nthreads
= __kmp_max_nth
- __kmp_nth
+
838 (root
->r
.r_active
? 1 : root
->r
.r_hot_team
->t
.t_nproc
);
839 if (tl_nthreads
<= 0) {
843 // If dyn-var is false, emit a 1-time warning.
844 if (!get__dynamic_2(parent_team
, master_tid
) && (!__kmp_reserve_warn
)) {
845 __kmp_reserve_warn
= 1;
846 __kmp_msg(kmp_ms_warning
,
847 KMP_MSG(CantFormThrTeam
, set_nthreads
, tl_nthreads
),
848 KMP_HNT(Unset_ALL_THREADS
), __kmp_msg_null
);
850 if (tl_nthreads
== 1) {
851 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT "
852 "reduced reservation to 1 thread\n",
856 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced "
857 "reservation to %d threads\n",
858 master_tid
, tl_nthreads
));
859 new_nthreads
= tl_nthreads
;
862 // Respect OMP_THREAD_LIMIT
863 int cg_nthreads
= this_thr
->th
.th_cg_roots
->cg_nthreads
;
864 int max_cg_threads
= this_thr
->th
.th_cg_roots
->cg_thread_limit
;
865 if (cg_nthreads
+ new_nthreads
-
866 (root
->r
.r_active
? 1 : root
->r
.r_hot_team
->t
.t_nproc
) >
868 int tl_nthreads
= max_cg_threads
- cg_nthreads
+
869 (root
->r
.r_active
? 1 : root
->r
.r_hot_team
->t
.t_nproc
);
870 if (tl_nthreads
<= 0) {
874 // If dyn-var is false, emit a 1-time warning.
875 if (!get__dynamic_2(parent_team
, master_tid
) && (!__kmp_reserve_warn
)) {
876 __kmp_reserve_warn
= 1;
877 __kmp_msg(kmp_ms_warning
,
878 KMP_MSG(CantFormThrTeam
, set_nthreads
, tl_nthreads
),
879 KMP_HNT(Unset_ALL_THREADS
), __kmp_msg_null
);
881 if (tl_nthreads
== 1) {
882 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT "
883 "reduced reservation to 1 thread\n",
887 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced "
888 "reservation to %d threads\n",
889 master_tid
, tl_nthreads
));
890 new_nthreads
= tl_nthreads
;
893 // Check if the threads array is large enough, or needs expanding.
894 // See comment in __kmp_register_root() about the adjustment if
895 // __kmp_threads[0] == NULL.
896 capacity
= __kmp_threads_capacity
;
897 if (TCR_PTR(__kmp_threads
[0]) == NULL
) {
900 // If it is not for initializing the hidden helper team, we need to take
901 // __kmp_hidden_helper_threads_num out of the capacity because it is included
902 // in __kmp_threads_capacity.
903 if (__kmp_enable_hidden_helper
&& !TCR_4(__kmp_init_hidden_helper_threads
)) {
904 capacity
-= __kmp_hidden_helper_threads_num
;
906 if (__kmp_nth
+ new_nthreads
-
907 (root
->r
.r_active
? 1 : root
->r
.r_hot_team
->t
.t_nproc
) >
909 // Expand the threads array.
910 int slotsRequired
= __kmp_nth
+ new_nthreads
-
911 (root
->r
.r_active
? 1 : root
->r
.r_hot_team
->t
.t_nproc
) -
913 int slotsAdded
= __kmp_expand_threads(slotsRequired
);
914 if (slotsAdded
< slotsRequired
) {
915 // The threads array was not expanded enough.
916 new_nthreads
-= (slotsRequired
- slotsAdded
);
917 KMP_ASSERT(new_nthreads
>= 1);
919 // If dyn-var is false, emit a 1-time warning.
920 if (!get__dynamic_2(parent_team
, master_tid
) && (!__kmp_reserve_warn
)) {
921 __kmp_reserve_warn
= 1;
922 if (__kmp_tp_cached
) {
923 __kmp_msg(kmp_ms_warning
,
924 KMP_MSG(CantFormThrTeam
, set_nthreads
, new_nthreads
),
925 KMP_HNT(Set_ALL_THREADPRIVATE
, __kmp_tp_capacity
),
926 KMP_HNT(PossibleSystemLimitOnThreads
), __kmp_msg_null
);
928 __kmp_msg(kmp_ms_warning
,
929 KMP_MSG(CantFormThrTeam
, set_nthreads
, new_nthreads
),
930 KMP_HNT(SystemLimitOnThreads
), __kmp_msg_null
);
937 if (new_nthreads
== 1) {
939 ("__kmp_reserve_threads: T#%d serializing team after reclaiming "
940 "dead roots and rechecking; requested %d threads\n",
941 __kmp_get_gtid(), set_nthreads
));
943 KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested"
945 __kmp_get_gtid(), new_nthreads
, set_nthreads
));
949 if (this_thr
->th
.th_nt_strict
&& new_nthreads
< set_nthreads
) {
950 __kmpc_error(this_thr
->th
.th_nt_loc
, this_thr
->th
.th_nt_sev
,
951 this_thr
->th
.th_nt_msg
);
956 /* Allocate threads from the thread pool and assign them to the new team. We are
957 assured that there are enough threads available, because we checked on that
958 earlier within critical section forkjoin */
959 static void __kmp_fork_team_threads(kmp_root_t
*root
, kmp_team_t
*team
,
960 kmp_info_t
*master_th
, int master_gtid
,
961 int fork_teams_workers
) {
965 KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team
->t
.t_nproc
));
966 KMP_DEBUG_ASSERT(master_gtid
== __kmp_get_gtid());
969 /* first, let's setup the primary thread */
970 master_th
->th
.th_info
.ds
.ds_tid
= 0;
971 master_th
->th
.th_team
= team
;
972 master_th
->th
.th_team_nproc
= team
->t
.t_nproc
;
973 master_th
->th
.th_team_master
= master_th
;
974 master_th
->th
.th_team_serialized
= FALSE
;
975 master_th
->th
.th_dispatch
= &team
->t
.t_dispatch
[0];
977 /* make sure we are not the optimized hot team */
978 #if KMP_NESTED_HOT_TEAMS
980 kmp_hot_team_ptr_t
*hot_teams
= master_th
->th
.th_hot_teams
;
981 if (hot_teams
) { // hot teams array is not allocated if
982 // KMP_HOT_TEAMS_MAX_LEVEL=0
983 int level
= team
->t
.t_active_level
- 1; // index in array of hot teams
984 if (master_th
->th
.th_teams_microtask
) { // are we inside the teams?
985 if (master_th
->th
.th_teams_size
.nteams
> 1) {
986 ++level
; // level was not increased in teams construct for
989 if (team
->t
.t_pkfn
!= (microtask_t
)__kmp_teams_master
&&
990 master_th
->th
.th_teams_level
== team
->t
.t_level
) {
991 ++level
; // level was not increased in teams construct for
992 // team_of_workers before the parallel
993 } // team->t.t_level will be increased inside parallel
995 if (level
< __kmp_hot_teams_max_level
) {
996 if (hot_teams
[level
].hot_team
) {
997 // hot team has already been allocated for given level
998 KMP_DEBUG_ASSERT(hot_teams
[level
].hot_team
== team
);
999 use_hot_team
= 1; // the team is ready to use
1001 use_hot_team
= 0; // AC: threads are not allocated yet
1002 hot_teams
[level
].hot_team
= team
; // remember new hot team
1003 hot_teams
[level
].hot_team_nth
= team
->t
.t_nproc
;
1010 use_hot_team
= team
== root
->r
.r_hot_team
;
1012 if (!use_hot_team
) {
1014 /* install the primary thread */
1015 team
->t
.t_threads
[0] = master_th
;
1016 __kmp_initialize_info(master_th
, team
, 0, master_gtid
);
1018 /* now, install the worker threads */
1019 for (i
= 1; i
< team
->t
.t_nproc
; i
++) {
1021 /* fork or reallocate a new thread and install it in team */
1022 kmp_info_t
*thr
= __kmp_allocate_thread(root
, team
, i
);
1023 team
->t
.t_threads
[i
] = thr
;
1024 KMP_DEBUG_ASSERT(thr
);
1025 KMP_DEBUG_ASSERT(thr
->th
.th_team
== team
);
1026 /* align team and thread arrived states */
1027 KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived "
1028 "T#%d(%d:%d) join =%llu, plain=%llu\n",
1029 __kmp_gtid_from_tid(0, team
), team
->t
.t_id
, 0,
1030 __kmp_gtid_from_tid(i
, team
), team
->t
.t_id
, i
,
1031 team
->t
.t_bar
[bs_forkjoin_barrier
].b_arrived
,
1032 team
->t
.t_bar
[bs_plain_barrier
].b_arrived
));
1033 thr
->th
.th_teams_microtask
= master_th
->th
.th_teams_microtask
;
1034 thr
->th
.th_teams_level
= master_th
->th
.th_teams_level
;
1035 thr
->th
.th_teams_size
= master_th
->th
.th_teams_size
;
1036 { // Initialize threads' barrier data.
1038 kmp_balign_t
*balign
= team
->t
.t_threads
[i
]->th
.th_bar
;
1039 for (b
= 0; b
< bs_last_barrier
; ++b
) {
1040 balign
[b
].bb
.b_arrived
= team
->t
.t_bar
[b
].b_arrived
;
1041 KMP_DEBUG_ASSERT(balign
[b
].bb
.wait_flag
!= KMP_BARRIER_PARENT_FLAG
);
1043 balign
[b
].bb
.b_worker_arrived
= team
->t
.t_bar
[b
].b_team_arrived
;
1049 #if KMP_AFFINITY_SUPPORTED
1050 // Do not partition the places list for teams construct workers who
1051 // haven't actually been forked to do real work yet. This partitioning
1052 // will take place in the parallel region nested within the teams construct.
1053 if (!fork_teams_workers
) {
1054 __kmp_partition_places(team
);
1058 if (team
->t
.t_nproc
> 1 &&
1059 __kmp_barrier_gather_pattern
[bs_forkjoin_barrier
] == bp_dist_bar
) {
1060 team
->t
.b
->update_num_threads(team
->t
.t_nproc
);
1061 __kmp_add_threads_to_team(team
, team
->t
.t_nproc
);
1065 // Take care of primary thread's task state
1066 if (__kmp_tasking_mode
!= tskm_immediate_exec
) {
1068 KMP_DEBUG_ASSERT_TASKTEAM_INVARIANT(team
->t
.t_parent
, master_th
);
1071 ("__kmp_fork_team_threads: Primary T#%d pushing task_team %p / team "
1072 "%p, new task_team %p / team %p\n",
1073 __kmp_gtid_from_thread(master_th
), master_th
->th
.th_task_team
,
1074 team
->t
.t_parent
, team
->t
.t_task_team
[master_th
->th
.th_task_state
],
1077 // Store primary thread's current task state on new team
1078 KMP_CHECK_UPDATE(team
->t
.t_primary_task_state
,
1079 master_th
->th
.th_task_state
);
1081 // Restore primary thread's task state to hot team's state
1082 // by using thread 1's task state
1083 if (team
->t
.t_nproc
> 1) {
1084 KMP_DEBUG_ASSERT(team
->t
.t_threads
[1]->th
.th_task_state
== 0 ||
1085 team
->t
.t_threads
[1]->th
.th_task_state
== 1);
1086 KMP_CHECK_UPDATE(master_th
->th
.th_task_state
,
1087 team
->t
.t_threads
[1]->th
.th_task_state
);
1089 master_th
->th
.th_task_state
= 0;
1092 // Store primary thread's current task_state on new team
1093 KMP_CHECK_UPDATE(team
->t
.t_primary_task_state
,
1094 master_th
->th
.th_task_state
);
1095 // Are not using hot team, so set task state to 0.
1096 master_th
->th
.th_task_state
= 0;
1100 if (__kmp_display_affinity
&& team
->t
.t_display_affinity
!= 1) {
1101 for (i
= 0; i
< team
->t
.t_nproc
; i
++) {
1102 kmp_info_t
*thr
= team
->t
.t_threads
[i
];
1103 if (thr
->th
.th_prev_num_threads
!= team
->t
.t_nproc
||
1104 thr
->th
.th_prev_level
!= team
->t
.t_level
) {
1105 team
->t
.t_display_affinity
= 1;
1114 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1115 // Propagate any changes to the floating point control registers out to the team
1116 // We try to avoid unnecessary writes to the relevant cache line in the team
1117 // structure, so we don't make changes unless they are needed.
1118 inline static void propagateFPControl(kmp_team_t
*team
) {
1119 if (__kmp_inherit_fp_control
) {
1120 kmp_int16 x87_fpu_control_word
;
1123 // Get primary thread's values of FPU control flags (both X87 and vector)
1124 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word
);
1125 __kmp_store_mxcsr(&mxcsr
);
1126 mxcsr
&= KMP_X86_MXCSR_MASK
;
1128 // There is no point looking at t_fp_control_saved here.
1129 // If it is TRUE, we still have to update the values if they are different
1130 // from those we now have. If it is FALSE we didn't save anything yet, but
1131 // our objective is the same. We have to ensure that the values in the team
1132 // are the same as those we have.
1133 // So, this code achieves what we need whether or not t_fp_control_saved is
1134 // true. By checking whether the value needs updating we avoid unnecessary
1135 // writes that would put the cache-line into a written state, causing all
1136 // threads in the team to have to read it again.
1137 KMP_CHECK_UPDATE(team
->t
.t_x87_fpu_control_word
, x87_fpu_control_word
);
1138 KMP_CHECK_UPDATE(team
->t
.t_mxcsr
, mxcsr
);
1139 // Although we don't use this value, other code in the runtime wants to know
1140 // whether it should restore them. So we must ensure it is correct.
1141 KMP_CHECK_UPDATE(team
->t
.t_fp_control_saved
, TRUE
);
1143 // Similarly here. Don't write to this cache-line in the team structure
1144 // unless we have to.
1145 KMP_CHECK_UPDATE(team
->t
.t_fp_control_saved
, FALSE
);
1149 // Do the opposite, setting the hardware registers to the updated values from
1151 inline static void updateHWFPControl(kmp_team_t
*team
) {
1152 if (__kmp_inherit_fp_control
&& team
->t
.t_fp_control_saved
) {
1153 // Only reset the fp control regs if they have been changed in the team.
1154 // the parallel region that we are exiting.
1155 kmp_int16 x87_fpu_control_word
;
1157 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word
);
1158 __kmp_store_mxcsr(&mxcsr
);
1159 mxcsr
&= KMP_X86_MXCSR_MASK
;
1161 if (team
->t
.t_x87_fpu_control_word
!= x87_fpu_control_word
) {
1162 __kmp_clear_x87_fpu_status_word();
1163 __kmp_load_x87_fpu_control_word(&team
->t
.t_x87_fpu_control_word
);
1166 if (team
->t
.t_mxcsr
!= mxcsr
) {
1167 __kmp_load_mxcsr(&team
->t
.t_mxcsr
);
1172 #define propagateFPControl(x) ((void)0)
1173 #define updateHWFPControl(x) ((void)0)
1174 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1176 static void __kmp_alloc_argv_entries(int argc
, kmp_team_t
*team
,
1177 int realloc
); // forward declaration
1179 /* Run a parallel region that has been serialized, so runs only in a team of the
1180 single primary thread. */
1181 void __kmp_serialized_parallel(ident_t
*loc
, kmp_int32 global_tid
) {
1182 kmp_info_t
*this_thr
;
1183 kmp_team_t
*serial_team
;
1185 KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid
));
1187 /* Skip all this code for autopar serialized loops since it results in
1188 unacceptable overhead */
1189 if (loc
!= NULL
&& (loc
->flags
& KMP_IDENT_AUTOPAR
))
1192 if (!TCR_4(__kmp_init_parallel
))
1193 __kmp_parallel_initialize();
1194 __kmp_resume_if_soft_paused();
1196 this_thr
= __kmp_threads
[global_tid
];
1197 serial_team
= this_thr
->th
.th_serial_team
;
1199 /* utilize the serialized team held by this thread */
1200 KMP_DEBUG_ASSERT(serial_team
);
1203 kmp_proc_bind_t proc_bind
= this_thr
->th
.th_set_proc_bind
;
1204 if (this_thr
->th
.th_current_task
->td_icvs
.proc_bind
== proc_bind_false
) {
1205 proc_bind
= proc_bind_false
;
1206 } else if (proc_bind
== proc_bind_default
) {
1207 // No proc_bind clause was specified, so use the current value
1208 // of proc-bind-var for this parallel region.
1209 proc_bind
= this_thr
->th
.th_current_task
->td_icvs
.proc_bind
;
1211 // Reset for next parallel region
1212 this_thr
->th
.th_set_proc_bind
= proc_bind_default
;
1214 // Reset num_threads for next parallel region
1215 this_thr
->th
.th_set_nproc
= 0;
1218 ompt_data_t ompt_parallel_data
= ompt_data_none
;
1219 void *codeptr
= OMPT_LOAD_RETURN_ADDRESS(global_tid
);
1220 if (ompt_enabled
.enabled
&&
1221 this_thr
->th
.ompt_thread_info
.state
!= ompt_state_overhead
) {
1223 ompt_task_info_t
*parent_task_info
;
1224 parent_task_info
= OMPT_CUR_TASK_INFO(this_thr
);
1226 parent_task_info
->frame
.enter_frame
.ptr
= OMPT_GET_FRAME_ADDRESS(0);
1227 if (ompt_enabled
.ompt_callback_parallel_begin
) {
1230 ompt_callbacks
.ompt_callback(ompt_callback_parallel_begin
)(
1231 &(parent_task_info
->task_data
), &(parent_task_info
->frame
),
1232 &ompt_parallel_data
, team_size
,
1233 ompt_parallel_invoker_program
| ompt_parallel_team
, codeptr
);
1236 #endif // OMPT_SUPPORT
1238 if (this_thr
->th
.th_team
!= serial_team
) {
1239 // Nested level will be an index in the nested nthreads array
1240 int level
= this_thr
->th
.th_team
->t
.t_level
;
1242 if (serial_team
->t
.t_serialized
) {
1243 /* this serial team was already used
1244 TODO increase performance by making this locks more specific */
1245 kmp_team_t
*new_team
;
1247 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock
);
1250 __kmp_allocate_team(this_thr
->th
.th_root
, 1, 1,
1254 proc_bind
, &this_thr
->th
.th_current_task
->td_icvs
,
1255 0 USE_NESTED_HOT_ARG(NULL
));
1256 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock
);
1257 KMP_ASSERT(new_team
);
1259 /* setup new serialized team and install it */
1260 new_team
->t
.t_threads
[0] = this_thr
;
1261 new_team
->t
.t_parent
= this_thr
->th
.th_team
;
1262 serial_team
= new_team
;
1263 this_thr
->th
.th_serial_team
= serial_team
;
1267 ("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n",
1268 global_tid
, serial_team
));
1270 /* TODO the above breaks the requirement that if we run out of resources,
1271 then we can still guarantee that serialized teams are ok, since we may
1272 need to allocate a new one */
1276 ("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n",
1277 global_tid
, serial_team
));
1280 /* we have to initialize this serial team */
1281 KMP_DEBUG_ASSERT(serial_team
->t
.t_threads
);
1282 KMP_DEBUG_ASSERT(serial_team
->t
.t_threads
[0] == this_thr
);
1283 KMP_DEBUG_ASSERT(this_thr
->th
.th_team
!= serial_team
);
1284 serial_team
->t
.t_ident
= loc
;
1285 serial_team
->t
.t_serialized
= 1;
1286 serial_team
->t
.t_nproc
= 1;
1287 serial_team
->t
.t_parent
= this_thr
->th
.th_team
;
1288 if (this_thr
->th
.th_team
->t
.t_nested_nth
)
1289 serial_team
->t
.t_nested_nth
= this_thr
->th
.th_team
->t
.t_nested_nth
;
1291 serial_team
->t
.t_nested_nth
= &__kmp_nested_nth
;
1292 // Save previous team's task state on serial team structure
1293 serial_team
->t
.t_primary_task_state
= this_thr
->th
.th_task_state
;
1294 serial_team
->t
.t_sched
.sched
= this_thr
->th
.th_team
->t
.t_sched
.sched
;
1295 this_thr
->th
.th_team
= serial_team
;
1296 serial_team
->t
.t_master_tid
= this_thr
->th
.th_info
.ds
.ds_tid
;
1298 KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d curtask=%p\n", global_tid
,
1299 this_thr
->th
.th_current_task
));
1300 KMP_ASSERT(this_thr
->th
.th_current_task
->td_flags
.executing
== 1);
1301 this_thr
->th
.th_current_task
->td_flags
.executing
= 0;
1303 __kmp_push_current_task_to_thread(this_thr
, serial_team
, 0);
1305 /* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an
1306 implicit task for each serialized task represented by
1307 team->t.t_serialized? */
1308 copy_icvs(&this_thr
->th
.th_current_task
->td_icvs
,
1309 &this_thr
->th
.th_current_task
->td_parent
->td_icvs
);
1311 // Thread value exists in the nested nthreads array for the next nested
1313 kmp_nested_nthreads_t
*nested_nth
= &__kmp_nested_nth
;
1314 if (this_thr
->th
.th_team
->t
.t_nested_nth
)
1315 nested_nth
= this_thr
->th
.th_team
->t
.t_nested_nth
;
1316 if (nested_nth
->used
&& (level
+ 1 < nested_nth
->used
)) {
1317 this_thr
->th
.th_current_task
->td_icvs
.nproc
= nested_nth
->nth
[level
+ 1];
1320 if (__kmp_nested_proc_bind
.used
&&
1321 (level
+ 1 < __kmp_nested_proc_bind
.used
)) {
1322 this_thr
->th
.th_current_task
->td_icvs
.proc_bind
=
1323 __kmp_nested_proc_bind
.bind_types
[level
+ 1];
1327 serial_team
->t
.t_pkfn
= (microtask_t
)(~0); // For the debugger.
1329 this_thr
->th
.th_info
.ds
.ds_tid
= 0;
1331 /* set thread cache values */
1332 this_thr
->th
.th_team_nproc
= 1;
1333 this_thr
->th
.th_team_master
= this_thr
;
1334 this_thr
->th
.th_team_serialized
= 1;
1335 this_thr
->th
.th_task_team
= NULL
;
1336 this_thr
->th
.th_task_state
= 0;
1338 serial_team
->t
.t_level
= serial_team
->t
.t_parent
->t
.t_level
+ 1;
1339 serial_team
->t
.t_active_level
= serial_team
->t
.t_parent
->t
.t_active_level
;
1340 serial_team
->t
.t_def_allocator
= this_thr
->th
.th_def_allocator
; // save
1342 propagateFPControl(serial_team
);
1344 /* check if we need to allocate dispatch buffers stack */
1345 KMP_DEBUG_ASSERT(serial_team
->t
.t_dispatch
);
1346 if (!serial_team
->t
.t_dispatch
->th_disp_buffer
) {
1347 serial_team
->t
.t_dispatch
->th_disp_buffer
=
1348 (dispatch_private_info_t
*)__kmp_allocate(
1349 sizeof(dispatch_private_info_t
));
1351 this_thr
->th
.th_dispatch
= serial_team
->t
.t_dispatch
;
1356 /* this serialized team is already being used,
1357 * that's fine, just add another nested level */
1358 KMP_DEBUG_ASSERT(this_thr
->th
.th_team
== serial_team
);
1359 KMP_DEBUG_ASSERT(serial_team
->t
.t_threads
);
1360 KMP_DEBUG_ASSERT(serial_team
->t
.t_threads
[0] == this_thr
);
1361 ++serial_team
->t
.t_serialized
;
1362 this_thr
->th
.th_team_serialized
= serial_team
->t
.t_serialized
;
1364 // Nested level will be an index in the nested nthreads array
1365 int level
= this_thr
->th
.th_team
->t
.t_level
;
1366 // Thread value exists in the nested nthreads array for the next nested
1369 kmp_nested_nthreads_t
*nested_nth
= &__kmp_nested_nth
;
1370 if (serial_team
->t
.t_nested_nth
)
1371 nested_nth
= serial_team
->t
.t_nested_nth
;
1372 if (nested_nth
->used
&& (level
+ 1 < nested_nth
->used
)) {
1373 this_thr
->th
.th_current_task
->td_icvs
.nproc
= nested_nth
->nth
[level
+ 1];
1376 serial_team
->t
.t_level
++;
1377 KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level "
1378 "of serial team %p to %d\n",
1379 global_tid
, serial_team
, serial_team
->t
.t_level
));
1381 /* allocate/push dispatch buffers stack */
1382 KMP_DEBUG_ASSERT(serial_team
->t
.t_dispatch
);
1384 dispatch_private_info_t
*disp_buffer
=
1385 (dispatch_private_info_t
*)__kmp_allocate(
1386 sizeof(dispatch_private_info_t
));
1387 disp_buffer
->next
= serial_team
->t
.t_dispatch
->th_disp_buffer
;
1388 serial_team
->t
.t_dispatch
->th_disp_buffer
= disp_buffer
;
1390 this_thr
->th
.th_dispatch
= serial_team
->t
.t_dispatch
;
1392 /* allocate/push task team stack */
1393 __kmp_push_task_team_node(this_thr
, serial_team
);
1397 KMP_CHECK_UPDATE(serial_team
->t
.t_cancel_request
, cancel_noreq
);
1399 // Perform the display affinity functionality for
1400 // serialized parallel regions
1401 if (__kmp_display_affinity
) {
1402 if (this_thr
->th
.th_prev_level
!= serial_team
->t
.t_level
||
1403 this_thr
->th
.th_prev_num_threads
!= 1) {
1404 // NULL means use the affinity-format-var ICV
1405 __kmp_aux_display_affinity(global_tid
, NULL
);
1406 this_thr
->th
.th_prev_level
= serial_team
->t
.t_level
;
1407 this_thr
->th
.th_prev_num_threads
= 1;
1411 if (__kmp_env_consistency_check
)
1412 __kmp_push_parallel(global_tid
, NULL
);
1414 serial_team
->t
.ompt_team_info
.master_return_address
= codeptr
;
1415 if (ompt_enabled
.enabled
&&
1416 this_thr
->th
.ompt_thread_info
.state
!= ompt_state_overhead
) {
1417 OMPT_CUR_TASK_INFO(this_thr
)->frame
.exit_frame
.ptr
=
1418 OMPT_GET_FRAME_ADDRESS(0);
1420 ompt_lw_taskteam_t lw_taskteam
;
1421 __ompt_lw_taskteam_init(&lw_taskteam
, this_thr
, global_tid
,
1422 &ompt_parallel_data
, codeptr
);
1424 __ompt_lw_taskteam_link(&lw_taskteam
, this_thr
, 1);
1425 // don't use lw_taskteam after linking. content was swaped
1427 /* OMPT implicit task begin */
1428 if (ompt_enabled
.ompt_callback_implicit_task
) {
1429 ompt_callbacks
.ompt_callback(ompt_callback_implicit_task
)(
1430 ompt_scope_begin
, OMPT_CUR_TEAM_DATA(this_thr
),
1431 OMPT_CUR_TASK_DATA(this_thr
), 1, __kmp_tid_from_gtid(global_tid
),
1432 ompt_task_implicit
); // TODO: Can this be ompt_task_initial?
1433 OMPT_CUR_TASK_INFO(this_thr
)->thread_num
=
1434 __kmp_tid_from_gtid(global_tid
);
1438 this_thr
->th
.ompt_thread_info
.state
= ompt_state_work_parallel
;
1439 OMPT_CUR_TASK_INFO(this_thr
)->frame
.exit_frame
.ptr
=
1440 OMPT_GET_FRAME_ADDRESS(0);
1445 // Test if this fork is for a team closely nested in a teams construct
1446 static inline bool __kmp_is_fork_in_teams(kmp_info_t
*master_th
,
1447 microtask_t microtask
, int level
,
1448 int teams_level
, kmp_va_list ap
) {
1449 return (master_th
->th
.th_teams_microtask
&& ap
&&
1450 microtask
!= (microtask_t
)__kmp_teams_master
&& level
== teams_level
);
1453 // Test if this fork is for the teams construct, i.e. to form the outer league
1455 static inline bool __kmp_is_entering_teams(int active_level
, int level
,
1456 int teams_level
, kmp_va_list ap
) {
1457 return ((ap
== NULL
&& active_level
== 0) ||
1458 (ap
&& teams_level
> 0 && teams_level
== level
));
1461 // AC: This is start of parallel that is nested inside teams construct.
1462 // The team is actual (hot), all workers are ready at the fork barrier.
1463 // No lock needed to initialize the team a bit, then free workers.
1465 __kmp_fork_in_teams(ident_t
*loc
, int gtid
, kmp_team_t
*parent_team
,
1466 kmp_int32 argc
, kmp_info_t
*master_th
, kmp_root_t
*root
,
1467 enum fork_context_e call_context
, microtask_t microtask
,
1468 launch_t invoker
, int master_set_numthreads
, int level
,
1470 ompt_data_t ompt_parallel_data
, void *return_address
,
1476 parent_team
->t
.t_ident
= loc
;
1477 __kmp_alloc_argv_entries(argc
, parent_team
, TRUE
);
1478 parent_team
->t
.t_argc
= argc
;
1479 argv
= (void **)parent_team
->t
.t_argv
;
1480 for (i
= argc
- 1; i
>= 0; --i
) {
1481 *argv
++ = va_arg(kmp_va_deref(ap
), void *);
1483 // Increment our nested depth levels, but not increase the serialization
1484 if (parent_team
== master_th
->th
.th_serial_team
) {
1485 // AC: we are in serialized parallel
1486 __kmpc_serialized_parallel(loc
, gtid
);
1487 KMP_DEBUG_ASSERT(parent_team
->t
.t_serialized
> 1);
1489 if (call_context
== fork_context_gnu
) {
1490 // AC: need to decrement t_serialized for enquiry functions to work
1491 // correctly, will restore at join time
1492 parent_team
->t
.t_serialized
--;
1497 parent_team
->t
.t_pkfn
= microtask
;
1502 void **exit_frame_p
;
1503 ompt_data_t
*implicit_task_data
;
1504 ompt_lw_taskteam_t lw_taskteam
;
1506 if (ompt_enabled
.enabled
) {
1507 __ompt_lw_taskteam_init(&lw_taskteam
, master_th
, gtid
,
1508 &ompt_parallel_data
, return_address
);
1509 exit_frame_p
= &(lw_taskteam
.ompt_task_info
.frame
.exit_frame
.ptr
);
1511 __ompt_lw_taskteam_link(&lw_taskteam
, master_th
, 0);
1512 // Don't use lw_taskteam after linking. Content was swapped.
1514 /* OMPT implicit task begin */
1515 implicit_task_data
= OMPT_CUR_TASK_DATA(master_th
);
1516 if (ompt_enabled
.ompt_callback_implicit_task
) {
1517 OMPT_CUR_TASK_INFO(master_th
)->thread_num
= __kmp_tid_from_gtid(gtid
);
1518 ompt_callbacks
.ompt_callback(ompt_callback_implicit_task
)(
1519 ompt_scope_begin
, OMPT_CUR_TEAM_DATA(master_th
), implicit_task_data
,
1520 1, OMPT_CUR_TASK_INFO(master_th
)->thread_num
, ompt_task_implicit
);
1524 master_th
->th
.ompt_thread_info
.state
= ompt_state_work_parallel
;
1526 exit_frame_p
= &dummy
;
1530 // AC: need to decrement t_serialized for enquiry functions to work
1531 // correctly, will restore at join time
1532 parent_team
->t
.t_serialized
--;
1535 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel
);
1536 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK
);
1537 __kmp_invoke_microtask(microtask
, gtid
, 0, argc
, parent_team
->t
.t_argv
1546 if (ompt_enabled
.enabled
) {
1547 *exit_frame_p
= NULL
;
1548 OMPT_CUR_TASK_INFO(master_th
)->frame
.exit_frame
= ompt_data_none
;
1549 if (ompt_enabled
.ompt_callback_implicit_task
) {
1550 ompt_callbacks
.ompt_callback(ompt_callback_implicit_task
)(
1551 ompt_scope_end
, NULL
, implicit_task_data
, 1,
1552 OMPT_CUR_TASK_INFO(master_th
)->thread_num
, ompt_task_implicit
);
1554 ompt_parallel_data
= *OMPT_CUR_TEAM_DATA(master_th
);
1555 __ompt_lw_taskteam_unlink(master_th
);
1556 if (ompt_enabled
.ompt_callback_parallel_end
) {
1557 ompt_callbacks
.ompt_callback(ompt_callback_parallel_end
)(
1558 &ompt_parallel_data
, OMPT_CUR_TASK_DATA(master_th
),
1559 OMPT_INVOKER(call_context
) | ompt_parallel_team
, return_address
);
1561 master_th
->th
.ompt_thread_info
.state
= ompt_state_overhead
;
1567 parent_team
->t
.t_pkfn
= microtask
;
1568 parent_team
->t
.t_invoke
= invoker
;
1569 KMP_ATOMIC_INC(&root
->r
.r_in_parallel
);
1570 parent_team
->t
.t_active_level
++;
1571 parent_team
->t
.t_level
++;
1572 parent_team
->t
.t_def_allocator
= master_th
->th
.th_def_allocator
; // save
1574 // If the threads allocated to the team are less than the thread limit, update
1575 // the thread limit here. th_teams_size.nth is specific to this team nested
1576 // in a teams construct, the team is fully created, and we're about to do
1577 // the actual fork. Best to do this here so that the subsequent uses below
1578 // and in the join have the correct value.
1579 master_th
->th
.th_teams_size
.nth
= parent_team
->t
.t_nproc
;
1582 if (ompt_enabled
.enabled
) {
1583 ompt_lw_taskteam_t lw_taskteam
;
1584 __ompt_lw_taskteam_init(&lw_taskteam
, master_th
, gtid
, &ompt_parallel_data
,
1586 __ompt_lw_taskteam_link(&lw_taskteam
, master_th
, 1, true);
1590 /* Change number of threads in the team if requested */
1591 if (master_set_numthreads
) { // The parallel has num_threads clause
1592 if (master_set_numthreads
<= master_th
->th
.th_teams_size
.nth
) {
1593 // AC: only can reduce number of threads dynamically, can't increase
1594 kmp_info_t
**other_threads
= parent_team
->t
.t_threads
;
1595 // NOTE: if using distributed barrier, we need to run this code block
1596 // even when the team size appears not to have changed from the max.
1597 int old_proc
= master_th
->th
.th_teams_size
.nth
;
1598 if (__kmp_barrier_release_pattern
[bs_forkjoin_barrier
] == bp_dist_bar
) {
1599 __kmp_resize_dist_barrier(parent_team
, old_proc
, master_set_numthreads
);
1600 __kmp_add_threads_to_team(parent_team
, master_set_numthreads
);
1602 parent_team
->t
.t_nproc
= master_set_numthreads
;
1603 for (i
= 0; i
< master_set_numthreads
; ++i
) {
1604 other_threads
[i
]->th
.th_team_nproc
= master_set_numthreads
;
1607 // Keep extra threads hot in the team for possible next parallels
1608 master_th
->th
.th_set_nproc
= 0;
1612 if (__kmp_debugging
) { // Let debugger override number of threads.
1613 int nth
= __kmp_omp_num_threads(loc
);
1614 if (nth
> 0) { // 0 means debugger doesn't want to change num threads
1615 master_set_numthreads
= nth
;
1620 // Figure out the proc_bind policy for the nested parallel within teams
1621 kmp_proc_bind_t proc_bind
= master_th
->th
.th_set_proc_bind
;
1622 // proc_bind_default means don't update
1623 kmp_proc_bind_t proc_bind_icv
= proc_bind_default
;
1624 if (master_th
->th
.th_current_task
->td_icvs
.proc_bind
== proc_bind_false
) {
1625 proc_bind
= proc_bind_false
;
1627 // No proc_bind clause specified; use current proc-bind-var
1628 if (proc_bind
== proc_bind_default
) {
1629 proc_bind
= master_th
->th
.th_current_task
->td_icvs
.proc_bind
;
1631 /* else: The proc_bind policy was specified explicitly on parallel clause.
1632 This overrides proc-bind-var for this parallel region, but does not
1633 change proc-bind-var. */
1634 // Figure the value of proc-bind-var for the child threads.
1635 if ((level
+ 1 < __kmp_nested_proc_bind
.used
) &&
1636 (__kmp_nested_proc_bind
.bind_types
[level
+ 1] !=
1637 master_th
->th
.th_current_task
->td_icvs
.proc_bind
)) {
1638 proc_bind_icv
= __kmp_nested_proc_bind
.bind_types
[level
+ 1];
1641 KMP_CHECK_UPDATE(parent_team
->t
.t_proc_bind
, proc_bind
);
1642 // Need to change the bind-var ICV to correct value for each implicit task
1643 if (proc_bind_icv
!= proc_bind_default
&&
1644 master_th
->th
.th_current_task
->td_icvs
.proc_bind
!= proc_bind_icv
) {
1645 kmp_info_t
**other_threads
= parent_team
->t
.t_threads
;
1646 for (i
= 0; i
< master_th
->th
.th_team_nproc
; ++i
) {
1647 other_threads
[i
]->th
.th_current_task
->td_icvs
.proc_bind
= proc_bind_icv
;
1650 // Reset for next parallel region
1651 master_th
->th
.th_set_proc_bind
= proc_bind_default
;
1653 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1654 if (((__itt_frame_submit_v3_ptr
&& __itt_get_timestamp_ptr
) ||
1656 __kmp_forkjoin_frames_mode
== 3 &&
1657 parent_team
->t
.t_active_level
== 1 // only report frames at level 1
1658 && master_th
->th
.th_teams_size
.nteams
== 1) {
1659 kmp_uint64 tmp_time
= __itt_get_timestamp();
1660 master_th
->th
.th_frame_time
= tmp_time
;
1661 parent_team
->t
.t_region_time
= tmp_time
;
1663 if (__itt_stack_caller_create_ptr
) {
1664 KMP_DEBUG_ASSERT(parent_team
->t
.t_stack_id
== NULL
);
1665 // create new stack stitching id before entering fork barrier
1666 parent_team
->t
.t_stack_id
= __kmp_itt_stack_caller_create();
1668 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
1669 #if KMP_AFFINITY_SUPPORTED
1670 __kmp_partition_places(parent_team
);
1673 KF_TRACE(10, ("__kmp_fork_in_teams: before internal fork: root=%p, team=%p, "
1674 "master_th=%p, gtid=%d\n",
1675 root
, parent_team
, master_th
, gtid
));
1676 __kmp_internal_fork(loc
, gtid
, parent_team
);
1677 KF_TRACE(10, ("__kmp_fork_in_teams: after internal fork: root=%p, team=%p, "
1678 "master_th=%p, gtid=%d\n",
1679 root
, parent_team
, master_th
, gtid
));
1681 if (call_context
== fork_context_gnu
)
1684 /* Invoke microtask for PRIMARY thread */
1685 KA_TRACE(20, ("__kmp_fork_in_teams: T#%d(%d:0) invoke microtask = %p\n", gtid
,
1686 parent_team
->t
.t_id
, parent_team
->t
.t_pkfn
));
1688 if (!parent_team
->t
.t_invoke(gtid
)) {
1689 KMP_ASSERT2(0, "cannot invoke microtask for PRIMARY thread");
1691 KA_TRACE(20, ("__kmp_fork_in_teams: T#%d(%d:0) done microtask = %p\n", gtid
,
1692 parent_team
->t
.t_id
, parent_team
->t
.t_pkfn
));
1693 KMP_MB(); /* Flush all pending memory write invalidates. */
1695 KA_TRACE(20, ("__kmp_fork_in_teams: parallel exit T#%d\n", gtid
));
1700 // Create a serialized parallel region
1702 __kmp_serial_fork_call(ident_t
*loc
, int gtid
, enum fork_context_e call_context
,
1703 kmp_int32 argc
, microtask_t microtask
, launch_t invoker
,
1704 kmp_info_t
*master_th
, kmp_team_t
*parent_team
,
1706 ompt_data_t
*ompt_parallel_data
, void **return_address
,
1707 ompt_data_t
**parent_task_data
,
1714 /* josh todo: hypothetical question: what do we do for OS X*? */
1715 #if KMP_OS_LINUX && \
1716 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
1717 SimpleVLA
<void *> args(argc
);
1719 void **args
= (void **)KMP_ALLOCA(argc
* sizeof(void *));
1720 #endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \
1721 KMP_ARCH_AARCH64) */
1724 20, ("__kmp_serial_fork_call: T#%d serializing parallel region\n", gtid
));
1726 __kmpc_serialized_parallel(loc
, gtid
);
1729 master_th
->th
.th_serial_team
->t
.t_pkfn
= microtask
;
1732 if (call_context
== fork_context_intel
) {
1733 /* TODO this sucks, use the compiler itself to pass args! :) */
1734 master_th
->th
.th_serial_team
->t
.t_ident
= loc
;
1736 // revert change made in __kmpc_serialized_parallel()
1737 master_th
->th
.th_serial_team
->t
.t_level
--;
1738 // Get args from parent team for teams construct
1742 void **exit_frame_p
;
1743 ompt_task_info_t
*task_info
;
1744 ompt_lw_taskteam_t lw_taskteam
;
1746 if (ompt_enabled
.enabled
) {
1747 __ompt_lw_taskteam_init(&lw_taskteam
, master_th
, gtid
,
1748 ompt_parallel_data
, *return_address
);
1750 __ompt_lw_taskteam_link(&lw_taskteam
, master_th
, 0);
1751 // don't use lw_taskteam after linking. content was swaped
1752 task_info
= OMPT_CUR_TASK_INFO(master_th
);
1753 exit_frame_p
= &(task_info
->frame
.exit_frame
.ptr
);
1754 if (ompt_enabled
.ompt_callback_implicit_task
) {
1755 OMPT_CUR_TASK_INFO(master_th
)->thread_num
= __kmp_tid_from_gtid(gtid
);
1756 ompt_callbacks
.ompt_callback(ompt_callback_implicit_task
)(
1757 ompt_scope_begin
, OMPT_CUR_TEAM_DATA(master_th
),
1758 &(task_info
->task_data
), 1,
1759 OMPT_CUR_TASK_INFO(master_th
)->thread_num
, ompt_task_implicit
);
1763 master_th
->th
.ompt_thread_info
.state
= ompt_state_work_parallel
;
1765 exit_frame_p
= &dummy
;
1770 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel
);
1771 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK
);
1772 __kmp_invoke_microtask(microtask
, gtid
, 0, argc
, parent_team
->t
.t_argv
1781 if (ompt_enabled
.enabled
) {
1782 *exit_frame_p
= NULL
;
1783 if (ompt_enabled
.ompt_callback_implicit_task
) {
1784 ompt_callbacks
.ompt_callback(ompt_callback_implicit_task
)(
1785 ompt_scope_end
, NULL
, &(task_info
->task_data
), 1,
1786 OMPT_CUR_TASK_INFO(master_th
)->thread_num
, ompt_task_implicit
);
1788 *ompt_parallel_data
= *OMPT_CUR_TEAM_DATA(master_th
);
1789 __ompt_lw_taskteam_unlink(master_th
);
1790 if (ompt_enabled
.ompt_callback_parallel_end
) {
1791 ompt_callbacks
.ompt_callback(ompt_callback_parallel_end
)(
1792 ompt_parallel_data
, *parent_task_data
,
1793 OMPT_INVOKER(call_context
) | ompt_parallel_team
, *return_address
);
1795 master_th
->th
.ompt_thread_info
.state
= ompt_state_overhead
;
1798 } else if (microtask
== (microtask_t
)__kmp_teams_master
) {
1799 KMP_DEBUG_ASSERT(master_th
->th
.th_team
== master_th
->th
.th_serial_team
);
1800 team
= master_th
->th
.th_team
;
1801 // team->t.t_pkfn = microtask;
1802 team
->t
.t_invoke
= invoker
;
1803 __kmp_alloc_argv_entries(argc
, team
, TRUE
);
1804 team
->t
.t_argc
= argc
;
1805 argv
= (void **)team
->t
.t_argv
;
1806 for (i
= argc
- 1; i
>= 0; --i
)
1807 *argv
++ = va_arg(kmp_va_deref(ap
), void *);
1808 // AC: revert change made in __kmpc_serialized_parallel()
1809 // because initial code in teams should have level=0
1811 // AC: call special invoker for outer "parallel" of teams construct
1814 if (ompt_enabled
.enabled
) {
1815 ompt_task_info_t
*task_info
= OMPT_CUR_TASK_INFO(master_th
);
1816 if (ompt_enabled
.ompt_callback_implicit_task
) {
1817 ompt_callbacks
.ompt_callback(ompt_callback_implicit_task
)(
1818 ompt_scope_end
, NULL
, &(task_info
->task_data
), 0,
1819 OMPT_CUR_TASK_INFO(master_th
)->thread_num
, ompt_task_initial
);
1821 if (ompt_enabled
.ompt_callback_parallel_end
) {
1822 ompt_callbacks
.ompt_callback(ompt_callback_parallel_end
)(
1823 ompt_parallel_data
, *parent_task_data
,
1824 OMPT_INVOKER(call_context
) | ompt_parallel_league
,
1827 master_th
->th
.ompt_thread_info
.state
= ompt_state_overhead
;
1832 for (i
= argc
- 1; i
>= 0; --i
)
1833 *argv
++ = va_arg(kmp_va_deref(ap
), void *);
1838 void **exit_frame_p
;
1839 ompt_task_info_t
*task_info
;
1840 ompt_lw_taskteam_t lw_taskteam
;
1841 ompt_data_t
*implicit_task_data
;
1843 if (ompt_enabled
.enabled
) {
1844 __ompt_lw_taskteam_init(&lw_taskteam
, master_th
, gtid
,
1845 ompt_parallel_data
, *return_address
);
1846 __ompt_lw_taskteam_link(&lw_taskteam
, master_th
, 0);
1847 // don't use lw_taskteam after linking. content was swaped
1848 task_info
= OMPT_CUR_TASK_INFO(master_th
);
1849 exit_frame_p
= &(task_info
->frame
.exit_frame
.ptr
);
1851 /* OMPT implicit task begin */
1852 implicit_task_data
= OMPT_CUR_TASK_DATA(master_th
);
1853 if (ompt_enabled
.ompt_callback_implicit_task
) {
1854 ompt_callbacks
.ompt_callback(ompt_callback_implicit_task
)(
1855 ompt_scope_begin
, OMPT_CUR_TEAM_DATA(master_th
),
1856 implicit_task_data
, 1, __kmp_tid_from_gtid(gtid
),
1857 ompt_task_implicit
);
1858 OMPT_CUR_TASK_INFO(master_th
)->thread_num
= __kmp_tid_from_gtid(gtid
);
1862 master_th
->th
.ompt_thread_info
.state
= ompt_state_work_parallel
;
1864 exit_frame_p
= &dummy
;
1869 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel
);
1870 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK
);
1871 __kmp_invoke_microtask(microtask
, gtid
, 0, argc
, args
1880 if (ompt_enabled
.enabled
) {
1881 *exit_frame_p
= NULL
;
1882 if (ompt_enabled
.ompt_callback_implicit_task
) {
1883 ompt_callbacks
.ompt_callback(ompt_callback_implicit_task
)(
1884 ompt_scope_end
, NULL
, &(task_info
->task_data
), 1,
1885 OMPT_CUR_TASK_INFO(master_th
)->thread_num
, ompt_task_implicit
);
1888 *ompt_parallel_data
= *OMPT_CUR_TEAM_DATA(master_th
);
1889 __ompt_lw_taskteam_unlink(master_th
);
1890 if (ompt_enabled
.ompt_callback_parallel_end
) {
1891 ompt_callbacks
.ompt_callback(ompt_callback_parallel_end
)(
1892 ompt_parallel_data
, *parent_task_data
,
1893 OMPT_INVOKER(call_context
) | ompt_parallel_team
, *return_address
);
1895 master_th
->th
.ompt_thread_info
.state
= ompt_state_overhead
;
1899 } else if (call_context
== fork_context_gnu
) {
1901 if (ompt_enabled
.enabled
) {
1902 ompt_lw_taskteam_t lwt
;
1903 __ompt_lw_taskteam_init(&lwt
, master_th
, gtid
, ompt_parallel_data
,
1906 lwt
.ompt_task_info
.frame
.exit_frame
= ompt_data_none
;
1907 __ompt_lw_taskteam_link(&lwt
, master_th
, 1);
1909 // don't use lw_taskteam after linking. content was swaped
1912 // we were called from GNU native code
1913 KA_TRACE(20, ("__kmp_serial_fork_call: T#%d serial exit\n", gtid
));
1916 KMP_ASSERT2(call_context
< fork_context_last
,
1917 "__kmp_serial_fork_call: unknown fork_context parameter");
1920 KA_TRACE(20, ("__kmp_serial_fork_call: T#%d serial exit\n", gtid
));
1925 /* most of the work for a fork */
1926 /* return true if we really went parallel, false if serialized */
1927 int __kmp_fork_call(ident_t
*loc
, int gtid
,
1928 enum fork_context_e call_context
, // Intel, GNU, ...
1929 kmp_int32 argc
, microtask_t microtask
, launch_t invoker
,
1934 int master_this_cons
;
1936 kmp_team_t
*parent_team
;
1937 kmp_info_t
*master_th
;
1941 int master_set_numthreads
;
1942 int task_thread_limit
= 0;
1946 #if KMP_NESTED_HOT_TEAMS
1947 kmp_hot_team_ptr_t
**p_hot_teams
;
1950 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call
);
1951 KMP_COUNT_VALUE(OMP_PARALLEL_args
, argc
);
1953 KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid
));
1954 if (__kmp_stkpadding
> 0 && __kmp_root
[gtid
] != NULL
) {
1955 /* Some systems prefer the stack for the root thread(s) to start with */
1956 /* some gap from the parent stack to prevent false sharing. */
1957 void *dummy
= KMP_ALLOCA(__kmp_stkpadding
);
1958 /* These 2 lines below are so this does not get optimized out */
1959 if (__kmp_stkpadding
> KMP_MAX_STKPADDING
)
1960 __kmp_stkpadding
+= (short)((kmp_int64
)dummy
);
1963 /* initialize if needed */
1965 __kmp_init_serial
); // AC: potentially unsafe, not in sync with shutdown
1966 if (!TCR_4(__kmp_init_parallel
))
1967 __kmp_parallel_initialize();
1968 __kmp_resume_if_soft_paused();
1970 /* setup current data */
1971 // AC: potentially unsafe, not in sync with library shutdown,
1972 // __kmp_threads can be freed
1973 master_th
= __kmp_threads
[gtid
];
1975 parent_team
= master_th
->th
.th_team
;
1976 master_tid
= master_th
->th
.th_info
.ds
.ds_tid
;
1977 master_this_cons
= master_th
->th
.th_local
.this_construct
;
1978 root
= master_th
->th
.th_root
;
1979 master_active
= root
->r
.r_active
;
1980 master_set_numthreads
= master_th
->th
.th_set_nproc
;
1982 master_th
->th
.th_current_task
->td_icvs
.task_thread_limit
;
1985 ompt_data_t ompt_parallel_data
= ompt_data_none
;
1986 ompt_data_t
*parent_task_data
= NULL
;
1987 ompt_frame_t
*ompt_frame
= NULL
;
1988 void *return_address
= NULL
;
1990 if (ompt_enabled
.enabled
) {
1991 __ompt_get_task_info_internal(0, NULL
, &parent_task_data
, &ompt_frame
,
1993 return_address
= OMPT_LOAD_RETURN_ADDRESS(gtid
);
1997 // Assign affinity to root thread if it hasn't happened yet
1998 __kmp_assign_root_init_mask();
2000 // Nested level will be an index in the nested nthreads array
2001 level
= parent_team
->t
.t_level
;
2002 // used to launch non-serial teams even if nested is not allowed
2003 active_level
= parent_team
->t
.t_active_level
;
2004 // needed to check nesting inside the teams
2005 teams_level
= master_th
->th
.th_teams_level
;
2006 #if KMP_NESTED_HOT_TEAMS
2007 p_hot_teams
= &master_th
->th
.th_hot_teams
;
2008 if (*p_hot_teams
== NULL
&& __kmp_hot_teams_max_level
> 0) {
2009 *p_hot_teams
= (kmp_hot_team_ptr_t
*)__kmp_allocate(
2010 sizeof(kmp_hot_team_ptr_t
) * __kmp_hot_teams_max_level
);
2011 (*p_hot_teams
)[0].hot_team
= root
->r
.r_hot_team
;
2012 // it is either actual or not needed (when active_level > 0)
2013 (*p_hot_teams
)[0].hot_team_nth
= 1;
2018 if (ompt_enabled
.enabled
) {
2019 if (ompt_enabled
.ompt_callback_parallel_begin
) {
2020 int team_size
= master_set_numthreads
2021 ? master_set_numthreads
2022 : get__nproc_2(parent_team
, master_tid
);
2023 int flags
= OMPT_INVOKER(call_context
) |
2024 ((microtask
== (microtask_t
)__kmp_teams_master
)
2025 ? ompt_parallel_league
2026 : ompt_parallel_team
);
2027 ompt_callbacks
.ompt_callback(ompt_callback_parallel_begin
)(
2028 parent_task_data
, ompt_frame
, &ompt_parallel_data
, team_size
, flags
,
2031 master_th
->th
.ompt_thread_info
.state
= ompt_state_overhead
;
2035 master_th
->th
.th_ident
= loc
;
2037 // Parallel closely nested in teams construct:
2038 if (__kmp_is_fork_in_teams(master_th
, microtask
, level
, teams_level
, ap
)) {
2039 return __kmp_fork_in_teams(loc
, gtid
, parent_team
, argc
, master_th
, root
,
2040 call_context
, microtask
, invoker
,
2041 master_set_numthreads
, level
,
2043 ompt_parallel_data
, return_address
,
2046 } // End parallel closely nested in teams construct
2048 // Need this to happen before we determine the number of threads, not while
2049 // we are allocating the team
2050 //__kmp_push_current_task_to_thread(master_th, parent_team, 0);
2052 KMP_DEBUG_ASSERT_TASKTEAM_INVARIANT(parent_team
, master_th
);
2054 // Determine the number of threads
2056 __kmp_is_entering_teams(active_level
, level
, teams_level
, ap
);
2057 if ((!enter_teams
&&
2058 (parent_team
->t
.t_active_level
>=
2059 master_th
->th
.th_current_task
->td_icvs
.max_active_levels
)) ||
2060 (__kmp_library
== library_serial
)) {
2061 KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team\n", gtid
));
2064 nthreads
= master_set_numthreads
2065 ? master_set_numthreads
2066 // TODO: get nproc directly from current task
2067 : get__nproc_2(parent_team
, master_tid
);
2068 // Use the thread_limit set for the current target task if exists, else go
2069 // with the deduced nthreads
2070 nthreads
= task_thread_limit
> 0 && task_thread_limit
< nthreads
2073 // Check if we need to take forkjoin lock? (no need for serialized
2074 // parallel out of teams construct).
2076 /* determine how many new threads we can use */
2077 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock
);
2078 /* AC: If we execute teams from parallel region (on host), then teams
2079 should be created but each can only have 1 thread if nesting is
2080 disabled. If teams called from serial region, then teams and their
2081 threads should be created regardless of the nesting setting. */
2082 nthreads
= __kmp_reserve_threads(root
, parent_team
, master_tid
,
2083 nthreads
, enter_teams
);
2084 if (nthreads
== 1) {
2085 // Free lock for single thread execution here; for multi-thread
2086 // execution it will be freed later after team of threads created
2088 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock
);
2092 KMP_DEBUG_ASSERT(nthreads
> 0);
2094 // If we temporarily changed the set number of threads then restore it now
2095 master_th
->th
.th_set_nproc
= 0;
2097 if (nthreads
== 1) {
2098 return __kmp_serial_fork_call(loc
, gtid
, call_context
, argc
, microtask
,
2099 invoker
, master_th
, parent_team
,
2101 &ompt_parallel_data
, &return_address
,
2105 } // if (nthreads == 1)
2107 // GEH: only modify the executing flag in the case when not serialized
2108 // serialized case is handled in kmpc_serialized_parallel
2109 KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, "
2110 "curtask=%p, curtask_max_aclevel=%d\n",
2111 parent_team
->t
.t_active_level
, master_th
,
2112 master_th
->th
.th_current_task
,
2113 master_th
->th
.th_current_task
->td_icvs
.max_active_levels
));
2114 // TODO: GEH - cannot do this assertion because root thread not set up as
2116 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 );
2117 master_th
->th
.th_current_task
->td_flags
.executing
= 0;
2119 if (!master_th
->th
.th_teams_microtask
|| level
> teams_level
) {
2120 /* Increment our nested depth level */
2121 KMP_ATOMIC_INC(&root
->r
.r_in_parallel
);
2124 // See if we need to make a copy of the ICVs.
2125 int nthreads_icv
= master_th
->th
.th_current_task
->td_icvs
.nproc
;
2126 kmp_nested_nthreads_t
*nested_nth
= NULL
;
2127 if (!master_th
->th
.th_set_nested_nth
&&
2128 (level
+ 1 < parent_team
->t
.t_nested_nth
->used
) &&
2129 (parent_team
->t
.t_nested_nth
->nth
[level
+ 1] != nthreads_icv
)) {
2130 nthreads_icv
= parent_team
->t
.t_nested_nth
->nth
[level
+ 1];
2131 } else if (master_th
->th
.th_set_nested_nth
) {
2132 nested_nth
= __kmp_override_nested_nth(master_th
, level
);
2133 if ((level
+ 1 < nested_nth
->used
) &&
2134 (nested_nth
->nth
[level
+ 1] != nthreads_icv
))
2135 nthreads_icv
= nested_nth
->nth
[level
+ 1];
2137 nthreads_icv
= 0; // don't update
2139 nthreads_icv
= 0; // don't update
2142 // Figure out the proc_bind_policy for the new team.
2143 kmp_proc_bind_t proc_bind
= master_th
->th
.th_set_proc_bind
;
2144 // proc_bind_default means don't update
2145 kmp_proc_bind_t proc_bind_icv
= proc_bind_default
;
2146 if (master_th
->th
.th_current_task
->td_icvs
.proc_bind
== proc_bind_false
) {
2147 proc_bind
= proc_bind_false
;
2149 // No proc_bind clause specified; use current proc-bind-var for this
2151 if (proc_bind
== proc_bind_default
) {
2152 proc_bind
= master_th
->th
.th_current_task
->td_icvs
.proc_bind
;
2154 // Have teams construct take proc_bind value from KMP_TEAMS_PROC_BIND
2155 if (master_th
->th
.th_teams_microtask
&&
2156 microtask
== (microtask_t
)__kmp_teams_master
) {
2157 proc_bind
= __kmp_teams_proc_bind
;
2159 /* else: The proc_bind policy was specified explicitly on parallel clause.
2160 This overrides proc-bind-var for this parallel region, but does not
2161 change proc-bind-var. */
2162 // Figure the value of proc-bind-var for the child threads.
2163 if ((level
+ 1 < __kmp_nested_proc_bind
.used
) &&
2164 (__kmp_nested_proc_bind
.bind_types
[level
+ 1] !=
2165 master_th
->th
.th_current_task
->td_icvs
.proc_bind
)) {
2166 // Do not modify the proc bind icv for the two teams construct forks
2167 // They just let the proc bind icv pass through
2168 if (!master_th
->th
.th_teams_microtask
||
2169 !(microtask
== (microtask_t
)__kmp_teams_master
|| ap
== NULL
))
2170 proc_bind_icv
= __kmp_nested_proc_bind
.bind_types
[level
+ 1];
2174 // Reset for next parallel region
2175 master_th
->th
.th_set_proc_bind
= proc_bind_default
;
2177 if ((nthreads_icv
> 0) || (proc_bind_icv
!= proc_bind_default
)) {
2178 kmp_internal_control_t new_icvs
;
2179 copy_icvs(&new_icvs
, &master_th
->th
.th_current_task
->td_icvs
);
2180 new_icvs
.next
= NULL
;
2181 if (nthreads_icv
> 0) {
2182 new_icvs
.nproc
= nthreads_icv
;
2184 if (proc_bind_icv
!= proc_bind_default
) {
2185 new_icvs
.proc_bind
= proc_bind_icv
;
2188 /* allocate a new parallel team */
2189 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n"));
2190 team
= __kmp_allocate_team(root
, nthreads
, nthreads
,
2194 proc_bind
, &new_icvs
,
2195 argc
USE_NESTED_HOT_ARG(master_th
));
2196 if (__kmp_barrier_release_pattern
[bs_forkjoin_barrier
] == bp_dist_bar
)
2197 copy_icvs((kmp_internal_control_t
*)team
->t
.b
->team_icvs
, &new_icvs
);
2199 /* allocate a new parallel team */
2200 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n"));
2201 team
= __kmp_allocate_team(root
, nthreads
, nthreads
,
2206 &master_th
->th
.th_current_task
->td_icvs
,
2207 argc
USE_NESTED_HOT_ARG(master_th
));
2208 if (__kmp_barrier_release_pattern
[bs_forkjoin_barrier
] == bp_dist_bar
)
2209 copy_icvs((kmp_internal_control_t
*)team
->t
.b
->team_icvs
,
2210 &master_th
->th
.th_current_task
->td_icvs
);
2213 10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team
));
2215 /* setup the new team */
2216 KMP_CHECK_UPDATE(team
->t
.t_master_tid
, master_tid
);
2217 KMP_CHECK_UPDATE(team
->t
.t_master_this_cons
, master_this_cons
);
2218 KMP_CHECK_UPDATE(team
->t
.t_ident
, loc
);
2219 KMP_CHECK_UPDATE(team
->t
.t_parent
, parent_team
);
2220 KMP_CHECK_UPDATE_SYNC(team
->t
.t_pkfn
, microtask
);
2222 KMP_CHECK_UPDATE_SYNC(team
->t
.ompt_team_info
.master_return_address
,
2225 KMP_CHECK_UPDATE(team
->t
.t_invoke
, invoker
); // TODO move to root, maybe
2226 // TODO: parent_team->t.t_level == INT_MAX ???
2227 if (!master_th
->th
.th_teams_microtask
|| level
> teams_level
) {
2228 int new_level
= parent_team
->t
.t_level
+ 1;
2229 KMP_CHECK_UPDATE(team
->t
.t_level
, new_level
);
2230 new_level
= parent_team
->t
.t_active_level
+ 1;
2231 KMP_CHECK_UPDATE(team
->t
.t_active_level
, new_level
);
2233 // AC: Do not increase parallel level at start of the teams construct
2234 int new_level
= parent_team
->t
.t_level
;
2235 KMP_CHECK_UPDATE(team
->t
.t_level
, new_level
);
2236 new_level
= parent_team
->t
.t_active_level
;
2237 KMP_CHECK_UPDATE(team
->t
.t_active_level
, new_level
);
2239 kmp_r_sched_t new_sched
= get__sched_2(parent_team
, master_tid
);
2240 // set primary thread's schedule as new run-time schedule
2241 KMP_CHECK_UPDATE(team
->t
.t_sched
.sched
, new_sched
.sched
);
2243 KMP_CHECK_UPDATE(team
->t
.t_cancel_request
, cancel_noreq
);
2244 KMP_CHECK_UPDATE(team
->t
.t_def_allocator
, master_th
->th
.th_def_allocator
);
2246 // Check if hot team has potentially outdated list, and if so, free it
2247 if (team
->t
.t_nested_nth
&&
2248 team
->t
.t_nested_nth
!= parent_team
->t
.t_nested_nth
) {
2249 KMP_INTERNAL_FREE(team
->t
.t_nested_nth
->nth
);
2250 KMP_INTERNAL_FREE(team
->t
.t_nested_nth
);
2251 team
->t
.t_nested_nth
= NULL
;
2253 team
->t
.t_nested_nth
= parent_team
->t
.t_nested_nth
;
2254 if (master_th
->th
.th_set_nested_nth
) {
2256 nested_nth
= __kmp_override_nested_nth(master_th
, level
);
2257 team
->t
.t_nested_nth
= nested_nth
;
2258 KMP_INTERNAL_FREE(master_th
->th
.th_set_nested_nth
);
2259 master_th
->th
.th_set_nested_nth
= NULL
;
2260 master_th
->th
.th_set_nested_nth_sz
= 0;
2261 master_th
->th
.th_nt_strict
= false;
2264 // Update the floating point rounding in the team if required.
2265 propagateFPControl(team
);
2267 if (ompd_state
& OMPD_ENABLE_BP
)
2268 ompd_bp_parallel_begin();
2273 ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n",
2274 gtid
, parent_team
->t
.t_id
, team
->t
.t_master_tid
, team
->t
.t_id
,
2276 KMP_DEBUG_ASSERT(team
!= root
->r
.r_hot_team
||
2277 (team
->t
.t_master_tid
== 0 &&
2278 (team
->t
.t_parent
== root
->r
.r_root_team
||
2279 team
->t
.t_parent
->t
.t_serialized
)));
2282 /* now, setup the arguments */
2283 argv
= (void **)team
->t
.t_argv
;
2285 for (i
= argc
- 1; i
>= 0; --i
) {
2286 void *new_argv
= va_arg(kmp_va_deref(ap
), void *);
2287 KMP_CHECK_UPDATE(*argv
, new_argv
);
2291 for (i
= 0; i
< argc
; ++i
) {
2292 // Get args from parent team for teams construct
2293 KMP_CHECK_UPDATE(argv
[i
], team
->t
.t_parent
->t
.t_argv
[i
]);
2297 /* now actually fork the threads */
2298 KMP_CHECK_UPDATE(team
->t
.t_master_active
, master_active
);
2299 if (!root
->r
.r_active
) // Only do assignment if it prevents cache ping-pong
2300 root
->r
.r_active
= TRUE
;
2302 __kmp_fork_team_threads(root
, team
, master_th
, gtid
, !ap
);
2303 __kmp_setup_icv_copy(team
, nthreads
,
2304 &master_th
->th
.th_current_task
->td_icvs
, loc
);
2307 master_th
->th
.ompt_thread_info
.state
= ompt_state_work_parallel
;
2310 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock
);
2313 if (team
->t
.t_active_level
== 1 // only report frames at level 1
2314 && !master_th
->th
.th_teams_microtask
) { // not in teams construct
2316 if ((__itt_frame_submit_v3_ptr
|| KMP_ITT_DEBUG
) &&
2317 (__kmp_forkjoin_frames_mode
== 3 ||
2318 __kmp_forkjoin_frames_mode
== 1)) {
2319 kmp_uint64 tmp_time
= 0;
2320 if (__itt_get_timestamp_ptr
)
2321 tmp_time
= __itt_get_timestamp();
2322 // Internal fork - report frame begin
2323 master_th
->th
.th_frame_time
= tmp_time
;
2324 if (__kmp_forkjoin_frames_mode
== 3)
2325 team
->t
.t_region_time
= tmp_time
;
2327 // only one notification scheme (either "submit" or "forking/joined", not both)
2328 #endif /* USE_ITT_NOTIFY */
2329 if ((__itt_frame_begin_v3_ptr
|| KMP_ITT_DEBUG
) &&
2330 __kmp_forkjoin_frames
&& !__kmp_forkjoin_frames_mode
) {
2331 // Mark start of "parallel" region for Intel(R) VTune(TM) analyzer.
2332 __kmp_itt_region_forking(gtid
, team
->t
.t_nproc
, 0);
2335 #endif /* USE_ITT_BUILD */
2337 /* now go on and do the work */
2338 KMP_DEBUG_ASSERT(team
== __kmp_threads
[gtid
]->th
.th_team
);
2341 ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n",
2342 root
, team
, master_th
, gtid
));
2345 if (__itt_stack_caller_create_ptr
) {
2346 // create new stack stitching id before entering fork barrier
2348 KMP_DEBUG_ASSERT(team
->t
.t_stack_id
== NULL
);
2349 team
->t
.t_stack_id
= __kmp_itt_stack_caller_create();
2350 } else if (parent_team
->t
.t_serialized
) {
2351 // keep stack stitching id in the serialized parent_team;
2352 // current team will be used for parallel inside the teams;
2353 // if parent_team is active, then it already keeps stack stitching id
2354 // for the league of teams
2355 KMP_DEBUG_ASSERT(parent_team
->t
.t_stack_id
== NULL
);
2356 parent_team
->t
.t_stack_id
= __kmp_itt_stack_caller_create();
2359 #endif /* USE_ITT_BUILD */
2361 // AC: skip __kmp_internal_fork at teams construct, let only primary
2364 __kmp_internal_fork(loc
, gtid
, team
);
2365 KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, "
2366 "master_th=%p, gtid=%d\n",
2367 root
, team
, master_th
, gtid
));
2370 if (call_context
== fork_context_gnu
) {
2371 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid
));
2375 /* Invoke microtask for PRIMARY thread */
2376 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid
,
2377 team
->t
.t_id
, team
->t
.t_pkfn
));
2378 } // END of timer KMP_fork_call block
2380 #if KMP_STATS_ENABLED
2381 // If beginning a teams construct, then change thread state
2382 stats_state_e previous_state
= KMP_GET_THREAD_STATE();
2384 KMP_SET_THREAD_STATE(stats_state_e::TEAMS_REGION
);
2388 if (!team
->t
.t_invoke(gtid
)) {
2389 KMP_ASSERT2(0, "cannot invoke microtask for PRIMARY thread");
2392 #if KMP_STATS_ENABLED
2393 // If was beginning of a teams construct, then reset thread state
2395 KMP_SET_THREAD_STATE(previous_state
);
2399 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid
,
2400 team
->t
.t_id
, team
->t
.t_pkfn
));
2401 KMP_MB(); /* Flush all pending memory write invalidates. */
2403 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid
));
2405 if (ompt_enabled
.enabled
) {
2406 master_th
->th
.ompt_thread_info
.state
= ompt_state_overhead
;
2414 static inline void __kmp_join_restore_state(kmp_info_t
*thread
,
2416 // restore state outside the region
2417 thread
->th
.ompt_thread_info
.state
=
2418 ((team
->t
.t_serialized
) ? ompt_state_work_serial
2419 : ompt_state_work_parallel
);
2422 static inline void __kmp_join_ompt(int gtid
, kmp_info_t
*thread
,
2423 kmp_team_t
*team
, ompt_data_t
*parallel_data
,
2424 int flags
, void *codeptr
) {
2425 ompt_task_info_t
*task_info
= __ompt_get_task_info_object(0);
2426 if (ompt_enabled
.ompt_callback_parallel_end
) {
2427 ompt_callbacks
.ompt_callback(ompt_callback_parallel_end
)(
2428 parallel_data
, &(task_info
->task_data
), flags
, codeptr
);
2431 task_info
->frame
.enter_frame
= ompt_data_none
;
2432 __kmp_join_restore_state(thread
, team
);
2436 void __kmp_join_call(ident_t
*loc
, int gtid
2439 enum fork_context_e fork_context
2443 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call
);
2445 kmp_team_t
*parent_team
;
2446 kmp_info_t
*master_th
;
2450 KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid
));
2452 /* setup current data */
2453 master_th
= __kmp_threads
[gtid
];
2454 root
= master_th
->th
.th_root
;
2455 team
= master_th
->th
.th_team
;
2456 parent_team
= team
->t
.t_parent
;
2458 master_th
->th
.th_ident
= loc
;
2461 void *team_microtask
= (void *)team
->t
.t_pkfn
;
2462 // For GOMP interface with serialized parallel, need the
2463 // __kmpc_end_serialized_parallel to call hooks for OMPT end-implicit-task
2464 // and end-parallel events.
2465 if (ompt_enabled
.enabled
&&
2466 !(team
->t
.t_serialized
&& fork_context
== fork_context_gnu
)) {
2467 master_th
->th
.ompt_thread_info
.state
= ompt_state_overhead
;
2472 if (__kmp_tasking_mode
!= tskm_immediate_exec
&& !exit_teams
) {
2473 KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, "
2474 "th_task_team = %p\n",
2475 __kmp_gtid_from_thread(master_th
), team
,
2476 team
->t
.t_task_team
[master_th
->th
.th_task_state
],
2477 master_th
->th
.th_task_team
));
2478 KMP_DEBUG_ASSERT_TASKTEAM_INVARIANT(team
, master_th
);
2482 if (team
->t
.t_serialized
) {
2483 if (master_th
->th
.th_teams_microtask
) {
2484 // We are in teams construct
2485 int level
= team
->t
.t_level
;
2486 int tlevel
= master_th
->th
.th_teams_level
;
2487 if (level
== tlevel
) {
2488 // AC: we haven't incremented it earlier at start of teams construct,
2489 // so do it here - at the end of teams construct
2491 } else if (level
== tlevel
+ 1) {
2492 // AC: we are exiting parallel inside teams, need to increment
2493 // serialization in order to restore it in the next call to
2494 // __kmpc_end_serialized_parallel
2495 team
->t
.t_serialized
++;
2498 __kmpc_end_serialized_parallel(loc
, gtid
);
2501 if (ompt_enabled
.enabled
) {
2502 if (fork_context
== fork_context_gnu
) {
2503 __ompt_lw_taskteam_unlink(master_th
);
2505 __kmp_join_restore_state(master_th
, parent_team
);
2512 master_active
= team
->t
.t_master_active
;
2515 // AC: No barrier for internal teams at exit from teams construct.
2516 // But there is barrier for external team (league).
2517 __kmp_internal_join(loc
, gtid
, team
);
2519 if (__itt_stack_caller_create_ptr
) {
2520 KMP_DEBUG_ASSERT(team
->t
.t_stack_id
!= NULL
);
2521 // destroy the stack stitching id after join barrier
2522 __kmp_itt_stack_caller_destroy((__itt_caller
)team
->t
.t_stack_id
);
2523 team
->t
.t_stack_id
= NULL
;
2527 master_th
->th
.th_task_state
=
2528 0; // AC: no tasking in teams (out of any parallel)
2530 if (__itt_stack_caller_create_ptr
&& parent_team
->t
.t_serialized
) {
2531 KMP_DEBUG_ASSERT(parent_team
->t
.t_stack_id
!= NULL
);
2532 // destroy the stack stitching id on exit from the teams construct
2533 // if parent_team is active, then the id will be destroyed later on
2534 // by master of the league of teams
2535 __kmp_itt_stack_caller_destroy((__itt_caller
)parent_team
->t
.t_stack_id
);
2536 parent_team
->t
.t_stack_id
= NULL
;
2544 ompt_data_t
*parallel_data
= &(team
->t
.ompt_team_info
.parallel_data
);
2545 void *codeptr
= team
->t
.ompt_team_info
.master_return_address
;
2549 // Mark end of "parallel" region for Intel(R) VTune(TM) analyzer.
2550 if (team
->t
.t_active_level
== 1 &&
2551 (!master_th
->th
.th_teams_microtask
|| /* not in teams construct */
2552 master_th
->th
.th_teams_size
.nteams
== 1)) {
2553 master_th
->th
.th_ident
= loc
;
2554 // only one notification scheme (either "submit" or "forking/joined", not
2556 if ((__itt_frame_submit_v3_ptr
|| KMP_ITT_DEBUG
) &&
2557 __kmp_forkjoin_frames_mode
== 3)
2558 __kmp_itt_frame_submit(gtid
, team
->t
.t_region_time
,
2559 master_th
->th
.th_frame_time
, 0, loc
,
2560 master_th
->th
.th_team_nproc
, 1);
2561 else if ((__itt_frame_end_v3_ptr
|| KMP_ITT_DEBUG
) &&
2562 !__kmp_forkjoin_frames_mode
&& __kmp_forkjoin_frames
)
2563 __kmp_itt_region_joined(gtid
);
2564 } // active_level == 1
2565 #endif /* USE_ITT_BUILD */
2567 #if KMP_AFFINITY_SUPPORTED
2569 // Restore master thread's partition.
2570 master_th
->th
.th_first_place
= team
->t
.t_first_place
;
2571 master_th
->th
.th_last_place
= team
->t
.t_last_place
;
2573 #endif // KMP_AFFINITY_SUPPORTED
2575 if (master_th
->th
.th_teams_microtask
&& !exit_teams
&&
2576 team
->t
.t_pkfn
!= (microtask_t
)__kmp_teams_master
&&
2577 team
->t
.t_level
== master_th
->th
.th_teams_level
+ 1) {
2578 // AC: We need to leave the team structure intact at the end of parallel
2579 // inside the teams construct, so that at the next parallel same (hot) team
2580 // works, only adjust nesting levels
2582 ompt_data_t ompt_parallel_data
= ompt_data_none
;
2583 if (ompt_enabled
.enabled
) {
2584 ompt_task_info_t
*task_info
= __ompt_get_task_info_object(0);
2585 if (ompt_enabled
.ompt_callback_implicit_task
) {
2586 int ompt_team_size
= team
->t
.t_nproc
;
2587 ompt_callbacks
.ompt_callback(ompt_callback_implicit_task
)(
2588 ompt_scope_end
, NULL
, &(task_info
->task_data
), ompt_team_size
,
2589 OMPT_CUR_TASK_INFO(master_th
)->thread_num
, ompt_task_implicit
);
2591 task_info
->frame
.exit_frame
= ompt_data_none
;
2592 task_info
->task_data
= ompt_data_none
;
2593 ompt_parallel_data
= *OMPT_CUR_TEAM_DATA(master_th
);
2594 __ompt_lw_taskteam_unlink(master_th
);
2597 /* Decrement our nested depth level */
2599 team
->t
.t_active_level
--;
2600 KMP_ATOMIC_DEC(&root
->r
.r_in_parallel
);
2602 // Restore number of threads in the team if needed. This code relies on
2603 // the proper adjustment of th_teams_size.nth after the fork in
2604 // __kmp_teams_master on each teams primary thread in the case that
2605 // __kmp_reserve_threads reduced it.
2606 if (master_th
->th
.th_team_nproc
< master_th
->th
.th_teams_size
.nth
) {
2607 int old_num
= master_th
->th
.th_team_nproc
;
2608 int new_num
= master_th
->th
.th_teams_size
.nth
;
2609 kmp_info_t
**other_threads
= team
->t
.t_threads
;
2610 team
->t
.t_nproc
= new_num
;
2611 for (int i
= 0; i
< old_num
; ++i
) {
2612 other_threads
[i
]->th
.th_team_nproc
= new_num
;
2614 // Adjust states of non-used threads of the team
2615 for (int i
= old_num
; i
< new_num
; ++i
) {
2616 // Re-initialize thread's barrier data.
2617 KMP_DEBUG_ASSERT(other_threads
[i
]);
2618 kmp_balign_t
*balign
= other_threads
[i
]->th
.th_bar
;
2619 for (int b
= 0; b
< bs_last_barrier
; ++b
) {
2620 balign
[b
].bb
.b_arrived
= team
->t
.t_bar
[b
].b_arrived
;
2621 KMP_DEBUG_ASSERT(balign
[b
].bb
.wait_flag
!= KMP_BARRIER_PARENT_FLAG
);
2623 balign
[b
].bb
.b_worker_arrived
= team
->t
.t_bar
[b
].b_team_arrived
;
2626 if (__kmp_tasking_mode
!= tskm_immediate_exec
) {
2627 // Synchronize thread's task state
2628 other_threads
[i
]->th
.th_task_state
= master_th
->th
.th_task_state
;
2634 if (ompt_enabled
.enabled
) {
2635 __kmp_join_ompt(gtid
, master_th
, parent_team
, &ompt_parallel_data
,
2636 OMPT_INVOKER(fork_context
) | ompt_parallel_team
, codeptr
);
2643 /* do cleanup and restore the parent team */
2644 master_th
->th
.th_info
.ds
.ds_tid
= team
->t
.t_master_tid
;
2645 master_th
->th
.th_local
.this_construct
= team
->t
.t_master_this_cons
;
2647 master_th
->th
.th_dispatch
= &parent_team
->t
.t_dispatch
[team
->t
.t_master_tid
];
2649 /* jc: The following lock has instructions with REL and ACQ semantics,
2650 separating the parallel user code called in this parallel region
2651 from the serial user code called after this function returns. */
2652 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock
);
2654 if (!master_th
->th
.th_teams_microtask
||
2655 team
->t
.t_level
> master_th
->th
.th_teams_level
) {
2656 /* Decrement our nested depth level */
2657 KMP_ATOMIC_DEC(&root
->r
.r_in_parallel
);
2659 KMP_DEBUG_ASSERT(root
->r
.r_in_parallel
>= 0);
2662 if (ompt_enabled
.enabled
) {
2663 ompt_task_info_t
*task_info
= __ompt_get_task_info_object(0);
2664 if (ompt_enabled
.ompt_callback_implicit_task
) {
2665 int flags
= (team_microtask
== (void *)__kmp_teams_master
)
2667 : ompt_task_implicit
;
2668 int ompt_team_size
= (flags
== ompt_task_initial
) ? 0 : team
->t
.t_nproc
;
2669 ompt_callbacks
.ompt_callback(ompt_callback_implicit_task
)(
2670 ompt_scope_end
, NULL
, &(task_info
->task_data
), ompt_team_size
,
2671 OMPT_CUR_TASK_INFO(master_th
)->thread_num
, flags
);
2673 task_info
->frame
.exit_frame
= ompt_data_none
;
2674 task_info
->task_data
= ompt_data_none
;
2678 KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0,
2680 __kmp_pop_current_task_from_thread(master_th
);
2682 master_th
->th
.th_def_allocator
= team
->t
.t_def_allocator
;
2685 if (ompd_state
& OMPD_ENABLE_BP
)
2686 ompd_bp_parallel_end();
2688 updateHWFPControl(team
);
2690 if (root
->r
.r_active
!= master_active
)
2691 root
->r
.r_active
= master_active
;
2693 __kmp_free_team(root
, team
USE_NESTED_HOT_ARG(
2694 master_th
)); // this will free worker threads
2696 /* this race was fun to find. make sure the following is in the critical
2697 region otherwise assertions may fail occasionally since the old team may be
2698 reallocated and the hierarchy appears inconsistent. it is actually safe to
2699 run and won't cause any bugs, but will cause those assertion failures. it's
2700 only one deref&assign so might as well put this in the critical region */
2701 master_th
->th
.th_team
= parent_team
;
2702 master_th
->th
.th_team_nproc
= parent_team
->t
.t_nproc
;
2703 master_th
->th
.th_team_master
= parent_team
->t
.t_threads
[0];
2704 master_th
->th
.th_team_serialized
= parent_team
->t
.t_serialized
;
2706 /* restore serialized team, if need be */
2707 if (parent_team
->t
.t_serialized
&&
2708 parent_team
!= master_th
->th
.th_serial_team
&&
2709 parent_team
!= root
->r
.r_root_team
) {
2710 __kmp_free_team(root
,
2711 master_th
->th
.th_serial_team
USE_NESTED_HOT_ARG(NULL
));
2712 master_th
->th
.th_serial_team
= parent_team
;
2715 if (__kmp_tasking_mode
!= tskm_immediate_exec
) {
2716 // Restore primary thread's task state from team structure
2717 KMP_DEBUG_ASSERT(team
->t
.t_primary_task_state
== 0 ||
2718 team
->t
.t_primary_task_state
== 1);
2719 master_th
->th
.th_task_state
= (kmp_uint8
)team
->t
.t_primary_task_state
;
2721 // Copy the task team from the parent team to the primary thread
2722 master_th
->th
.th_task_team
=
2723 parent_team
->t
.t_task_team
[master_th
->th
.th_task_state
];
2725 ("__kmp_join_call: Primary T#%d restoring task_team %p, team %p\n",
2726 __kmp_gtid_from_thread(master_th
), master_th
->th
.th_task_team
,
2730 // TODO: GEH - cannot do this assertion because root thread not set up as
2732 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 );
2733 master_th
->th
.th_current_task
->td_flags
.executing
= 1;
2735 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock
);
2737 #if KMP_AFFINITY_SUPPORTED
2738 if (master_th
->th
.th_team
->t
.t_level
== 0 && __kmp_affinity
.flags
.reset
) {
2739 __kmp_reset_root_init_mask(gtid
);
2744 OMPT_INVOKER(fork_context
) |
2745 ((team_microtask
== (void *)__kmp_teams_master
) ? ompt_parallel_league
2746 : ompt_parallel_team
);
2747 if (ompt_enabled
.enabled
) {
2748 __kmp_join_ompt(gtid
, master_th
, parent_team
, parallel_data
, flags
,
2754 KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid
));
2757 /* Check whether we should push an internal control record onto the
2758 serial team stack. If so, do it. */
2759 void __kmp_save_internal_controls(kmp_info_t
*thread
) {
2761 if (thread
->th
.th_team
!= thread
->th
.th_serial_team
) {
2764 if (thread
->th
.th_team
->t
.t_serialized
> 1) {
2767 if (thread
->th
.th_team
->t
.t_control_stack_top
== NULL
) {
2770 if (thread
->th
.th_team
->t
.t_control_stack_top
->serial_nesting_level
!=
2771 thread
->th
.th_team
->t
.t_serialized
) {
2775 if (push
) { /* push a record on the serial team's stack */
2776 kmp_internal_control_t
*control
=
2777 (kmp_internal_control_t
*)__kmp_allocate(
2778 sizeof(kmp_internal_control_t
));
2780 copy_icvs(control
, &thread
->th
.th_current_task
->td_icvs
);
2782 control
->serial_nesting_level
= thread
->th
.th_team
->t
.t_serialized
;
2784 control
->next
= thread
->th
.th_team
->t
.t_control_stack_top
;
2785 thread
->th
.th_team
->t
.t_control_stack_top
= control
;
2790 /* Changes set_nproc */
2791 void __kmp_set_num_threads(int new_nth
, int gtid
) {
2795 KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth
));
2796 KMP_DEBUG_ASSERT(__kmp_init_serial
);
2800 else if (new_nth
> __kmp_max_nth
)
2801 new_nth
= __kmp_max_nth
;
2803 KMP_COUNT_VALUE(OMP_set_numthreads
, new_nth
);
2804 thread
= __kmp_threads
[gtid
];
2805 if (thread
->th
.th_current_task
->td_icvs
.nproc
== new_nth
)
2806 return; // nothing to do
2808 __kmp_save_internal_controls(thread
);
2810 set__nproc(thread
, new_nth
);
2812 // If this omp_set_num_threads() call will cause the hot team size to be
2813 // reduced (in the absence of a num_threads clause), then reduce it now,
2814 // rather than waiting for the next parallel region.
2815 root
= thread
->th
.th_root
;
2816 if (__kmp_init_parallel
&& (!root
->r
.r_active
) &&
2817 (root
->r
.r_hot_team
->t
.t_nproc
> new_nth
)
2818 #if KMP_NESTED_HOT_TEAMS
2819 && __kmp_hot_teams_max_level
&& !__kmp_hot_teams_mode
2822 kmp_team_t
*hot_team
= root
->r
.r_hot_team
;
2825 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock
);
2827 if (__kmp_barrier_release_pattern
[bs_forkjoin_barrier
] == bp_dist_bar
) {
2828 __kmp_resize_dist_barrier(hot_team
, hot_team
->t
.t_nproc
, new_nth
);
2830 // Release the extra threads we don't need any more.
2831 for (f
= new_nth
; f
< hot_team
->t
.t_nproc
; f
++) {
2832 KMP_DEBUG_ASSERT(hot_team
->t
.t_threads
[f
] != NULL
);
2833 if (__kmp_tasking_mode
!= tskm_immediate_exec
) {
2834 // When decreasing team size, threads no longer in the team should unref
2836 hot_team
->t
.t_threads
[f
]->th
.th_task_team
= NULL
;
2838 __kmp_free_thread(hot_team
->t
.t_threads
[f
]);
2839 hot_team
->t
.t_threads
[f
] = NULL
;
2841 hot_team
->t
.t_nproc
= new_nth
;
2842 #if KMP_NESTED_HOT_TEAMS
2843 if (thread
->th
.th_hot_teams
) {
2844 KMP_DEBUG_ASSERT(hot_team
== thread
->th
.th_hot_teams
[0].hot_team
);
2845 thread
->th
.th_hot_teams
[0].hot_team_nth
= new_nth
;
2849 if (__kmp_barrier_release_pattern
[bs_forkjoin_barrier
] == bp_dist_bar
) {
2850 hot_team
->t
.b
->update_num_threads(new_nth
);
2851 __kmp_add_threads_to_team(hot_team
, new_nth
);
2854 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock
);
2856 // Update the t_nproc field in the threads that are still active.
2857 for (f
= 0; f
< new_nth
; f
++) {
2858 KMP_DEBUG_ASSERT(hot_team
->t
.t_threads
[f
] != NULL
);
2859 hot_team
->t
.t_threads
[f
]->th
.th_team_nproc
= new_nth
;
2861 // Special flag in case omp_set_num_threads() call
2862 hot_team
->t
.t_size_changed
= -1;
2866 /* Changes max_active_levels */
2867 void __kmp_set_max_active_levels(int gtid
, int max_active_levels
) {
2870 KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread "
2872 gtid
, max_active_levels
));
2873 KMP_DEBUG_ASSERT(__kmp_init_serial
);
2875 // validate max_active_levels
2876 if (max_active_levels
< 0) {
2877 KMP_WARNING(ActiveLevelsNegative
, max_active_levels
);
2878 // We ignore this call if the user has specified a negative value.
2879 // The current setting won't be changed. The last valid setting will be
2880 // used. A warning will be issued (if warnings are allowed as controlled by
2881 // the KMP_WARNINGS env var).
2882 KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new "
2883 "max_active_levels for thread %d = (%d)\n",
2884 gtid
, max_active_levels
));
2887 if (max_active_levels
<= KMP_MAX_ACTIVE_LEVELS_LIMIT
) {
2888 // it's OK, the max_active_levels is within the valid range: [ 0;
2889 // KMP_MAX_ACTIVE_LEVELS_LIMIT ]
2890 // We allow a zero value. (implementation defined behavior)
2892 KMP_WARNING(ActiveLevelsExceedLimit
, max_active_levels
,
2893 KMP_MAX_ACTIVE_LEVELS_LIMIT
);
2894 max_active_levels
= KMP_MAX_ACTIVE_LEVELS_LIMIT
;
2895 // Current upper limit is MAX_INT. (implementation defined behavior)
2896 // If the input exceeds the upper limit, we correct the input to be the
2897 // upper limit. (implementation defined behavior)
2898 // Actually, the flow should never get here until we use MAX_INT limit.
2900 KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new "
2901 "max_active_levels for thread %d = (%d)\n",
2902 gtid
, max_active_levels
));
2904 thread
= __kmp_threads
[gtid
];
2906 __kmp_save_internal_controls(thread
);
2908 set__max_active_levels(thread
, max_active_levels
);
2911 /* Gets max_active_levels */
2912 int __kmp_get_max_active_levels(int gtid
) {
2915 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid
));
2916 KMP_DEBUG_ASSERT(__kmp_init_serial
);
2918 thread
= __kmp_threads
[gtid
];
2919 KMP_DEBUG_ASSERT(thread
->th
.th_current_task
);
2920 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, "
2921 "curtask_maxaclevel=%d\n",
2922 gtid
, thread
->th
.th_current_task
,
2923 thread
->th
.th_current_task
->td_icvs
.max_active_levels
));
2924 return thread
->th
.th_current_task
->td_icvs
.max_active_levels
;
2927 // nteams-var per-device ICV
2928 void __kmp_set_num_teams(int num_teams
) {
2930 __kmp_nteams
= num_teams
;
2932 int __kmp_get_max_teams(void) { return __kmp_nteams
; }
2933 // teams-thread-limit-var per-device ICV
2934 void __kmp_set_teams_thread_limit(int limit
) {
2936 __kmp_teams_thread_limit
= limit
;
2938 int __kmp_get_teams_thread_limit(void) { return __kmp_teams_thread_limit
; }
2940 KMP_BUILD_ASSERT(sizeof(kmp_sched_t
) == sizeof(int));
2941 KMP_BUILD_ASSERT(sizeof(enum sched_type
) == sizeof(int));
2943 /* Changes def_sched_var ICV values (run-time schedule kind and chunk) */
2944 void __kmp_set_schedule(int gtid
, kmp_sched_t kind
, int chunk
) {
2946 kmp_sched_t orig_kind
;
2947 // kmp_team_t *team;
2949 KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n",
2950 gtid
, (int)kind
, chunk
));
2951 KMP_DEBUG_ASSERT(__kmp_init_serial
);
2953 // Check if the kind parameter is valid, correct if needed.
2954 // Valid parameters should fit in one of two intervals - standard or extended:
2955 // <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper>
2956 // 2008-01-25: 0, 1 - 4, 5, 100, 101 - 102, 103
2958 kind
= __kmp_sched_without_mods(kind
);
2960 if (kind
<= kmp_sched_lower
|| kind
>= kmp_sched_upper
||
2961 (kind
<= kmp_sched_lower_ext
&& kind
>= kmp_sched_upper_std
)) {
2962 // TODO: Hint needs attention in case we change the default schedule.
2963 __kmp_msg(kmp_ms_warning
, KMP_MSG(ScheduleKindOutOfRange
, kind
),
2964 KMP_HNT(DefaultScheduleKindUsed
, "static, no chunk"),
2966 kind
= kmp_sched_default
;
2967 chunk
= 0; // ignore chunk value in case of bad kind
2970 thread
= __kmp_threads
[gtid
];
2972 __kmp_save_internal_controls(thread
);
2974 if (kind
< kmp_sched_upper_std
) {
2975 if (kind
== kmp_sched_static
&& chunk
< KMP_DEFAULT_CHUNK
) {
2976 // differ static chunked vs. unchunked: chunk should be invalid to
2977 // indicate unchunked schedule (which is the default)
2978 thread
->th
.th_current_task
->td_icvs
.sched
.r_sched_type
= kmp_sch_static
;
2980 thread
->th
.th_current_task
->td_icvs
.sched
.r_sched_type
=
2981 __kmp_sch_map
[kind
- kmp_sched_lower
- 1];
2984 // __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std -
2985 // kmp_sched_lower - 2 ];
2986 thread
->th
.th_current_task
->td_icvs
.sched
.r_sched_type
=
2987 __kmp_sch_map
[kind
- kmp_sched_lower_ext
+ kmp_sched_upper_std
-
2988 kmp_sched_lower
- 2];
2990 __kmp_sched_apply_mods_intkind(
2991 orig_kind
, &(thread
->th
.th_current_task
->td_icvs
.sched
.r_sched_type
));
2992 if (kind
== kmp_sched_auto
|| chunk
< 1) {
2993 // ignore parameter chunk for schedule auto
2994 thread
->th
.th_current_task
->td_icvs
.sched
.chunk
= KMP_DEFAULT_CHUNK
;
2996 thread
->th
.th_current_task
->td_icvs
.sched
.chunk
= chunk
;
3000 /* Gets def_sched_var ICV values */
3001 void __kmp_get_schedule(int gtid
, kmp_sched_t
*kind
, int *chunk
) {
3003 enum sched_type th_type
;
3005 KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid
));
3006 KMP_DEBUG_ASSERT(__kmp_init_serial
);
3008 thread
= __kmp_threads
[gtid
];
3010 th_type
= thread
->th
.th_current_task
->td_icvs
.sched
.r_sched_type
;
3011 switch (SCHEDULE_WITHOUT_MODIFIERS(th_type
)) {
3012 case kmp_sch_static
:
3013 case kmp_sch_static_greedy
:
3014 case kmp_sch_static_balanced
:
3015 *kind
= kmp_sched_static
;
3016 __kmp_sched_apply_mods_stdkind(kind
, th_type
);
3017 *chunk
= 0; // chunk was not set, try to show this fact via zero value
3019 case kmp_sch_static_chunked
:
3020 *kind
= kmp_sched_static
;
3022 case kmp_sch_dynamic_chunked
:
3023 *kind
= kmp_sched_dynamic
;
3025 case kmp_sch_guided_chunked
:
3026 case kmp_sch_guided_iterative_chunked
:
3027 case kmp_sch_guided_analytical_chunked
:
3028 *kind
= kmp_sched_guided
;
3031 *kind
= kmp_sched_auto
;
3033 case kmp_sch_trapezoidal
:
3034 *kind
= kmp_sched_trapezoidal
;
3036 #if KMP_STATIC_STEAL_ENABLED
3037 case kmp_sch_static_steal
:
3038 *kind
= kmp_sched_static_steal
;
3042 KMP_FATAL(UnknownSchedulingType
, th_type
);
3045 __kmp_sched_apply_mods_stdkind(kind
, th_type
);
3046 *chunk
= thread
->th
.th_current_task
->td_icvs
.sched
.chunk
;
3049 int __kmp_get_ancestor_thread_num(int gtid
, int level
) {
3055 KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid
, level
));
3056 KMP_DEBUG_ASSERT(__kmp_init_serial
);
3063 thr
= __kmp_threads
[gtid
];
3064 team
= thr
->th
.th_team
;
3065 ii
= team
->t
.t_level
;
3069 if (thr
->th
.th_teams_microtask
) {
3070 // AC: we are in teams region where multiple nested teams have same level
3071 int tlevel
= thr
->th
.th_teams_level
; // the level of the teams construct
3073 tlevel
) { // otherwise usual algorithm works (will not touch the teams)
3074 KMP_DEBUG_ASSERT(ii
>= tlevel
);
3075 // AC: As we need to pass by the teams league, we need to artificially
3078 ii
+= 2; // three teams have same level
3080 ii
++; // two teams have same level
3086 return __kmp_tid_from_gtid(gtid
);
3088 dd
= team
->t
.t_serialized
;
3090 while (ii
> level
) {
3091 for (dd
= team
->t
.t_serialized
; (dd
> 0) && (ii
> level
); dd
--, ii
--) {
3093 if ((team
->t
.t_serialized
) && (!dd
)) {
3094 team
= team
->t
.t_parent
;
3098 team
= team
->t
.t_parent
;
3099 dd
= team
->t
.t_serialized
;
3104 return (dd
> 1) ? (0) : (team
->t
.t_master_tid
);
3107 int __kmp_get_team_size(int gtid
, int level
) {
3113 KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid
, level
));
3114 KMP_DEBUG_ASSERT(__kmp_init_serial
);
3121 thr
= __kmp_threads
[gtid
];
3122 team
= thr
->th
.th_team
;
3123 ii
= team
->t
.t_level
;
3127 if (thr
->th
.th_teams_microtask
) {
3128 // AC: we are in teams region where multiple nested teams have same level
3129 int tlevel
= thr
->th
.th_teams_level
; // the level of the teams construct
3131 tlevel
) { // otherwise usual algorithm works (will not touch the teams)
3132 KMP_DEBUG_ASSERT(ii
>= tlevel
);
3133 // AC: As we need to pass by the teams league, we need to artificially
3136 ii
+= 2; // three teams have same level
3138 ii
++; // two teams have same level
3143 while (ii
> level
) {
3144 for (dd
= team
->t
.t_serialized
; (dd
> 0) && (ii
> level
); dd
--, ii
--) {
3146 if (team
->t
.t_serialized
&& (!dd
)) {
3147 team
= team
->t
.t_parent
;
3151 team
= team
->t
.t_parent
;
3156 return team
->t
.t_nproc
;
3159 kmp_r_sched_t
__kmp_get_schedule_global() {
3160 // This routine created because pairs (__kmp_sched, __kmp_chunk) and
3161 // (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults
3162 // independently. So one can get the updated schedule here.
3164 kmp_r_sched_t r_sched
;
3166 // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static,
3167 // __kmp_guided. __kmp_sched should keep original value, so that user can set
3168 // KMP_SCHEDULE multiple times, and thus have different run-time schedules in
3169 // different roots (even in OMP 2.5)
3170 enum sched_type s
= SCHEDULE_WITHOUT_MODIFIERS(__kmp_sched
);
3171 enum sched_type sched_modifiers
= SCHEDULE_GET_MODIFIERS(__kmp_sched
);
3172 if (s
== kmp_sch_static
) {
3173 // replace STATIC with more detailed schedule (balanced or greedy)
3174 r_sched
.r_sched_type
= __kmp_static
;
3175 } else if (s
== kmp_sch_guided_chunked
) {
3176 // replace GUIDED with more detailed schedule (iterative or analytical)
3177 r_sched
.r_sched_type
= __kmp_guided
;
3178 } else { // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other
3179 r_sched
.r_sched_type
= __kmp_sched
;
3181 SCHEDULE_SET_MODIFIERS(r_sched
.r_sched_type
, sched_modifiers
);
3183 if (__kmp_chunk
< KMP_DEFAULT_CHUNK
) {
3184 // __kmp_chunk may be wrong here (if it was not ever set)
3185 r_sched
.chunk
= KMP_DEFAULT_CHUNK
;
3187 r_sched
.chunk
= __kmp_chunk
;
3193 /* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE)
3194 at least argc number of *t_argv entries for the requested team. */
3195 static void __kmp_alloc_argv_entries(int argc
, kmp_team_t
*team
, int realloc
) {
3197 KMP_DEBUG_ASSERT(team
);
3198 if (!realloc
|| argc
> team
->t
.t_max_argc
) {
3200 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, "
3201 "current entries=%d\n",
3202 team
->t
.t_id
, argc
, (realloc
) ? team
->t
.t_max_argc
: 0));
3203 /* if previously allocated heap space for args, free them */
3204 if (realloc
&& team
->t
.t_argv
!= &team
->t
.t_inline_argv
[0])
3205 __kmp_free((void *)team
->t
.t_argv
);
3207 if (argc
<= KMP_INLINE_ARGV_ENTRIES
) {
3208 /* use unused space in the cache line for arguments */
3209 team
->t
.t_max_argc
= KMP_INLINE_ARGV_ENTRIES
;
3210 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d "
3212 team
->t
.t_id
, team
->t
.t_max_argc
));
3213 team
->t
.t_argv
= &team
->t
.t_inline_argv
[0];
3214 if (__kmp_storage_map
) {
3215 __kmp_print_storage_map_gtid(
3216 -1, &team
->t
.t_inline_argv
[0],
3217 &team
->t
.t_inline_argv
[KMP_INLINE_ARGV_ENTRIES
],
3218 (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES
), "team_%d.t_inline_argv",
3222 /* allocate space for arguments in the heap */
3223 team
->t
.t_max_argc
= (argc
<= (KMP_MIN_MALLOC_ARGV_ENTRIES
>> 1))
3224 ? KMP_MIN_MALLOC_ARGV_ENTRIES
3226 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d "
3228 team
->t
.t_id
, team
->t
.t_max_argc
));
3230 (void **)__kmp_page_allocate(sizeof(void *) * team
->t
.t_max_argc
);
3231 if (__kmp_storage_map
) {
3232 __kmp_print_storage_map_gtid(-1, &team
->t
.t_argv
[0],
3233 &team
->t
.t_argv
[team
->t
.t_max_argc
],
3234 sizeof(void *) * team
->t
.t_max_argc
,
3235 "team_%d.t_argv", team
->t
.t_id
);
3241 static void __kmp_allocate_team_arrays(kmp_team_t
*team
, int max_nth
) {
3243 int num_disp_buff
= max_nth
> 1 ? __kmp_dispatch_num_buffers
: 2;
3245 (kmp_info_t
**)__kmp_allocate(sizeof(kmp_info_t
*) * max_nth
);
3246 team
->t
.t_disp_buffer
= (dispatch_shared_info_t
*)__kmp_allocate(
3247 sizeof(dispatch_shared_info_t
) * num_disp_buff
);
3248 team
->t
.t_dispatch
=
3249 (kmp_disp_t
*)__kmp_allocate(sizeof(kmp_disp_t
) * max_nth
);
3250 team
->t
.t_implicit_task_taskdata
=
3251 (kmp_taskdata_t
*)__kmp_allocate(sizeof(kmp_taskdata_t
) * max_nth
);
3252 team
->t
.t_max_nproc
= max_nth
;
3254 /* setup dispatch buffers */
3255 for (i
= 0; i
< num_disp_buff
; ++i
) {
3256 team
->t
.t_disp_buffer
[i
].buffer_index
= i
;
3257 team
->t
.t_disp_buffer
[i
].doacross_buf_idx
= i
;
3261 static void __kmp_free_team_arrays(kmp_team_t
*team
) {
3262 /* Note: this does not free the threads in t_threads (__kmp_free_threads) */
3264 for (i
= 0; i
< team
->t
.t_max_nproc
; ++i
) {
3265 if (team
->t
.t_dispatch
[i
].th_disp_buffer
!= NULL
) {
3266 __kmp_free(team
->t
.t_dispatch
[i
].th_disp_buffer
);
3267 team
->t
.t_dispatch
[i
].th_disp_buffer
= NULL
;
3270 #if KMP_USE_HIER_SCHED
3271 __kmp_dispatch_free_hierarchies(team
);
3273 __kmp_free(team
->t
.t_threads
);
3274 __kmp_free(team
->t
.t_disp_buffer
);
3275 __kmp_free(team
->t
.t_dispatch
);
3276 __kmp_free(team
->t
.t_implicit_task_taskdata
);
3277 team
->t
.t_threads
= NULL
;
3278 team
->t
.t_disp_buffer
= NULL
;
3279 team
->t
.t_dispatch
= NULL
;
3280 team
->t
.t_implicit_task_taskdata
= 0;
3283 static void __kmp_reallocate_team_arrays(kmp_team_t
*team
, int max_nth
) {
3284 kmp_info_t
**oldThreads
= team
->t
.t_threads
;
3286 __kmp_free(team
->t
.t_disp_buffer
);
3287 __kmp_free(team
->t
.t_dispatch
);
3288 __kmp_free(team
->t
.t_implicit_task_taskdata
);
3289 __kmp_allocate_team_arrays(team
, max_nth
);
3291 KMP_MEMCPY(team
->t
.t_threads
, oldThreads
,
3292 team
->t
.t_nproc
* sizeof(kmp_info_t
*));
3294 __kmp_free(oldThreads
);
3297 static kmp_internal_control_t
__kmp_get_global_icvs(void) {
3299 kmp_r_sched_t r_sched
=
3300 __kmp_get_schedule_global(); // get current state of scheduling globals
3302 KMP_DEBUG_ASSERT(__kmp_nested_proc_bind
.used
> 0);
3304 kmp_internal_control_t g_icvs
= {
3305 0, // int serial_nesting_level; //corresponds to value of th_team_serialized
3306 (kmp_int8
)__kmp_global
.g
.g_dynamic
, // internal control for dynamic
3307 // adjustment of threads (per thread)
3308 (kmp_int8
)__kmp_env_blocktime
, // int bt_set; //internal control for
3309 // whether blocktime is explicitly set
3310 __kmp_dflt_blocktime
, // int blocktime; //internal control for blocktime
3312 __kmp_bt_intervals
, // int bt_intervals; //internal control for blocktime
3315 __kmp_dflt_team_nth
, // int nproc; //internal control for # of threads for
3316 // next parallel region (per thread)
3317 // (use a max ub on value if __kmp_parallel_initialize not called yet)
3318 __kmp_cg_max_nth
, // int thread_limit;
3319 __kmp_task_max_nth
, // int task_thread_limit; // to set the thread_limit
3320 // on task. This is used in the case of target thread_limit
3321 __kmp_dflt_max_active_levels
, // int max_active_levels; //internal control
3322 // for max_active_levels
3323 r_sched
, // kmp_r_sched_t sched; //internal control for runtime schedule
3324 // {sched,chunk} pair
3325 __kmp_nested_proc_bind
.bind_types
[0],
3326 __kmp_default_device
,
3327 NULL
// struct kmp_internal_control *next;
3333 static kmp_internal_control_t
__kmp_get_x_global_icvs(const kmp_team_t
*team
) {
3335 kmp_internal_control_t gx_icvs
;
3336 gx_icvs
.serial_nesting_level
=
3337 0; // probably =team->t.t_serial like in save_inter_controls
3338 copy_icvs(&gx_icvs
, &team
->t
.t_threads
[0]->th
.th_current_task
->td_icvs
);
3339 gx_icvs
.next
= NULL
;
3344 static void __kmp_initialize_root(kmp_root_t
*root
) {
3346 kmp_team_t
*root_team
;
3347 kmp_team_t
*hot_team
;
3348 int hot_team_max_nth
;
3349 kmp_r_sched_t r_sched
=
3350 __kmp_get_schedule_global(); // get current state of scheduling globals
3351 kmp_internal_control_t r_icvs
= __kmp_get_global_icvs();
3352 KMP_DEBUG_ASSERT(root
);
3353 KMP_ASSERT(!root
->r
.r_begin
);
3355 /* setup the root state structure */
3356 __kmp_init_lock(&root
->r
.r_begin_lock
);
3357 root
->r
.r_begin
= FALSE
;
3358 root
->r
.r_active
= FALSE
;
3359 root
->r
.r_in_parallel
= 0;
3360 root
->r
.r_blocktime
= __kmp_dflt_blocktime
;
3361 #if KMP_AFFINITY_SUPPORTED
3362 root
->r
.r_affinity_assigned
= FALSE
;
3365 /* setup the root team for this task */
3366 /* allocate the root team structure */
3367 KF_TRACE(10, ("__kmp_initialize_root: before root_team\n"));
3370 __kmp_allocate_team(root
,
3374 ompt_data_none
, // root parallel id
3376 __kmp_nested_proc_bind
.bind_types
[0], &r_icvs
,
3378 USE_NESTED_HOT_ARG(NULL
) // primary thread is unknown
3381 // Non-NULL value should be assigned to make the debugger display the root
3383 TCW_SYNC_PTR(root_team
->t
.t_pkfn
, (microtask_t
)(~0));
3386 KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team
));
3388 root
->r
.r_root_team
= root_team
;
3389 root_team
->t
.t_control_stack_top
= NULL
;
3391 /* initialize root team */
3392 root_team
->t
.t_threads
[0] = NULL
;
3393 root_team
->t
.t_nproc
= 1;
3394 root_team
->t
.t_serialized
= 1;
3395 // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels;
3396 root_team
->t
.t_sched
.sched
= r_sched
.sched
;
3397 root_team
->t
.t_nested_nth
= &__kmp_nested_nth
;
3400 ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n",
3401 root_team
->t
.t_id
, KMP_INIT_BARRIER_STATE
, KMP_INIT_BARRIER_STATE
));
3403 /* setup the hot team for this task */
3404 /* allocate the hot team structure */
3405 KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n"));
3408 __kmp_allocate_team(root
,
3410 __kmp_dflt_team_nth_ub
* 2, // max_nproc
3412 ompt_data_none
, // root parallel id
3414 __kmp_nested_proc_bind
.bind_types
[0], &r_icvs
,
3416 USE_NESTED_HOT_ARG(NULL
) // primary thread is unknown
3418 KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team
));
3420 root
->r
.r_hot_team
= hot_team
;
3421 root_team
->t
.t_control_stack_top
= NULL
;
3423 /* first-time initialization */
3424 hot_team
->t
.t_parent
= root_team
;
3426 /* initialize hot team */
3427 hot_team_max_nth
= hot_team
->t
.t_max_nproc
;
3428 for (f
= 0; f
< hot_team_max_nth
; ++f
) {
3429 hot_team
->t
.t_threads
[f
] = NULL
;
3431 hot_team
->t
.t_nproc
= 1;
3432 // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels;
3433 hot_team
->t
.t_sched
.sched
= r_sched
.sched
;
3434 hot_team
->t
.t_size_changed
= 0;
3435 hot_team
->t
.t_nested_nth
= &__kmp_nested_nth
;
3440 typedef struct kmp_team_list_item
{
3441 kmp_team_p
const *entry
;
3442 struct kmp_team_list_item
*next
;
3443 } kmp_team_list_item_t
;
3444 typedef kmp_team_list_item_t
*kmp_team_list_t
;
3446 static void __kmp_print_structure_team_accum( // Add team to list of teams.
3447 kmp_team_list_t list
, // List of teams.
3448 kmp_team_p
const *team
// Team to add.
3451 // List must terminate with item where both entry and next are NULL.
3452 // Team is added to the list only once.
3453 // List is sorted in ascending order by team id.
3454 // Team id is *not* a key.
3458 KMP_DEBUG_ASSERT(list
!= NULL
);
3463 __kmp_print_structure_team_accum(list
, team
->t
.t_parent
);
3464 __kmp_print_structure_team_accum(list
, team
->t
.t_next_pool
);
3466 // Search list for the team.
3468 while (l
->next
!= NULL
&& l
->entry
!= team
) {
3471 if (l
->next
!= NULL
) {
3472 return; // Team has been added before, exit.
3475 // Team is not found. Search list again for insertion point.
3477 while (l
->next
!= NULL
&& l
->entry
->t
.t_id
<= team
->t
.t_id
) {
3483 kmp_team_list_item_t
*item
= (kmp_team_list_item_t
*)KMP_INTERNAL_MALLOC(
3484 sizeof(kmp_team_list_item_t
));
3491 static void __kmp_print_structure_team(char const *title
, kmp_team_p
const *team
3494 __kmp_printf("%s", title
);
3496 __kmp_printf("%2x %p\n", team
->t
.t_id
, team
);
3498 __kmp_printf(" - (nil)\n");
3502 static void __kmp_print_structure_thread(char const *title
,
3503 kmp_info_p
const *thread
) {
3504 __kmp_printf("%s", title
);
3505 if (thread
!= NULL
) {
3506 __kmp_printf("%2d %p\n", thread
->th
.th_info
.ds
.ds_gtid
, thread
);
3508 __kmp_printf(" - (nil)\n");
3512 void __kmp_print_structure(void) {
3514 kmp_team_list_t list
;
3516 // Initialize list of teams.
3518 (kmp_team_list_item_t
*)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t
));
3522 __kmp_printf("\n------------------------------\nGlobal Thread "
3523 "Table\n------------------------------\n");
3526 for (gtid
= 0; gtid
< __kmp_threads_capacity
; ++gtid
) {
3527 __kmp_printf("%2d", gtid
);
3528 if (__kmp_threads
!= NULL
) {
3529 __kmp_printf(" %p", __kmp_threads
[gtid
]);
3531 if (__kmp_root
!= NULL
) {
3532 __kmp_printf(" %p", __kmp_root
[gtid
]);
3538 // Print out __kmp_threads array.
3539 __kmp_printf("\n------------------------------\nThreads\n--------------------"
3541 if (__kmp_threads
!= NULL
) {
3543 for (gtid
= 0; gtid
< __kmp_threads_capacity
; ++gtid
) {
3544 kmp_info_t
const *thread
= __kmp_threads
[gtid
];
3545 if (thread
!= NULL
) {
3546 __kmp_printf("GTID %2d %p:\n", gtid
, thread
);
3547 __kmp_printf(" Our Root: %p\n", thread
->th
.th_root
);
3548 __kmp_print_structure_team(" Our Team: ", thread
->th
.th_team
);
3549 __kmp_print_structure_team(" Serial Team: ",
3550 thread
->th
.th_serial_team
);
3551 __kmp_printf(" Threads: %2d\n", thread
->th
.th_team_nproc
);
3552 __kmp_print_structure_thread(" Primary: ",
3553 thread
->th
.th_team_master
);
3554 __kmp_printf(" Serialized?: %2d\n", thread
->th
.th_team_serialized
);
3555 __kmp_printf(" Set NProc: %2d\n", thread
->th
.th_set_nproc
);
3556 __kmp_printf(" Set Proc Bind: %2d\n", thread
->th
.th_set_proc_bind
);
3557 __kmp_print_structure_thread(" Next in pool: ",
3558 thread
->th
.th_next_pool
);
3560 __kmp_print_structure_team_accum(list
, thread
->th
.th_team
);
3561 __kmp_print_structure_team_accum(list
, thread
->th
.th_serial_team
);
3565 __kmp_printf("Threads array is not allocated.\n");
3568 // Print out __kmp_root array.
3569 __kmp_printf("\n------------------------------\nUbers\n----------------------"
3571 if (__kmp_root
!= NULL
) {
3573 for (gtid
= 0; gtid
< __kmp_threads_capacity
; ++gtid
) {
3574 kmp_root_t
const *root
= __kmp_root
[gtid
];
3576 __kmp_printf("GTID %2d %p:\n", gtid
, root
);
3577 __kmp_print_structure_team(" Root Team: ", root
->r
.r_root_team
);
3578 __kmp_print_structure_team(" Hot Team: ", root
->r
.r_hot_team
);
3579 __kmp_print_structure_thread(" Uber Thread: ",
3580 root
->r
.r_uber_thread
);
3581 __kmp_printf(" Active?: %2d\n", root
->r
.r_active
);
3582 __kmp_printf(" In Parallel: %2d\n",
3583 KMP_ATOMIC_LD_RLX(&root
->r
.r_in_parallel
));
3585 __kmp_print_structure_team_accum(list
, root
->r
.r_root_team
);
3586 __kmp_print_structure_team_accum(list
, root
->r
.r_hot_team
);
3590 __kmp_printf("Ubers array is not allocated.\n");
3593 __kmp_printf("\n------------------------------\nTeams\n----------------------"
3595 while (list
->next
!= NULL
) {
3596 kmp_team_p
const *team
= list
->entry
;
3598 __kmp_printf("Team %2x %p:\n", team
->t
.t_id
, team
);
3599 __kmp_print_structure_team(" Parent Team: ", team
->t
.t_parent
);
3600 __kmp_printf(" Primary TID: %2d\n", team
->t
.t_master_tid
);
3601 __kmp_printf(" Max threads: %2d\n", team
->t
.t_max_nproc
);
3602 __kmp_printf(" Levels of serial: %2d\n", team
->t
.t_serialized
);
3603 __kmp_printf(" Number threads: %2d\n", team
->t
.t_nproc
);
3604 for (i
= 0; i
< team
->t
.t_nproc
; ++i
) {
3605 __kmp_printf(" Thread %2d: ", i
);
3606 __kmp_print_structure_thread("", team
->t
.t_threads
[i
]);
3608 __kmp_print_structure_team(" Next in pool: ", team
->t
.t_next_pool
);
3613 // Print out __kmp_thread_pool and __kmp_team_pool.
3614 __kmp_printf("\n------------------------------\nPools\n----------------------"
3616 __kmp_print_structure_thread("Thread pool: ",
3617 CCAST(kmp_info_t
*, __kmp_thread_pool
));
3618 __kmp_print_structure_team("Team pool: ",
3619 CCAST(kmp_team_t
*, __kmp_team_pool
));
3623 while (list
!= NULL
) {
3624 kmp_team_list_item_t
*item
= list
;
3626 KMP_INTERNAL_FREE(item
);
3632 //---------------------------------------------------------------------------
3633 // Stuff for per-thread fast random number generator
3635 static const unsigned __kmp_primes
[] = {
3636 0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877,
3637 0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231,
3638 0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201,
3639 0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3,
3640 0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7,
3641 0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9,
3642 0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45,
3643 0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7,
3644 0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363,
3645 0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3,
3646 0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f};
3648 //---------------------------------------------------------------------------
3649 // __kmp_get_random: Get a random number using a linear congruential method.
3650 unsigned short __kmp_get_random(kmp_info_t
*thread
) {
3651 unsigned x
= thread
->th
.th_x
;
3652 unsigned short r
= (unsigned short)(x
>> 16);
3654 thread
->th
.th_x
= x
* thread
->th
.th_a
+ 1;
3656 KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n",
3657 thread
->th
.th_info
.ds
.ds_tid
, r
));
3661 //--------------------------------------------------------
3662 // __kmp_init_random: Initialize a random number generator
3663 void __kmp_init_random(kmp_info_t
*thread
) {
3664 unsigned seed
= thread
->th
.th_info
.ds
.ds_tid
;
3667 __kmp_primes
[seed
% (sizeof(__kmp_primes
) / sizeof(__kmp_primes
[0]))];
3668 thread
->th
.th_x
= (seed
+ 1) * thread
->th
.th_a
+ 1;
3670 ("__kmp_init_random: THREAD: %u; A: %u\n", seed
, thread
->th
.th_a
));
3674 /* reclaim array entries for root threads that are already dead, returns number
3676 static int __kmp_reclaim_dead_roots(void) {
3679 for (i
= 0; i
< __kmp_threads_capacity
; ++i
) {
3680 if (KMP_UBER_GTID(i
) &&
3681 !__kmp_still_running((kmp_info_t
*)TCR_SYNC_PTR(__kmp_threads
[i
])) &&
3683 ->r
.r_active
) { // AC: reclaim only roots died in non-active state
3684 r
+= __kmp_unregister_root_other_thread(i
);
3691 /* This function attempts to create free entries in __kmp_threads and
3692 __kmp_root, and returns the number of free entries generated.
3694 For Windows* OS static library, the first mechanism used is to reclaim array
3695 entries for root threads that are already dead.
3697 On all platforms, expansion is attempted on the arrays __kmp_threads_ and
3698 __kmp_root, with appropriate update to __kmp_threads_capacity. Array
3699 capacity is increased by doubling with clipping to __kmp_tp_capacity, if
3700 threadprivate cache array has been created. Synchronization with
3701 __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock.
3703 After any dead root reclamation, if the clipping value allows array expansion
3704 to result in the generation of a total of nNeed free slots, the function does
3705 that expansion. If not, nothing is done beyond the possible initial root
3708 If any argument is negative, the behavior is undefined. */
3709 static int __kmp_expand_threads(int nNeed
) {
3711 int minimumRequiredCapacity
;
3713 kmp_info_t
**newThreads
;
3714 kmp_root_t
**newRoot
;
3716 // All calls to __kmp_expand_threads should be under __kmp_forkjoin_lock, so
3717 // resizing __kmp_threads does not need additional protection if foreign
3718 // threads are present
3720 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB
3721 /* only for Windows static library */
3722 /* reclaim array entries for root threads that are already dead */
3723 added
= __kmp_reclaim_dead_roots();
3734 // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If
3735 // __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the
3736 // user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become
3737 // > __kmp_max_nth in one of two ways:
3739 // 1) The initialization thread (gtid = 0) exits. __kmp_threads[0]
3740 // may not be reused by another thread, so we may need to increase
3741 // __kmp_threads_capacity to __kmp_max_nth + 1.
3743 // 2) New foreign root(s) are encountered. We always register new foreign
3744 // roots. This may cause a smaller # of threads to be allocated at
3745 // subsequent parallel regions, but the worker threads hang around (and
3746 // eventually go to sleep) and need slots in the __kmp_threads[] array.
3748 // Anyway, that is the reason for moving the check to see if
3749 // __kmp_max_nth was exceeded into __kmp_reserve_threads()
3750 // instead of having it performed here. -BB
3752 KMP_DEBUG_ASSERT(__kmp_sys_max_nth
>= __kmp_threads_capacity
);
3754 /* compute expansion headroom to check if we can expand */
3755 if (__kmp_sys_max_nth
- __kmp_threads_capacity
< nNeed
) {
3756 /* possible expansion too small -- give up */
3759 minimumRequiredCapacity
= __kmp_threads_capacity
+ nNeed
;
3761 newCapacity
= __kmp_threads_capacity
;
3763 newCapacity
= newCapacity
<= (__kmp_sys_max_nth
>> 1) ? (newCapacity
<< 1)
3764 : __kmp_sys_max_nth
;
3765 } while (newCapacity
< minimumRequiredCapacity
);
3766 newThreads
= (kmp_info_t
**)__kmp_allocate(
3767 (sizeof(kmp_info_t
*) + sizeof(kmp_root_t
*)) * newCapacity
+ CACHE_LINE
);
3769 (kmp_root_t
**)((char *)newThreads
+ sizeof(kmp_info_t
*) * newCapacity
);
3770 KMP_MEMCPY(newThreads
, __kmp_threads
,
3771 __kmp_threads_capacity
* sizeof(kmp_info_t
*));
3772 KMP_MEMCPY(newRoot
, __kmp_root
,
3773 __kmp_threads_capacity
* sizeof(kmp_root_t
*));
3774 // Put old __kmp_threads array on a list. Any ongoing references to the old
3775 // list will be valid. This list is cleaned up at library shutdown.
3776 kmp_old_threads_list_t
*node
=
3777 (kmp_old_threads_list_t
*)__kmp_allocate(sizeof(kmp_old_threads_list_t
));
3778 node
->threads
= __kmp_threads
;
3779 node
->next
= __kmp_old_threads_list
;
3780 __kmp_old_threads_list
= node
;
3782 *(kmp_info_t
* *volatile *)&__kmp_threads
= newThreads
;
3783 *(kmp_root_t
* *volatile *)&__kmp_root
= newRoot
;
3784 added
+= newCapacity
- __kmp_threads_capacity
;
3785 *(volatile int *)&__kmp_threads_capacity
= newCapacity
;
3787 if (newCapacity
> __kmp_tp_capacity
) {
3788 __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock
);
3789 if (__kmp_tp_cached
&& newCapacity
> __kmp_tp_capacity
) {
3790 __kmp_threadprivate_resize_cache(newCapacity
);
3791 } else { // increase __kmp_tp_capacity to correspond with kmp_threads size
3792 *(volatile int *)&__kmp_tp_capacity
= newCapacity
;
3794 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock
);
3800 /* Register the current thread as a root thread and obtain our gtid. We must
3801 have the __kmp_initz_lock held at this point. Argument TRUE only if are the
3802 thread that calls from __kmp_do_serial_initialize() */
3803 int __kmp_register_root(int initial_thread
) {
3804 kmp_info_t
*root_thread
;
3808 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock
);
3809 KA_TRACE(20, ("__kmp_register_root: entered\n"));
3813 If initial thread did not invoke OpenMP RTL yet, and this thread is not an
3814 initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not
3815 work as expected -- it may return false (that means there is at least one
3816 empty slot in __kmp_threads array), but it is possible the only free slot
3817 is #0, which is reserved for initial thread and so cannot be used for this
3818 one. Following code workarounds this bug.
3820 However, right solution seems to be not reserving slot #0 for initial
3822 (1) there is no magic in slot #0,
3823 (2) we cannot detect initial thread reliably (the first thread which does
3824 serial initialization may be not a real initial thread).
3826 capacity
= __kmp_threads_capacity
;
3827 if (!initial_thread
&& TCR_PTR(__kmp_threads
[0]) == NULL
) {
3831 // If it is not for initializing the hidden helper team, we need to take
3832 // __kmp_hidden_helper_threads_num out of the capacity because it is included
3833 // in __kmp_threads_capacity.
3834 if (__kmp_enable_hidden_helper
&& !TCR_4(__kmp_init_hidden_helper_threads
)) {
3835 capacity
-= __kmp_hidden_helper_threads_num
;
3838 /* see if there are too many threads */
3839 if (__kmp_all_nth
>= capacity
&& !__kmp_expand_threads(1)) {
3840 if (__kmp_tp_cached
) {
3841 __kmp_fatal(KMP_MSG(CantRegisterNewThread
),
3842 KMP_HNT(Set_ALL_THREADPRIVATE
, __kmp_tp_capacity
),
3843 KMP_HNT(PossibleSystemLimitOnThreads
), __kmp_msg_null
);
3845 __kmp_fatal(KMP_MSG(CantRegisterNewThread
), KMP_HNT(SystemLimitOnThreads
),
3850 // When hidden helper task is enabled, __kmp_threads is organized as follows:
3851 // 0: initial thread, also a regular OpenMP thread.
3852 // [1, __kmp_hidden_helper_threads_num]: slots for hidden helper threads.
3853 // [__kmp_hidden_helper_threads_num + 1, __kmp_threads_capacity): slots for
3854 // regular OpenMP threads.
3855 if (TCR_4(__kmp_init_hidden_helper_threads
)) {
3856 // Find an available thread slot for hidden helper thread. Slots for hidden
3857 // helper threads start from 1 to __kmp_hidden_helper_threads_num.
3858 for (gtid
= 1; TCR_PTR(__kmp_threads
[gtid
]) != NULL
&&
3859 gtid
<= __kmp_hidden_helper_threads_num
;
3862 KMP_ASSERT(gtid
<= __kmp_hidden_helper_threads_num
);
3863 KA_TRACE(1, ("__kmp_register_root: found slot in threads array for "
3864 "hidden helper thread: T#%d\n",
3867 /* find an available thread slot */
3868 // Don't reassign the zero slot since we need that to only be used by
3869 // initial thread. Slots for hidden helper threads should also be skipped.
3870 if (initial_thread
&& TCR_PTR(__kmp_threads
[0]) == NULL
) {
3873 for (gtid
= __kmp_hidden_helper_threads_num
+ 1;
3874 TCR_PTR(__kmp_threads
[gtid
]) != NULL
; gtid
++)
3878 1, ("__kmp_register_root: found slot in threads array: T#%d\n", gtid
));
3879 KMP_ASSERT(gtid
< __kmp_threads_capacity
);
3882 /* update global accounting */
3884 TCW_4(__kmp_nth
, __kmp_nth
+ 1);
3886 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low
3887 // numbers of procs, and method #2 (keyed API call) for higher numbers.
3888 if (__kmp_adjust_gtid_mode
) {
3889 if (__kmp_all_nth
>= __kmp_tls_gtid_min
) {
3890 if (TCR_4(__kmp_gtid_mode
) != 2) {
3891 TCW_4(__kmp_gtid_mode
, 2);
3894 if (TCR_4(__kmp_gtid_mode
) != 1) {
3895 TCW_4(__kmp_gtid_mode
, 1);
3900 #ifdef KMP_ADJUST_BLOCKTIME
3901 /* Adjust blocktime to zero if necessary */
3902 /* Middle initialization might not have occurred yet */
3903 if (!__kmp_env_blocktime
&& (__kmp_avail_proc
> 0)) {
3904 if (__kmp_nth
> __kmp_avail_proc
) {
3905 __kmp_zero_bt
= TRUE
;
3908 #endif /* KMP_ADJUST_BLOCKTIME */
3910 /* setup this new hierarchy */
3911 if (!(root
= __kmp_root
[gtid
])) {
3912 root
= __kmp_root
[gtid
] = (kmp_root_t
*)__kmp_allocate(sizeof(kmp_root_t
));
3913 KMP_DEBUG_ASSERT(!root
->r
.r_root_team
);
3916 #if KMP_STATS_ENABLED
3917 // Initialize stats as soon as possible (right after gtid assignment).
3918 __kmp_stats_thread_ptr
= __kmp_stats_list
->push_back(gtid
);
3919 __kmp_stats_thread_ptr
->startLife();
3920 KMP_SET_THREAD_STATE(SERIAL_REGION
);
3921 KMP_INIT_PARTITIONED_TIMERS(OMP_serial
);
3923 __kmp_initialize_root(root
);
3925 /* setup new root thread structure */
3926 if (root
->r
.r_uber_thread
) {
3927 root_thread
= root
->r
.r_uber_thread
;
3929 root_thread
= (kmp_info_t
*)__kmp_allocate(sizeof(kmp_info_t
));
3930 if (__kmp_storage_map
) {
3931 __kmp_print_thread_storage_map(root_thread
, gtid
);
3933 root_thread
->th
.th_info
.ds
.ds_gtid
= gtid
;
3935 root_thread
->th
.ompt_thread_info
.thread_data
= ompt_data_none
;
3937 root_thread
->th
.th_root
= root
;
3938 if (__kmp_env_consistency_check
) {
3939 root_thread
->th
.th_cons
= __kmp_allocate_cons_stack(gtid
);
3942 __kmp_initialize_fast_memory(root_thread
);
3943 #endif /* USE_FAST_MEMORY */
3946 KMP_DEBUG_ASSERT(root_thread
->th
.th_local
.bget_data
== NULL
);
3947 __kmp_initialize_bget(root_thread
);
3949 __kmp_init_random(root_thread
); // Initialize random number generator
3952 /* setup the serial team held in reserve by the root thread */
3953 if (!root_thread
->th
.th_serial_team
) {
3954 kmp_internal_control_t r_icvs
= __kmp_get_global_icvs();
3955 KF_TRACE(10, ("__kmp_register_root: before serial_team\n"));
3956 root_thread
->th
.th_serial_team
= __kmp_allocate_team(
3959 ompt_data_none
, // root parallel id
3961 proc_bind_default
, &r_icvs
, 0 USE_NESTED_HOT_ARG(NULL
));
3963 KMP_ASSERT(root_thread
->th
.th_serial_team
);
3964 KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n",
3965 root_thread
->th
.th_serial_team
));
3967 /* drop root_thread into place */
3968 TCW_SYNC_PTR(__kmp_threads
[gtid
], root_thread
);
3970 root
->r
.r_root_team
->t
.t_threads
[0] = root_thread
;
3971 root
->r
.r_hot_team
->t
.t_threads
[0] = root_thread
;
3972 root_thread
->th
.th_serial_team
->t
.t_threads
[0] = root_thread
;
3973 // AC: the team created in reserve, not for execution (it is unused for now).
3974 root_thread
->th
.th_serial_team
->t
.t_serialized
= 0;
3975 root
->r
.r_uber_thread
= root_thread
;
3977 /* initialize the thread, get it ready to go */
3978 __kmp_initialize_info(root_thread
, root
->r
.r_root_team
, 0, gtid
);
3979 TCW_4(__kmp_init_gtid
, TRUE
);
3981 /* prepare the primary thread for get_gtid() */
3982 __kmp_gtid_set_specific(gtid
);
3985 __kmp_itt_thread_name(gtid
);
3986 #endif /* USE_ITT_BUILD */
3988 #ifdef KMP_TDATA_GTID
3991 __kmp_create_worker(gtid
, root_thread
, __kmp_stksize
);
3992 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid
);
3994 KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, "
3996 gtid
, __kmp_gtid_from_tid(0, root
->r
.r_hot_team
),
3997 root
->r
.r_hot_team
->t
.t_id
, 0, KMP_INIT_BARRIER_STATE
,
3998 KMP_INIT_BARRIER_STATE
));
3999 { // Initialize barrier data.
4001 for (b
= 0; b
< bs_last_barrier
; ++b
) {
4002 root_thread
->th
.th_bar
[b
].bb
.b_arrived
= KMP_INIT_BARRIER_STATE
;
4004 root_thread
->th
.th_bar
[b
].bb
.b_worker_arrived
= 0;
4008 KMP_DEBUG_ASSERT(root
->r
.r_hot_team
->t
.t_bar
[bs_forkjoin_barrier
].b_arrived
==
4009 KMP_INIT_BARRIER_STATE
);
4011 #if KMP_AFFINITY_SUPPORTED
4012 root_thread
->th
.th_current_place
= KMP_PLACE_UNDEFINED
;
4013 root_thread
->th
.th_new_place
= KMP_PLACE_UNDEFINED
;
4014 root_thread
->th
.th_first_place
= KMP_PLACE_UNDEFINED
;
4015 root_thread
->th
.th_last_place
= KMP_PLACE_UNDEFINED
;
4016 #endif /* KMP_AFFINITY_SUPPORTED */
4017 root_thread
->th
.th_def_allocator
= __kmp_def_allocator
;
4018 root_thread
->th
.th_prev_level
= 0;
4019 root_thread
->th
.th_prev_num_threads
= 1;
4021 kmp_cg_root_t
*tmp
= (kmp_cg_root_t
*)__kmp_allocate(sizeof(kmp_cg_root_t
));
4022 tmp
->cg_root
= root_thread
;
4023 tmp
->cg_thread_limit
= __kmp_cg_max_nth
;
4024 tmp
->cg_nthreads
= 1;
4025 KA_TRACE(100, ("__kmp_register_root: Thread %p created node %p with"
4026 " cg_nthreads init to 1\n",
4029 root_thread
->th
.th_cg_roots
= tmp
;
4031 __kmp_root_counter
++;
4034 if (ompt_enabled
.enabled
) {
4036 kmp_info_t
*root_thread
= ompt_get_thread();
4038 ompt_set_thread_state(root_thread
, ompt_state_overhead
);
4040 if (ompt_enabled
.ompt_callback_thread_begin
) {
4041 ompt_callbacks
.ompt_callback(ompt_callback_thread_begin
)(
4042 ompt_thread_initial
, __ompt_get_thread_data_internal());
4044 ompt_data_t
*task_data
;
4045 ompt_data_t
*parallel_data
;
4046 __ompt_get_task_info_internal(0, NULL
, &task_data
, NULL
, ¶llel_data
,
4048 if (ompt_enabled
.ompt_callback_implicit_task
) {
4049 ompt_callbacks
.ompt_callback(ompt_callback_implicit_task
)(
4050 ompt_scope_begin
, parallel_data
, task_data
, 1, 1, ompt_task_initial
);
4053 ompt_set_thread_state(root_thread
, ompt_state_work_serial
);
4057 if (ompd_state
& OMPD_ENABLE_BP
)
4058 ompd_bp_thread_begin();
4062 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock
);
4067 #if KMP_NESTED_HOT_TEAMS
4068 static int __kmp_free_hot_teams(kmp_root_t
*root
, kmp_info_t
*thr
, int level
,
4069 const int max_level
) {
4071 kmp_hot_team_ptr_t
*hot_teams
= thr
->th
.th_hot_teams
;
4072 if (!hot_teams
|| !hot_teams
[level
].hot_team
) {
4075 KMP_DEBUG_ASSERT(level
< max_level
);
4076 kmp_team_t
*team
= hot_teams
[level
].hot_team
;
4077 nth
= hot_teams
[level
].hot_team_nth
;
4078 n
= nth
- 1; // primary thread is not freed
4079 if (level
< max_level
- 1) {
4080 for (i
= 0; i
< nth
; ++i
) {
4081 kmp_info_t
*th
= team
->t
.t_threads
[i
];
4082 n
+= __kmp_free_hot_teams(root
, th
, level
+ 1, max_level
);
4083 if (i
> 0 && th
->th
.th_hot_teams
) {
4084 __kmp_free(th
->th
.th_hot_teams
);
4085 th
->th
.th_hot_teams
= NULL
;
4089 __kmp_free_team(root
, team
, NULL
);
4094 // Resets a root thread and clear its root and hot teams.
4095 // Returns the number of __kmp_threads entries directly and indirectly freed.
4096 static int __kmp_reset_root(int gtid
, kmp_root_t
*root
) {
4097 kmp_team_t
*root_team
= root
->r
.r_root_team
;
4098 kmp_team_t
*hot_team
= root
->r
.r_hot_team
;
4099 int n
= hot_team
->t
.t_nproc
;
4102 KMP_DEBUG_ASSERT(!root
->r
.r_active
);
4104 root
->r
.r_root_team
= NULL
;
4105 root
->r
.r_hot_team
= NULL
;
4106 // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team
4107 // before call to __kmp_free_team().
4108 __kmp_free_team(root
, root_team
USE_NESTED_HOT_ARG(NULL
));
4109 #if KMP_NESTED_HOT_TEAMS
4110 if (__kmp_hot_teams_max_level
>
4111 0) { // need to free nested hot teams and their threads if any
4112 for (i
= 0; i
< hot_team
->t
.t_nproc
; ++i
) {
4113 kmp_info_t
*th
= hot_team
->t
.t_threads
[i
];
4114 if (__kmp_hot_teams_max_level
> 1) {
4115 n
+= __kmp_free_hot_teams(root
, th
, 1, __kmp_hot_teams_max_level
);
4117 if (th
->th
.th_hot_teams
) {
4118 __kmp_free(th
->th
.th_hot_teams
);
4119 th
->th
.th_hot_teams
= NULL
;
4124 __kmp_free_team(root
, hot_team
USE_NESTED_HOT_ARG(NULL
));
4126 // Before we can reap the thread, we need to make certain that all other
4127 // threads in the teams that had this root as ancestor have stopped trying to
4129 if (__kmp_tasking_mode
!= tskm_immediate_exec
) {
4130 __kmp_wait_to_unref_task_teams();
4134 /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */
4136 10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC
4138 (LPVOID
) & (root
->r
.r_uber_thread
->th
),
4139 root
->r
.r_uber_thread
->th
.th_info
.ds
.ds_thread
));
4140 __kmp_free_handle(root
->r
.r_uber_thread
->th
.th_info
.ds
.ds_thread
);
4141 #endif /* KMP_OS_WINDOWS */
4144 if (ompd_state
& OMPD_ENABLE_BP
)
4145 ompd_bp_thread_end();
4149 ompt_data_t
*task_data
;
4150 ompt_data_t
*parallel_data
;
4151 __ompt_get_task_info_internal(0, NULL
, &task_data
, NULL
, ¶llel_data
,
4153 if (ompt_enabled
.ompt_callback_implicit_task
) {
4154 ompt_callbacks
.ompt_callback(ompt_callback_implicit_task
)(
4155 ompt_scope_end
, parallel_data
, task_data
, 0, 1, ompt_task_initial
);
4157 if (ompt_enabled
.ompt_callback_thread_end
) {
4158 ompt_callbacks
.ompt_callback(ompt_callback_thread_end
)(
4159 &(root
->r
.r_uber_thread
->th
.ompt_thread_info
.thread_data
));
4164 __kmp_nth
- 1); // __kmp_reap_thread will decrement __kmp_all_nth.
4165 i
= root
->r
.r_uber_thread
->th
.th_cg_roots
->cg_nthreads
--;
4166 KA_TRACE(100, ("__kmp_reset_root: Thread %p decrement cg_nthreads on node %p"
4168 root
->r
.r_uber_thread
, root
->r
.r_uber_thread
->th
.th_cg_roots
,
4169 root
->r
.r_uber_thread
->th
.th_cg_roots
->cg_nthreads
));
4171 // need to free contention group structure
4172 KMP_DEBUG_ASSERT(root
->r
.r_uber_thread
==
4173 root
->r
.r_uber_thread
->th
.th_cg_roots
->cg_root
);
4174 KMP_DEBUG_ASSERT(root
->r
.r_uber_thread
->th
.th_cg_roots
->up
== NULL
);
4175 __kmp_free(root
->r
.r_uber_thread
->th
.th_cg_roots
);
4176 root
->r
.r_uber_thread
->th
.th_cg_roots
= NULL
;
4178 __kmp_reap_thread(root
->r
.r_uber_thread
, 1);
4180 // We canot put root thread to __kmp_thread_pool, so we have to reap it
4181 // instead of freeing.
4182 root
->r
.r_uber_thread
= NULL
;
4183 /* mark root as no longer in use */
4184 root
->r
.r_begin
= FALSE
;
4189 void __kmp_unregister_root_current_thread(int gtid
) {
4190 KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid
));
4191 /* this lock should be ok, since unregister_root_current_thread is never
4192 called during an abort, only during a normal close. furthermore, if you
4193 have the forkjoin lock, you should never try to get the initz lock */
4194 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock
);
4195 if (TCR_4(__kmp_global
.g
.g_done
) || !__kmp_init_serial
) {
4196 KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, "
4199 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock
);
4202 kmp_root_t
*root
= __kmp_root
[gtid
];
4204 KMP_DEBUG_ASSERT(__kmp_threads
&& __kmp_threads
[gtid
]);
4205 KMP_ASSERT(KMP_UBER_GTID(gtid
));
4206 KMP_ASSERT(root
== __kmp_threads
[gtid
]->th
.th_root
);
4207 KMP_ASSERT(root
->r
.r_active
== FALSE
);
4211 kmp_info_t
*thread
= __kmp_threads
[gtid
];
4212 kmp_team_t
*team
= thread
->th
.th_team
;
4213 kmp_task_team_t
*task_team
= thread
->th
.th_task_team
;
4215 // we need to wait for the proxy tasks before finishing the thread
4216 if (task_team
!= NULL
&& (task_team
->tt
.tt_found_proxy_tasks
||
4217 task_team
->tt
.tt_hidden_helper_task_encountered
)) {
4219 // the runtime is shutting down so we won't report any events
4220 thread
->th
.ompt_thread_info
.state
= ompt_state_undefined
;
4222 __kmp_task_team_wait(thread
, team
USE_ITT_BUILD_ARG(NULL
));
4225 __kmp_reset_root(gtid
, root
);
4229 ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid
));
4231 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock
);
4235 /* __kmp_forkjoin_lock must be already held
4236 Unregisters a root thread that is not the current thread. Returns the number
4237 of __kmp_threads entries freed as a result. */
4238 static int __kmp_unregister_root_other_thread(int gtid
) {
4239 kmp_root_t
*root
= __kmp_root
[gtid
];
4242 KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid
));
4243 KMP_DEBUG_ASSERT(__kmp_threads
&& __kmp_threads
[gtid
]);
4244 KMP_ASSERT(KMP_UBER_GTID(gtid
));
4245 KMP_ASSERT(root
== __kmp_threads
[gtid
]->th
.th_root
);
4246 KMP_ASSERT(root
->r
.r_active
== FALSE
);
4248 r
= __kmp_reset_root(gtid
, root
);
4250 ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid
));
4256 void __kmp_task_info() {
4258 kmp_int32 gtid
= __kmp_entry_gtid();
4259 kmp_int32 tid
= __kmp_tid_from_gtid(gtid
);
4260 kmp_info_t
*this_thr
= __kmp_threads
[gtid
];
4261 kmp_team_t
*steam
= this_thr
->th
.th_serial_team
;
4262 kmp_team_t
*team
= this_thr
->th
.th_team
;
4265 "__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p steam=%p curtask=%p "
4267 gtid
, tid
, this_thr
, team
, steam
, this_thr
->th
.th_current_task
,
4268 team
->t
.t_implicit_task_taskdata
[tid
].td_parent
);
4272 /* TODO optimize with one big memclr, take out what isn't needed, split
4273 responsibility to workers as much as possible, and delay initialization of
4274 features as much as possible */
4275 static void __kmp_initialize_info(kmp_info_t
*this_thr
, kmp_team_t
*team
,
4276 int tid
, int gtid
) {
4277 /* this_thr->th.th_info.ds.ds_gtid is setup in
4278 kmp_allocate_thread/create_worker.
4279 this_thr->th.th_serial_team is setup in __kmp_allocate_thread */
4280 KMP_DEBUG_ASSERT(this_thr
!= NULL
);
4281 KMP_DEBUG_ASSERT(this_thr
->th
.th_serial_team
);
4282 KMP_DEBUG_ASSERT(team
);
4283 KMP_DEBUG_ASSERT(team
->t
.t_threads
);
4284 KMP_DEBUG_ASSERT(team
->t
.t_dispatch
);
4285 kmp_info_t
*master
= team
->t
.t_threads
[0];
4286 KMP_DEBUG_ASSERT(master
);
4287 KMP_DEBUG_ASSERT(master
->th
.th_root
);
4291 TCW_SYNC_PTR(this_thr
->th
.th_team
, team
);
4293 this_thr
->th
.th_info
.ds
.ds_tid
= tid
;
4294 this_thr
->th
.th_set_nproc
= 0;
4295 if (__kmp_tasking_mode
!= tskm_immediate_exec
)
4296 // When tasking is possible, threads are not safe to reap until they are
4297 // done tasking; this will be set when tasking code is exited in wait
4298 this_thr
->th
.th_reap_state
= KMP_NOT_SAFE_TO_REAP
;
4299 else // no tasking --> always safe to reap
4300 this_thr
->th
.th_reap_state
= KMP_SAFE_TO_REAP
;
4301 this_thr
->th
.th_set_proc_bind
= proc_bind_default
;
4303 #if KMP_AFFINITY_SUPPORTED
4304 this_thr
->th
.th_new_place
= this_thr
->th
.th_current_place
;
4306 this_thr
->th
.th_root
= master
->th
.th_root
;
4308 /* setup the thread's cache of the team structure */
4309 this_thr
->th
.th_team_nproc
= team
->t
.t_nproc
;
4310 this_thr
->th
.th_team_master
= master
;
4311 this_thr
->th
.th_team_serialized
= team
->t
.t_serialized
;
4313 KMP_DEBUG_ASSERT(team
->t
.t_implicit_task_taskdata
);
4315 KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n",
4316 tid
, gtid
, this_thr
, this_thr
->th
.th_current_task
));
4318 __kmp_init_implicit_task(this_thr
->th
.th_team_master
->th
.th_ident
, this_thr
,
4321 KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n",
4322 tid
, gtid
, this_thr
, this_thr
->th
.th_current_task
));
4323 // TODO: Initialize ICVs from parent; GEH - isn't that already done in
4324 // __kmp_initialize_team()?
4326 /* TODO no worksharing in speculative threads */
4327 this_thr
->th
.th_dispatch
= &team
->t
.t_dispatch
[tid
];
4329 this_thr
->th
.th_local
.this_construct
= 0;
4331 if (!this_thr
->th
.th_pri_common
) {
4332 this_thr
->th
.th_pri_common
=
4333 (struct common_table
*)__kmp_allocate(sizeof(struct common_table
));
4334 if (__kmp_storage_map
) {
4335 __kmp_print_storage_map_gtid(
4336 gtid
, this_thr
->th
.th_pri_common
, this_thr
->th
.th_pri_common
+ 1,
4337 sizeof(struct common_table
), "th_%d.th_pri_common\n", gtid
);
4339 this_thr
->th
.th_pri_head
= NULL
;
4342 if (this_thr
!= master
&& // Primary thread's CG root is initialized elsewhere
4343 this_thr
->th
.th_cg_roots
!= master
->th
.th_cg_roots
) { // CG root not set
4344 // Make new thread's CG root same as primary thread's
4345 KMP_DEBUG_ASSERT(master
->th
.th_cg_roots
);
4346 kmp_cg_root_t
*tmp
= this_thr
->th
.th_cg_roots
;
4348 // worker changes CG, need to check if old CG should be freed
4349 int i
= tmp
->cg_nthreads
--;
4350 KA_TRACE(100, ("__kmp_initialize_info: Thread %p decrement cg_nthreads"
4351 " on node %p of thread %p to %d\n",
4352 this_thr
, tmp
, tmp
->cg_root
, tmp
->cg_nthreads
));
4354 __kmp_free(tmp
); // last thread left CG --> free it
4357 this_thr
->th
.th_cg_roots
= master
->th
.th_cg_roots
;
4358 // Increment new thread's CG root's counter to add the new thread
4359 this_thr
->th
.th_cg_roots
->cg_nthreads
++;
4360 KA_TRACE(100, ("__kmp_initialize_info: Thread %p increment cg_nthreads on"
4361 " node %p of thread %p to %d\n",
4362 this_thr
, this_thr
->th
.th_cg_roots
,
4363 this_thr
->th
.th_cg_roots
->cg_root
,
4364 this_thr
->th
.th_cg_roots
->cg_nthreads
));
4365 this_thr
->th
.th_current_task
->td_icvs
.thread_limit
=
4366 this_thr
->th
.th_cg_roots
->cg_thread_limit
;
4369 /* Initialize dynamic dispatch */
4371 volatile kmp_disp_t
*dispatch
= this_thr
->th
.th_dispatch
;
4372 // Use team max_nproc since this will never change for the team.
4374 sizeof(dispatch_private_info_t
) *
4375 (team
->t
.t_max_nproc
== 1 ? 1 : __kmp_dispatch_num_buffers
);
4376 KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid
,
4377 team
->t
.t_max_nproc
));
4378 KMP_ASSERT(dispatch
);
4379 KMP_DEBUG_ASSERT(team
->t
.t_dispatch
);
4380 KMP_DEBUG_ASSERT(dispatch
== &team
->t
.t_dispatch
[tid
]);
4382 dispatch
->th_disp_index
= 0;
4383 dispatch
->th_doacross_buf_idx
= 0;
4384 if (!dispatch
->th_disp_buffer
) {
4385 dispatch
->th_disp_buffer
=
4386 (dispatch_private_info_t
*)__kmp_allocate(disp_size
);
4388 if (__kmp_storage_map
) {
4389 __kmp_print_storage_map_gtid(
4390 gtid
, &dispatch
->th_disp_buffer
[0],
4391 &dispatch
->th_disp_buffer
[team
->t
.t_max_nproc
== 1
4393 : __kmp_dispatch_num_buffers
],
4395 "th_%d.th_dispatch.th_disp_buffer "
4396 "(team_%d.t_dispatch[%d].th_disp_buffer)",
4397 gtid
, team
->t
.t_id
, gtid
);
4400 memset(&dispatch
->th_disp_buffer
[0], '\0', disp_size
);
4403 dispatch
->th_dispatch_pr_current
= 0;
4404 dispatch
->th_dispatch_sh_current
= 0;
4406 dispatch
->th_deo_fcn
= 0; /* ORDERED */
4407 dispatch
->th_dxo_fcn
= 0; /* END ORDERED */
4410 this_thr
->th
.th_next_pool
= NULL
;
4412 KMP_DEBUG_ASSERT(!this_thr
->th
.th_spin_here
);
4413 KMP_DEBUG_ASSERT(this_thr
->th
.th_next_waiting
== 0);
4418 /* allocate a new thread for the requesting team. this is only called from
4419 within a forkjoin critical section. we will first try to get an available
4420 thread from the thread pool. if none is available, we will fork a new one
4421 assuming we are able to create a new one. this should be assured, as the
4422 caller should check on this first. */
4423 kmp_info_t
*__kmp_allocate_thread(kmp_root_t
*root
, kmp_team_t
*team
,
4425 kmp_team_t
*serial_team
;
4426 kmp_info_t
*new_thr
;
4429 KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid()));
4430 KMP_DEBUG_ASSERT(root
&& team
);
4431 #if !KMP_NESTED_HOT_TEAMS
4432 KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid()));
4436 /* first, try to get one from the thread pool unless allocating thread is
4437 * the main hidden helper thread. The hidden helper team should always
4438 * allocate new OS threads. */
4439 if (__kmp_thread_pool
&& !KMP_HIDDEN_HELPER_TEAM(team
)) {
4440 new_thr
= CCAST(kmp_info_t
*, __kmp_thread_pool
);
4441 __kmp_thread_pool
= (volatile kmp_info_t
*)new_thr
->th
.th_next_pool
;
4442 if (new_thr
== __kmp_thread_pool_insert_pt
) {
4443 __kmp_thread_pool_insert_pt
= NULL
;
4445 TCW_4(new_thr
->th
.th_in_pool
, FALSE
);
4446 __kmp_suspend_initialize_thread(new_thr
);
4447 __kmp_lock_suspend_mx(new_thr
);
4448 if (new_thr
->th
.th_active_in_pool
== TRUE
) {
4449 KMP_DEBUG_ASSERT(new_thr
->th
.th_active
== TRUE
);
4450 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth
);
4451 new_thr
->th
.th_active_in_pool
= FALSE
;
4453 __kmp_unlock_suspend_mx(new_thr
);
4455 KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n",
4456 __kmp_get_gtid(), new_thr
->th
.th_info
.ds
.ds_gtid
));
4457 KMP_ASSERT(!new_thr
->th
.th_team
);
4458 KMP_DEBUG_ASSERT(__kmp_nth
< __kmp_threads_capacity
);
4460 /* setup the thread structure */
4461 __kmp_initialize_info(new_thr
, team
, new_tid
,
4462 new_thr
->th
.th_info
.ds
.ds_gtid
);
4463 KMP_DEBUG_ASSERT(new_thr
->th
.th_serial_team
);
4465 TCW_4(__kmp_nth
, __kmp_nth
+ 1);
4467 new_thr
->th
.th_task_state
= 0;
4469 if (__kmp_barrier_gather_pattern
[bs_forkjoin_barrier
] == bp_dist_bar
) {
4470 // Make sure pool thread has transitioned to waiting on own thread struct
4471 KMP_DEBUG_ASSERT(new_thr
->th
.th_used_in_team
.load() == 0);
4472 // Thread activated in __kmp_allocate_team when increasing team size
4475 #ifdef KMP_ADJUST_BLOCKTIME
4476 /* Adjust blocktime back to zero if necessary */
4477 /* Middle initialization might not have occurred yet */
4478 if (!__kmp_env_blocktime
&& (__kmp_avail_proc
> 0)) {
4479 if (__kmp_nth
> __kmp_avail_proc
) {
4480 __kmp_zero_bt
= TRUE
;
4483 #endif /* KMP_ADJUST_BLOCKTIME */
4486 // If thread entered pool via __kmp_free_thread, wait_flag should !=
4487 // KMP_BARRIER_PARENT_FLAG.
4489 kmp_balign_t
*balign
= new_thr
->th
.th_bar
;
4490 for (b
= 0; b
< bs_last_barrier
; ++b
)
4491 KMP_DEBUG_ASSERT(balign
[b
].bb
.wait_flag
!= KMP_BARRIER_PARENT_FLAG
);
4494 KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n",
4495 __kmp_get_gtid(), new_thr
, new_thr
->th
.th_info
.ds
.ds_gtid
));
4501 /* no, well fork a new one */
4502 KMP_ASSERT(KMP_HIDDEN_HELPER_TEAM(team
) || __kmp_nth
== __kmp_all_nth
);
4503 KMP_ASSERT(__kmp_all_nth
< __kmp_threads_capacity
);
4506 // If this is the first worker thread the RTL is creating, then also
4507 // launch the monitor thread. We try to do this as early as possible.
4508 if (!TCR_4(__kmp_init_monitor
)) {
4509 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock
);
4510 if (!TCR_4(__kmp_init_monitor
)) {
4511 KF_TRACE(10, ("before __kmp_create_monitor\n"));
4512 TCW_4(__kmp_init_monitor
, 1);
4513 __kmp_create_monitor(&__kmp_monitor
);
4514 KF_TRACE(10, ("after __kmp_create_monitor\n"));
4516 // AC: wait until monitor has started. This is a fix for CQ232808.
4517 // The reason is that if the library is loaded/unloaded in a loop with
4518 // small (parallel) work in between, then there is high probability that
4519 // monitor thread started after the library shutdown. At shutdown it is
4520 // too late to cope with the problem, because when the primary thread is
4521 // in DllMain (process detach) the monitor has no chances to start (it is
4522 // blocked), and primary thread has no means to inform the monitor that
4523 // the library has gone, because all the memory which the monitor can
4524 // access is going to be released/reset.
4525 while (TCR_4(__kmp_init_monitor
) < 2) {
4528 KF_TRACE(10, ("after monitor thread has started\n"));
4531 __kmp_release_bootstrap_lock(&__kmp_monitor_lock
);
4538 int new_start_gtid
= TCR_4(__kmp_init_hidden_helper_threads
)
4540 : __kmp_hidden_helper_threads_num
+ 1;
4542 for (new_gtid
= new_start_gtid
; TCR_PTR(__kmp_threads
[new_gtid
]) != NULL
;
4544 KMP_DEBUG_ASSERT(new_gtid
< __kmp_threads_capacity
);
4547 if (TCR_4(__kmp_init_hidden_helper_threads
)) {
4548 KMP_DEBUG_ASSERT(new_gtid
<= __kmp_hidden_helper_threads_num
);
4552 /* allocate space for it. */
4553 new_thr
= (kmp_info_t
*)__kmp_allocate(sizeof(kmp_info_t
));
4555 new_thr
->th
.th_nt_strict
= false;
4556 new_thr
->th
.th_nt_loc
= NULL
;
4557 new_thr
->th
.th_nt_sev
= severity_fatal
;
4558 new_thr
->th
.th_nt_msg
= NULL
;
4560 TCW_SYNC_PTR(__kmp_threads
[new_gtid
], new_thr
);
4562 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG
4563 // suppress race conditions detection on synchronization flags in debug mode
4564 // this helps to analyze library internals eliminating false positives
4565 __itt_suppress_mark_range(
4566 __itt_suppress_range
, __itt_suppress_threading_errors
,
4567 &new_thr
->th
.th_sleep_loc
, sizeof(new_thr
->th
.th_sleep_loc
));
4568 __itt_suppress_mark_range(
4569 __itt_suppress_range
, __itt_suppress_threading_errors
,
4570 &new_thr
->th
.th_reap_state
, sizeof(new_thr
->th
.th_reap_state
));
4572 __itt_suppress_mark_range(
4573 __itt_suppress_range
, __itt_suppress_threading_errors
,
4574 &new_thr
->th
.th_suspend_init
, sizeof(new_thr
->th
.th_suspend_init
));
4576 __itt_suppress_mark_range(__itt_suppress_range
,
4577 __itt_suppress_threading_errors
,
4578 &new_thr
->th
.th_suspend_init_count
,
4579 sizeof(new_thr
->th
.th_suspend_init_count
));
4581 // TODO: check if we need to also suppress b_arrived flags
4582 __itt_suppress_mark_range(__itt_suppress_range
,
4583 __itt_suppress_threading_errors
,
4584 CCAST(kmp_uint64
*, &new_thr
->th
.th_bar
[0].bb
.b_go
),
4585 sizeof(new_thr
->th
.th_bar
[0].bb
.b_go
));
4586 __itt_suppress_mark_range(__itt_suppress_range
,
4587 __itt_suppress_threading_errors
,
4588 CCAST(kmp_uint64
*, &new_thr
->th
.th_bar
[1].bb
.b_go
),
4589 sizeof(new_thr
->th
.th_bar
[1].bb
.b_go
));
4590 __itt_suppress_mark_range(__itt_suppress_range
,
4591 __itt_suppress_threading_errors
,
4592 CCAST(kmp_uint64
*, &new_thr
->th
.th_bar
[2].bb
.b_go
),
4593 sizeof(new_thr
->th
.th_bar
[2].bb
.b_go
));
4594 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */
4595 if (__kmp_storage_map
) {
4596 __kmp_print_thread_storage_map(new_thr
, new_gtid
);
4599 // add the reserve serialized team, initialized from the team's primary thread
4601 kmp_internal_control_t r_icvs
= __kmp_get_x_global_icvs(team
);
4602 KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n"));
4603 new_thr
->th
.th_serial_team
= serial_team
=
4604 (kmp_team_t
*)__kmp_allocate_team(root
, 1, 1,
4606 ompt_data_none
, // root parallel id
4608 proc_bind_default
, &r_icvs
,
4609 0 USE_NESTED_HOT_ARG(NULL
));
4611 KMP_ASSERT(serial_team
);
4612 serial_team
->t
.t_serialized
= 0; // AC: the team created in reserve, not for
4613 // execution (it is unused for now).
4614 serial_team
->t
.t_threads
[0] = new_thr
;
4616 ("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n",
4619 /* setup the thread structures */
4620 __kmp_initialize_info(new_thr
, team
, new_tid
, new_gtid
);
4623 __kmp_initialize_fast_memory(new_thr
);
4624 #endif /* USE_FAST_MEMORY */
4627 KMP_DEBUG_ASSERT(new_thr
->th
.th_local
.bget_data
== NULL
);
4628 __kmp_initialize_bget(new_thr
);
4631 __kmp_init_random(new_thr
); // Initialize random number generator
4633 /* Initialize these only once when thread is grabbed for a team allocation */
4635 ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n",
4636 __kmp_get_gtid(), KMP_INIT_BARRIER_STATE
, KMP_INIT_BARRIER_STATE
));
4639 kmp_balign_t
*balign
= new_thr
->th
.th_bar
;
4640 for (b
= 0; b
< bs_last_barrier
; ++b
) {
4641 balign
[b
].bb
.b_go
= KMP_INIT_BARRIER_STATE
;
4642 balign
[b
].bb
.team
= NULL
;
4643 balign
[b
].bb
.wait_flag
= KMP_BARRIER_NOT_WAITING
;
4644 balign
[b
].bb
.use_oncore_barrier
= 0;
4647 TCW_PTR(new_thr
->th
.th_sleep_loc
, NULL
);
4648 new_thr
->th
.th_sleep_loc_type
= flag_unset
;
4650 new_thr
->th
.th_spin_here
= FALSE
;
4651 new_thr
->th
.th_next_waiting
= 0;
4653 new_thr
->th
.th_blocking
= false;
4656 #if KMP_AFFINITY_SUPPORTED
4657 new_thr
->th
.th_current_place
= KMP_PLACE_UNDEFINED
;
4658 new_thr
->th
.th_new_place
= KMP_PLACE_UNDEFINED
;
4659 new_thr
->th
.th_first_place
= KMP_PLACE_UNDEFINED
;
4660 new_thr
->th
.th_last_place
= KMP_PLACE_UNDEFINED
;
4662 new_thr
->th
.th_def_allocator
= __kmp_def_allocator
;
4663 new_thr
->th
.th_prev_level
= 0;
4664 new_thr
->th
.th_prev_num_threads
= 1;
4666 TCW_4(new_thr
->th
.th_in_pool
, FALSE
);
4667 new_thr
->th
.th_active_in_pool
= FALSE
;
4668 TCW_4(new_thr
->th
.th_active
, TRUE
);
4670 new_thr
->th
.th_set_nested_nth
= NULL
;
4671 new_thr
->th
.th_set_nested_nth_sz
= 0;
4673 /* adjust the global counters */
4677 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low
4678 // numbers of procs, and method #2 (keyed API call) for higher numbers.
4679 if (__kmp_adjust_gtid_mode
) {
4680 if (__kmp_all_nth
>= __kmp_tls_gtid_min
) {
4681 if (TCR_4(__kmp_gtid_mode
) != 2) {
4682 TCW_4(__kmp_gtid_mode
, 2);
4685 if (TCR_4(__kmp_gtid_mode
) != 1) {
4686 TCW_4(__kmp_gtid_mode
, 1);
4691 #ifdef KMP_ADJUST_BLOCKTIME
4692 /* Adjust blocktime back to zero if necessary */
4693 /* Middle initialization might not have occurred yet */
4694 if (!__kmp_env_blocktime
&& (__kmp_avail_proc
> 0)) {
4695 if (__kmp_nth
> __kmp_avail_proc
) {
4696 __kmp_zero_bt
= TRUE
;
4699 #endif /* KMP_ADJUST_BLOCKTIME */
4701 #if KMP_AFFINITY_SUPPORTED
4702 // Set the affinity and topology information for new thread
4703 __kmp_affinity_set_init_mask(new_gtid
, /*isa_root=*/FALSE
);
4706 /* actually fork it and create the new worker thread */
4708 10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr
));
4709 __kmp_create_worker(new_gtid
, new_thr
, __kmp_stksize
);
4711 ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr
));
4713 KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(),
4719 /* Reinitialize team for reuse.
4720 The hot team code calls this case at every fork barrier, so EPCC barrier
4721 test are extremely sensitive to changes in it, esp. writes to the team
4722 struct, which cause a cache invalidation in all threads.
4723 IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */
4724 static void __kmp_reinitialize_team(kmp_team_t
*team
,
4725 kmp_internal_control_t
*new_icvs
,
4727 KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n",
4728 team
->t
.t_threads
[0], team
));
4729 KMP_DEBUG_ASSERT(team
&& new_icvs
);
4730 KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel
)) || new_icvs
->nproc
);
4731 KMP_CHECK_UPDATE(team
->t
.t_ident
, loc
);
4733 KMP_CHECK_UPDATE(team
->t
.t_id
, KMP_GEN_TEAM_ID());
4734 // Copy ICVs to the primary thread's implicit taskdata
4735 __kmp_init_implicit_task(loc
, team
->t
.t_threads
[0], team
, 0, FALSE
);
4736 copy_icvs(&team
->t
.t_implicit_task_taskdata
[0].td_icvs
, new_icvs
);
4738 KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n",
4739 team
->t
.t_threads
[0], team
));
4742 /* Initialize the team data structure.
4743 This assumes the t_threads and t_max_nproc are already set.
4744 Also, we don't touch the arguments */
4745 static void __kmp_initialize_team(kmp_team_t
*team
, int new_nproc
,
4746 kmp_internal_control_t
*new_icvs
,
4748 KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team
));
4751 KMP_DEBUG_ASSERT(team
);
4752 KMP_DEBUG_ASSERT(new_nproc
<= team
->t
.t_max_nproc
);
4753 KMP_DEBUG_ASSERT(team
->t
.t_threads
);
4756 team
->t
.t_master_tid
= 0; /* not needed */
4757 /* team->t.t_master_bar; not needed */
4758 team
->t
.t_serialized
= new_nproc
> 1 ? 0 : 1;
4759 team
->t
.t_nproc
= new_nproc
;
4761 /* team->t.t_parent = NULL; TODO not needed & would mess up hot team */
4762 team
->t
.t_next_pool
= NULL
;
4763 /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess
4766 TCW_SYNC_PTR(team
->t
.t_pkfn
, NULL
); /* not needed */
4767 team
->t
.t_invoke
= NULL
; /* not needed */
4769 // TODO???: team->t.t_max_active_levels = new_max_active_levels;
4770 team
->t
.t_sched
.sched
= new_icvs
->sched
.sched
;
4772 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4773 team
->t
.t_fp_control_saved
= FALSE
; /* not needed */
4774 team
->t
.t_x87_fpu_control_word
= 0; /* not needed */
4775 team
->t
.t_mxcsr
= 0; /* not needed */
4776 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4778 team
->t
.t_construct
= 0;
4780 team
->t
.t_ordered
.dt
.t_value
= 0;
4781 team
->t
.t_master_active
= FALSE
;
4784 team
->t
.t_copypriv_data
= NULL
; /* not necessary, but nice for debugging */
4787 team
->t
.t_copyin_counter
= 0; /* for barrier-free copyin implementation */
4790 team
->t
.t_control_stack_top
= NULL
;
4792 __kmp_reinitialize_team(team
, new_icvs
, loc
);
4795 KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team
));
4798 #if KMP_AFFINITY_SUPPORTED
4799 static inline void __kmp_set_thread_place(kmp_team_t
*team
, kmp_info_t
*th
,
4800 int first
, int last
, int newp
) {
4801 th
->th
.th_first_place
= first
;
4802 th
->th
.th_last_place
= last
;
4803 th
->th
.th_new_place
= newp
;
4804 if (newp
!= th
->th
.th_current_place
) {
4805 if (__kmp_display_affinity
&& team
->t
.t_display_affinity
!= 1)
4806 team
->t
.t_display_affinity
= 1;
4807 // Copy topology information associated with the new place
4808 th
->th
.th_topology_ids
= __kmp_affinity
.ids
[th
->th
.th_new_place
];
4809 th
->th
.th_topology_attrs
= __kmp_affinity
.attrs
[th
->th
.th_new_place
];
4813 // __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism.
4814 // It calculates the worker + primary thread's partition based upon the parent
4815 // thread's partition, and binds each worker to a thread in their partition.
4816 // The primary thread's partition should already include its current binding.
4817 static void __kmp_partition_places(kmp_team_t
*team
, int update_master_only
) {
4818 // Do not partition places for the hidden helper team
4819 if (KMP_HIDDEN_HELPER_TEAM(team
))
4821 // Copy the primary thread's place partition to the team struct
4822 kmp_info_t
*master_th
= team
->t
.t_threads
[0];
4823 KMP_DEBUG_ASSERT(master_th
!= NULL
);
4824 kmp_proc_bind_t proc_bind
= team
->t
.t_proc_bind
;
4825 int first_place
= master_th
->th
.th_first_place
;
4826 int last_place
= master_th
->th
.th_last_place
;
4827 int masters_place
= master_th
->th
.th_current_place
;
4828 int num_masks
= __kmp_affinity
.num_masks
;
4829 team
->t
.t_first_place
= first_place
;
4830 team
->t
.t_last_place
= last_place
;
4832 KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) "
4833 "bound to place %d partition = [%d,%d]\n",
4834 proc_bind
, __kmp_gtid_from_thread(team
->t
.t_threads
[0]),
4835 team
->t
.t_id
, masters_place
, first_place
, last_place
));
4837 switch (proc_bind
) {
4839 case proc_bind_default
:
4840 // Serial teams might have the proc_bind policy set to proc_bind_default.
4841 // Not an issue -- we don't rebind primary thread for any proc_bind policy.
4842 KMP_DEBUG_ASSERT(team
->t
.t_nproc
== 1);
4845 case proc_bind_primary
: {
4847 int n_th
= team
->t
.t_nproc
;
4848 for (f
= 1; f
< n_th
; f
++) {
4849 kmp_info_t
*th
= team
->t
.t_threads
[f
];
4850 KMP_DEBUG_ASSERT(th
!= NULL
);
4851 __kmp_set_thread_place(team
, th
, first_place
, last_place
, masters_place
);
4853 KA_TRACE(100, ("__kmp_partition_places: primary: T#%d(%d:%d) place %d "
4854 "partition = [%d,%d]\n",
4855 __kmp_gtid_from_thread(team
->t
.t_threads
[f
]), team
->t
.t_id
,
4856 f
, masters_place
, first_place
, last_place
));
4860 case proc_bind_close
: {
4862 int n_th
= team
->t
.t_nproc
;
4864 if (first_place
<= last_place
) {
4865 n_places
= last_place
- first_place
+ 1;
4867 n_places
= num_masks
- first_place
+ last_place
+ 1;
4869 if (n_th
<= n_places
) {
4870 int place
= masters_place
;
4871 for (f
= 1; f
< n_th
; f
++) {
4872 kmp_info_t
*th
= team
->t
.t_threads
[f
];
4873 KMP_DEBUG_ASSERT(th
!= NULL
);
4875 if (place
== last_place
) {
4876 place
= first_place
;
4877 } else if (place
== (num_masks
- 1)) {
4882 __kmp_set_thread_place(team
, th
, first_place
, last_place
, place
);
4884 KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d "
4885 "partition = [%d,%d]\n",
4886 __kmp_gtid_from_thread(team
->t
.t_threads
[f
]),
4887 team
->t
.t_id
, f
, place
, first_place
, last_place
));
4890 int S
, rem
, gap
, s_count
;
4891 S
= n_th
/ n_places
;
4893 rem
= n_th
- (S
* n_places
);
4894 gap
= rem
> 0 ? n_places
/ rem
: n_places
;
4895 int place
= masters_place
;
4897 for (f
= 0; f
< n_th
; f
++) {
4898 kmp_info_t
*th
= team
->t
.t_threads
[f
];
4899 KMP_DEBUG_ASSERT(th
!= NULL
);
4901 __kmp_set_thread_place(team
, th
, first_place
, last_place
, place
);
4904 if ((s_count
== S
) && rem
&& (gap_ct
== gap
)) {
4905 // do nothing, add an extra thread to place on next iteration
4906 } else if ((s_count
== S
+ 1) && rem
&& (gap_ct
== gap
)) {
4907 // we added an extra thread to this place; move to next place
4908 if (place
== last_place
) {
4909 place
= first_place
;
4910 } else if (place
== (num_masks
- 1)) {
4918 } else if (s_count
== S
) { // place full; don't add extra
4919 if (place
== last_place
) {
4920 place
= first_place
;
4921 } else if (place
== (num_masks
- 1)) {
4931 ("__kmp_partition_places: close: T#%d(%d:%d) place %d "
4932 "partition = [%d,%d]\n",
4933 __kmp_gtid_from_thread(team
->t
.t_threads
[f
]), team
->t
.t_id
, f
,
4934 th
->th
.th_new_place
, first_place
, last_place
));
4936 KMP_DEBUG_ASSERT(place
== masters_place
);
4940 case proc_bind_spread
: {
4942 int n_th
= team
->t
.t_nproc
;
4945 if (first_place
<= last_place
) {
4946 n_places
= last_place
- first_place
+ 1;
4948 n_places
= num_masks
- first_place
+ last_place
+ 1;
4950 if (n_th
<= n_places
) {
4953 if (n_places
!= num_masks
) {
4954 int S
= n_places
/ n_th
;
4955 int s_count
, rem
, gap
, gap_ct
;
4957 place
= masters_place
;
4958 rem
= n_places
- n_th
* S
;
4959 gap
= rem
? n_th
/ rem
: 1;
4962 if (update_master_only
== 1)
4964 for (f
= 0; f
< thidx
; f
++) {
4965 kmp_info_t
*th
= team
->t
.t_threads
[f
];
4966 KMP_DEBUG_ASSERT(th
!= NULL
);
4968 int fplace
= place
, nplace
= place
;
4970 while (s_count
< S
) {
4971 if (place
== last_place
) {
4972 place
= first_place
;
4973 } else if (place
== (num_masks
- 1)) {
4980 if (rem
&& (gap_ct
== gap
)) {
4981 if (place
== last_place
) {
4982 place
= first_place
;
4983 } else if (place
== (num_masks
- 1)) {
4991 __kmp_set_thread_place(team
, th
, fplace
, place
, nplace
);
4994 if (place
== last_place
) {
4995 place
= first_place
;
4996 } else if (place
== (num_masks
- 1)) {
5003 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
5004 "partition = [%d,%d], num_masks: %u\n",
5005 __kmp_gtid_from_thread(team
->t
.t_threads
[f
]), team
->t
.t_id
,
5006 f
, th
->th
.th_new_place
, th
->th
.th_first_place
,
5007 th
->th
.th_last_place
, num_masks
));
5010 /* Having uniform space of available computation places I can create
5011 T partitions of round(P/T) size and put threads into the first
5012 place of each partition. */
5013 double current
= static_cast<double>(masters_place
);
5015 (static_cast<double>(n_places
+ 1) / static_cast<double>(n_th
));
5020 if (update_master_only
== 1)
5022 for (f
= 0; f
< thidx
; f
++) {
5023 first
= static_cast<int>(current
);
5024 last
= static_cast<int>(current
+ spacing
) - 1;
5025 KMP_DEBUG_ASSERT(last
>= first
);
5026 if (first
>= n_places
) {
5027 if (masters_place
) {
5030 if (first
== (masters_place
+ 1)) {
5031 KMP_DEBUG_ASSERT(f
== n_th
);
5034 if (last
== masters_place
) {
5035 KMP_DEBUG_ASSERT(f
== (n_th
- 1));
5039 KMP_DEBUG_ASSERT(f
== n_th
);
5044 if (last
>= n_places
) {
5045 last
= (n_places
- 1);
5050 KMP_DEBUG_ASSERT(0 <= first
);
5051 KMP_DEBUG_ASSERT(n_places
> first
);
5052 KMP_DEBUG_ASSERT(0 <= last
);
5053 KMP_DEBUG_ASSERT(n_places
> last
);
5054 KMP_DEBUG_ASSERT(last_place
>= first_place
);
5055 th
= team
->t
.t_threads
[f
];
5056 KMP_DEBUG_ASSERT(th
);
5057 __kmp_set_thread_place(team
, th
, first
, last
, place
);
5059 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
5060 "partition = [%d,%d], spacing = %.4f\n",
5061 __kmp_gtid_from_thread(team
->t
.t_threads
[f
]),
5062 team
->t
.t_id
, f
, th
->th
.th_new_place
,
5063 th
->th
.th_first_place
, th
->th
.th_last_place
, spacing
));
5067 KMP_DEBUG_ASSERT(update_master_only
|| place
== masters_place
);
5069 int S
, rem
, gap
, s_count
;
5070 S
= n_th
/ n_places
;
5072 rem
= n_th
- (S
* n_places
);
5073 gap
= rem
> 0 ? n_places
/ rem
: n_places
;
5074 int place
= masters_place
;
5077 if (update_master_only
== 1)
5079 for (f
= 0; f
< thidx
; f
++) {
5080 kmp_info_t
*th
= team
->t
.t_threads
[f
];
5081 KMP_DEBUG_ASSERT(th
!= NULL
);
5083 __kmp_set_thread_place(team
, th
, place
, place
, place
);
5086 if ((s_count
== S
) && rem
&& (gap_ct
== gap
)) {
5087 // do nothing, add an extra thread to place on next iteration
5088 } else if ((s_count
== S
+ 1) && rem
&& (gap_ct
== gap
)) {
5089 // we added an extra thread to this place; move on to next place
5090 if (place
== last_place
) {
5091 place
= first_place
;
5092 } else if (place
== (num_masks
- 1)) {
5100 } else if (s_count
== S
) { // place is full; don't add extra thread
5101 if (place
== last_place
) {
5102 place
= first_place
;
5103 } else if (place
== (num_masks
- 1)) {
5112 KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
5113 "partition = [%d,%d]\n",
5114 __kmp_gtid_from_thread(team
->t
.t_threads
[f
]),
5115 team
->t
.t_id
, f
, th
->th
.th_new_place
,
5116 th
->th
.th_first_place
, th
->th
.th_last_place
));
5118 KMP_DEBUG_ASSERT(update_master_only
|| place
== masters_place
);
5126 KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team
->t
.t_id
));
5129 #endif // KMP_AFFINITY_SUPPORTED
5131 /* allocate a new team data structure to use. take one off of the free pool if
5134 __kmp_allocate_team(kmp_root_t
*root
, int new_nproc
, int max_nproc
,
5136 ompt_data_t ompt_parallel_data
,
5138 kmp_proc_bind_t new_proc_bind
,
5139 kmp_internal_control_t
*new_icvs
,
5140 int argc
USE_NESTED_HOT_ARG(kmp_info_t
*master
)) {
5141 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team
);
5144 int use_hot_team
= !root
->r
.r_active
;
5146 int do_place_partition
= 1;
5148 KA_TRACE(20, ("__kmp_allocate_team: called\n"));
5149 KMP_DEBUG_ASSERT(new_nproc
>= 1 && argc
>= 0);
5150 KMP_DEBUG_ASSERT(max_nproc
>= new_nproc
);
5153 #if KMP_NESTED_HOT_TEAMS
5154 kmp_hot_team_ptr_t
*hot_teams
;
5156 team
= master
->th
.th_team
;
5157 level
= team
->t
.t_active_level
;
5158 if (master
->th
.th_teams_microtask
) { // in teams construct?
5159 if (master
->th
.th_teams_size
.nteams
> 1 &&
5162 (microtask_t
)__kmp_teams_master
|| // inner fork of the teams
5163 master
->th
.th_teams_level
<
5164 team
->t
.t_level
)) { // or nested parallel inside the teams
5165 ++level
; // not increment if #teams==1, or for outer fork of the teams;
5166 // increment otherwise
5168 // Do not perform the place partition if inner fork of the teams
5169 // Wait until nested parallel region encountered inside teams construct
5170 if ((master
->th
.th_teams_size
.nteams
== 1 &&
5171 master
->th
.th_teams_level
>= team
->t
.t_level
) ||
5172 (team
->t
.t_pkfn
== (microtask_t
)__kmp_teams_master
))
5173 do_place_partition
= 0;
5175 hot_teams
= master
->th
.th_hot_teams
;
5176 if (level
< __kmp_hot_teams_max_level
&& hot_teams
&&
5177 hot_teams
[level
].hot_team
) {
5178 // hot team has already been allocated for given level
5184 // check we won't access uninitialized hot_teams, just in case
5185 KMP_DEBUG_ASSERT(new_nproc
== 1);
5188 // Optimization to use a "hot" team
5189 if (use_hot_team
&& new_nproc
> 1) {
5190 KMP_DEBUG_ASSERT(new_nproc
<= max_nproc
);
5191 #if KMP_NESTED_HOT_TEAMS
5192 team
= hot_teams
[level
].hot_team
;
5194 team
= root
->r
.r_hot_team
;
5197 if (__kmp_tasking_mode
!= tskm_immediate_exec
) {
5198 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p "
5199 "task_team[1] = %p before reinit\n",
5200 team
->t
.t_task_team
[0], team
->t
.t_task_team
[1]));
5204 if (team
->t
.t_nproc
!= new_nproc
&&
5205 __kmp_barrier_release_pattern
[bs_forkjoin_barrier
] == bp_dist_bar
) {
5206 // Distributed barrier may need a resize
5207 int old_nthr
= team
->t
.t_nproc
;
5208 __kmp_resize_dist_barrier(team
, old_nthr
, new_nproc
);
5211 // If not doing the place partition, then reset the team's proc bind
5212 // to indicate that partitioning of all threads still needs to take place
5213 if (do_place_partition
== 0)
5214 team
->t
.t_proc_bind
= proc_bind_default
;
5215 // Has the number of threads changed?
5216 /* Let's assume the most common case is that the number of threads is
5217 unchanged, and put that case first. */
5218 if (team
->t
.t_nproc
== new_nproc
) { // Check changes in number of threads
5219 KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n"));
5220 // This case can mean that omp_set_num_threads() was called and the hot
5221 // team size was already reduced, so we check the special flag
5222 if (team
->t
.t_size_changed
== -1) {
5223 team
->t
.t_size_changed
= 1;
5225 KMP_CHECK_UPDATE(team
->t
.t_size_changed
, 0);
5228 // TODO???: team->t.t_max_active_levels = new_max_active_levels;
5229 kmp_r_sched_t new_sched
= new_icvs
->sched
;
5230 // set primary thread's schedule as new run-time schedule
5231 KMP_CHECK_UPDATE(team
->t
.t_sched
.sched
, new_sched
.sched
);
5233 __kmp_reinitialize_team(team
, new_icvs
,
5234 root
->r
.r_uber_thread
->th
.th_ident
);
5236 KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0,
5237 team
->t
.t_threads
[0], team
));
5238 __kmp_push_current_task_to_thread(team
->t
.t_threads
[0], team
, 0);
5240 #if KMP_AFFINITY_SUPPORTED
5241 if ((team
->t
.t_size_changed
== 0) &&
5242 (team
->t
.t_proc_bind
== new_proc_bind
)) {
5243 if (new_proc_bind
== proc_bind_spread
) {
5244 if (do_place_partition
) {
5245 // add flag to update only master for spread
5246 __kmp_partition_places(team
, 1);
5249 KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: "
5250 "proc_bind = %d, partition = [%d,%d]\n",
5251 team
->t
.t_id
, new_proc_bind
, team
->t
.t_first_place
,
5252 team
->t
.t_last_place
));
5254 if (do_place_partition
) {
5255 KMP_CHECK_UPDATE(team
->t
.t_proc_bind
, new_proc_bind
);
5256 __kmp_partition_places(team
);
5260 KMP_CHECK_UPDATE(team
->t
.t_proc_bind
, new_proc_bind
);
5261 #endif /* KMP_AFFINITY_SUPPORTED */
5262 } else if (team
->t
.t_nproc
> new_nproc
) {
5264 ("__kmp_allocate_team: decreasing hot team thread count to %d\n",
5267 team
->t
.t_size_changed
= 1;
5268 if (__kmp_barrier_release_pattern
[bs_forkjoin_barrier
] == bp_dist_bar
) {
5269 // Barrier size already reduced earlier in this function
5270 // Activate team threads via th_used_in_team
5271 __kmp_add_threads_to_team(team
, new_nproc
);
5273 // When decreasing team size, threads no longer in the team should
5275 if (__kmp_tasking_mode
!= tskm_immediate_exec
) {
5276 for (f
= new_nproc
; f
< team
->t
.t_nproc
; f
++) {
5277 kmp_info_t
*th
= team
->t
.t_threads
[f
];
5278 KMP_DEBUG_ASSERT(th
);
5279 th
->th
.th_task_team
= NULL
;
5282 #if KMP_NESTED_HOT_TEAMS
5283 if (__kmp_hot_teams_mode
== 0) {
5284 // AC: saved number of threads should correspond to team's value in this
5285 // mode, can be bigger in mode 1, when hot team has threads in reserve
5286 KMP_DEBUG_ASSERT(hot_teams
[level
].hot_team_nth
== team
->t
.t_nproc
);
5287 hot_teams
[level
].hot_team_nth
= new_nproc
;
5288 #endif // KMP_NESTED_HOT_TEAMS
5289 /* release the extra threads we don't need any more */
5290 for (f
= new_nproc
; f
< team
->t
.t_nproc
; f
++) {
5291 KMP_DEBUG_ASSERT(team
->t
.t_threads
[f
]);
5292 __kmp_free_thread(team
->t
.t_threads
[f
]);
5293 team
->t
.t_threads
[f
] = NULL
;
5295 #if KMP_NESTED_HOT_TEAMS
5296 } // (__kmp_hot_teams_mode == 0)
5298 // When keeping extra threads in team, switch threads to wait on own
5300 for (f
= new_nproc
; f
< team
->t
.t_nproc
; ++f
) {
5301 KMP_DEBUG_ASSERT(team
->t
.t_threads
[f
]);
5302 kmp_balign_t
*balign
= team
->t
.t_threads
[f
]->th
.th_bar
;
5303 for (int b
= 0; b
< bs_last_barrier
; ++b
) {
5304 if (balign
[b
].bb
.wait_flag
== KMP_BARRIER_PARENT_FLAG
) {
5305 balign
[b
].bb
.wait_flag
= KMP_BARRIER_SWITCH_TO_OWN_FLAG
;
5307 KMP_CHECK_UPDATE(balign
[b
].bb
.leaf_kids
, 0);
5311 #endif // KMP_NESTED_HOT_TEAMS
5312 team
->t
.t_nproc
= new_nproc
;
5313 // TODO???: team->t.t_max_active_levels = new_max_active_levels;
5314 KMP_CHECK_UPDATE(team
->t
.t_sched
.sched
, new_icvs
->sched
.sched
);
5315 __kmp_reinitialize_team(team
, new_icvs
,
5316 root
->r
.r_uber_thread
->th
.th_ident
);
5318 // Update remaining threads
5319 for (f
= 0; f
< new_nproc
; ++f
) {
5320 team
->t
.t_threads
[f
]->th
.th_team_nproc
= new_nproc
;
5323 // restore the current task state of the primary thread: should be the
5325 KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0,
5326 team
->t
.t_threads
[0], team
));
5328 __kmp_push_current_task_to_thread(team
->t
.t_threads
[0], team
, 0);
5331 for (f
= 0; f
< team
->t
.t_nproc
; f
++) {
5332 KMP_DEBUG_ASSERT(team
->t
.t_threads
[f
] &&
5333 team
->t
.t_threads
[f
]->th
.th_team_nproc
==
5338 if (do_place_partition
) {
5339 KMP_CHECK_UPDATE(team
->t
.t_proc_bind
, new_proc_bind
);
5340 #if KMP_AFFINITY_SUPPORTED
5341 __kmp_partition_places(team
);
5344 } else { // team->t.t_nproc < new_nproc
5347 ("__kmp_allocate_team: increasing hot team thread count to %d\n",
5349 int old_nproc
= team
->t
.t_nproc
; // save old value and use to update only
5350 team
->t
.t_size_changed
= 1;
5352 #if KMP_NESTED_HOT_TEAMS
5353 int avail_threads
= hot_teams
[level
].hot_team_nth
;
5354 if (new_nproc
< avail_threads
)
5355 avail_threads
= new_nproc
;
5356 kmp_info_t
**other_threads
= team
->t
.t_threads
;
5357 for (f
= team
->t
.t_nproc
; f
< avail_threads
; ++f
) {
5358 // Adjust barrier data of reserved threads (if any) of the team
5359 // Other data will be set in __kmp_initialize_info() below.
5361 kmp_balign_t
*balign
= other_threads
[f
]->th
.th_bar
;
5362 for (b
= 0; b
< bs_last_barrier
; ++b
) {
5363 balign
[b
].bb
.b_arrived
= team
->t
.t_bar
[b
].b_arrived
;
5364 KMP_DEBUG_ASSERT(balign
[b
].bb
.wait_flag
!= KMP_BARRIER_PARENT_FLAG
);
5366 balign
[b
].bb
.b_worker_arrived
= team
->t
.t_bar
[b
].b_team_arrived
;
5370 if (hot_teams
[level
].hot_team_nth
>= new_nproc
) {
5371 // we have all needed threads in reserve, no need to allocate any
5372 // this only possible in mode 1, cannot have reserved threads in mode 0
5373 KMP_DEBUG_ASSERT(__kmp_hot_teams_mode
== 1);
5374 team
->t
.t_nproc
= new_nproc
; // just get reserved threads involved
5376 // We may have some threads in reserve, but not enough;
5377 // get reserved threads involved if any.
5378 team
->t
.t_nproc
= hot_teams
[level
].hot_team_nth
;
5379 hot_teams
[level
].hot_team_nth
= new_nproc
; // adjust hot team max size
5380 #endif // KMP_NESTED_HOT_TEAMS
5381 if (team
->t
.t_max_nproc
< new_nproc
) {
5382 /* reallocate larger arrays */
5383 __kmp_reallocate_team_arrays(team
, new_nproc
);
5384 __kmp_reinitialize_team(team
, new_icvs
, NULL
);
5387 #if (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY) && \
5388 KMP_AFFINITY_SUPPORTED
5389 /* Temporarily set full mask for primary thread before creation of
5390 workers. The reason is that workers inherit the affinity from the
5391 primary thread, so if a lot of workers are created on the single
5392 core quickly, they don't get a chance to set their own affinity for
5394 kmp_affinity_raii_t new_temp_affinity
{__kmp_affin_fullMask
};
5397 /* allocate new threads for the hot team */
5398 for (f
= team
->t
.t_nproc
; f
< new_nproc
; f
++) {
5399 kmp_info_t
*new_worker
= __kmp_allocate_thread(root
, team
, f
);
5400 KMP_DEBUG_ASSERT(new_worker
);
5401 team
->t
.t_threads
[f
] = new_worker
;
5404 ("__kmp_allocate_team: team %d init T#%d arrived: "
5405 "join=%llu, plain=%llu\n",
5406 team
->t
.t_id
, __kmp_gtid_from_tid(f
, team
), team
->t
.t_id
, f
,
5407 team
->t
.t_bar
[bs_forkjoin_barrier
].b_arrived
,
5408 team
->t
.t_bar
[bs_plain_barrier
].b_arrived
));
5410 { // Initialize barrier data for new threads.
5412 kmp_balign_t
*balign
= new_worker
->th
.th_bar
;
5413 for (b
= 0; b
< bs_last_barrier
; ++b
) {
5414 balign
[b
].bb
.b_arrived
= team
->t
.t_bar
[b
].b_arrived
;
5415 KMP_DEBUG_ASSERT(balign
[b
].bb
.wait_flag
!=
5416 KMP_BARRIER_PARENT_FLAG
);
5418 balign
[b
].bb
.b_worker_arrived
= team
->t
.t_bar
[b
].b_team_arrived
;
5424 #if (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY) && \
5425 KMP_AFFINITY_SUPPORTED
5426 /* Restore initial primary thread's affinity mask */
5427 new_temp_affinity
.restore();
5429 #if KMP_NESTED_HOT_TEAMS
5430 } // end of check of t_nproc vs. new_nproc vs. hot_team_nth
5431 #endif // KMP_NESTED_HOT_TEAMS
5432 if (__kmp_barrier_release_pattern
[bs_forkjoin_barrier
] == bp_dist_bar
) {
5433 // Barrier size already increased earlier in this function
5434 // Activate team threads via th_used_in_team
5435 __kmp_add_threads_to_team(team
, new_nproc
);
5437 /* make sure everyone is syncronized */
5438 // new threads below
5439 __kmp_initialize_team(team
, new_nproc
, new_icvs
,
5440 root
->r
.r_uber_thread
->th
.th_ident
);
5442 /* reinitialize the threads */
5443 KMP_DEBUG_ASSERT(team
->t
.t_nproc
== new_nproc
);
5444 for (f
= 0; f
< team
->t
.t_nproc
; ++f
)
5445 __kmp_initialize_info(team
->t
.t_threads
[f
], team
, f
,
5446 __kmp_gtid_from_tid(f
, team
));
5448 // set th_task_state for new threads in hot team with older thread's state
5449 kmp_uint8 old_state
= team
->t
.t_threads
[old_nproc
- 1]->th
.th_task_state
;
5450 for (f
= old_nproc
; f
< team
->t
.t_nproc
; ++f
)
5451 team
->t
.t_threads
[f
]->th
.th_task_state
= old_state
;
5454 for (f
= 0; f
< team
->t
.t_nproc
; ++f
) {
5455 KMP_DEBUG_ASSERT(team
->t
.t_threads
[f
] &&
5456 team
->t
.t_threads
[f
]->th
.th_team_nproc
==
5461 if (do_place_partition
) {
5462 KMP_CHECK_UPDATE(team
->t
.t_proc_bind
, new_proc_bind
);
5463 #if KMP_AFFINITY_SUPPORTED
5464 __kmp_partition_places(team
);
5467 } // Check changes in number of threads
5469 if (master
->th
.th_teams_microtask
) {
5470 for (f
= 1; f
< new_nproc
; ++f
) {
5471 // propagate teams construct specific info to workers
5472 kmp_info_t
*thr
= team
->t
.t_threads
[f
];
5473 thr
->th
.th_teams_microtask
= master
->th
.th_teams_microtask
;
5474 thr
->th
.th_teams_level
= master
->th
.th_teams_level
;
5475 thr
->th
.th_teams_size
= master
->th
.th_teams_size
;
5478 #if KMP_NESTED_HOT_TEAMS
5480 // Sync barrier state for nested hot teams, not needed for outermost hot
5482 for (f
= 1; f
< new_nproc
; ++f
) {
5483 kmp_info_t
*thr
= team
->t
.t_threads
[f
];
5485 kmp_balign_t
*balign
= thr
->th
.th_bar
;
5486 for (b
= 0; b
< bs_last_barrier
; ++b
) {
5487 balign
[b
].bb
.b_arrived
= team
->t
.t_bar
[b
].b_arrived
;
5488 KMP_DEBUG_ASSERT(balign
[b
].bb
.wait_flag
!= KMP_BARRIER_PARENT_FLAG
);
5490 balign
[b
].bb
.b_worker_arrived
= team
->t
.t_bar
[b
].b_team_arrived
;
5495 #endif // KMP_NESTED_HOT_TEAMS
5497 /* reallocate space for arguments if necessary */
5498 __kmp_alloc_argv_entries(argc
, team
, TRUE
);
5499 KMP_CHECK_UPDATE(team
->t
.t_argc
, argc
);
5500 // The hot team re-uses the previous task team,
5501 // if untouched during the previous release->gather phase.
5503 KF_TRACE(10, (" hot_team = %p\n", team
));
5506 if (__kmp_tasking_mode
!= tskm_immediate_exec
) {
5507 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p "
5508 "task_team[1] = %p after reinit\n",
5509 team
->t
.t_task_team
[0], team
->t
.t_task_team
[1]));
5514 __ompt_team_assign_id(team
, ompt_parallel_data
);
5522 /* next, let's try to take one from the team pool */
5524 for (team
= CCAST(kmp_team_t
*, __kmp_team_pool
); (team
);) {
5525 /* TODO: consider resizing undersized teams instead of reaping them, now
5526 that we have a resizing mechanism */
5527 if (team
->t
.t_max_nproc
>= max_nproc
) {
5528 /* take this team from the team pool */
5529 __kmp_team_pool
= team
->t
.t_next_pool
;
5531 if (max_nproc
> 1 &&
5532 __kmp_barrier_gather_pattern
[bs_forkjoin_barrier
] == bp_dist_bar
) {
5533 if (!team
->t
.b
) { // Allocate barrier structure
5534 team
->t
.b
= distributedBarrier::allocate(__kmp_dflt_team_nth_ub
);
5538 /* setup the team for fresh use */
5539 __kmp_initialize_team(team
, new_nproc
, new_icvs
, NULL
);
5541 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and "
5542 "task_team[1] %p to NULL\n",
5543 &team
->t
.t_task_team
[0], &team
->t
.t_task_team
[1]));
5544 team
->t
.t_task_team
[0] = NULL
;
5545 team
->t
.t_task_team
[1] = NULL
;
5547 /* reallocate space for arguments if necessary */
5548 __kmp_alloc_argv_entries(argc
, team
, TRUE
);
5549 KMP_CHECK_UPDATE(team
->t
.t_argc
, argc
);
5552 20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n",
5553 team
->t
.t_id
, KMP_INIT_BARRIER_STATE
, KMP_INIT_BARRIER_STATE
));
5554 { // Initialize barrier data.
5556 for (b
= 0; b
< bs_last_barrier
; ++b
) {
5557 team
->t
.t_bar
[b
].b_arrived
= KMP_INIT_BARRIER_STATE
;
5559 team
->t
.t_bar
[b
].b_master_arrived
= 0;
5560 team
->t
.t_bar
[b
].b_team_arrived
= 0;
5565 team
->t
.t_proc_bind
= new_proc_bind
;
5567 KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n",
5571 __ompt_team_assign_id(team
, ompt_parallel_data
);
5574 team
->t
.t_nested_nth
= NULL
;
5581 /* reap team if it is too small, then loop back and check the next one */
5582 // not sure if this is wise, but, will be redone during the hot-teams
5584 /* TODO: Use technique to find the right size hot-team, don't reap them */
5585 team
= __kmp_reap_team(team
);
5586 __kmp_team_pool
= team
;
5589 /* nothing available in the pool, no matter, make a new team! */
5591 team
= (kmp_team_t
*)__kmp_allocate(sizeof(kmp_team_t
));
5594 team
->t
.t_max_nproc
= max_nproc
;
5595 if (max_nproc
> 1 &&
5596 __kmp_barrier_gather_pattern
[bs_forkjoin_barrier
] == bp_dist_bar
) {
5597 // Allocate barrier structure
5598 team
->t
.b
= distributedBarrier::allocate(__kmp_dflt_team_nth_ub
);
5601 /* NOTE well, for some reason allocating one big buffer and dividing it up
5602 seems to really hurt performance a lot on the P4, so, let's not use this */
5603 __kmp_allocate_team_arrays(team
, max_nproc
);
5605 KA_TRACE(20, ("__kmp_allocate_team: making a new team\n"));
5606 __kmp_initialize_team(team
, new_nproc
, new_icvs
, NULL
);
5608 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] "
5610 &team
->t
.t_task_team
[0], &team
->t
.t_task_team
[1]));
5611 team
->t
.t_task_team
[0] = NULL
; // to be removed, as __kmp_allocate zeroes
5612 // memory, no need to duplicate
5613 team
->t
.t_task_team
[1] = NULL
; // to be removed, as __kmp_allocate zeroes
5614 // memory, no need to duplicate
5616 if (__kmp_storage_map
) {
5617 __kmp_print_team_storage_map("team", team
, team
->t
.t_id
, new_nproc
);
5620 /* allocate space for arguments */
5621 __kmp_alloc_argv_entries(argc
, team
, FALSE
);
5622 team
->t
.t_argc
= argc
;
5625 ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n",
5626 team
->t
.t_id
, KMP_INIT_BARRIER_STATE
, KMP_INIT_BARRIER_STATE
));
5627 { // Initialize barrier data.
5629 for (b
= 0; b
< bs_last_barrier
; ++b
) {
5630 team
->t
.t_bar
[b
].b_arrived
= KMP_INIT_BARRIER_STATE
;
5632 team
->t
.t_bar
[b
].b_master_arrived
= 0;
5633 team
->t
.t_bar
[b
].b_team_arrived
= 0;
5638 team
->t
.t_proc_bind
= new_proc_bind
;
5641 __ompt_team_assign_id(team
, ompt_parallel_data
);
5642 team
->t
.ompt_serialized_team_info
= NULL
;
5647 team
->t
.t_nested_nth
= NULL
;
5649 KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n",
5655 /* TODO implement hot-teams at all levels */
5656 /* TODO implement lazy thread release on demand (disband request) */
5658 /* free the team. return it to the team pool. release all the threads
5659 * associated with it */
5660 void __kmp_free_team(kmp_root_t
*root
,
5661 kmp_team_t
*team
USE_NESTED_HOT_ARG(kmp_info_t
*master
)) {
5663 KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(),
5667 KMP_DEBUG_ASSERT(root
);
5668 KMP_DEBUG_ASSERT(team
);
5669 KMP_DEBUG_ASSERT(team
->t
.t_nproc
<= team
->t
.t_max_nproc
);
5670 KMP_DEBUG_ASSERT(team
->t
.t_threads
);
5672 int use_hot_team
= team
== root
->r
.r_hot_team
;
5673 #if KMP_NESTED_HOT_TEAMS
5676 level
= team
->t
.t_active_level
- 1;
5677 if (master
->th
.th_teams_microtask
) { // in teams construct?
5678 if (master
->th
.th_teams_size
.nteams
> 1) {
5679 ++level
; // level was not increased in teams construct for
5682 if (team
->t
.t_pkfn
!= (microtask_t
)__kmp_teams_master
&&
5683 master
->th
.th_teams_level
== team
->t
.t_level
) {
5684 ++level
; // level was not increased in teams construct for
5685 // team_of_workers before the parallel
5686 } // team->t.t_level will be increased inside parallel
5689 kmp_hot_team_ptr_t
*hot_teams
= master
->th
.th_hot_teams
;
5691 if (level
< __kmp_hot_teams_max_level
) {
5692 KMP_DEBUG_ASSERT(team
== hot_teams
[level
].hot_team
);
5696 #endif // KMP_NESTED_HOT_TEAMS
5698 /* team is done working */
5699 TCW_SYNC_PTR(team
->t
.t_pkfn
,
5700 NULL
); // Important for Debugging Support Library.
5702 team
->t
.t_copyin_counter
= 0; // init counter for possible reuse
5704 // Do not reset pointer to parent team to NULL for hot teams.
5706 /* if we are non-hot team, release our threads */
5707 if (!use_hot_team
) {
5708 if (__kmp_tasking_mode
!= tskm_immediate_exec
) {
5709 // Wait for threads to reach reapable state
5710 for (f
= 1; f
< team
->t
.t_nproc
; ++f
) {
5711 KMP_DEBUG_ASSERT(team
->t
.t_threads
[f
]);
5712 kmp_info_t
*th
= team
->t
.t_threads
[f
];
5713 volatile kmp_uint32
*state
= &th
->th
.th_reap_state
;
5714 while (*state
!= KMP_SAFE_TO_REAP
) {
5716 // On Windows a thread can be killed at any time, check this
5718 if (!__kmp_is_thread_alive(th
, &ecode
)) {
5719 *state
= KMP_SAFE_TO_REAP
; // reset the flag for dead thread
5723 // first check if thread is sleeping
5724 if (th
->th
.th_sleep_loc
)
5725 __kmp_null_resume_wrapper(th
);
5730 // Delete task teams
5732 for (tt_idx
= 0; tt_idx
< 2; ++tt_idx
) {
5733 kmp_task_team_t
*task_team
= team
->t
.t_task_team
[tt_idx
];
5734 if (task_team
!= NULL
) {
5735 for (f
= 0; f
< team
->t
.t_nproc
; ++f
) { // threads unref task teams
5736 KMP_DEBUG_ASSERT(team
->t
.t_threads
[f
]);
5737 team
->t
.t_threads
[f
]->th
.th_task_team
= NULL
;
5741 ("__kmp_free_team: T#%d deactivating task_team %p on team %d\n",
5742 __kmp_get_gtid(), task_team
, team
->t
.t_id
));
5743 #if KMP_NESTED_HOT_TEAMS
5744 __kmp_free_task_team(master
, task_team
);
5746 team
->t
.t_task_team
[tt_idx
] = NULL
;
5751 // Before clearing parent pointer, check if nested_nth list should be freed
5752 if (team
->t
.t_nested_nth
&& team
->t
.t_nested_nth
!= &__kmp_nested_nth
&&
5753 team
->t
.t_nested_nth
!= team
->t
.t_parent
->t
.t_nested_nth
) {
5754 KMP_INTERNAL_FREE(team
->t
.t_nested_nth
->nth
);
5755 KMP_INTERNAL_FREE(team
->t
.t_nested_nth
);
5757 team
->t
.t_nested_nth
= NULL
;
5759 // Reset pointer to parent team only for non-hot teams.
5760 team
->t
.t_parent
= NULL
;
5761 team
->t
.t_level
= 0;
5762 team
->t
.t_active_level
= 0;
5764 /* free the worker threads */
5765 for (f
= 1; f
< team
->t
.t_nproc
; ++f
) {
5766 KMP_DEBUG_ASSERT(team
->t
.t_threads
[f
]);
5767 if (__kmp_barrier_gather_pattern
[bs_forkjoin_barrier
] == bp_dist_bar
) {
5768 (void)KMP_COMPARE_AND_STORE_ACQ32(
5769 &(team
->t
.t_threads
[f
]->th
.th_used_in_team
), 1, 2);
5771 __kmp_free_thread(team
->t
.t_threads
[f
]);
5774 if (__kmp_barrier_gather_pattern
[bs_forkjoin_barrier
] == bp_dist_bar
) {
5776 // wake up thread at old location
5777 team
->t
.b
->go_release();
5778 if (__kmp_dflt_blocktime
!= KMP_MAX_BLOCKTIME
) {
5779 for (f
= 1; f
< team
->t
.t_nproc
; ++f
) {
5780 if (team
->t
.b
->sleep
[f
].sleep
) {
5781 __kmp_atomic_resume_64(
5782 team
->t
.t_threads
[f
]->th
.th_info
.ds
.ds_gtid
,
5783 (kmp_atomic_flag_64
<> *)NULL
);
5787 // Wait for threads to be removed from team
5788 for (int f
= 1; f
< team
->t
.t_nproc
; ++f
) {
5789 while (team
->t
.t_threads
[f
]->th
.th_used_in_team
.load() != 0)
5795 for (f
= 1; f
< team
->t
.t_nproc
; ++f
) {
5796 team
->t
.t_threads
[f
] = NULL
;
5799 if (team
->t
.t_max_nproc
> 1 &&
5800 __kmp_barrier_gather_pattern
[bs_forkjoin_barrier
] == bp_dist_bar
) {
5801 distributedBarrier::deallocate(team
->t
.b
);
5804 /* put the team back in the team pool */
5805 /* TODO limit size of team pool, call reap_team if pool too large */
5806 team
->t
.t_next_pool
= CCAST(kmp_team_t
*, __kmp_team_pool
);
5807 __kmp_team_pool
= (volatile kmp_team_t
*)team
;
5808 } else { // Check if team was created for primary threads in teams construct
5809 // See if first worker is a CG root
5810 KMP_DEBUG_ASSERT(team
->t
.t_threads
[1] &&
5811 team
->t
.t_threads
[1]->th
.th_cg_roots
);
5812 if (team
->t
.t_threads
[1]->th
.th_cg_roots
->cg_root
== team
->t
.t_threads
[1]) {
5813 // Clean up the CG root nodes on workers so that this team can be re-used
5814 for (f
= 1; f
< team
->t
.t_nproc
; ++f
) {
5815 kmp_info_t
*thr
= team
->t
.t_threads
[f
];
5816 KMP_DEBUG_ASSERT(thr
&& thr
->th
.th_cg_roots
&&
5817 thr
->th
.th_cg_roots
->cg_root
== thr
);
5818 // Pop current CG root off list
5819 kmp_cg_root_t
*tmp
= thr
->th
.th_cg_roots
;
5820 thr
->th
.th_cg_roots
= tmp
->up
;
5821 KA_TRACE(100, ("__kmp_free_team: Thread %p popping node %p and moving"
5822 " up to node %p. cg_nthreads was %d\n",
5823 thr
, tmp
, thr
->th
.th_cg_roots
, tmp
->cg_nthreads
));
5824 int i
= tmp
->cg_nthreads
--;
5826 __kmp_free(tmp
); // free CG if we are the last thread in it
5828 // Restore current task's thread_limit from CG root
5829 if (thr
->th
.th_cg_roots
)
5830 thr
->th
.th_current_task
->td_icvs
.thread_limit
=
5831 thr
->th
.th_cg_roots
->cg_thread_limit
;
5839 /* reap the team. destroy it, reclaim all its resources and free its memory */
5840 kmp_team_t
*__kmp_reap_team(kmp_team_t
*team
) {
5841 kmp_team_t
*next_pool
= team
->t
.t_next_pool
;
5843 KMP_DEBUG_ASSERT(team
);
5844 KMP_DEBUG_ASSERT(team
->t
.t_dispatch
);
5845 KMP_DEBUG_ASSERT(team
->t
.t_disp_buffer
);
5846 KMP_DEBUG_ASSERT(team
->t
.t_threads
);
5847 KMP_DEBUG_ASSERT(team
->t
.t_argv
);
5849 /* TODO clean the threads that are a part of this? */
5852 __kmp_free_team_arrays(team
);
5853 if (team
->t
.t_argv
!= &team
->t
.t_inline_argv
[0])
5854 __kmp_free((void *)team
->t
.t_argv
);
5861 // Free the thread. Don't reap it, just place it on the pool of available
5864 // Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid
5865 // binding for the affinity mechanism to be useful.
5867 // Now, we always keep the free list (__kmp_thread_pool) sorted by gtid.
5868 // However, we want to avoid a potential performance problem by always
5869 // scanning through the list to find the correct point at which to insert
5870 // the thread (potential N**2 behavior). To do this we keep track of the
5871 // last place a thread struct was inserted (__kmp_thread_pool_insert_pt).
5872 // With single-level parallelism, threads will always be added to the tail
5873 // of the list, kept track of by __kmp_thread_pool_insert_pt. With nested
5874 // parallelism, all bets are off and we may need to scan through the entire
5877 // This change also has a potentially large performance benefit, for some
5878 // applications. Previously, as threads were freed from the hot team, they
5879 // would be placed back on the free list in inverse order. If the hot team
5880 // grew back to it's original size, then the freed thread would be placed
5881 // back on the hot team in reverse order. This could cause bad cache
5882 // locality problems on programs where the size of the hot team regularly
5885 // Now, for single-level parallelism, the OMP tid is always == gtid.
5886 void __kmp_free_thread(kmp_info_t
*this_th
) {
5890 KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n",
5891 __kmp_get_gtid(), this_th
->th
.th_info
.ds
.ds_gtid
));
5893 KMP_DEBUG_ASSERT(this_th
);
5895 // When moving thread to pool, switch thread to wait on own b_go flag, and
5896 // uninitialized (NULL team).
5898 kmp_balign_t
*balign
= this_th
->th
.th_bar
;
5899 for (b
= 0; b
< bs_last_barrier
; ++b
) {
5900 if (balign
[b
].bb
.wait_flag
== KMP_BARRIER_PARENT_FLAG
)
5901 balign
[b
].bb
.wait_flag
= KMP_BARRIER_SWITCH_TO_OWN_FLAG
;
5902 balign
[b
].bb
.team
= NULL
;
5903 balign
[b
].bb
.leaf_kids
= 0;
5905 this_th
->th
.th_task_state
= 0;
5906 this_th
->th
.th_reap_state
= KMP_SAFE_TO_REAP
;
5908 /* put thread back on the free pool */
5909 TCW_PTR(this_th
->th
.th_team
, NULL
);
5910 TCW_PTR(this_th
->th
.th_root
, NULL
);
5911 TCW_PTR(this_th
->th
.th_dispatch
, NULL
); /* NOT NEEDED */
5913 while (this_th
->th
.th_cg_roots
) {
5914 this_th
->th
.th_cg_roots
->cg_nthreads
--;
5915 KA_TRACE(100, ("__kmp_free_thread: Thread %p decrement cg_nthreads on node"
5916 " %p of thread %p to %d\n",
5917 this_th
, this_th
->th
.th_cg_roots
,
5918 this_th
->th
.th_cg_roots
->cg_root
,
5919 this_th
->th
.th_cg_roots
->cg_nthreads
));
5920 kmp_cg_root_t
*tmp
= this_th
->th
.th_cg_roots
;
5921 if (tmp
->cg_root
== this_th
) { // Thread is a cg_root
5922 KMP_DEBUG_ASSERT(tmp
->cg_nthreads
== 0);
5924 5, ("__kmp_free_thread: Thread %p freeing node %p\n", this_th
, tmp
));
5925 this_th
->th
.th_cg_roots
= tmp
->up
;
5927 } else { // Worker thread
5928 if (tmp
->cg_nthreads
== 0) { // last thread leaves contention group
5931 this_th
->th
.th_cg_roots
= NULL
;
5936 /* If the implicit task assigned to this thread can be used by other threads
5937 * -> multiple threads can share the data and try to free the task at
5938 * __kmp_reap_thread at exit. This duplicate use of the task data can happen
5939 * with higher probability when hot team is disabled but can occurs even when
5940 * the hot team is enabled */
5941 __kmp_free_implicit_task(this_th
);
5942 this_th
->th
.th_current_task
= NULL
;
5944 // If the __kmp_thread_pool_insert_pt is already past the new insert
5945 // point, then we need to re-scan the entire list.
5946 gtid
= this_th
->th
.th_info
.ds
.ds_gtid
;
5947 if (__kmp_thread_pool_insert_pt
!= NULL
) {
5948 KMP_DEBUG_ASSERT(__kmp_thread_pool
!= NULL
);
5949 if (__kmp_thread_pool_insert_pt
->th
.th_info
.ds
.ds_gtid
> gtid
) {
5950 __kmp_thread_pool_insert_pt
= NULL
;
5954 // Scan down the list to find the place to insert the thread.
5955 // scan is the address of a link in the list, possibly the address of
5956 // __kmp_thread_pool itself.
5958 // In the absence of nested parallelism, the for loop will have 0 iterations.
5959 if (__kmp_thread_pool_insert_pt
!= NULL
) {
5960 scan
= &(__kmp_thread_pool_insert_pt
->th
.th_next_pool
);
5962 scan
= CCAST(kmp_info_t
**, &__kmp_thread_pool
);
5964 for (; (*scan
!= NULL
) && ((*scan
)->th
.th_info
.ds
.ds_gtid
< gtid
);
5965 scan
= &((*scan
)->th
.th_next_pool
))
5968 // Insert the new element on the list, and set __kmp_thread_pool_insert_pt
5970 TCW_PTR(this_th
->th
.th_next_pool
, *scan
);
5971 __kmp_thread_pool_insert_pt
= *scan
= this_th
;
5972 KMP_DEBUG_ASSERT((this_th
->th
.th_next_pool
== NULL
) ||
5973 (this_th
->th
.th_info
.ds
.ds_gtid
<
5974 this_th
->th
.th_next_pool
->th
.th_info
.ds
.ds_gtid
));
5975 TCW_4(this_th
->th
.th_in_pool
, TRUE
);
5976 __kmp_suspend_initialize_thread(this_th
);
5977 __kmp_lock_suspend_mx(this_th
);
5978 if (this_th
->th
.th_active
== TRUE
) {
5979 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth
);
5980 this_th
->th
.th_active_in_pool
= TRUE
;
5984 KMP_DEBUG_ASSERT(this_th
->th
.th_active_in_pool
== FALSE
);
5987 __kmp_unlock_suspend_mx(this_th
);
5989 TCW_4(__kmp_nth
, __kmp_nth
- 1);
5991 #ifdef KMP_ADJUST_BLOCKTIME
5992 /* Adjust blocktime back to user setting or default if necessary */
5993 /* Middle initialization might never have occurred */
5994 if (!__kmp_env_blocktime
&& (__kmp_avail_proc
> 0)) {
5995 KMP_DEBUG_ASSERT(__kmp_avail_proc
> 0);
5996 if (__kmp_nth
<= __kmp_avail_proc
) {
5997 __kmp_zero_bt
= FALSE
;
6000 #endif /* KMP_ADJUST_BLOCKTIME */
6005 /* ------------------------------------------------------------------------ */
6007 void *__kmp_launch_thread(kmp_info_t
*this_thr
) {
6008 #if OMP_PROFILING_SUPPORT
6009 ProfileTraceFile
= getenv("LIBOMPTARGET_PROFILE");
6010 // TODO: add a configuration option for time granularity
6011 if (ProfileTraceFile
)
6012 llvm::timeTraceProfilerInitialize(500 /* us */, "libomptarget");
6015 int gtid
= this_thr
->th
.th_info
.ds
.ds_gtid
;
6016 /* void *stack_data;*/
6017 kmp_team_t
**volatile pteam
;
6020 KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid
));
6022 if (__kmp_env_consistency_check
) {
6023 this_thr
->th
.th_cons
= __kmp_allocate_cons_stack(gtid
); // ATT: Memory leak?
6027 if (ompd_state
& OMPD_ENABLE_BP
)
6028 ompd_bp_thread_begin();
6032 ompt_data_t
*thread_data
= nullptr;
6033 if (ompt_enabled
.enabled
) {
6034 thread_data
= &(this_thr
->th
.ompt_thread_info
.thread_data
);
6035 *thread_data
= ompt_data_none
;
6037 this_thr
->th
.ompt_thread_info
.state
= ompt_state_overhead
;
6038 this_thr
->th
.ompt_thread_info
.wait_id
= 0;
6039 this_thr
->th
.ompt_thread_info
.idle_frame
= OMPT_GET_FRAME_ADDRESS(0);
6040 this_thr
->th
.ompt_thread_info
.parallel_flags
= 0;
6041 if (ompt_enabled
.ompt_callback_thread_begin
) {
6042 ompt_callbacks
.ompt_callback(ompt_callback_thread_begin
)(
6043 ompt_thread_worker
, thread_data
);
6045 this_thr
->th
.ompt_thread_info
.state
= ompt_state_idle
;
6049 /* This is the place where threads wait for work */
6050 while (!TCR_4(__kmp_global
.g
.g_done
)) {
6051 KMP_DEBUG_ASSERT(this_thr
== __kmp_threads
[gtid
]);
6054 /* wait for work to do */
6055 KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid
));
6057 /* No tid yet since not part of a team */
6058 __kmp_fork_barrier(gtid
, KMP_GTID_DNE
);
6061 if (ompt_enabled
.enabled
) {
6062 this_thr
->th
.ompt_thread_info
.state
= ompt_state_overhead
;
6066 pteam
= &this_thr
->th
.th_team
;
6068 /* have we been allocated? */
6069 if (TCR_SYNC_PTR(*pteam
) && !TCR_4(__kmp_global
.g
.g_done
)) {
6070 /* we were just woken up, so run our new task */
6071 if (TCR_SYNC_PTR((*pteam
)->t
.t_pkfn
) != NULL
) {
6074 ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n",
6075 gtid
, (*pteam
)->t
.t_id
, __kmp_tid_from_gtid(gtid
),
6076 (*pteam
)->t
.t_pkfn
));
6078 updateHWFPControl(*pteam
);
6081 if (ompt_enabled
.enabled
) {
6082 this_thr
->th
.ompt_thread_info
.state
= ompt_state_work_parallel
;
6086 rc
= (*pteam
)->t
.t_invoke(gtid
);
6090 KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n",
6091 gtid
, (*pteam
)->t
.t_id
, __kmp_tid_from_gtid(gtid
),
6092 (*pteam
)->t
.t_pkfn
));
6095 if (ompt_enabled
.enabled
) {
6096 /* no frame set while outside task */
6097 __ompt_get_task_info_object(0)->frame
.exit_frame
= ompt_data_none
;
6099 this_thr
->th
.ompt_thread_info
.state
= ompt_state_overhead
;
6102 /* join barrier after parallel region */
6103 __kmp_join_barrier(gtid
);
6108 if (ompd_state
& OMPD_ENABLE_BP
)
6109 ompd_bp_thread_end();
6113 if (ompt_enabled
.ompt_callback_thread_end
) {
6114 ompt_callbacks
.ompt_callback(ompt_callback_thread_end
)(thread_data
);
6118 this_thr
->th
.th_task_team
= NULL
;
6119 /* run the destructors for the threadprivate data for this thread */
6120 __kmp_common_destroy_gtid(gtid
);
6122 KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid
));
6125 #if OMP_PROFILING_SUPPORT
6126 llvm::timeTraceProfilerFinishThread();
6131 /* ------------------------------------------------------------------------ */
6133 void __kmp_internal_end_dest(void *specific_gtid
) {
6134 // Make sure no significant bits are lost
6136 __kmp_type_convert((kmp_intptr_t
)specific_gtid
- 1, >id
);
6138 KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid
));
6139 /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage
6140 * this is because 0 is reserved for the nothing-stored case */
6142 __kmp_internal_end_thread(gtid
);
6145 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB
6147 __attribute__((destructor
)) void __kmp_internal_end_dtor(void) {
6148 __kmp_internal_end_atexit();
6153 /* [Windows] josh: when the atexit handler is called, there may still be more
6154 than one thread alive */
6155 void __kmp_internal_end_atexit(void) {
6156 KA_TRACE(30, ("__kmp_internal_end_atexit\n"));
6158 josh: ideally, we want to completely shutdown the library in this atexit
6159 handler, but stat code that depends on thread specific data for gtid fails
6160 because that data becomes unavailable at some point during the shutdown, so
6161 we call __kmp_internal_end_thread instead. We should eventually remove the
6162 dependency on __kmp_get_specific_gtid in the stat code and use
6163 __kmp_internal_end_library to cleanly shutdown the library.
6165 // TODO: Can some of this comment about GVS be removed?
6166 I suspect that the offending stat code is executed when the calling thread
6167 tries to clean up a dead root thread's data structures, resulting in GVS
6168 code trying to close the GVS structures for that thread, but since the stat
6169 code uses __kmp_get_specific_gtid to get the gtid with the assumption that
6170 the calling thread is cleaning up itself instead of another thread, it get
6171 confused. This happens because allowing a thread to unregister and cleanup
6172 another thread is a recent modification for addressing an issue.
6173 Based on the current design (20050722), a thread may end up
6174 trying to unregister another thread only if thread death does not trigger
6175 the calling of __kmp_internal_end_thread. For Linux* OS, there is the
6176 thread specific data destructor function to detect thread death. For
6177 Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there
6178 is nothing. Thus, the workaround is applicable only for Windows static
6180 __kmp_internal_end_library(-1);
6182 __kmp_close_console();
6186 static void __kmp_reap_thread(kmp_info_t
*thread
, int is_root
) {
6187 // It is assumed __kmp_forkjoin_lock is acquired.
6191 KMP_DEBUG_ASSERT(thread
!= NULL
);
6193 gtid
= thread
->th
.th_info
.ds
.ds_gtid
;
6196 if (__kmp_dflt_blocktime
!= KMP_MAX_BLOCKTIME
) {
6197 /* Assume the threads are at the fork barrier here */
6199 20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n",
6201 if (__kmp_barrier_gather_pattern
[bs_forkjoin_barrier
] == bp_dist_bar
) {
6203 !KMP_COMPARE_AND_STORE_ACQ32(&(thread
->th
.th_used_in_team
), 0, 3))
6205 __kmp_resume_32(gtid
, (kmp_flag_32
<false, false> *)NULL
);
6207 /* Need release fence here to prevent seg faults for tree forkjoin
6209 kmp_flag_64
<> flag(&thread
->th
.th_bar
[bs_forkjoin_barrier
].bb
.b_go
,
6211 __kmp_release_64(&flag
);
6215 // Terminate OS thread.
6216 __kmp_reap_worker(thread
);
6218 // The thread was killed asynchronously. If it was actively
6219 // spinning in the thread pool, decrement the global count.
6221 // There is a small timing hole here - if the worker thread was just waking
6222 // up after sleeping in the pool, had reset it's th_active_in_pool flag but
6223 // not decremented the global counter __kmp_thread_pool_active_nth yet, then
6224 // the global counter might not get updated.
6226 // Currently, this can only happen as the library is unloaded,
6227 // so there are no harmful side effects.
6228 if (thread
->th
.th_active_in_pool
) {
6229 thread
->th
.th_active_in_pool
= FALSE
;
6230 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth
);
6231 KMP_DEBUG_ASSERT(__kmp_thread_pool_active_nth
>= 0);
6235 __kmp_free_implicit_task(thread
);
6237 // Free the fast memory for tasking
6239 __kmp_free_fast_memory(thread
);
6240 #endif /* USE_FAST_MEMORY */
6242 __kmp_suspend_uninitialize_thread(thread
);
6244 KMP_DEBUG_ASSERT(__kmp_threads
[gtid
] == thread
);
6245 TCW_SYNC_PTR(__kmp_threads
[gtid
], NULL
);
6248 // __kmp_nth was decremented when thread is added to the pool.
6250 #ifdef KMP_ADJUST_BLOCKTIME
6251 /* Adjust blocktime back to user setting or default if necessary */
6252 /* Middle initialization might never have occurred */
6253 if (!__kmp_env_blocktime
&& (__kmp_avail_proc
> 0)) {
6254 KMP_DEBUG_ASSERT(__kmp_avail_proc
> 0);
6255 if (__kmp_nth
<= __kmp_avail_proc
) {
6256 __kmp_zero_bt
= FALSE
;
6259 #endif /* KMP_ADJUST_BLOCKTIME */
6261 /* free the memory being used */
6262 if (__kmp_env_consistency_check
) {
6263 if (thread
->th
.th_cons
) {
6264 __kmp_free_cons_stack(thread
->th
.th_cons
);
6265 thread
->th
.th_cons
= NULL
;
6269 if (thread
->th
.th_pri_common
!= NULL
) {
6270 __kmp_free(thread
->th
.th_pri_common
);
6271 thread
->th
.th_pri_common
= NULL
;
6275 if (thread
->th
.th_local
.bget_data
!= NULL
) {
6276 __kmp_finalize_bget(thread
);
6280 #if KMP_AFFINITY_SUPPORTED
6281 if (thread
->th
.th_affin_mask
!= NULL
) {
6282 KMP_CPU_FREE(thread
->th
.th_affin_mask
);
6283 thread
->th
.th_affin_mask
= NULL
;
6285 #endif /* KMP_AFFINITY_SUPPORTED */
6287 #if KMP_USE_HIER_SCHED
6288 if (thread
->th
.th_hier_bar_data
!= NULL
) {
6289 __kmp_free(thread
->th
.th_hier_bar_data
);
6290 thread
->th
.th_hier_bar_data
= NULL
;
6294 __kmp_reap_team(thread
->th
.th_serial_team
);
6295 thread
->th
.th_serial_team
= NULL
;
6300 } // __kmp_reap_thread
6302 static void __kmp_itthash_clean(kmp_info_t
*th
) {
6304 if (__kmp_itt_region_domains
.count
> 0) {
6305 for (int i
= 0; i
< KMP_MAX_FRAME_DOMAINS
; ++i
) {
6306 kmp_itthash_entry_t
*bucket
= __kmp_itt_region_domains
.buckets
[i
];
6308 kmp_itthash_entry_t
*next
= bucket
->next_in_bucket
;
6309 __kmp_thread_free(th
, bucket
);
6314 if (__kmp_itt_barrier_domains
.count
> 0) {
6315 for (int i
= 0; i
< KMP_MAX_FRAME_DOMAINS
; ++i
) {
6316 kmp_itthash_entry_t
*bucket
= __kmp_itt_barrier_domains
.buckets
[i
];
6318 kmp_itthash_entry_t
*next
= bucket
->next_in_bucket
;
6319 __kmp_thread_free(th
, bucket
);
6327 static void __kmp_internal_end(void) {
6330 /* First, unregister the library */
6331 __kmp_unregister_library();
6334 /* In Win static library, we can't tell when a root actually dies, so we
6335 reclaim the data structures for any root threads that have died but not
6336 unregistered themselves, in order to shut down cleanly.
6337 In Win dynamic library we also can't tell when a thread dies. */
6338 __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of
6342 for (i
= 0; i
< __kmp_threads_capacity
; i
++)
6344 if (__kmp_root
[i
]->r
.r_active
)
6346 KMP_MB(); /* Flush all pending memory write invalidates. */
6347 TCW_SYNC_4(__kmp_global
.g
.g_done
, TRUE
);
6349 if (i
< __kmp_threads_capacity
) {
6351 // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor??
6352 KMP_MB(); /* Flush all pending memory write invalidates. */
6354 // Need to check that monitor was initialized before reaping it. If we are
6355 // called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then
6356 // __kmp_monitor will appear to contain valid data, but it is only valid in
6357 // the parent process, not the child.
6358 // New behavior (201008): instead of keying off of the flag
6359 // __kmp_init_parallel, the monitor thread creation is keyed off
6360 // of the new flag __kmp_init_monitor.
6361 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock
);
6362 if (TCR_4(__kmp_init_monitor
)) {
6363 __kmp_reap_monitor(&__kmp_monitor
);
6364 TCW_4(__kmp_init_monitor
, 0);
6366 __kmp_release_bootstrap_lock(&__kmp_monitor_lock
);
6367 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n"));
6368 #endif // KMP_USE_MONITOR
6370 /* TODO move this to cleanup code */
6372 /* make sure that everything has properly ended */
6373 for (i
= 0; i
< __kmp_threads_capacity
; i
++) {
6374 if (__kmp_root
[i
]) {
6375 // KMP_ASSERT( ! KMP_UBER_GTID( i ) ); // AC:
6376 // there can be uber threads alive here
6377 KMP_ASSERT(!__kmp_root
[i
]->r
.r_active
); // TODO: can they be active?
6384 // Reap the worker threads.
6385 // This is valid for now, but be careful if threads are reaped sooner.
6386 while (__kmp_thread_pool
!= NULL
) { // Loop thru all the thread in the pool.
6387 // Get the next thread from the pool.
6388 kmp_info_t
*thread
= CCAST(kmp_info_t
*, __kmp_thread_pool
);
6389 __kmp_thread_pool
= thread
->th
.th_next_pool
;
6391 KMP_DEBUG_ASSERT(thread
->th
.th_reap_state
== KMP_SAFE_TO_REAP
);
6392 thread
->th
.th_next_pool
= NULL
;
6393 thread
->th
.th_in_pool
= FALSE
;
6394 __kmp_reap_thread(thread
, 0);
6396 __kmp_thread_pool_insert_pt
= NULL
;
6399 while (__kmp_team_pool
!= NULL
) { // Loop thru all the teams in the pool.
6400 // Get the next team from the pool.
6401 kmp_team_t
*team
= CCAST(kmp_team_t
*, __kmp_team_pool
);
6402 __kmp_team_pool
= team
->t
.t_next_pool
;
6404 team
->t
.t_next_pool
= NULL
;
6405 __kmp_reap_team(team
);
6408 __kmp_reap_task_teams();
6411 // Threads that are not reaped should not access any resources since they
6412 // are going to be deallocated soon, so the shutdown sequence should wait
6413 // until all threads either exit the final spin-waiting loop or begin
6414 // sleeping after the given blocktime.
6415 for (i
= 0; i
< __kmp_threads_capacity
; i
++) {
6416 kmp_info_t
*thr
= __kmp_threads
[i
];
6417 while (thr
&& KMP_ATOMIC_LD_ACQ(&thr
->th
.th_blocking
))
6422 for (i
= 0; i
< __kmp_threads_capacity
; ++i
) {
6423 // TBD: Add some checking...
6424 // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL );
6427 /* Make sure all threadprivate destructors get run by joining with all
6428 worker threads before resetting this flag */
6429 TCW_SYNC_4(__kmp_init_common
, FALSE
);
6431 KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n"));
6435 // See note above: One of the possible fixes for CQ138434 / CQ140126
6437 // FIXME: push both code fragments down and CSE them?
6438 // push them into __kmp_cleanup() ?
6439 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock
);
6440 if (TCR_4(__kmp_init_monitor
)) {
6441 __kmp_reap_monitor(&__kmp_monitor
);
6442 TCW_4(__kmp_init_monitor
, 0);
6444 __kmp_release_bootstrap_lock(&__kmp_monitor_lock
);
6445 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n"));
6447 } /* else !__kmp_global.t_active */
6448 TCW_4(__kmp_init_gtid
, FALSE
);
6449 KMP_MB(); /* Flush all pending memory write invalidates. */
6457 void __kmp_internal_end_library(int gtid_req
) {
6458 /* if we have already cleaned up, don't try again, it wouldn't be pretty */
6459 /* this shouldn't be a race condition because __kmp_internal_end() is the
6460 only place to clear __kmp_serial_init */
6461 /* we'll check this later too, after we get the lock */
6462 // 2009-09-06: We do not set g_abort without setting g_done. This check looks
6463 // redundant, because the next check will work in any case.
6464 if (__kmp_global
.g
.g_abort
) {
6465 KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n"));
6469 if (TCR_4(__kmp_global
.g
.g_done
) || !__kmp_init_serial
) {
6470 KA_TRACE(10, ("__kmp_internal_end_library: already finished\n"));
6474 // If hidden helper team has been initialized, we need to deinit it
6475 if (TCR_4(__kmp_init_hidden_helper
) &&
6476 !TCR_4(__kmp_hidden_helper_team_done
)) {
6477 TCW_SYNC_4(__kmp_hidden_helper_team_done
, TRUE
);
6478 // First release the main thread to let it continue its work
6479 __kmp_hidden_helper_main_thread_release();
6480 // Wait until the hidden helper team has been destroyed
6481 __kmp_hidden_helper_threads_deinitz_wait();
6484 KMP_MB(); /* Flush all pending memory write invalidates. */
6485 /* find out who we are and what we should do */
6487 int gtid
= (gtid_req
>= 0) ? gtid_req
: __kmp_gtid_get_specific();
6489 10, ("__kmp_internal_end_library: enter T#%d (%d)\n", gtid
, gtid_req
));
6490 if (gtid
== KMP_GTID_SHUTDOWN
) {
6491 KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system "
6492 "already shutdown\n"));
6494 } else if (gtid
== KMP_GTID_MONITOR
) {
6495 KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not "
6496 "registered, or system shutdown\n"));
6498 } else if (gtid
== KMP_GTID_DNE
) {
6499 KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system "
6501 /* we don't know who we are, but we may still shutdown the library */
6502 } else if (KMP_UBER_GTID(gtid
)) {
6503 /* unregister ourselves as an uber thread. gtid is no longer valid */
6504 if (__kmp_root
[gtid
]->r
.r_active
) {
6505 __kmp_global
.g
.g_abort
= -1;
6506 TCW_SYNC_4(__kmp_global
.g
.g_done
, TRUE
);
6507 __kmp_unregister_library();
6509 ("__kmp_internal_end_library: root still active, abort T#%d\n",
6513 __kmp_itthash_clean(__kmp_threads
[gtid
]);
6516 ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid
));
6517 __kmp_unregister_root_current_thread(gtid
);
6520 /* worker threads may call this function through the atexit handler, if they
6522 /* For now, skip the usual subsequent processing and just dump the debug buffer.
6523 TODO: do a thorough shutdown instead */
6524 #ifdef DUMP_DEBUG_ON_EXIT
6525 if (__kmp_debug_buf
)
6526 __kmp_dump_debug_buffer();
6528 // added unregister library call here when we switch to shm linux
6529 // if we don't, it will leave lots of files in /dev/shm
6530 // cleanup shared memory file before exiting.
6531 __kmp_unregister_library();
6535 /* synchronize the termination process */
6536 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock
);
6538 /* have we already finished */
6539 if (__kmp_global
.g
.g_abort
) {
6540 KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n"));
6542 __kmp_release_bootstrap_lock(&__kmp_initz_lock
);
6545 if (TCR_4(__kmp_global
.g
.g_done
) || !__kmp_init_serial
) {
6546 __kmp_release_bootstrap_lock(&__kmp_initz_lock
);
6550 /* We need this lock to enforce mutex between this reading of
6551 __kmp_threads_capacity and the writing by __kmp_register_root.
6552 Alternatively, we can use a counter of roots that is atomically updated by
6553 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and
6554 __kmp_internal_end_*. */
6555 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock
);
6557 /* now we can safely conduct the actual termination */
6558 __kmp_internal_end();
6560 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock
);
6561 __kmp_release_bootstrap_lock(&__kmp_initz_lock
);
6563 KA_TRACE(10, ("__kmp_internal_end_library: exit\n"));
6565 #ifdef DUMP_DEBUG_ON_EXIT
6566 if (__kmp_debug_buf
)
6567 __kmp_dump_debug_buffer();
6571 __kmp_close_console();
6574 __kmp_fini_allocator();
6576 } // __kmp_internal_end_library
6578 void __kmp_internal_end_thread(int gtid_req
) {
6581 /* if we have already cleaned up, don't try again, it wouldn't be pretty */
6582 /* this shouldn't be a race condition because __kmp_internal_end() is the
6583 * only place to clear __kmp_serial_init */
6584 /* we'll check this later too, after we get the lock */
6585 // 2009-09-06: We do not set g_abort without setting g_done. This check looks
6586 // redundant, because the next check will work in any case.
6587 if (__kmp_global
.g
.g_abort
) {
6588 KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n"));
6592 if (TCR_4(__kmp_global
.g
.g_done
) || !__kmp_init_serial
) {
6593 KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n"));
6597 // If hidden helper team has been initialized, we need to deinit it
6598 if (TCR_4(__kmp_init_hidden_helper
) &&
6599 !TCR_4(__kmp_hidden_helper_team_done
)) {
6600 TCW_SYNC_4(__kmp_hidden_helper_team_done
, TRUE
);
6601 // First release the main thread to let it continue its work
6602 __kmp_hidden_helper_main_thread_release();
6603 // Wait until the hidden helper team has been destroyed
6604 __kmp_hidden_helper_threads_deinitz_wait();
6607 KMP_MB(); /* Flush all pending memory write invalidates. */
6609 /* find out who we are and what we should do */
6611 int gtid
= (gtid_req
>= 0) ? gtid_req
: __kmp_gtid_get_specific();
6613 ("__kmp_internal_end_thread: enter T#%d (%d)\n", gtid
, gtid_req
));
6614 if (gtid
== KMP_GTID_SHUTDOWN
) {
6615 KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system "
6616 "already shutdown\n"));
6618 } else if (gtid
== KMP_GTID_MONITOR
) {
6619 KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not "
6620 "registered, or system shutdown\n"));
6622 } else if (gtid
== KMP_GTID_DNE
) {
6623 KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system "
6626 /* we don't know who we are */
6627 } else if (KMP_UBER_GTID(gtid
)) {
6628 /* unregister ourselves as an uber thread. gtid is no longer valid */
6629 if (__kmp_root
[gtid
]->r
.r_active
) {
6630 __kmp_global
.g
.g_abort
= -1;
6631 TCW_SYNC_4(__kmp_global
.g
.g_done
, TRUE
);
6633 ("__kmp_internal_end_thread: root still active, abort T#%d\n",
6637 KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n",
6639 __kmp_unregister_root_current_thread(gtid
);
6642 /* just a worker thread, let's leave */
6643 KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid
));
6646 __kmp_threads
[gtid
]->th
.th_task_team
= NULL
;
6650 ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n",
6656 if (__kmp_pause_status
!= kmp_hard_paused
)
6657 // AC: lets not shutdown the dynamic library at the exit of uber thread,
6658 // because we will better shutdown later in the library destructor.
6660 KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req
));
6664 /* synchronize the termination process */
6665 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock
);
6667 /* have we already finished */
6668 if (__kmp_global
.g
.g_abort
) {
6669 KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n"));
6671 __kmp_release_bootstrap_lock(&__kmp_initz_lock
);
6674 if (TCR_4(__kmp_global
.g
.g_done
) || !__kmp_init_serial
) {
6675 __kmp_release_bootstrap_lock(&__kmp_initz_lock
);
6679 /* We need this lock to enforce mutex between this reading of
6680 __kmp_threads_capacity and the writing by __kmp_register_root.
6681 Alternatively, we can use a counter of roots that is atomically updated by
6682 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and
6683 __kmp_internal_end_*. */
6685 /* should we finish the run-time? are all siblings done? */
6686 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock
);
6688 for (i
= 0; i
< __kmp_threads_capacity
; ++i
) {
6689 if (KMP_UBER_GTID(i
)) {
6692 ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i
));
6693 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock
);
6694 __kmp_release_bootstrap_lock(&__kmp_initz_lock
);
6699 /* now we can safely conduct the actual termination */
6701 __kmp_internal_end();
6703 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock
);
6704 __kmp_release_bootstrap_lock(&__kmp_initz_lock
);
6706 KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req
));
6708 #ifdef DUMP_DEBUG_ON_EXIT
6709 if (__kmp_debug_buf
)
6710 __kmp_dump_debug_buffer();
6712 } // __kmp_internal_end_thread
6714 // -----------------------------------------------------------------------------
6715 // Library registration stuff.
6717 static long __kmp_registration_flag
= 0;
6718 // Random value used to indicate library initialization.
6719 static char *__kmp_registration_str
= NULL
;
6720 // Value to be saved in env var __KMP_REGISTERED_LIB_<pid>.
6722 static inline char *__kmp_reg_status_name() {
6723 /* On RHEL 3u5 if linked statically, getpid() returns different values in
6724 each thread. If registration and unregistration go in different threads
6725 (omp_misc_other_root_exit.cpp test case), the name of registered_lib_env
6726 env var can not be found, because the name will contain different pid. */
6727 // macOS* complains about name being too long with additional getuid()
6728 #if KMP_OS_UNIX && !KMP_OS_DARWIN && KMP_DYNAMIC_LIB
6729 return __kmp_str_format("__KMP_REGISTERED_LIB_%d_%d", (int)getpid(),
6732 return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid());
6734 } // __kmp_reg_status_get
6736 #if defined(KMP_USE_SHM)
6737 bool __kmp_shm_available
= false;
6738 bool __kmp_tmp_available
= false;
6739 // If /dev/shm is not accessible, we will create a temporary file under /tmp.
6740 char *temp_reg_status_file_name
= nullptr;
6743 void __kmp_register_library_startup(void) {
6745 char *name
= __kmp_reg_status_name(); // Name of the environment variable.
6751 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
6752 __kmp_initialize_system_tick();
6754 __kmp_read_system_time(&time
.dtime
);
6755 __kmp_registration_flag
= 0xCAFE0000L
| (time
.ltime
& 0x0000FFFFL
);
6756 __kmp_registration_str
=
6757 __kmp_str_format("%p-%lx-%s", &__kmp_registration_flag
,
6758 __kmp_registration_flag
, KMP_LIBRARY_FILE
);
6760 KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name
,
6761 __kmp_registration_str
));
6765 char *value
= NULL
; // Actual value of the environment variable.
6767 #if defined(KMP_USE_SHM)
6768 char *shm_name
= nullptr;
6769 char *data1
= nullptr;
6770 __kmp_shm_available
= __kmp_detect_shm();
6771 if (__kmp_shm_available
) {
6773 shm_name
= __kmp_str_format("/%s", name
);
6774 int shm_preexist
= 0;
6775 fd1
= shm_open(shm_name
, O_CREAT
| O_EXCL
| O_RDWR
, 0600);
6776 if ((fd1
== -1) && (errno
== EEXIST
)) {
6777 // file didn't open because it already exists.
6778 // try opening existing file
6779 fd1
= shm_open(shm_name
, O_RDWR
, 0600);
6780 if (fd1
== -1) { // file didn't open
6781 KMP_WARNING(FunctionError
, "Can't open SHM");
6782 __kmp_shm_available
= false;
6783 } else { // able to open existing file
6787 if (__kmp_shm_available
&& shm_preexist
== 0) { // SHM created, set size
6788 if (ftruncate(fd1
, SHM_SIZE
) == -1) { // error occured setting size;
6789 KMP_WARNING(FunctionError
, "Can't set size of SHM");
6790 __kmp_shm_available
= false;
6793 if (__kmp_shm_available
) { // SHM exists, now map it
6794 data1
= (char *)mmap(0, SHM_SIZE
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
6796 if (data1
== MAP_FAILED
) { // failed to map shared memory
6797 KMP_WARNING(FunctionError
, "Can't map SHM");
6798 __kmp_shm_available
= false;
6801 if (__kmp_shm_available
) { // SHM mapped
6802 if (shm_preexist
== 0) { // set data to SHM, set value
6803 KMP_STRCPY_S(data1
, SHM_SIZE
, __kmp_registration_str
);
6805 // Read value from either what we just wrote or existing file.
6806 value
= __kmp_str_format("%s", data1
); // read value from SHM
6807 munmap(data1
, SHM_SIZE
);
6812 if (!__kmp_shm_available
)
6813 __kmp_tmp_available
= __kmp_detect_tmp();
6814 if (!__kmp_shm_available
&& __kmp_tmp_available
) {
6815 // SHM failed to work due to an error other than that the file already
6816 // exists. Try to create a temp file under /tmp.
6817 // If /tmp isn't accessible, fall back to using environment variable.
6818 // TODO: /tmp might not always be the temporary directory. For now we will
6819 // not consider TMPDIR.
6821 temp_reg_status_file_name
= __kmp_str_format("/tmp/%s", name
);
6822 int tmp_preexist
= 0;
6823 fd1
= open(temp_reg_status_file_name
, O_CREAT
| O_EXCL
| O_RDWR
, 0600);
6824 if ((fd1
== -1) && (errno
== EEXIST
)) {
6825 // file didn't open because it already exists.
6826 // try opening existing file
6827 fd1
= open(temp_reg_status_file_name
, O_RDWR
, 0600);
6828 if (fd1
== -1) { // file didn't open if (fd1 == -1) {
6829 KMP_WARNING(FunctionError
, "Can't open TEMP");
6830 __kmp_tmp_available
= false;
6835 if (__kmp_tmp_available
&& tmp_preexist
== 0) {
6836 // we created /tmp file now set size
6837 if (ftruncate(fd1
, SHM_SIZE
) == -1) { // error occured setting size;
6838 KMP_WARNING(FunctionError
, "Can't set size of /tmp file");
6839 __kmp_tmp_available
= false;
6842 if (__kmp_tmp_available
) {
6843 data1
= (char *)mmap(0, SHM_SIZE
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
6845 if (data1
== MAP_FAILED
) { // failed to map /tmp
6846 KMP_WARNING(FunctionError
, "Can't map /tmp");
6847 __kmp_tmp_available
= false;
6850 if (__kmp_tmp_available
) {
6851 if (tmp_preexist
== 0) { // set data to TMP, set value
6852 KMP_STRCPY_S(data1
, SHM_SIZE
, __kmp_registration_str
);
6854 // Read value from either what we just wrote or existing file.
6855 value
= __kmp_str_format("%s", data1
); // read value from SHM
6856 munmap(data1
, SHM_SIZE
);
6861 if (!__kmp_shm_available
&& !__kmp_tmp_available
) {
6862 // no /dev/shm and no /tmp -- fall back to environment variable
6863 // Set environment variable, but do not overwrite if it exists.
6864 __kmp_env_set(name
, __kmp_registration_str
, 0);
6865 // read value to see if it got set
6866 value
= __kmp_env_get(name
);
6868 #else // Windows and unix with static library
6869 // Set environment variable, but do not overwrite if it exists.
6870 __kmp_env_set(name
, __kmp_registration_str
, 0);
6871 // read value to see if it got set
6872 value
= __kmp_env_get(name
);
6875 if (value
!= NULL
&& strcmp(value
, __kmp_registration_str
) == 0) {
6876 done
= 1; // Ok, environment variable set successfully, exit the loop.
6878 // Oops. Write failed. Another copy of OpenMP RTL is in memory.
6879 // Check whether it alive or dead.
6880 int neighbor
= 0; // 0 -- unknown status, 1 -- alive, 2 -- dead.
6882 char *flag_addr_str
= NULL
;
6883 char *flag_val_str
= NULL
;
6884 char const *file_name
= NULL
;
6885 __kmp_str_split(tail
, '-', &flag_addr_str
, &tail
);
6886 __kmp_str_split(tail
, '-', &flag_val_str
, &tail
);
6889 unsigned long *flag_addr
= 0;
6890 unsigned long flag_val
= 0;
6891 KMP_SSCANF(flag_addr_str
, "%p", RCAST(void **, &flag_addr
));
6892 KMP_SSCANF(flag_val_str
, "%lx", &flag_val
);
6893 if (flag_addr
!= 0 && flag_val
!= 0 && strcmp(file_name
, "") != 0) {
6894 // First, check whether environment-encoded address is mapped into
6896 // If so, dereference it to see if it still has the right value.
6897 if (__kmp_is_address_mapped(flag_addr
) && *flag_addr
== flag_val
) {
6900 // If not, then we know the other copy of the library is no longer
6907 case 0: // Cannot parse environment variable -- neighbor status unknown.
6908 // Assume it is the incompatible format of future version of the
6909 // library. Assume the other library is alive.
6910 // WARN( ... ); // TODO: Issue a warning.
6911 file_name
= "unknown library";
6913 // Attention! Falling to the next case. That's intentional.
6914 case 1: { // Neighbor is alive.
6915 // Check it is allowed.
6916 char *duplicate_ok
= __kmp_env_get("KMP_DUPLICATE_LIB_OK");
6917 if (!__kmp_str_match_true(duplicate_ok
)) {
6918 // That's not allowed. Issue fatal error.
6919 __kmp_fatal(KMP_MSG(DuplicateLibrary
, KMP_LIBRARY_FILE
, file_name
),
6920 KMP_HNT(DuplicateLibrary
), __kmp_msg_null
);
6922 KMP_INTERNAL_FREE(duplicate_ok
);
6923 __kmp_duplicate_library_ok
= 1;
6924 done
= 1; // Exit the loop.
6926 case 2: { // Neighbor is dead.
6928 #if defined(KMP_USE_SHM)
6929 if (__kmp_shm_available
) { // close shared memory.
6930 shm_unlink(shm_name
); // this removes file in /dev/shm
6931 } else if (__kmp_tmp_available
) {
6932 unlink(temp_reg_status_file_name
); // this removes the temp file
6934 // Clear the variable and try to register library again.
6935 __kmp_env_unset(name
);
6938 // Clear the variable and try to register library again.
6939 __kmp_env_unset(name
);
6943 KMP_DEBUG_ASSERT(0);
6947 KMP_INTERNAL_FREE((void *)value
);
6948 #if defined(KMP_USE_SHM)
6950 KMP_INTERNAL_FREE((void *)shm_name
);
6953 KMP_INTERNAL_FREE((void *)name
);
6955 } // func __kmp_register_library_startup
6957 void __kmp_unregister_library(void) {
6959 char *name
= __kmp_reg_status_name();
6962 #if defined(KMP_USE_SHM)
6963 char *shm_name
= nullptr;
6965 if (__kmp_shm_available
) {
6966 shm_name
= __kmp_str_format("/%s", name
);
6967 fd1
= shm_open(shm_name
, O_RDONLY
, 0600);
6968 if (fd1
!= -1) { // File opened successfully
6969 char *data1
= (char *)mmap(0, SHM_SIZE
, PROT_READ
, MAP_SHARED
, fd1
, 0);
6970 if (data1
!= MAP_FAILED
) {
6971 value
= __kmp_str_format("%s", data1
); // read value from SHM
6972 munmap(data1
, SHM_SIZE
);
6976 } else if (__kmp_tmp_available
) { // try /tmp
6977 fd1
= open(temp_reg_status_file_name
, O_RDONLY
);
6978 if (fd1
!= -1) { // File opened successfully
6979 char *data1
= (char *)mmap(0, SHM_SIZE
, PROT_READ
, MAP_SHARED
, fd1
, 0);
6980 if (data1
!= MAP_FAILED
) {
6981 value
= __kmp_str_format("%s", data1
); // read value from /tmp
6982 munmap(data1
, SHM_SIZE
);
6986 } else { // fall back to envirable
6987 value
= __kmp_env_get(name
);
6990 value
= __kmp_env_get(name
);
6993 KMP_DEBUG_ASSERT(__kmp_registration_flag
!= 0);
6994 KMP_DEBUG_ASSERT(__kmp_registration_str
!= NULL
);
6995 if (value
!= NULL
&& strcmp(value
, __kmp_registration_str
) == 0) {
6996 // Ok, this is our variable. Delete it.
6997 #if defined(KMP_USE_SHM)
6998 if (__kmp_shm_available
) {
6999 shm_unlink(shm_name
); // this removes file in /dev/shm
7000 } else if (__kmp_tmp_available
) {
7001 unlink(temp_reg_status_file_name
); // this removes the temp file
7003 __kmp_env_unset(name
);
7006 __kmp_env_unset(name
);
7010 #if defined(KMP_USE_SHM)
7012 KMP_INTERNAL_FREE(shm_name
);
7013 if (temp_reg_status_file_name
)
7014 KMP_INTERNAL_FREE(temp_reg_status_file_name
);
7017 KMP_INTERNAL_FREE(__kmp_registration_str
);
7018 KMP_INTERNAL_FREE(value
);
7019 KMP_INTERNAL_FREE(name
);
7021 __kmp_registration_flag
= 0;
7022 __kmp_registration_str
= NULL
;
7024 } // __kmp_unregister_library
7026 // End of Library registration stuff.
7027 // -----------------------------------------------------------------------------
7029 #if KMP_MIC_SUPPORTED
7031 static void __kmp_check_mic_type() {
7032 kmp_cpuid_t cpuid_state
= {0};
7033 kmp_cpuid_t
*cs_p
= &cpuid_state
;
7034 __kmp_x86_cpuid(1, 0, cs_p
);
7035 // We don't support mic1 at the moment
7036 if ((cs_p
->eax
& 0xff0) == 0xB10) {
7037 __kmp_mic_type
= mic2
;
7038 } else if ((cs_p
->eax
& 0xf0ff0) == 0x50670) {
7039 __kmp_mic_type
= mic3
;
7041 __kmp_mic_type
= non_mic
;
7045 #endif /* KMP_MIC_SUPPORTED */
7048 static void __kmp_user_level_mwait_init() {
7049 struct kmp_cpuid buf
;
7050 __kmp_x86_cpuid(7, 0, &buf
);
7051 __kmp_waitpkg_enabled
= ((buf
.ecx
>> 5) & 1);
7052 __kmp_umwait_enabled
= __kmp_waitpkg_enabled
&& __kmp_user_level_mwait
;
7053 __kmp_tpause_enabled
= __kmp_waitpkg_enabled
&& (__kmp_tpause_state
> 0);
7054 KF_TRACE(30, ("__kmp_user_level_mwait_init: __kmp_umwait_enabled = %d\n",
7055 __kmp_umwait_enabled
));
7057 #elif KMP_HAVE_MWAIT
7058 #ifndef AT_INTELPHIUSERMWAIT
7059 // Spurious, non-existent value that should always fail to return anything.
7060 // Will be replaced with the correct value when we know that.
7061 #define AT_INTELPHIUSERMWAIT 10000
7063 // getauxval() function is available in RHEL7 and SLES12. If a system with an
7064 // earlier OS is used to build the RTL, we'll use the following internal
7065 // function when the entry is not found.
7066 unsigned long getauxval(unsigned long) KMP_WEAK_ATTRIBUTE_EXTERNAL
;
7067 unsigned long getauxval(unsigned long) { return 0; }
7069 static void __kmp_user_level_mwait_init() {
7070 // When getauxval() and correct value of AT_INTELPHIUSERMWAIT are available
7071 // use them to find if the user-level mwait is enabled. Otherwise, forcibly
7072 // set __kmp_mwait_enabled=TRUE on Intel MIC if the environment variable
7073 // KMP_USER_LEVEL_MWAIT was set to TRUE.
7074 if (__kmp_mic_type
== mic3
) {
7075 unsigned long res
= getauxval(AT_INTELPHIUSERMWAIT
);
7076 if ((res
& 0x1) || __kmp_user_level_mwait
) {
7077 __kmp_mwait_enabled
= TRUE
;
7078 if (__kmp_user_level_mwait
) {
7079 KMP_INFORM(EnvMwaitWarn
);
7082 __kmp_mwait_enabled
= FALSE
;
7085 KF_TRACE(30, ("__kmp_user_level_mwait_init: __kmp_mic_type = %d, "
7086 "__kmp_mwait_enabled = %d\n",
7087 __kmp_mic_type
, __kmp_mwait_enabled
));
7089 #endif /* KMP_HAVE_UMWAIT */
7091 static void __kmp_do_serial_initialize(void) {
7095 KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n"));
7097 KMP_DEBUG_ASSERT(sizeof(kmp_int32
) == 4);
7098 KMP_DEBUG_ASSERT(sizeof(kmp_uint32
) == 4);
7099 KMP_DEBUG_ASSERT(sizeof(kmp_int64
) == 8);
7100 KMP_DEBUG_ASSERT(sizeof(kmp_uint64
) == 8);
7101 KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t
) == sizeof(void *));
7111 __kmp_validate_locks();
7113 #if ENABLE_LIBOMPTARGET
7114 /* Initialize functions from libomptarget */
7115 __kmp_init_omptarget();
7118 /* Initialize internal memory allocator */
7119 __kmp_init_allocator();
7121 /* Register the library startup via an environment variable or via mapped
7122 shared memory file and check to see whether another copy of the library is
7123 already registered. Since forked child process is often terminated, we
7124 postpone the registration till middle initialization in the child */
7125 if (__kmp_need_register_serial
)
7126 __kmp_register_library_startup();
7128 /* TODO reinitialization of library */
7129 if (TCR_4(__kmp_global
.g
.g_done
)) {
7130 KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n"));
7133 __kmp_global
.g
.g_abort
= 0;
7134 TCW_SYNC_4(__kmp_global
.g
.g_done
, FALSE
);
7136 /* initialize the locks */
7137 #if KMP_USE_ADAPTIVE_LOCKS
7138 #if KMP_DEBUG_ADAPTIVE_LOCKS
7139 __kmp_init_speculative_stats();
7142 #if KMP_STATS_ENABLED
7145 __kmp_init_lock(&__kmp_global_lock
);
7146 __kmp_init_queuing_lock(&__kmp_dispatch_lock
);
7147 __kmp_init_lock(&__kmp_debug_lock
);
7148 __kmp_init_atomic_lock(&__kmp_atomic_lock
);
7149 __kmp_init_atomic_lock(&__kmp_atomic_lock_1i
);
7150 __kmp_init_atomic_lock(&__kmp_atomic_lock_2i
);
7151 __kmp_init_atomic_lock(&__kmp_atomic_lock_4i
);
7152 __kmp_init_atomic_lock(&__kmp_atomic_lock_4r
);
7153 __kmp_init_atomic_lock(&__kmp_atomic_lock_8i
);
7154 __kmp_init_atomic_lock(&__kmp_atomic_lock_8r
);
7155 __kmp_init_atomic_lock(&__kmp_atomic_lock_8c
);
7156 __kmp_init_atomic_lock(&__kmp_atomic_lock_10r
);
7157 __kmp_init_atomic_lock(&__kmp_atomic_lock_16r
);
7158 __kmp_init_atomic_lock(&__kmp_atomic_lock_16c
);
7159 __kmp_init_atomic_lock(&__kmp_atomic_lock_20c
);
7160 __kmp_init_atomic_lock(&__kmp_atomic_lock_32c
);
7161 __kmp_init_bootstrap_lock(&__kmp_forkjoin_lock
);
7162 __kmp_init_bootstrap_lock(&__kmp_exit_lock
);
7164 __kmp_init_bootstrap_lock(&__kmp_monitor_lock
);
7166 __kmp_init_bootstrap_lock(&__kmp_tp_cached_lock
);
7168 /* conduct initialization and initial setup of configuration */
7170 __kmp_runtime_initialize();
7172 #if KMP_MIC_SUPPORTED
7173 __kmp_check_mic_type();
7176 // Some global variable initialization moved here from kmp_env_initialize()
7180 __kmp_abort_delay
= 0;
7182 // From __kmp_init_dflt_team_nth()
7183 /* assume the entire machine will be used */
7184 __kmp_dflt_team_nth_ub
= __kmp_xproc
;
7185 if (__kmp_dflt_team_nth_ub
< KMP_MIN_NTH
) {
7186 __kmp_dflt_team_nth_ub
= KMP_MIN_NTH
;
7188 if (__kmp_dflt_team_nth_ub
> __kmp_sys_max_nth
) {
7189 __kmp_dflt_team_nth_ub
= __kmp_sys_max_nth
;
7191 __kmp_max_nth
= __kmp_sys_max_nth
;
7192 __kmp_cg_max_nth
= __kmp_sys_max_nth
;
7193 __kmp_teams_max_nth
= __kmp_xproc
; // set a "reasonable" default
7194 if (__kmp_teams_max_nth
> __kmp_sys_max_nth
) {
7195 __kmp_teams_max_nth
= __kmp_sys_max_nth
;
7198 // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME"
7200 __kmp_dflt_blocktime
= KMP_DEFAULT_BLOCKTIME
;
7202 __kmp_monitor_wakeups
=
7203 KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime
, __kmp_monitor_wakeups
);
7204 __kmp_bt_intervals
=
7205 KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime
, __kmp_monitor_wakeups
);
7207 // From "KMP_LIBRARY" part of __kmp_env_initialize()
7208 __kmp_library
= library_throughput
;
7209 // From KMP_SCHEDULE initialization
7210 __kmp_static
= kmp_sch_static_balanced
;
7211 // AC: do not use analytical here, because it is non-monotonous
7212 //__kmp_guided = kmp_sch_guided_iterative_chunked;
7213 //__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no
7214 // need to repeat assignment
7215 // Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch
7216 // bit control and barrier method control parts
7217 #if KMP_FAST_REDUCTION_BARRIER
7218 #define kmp_reduction_barrier_gather_bb ((int)1)
7219 #define kmp_reduction_barrier_release_bb ((int)1)
7220 #define kmp_reduction_barrier_gather_pat __kmp_barrier_gather_pat_dflt
7221 #define kmp_reduction_barrier_release_pat __kmp_barrier_release_pat_dflt
7222 #endif // KMP_FAST_REDUCTION_BARRIER
7223 for (i
= bs_plain_barrier
; i
< bs_last_barrier
; i
++) {
7224 __kmp_barrier_gather_branch_bits
[i
] = __kmp_barrier_gather_bb_dflt
;
7225 __kmp_barrier_release_branch_bits
[i
] = __kmp_barrier_release_bb_dflt
;
7226 __kmp_barrier_gather_pattern
[i
] = __kmp_barrier_gather_pat_dflt
;
7227 __kmp_barrier_release_pattern
[i
] = __kmp_barrier_release_pat_dflt
;
7228 #if KMP_FAST_REDUCTION_BARRIER
7229 if (i
== bs_reduction_barrier
) { // tested and confirmed on ALTIX only (
7230 // lin_64 ): hyper,1
7231 __kmp_barrier_gather_branch_bits
[i
] = kmp_reduction_barrier_gather_bb
;
7232 __kmp_barrier_release_branch_bits
[i
] = kmp_reduction_barrier_release_bb
;
7233 __kmp_barrier_gather_pattern
[i
] = kmp_reduction_barrier_gather_pat
;
7234 __kmp_barrier_release_pattern
[i
] = kmp_reduction_barrier_release_pat
;
7236 #endif // KMP_FAST_REDUCTION_BARRIER
7238 #if KMP_FAST_REDUCTION_BARRIER
7239 #undef kmp_reduction_barrier_release_pat
7240 #undef kmp_reduction_barrier_gather_pat
7241 #undef kmp_reduction_barrier_release_bb
7242 #undef kmp_reduction_barrier_gather_bb
7243 #endif // KMP_FAST_REDUCTION_BARRIER
7244 #if KMP_MIC_SUPPORTED
7245 if (__kmp_mic_type
== mic2
) { // KNC
7246 // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC
7247 __kmp_barrier_gather_branch_bits
[bs_plain_barrier
] = 3; // plain gather
7248 __kmp_barrier_release_branch_bits
[bs_forkjoin_barrier
] =
7249 1; // forkjoin release
7250 __kmp_barrier_gather_pattern
[bs_forkjoin_barrier
] = bp_hierarchical_bar
;
7251 __kmp_barrier_release_pattern
[bs_forkjoin_barrier
] = bp_hierarchical_bar
;
7253 #if KMP_FAST_REDUCTION_BARRIER
7254 if (__kmp_mic_type
== mic2
) { // KNC
7255 __kmp_barrier_gather_pattern
[bs_reduction_barrier
] = bp_hierarchical_bar
;
7256 __kmp_barrier_release_pattern
[bs_reduction_barrier
] = bp_hierarchical_bar
;
7258 #endif // KMP_FAST_REDUCTION_BARRIER
7259 #endif // KMP_MIC_SUPPORTED
7261 // From KMP_CHECKS initialization
7263 __kmp_env_checks
= TRUE
; /* development versions have the extra checks */
7265 __kmp_env_checks
= FALSE
; /* port versions do not have the extra checks */
7268 // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization
7269 __kmp_foreign_tp
= TRUE
;
7271 __kmp_global
.g
.g_dynamic
= FALSE
;
7272 __kmp_global
.g
.g_dynamic_mode
= dynamic_default
;
7274 __kmp_init_nesting_mode();
7276 __kmp_env_initialize(NULL
);
7278 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
7279 __kmp_user_level_mwait_init();
7281 // Print all messages in message catalog for testing purposes.
7283 char const *val
= __kmp_env_get("KMP_DUMP_CATALOG");
7284 if (__kmp_str_match_true(val
)) {
7285 kmp_str_buf_t buffer
;
7286 __kmp_str_buf_init(&buffer
);
7287 __kmp_i18n_dump_catalog(&buffer
);
7288 __kmp_printf("%s", buffer
.str
);
7289 __kmp_str_buf_free(&buffer
);
7291 __kmp_env_free(&val
);
7294 __kmp_threads_capacity
=
7295 __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub
);
7296 // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part
7297 __kmp_tp_capacity
= __kmp_default_tp_capacity(
7298 __kmp_dflt_team_nth_ub
, __kmp_max_nth
, __kmp_allThreadsSpecified
);
7300 // If the library is shut down properly, both pools must be NULL. Just in
7301 // case, set them to NULL -- some memory may leak, but subsequent code will
7302 // work even if pools are not freed.
7303 KMP_DEBUG_ASSERT(__kmp_thread_pool
== NULL
);
7304 KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt
== NULL
);
7305 KMP_DEBUG_ASSERT(__kmp_team_pool
== NULL
);
7306 __kmp_thread_pool
= NULL
;
7307 __kmp_thread_pool_insert_pt
= NULL
;
7308 __kmp_team_pool
= NULL
;
7310 /* Allocate all of the variable sized records */
7311 /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are
7313 /* Since allocation is cache-aligned, just add extra padding at the end */
7315 (sizeof(kmp_info_t
*) + sizeof(kmp_root_t
*)) * __kmp_threads_capacity
+
7317 __kmp_threads
= (kmp_info_t
**)__kmp_allocate(size
);
7318 __kmp_root
= (kmp_root_t
**)((char *)__kmp_threads
+
7319 sizeof(kmp_info_t
*) * __kmp_threads_capacity
);
7321 /* init thread counts */
7322 KMP_DEBUG_ASSERT(__kmp_all_nth
==
7323 0); // Asserts fail if the library is reinitializing and
7324 KMP_DEBUG_ASSERT(__kmp_nth
== 0); // something was wrong in termination.
7328 /* setup the uber master thread and hierarchy */
7329 gtid
= __kmp_register_root(TRUE
);
7330 KA_TRACE(10, ("__kmp_do_serial_initialize T#%d\n", gtid
));
7331 KMP_ASSERT(KMP_UBER_GTID(gtid
));
7332 KMP_ASSERT(KMP_INITIAL_GTID(gtid
));
7334 KMP_MB(); /* Flush all pending memory write invalidates. */
7336 __kmp_common_initialize();
7339 /* invoke the child fork handler */
7340 __kmp_register_atfork();
7343 #if !KMP_DYNAMIC_LIB || \
7344 ((KMP_COMPILER_ICC || KMP_COMPILER_ICX) && KMP_OS_DARWIN)
7346 /* Invoke the exit handler when the program finishes, only for static
7347 library and macOS* dynamic. For other dynamic libraries, we already
7348 have _fini and DllMain. */
7349 int rc
= atexit(__kmp_internal_end_atexit
);
7351 __kmp_fatal(KMP_MSG(FunctionError
, "atexit()"), KMP_ERR(rc
),
7357 #if KMP_HANDLE_SIGNALS
7359 /* NOTE: make sure that this is called before the user installs their own
7360 signal handlers so that the user handlers are called first. this way they
7361 can return false, not call our handler, avoid terminating the library, and
7362 continue execution where they left off. */
7363 __kmp_install_signals(FALSE
);
7364 #endif /* KMP_OS_UNIX */
7366 __kmp_install_signals(TRUE
);
7367 #endif /* KMP_OS_WINDOWS */
7370 /* we have finished the serial initialization */
7371 __kmp_init_counter
++;
7373 __kmp_init_serial
= TRUE
;
7375 if (__kmp_version
) {
7376 __kmp_print_version_1();
7379 if (__kmp_settings
) {
7383 if (__kmp_display_env
|| __kmp_display_env_verbose
) {
7384 __kmp_env_print_2();
7393 KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n"));
7396 void __kmp_serial_initialize(void) {
7397 if (__kmp_init_serial
) {
7400 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock
);
7401 if (__kmp_init_serial
) {
7402 __kmp_release_bootstrap_lock(&__kmp_initz_lock
);
7405 __kmp_do_serial_initialize();
7406 __kmp_release_bootstrap_lock(&__kmp_initz_lock
);
7409 static void __kmp_do_middle_initialize(void) {
7411 int prev_dflt_team_nth
;
7413 if (!__kmp_init_serial
) {
7414 __kmp_do_serial_initialize();
7417 KA_TRACE(10, ("__kmp_middle_initialize: enter\n"));
7419 if (UNLIKELY(!__kmp_need_register_serial
)) {
7420 // We are in a forked child process. The registration was skipped during
7421 // serial initialization in __kmp_atfork_child handler. Do it here.
7422 __kmp_register_library_startup();
7425 // Save the previous value for the __kmp_dflt_team_nth so that
7426 // we can avoid some reinitialization if it hasn't changed.
7427 prev_dflt_team_nth
= __kmp_dflt_team_nth
;
7429 #if KMP_AFFINITY_SUPPORTED
7430 // __kmp_affinity_initialize() will try to set __kmp_ncores to the
7431 // number of cores on the machine.
7432 __kmp_affinity_initialize(__kmp_affinity
);
7434 #endif /* KMP_AFFINITY_SUPPORTED */
7436 KMP_ASSERT(__kmp_xproc
> 0);
7437 if (__kmp_avail_proc
== 0) {
7438 __kmp_avail_proc
= __kmp_xproc
;
7441 // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3),
7444 while ((j
< __kmp_nested_nth
.used
) && !__kmp_nested_nth
.nth
[j
]) {
7445 __kmp_nested_nth
.nth
[j
] = __kmp_dflt_team_nth
= __kmp_dflt_team_nth_ub
=
7450 if (__kmp_dflt_team_nth
== 0) {
7451 #ifdef KMP_DFLT_NTH_CORES
7452 // Default #threads = #cores
7453 __kmp_dflt_team_nth
= __kmp_ncores
;
7454 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = "
7455 "__kmp_ncores (%d)\n",
7456 __kmp_dflt_team_nth
));
7458 // Default #threads = #available OS procs
7459 __kmp_dflt_team_nth
= __kmp_avail_proc
;
7460 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = "
7461 "__kmp_avail_proc(%d)\n",
7462 __kmp_dflt_team_nth
));
7463 #endif /* KMP_DFLT_NTH_CORES */
7466 if (__kmp_dflt_team_nth
< KMP_MIN_NTH
) {
7467 __kmp_dflt_team_nth
= KMP_MIN_NTH
;
7469 if (__kmp_dflt_team_nth
> __kmp_sys_max_nth
) {
7470 __kmp_dflt_team_nth
= __kmp_sys_max_nth
;
7473 if (__kmp_nesting_mode
> 0)
7474 __kmp_set_nesting_mode_threads();
7476 // There's no harm in continuing if the following check fails,
7477 // but it indicates an error in the previous logic.
7478 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth
<= __kmp_dflt_team_nth_ub
);
7480 if (__kmp_dflt_team_nth
!= prev_dflt_team_nth
) {
7481 // Run through the __kmp_threads array and set the num threads icv for each
7482 // root thread that is currently registered with the RTL (which has not
7483 // already explicitly set its nthreads-var with a call to
7484 // omp_set_num_threads()).
7485 for (i
= 0; i
< __kmp_threads_capacity
; i
++) {
7486 kmp_info_t
*thread
= __kmp_threads
[i
];
7489 if (thread
->th
.th_current_task
->td_icvs
.nproc
!= 0)
7492 set__nproc(__kmp_threads
[i
], __kmp_dflt_team_nth
);
7497 ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n",
7498 __kmp_dflt_team_nth
));
7500 #ifdef KMP_ADJUST_BLOCKTIME
7501 /* Adjust blocktime to zero if necessary now that __kmp_avail_proc is set */
7502 if (!__kmp_env_blocktime
&& (__kmp_avail_proc
> 0)) {
7503 KMP_DEBUG_ASSERT(__kmp_avail_proc
> 0);
7504 if (__kmp_nth
> __kmp_avail_proc
) {
7505 __kmp_zero_bt
= TRUE
;
7508 #endif /* KMP_ADJUST_BLOCKTIME */
7510 /* we have finished middle initialization */
7511 TCW_SYNC_4(__kmp_init_middle
, TRUE
);
7513 KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n"));
7516 void __kmp_middle_initialize(void) {
7517 if (__kmp_init_middle
) {
7520 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock
);
7521 if (__kmp_init_middle
) {
7522 __kmp_release_bootstrap_lock(&__kmp_initz_lock
);
7525 __kmp_do_middle_initialize();
7526 __kmp_release_bootstrap_lock(&__kmp_initz_lock
);
7529 void __kmp_parallel_initialize(void) {
7530 int gtid
= __kmp_entry_gtid(); // this might be a new root
7532 /* synchronize parallel initialization (for sibling) */
7533 if (TCR_4(__kmp_init_parallel
))
7535 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock
);
7536 if (TCR_4(__kmp_init_parallel
)) {
7537 __kmp_release_bootstrap_lock(&__kmp_initz_lock
);
7541 /* TODO reinitialization after we have already shut down */
7542 if (TCR_4(__kmp_global
.g
.g_done
)) {
7545 ("__kmp_parallel_initialize: attempt to init while shutting down\n"));
7546 __kmp_infinite_loop();
7549 /* jc: The lock __kmp_initz_lock is already held, so calling
7550 __kmp_serial_initialize would cause a deadlock. So we call
7551 __kmp_do_serial_initialize directly. */
7552 if (!__kmp_init_middle
) {
7553 __kmp_do_middle_initialize();
7555 __kmp_assign_root_init_mask();
7556 __kmp_resume_if_hard_paused();
7558 /* begin initialization */
7559 KA_TRACE(10, ("__kmp_parallel_initialize: enter\n"));
7560 KMP_ASSERT(KMP_UBER_GTID(gtid
));
7562 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
7563 // Save the FP control regs.
7564 // Worker threads will set theirs to these values at thread startup.
7565 __kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word
);
7566 __kmp_store_mxcsr(&__kmp_init_mxcsr
);
7567 __kmp_init_mxcsr
&= KMP_X86_MXCSR_MASK
;
7568 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
7571 #if KMP_HANDLE_SIGNALS
7572 /* must be after __kmp_serial_initialize */
7573 __kmp_install_signals(TRUE
);
7577 __kmp_suspend_initialize();
7579 #if defined(USE_LOAD_BALANCE)
7580 if (__kmp_global
.g
.g_dynamic_mode
== dynamic_default
) {
7581 __kmp_global
.g
.g_dynamic_mode
= dynamic_load_balance
;
7584 if (__kmp_global
.g
.g_dynamic_mode
== dynamic_default
) {
7585 __kmp_global
.g
.g_dynamic_mode
= dynamic_thread_limit
;
7589 if (__kmp_version
) {
7590 __kmp_print_version_2();
7593 /* we have finished parallel initialization */
7594 TCW_SYNC_4(__kmp_init_parallel
, TRUE
);
7597 KA_TRACE(10, ("__kmp_parallel_initialize: exit\n"));
7599 __kmp_release_bootstrap_lock(&__kmp_initz_lock
);
7602 void __kmp_hidden_helper_initialize() {
7603 if (TCR_4(__kmp_init_hidden_helper
))
7606 // __kmp_parallel_initialize is required before we initialize hidden helper
7607 if (!TCR_4(__kmp_init_parallel
))
7608 __kmp_parallel_initialize();
7610 // Double check. Note that this double check should not be placed before
7611 // __kmp_parallel_initialize as it will cause dead lock.
7612 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock
);
7613 if (TCR_4(__kmp_init_hidden_helper
)) {
7614 __kmp_release_bootstrap_lock(&__kmp_initz_lock
);
7618 #if KMP_AFFINITY_SUPPORTED
7619 // Initialize hidden helper affinity settings.
7620 // The above __kmp_parallel_initialize() will initialize
7621 // regular affinity (and topology) if not already done.
7622 if (!__kmp_hh_affinity
.flags
.initialized
)
7623 __kmp_affinity_initialize(__kmp_hh_affinity
);
7626 // Set the count of hidden helper tasks to be executed to zero
7627 KMP_ATOMIC_ST_REL(&__kmp_unexecuted_hidden_helper_tasks
, 0);
7629 // Set the global variable indicating that we're initializing hidden helper
7631 TCW_SYNC_4(__kmp_init_hidden_helper_threads
, TRUE
);
7633 // Platform independent initialization
7634 __kmp_do_initialize_hidden_helper_threads();
7636 // Wait here for the finish of initialization of hidden helper teams
7637 __kmp_hidden_helper_threads_initz_wait();
7639 // We have finished hidden helper initialization
7640 TCW_SYNC_4(__kmp_init_hidden_helper
, TRUE
);
7642 __kmp_release_bootstrap_lock(&__kmp_initz_lock
);
7645 /* ------------------------------------------------------------------------ */
7647 void __kmp_run_before_invoked_task(int gtid
, int tid
, kmp_info_t
*this_thr
,
7649 kmp_disp_t
*dispatch
;
7653 /* none of the threads have encountered any constructs, yet. */
7654 this_thr
->th
.th_local
.this_construct
= 0;
7655 #if KMP_CACHE_MANAGE
7656 KMP_CACHE_PREFETCH(&this_thr
->th
.th_bar
[bs_forkjoin_barrier
].bb
.b_arrived
);
7657 #endif /* KMP_CACHE_MANAGE */
7658 dispatch
= (kmp_disp_t
*)TCR_PTR(this_thr
->th
.th_dispatch
);
7659 KMP_DEBUG_ASSERT(dispatch
);
7660 KMP_DEBUG_ASSERT(team
->t
.t_dispatch
);
7661 // KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[
7662 // this_thr->th.th_info.ds.ds_tid ] );
7664 dispatch
->th_disp_index
= 0; /* reset the dispatch buffer counter */
7665 dispatch
->th_doacross_buf_idx
= 0; // reset doacross dispatch buffer counter
7666 if (__kmp_env_consistency_check
)
7667 __kmp_push_parallel(gtid
, team
->t
.t_ident
);
7669 KMP_MB(); /* Flush all pending memory write invalidates. */
7672 void __kmp_run_after_invoked_task(int gtid
, int tid
, kmp_info_t
*this_thr
,
7674 if (__kmp_env_consistency_check
)
7675 __kmp_pop_parallel(gtid
, team
->t
.t_ident
);
7677 __kmp_finish_implicit_task(this_thr
);
7680 int __kmp_invoke_task_func(int gtid
) {
7682 int tid
= __kmp_tid_from_gtid(gtid
);
7683 kmp_info_t
*this_thr
= __kmp_threads
[gtid
];
7684 kmp_team_t
*team
= this_thr
->th
.th_team
;
7686 __kmp_run_before_invoked_task(gtid
, tid
, this_thr
, team
);
7688 if (__itt_stack_caller_create_ptr
) {
7689 // inform ittnotify about entering user's code
7690 if (team
->t
.t_stack_id
!= NULL
) {
7691 __kmp_itt_stack_callee_enter((__itt_caller
)team
->t
.t_stack_id
);
7693 KMP_DEBUG_ASSERT(team
->t
.t_parent
->t
.t_stack_id
!= NULL
);
7694 __kmp_itt_stack_callee_enter(
7695 (__itt_caller
)team
->t
.t_parent
->t
.t_stack_id
);
7698 #endif /* USE_ITT_BUILD */
7699 #if INCLUDE_SSC_MARKS
7700 SSC_MARK_INVOKING();
7705 void **exit_frame_p
;
7706 ompt_data_t
*my_task_data
;
7707 ompt_data_t
*my_parallel_data
;
7710 if (ompt_enabled
.enabled
) {
7711 exit_frame_p
= &(team
->t
.t_implicit_task_taskdata
[tid
]
7712 .ompt_task_info
.frame
.exit_frame
.ptr
);
7714 exit_frame_p
= &dummy
;
7718 &(team
->t
.t_implicit_task_taskdata
[tid
].ompt_task_info
.task_data
);
7719 my_parallel_data
= &(team
->t
.ompt_team_info
.parallel_data
);
7720 if (ompt_enabled
.ompt_callback_implicit_task
) {
7721 ompt_team_size
= team
->t
.t_nproc
;
7722 ompt_callbacks
.ompt_callback(ompt_callback_implicit_task
)(
7723 ompt_scope_begin
, my_parallel_data
, my_task_data
, ompt_team_size
,
7724 __kmp_tid_from_gtid(gtid
), ompt_task_implicit
);
7725 OMPT_CUR_TASK_INFO(this_thr
)->thread_num
= __kmp_tid_from_gtid(gtid
);
7729 #if KMP_STATS_ENABLED
7730 stats_state_e previous_state
= KMP_GET_THREAD_STATE();
7731 if (previous_state
== stats_state_e::TEAMS_REGION
) {
7732 KMP_PUSH_PARTITIONED_TIMER(OMP_teams
);
7734 KMP_PUSH_PARTITIONED_TIMER(OMP_parallel
);
7736 KMP_SET_THREAD_STATE(IMPLICIT_TASK
);
7739 rc
= __kmp_invoke_microtask((microtask_t
)TCR_SYNC_PTR(team
->t
.t_pkfn
), gtid
,
7740 tid
, (int)team
->t
.t_argc
, (void **)team
->t
.t_argv
7747 *exit_frame_p
= NULL
;
7748 this_thr
->th
.ompt_thread_info
.parallel_flags
= ompt_parallel_team
;
7751 #if KMP_STATS_ENABLED
7752 if (previous_state
== stats_state_e::TEAMS_REGION
) {
7753 KMP_SET_THREAD_STATE(previous_state
);
7755 KMP_POP_PARTITIONED_TIMER();
7759 if (__itt_stack_caller_create_ptr
) {
7760 // inform ittnotify about leaving user's code
7761 if (team
->t
.t_stack_id
!= NULL
) {
7762 __kmp_itt_stack_callee_leave((__itt_caller
)team
->t
.t_stack_id
);
7764 KMP_DEBUG_ASSERT(team
->t
.t_parent
->t
.t_stack_id
!= NULL
);
7765 __kmp_itt_stack_callee_leave(
7766 (__itt_caller
)team
->t
.t_parent
->t
.t_stack_id
);
7769 #endif /* USE_ITT_BUILD */
7770 __kmp_run_after_invoked_task(gtid
, tid
, this_thr
, team
);
7775 void __kmp_teams_master(int gtid
) {
7776 // This routine is called by all primary threads in teams construct
7777 kmp_info_t
*thr
= __kmp_threads
[gtid
];
7778 kmp_team_t
*team
= thr
->th
.th_team
;
7779 ident_t
*loc
= team
->t
.t_ident
;
7780 thr
->th
.th_set_nproc
= thr
->th
.th_teams_size
.nth
;
7781 KMP_DEBUG_ASSERT(thr
->th
.th_teams_microtask
);
7782 KMP_DEBUG_ASSERT(thr
->th
.th_set_nproc
);
7783 KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid
,
7784 __kmp_tid_from_gtid(gtid
), thr
->th
.th_teams_microtask
));
7786 // This thread is a new CG root. Set up the proper variables.
7787 kmp_cg_root_t
*tmp
= (kmp_cg_root_t
*)__kmp_allocate(sizeof(kmp_cg_root_t
));
7788 tmp
->cg_root
= thr
; // Make thr the CG root
7789 // Init to thread limit stored when league primary threads were forked
7790 tmp
->cg_thread_limit
= thr
->th
.th_current_task
->td_icvs
.thread_limit
;
7791 tmp
->cg_nthreads
= 1; // Init counter to one active thread, this one
7792 KA_TRACE(100, ("__kmp_teams_master: Thread %p created node %p and init"
7793 " cg_nthreads to 1\n",
7795 tmp
->up
= thr
->th
.th_cg_roots
;
7796 thr
->th
.th_cg_roots
= tmp
;
7798 // Launch league of teams now, but not let workers execute
7799 // (they hang on fork barrier until next parallel)
7800 #if INCLUDE_SSC_MARKS
7803 __kmp_fork_call(loc
, gtid
, fork_context_intel
, team
->t
.t_argc
,
7804 (microtask_t
)thr
->th
.th_teams_microtask
, // "wrapped" task
7805 VOLATILE_CAST(launch_t
) __kmp_invoke_task_func
, NULL
);
7806 #if INCLUDE_SSC_MARKS
7809 // If the team size was reduced from the limit, set it to the new size
7810 if (thr
->th
.th_team_nproc
< thr
->th
.th_teams_size
.nth
)
7811 thr
->th
.th_teams_size
.nth
= thr
->th
.th_team_nproc
;
7812 // AC: last parameter "1" eliminates join barrier which won't work because
7813 // worker threads are in a fork barrier waiting for more parallel regions
7814 __kmp_join_call(loc
, gtid
7823 int __kmp_invoke_teams_master(int gtid
) {
7824 kmp_info_t
*this_thr
= __kmp_threads
[gtid
];
7825 kmp_team_t
*team
= this_thr
->th
.th_team
;
7827 if (!__kmp_threads
[gtid
]->th
.th_team
->t
.t_serialized
)
7828 KMP_DEBUG_ASSERT((void *)__kmp_threads
[gtid
]->th
.th_team
->t
.t_pkfn
==
7829 (void *)__kmp_teams_master
);
7831 __kmp_run_before_invoked_task(gtid
, 0, this_thr
, team
);
7833 int tid
= __kmp_tid_from_gtid(gtid
);
7834 ompt_data_t
*task_data
=
7835 &team
->t
.t_implicit_task_taskdata
[tid
].ompt_task_info
.task_data
;
7836 ompt_data_t
*parallel_data
= &team
->t
.ompt_team_info
.parallel_data
;
7837 if (ompt_enabled
.ompt_callback_implicit_task
) {
7838 ompt_callbacks
.ompt_callback(ompt_callback_implicit_task
)(
7839 ompt_scope_begin
, parallel_data
, task_data
, team
->t
.t_nproc
, tid
,
7841 OMPT_CUR_TASK_INFO(this_thr
)->thread_num
= tid
;
7844 __kmp_teams_master(gtid
);
7846 this_thr
->th
.ompt_thread_info
.parallel_flags
= ompt_parallel_league
;
7848 __kmp_run_after_invoked_task(gtid
, 0, this_thr
, team
);
7852 /* this sets the requested number of threads for the next parallel region
7853 encountered by this team. since this should be enclosed in the forkjoin
7854 critical section it should avoid race conditions with asymmetrical nested
7856 void __kmp_push_num_threads(ident_t
*id
, int gtid
, int num_threads
) {
7857 kmp_info_t
*thr
= __kmp_threads
[gtid
];
7859 if (num_threads
> 0)
7860 thr
->th
.th_set_nproc
= num_threads
;
7863 void __kmp_push_num_threads_list(ident_t
*id
, int gtid
, kmp_uint32 list_length
,
7864 int *num_threads_list
) {
7865 kmp_info_t
*thr
= __kmp_threads
[gtid
];
7867 KMP_DEBUG_ASSERT(list_length
> 1);
7869 if (num_threads_list
[0] > 0)
7870 thr
->th
.th_set_nproc
= num_threads_list
[0];
7871 thr
->th
.th_set_nested_nth
=
7872 (int *)KMP_INTERNAL_MALLOC(list_length
* sizeof(int));
7873 for (kmp_uint32 i
= 0; i
< list_length
; ++i
)
7874 thr
->th
.th_set_nested_nth
[i
] = num_threads_list
[i
];
7875 thr
->th
.th_set_nested_nth_sz
= list_length
;
7878 void __kmp_set_strict_num_threads(ident_t
*loc
, int gtid
, int sev
,
7880 kmp_info_t
*thr
= __kmp_threads
[gtid
];
7881 thr
->th
.th_nt_strict
= true;
7882 thr
->th
.th_nt_loc
= loc
;
7883 // if sev is unset make fatal
7884 if (sev
== severity_warning
)
7885 thr
->th
.th_nt_sev
= sev
;
7887 thr
->th
.th_nt_sev
= severity_fatal
;
7888 // if msg is unset, use an appropriate message
7890 thr
->th
.th_nt_msg
= msg
;
7892 thr
->th
.th_nt_msg
= "Cannot form team with number of threads specified by "
7893 "strict num_threads clause.";
7896 static void __kmp_push_thread_limit(kmp_info_t
*thr
, int num_teams
,
7898 KMP_DEBUG_ASSERT(thr
);
7899 // Remember the number of threads for inner parallel regions
7900 if (!TCR_4(__kmp_init_middle
))
7901 __kmp_middle_initialize(); // get internal globals calculated
7902 __kmp_assign_root_init_mask();
7903 KMP_DEBUG_ASSERT(__kmp_avail_proc
);
7904 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth
);
7906 if (num_threads
== 0) {
7907 if (__kmp_teams_thread_limit
> 0) {
7908 num_threads
= __kmp_teams_thread_limit
;
7910 num_threads
= __kmp_avail_proc
/ num_teams
;
7912 // adjust num_threads w/o warning as it is not user setting
7913 // num_threads = min(num_threads, nthreads-var, thread-limit-var)
7914 // no thread_limit clause specified - do not change thread-limit-var ICV
7915 if (num_threads
> __kmp_dflt_team_nth
) {
7916 num_threads
= __kmp_dflt_team_nth
; // honor nthreads-var ICV
7918 if (num_threads
> thr
->th
.th_current_task
->td_icvs
.thread_limit
) {
7919 num_threads
= thr
->th
.th_current_task
->td_icvs
.thread_limit
;
7920 } // prevent team size to exceed thread-limit-var
7921 if (num_teams
* num_threads
> __kmp_teams_max_nth
) {
7922 num_threads
= __kmp_teams_max_nth
/ num_teams
;
7924 if (num_threads
== 0) {
7928 if (num_threads
< 0) {
7929 __kmp_msg(kmp_ms_warning
, KMP_MSG(CantFormThrTeam
, num_threads
, 1),
7933 // This thread will be the primary thread of the league primary threads
7934 // Store new thread limit; old limit is saved in th_cg_roots list
7935 thr
->th
.th_current_task
->td_icvs
.thread_limit
= num_threads
;
7936 // num_threads = min(num_threads, nthreads-var)
7937 if (num_threads
> __kmp_dflt_team_nth
) {
7938 num_threads
= __kmp_dflt_team_nth
; // honor nthreads-var ICV
7940 if (num_teams
* num_threads
> __kmp_teams_max_nth
) {
7941 int new_threads
= __kmp_teams_max_nth
/ num_teams
;
7942 if (new_threads
== 0) {
7945 if (new_threads
!= num_threads
) {
7946 if (!__kmp_reserve_warn
) { // user asked for too many threads
7947 __kmp_reserve_warn
= 1; // conflicts with KMP_TEAMS_THREAD_LIMIT
7948 __kmp_msg(kmp_ms_warning
,
7949 KMP_MSG(CantFormThrTeam
, num_threads
, new_threads
),
7950 KMP_HNT(Unset_ALL_THREADS
), __kmp_msg_null
);
7953 num_threads
= new_threads
;
7956 thr
->th
.th_teams_size
.nth
= num_threads
;
7959 /* this sets the requested number of teams for the teams region and/or
7960 the number of threads for the next parallel region encountered */
7961 void __kmp_push_num_teams(ident_t
*id
, int gtid
, int num_teams
,
7963 kmp_info_t
*thr
= __kmp_threads
[gtid
];
7964 if (num_teams
< 0) {
7965 // OpenMP specification requires requested values to be positive,
7966 // but people can send us any value, so we'd better check
7967 __kmp_msg(kmp_ms_warning
, KMP_MSG(NumTeamsNotPositive
, num_teams
, 1),
7971 if (num_teams
== 0) {
7972 if (__kmp_nteams
> 0) {
7973 num_teams
= __kmp_nteams
;
7975 num_teams
= 1; // default number of teams is 1.
7978 if (num_teams
> __kmp_teams_max_nth
) { // if too many teams requested?
7979 if (!__kmp_reserve_warn
) {
7980 __kmp_reserve_warn
= 1;
7981 __kmp_msg(kmp_ms_warning
,
7982 KMP_MSG(CantFormThrTeam
, num_teams
, __kmp_teams_max_nth
),
7983 KMP_HNT(Unset_ALL_THREADS
), __kmp_msg_null
);
7985 num_teams
= __kmp_teams_max_nth
;
7987 // Set number of teams (number of threads in the outer "parallel" of the
7989 thr
->th
.th_set_nproc
= thr
->th
.th_teams_size
.nteams
= num_teams
;
7991 __kmp_push_thread_limit(thr
, num_teams
, num_threads
);
7994 /* This sets the requested number of teams for the teams region and/or
7995 the number of threads for the next parallel region encountered */
7996 void __kmp_push_num_teams_51(ident_t
*id
, int gtid
, int num_teams_lb
,
7997 int num_teams_ub
, int num_threads
) {
7998 kmp_info_t
*thr
= __kmp_threads
[gtid
];
7999 KMP_DEBUG_ASSERT(num_teams_lb
>= 0 && num_teams_ub
>= 0);
8000 KMP_DEBUG_ASSERT(num_teams_ub
>= num_teams_lb
);
8001 KMP_DEBUG_ASSERT(num_threads
>= 0);
8003 if (num_teams_lb
> num_teams_ub
) {
8004 __kmp_fatal(KMP_MSG(FailedToCreateTeam
, num_teams_lb
, num_teams_ub
),
8005 KMP_HNT(SetNewBound
, __kmp_teams_max_nth
), __kmp_msg_null
);
8008 int num_teams
= 1; // defalt number of teams is 1.
8010 if (num_teams_lb
== 0 && num_teams_ub
> 0)
8011 num_teams_lb
= num_teams_ub
;
8013 if (num_teams_lb
== 0 && num_teams_ub
== 0) { // no num_teams clause
8014 num_teams
= (__kmp_nteams
> 0) ? __kmp_nteams
: num_teams
;
8015 if (num_teams
> __kmp_teams_max_nth
) {
8016 if (!__kmp_reserve_warn
) {
8017 __kmp_reserve_warn
= 1;
8018 __kmp_msg(kmp_ms_warning
,
8019 KMP_MSG(CantFormThrTeam
, num_teams
, __kmp_teams_max_nth
),
8020 KMP_HNT(Unset_ALL_THREADS
), __kmp_msg_null
);
8022 num_teams
= __kmp_teams_max_nth
;
8024 } else if (num_teams_lb
== num_teams_ub
) { // requires exact number of teams
8025 num_teams
= num_teams_ub
;
8026 } else { // num_teams_lb <= num_teams <= num_teams_ub
8027 if (num_threads
<= 0) {
8028 if (num_teams_ub
> __kmp_teams_max_nth
) {
8029 num_teams
= num_teams_lb
;
8031 num_teams
= num_teams_ub
;
8034 num_teams
= (num_threads
> __kmp_teams_max_nth
)
8036 : __kmp_teams_max_nth
/ num_threads
;
8037 if (num_teams
< num_teams_lb
) {
8038 num_teams
= num_teams_lb
;
8039 } else if (num_teams
> num_teams_ub
) {
8040 num_teams
= num_teams_ub
;
8044 // Set number of teams (number of threads in the outer "parallel" of the
8046 thr
->th
.th_set_nproc
= thr
->th
.th_teams_size
.nteams
= num_teams
;
8048 __kmp_push_thread_limit(thr
, num_teams
, num_threads
);
8051 // Set the proc_bind var to use in the following parallel region.
8052 void __kmp_push_proc_bind(ident_t
*id
, int gtid
, kmp_proc_bind_t proc_bind
) {
8053 kmp_info_t
*thr
= __kmp_threads
[gtid
];
8054 thr
->th
.th_set_proc_bind
= proc_bind
;
8057 /* Launch the worker threads into the microtask. */
8059 void __kmp_internal_fork(ident_t
*id
, int gtid
, kmp_team_t
*team
) {
8060 kmp_info_t
*this_thr
= __kmp_threads
[gtid
];
8064 #endif /* KMP_DEBUG */
8066 KMP_DEBUG_ASSERT(team
);
8067 KMP_DEBUG_ASSERT(this_thr
->th
.th_team
== team
);
8068 KMP_ASSERT(KMP_MASTER_GTID(gtid
));
8069 KMP_MB(); /* Flush all pending memory write invalidates. */
8071 team
->t
.t_construct
= 0; /* no single directives seen yet */
8072 team
->t
.t_ordered
.dt
.t_value
=
8073 0; /* thread 0 enters the ordered section first */
8075 /* Reset the identifiers on the dispatch buffer */
8076 KMP_DEBUG_ASSERT(team
->t
.t_disp_buffer
);
8077 if (team
->t
.t_max_nproc
> 1) {
8079 for (i
= 0; i
< __kmp_dispatch_num_buffers
; ++i
) {
8080 team
->t
.t_disp_buffer
[i
].buffer_index
= i
;
8081 team
->t
.t_disp_buffer
[i
].doacross_buf_idx
= i
;
8084 team
->t
.t_disp_buffer
[0].buffer_index
= 0;
8085 team
->t
.t_disp_buffer
[0].doacross_buf_idx
= 0;
8088 KMP_MB(); /* Flush all pending memory write invalidates. */
8089 KMP_ASSERT(this_thr
->th
.th_team
== team
);
8092 for (f
= 0; f
< team
->t
.t_nproc
; f
++) {
8093 KMP_DEBUG_ASSERT(team
->t
.t_threads
[f
] &&
8094 team
->t
.t_threads
[f
]->th
.th_team_nproc
== team
->t
.t_nproc
);
8096 #endif /* KMP_DEBUG */
8098 /* release the worker threads so they may begin working */
8099 __kmp_fork_barrier(gtid
, 0);
8102 void __kmp_internal_join(ident_t
*id
, int gtid
, kmp_team_t
*team
) {
8103 kmp_info_t
*this_thr
= __kmp_threads
[gtid
];
8105 KMP_DEBUG_ASSERT(team
);
8106 KMP_DEBUG_ASSERT(this_thr
->th
.th_team
== team
);
8107 KMP_ASSERT(KMP_MASTER_GTID(gtid
));
8108 KMP_MB(); /* Flush all pending memory write invalidates. */
8110 /* Join barrier after fork */
8113 if (__kmp_threads
[gtid
] &&
8114 __kmp_threads
[gtid
]->th
.th_team_nproc
!= team
->t
.t_nproc
) {
8115 __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid
, gtid
,
8116 __kmp_threads
[gtid
]);
8117 __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, "
8118 "team->t.t_nproc=%d\n",
8119 gtid
, __kmp_threads
[gtid
]->th
.th_team_nproc
, team
,
8121 __kmp_print_structure();
8123 KMP_DEBUG_ASSERT(__kmp_threads
[gtid
] &&
8124 __kmp_threads
[gtid
]->th
.th_team_nproc
== team
->t
.t_nproc
);
8125 #endif /* KMP_DEBUG */
8127 __kmp_join_barrier(gtid
); /* wait for everyone */
8129 ompt_state_t ompt_state
= this_thr
->th
.ompt_thread_info
.state
;
8130 if (ompt_enabled
.enabled
&&
8131 (ompt_state
== ompt_state_wait_barrier_teams
||
8132 ompt_state
== ompt_state_wait_barrier_implicit_parallel
)) {
8133 int ds_tid
= this_thr
->th
.th_info
.ds
.ds_tid
;
8134 ompt_data_t
*task_data
= OMPT_CUR_TASK_DATA(this_thr
);
8135 this_thr
->th
.ompt_thread_info
.state
= ompt_state_overhead
;
8137 void *codeptr
= NULL
;
8138 if (KMP_MASTER_TID(ds_tid
) &&
8139 (ompt_callbacks
.ompt_callback(ompt_callback_sync_region_wait
) ||
8140 ompt_callbacks
.ompt_callback(ompt_callback_sync_region
)))
8141 codeptr
= OMPT_CUR_TEAM_INFO(this_thr
)->master_return_address
;
8143 ompt_sync_region_t sync_kind
= ompt_sync_region_barrier_implicit_parallel
;
8144 if (this_thr
->th
.ompt_thread_info
.parallel_flags
& ompt_parallel_league
)
8145 sync_kind
= ompt_sync_region_barrier_teams
;
8146 if (ompt_enabled
.ompt_callback_sync_region_wait
) {
8147 ompt_callbacks
.ompt_callback(ompt_callback_sync_region_wait
)(
8148 sync_kind
, ompt_scope_end
, NULL
, task_data
, codeptr
);
8150 if (ompt_enabled
.ompt_callback_sync_region
) {
8151 ompt_callbacks
.ompt_callback(ompt_callback_sync_region
)(
8152 sync_kind
, ompt_scope_end
, NULL
, task_data
, codeptr
);
8155 if (!KMP_MASTER_TID(ds_tid
) && ompt_enabled
.ompt_callback_implicit_task
) {
8156 ompt_callbacks
.ompt_callback(ompt_callback_implicit_task
)(
8157 ompt_scope_end
, NULL
, task_data
, 0, ds_tid
,
8158 ompt_task_implicit
); // TODO: Can this be ompt_task_initial?
8163 KMP_MB(); /* Flush all pending memory write invalidates. */
8164 KMP_ASSERT(this_thr
->th
.th_team
== team
);
8167 /* ------------------------------------------------------------------------ */
8169 #ifdef USE_LOAD_BALANCE
8171 // Return the worker threads actively spinning in the hot team, if we
8172 // are at the outermost level of parallelism. Otherwise, return 0.
8173 static int __kmp_active_hot_team_nproc(kmp_root_t
*root
) {
8176 kmp_team_t
*hot_team
;
8178 if (root
->r
.r_active
) {
8181 hot_team
= root
->r
.r_hot_team
;
8182 if (__kmp_dflt_blocktime
== KMP_MAX_BLOCKTIME
) {
8183 return hot_team
->t
.t_nproc
- 1; // Don't count primary thread
8186 // Skip the primary thread - it is accounted for elsewhere.
8188 for (i
= 1; i
< hot_team
->t
.t_nproc
; i
++) {
8189 if (hot_team
->t
.t_threads
[i
]->th
.th_active
) {
8196 // Perform an automatic adjustment to the number of
8197 // threads used by the next parallel region.
8198 static int __kmp_load_balance_nproc(kmp_root_t
*root
, int set_nproc
) {
8201 int hot_team_active
;
8202 int team_curr_active
;
8205 KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root
,
8207 KMP_DEBUG_ASSERT(root
);
8208 KMP_DEBUG_ASSERT(root
->r
.r_root_team
->t
.t_threads
[0]
8209 ->th
.th_current_task
->td_icvs
.dynamic
== TRUE
);
8210 KMP_DEBUG_ASSERT(set_nproc
> 1);
8212 if (set_nproc
== 1) {
8213 KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n"));
8217 // Threads that are active in the thread pool, active in the hot team for this
8218 // particular root (if we are at the outer par level), and the currently
8219 // executing thread (to become the primary thread) are available to add to the
8220 // new team, but are currently contributing to the system load, and must be
8222 pool_active
= __kmp_thread_pool_active_nth
;
8223 hot_team_active
= __kmp_active_hot_team_nproc(root
);
8224 team_curr_active
= pool_active
+ hot_team_active
+ 1;
8226 // Check the system load.
8227 system_active
= __kmp_get_load_balance(__kmp_avail_proc
+ team_curr_active
);
8228 KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d "
8229 "hot team active = %d\n",
8230 system_active
, pool_active
, hot_team_active
));
8232 if (system_active
< 0) {
8233 // There was an error reading the necessary info from /proc, so use the
8234 // thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode
8235 // = dynamic_thread_limit, we shouldn't wind up getting back here.
8236 __kmp_global
.g
.g_dynamic_mode
= dynamic_thread_limit
;
8237 KMP_WARNING(CantLoadBalUsing
, "KMP_DYNAMIC_MODE=thread limit");
8239 // Make this call behave like the thread limit algorithm.
8240 retval
= __kmp_avail_proc
- __kmp_nth
+
8241 (root
->r
.r_active
? 1 : root
->r
.r_hot_team
->t
.t_nproc
);
8242 if (retval
> set_nproc
) {
8245 if (retval
< KMP_MIN_NTH
) {
8246 retval
= KMP_MIN_NTH
;
8249 KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n",
8254 // There is a slight delay in the load balance algorithm in detecting new
8255 // running procs. The real system load at this instant should be at least as
8256 // large as the #active omp thread that are available to add to the team.
8257 if (system_active
< team_curr_active
) {
8258 system_active
= team_curr_active
;
8260 retval
= __kmp_avail_proc
- system_active
+ team_curr_active
;
8261 if (retval
> set_nproc
) {
8264 if (retval
< KMP_MIN_NTH
) {
8265 retval
= KMP_MIN_NTH
;
8268 KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval
));
8270 } // __kmp_load_balance_nproc()
8272 #endif /* USE_LOAD_BALANCE */
8274 /* ------------------------------------------------------------------------ */
8276 /* NOTE: this is called with the __kmp_init_lock held */
8277 void __kmp_cleanup(void) {
8280 KA_TRACE(10, ("__kmp_cleanup: enter\n"));
8282 if (TCR_4(__kmp_init_parallel
)) {
8283 #if KMP_HANDLE_SIGNALS
8284 __kmp_remove_signals();
8286 TCW_4(__kmp_init_parallel
, FALSE
);
8289 if (TCR_4(__kmp_init_middle
)) {
8290 #if KMP_AFFINITY_SUPPORTED
8291 __kmp_affinity_uninitialize();
8292 #endif /* KMP_AFFINITY_SUPPORTED */
8293 __kmp_cleanup_hierarchy();
8294 TCW_4(__kmp_init_middle
, FALSE
);
8297 KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n"));
8299 if (__kmp_init_serial
) {
8300 __kmp_runtime_destroy();
8301 __kmp_init_serial
= FALSE
;
8304 __kmp_cleanup_threadprivate_caches();
8306 for (f
= 0; f
< __kmp_threads_capacity
; f
++) {
8307 if (__kmp_root
[f
] != NULL
) {
8308 __kmp_free(__kmp_root
[f
]);
8309 __kmp_root
[f
] = NULL
;
8312 __kmp_free(__kmp_threads
);
8313 // __kmp_threads and __kmp_root were allocated at once, as single block, so
8314 // there is no need in freeing __kmp_root.
8315 __kmp_threads
= NULL
;
8317 __kmp_threads_capacity
= 0;
8319 // Free old __kmp_threads arrays if they exist.
8320 kmp_old_threads_list_t
*ptr
= __kmp_old_threads_list
;
8322 kmp_old_threads_list_t
*next
= ptr
->next
;
8323 __kmp_free(ptr
->threads
);
8328 #if KMP_USE_DYNAMIC_LOCK
8329 __kmp_cleanup_indirect_user_locks();
8331 __kmp_cleanup_user_locks();
8335 __kmp_free(ompd_env_block
);
8336 ompd_env_block
= NULL
;
8337 ompd_env_block_size
= 0;
8341 #if KMP_AFFINITY_SUPPORTED
8342 KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file
));
8343 __kmp_cpuinfo_file
= NULL
;
8344 #endif /* KMP_AFFINITY_SUPPORTED */
8346 #if KMP_USE_ADAPTIVE_LOCKS
8347 #if KMP_DEBUG_ADAPTIVE_LOCKS
8348 __kmp_print_speculative_stats();
8351 KMP_INTERNAL_FREE(__kmp_nested_nth
.nth
);
8352 __kmp_nested_nth
.nth
= NULL
;
8353 __kmp_nested_nth
.size
= 0;
8354 __kmp_nested_nth
.used
= 0;
8356 KMP_INTERNAL_FREE(__kmp_nested_proc_bind
.bind_types
);
8357 __kmp_nested_proc_bind
.bind_types
= NULL
;
8358 __kmp_nested_proc_bind
.size
= 0;
8359 __kmp_nested_proc_bind
.used
= 0;
8360 if (__kmp_affinity_format
) {
8361 KMP_INTERNAL_FREE(__kmp_affinity_format
);
8362 __kmp_affinity_format
= NULL
;
8365 __kmp_i18n_catclose();
8367 #if KMP_USE_HIER_SCHED
8368 __kmp_hier_scheds
.deallocate();
8371 #if KMP_STATS_ENABLED
8375 KA_TRACE(10, ("__kmp_cleanup: exit\n"));
8378 /* ------------------------------------------------------------------------ */
8380 int __kmp_ignore_mppbeg(void) {
8383 if ((env
= getenv("KMP_IGNORE_MPPBEG")) != NULL
) {
8384 if (__kmp_str_match_false(env
))
8387 // By default __kmpc_begin() is no-op.
8391 int __kmp_ignore_mppend(void) {
8394 if ((env
= getenv("KMP_IGNORE_MPPEND")) != NULL
) {
8395 if (__kmp_str_match_false(env
))
8398 // By default __kmpc_end() is no-op.
8402 void __kmp_internal_begin(void) {
8406 /* this is a very important step as it will register new sibling threads
8407 and assign these new uber threads a new gtid */
8408 gtid
= __kmp_entry_gtid();
8409 root
= __kmp_threads
[gtid
]->th
.th_root
;
8410 KMP_ASSERT(KMP_UBER_GTID(gtid
));
8412 if (root
->r
.r_begin
)
8414 __kmp_acquire_lock(&root
->r
.r_begin_lock
, gtid
);
8415 if (root
->r
.r_begin
) {
8416 __kmp_release_lock(&root
->r
.r_begin_lock
, gtid
);
8420 root
->r
.r_begin
= TRUE
;
8422 __kmp_release_lock(&root
->r
.r_begin_lock
, gtid
);
8425 /* ------------------------------------------------------------------------ */
8427 void __kmp_user_set_library(enum library_type arg
) {
8432 /* first, make sure we are initialized so we can get our gtid */
8434 gtid
= __kmp_entry_gtid();
8435 thread
= __kmp_threads
[gtid
];
8437 root
= thread
->th
.th_root
;
8439 KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid
, arg
,
8441 if (root
->r
.r_in_parallel
) { /* Must be called in serial section of top-level
8443 KMP_WARNING(SetLibraryIncorrectCall
);
8448 case library_serial
:
8449 thread
->th
.th_set_nproc
= 0;
8450 set__nproc(thread
, 1);
8452 case library_turnaround
:
8453 thread
->th
.th_set_nproc
= 0;
8454 set__nproc(thread
, __kmp_dflt_team_nth
? __kmp_dflt_team_nth
8455 : __kmp_dflt_team_nth_ub
);
8457 case library_throughput
:
8458 thread
->th
.th_set_nproc
= 0;
8459 set__nproc(thread
, __kmp_dflt_team_nth
? __kmp_dflt_team_nth
8460 : __kmp_dflt_team_nth_ub
);
8463 KMP_FATAL(UnknownLibraryType
, arg
);
8466 __kmp_aux_set_library(arg
);
8469 void __kmp_aux_set_stacksize(size_t arg
) {
8470 if (!__kmp_init_serial
)
8471 __kmp_serial_initialize();
8474 if (arg
& (0x1000 - 1)) {
8475 arg
&= ~(0x1000 - 1);
8476 if (arg
+ 0x1000) /* check for overflow if we round up */
8480 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock
);
8482 /* only change the default stacksize before the first parallel region */
8483 if (!TCR_4(__kmp_init_parallel
)) {
8484 size_t value
= arg
; /* argument is in bytes */
8486 if (value
< __kmp_sys_min_stksize
)
8487 value
= __kmp_sys_min_stksize
;
8488 else if (value
> KMP_MAX_STKSIZE
)
8489 value
= KMP_MAX_STKSIZE
;
8491 __kmp_stksize
= value
;
8493 __kmp_env_stksize
= TRUE
; /* was KMP_STACKSIZE specified? */
8496 __kmp_release_bootstrap_lock(&__kmp_initz_lock
);
8499 /* set the behaviour of the runtime library */
8500 /* TODO this can cause some odd behaviour with sibling parallelism... */
8501 void __kmp_aux_set_library(enum library_type arg
) {
8502 __kmp_library
= arg
;
8504 switch (__kmp_library
) {
8505 case library_serial
: {
8506 KMP_INFORM(LibraryIsSerial
);
8508 case library_turnaround
:
8509 if (__kmp_use_yield
== 1 && !__kmp_use_yield_exp_set
)
8510 __kmp_use_yield
= 2; // only yield when oversubscribed
8512 case library_throughput
:
8513 if (__kmp_dflt_blocktime
== KMP_MAX_BLOCKTIME
)
8514 __kmp_dflt_blocktime
= KMP_DEFAULT_BLOCKTIME
;
8517 KMP_FATAL(UnknownLibraryType
, arg
);
8521 /* Getting team information common for all team API */
8522 // Returns NULL if not in teams construct
8523 static kmp_team_t
*__kmp_aux_get_team_info(int &teams_serialized
) {
8524 kmp_info_t
*thr
= __kmp_entry_thread();
8525 teams_serialized
= 0;
8526 if (thr
->th
.th_teams_microtask
) {
8527 kmp_team_t
*team
= thr
->th
.th_team
;
8528 int tlevel
= thr
->th
.th_teams_level
; // the level of the teams construct
8529 int ii
= team
->t
.t_level
;
8530 teams_serialized
= team
->t
.t_serialized
;
8531 int level
= tlevel
+ 1;
8532 KMP_DEBUG_ASSERT(ii
>= tlevel
);
8533 while (ii
> level
) {
8534 for (teams_serialized
= team
->t
.t_serialized
;
8535 (teams_serialized
> 0) && (ii
> level
); teams_serialized
--, ii
--) {
8537 if (team
->t
.t_serialized
&& (!teams_serialized
)) {
8538 team
= team
->t
.t_parent
;
8542 team
= team
->t
.t_parent
;
8551 int __kmp_aux_get_team_num() {
8553 kmp_team_t
*team
= __kmp_aux_get_team_info(serialized
);
8555 if (serialized
> 1) {
8556 return 0; // teams region is serialized ( 1 team of 1 thread ).
8558 return team
->t
.t_master_tid
;
8564 int __kmp_aux_get_num_teams() {
8566 kmp_team_t
*team
= __kmp_aux_get_team_info(serialized
);
8568 if (serialized
> 1) {
8571 return team
->t
.t_parent
->t
.t_nproc
;
8577 /* ------------------------------------------------------------------------ */
8580 * Affinity Format Parser
8582 * Field is in form of: %[[[0].]size]type
8583 * % and type are required (%% means print a literal '%')
8584 * type is either single char or long name surrounded by {},
8585 * e.g., N or {num_threads}
8586 * 0 => leading zeros
8587 * . => right justified when size is specified
8588 * by default output is left justified
8589 * size is the *minimum* field length
8590 * All other characters are printed as is
8592 * Available field types:
8593 * L {thread_level} - omp_get_level()
8594 * n {thread_num} - omp_get_thread_num()
8595 * h {host} - name of host machine
8596 * P {process_id} - process id (integer)
8597 * T {thread_identifier} - native thread identifier (integer)
8598 * N {num_threads} - omp_get_num_threads()
8599 * A {ancestor_tnum} - omp_get_ancestor_thread_num(omp_get_level()-1)
8600 * a {thread_affinity} - comma separated list of integers or integer ranges
8601 * (values of affinity mask)
8603 * Implementation-specific field types can be added
8604 * If a type is unknown, print "undefined"
8607 // Structure holding the short name, long name, and corresponding data type
8608 // for snprintf. A table of these will represent the entire valid keyword
8610 typedef struct kmp_affinity_format_field_t
{
8611 char short_name
; // from spec e.g., L -> thread level
8612 const char *long_name
; // from spec thread_level -> thread level
8613 char field_format
; // data type for snprintf (typically 'd' or 's'
8614 // for integer or string)
8615 } kmp_affinity_format_field_t
;
8617 static const kmp_affinity_format_field_t __kmp_affinity_format_table
[] = {
8618 #if KMP_AFFINITY_SUPPORTED
8619 {'A', "thread_affinity", 's'},
8621 {'t', "team_num", 'd'},
8622 {'T', "num_teams", 'd'},
8623 {'L', "nesting_level", 'd'},
8624 {'n', "thread_num", 'd'},
8625 {'N', "num_threads", 'd'},
8626 {'a', "ancestor_tnum", 'd'},
8628 {'P', "process_id", 'd'},
8629 {'i', "native_thread_id", 'd'}};
8631 // Return the number of characters it takes to hold field
8632 static int __kmp_aux_capture_affinity_field(int gtid
, const kmp_info_t
*th
,
8634 kmp_str_buf_t
*field_buffer
) {
8635 int rc
, format_index
, field_value
;
8636 const char *width_left
, *width_right
;
8637 bool pad_zeros
, right_justify
, parse_long_name
, found_valid_name
;
8638 static const int FORMAT_SIZE
= 20;
8639 char format
[FORMAT_SIZE
] = {0};
8640 char absolute_short_name
= 0;
8642 KMP_DEBUG_ASSERT(gtid
>= 0);
8643 KMP_DEBUG_ASSERT(th
);
8644 KMP_DEBUG_ASSERT(**ptr
== '%');
8645 KMP_DEBUG_ASSERT(field_buffer
);
8647 __kmp_str_buf_clear(field_buffer
);
8649 // Skip the initial %
8652 // Check for %% first
8654 __kmp_str_buf_cat(field_buffer
, "%", 1);
8655 (*ptr
)++; // skip over the second %
8659 // Parse field modifiers if they are present
8663 (*ptr
)++; // skip over 0
8665 right_justify
= false;
8667 right_justify
= true;
8668 (*ptr
)++; // skip over .
8670 // Parse width of field: [width_left, width_right)
8671 width_left
= width_right
= NULL
;
8672 if (**ptr
>= '0' && **ptr
<= '9') {
8678 // Create the format for KMP_SNPRINTF based on flags parsed above
8680 format
[format_index
++] = '%';
8682 format
[format_index
++] = '-';
8684 format
[format_index
++] = '0';
8685 if (width_left
&& width_right
) {
8687 // Only allow 8 digit number widths.
8688 // This also prevents overflowing format variable
8689 while (i
< 8 && width_left
< width_right
) {
8690 format
[format_index
++] = *width_left
;
8696 // Parse a name (long or short)
8697 // Canonicalize the name into absolute_short_name
8698 found_valid_name
= false;
8699 parse_long_name
= (**ptr
== '{');
8700 if (parse_long_name
)
8701 (*ptr
)++; // skip initial left brace
8702 for (size_t i
= 0; i
< sizeof(__kmp_affinity_format_table
) /
8703 sizeof(__kmp_affinity_format_table
[0]);
8705 char short_name
= __kmp_affinity_format_table
[i
].short_name
;
8706 const char *long_name
= __kmp_affinity_format_table
[i
].long_name
;
8707 char field_format
= __kmp_affinity_format_table
[i
].field_format
;
8708 if (parse_long_name
) {
8709 size_t length
= KMP_STRLEN(long_name
);
8710 if (strncmp(*ptr
, long_name
, length
) == 0) {
8711 found_valid_name
= true;
8712 (*ptr
) += length
; // skip the long name
8714 } else if (**ptr
== short_name
) {
8715 found_valid_name
= true;
8716 (*ptr
)++; // skip the short name
8718 if (found_valid_name
) {
8719 format
[format_index
++] = field_format
;
8720 format
[format_index
++] = '\0';
8721 absolute_short_name
= short_name
;
8725 if (parse_long_name
) {
8727 absolute_short_name
= 0;
8729 (*ptr
)++; // skip over the right brace
8733 // Attempt to fill the buffer with the requested
8734 // value using snprintf within __kmp_str_buf_print()
8735 switch (absolute_short_name
) {
8737 rc
= __kmp_str_buf_print(field_buffer
, format
, __kmp_aux_get_team_num());
8740 rc
= __kmp_str_buf_print(field_buffer
, format
, __kmp_aux_get_num_teams());
8743 rc
= __kmp_str_buf_print(field_buffer
, format
, th
->th
.th_team
->t
.t_level
);
8746 rc
= __kmp_str_buf_print(field_buffer
, format
, __kmp_tid_from_gtid(gtid
));
8749 static const int BUFFER_SIZE
= 256;
8750 char buf
[BUFFER_SIZE
];
8751 __kmp_expand_host_name(buf
, BUFFER_SIZE
);
8752 rc
= __kmp_str_buf_print(field_buffer
, format
, buf
);
8755 rc
= __kmp_str_buf_print(field_buffer
, format
, getpid());
8758 rc
= __kmp_str_buf_print(field_buffer
, format
, __kmp_gettid());
8761 rc
= __kmp_str_buf_print(field_buffer
, format
, th
->th
.th_team
->t
.t_nproc
);
8765 __kmp_get_ancestor_thread_num(gtid
, th
->th
.th_team
->t
.t_level
- 1);
8766 rc
= __kmp_str_buf_print(field_buffer
, format
, field_value
);
8768 #if KMP_AFFINITY_SUPPORTED
8771 __kmp_str_buf_init(&buf
);
8772 __kmp_affinity_str_buf_mask(&buf
, th
->th
.th_affin_mask
);
8773 rc
= __kmp_str_buf_print(field_buffer
, format
, buf
.str
);
8774 __kmp_str_buf_free(&buf
);
8778 // According to spec, If an implementation does not have info for field
8779 // type, then "undefined" is printed
8780 rc
= __kmp_str_buf_print(field_buffer
, "%s", "undefined");
8782 if (parse_long_name
) {
8791 KMP_ASSERT(format_index
<= FORMAT_SIZE
);
8796 * Return number of characters needed to hold the affinity string
8797 * (not including null byte character)
8798 * The resultant string is printed to buffer, which the caller can then
8801 size_t __kmp_aux_capture_affinity(int gtid
, const char *format
,
8802 kmp_str_buf_t
*buffer
) {
8803 const char *parse_ptr
;
8805 const kmp_info_t
*th
;
8806 kmp_str_buf_t field
;
8808 KMP_DEBUG_ASSERT(buffer
);
8809 KMP_DEBUG_ASSERT(gtid
>= 0);
8811 __kmp_str_buf_init(&field
);
8812 __kmp_str_buf_clear(buffer
);
8814 th
= __kmp_threads
[gtid
];
8817 // If format is NULL or zero-length string, then we use
8818 // affinity-format-var ICV
8820 if (parse_ptr
== NULL
|| *parse_ptr
== '\0') {
8821 parse_ptr
= __kmp_affinity_format
;
8823 KMP_DEBUG_ASSERT(parse_ptr
);
8825 while (*parse_ptr
!= '\0') {
8827 if (*parse_ptr
== '%') {
8828 // Put field in the buffer
8829 int rc
= __kmp_aux_capture_affinity_field(gtid
, th
, &parse_ptr
, &field
);
8830 __kmp_str_buf_catbuf(buffer
, &field
);
8833 // Put literal character in buffer
8834 __kmp_str_buf_cat(buffer
, parse_ptr
, 1);
8839 __kmp_str_buf_free(&field
);
8843 // Displays the affinity string to stdout
8844 void __kmp_aux_display_affinity(int gtid
, const char *format
) {
8846 __kmp_str_buf_init(&buf
);
8847 __kmp_aux_capture_affinity(gtid
, format
, &buf
);
8848 __kmp_fprintf(kmp_out
, "%s" KMP_END_OF_LINE
, buf
.str
);
8849 __kmp_str_buf_free(&buf
);
8852 /* ------------------------------------------------------------------------ */
8853 void __kmp_aux_set_blocktime(int arg
, kmp_info_t
*thread
, int tid
) {
8854 int blocktime
= arg
; /* argument is in microseconds */
8860 __kmp_save_internal_controls(thread
);
8862 /* Normalize and set blocktime for the teams */
8863 if (blocktime
< KMP_MIN_BLOCKTIME
)
8864 blocktime
= KMP_MIN_BLOCKTIME
;
8865 else if (blocktime
> KMP_MAX_BLOCKTIME
)
8866 blocktime
= KMP_MAX_BLOCKTIME
;
8868 set__blocktime_team(thread
->th
.th_team
, tid
, blocktime
);
8869 set__blocktime_team(thread
->th
.th_serial_team
, 0, blocktime
);
8872 /* Calculate and set blocktime intervals for the teams */
8873 bt_intervals
= KMP_INTERVALS_FROM_BLOCKTIME(blocktime
, __kmp_monitor_wakeups
);
8875 set__bt_intervals_team(thread
->th
.th_team
, tid
, bt_intervals
);
8876 set__bt_intervals_team(thread
->th
.th_serial_team
, 0, bt_intervals
);
8879 /* Set whether blocktime has been set to "TRUE" */
8882 set__bt_set_team(thread
->th
.th_team
, tid
, bt_set
);
8883 set__bt_set_team(thread
->th
.th_serial_team
, 0, bt_set
);
8885 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, "
8886 "bt_intervals=%d, monitor_updates=%d\n",
8887 __kmp_gtid_from_tid(tid
, thread
->th
.th_team
),
8888 thread
->th
.th_team
->t
.t_id
, tid
, blocktime
, bt_intervals
,
8889 __kmp_monitor_wakeups
));
8891 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n",
8892 __kmp_gtid_from_tid(tid
, thread
->th
.th_team
),
8893 thread
->th
.th_team
->t
.t_id
, tid
, blocktime
));
8897 void __kmp_aux_set_defaults(char const *str
, size_t len
) {
8898 if (!__kmp_init_serial
) {
8899 __kmp_serial_initialize();
8901 __kmp_env_initialize(str
);
8903 if (__kmp_settings
|| __kmp_display_env
|| __kmp_display_env_verbose
) {
8906 } // __kmp_aux_set_defaults
8908 /* ------------------------------------------------------------------------ */
8909 /* internal fast reduction routines */
8911 PACKED_REDUCTION_METHOD_T
8912 __kmp_determine_reduction_method(
8913 ident_t
*loc
, kmp_int32 global_tid
, kmp_int32 num_vars
, size_t reduce_size
,
8914 void *reduce_data
, void (*reduce_func
)(void *lhs_data
, void *rhs_data
),
8915 kmp_critical_name
*lck
) {
8917 // Default reduction method: critical construct ( lck != NULL, like in current
8919 // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method
8920 // can be selected by RTL
8921 // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method
8922 // can be selected by RTL
8923 // Finally, it's up to OpenMP RTL to make a decision on which method to select
8924 // among generated by PAROPT.
8926 PACKED_REDUCTION_METHOD_T retval
;
8930 KMP_DEBUG_ASSERT(lck
); // it would be nice to test ( lck != 0 )
8932 #define FAST_REDUCTION_ATOMIC_METHOD_GENERATED \
8934 ((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE)))
8935 #define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func))
8937 retval
= critical_reduce_block
;
8939 // another choice of getting a team size (with 1 dynamic deference) is slower
8940 team_size
= __kmp_get_team_num_threads(global_tid
);
8941 if (team_size
== 1) {
8943 retval
= empty_reduce_block
;
8947 int atomic_available
= FAST_REDUCTION_ATOMIC_METHOD_GENERATED
;
8949 #if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 || \
8950 KMP_ARCH_MIPS64 || KMP_ARCH_RISCV64 || KMP_ARCH_LOONGARCH64 || \
8951 KMP_ARCH_VE || KMP_ARCH_S390X || KMP_ARCH_WASM
8953 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
8954 KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD || \
8955 KMP_OS_SOLARIS || KMP_OS_WASI || KMP_OS_AIX
8957 int teamsize_cutoff
= 4;
8959 #if KMP_MIC_SUPPORTED
8960 if (__kmp_mic_type
!= non_mic
) {
8961 teamsize_cutoff
= 8;
8964 int tree_available
= FAST_REDUCTION_TREE_METHOD_GENERATED
;
8965 if (tree_available
) {
8966 if (team_size
<= teamsize_cutoff
) {
8967 if (atomic_available
) {
8968 retval
= atomic_reduce_block
;
8971 retval
= TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER
;
8973 } else if (atomic_available
) {
8974 retval
= atomic_reduce_block
;
8977 #error "Unknown or unsupported OS"
8978 #endif // KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||
8979 // KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD ||
8980 // KMP_OS_SOLARIS || KMP_OS_WASI || KMP_OS_AIX
8982 #elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS || \
8983 KMP_ARCH_WASM || KMP_ARCH_PPC || KMP_ARCH_AARCH64_32
8985 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
8986 KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_HURD || KMP_OS_SOLARIS || \
8987 KMP_OS_WASI || KMP_OS_AIX
8991 if (atomic_available
) {
8992 if (num_vars
<= 2) { // && ( team_size <= 8 ) due to false-sharing ???
8993 retval
= atomic_reduce_block
;
8995 } // otherwise: use critical section
8999 int tree_available
= FAST_REDUCTION_TREE_METHOD_GENERATED
;
9000 if (atomic_available
&& (num_vars
<= 3)) {
9001 retval
= atomic_reduce_block
;
9002 } else if (tree_available
) {
9003 if ((reduce_size
> (9 * sizeof(kmp_real64
))) &&
9004 (reduce_size
< (2000 * sizeof(kmp_real64
)))) {
9005 retval
= TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER
;
9007 } // otherwise: use critical section
9010 #error "Unknown or unsupported OS"
9014 #error "Unknown or unsupported architecture"
9018 // KMP_FORCE_REDUCTION
9020 // If the team is serialized (team_size == 1), ignore the forced reduction
9021 // method and stay with the unsynchronized method (empty_reduce_block)
9022 if (__kmp_force_reduction_method
!= reduction_method_not_defined
&&
9025 PACKED_REDUCTION_METHOD_T forced_retval
= critical_reduce_block
;
9027 int atomic_available
, tree_available
;
9029 switch ((forced_retval
= __kmp_force_reduction_method
)) {
9030 case critical_reduce_block
:
9031 KMP_ASSERT(lck
); // lck should be != 0
9034 case atomic_reduce_block
:
9035 atomic_available
= FAST_REDUCTION_ATOMIC_METHOD_GENERATED
;
9036 if (!atomic_available
) {
9037 KMP_WARNING(RedMethodNotSupported
, "atomic");
9038 forced_retval
= critical_reduce_block
;
9042 case tree_reduce_block
:
9043 tree_available
= FAST_REDUCTION_TREE_METHOD_GENERATED
;
9044 if (!tree_available
) {
9045 KMP_WARNING(RedMethodNotSupported
, "tree");
9046 forced_retval
= critical_reduce_block
;
9048 #if KMP_FAST_REDUCTION_BARRIER
9049 forced_retval
= TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER
;
9055 KMP_ASSERT(0); // "unsupported method specified"
9058 retval
= forced_retval
;
9061 KA_TRACE(10, ("reduction method selected=%08x\n", retval
));
9063 #undef FAST_REDUCTION_TREE_METHOD_GENERATED
9064 #undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED
9068 // this function is for testing set/get/determine reduce method
9069 kmp_int32
__kmp_get_reduce_method(void) {
9070 return ((__kmp_entry_thread()->th
.th_local
.packed_reduction_method
) >> 8);
9073 // Soft pause sets up threads to ignore blocktime and just go to sleep.
9074 // Spin-wait code checks __kmp_pause_status and reacts accordingly.
9075 void __kmp_soft_pause() { __kmp_pause_status
= kmp_soft_paused
; }
9077 // Hard pause shuts down the runtime completely. Resume happens naturally when
9078 // OpenMP is used subsequently.
9079 void __kmp_hard_pause() {
9080 __kmp_pause_status
= kmp_hard_paused
;
9081 __kmp_internal_end_thread(-1);
9084 // Soft resume sets __kmp_pause_status, and wakes up all threads.
9085 void __kmp_resume_if_soft_paused() {
9086 if (__kmp_pause_status
== kmp_soft_paused
) {
9087 __kmp_pause_status
= kmp_not_paused
;
9089 for (int gtid
= 1; gtid
< __kmp_threads_capacity
; ++gtid
) {
9090 kmp_info_t
*thread
= __kmp_threads
[gtid
];
9091 if (thread
) { // Wake it if sleeping
9092 kmp_flag_64
<> fl(&thread
->th
.th_bar
[bs_forkjoin_barrier
].bb
.b_go
,
9094 if (fl
.is_sleeping())
9096 else if (__kmp_try_suspend_mx(thread
)) { // got suspend lock
9097 __kmp_unlock_suspend_mx(thread
); // unlock it; it won't sleep
9098 } else { // thread holds the lock and may sleep soon
9099 do { // until either the thread sleeps, or we can get the lock
9100 if (fl
.is_sleeping()) {
9103 } else if (__kmp_try_suspend_mx(thread
)) {
9104 __kmp_unlock_suspend_mx(thread
);
9114 // This function is called via __kmpc_pause_resource. Returns 0 if successful.
9115 // TODO: add warning messages
9116 int __kmp_pause_resource(kmp_pause_status_t level
) {
9117 if (level
== kmp_not_paused
) { // requesting resume
9118 if (__kmp_pause_status
== kmp_not_paused
) {
9119 // error message about runtime not being paused, so can't resume
9122 KMP_DEBUG_ASSERT(__kmp_pause_status
== kmp_soft_paused
||
9123 __kmp_pause_status
== kmp_hard_paused
);
9124 __kmp_pause_status
= kmp_not_paused
;
9127 } else if (level
== kmp_soft_paused
) { // requesting soft pause
9128 if (__kmp_pause_status
!= kmp_not_paused
) {
9129 // error message about already being paused
9135 } else if (level
== kmp_hard_paused
|| level
== kmp_stop_tool_paused
) {
9136 // requesting hard pause or stop_tool pause
9137 if (__kmp_pause_status
!= kmp_not_paused
) {
9138 // error message about already being paused
9145 // error message about invalid level
9150 void __kmp_omp_display_env(int verbose
) {
9151 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock
);
9152 if (__kmp_init_serial
== 0)
9153 __kmp_do_serial_initialize();
9154 __kmp_display_env_impl(!verbose
, verbose
);
9155 __kmp_release_bootstrap_lock(&__kmp_initz_lock
);
9158 // The team size is changing, so distributed barrier must be modified
9159 void __kmp_resize_dist_barrier(kmp_team_t
*team
, int old_nthreads
,
9161 KMP_DEBUG_ASSERT(__kmp_barrier_release_pattern
[bs_forkjoin_barrier
] ==
9163 kmp_info_t
**other_threads
= team
->t
.t_threads
;
9165 // We want all the workers to stop waiting on the barrier while we adjust the
9166 // size of the team.
9167 for (int f
= 1; f
< old_nthreads
; ++f
) {
9168 KMP_DEBUG_ASSERT(other_threads
[f
] != NULL
);
9169 // Ignore threads that are already inactive or not present in the team
9170 if (team
->t
.t_threads
[f
]->th
.th_used_in_team
.load() == 0) {
9171 // teams construct causes thread_limit to get passed in, and some of
9172 // those could be inactive; just ignore them
9175 // If thread is transitioning still to in_use state, wait for it
9176 if (team
->t
.t_threads
[f
]->th
.th_used_in_team
.load() == 3) {
9177 while (team
->t
.t_threads
[f
]->th
.th_used_in_team
.load() == 3)
9180 // The thread should be in_use now
9181 KMP_DEBUG_ASSERT(team
->t
.t_threads
[f
]->th
.th_used_in_team
.load() == 1);
9182 // Transition to unused state
9183 team
->t
.t_threads
[f
]->th
.th_used_in_team
.store(2);
9184 KMP_DEBUG_ASSERT(team
->t
.t_threads
[f
]->th
.th_used_in_team
.load() == 2);
9186 // Release all the workers
9187 team
->t
.b
->go_release();
9191 // Workers should see transition status 2 and move to 0; but may need to be
9193 int count
= old_nthreads
- 1;
9195 count
= old_nthreads
- 1;
9196 for (int f
= 1; f
< old_nthreads
; ++f
) {
9197 if (other_threads
[f
]->th
.th_used_in_team
.load() != 0) {
9198 if (__kmp_dflt_blocktime
!= KMP_MAX_BLOCKTIME
) { // Wake up the workers
9199 kmp_atomic_flag_64
<> *flag
= (kmp_atomic_flag_64
<> *)CCAST(
9200 void *, other_threads
[f
]->th
.th_sleep_loc
);
9201 __kmp_atomic_resume_64(other_threads
[f
]->th
.th_info
.ds
.ds_gtid
, flag
);
9204 KMP_DEBUG_ASSERT(team
->t
.t_threads
[f
]->th
.th_used_in_team
.load() == 0);
9209 // Now update the barrier size
9210 team
->t
.b
->update_num_threads(new_nthreads
);
9211 team
->t
.b
->go_reset();
9214 void __kmp_add_threads_to_team(kmp_team_t
*team
, int new_nthreads
) {
9215 // Add the threads back to the team
9216 KMP_DEBUG_ASSERT(team
);
9217 // Threads were paused and pointed at th_used_in_team temporarily during a
9218 // resize of the team. We're going to set th_used_in_team to 3 to indicate to
9219 // the thread that it should transition itself back into the team. Then, if
9220 // blocktime isn't infinite, the thread could be sleeping, so we send a resume
9222 for (int f
= 1; f
< new_nthreads
; ++f
) {
9223 KMP_DEBUG_ASSERT(team
->t
.t_threads
[f
]);
9224 (void)KMP_COMPARE_AND_STORE_ACQ32(
9225 &(team
->t
.t_threads
[f
]->th
.th_used_in_team
), 0, 3);
9226 if (__kmp_dflt_blocktime
!= KMP_MAX_BLOCKTIME
) { // Wake up sleeping threads
9227 __kmp_resume_32(team
->t
.t_threads
[f
]->th
.th_info
.ds
.ds_gtid
,
9228 (kmp_flag_32
<false, false> *)NULL
);
9231 // The threads should be transitioning to the team; when they are done, they
9232 // should have set th_used_in_team to 1. This loop forces master to wait until
9233 // all threads have moved into the team and are waiting in the barrier.
9234 int count
= new_nthreads
- 1;
9236 count
= new_nthreads
- 1;
9237 for (int f
= 1; f
< new_nthreads
; ++f
) {
9238 if (team
->t
.t_threads
[f
]->th
.th_used_in_team
.load() == 1) {
9245 // Globals and functions for hidden helper task
9246 kmp_info_t
**__kmp_hidden_helper_threads
;
9247 kmp_info_t
*__kmp_hidden_helper_main_thread
;
9248 std::atomic
<kmp_int32
> __kmp_unexecuted_hidden_helper_tasks
;
9250 kmp_int32 __kmp_hidden_helper_threads_num
= 8;
9251 kmp_int32 __kmp_enable_hidden_helper
= TRUE
;
9253 kmp_int32 __kmp_hidden_helper_threads_num
= 0;
9254 kmp_int32 __kmp_enable_hidden_helper
= FALSE
;
9258 std::atomic
<kmp_int32
> __kmp_hit_hidden_helper_threads_num
;
9260 void __kmp_hidden_helper_wrapper_fn(int *gtid
, int *, ...) {
9261 // This is an explicit synchronization on all hidden helper threads in case
9262 // that when a regular thread pushes a hidden helper task to one hidden
9263 // helper thread, the thread has not been awaken once since they're released
9264 // by the main thread after creating the team.
9265 KMP_ATOMIC_INC(&__kmp_hit_hidden_helper_threads_num
);
9266 while (KMP_ATOMIC_LD_ACQ(&__kmp_hit_hidden_helper_threads_num
) !=
9267 __kmp_hidden_helper_threads_num
)
9270 // If main thread, then wait for signal
9271 if (__kmpc_master(nullptr, *gtid
)) {
9272 // First, unset the initial state and release the initial thread
9273 TCW_4(__kmp_init_hidden_helper_threads
, FALSE
);
9274 __kmp_hidden_helper_initz_release();
9275 __kmp_hidden_helper_main_thread_wait();
9276 // Now wake up all worker threads
9277 for (int i
= 1; i
< __kmp_hit_hidden_helper_threads_num
; ++i
) {
9278 __kmp_hidden_helper_worker_thread_signal();
9284 void __kmp_hidden_helper_threads_initz_routine() {
9285 // Create a new root for hidden helper team/threads
9286 const int gtid
= __kmp_register_root(TRUE
);
9287 __kmp_hidden_helper_main_thread
= __kmp_threads
[gtid
];
9288 __kmp_hidden_helper_threads
= &__kmp_threads
[gtid
];
9289 __kmp_hidden_helper_main_thread
->th
.th_set_nproc
=
9290 __kmp_hidden_helper_threads_num
;
9292 KMP_ATOMIC_ST_REL(&__kmp_hit_hidden_helper_threads_num
, 0);
9294 __kmpc_fork_call(nullptr, 0, __kmp_hidden_helper_wrapper_fn
);
9296 // Set the initialization flag to FALSE
9297 TCW_SYNC_4(__kmp_init_hidden_helper
, FALSE
);
9299 __kmp_hidden_helper_threads_deinitz_release();
9303 Set via KMP_NESTING_MODE, which takes an integer.
9304 Note: we skip duplicate topology levels, and skip levels with only
9306 KMP_NESTING_MODE=0 is the default, and doesn't use nesting mode.
9307 KMP_NESTING_MODE=1 sets as many nesting levels as there are distinct levels
9308 in the topology, and initializes the number of threads at each of those
9309 levels to the number of entities at each level, respectively, below the
9310 entity at the parent level.
9311 KMP_NESTING_MODE=N, where N>1, attempts to create up to N nesting levels,
9312 but starts with nesting OFF -- max-active-levels-var is 1 -- and requires
9313 the user to turn nesting on explicitly. This is an even more experimental
9314 option to this experimental feature, and may change or go away in the
9318 // Allocate space to store nesting levels
9319 void __kmp_init_nesting_mode() {
9320 int levels
= KMP_HW_LAST
;
9321 __kmp_nesting_mode_nlevels
= levels
;
9322 __kmp_nesting_nth_level
= (int *)KMP_INTERNAL_MALLOC(levels
* sizeof(int));
9323 for (int i
= 0; i
< levels
; ++i
)
9324 __kmp_nesting_nth_level
[i
] = 0;
9325 if (__kmp_nested_nth
.size
< levels
) {
9326 __kmp_nested_nth
.nth
=
9327 (int *)KMP_INTERNAL_REALLOC(__kmp_nested_nth
.nth
, levels
* sizeof(int));
9328 __kmp_nested_nth
.size
= levels
;
9332 // Set # threads for top levels of nesting; must be called after topology set
9333 void __kmp_set_nesting_mode_threads() {
9334 kmp_info_t
*thread
= __kmp_threads
[__kmp_entry_gtid()];
9336 if (__kmp_nesting_mode
== 1)
9337 __kmp_nesting_mode_nlevels
= KMP_MAX_ACTIVE_LEVELS_LIMIT
;
9338 else if (__kmp_nesting_mode
> 1)
9339 __kmp_nesting_mode_nlevels
= __kmp_nesting_mode
;
9341 if (__kmp_topology
) { // use topology info
9343 for (loc
= 0, hw_level
= 0; hw_level
< __kmp_topology
->get_depth() &&
9344 loc
< __kmp_nesting_mode_nlevels
;
9345 loc
++, hw_level
++) {
9346 __kmp_nesting_nth_level
[loc
] = __kmp_topology
->get_ratio(hw_level
);
9347 if (__kmp_nesting_nth_level
[loc
] == 1)
9350 // Make sure all cores are used
9351 if (__kmp_nesting_mode
> 1 && loc
> 1) {
9352 int core_level
= __kmp_topology
->get_level(KMP_HW_CORE
);
9353 int num_cores
= __kmp_topology
->get_count(core_level
);
9354 int upper_levels
= 1;
9355 for (int level
= 0; level
< loc
- 1; ++level
)
9356 upper_levels
*= __kmp_nesting_nth_level
[level
];
9357 if (upper_levels
* __kmp_nesting_nth_level
[loc
- 1] < num_cores
)
9358 __kmp_nesting_nth_level
[loc
- 1] =
9359 num_cores
/ __kmp_nesting_nth_level
[loc
- 2];
9361 __kmp_nesting_mode_nlevels
= loc
;
9362 __kmp_nested_nth
.used
= __kmp_nesting_mode_nlevels
;
9363 } else { // no topology info available; provide a reasonable guesstimation
9364 if (__kmp_avail_proc
>= 4) {
9365 __kmp_nesting_nth_level
[0] = __kmp_avail_proc
/ 2;
9366 __kmp_nesting_nth_level
[1] = 2;
9367 __kmp_nesting_mode_nlevels
= 2;
9369 __kmp_nesting_nth_level
[0] = __kmp_avail_proc
;
9370 __kmp_nesting_mode_nlevels
= 1;
9372 __kmp_nested_nth
.used
= __kmp_nesting_mode_nlevels
;
9374 for (int i
= 0; i
< __kmp_nesting_mode_nlevels
; ++i
) {
9375 __kmp_nested_nth
.nth
[i
] = __kmp_nesting_nth_level
[i
];
9377 set__nproc(thread
, __kmp_nesting_nth_level
[0]);
9378 if (__kmp_nesting_mode
> 1 && __kmp_nesting_mode_nlevels
> __kmp_nesting_mode
)
9379 __kmp_nesting_mode_nlevels
= __kmp_nesting_mode
;
9380 if (get__max_active_levels(thread
) > 1) {
9381 // if max levels was set, set nesting mode levels to same
9382 __kmp_nesting_mode_nlevels
= get__max_active_levels(thread
);
9384 if (__kmp_nesting_mode
== 1) // turn on nesting for this case only
9385 set__max_active_levels(thread
, __kmp_nesting_mode_nlevels
);
9388 // Empty symbols to export (see exports_so.txt) when feature is disabled
9390 #if !KMP_STATS_ENABLED
9391 void __kmp_reset_stats() {}
9394 int __kmp_omp_debug_struct_info
= FALSE
;
9395 int __kmp_debugging
= FALSE
;
9397 #if !USE_ITT_BUILD || !USE_ITT_NOTIFY
9398 void __kmp_itt_fini_ittlib() {}
9399 void __kmp_itt_init_ittlib() {}