2 * kmp_tasking.cpp -- OpenMP 3.0 tasking support.
5 //===----------------------------------------------------------------------===//
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11 //===----------------------------------------------------------------------===//
16 #include "kmp_stats.h"
17 #include "kmp_wait_release.h"
18 #include "kmp_taskdeps.h"
21 #include "ompt-specific.h"
24 #if ENABLE_LIBOMPTARGET
25 static void (*tgt_target_nowait_query
)(void **);
27 void __kmp_init_target_task() {
28 *(void **)(&tgt_target_nowait_query
) = KMP_DLSYM("__tgt_target_nowait_query");
32 /* forward declaration */
33 static void __kmp_enable_tasking(kmp_task_team_t
*task_team
,
34 kmp_info_t
*this_thr
);
35 static void __kmp_alloc_task_deque(kmp_info_t
*thread
,
36 kmp_thread_data_t
*thread_data
);
37 static int __kmp_realloc_task_threads_data(kmp_info_t
*thread
,
38 kmp_task_team_t
*task_team
);
39 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid
, kmp_task_t
*ptask
);
41 static kmp_tdg_info_t
*__kmp_find_tdg(kmp_int32 tdg_id
);
42 int __kmp_taskloop_task(int gtid
, void *ptask
);
45 #ifdef BUILD_TIED_TASK_STACK
47 // __kmp_trace_task_stack: print the tied tasks from the task stack in order
50 // gtid: global thread identifier for thread containing stack
51 // thread_data: thread data for task team thread containing stack
52 // threshold: value above which the trace statement triggers
53 // location: string identifying call site of this function (for trace)
54 static void __kmp_trace_task_stack(kmp_int32 gtid
,
55 kmp_thread_data_t
*thread_data
,
56 int threshold
, char *location
) {
57 kmp_task_stack_t
*task_stack
= &thread_data
->td
.td_susp_tied_tasks
;
58 kmp_taskdata_t
**stack_top
= task_stack
->ts_top
;
59 kmp_int32 entries
= task_stack
->ts_entries
;
60 kmp_taskdata_t
*tied_task
;
64 ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, "
65 "first_block = %p, stack_top = %p \n",
66 location
, gtid
, entries
, task_stack
->ts_first_block
, stack_top
));
68 KMP_DEBUG_ASSERT(stack_top
!= NULL
);
69 KMP_DEBUG_ASSERT(entries
> 0);
71 while (entries
!= 0) {
72 KMP_DEBUG_ASSERT(stack_top
!= &task_stack
->ts_first_block
.sb_block
[0]);
73 // fix up ts_top if we need to pop from previous block
74 if (entries
& TASK_STACK_INDEX_MASK
== 0) {
75 kmp_stack_block_t
*stack_block
= (kmp_stack_block_t
*)(stack_top
);
77 stack_block
= stack_block
->sb_prev
;
78 stack_top
= &stack_block
->sb_block
[TASK_STACK_BLOCK_SIZE
];
85 tied_task
= *stack_top
;
87 KMP_DEBUG_ASSERT(tied_task
!= NULL
);
88 KMP_DEBUG_ASSERT(tied_task
->td_flags
.tasktype
== TASK_TIED
);
91 ("__kmp_trace_task_stack(%s): gtid=%d, entry=%d, "
92 "stack_top=%p, tied_task=%p\n",
93 location
, gtid
, entries
, stack_top
, tied_task
));
95 KMP_DEBUG_ASSERT(stack_top
== &task_stack
->ts_first_block
.sb_block
[0]);
98 ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n",
102 // __kmp_init_task_stack: initialize the task stack for the first time
103 // after a thread_data structure is created.
104 // It should not be necessary to do this again (assuming the stack works).
106 // gtid: global thread identifier of calling thread
107 // thread_data: thread data for task team thread containing stack
108 static void __kmp_init_task_stack(kmp_int32 gtid
,
109 kmp_thread_data_t
*thread_data
) {
110 kmp_task_stack_t
*task_stack
= &thread_data
->td
.td_susp_tied_tasks
;
111 kmp_stack_block_t
*first_block
;
113 // set up the first block of the stack
114 first_block
= &task_stack
->ts_first_block
;
115 task_stack
->ts_top
= (kmp_taskdata_t
**)first_block
;
116 memset((void *)first_block
, '\0',
117 TASK_STACK_BLOCK_SIZE
* sizeof(kmp_taskdata_t
*));
119 // initialize the stack to be empty
120 task_stack
->ts_entries
= TASK_STACK_EMPTY
;
121 first_block
->sb_next
= NULL
;
122 first_block
->sb_prev
= NULL
;
125 // __kmp_free_task_stack: free the task stack when thread_data is destroyed.
127 // gtid: global thread identifier for calling thread
128 // thread_data: thread info for thread containing stack
129 static void __kmp_free_task_stack(kmp_int32 gtid
,
130 kmp_thread_data_t
*thread_data
) {
131 kmp_task_stack_t
*task_stack
= &thread_data
->td
.td_susp_tied_tasks
;
132 kmp_stack_block_t
*stack_block
= &task_stack
->ts_first_block
;
134 KMP_DEBUG_ASSERT(task_stack
->ts_entries
== TASK_STACK_EMPTY
);
135 // free from the second block of the stack
136 while (stack_block
!= NULL
) {
137 kmp_stack_block_t
*next_block
= (stack_block
) ? stack_block
->sb_next
: NULL
;
139 stack_block
->sb_next
= NULL
;
140 stack_block
->sb_prev
= NULL
;
141 if (stack_block
!= &task_stack
->ts_first_block
) {
142 __kmp_thread_free(thread
,
143 stack_block
); // free the block, if not the first
145 stack_block
= next_block
;
147 // initialize the stack to be empty
148 task_stack
->ts_entries
= 0;
149 task_stack
->ts_top
= NULL
;
152 // __kmp_push_task_stack: Push the tied task onto the task stack.
153 // Grow the stack if necessary by allocating another block.
155 // gtid: global thread identifier for calling thread
156 // thread: thread info for thread containing stack
157 // tied_task: the task to push on the stack
158 static void __kmp_push_task_stack(kmp_int32 gtid
, kmp_info_t
*thread
,
159 kmp_taskdata_t
*tied_task
) {
160 // GEH - need to consider what to do if tt_threads_data not allocated yet
161 kmp_thread_data_t
*thread_data
=
162 &thread
->th
.th_task_team
->tt
.tt_threads_data
[__kmp_tid_from_gtid(gtid
)];
163 kmp_task_stack_t
*task_stack
= &thread_data
->td
.td_susp_tied_tasks
;
165 if (tied_task
->td_flags
.team_serial
|| tied_task
->td_flags
.tasking_ser
) {
166 return; // Don't push anything on stack if team or team tasks are serialized
169 KMP_DEBUG_ASSERT(tied_task
->td_flags
.tasktype
== TASK_TIED
);
170 KMP_DEBUG_ASSERT(task_stack
->ts_top
!= NULL
);
173 ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n",
174 gtid
, thread
, tied_task
));
176 *(task_stack
->ts_top
) = tied_task
;
178 // Do bookkeeping for next push
179 task_stack
->ts_top
++;
180 task_stack
->ts_entries
++;
182 if (task_stack
->ts_entries
& TASK_STACK_INDEX_MASK
== 0) {
183 // Find beginning of this task block
184 kmp_stack_block_t
*stack_block
=
185 (kmp_stack_block_t
*)(task_stack
->ts_top
- TASK_STACK_BLOCK_SIZE
);
187 // Check if we already have a block
188 if (stack_block
->sb_next
!=
189 NULL
) { // reset ts_top to beginning of next block
190 task_stack
->ts_top
= &stack_block
->sb_next
->sb_block
[0];
191 } else { // Alloc new block and link it up
192 kmp_stack_block_t
*new_block
= (kmp_stack_block_t
*)__kmp_thread_calloc(
193 thread
, sizeof(kmp_stack_block_t
));
195 task_stack
->ts_top
= &new_block
->sb_block
[0];
196 stack_block
->sb_next
= new_block
;
197 new_block
->sb_prev
= stack_block
;
198 new_block
->sb_next
= NULL
;
202 ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n",
203 gtid
, tied_task
, new_block
));
206 KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid
,
210 // __kmp_pop_task_stack: Pop the tied task from the task stack. Don't return
211 // the task, just check to make sure it matches the ending task passed in.
213 // gtid: global thread identifier for the calling thread
214 // thread: thread info structure containing stack
215 // tied_task: the task popped off the stack
216 // ending_task: the task that is ending (should match popped task)
217 static void __kmp_pop_task_stack(kmp_int32 gtid
, kmp_info_t
*thread
,
218 kmp_taskdata_t
*ending_task
) {
219 // GEH - need to consider what to do if tt_threads_data not allocated yet
220 kmp_thread_data_t
*thread_data
=
221 &thread
->th
.th_task_team
->tt_threads_data
[__kmp_tid_from_gtid(gtid
)];
222 kmp_task_stack_t
*task_stack
= &thread_data
->td
.td_susp_tied_tasks
;
223 kmp_taskdata_t
*tied_task
;
225 if (ending_task
->td_flags
.team_serial
|| ending_task
->td_flags
.tasking_ser
) {
226 // Don't pop anything from stack if team or team tasks are serialized
230 KMP_DEBUG_ASSERT(task_stack
->ts_top
!= NULL
);
231 KMP_DEBUG_ASSERT(task_stack
->ts_entries
> 0);
233 KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid
,
236 // fix up ts_top if we need to pop from previous block
237 if (task_stack
->ts_entries
& TASK_STACK_INDEX_MASK
== 0) {
238 kmp_stack_block_t
*stack_block
= (kmp_stack_block_t
*)(task_stack
->ts_top
);
240 stack_block
= stack_block
->sb_prev
;
241 task_stack
->ts_top
= &stack_block
->sb_block
[TASK_STACK_BLOCK_SIZE
];
244 // finish bookkeeping
245 task_stack
->ts_top
--;
246 task_stack
->ts_entries
--;
248 tied_task
= *(task_stack
->ts_top
);
250 KMP_DEBUG_ASSERT(tied_task
!= NULL
);
251 KMP_DEBUG_ASSERT(tied_task
->td_flags
.tasktype
== TASK_TIED
);
252 KMP_DEBUG_ASSERT(tied_task
== ending_task
); // If we built the stack correctly
254 KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid
,
258 #endif /* BUILD_TIED_TASK_STACK */
260 // returns 1 if new task is allowed to execute, 0 otherwise
261 // checks Task Scheduling constraint (if requested) and
262 // mutexinoutset dependencies if any
263 static bool __kmp_task_is_allowed(int gtid
, const kmp_int32 is_constrained
,
264 const kmp_taskdata_t
*tasknew
,
265 const kmp_taskdata_t
*taskcurr
) {
266 if (is_constrained
&& (tasknew
->td_flags
.tiedness
== TASK_TIED
)) {
267 // Check if the candidate obeys the Task Scheduling Constraints (TSC)
268 // only descendant of all deferred tied tasks can be scheduled, checking
269 // the last one is enough, as it in turn is the descendant of all others
270 kmp_taskdata_t
*current
= taskcurr
->td_last_tied
;
271 KMP_DEBUG_ASSERT(current
!= NULL
);
272 // check if the task is not suspended on barrier
273 if (current
->td_flags
.tasktype
== TASK_EXPLICIT
||
274 current
->td_taskwait_thread
> 0) { // <= 0 on barrier
275 kmp_int32 level
= current
->td_level
;
276 kmp_taskdata_t
*parent
= tasknew
->td_parent
;
277 while (parent
!= current
&& parent
->td_level
> level
) {
278 // check generation up to the level of the current task
279 parent
= parent
->td_parent
;
280 KMP_DEBUG_ASSERT(parent
!= NULL
);
282 if (parent
!= current
)
286 // Check mutexinoutset dependencies, acquire locks
287 kmp_depnode_t
*node
= tasknew
->td_depnode
;
289 if (!tasknew
->is_taskgraph
&& UNLIKELY(node
&& (node
->dn
.mtx_num_locks
> 0))) {
291 if (UNLIKELY(node
&& (node
->dn
.mtx_num_locks
> 0))) {
293 for (int i
= 0; i
< node
->dn
.mtx_num_locks
; ++i
) {
294 KMP_DEBUG_ASSERT(node
->dn
.mtx_locks
[i
] != NULL
);
295 if (__kmp_test_lock(node
->dn
.mtx_locks
[i
], gtid
))
297 // could not get the lock, release previous locks
298 for (int j
= i
- 1; j
>= 0; --j
)
299 __kmp_release_lock(node
->dn
.mtx_locks
[j
], gtid
);
302 // negative num_locks means all locks acquired successfully
303 node
->dn
.mtx_num_locks
= -node
->dn
.mtx_num_locks
;
308 // __kmp_realloc_task_deque:
309 // Re-allocates a task deque for a particular thread, copies the content from
310 // the old deque and adjusts the necessary data structures relating to the
311 // deque. This operation must be done with the deque_lock being held
312 static void __kmp_realloc_task_deque(kmp_info_t
*thread
,
313 kmp_thread_data_t
*thread_data
) {
314 kmp_int32 size
= TASK_DEQUE_SIZE(thread_data
->td
);
315 KMP_DEBUG_ASSERT(TCR_4(thread_data
->td
.td_deque_ntasks
) == size
);
316 kmp_int32 new_size
= 2 * size
;
318 KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to "
319 "%d] for thread_data %p\n",
320 __kmp_gtid_from_thread(thread
), size
, new_size
, thread_data
));
322 kmp_taskdata_t
**new_deque
=
323 (kmp_taskdata_t
**)__kmp_allocate(new_size
* sizeof(kmp_taskdata_t
*));
326 for (i
= thread_data
->td
.td_deque_head
, j
= 0; j
< size
;
327 i
= (i
+ 1) & TASK_DEQUE_MASK(thread_data
->td
), j
++)
328 new_deque
[j
] = thread_data
->td
.td_deque
[i
];
330 __kmp_free(thread_data
->td
.td_deque
);
332 thread_data
->td
.td_deque_head
= 0;
333 thread_data
->td
.td_deque_tail
= size
;
334 thread_data
->td
.td_deque
= new_deque
;
335 thread_data
->td
.td_deque_size
= new_size
;
338 static kmp_task_pri_t
*__kmp_alloc_task_pri_list() {
339 kmp_task_pri_t
*l
= (kmp_task_pri_t
*)__kmp_allocate(sizeof(kmp_task_pri_t
));
340 kmp_thread_data_t
*thread_data
= &l
->td
;
341 __kmp_init_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
342 thread_data
->td
.td_deque_last_stolen
= -1;
343 KE_TRACE(20, ("__kmp_alloc_task_pri_list: T#%d allocating deque[%d] "
344 "for thread_data %p\n",
345 __kmp_get_gtid(), INITIAL_TASK_DEQUE_SIZE
, thread_data
));
346 thread_data
->td
.td_deque
= (kmp_taskdata_t
**)__kmp_allocate(
347 INITIAL_TASK_DEQUE_SIZE
* sizeof(kmp_taskdata_t
*));
348 thread_data
->td
.td_deque_size
= INITIAL_TASK_DEQUE_SIZE
;
352 // The function finds the deque of priority tasks with given priority, or
353 // allocates a new deque and put it into sorted (high -> low) list of deques.
354 // Deques of non-default priority tasks are shared between all threads in team,
355 // as opposed to per-thread deques of tasks with default priority.
356 // The function is called under the lock task_team->tt.tt_task_pri_lock.
357 static kmp_thread_data_t
*
358 __kmp_get_priority_deque_data(kmp_task_team_t
*task_team
, kmp_int32 pri
) {
359 kmp_thread_data_t
*thread_data
;
360 kmp_task_pri_t
*lst
= task_team
->tt
.tt_task_pri_list
;
361 if (lst
->priority
== pri
) {
362 // Found queue of tasks with given priority.
363 thread_data
= &lst
->td
;
364 } else if (lst
->priority
< pri
) {
365 // All current priority queues contain tasks with lower priority.
366 // Allocate new one for given priority tasks.
367 kmp_task_pri_t
*list
= __kmp_alloc_task_pri_list();
368 thread_data
= &list
->td
;
369 list
->priority
= pri
;
371 task_team
->tt
.tt_task_pri_list
= list
;
372 } else { // task_team->tt.tt_task_pri_list->priority > pri
373 kmp_task_pri_t
*next_queue
= lst
->next
;
374 while (next_queue
&& next_queue
->priority
> pri
) {
376 next_queue
= lst
->next
;
378 // lst->priority > pri && (next == NULL || pri >= next->priority)
379 if (next_queue
== NULL
) {
380 // No queue with pri priority, need to allocate new one.
381 kmp_task_pri_t
*list
= __kmp_alloc_task_pri_list();
382 thread_data
= &list
->td
;
383 list
->priority
= pri
;
386 } else if (next_queue
->priority
== pri
) {
387 // Found queue of tasks with given priority.
388 thread_data
= &next_queue
->td
;
389 } else { // lst->priority > pri > next->priority
390 // insert newly allocated between existed queues
391 kmp_task_pri_t
*list
= __kmp_alloc_task_pri_list();
392 thread_data
= &list
->td
;
393 list
->priority
= pri
;
394 list
->next
= next_queue
;
401 // __kmp_push_priority_task: Add a task to the team's priority task deque
402 static kmp_int32
__kmp_push_priority_task(kmp_int32 gtid
, kmp_info_t
*thread
,
403 kmp_taskdata_t
*taskdata
,
404 kmp_task_team_t
*task_team
,
406 kmp_thread_data_t
*thread_data
= NULL
;
408 ("__kmp_push_priority_task: T#%d trying to push task %p, pri %d.\n",
409 gtid
, taskdata
, pri
));
411 // Find task queue specific to priority value
412 kmp_task_pri_t
*lst
= task_team
->tt
.tt_task_pri_list
;
413 if (UNLIKELY(lst
== NULL
)) {
414 __kmp_acquire_bootstrap_lock(&task_team
->tt
.tt_task_pri_lock
);
415 if (task_team
->tt
.tt_task_pri_list
== NULL
) {
416 // List of queues is still empty, allocate one.
417 kmp_task_pri_t
*list
= __kmp_alloc_task_pri_list();
418 thread_data
= &list
->td
;
419 list
->priority
= pri
;
421 task_team
->tt
.tt_task_pri_list
= list
;
423 // Other thread initialized a queue. Check if it fits and get thread_data.
424 thread_data
= __kmp_get_priority_deque_data(task_team
, pri
);
426 __kmp_release_bootstrap_lock(&task_team
->tt
.tt_task_pri_lock
);
428 if (lst
->priority
== pri
) {
429 // Found queue of tasks with given priority.
430 thread_data
= &lst
->td
;
432 __kmp_acquire_bootstrap_lock(&task_team
->tt
.tt_task_pri_lock
);
433 thread_data
= __kmp_get_priority_deque_data(task_team
, pri
);
434 __kmp_release_bootstrap_lock(&task_team
->tt
.tt_task_pri_lock
);
437 KMP_DEBUG_ASSERT(thread_data
);
439 __kmp_acquire_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
440 // Check if deque is full
441 if (TCR_4(thread_data
->td
.td_deque_ntasks
) >=
442 TASK_DEQUE_SIZE(thread_data
->td
)) {
443 if (__kmp_enable_task_throttling
&&
444 __kmp_task_is_allowed(gtid
, __kmp_task_stealing_constraint
, taskdata
,
445 thread
->th
.th_current_task
)) {
446 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
447 KA_TRACE(20, ("__kmp_push_priority_task: T#%d deque is full; returning "
448 "TASK_NOT_PUSHED for task %p\n",
450 return TASK_NOT_PUSHED
;
452 // expand deque to push the task which is not allowed to execute
453 __kmp_realloc_task_deque(thread
, thread_data
);
456 KMP_DEBUG_ASSERT(TCR_4(thread_data
->td
.td_deque_ntasks
) <
457 TASK_DEQUE_SIZE(thread_data
->td
));
459 thread_data
->td
.td_deque
[thread_data
->td
.td_deque_tail
] = taskdata
;
461 thread_data
->td
.td_deque_tail
=
462 (thread_data
->td
.td_deque_tail
+ 1) & TASK_DEQUE_MASK(thread_data
->td
);
463 TCW_4(thread_data
->td
.td_deque_ntasks
,
464 TCR_4(thread_data
->td
.td_deque_ntasks
) + 1); // Adjust task count
465 KMP_FSYNC_RELEASING(thread
->th
.th_current_task
); // releasing self
466 KMP_FSYNC_RELEASING(taskdata
); // releasing child
467 KA_TRACE(20, ("__kmp_push_priority_task: T#%d returning "
468 "TASK_SUCCESSFULLY_PUSHED: task=%p ntasks=%d head=%u tail=%u\n",
469 gtid
, taskdata
, thread_data
->td
.td_deque_ntasks
,
470 thread_data
->td
.td_deque_head
, thread_data
->td
.td_deque_tail
));
471 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
472 task_team
->tt
.tt_num_task_pri
++; // atomic inc
473 return TASK_SUCCESSFULLY_PUSHED
;
476 // __kmp_push_task: Add a task to the thread's deque
477 static kmp_int32
__kmp_push_task(kmp_int32 gtid
, kmp_task_t
*task
) {
478 kmp_info_t
*thread
= __kmp_threads
[gtid
];
479 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
481 // If we encounter a hidden helper task, and the current thread is not a
482 // hidden helper thread, we have to give the task to any hidden helper thread
483 // starting from its shadow one.
484 if (UNLIKELY(taskdata
->td_flags
.hidden_helper
&&
485 !KMP_HIDDEN_HELPER_THREAD(gtid
))) {
486 kmp_int32 shadow_gtid
= KMP_GTID_TO_SHADOW_GTID(gtid
);
487 __kmpc_give_task(task
, __kmp_tid_from_gtid(shadow_gtid
));
488 // Signal the hidden helper threads.
489 __kmp_hidden_helper_worker_thread_signal();
490 return TASK_SUCCESSFULLY_PUSHED
;
493 kmp_task_team_t
*task_team
= thread
->th
.th_task_team
;
494 kmp_int32 tid
= __kmp_tid_from_gtid(gtid
);
495 kmp_thread_data_t
*thread_data
;
498 ("__kmp_push_task: T#%d trying to push task %p.\n", gtid
, taskdata
));
500 if (UNLIKELY(taskdata
->td_flags
.tiedness
== TASK_UNTIED
)) {
501 // untied task needs to increment counter so that the task structure is not
503 kmp_int32 counter
= 1 + KMP_ATOMIC_INC(&taskdata
->td_untied_count
);
504 KMP_DEBUG_USE_VAR(counter
);
507 ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n",
508 gtid
, counter
, taskdata
));
511 // The first check avoids building task_team thread data if serialized
512 if (UNLIKELY(taskdata
->td_flags
.task_serial
)) {
513 KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning "
514 "TASK_NOT_PUSHED for task %p\n",
516 return TASK_NOT_PUSHED
;
519 // Now that serialized tasks have returned, we can assume that we are not in
520 // immediate exec mode
521 KMP_DEBUG_ASSERT(__kmp_tasking_mode
!= tskm_immediate_exec
);
522 if (UNLIKELY(!KMP_TASKING_ENABLED(task_team
))) {
523 __kmp_enable_tasking(task_team
, thread
);
525 KMP_DEBUG_ASSERT(TCR_4(task_team
->tt
.tt_found_tasks
) == TRUE
);
526 KMP_DEBUG_ASSERT(TCR_PTR(task_team
->tt
.tt_threads_data
) != NULL
);
528 if (taskdata
->td_flags
.priority_specified
&& task
->data2
.priority
> 0 &&
529 __kmp_max_task_priority
> 0) {
530 int pri
= KMP_MIN(task
->data2
.priority
, __kmp_max_task_priority
);
531 return __kmp_push_priority_task(gtid
, thread
, taskdata
, task_team
, pri
);
534 // Find tasking deque specific to encountering thread
535 thread_data
= &task_team
->tt
.tt_threads_data
[tid
];
537 // No lock needed since only owner can allocate. If the task is hidden_helper,
538 // we don't need it either because we have initialized the dequeue for hidden
539 // helper thread data.
540 if (UNLIKELY(thread_data
->td
.td_deque
== NULL
)) {
541 __kmp_alloc_task_deque(thread
, thread_data
);
545 // Check if deque is full
546 if (TCR_4(thread_data
->td
.td_deque_ntasks
) >=
547 TASK_DEQUE_SIZE(thread_data
->td
)) {
548 if (__kmp_enable_task_throttling
&&
549 __kmp_task_is_allowed(gtid
, __kmp_task_stealing_constraint
, taskdata
,
550 thread
->th
.th_current_task
)) {
551 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning "
552 "TASK_NOT_PUSHED for task %p\n",
554 return TASK_NOT_PUSHED
;
556 __kmp_acquire_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
558 if (TCR_4(thread_data
->td
.td_deque_ntasks
) >=
559 TASK_DEQUE_SIZE(thread_data
->td
)) {
560 // expand deque to push the task which is not allowed to execute
561 __kmp_realloc_task_deque(thread
, thread_data
);
565 // Lock the deque for the task push operation
567 __kmp_acquire_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
568 // Need to recheck as we can get a proxy task from thread outside of OpenMP
569 if (TCR_4(thread_data
->td
.td_deque_ntasks
) >=
570 TASK_DEQUE_SIZE(thread_data
->td
)) {
571 if (__kmp_enable_task_throttling
&&
572 __kmp_task_is_allowed(gtid
, __kmp_task_stealing_constraint
, taskdata
,
573 thread
->th
.th_current_task
)) {
574 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
575 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; "
576 "returning TASK_NOT_PUSHED for task %p\n",
578 return TASK_NOT_PUSHED
;
580 // expand deque to push the task which is not allowed to execute
581 __kmp_realloc_task_deque(thread
, thread_data
);
585 // Must have room since no thread can add tasks but calling thread
586 KMP_DEBUG_ASSERT(TCR_4(thread_data
->td
.td_deque_ntasks
) <
587 TASK_DEQUE_SIZE(thread_data
->td
));
589 thread_data
->td
.td_deque
[thread_data
->td
.td_deque_tail
] =
590 taskdata
; // Push taskdata
592 thread_data
->td
.td_deque_tail
=
593 (thread_data
->td
.td_deque_tail
+ 1) & TASK_DEQUE_MASK(thread_data
->td
);
594 TCW_4(thread_data
->td
.td_deque_ntasks
,
595 TCR_4(thread_data
->td
.td_deque_ntasks
) + 1); // Adjust task count
596 KMP_FSYNC_RELEASING(thread
->th
.th_current_task
); // releasing self
597 KMP_FSYNC_RELEASING(taskdata
); // releasing child
598 KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: "
599 "task=%p ntasks=%d head=%u tail=%u\n",
600 gtid
, taskdata
, thread_data
->td
.td_deque_ntasks
,
601 thread_data
->td
.td_deque_head
, thread_data
->td
.td_deque_tail
));
603 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
605 return TASK_SUCCESSFULLY_PUSHED
;
608 // __kmp_pop_current_task_from_thread: set up current task from called thread
611 // this_thr: thread structure to set current_task in.
612 void __kmp_pop_current_task_from_thread(kmp_info_t
*this_thr
) {
613 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d "
614 "this_thread=%p, curtask=%p, "
615 "curtask_parent=%p\n",
616 0, this_thr
, this_thr
->th
.th_current_task
,
617 this_thr
->th
.th_current_task
->td_parent
));
619 this_thr
->th
.th_current_task
= this_thr
->th
.th_current_task
->td_parent
;
621 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d "
622 "this_thread=%p, curtask=%p, "
623 "curtask_parent=%p\n",
624 0, this_thr
, this_thr
->th
.th_current_task
,
625 this_thr
->th
.th_current_task
->td_parent
));
628 // __kmp_push_current_task_to_thread: set up current task in called thread for a
631 // this_thr: thread structure to set up
632 // team: team for implicit task data
633 // tid: thread within team to set up
634 void __kmp_push_current_task_to_thread(kmp_info_t
*this_thr
, kmp_team_t
*team
,
636 // current task of the thread is a parent of the new just created implicit
638 KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p "
641 tid
, this_thr
, this_thr
->th
.th_current_task
,
642 team
->t
.t_implicit_task_taskdata
[tid
].td_parent
));
644 KMP_DEBUG_ASSERT(this_thr
!= NULL
);
647 if (this_thr
->th
.th_current_task
!= &team
->t
.t_implicit_task_taskdata
[0]) {
648 team
->t
.t_implicit_task_taskdata
[0].td_parent
=
649 this_thr
->th
.th_current_task
;
650 this_thr
->th
.th_current_task
= &team
->t
.t_implicit_task_taskdata
[0];
653 team
->t
.t_implicit_task_taskdata
[tid
].td_parent
=
654 team
->t
.t_implicit_task_taskdata
[0].td_parent
;
655 this_thr
->th
.th_current_task
= &team
->t
.t_implicit_task_taskdata
[tid
];
658 KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p "
661 tid
, this_thr
, this_thr
->th
.th_current_task
,
662 team
->t
.t_implicit_task_taskdata
[tid
].td_parent
));
665 // __kmp_task_start: bookkeeping for a task starting execution
667 // GTID: global thread id of calling thread
668 // task: task starting execution
669 // current_task: task suspending
670 static void __kmp_task_start(kmp_int32 gtid
, kmp_task_t
*task
,
671 kmp_taskdata_t
*current_task
) {
672 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
673 kmp_info_t
*thread
= __kmp_threads
[gtid
];
676 ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n",
677 gtid
, taskdata
, current_task
));
679 KMP_DEBUG_ASSERT(taskdata
->td_flags
.tasktype
== TASK_EXPLICIT
);
681 // mark currently executing task as suspended
682 // TODO: GEH - make sure root team implicit task is initialized properly.
683 // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 );
684 current_task
->td_flags
.executing
= 0;
686 // Add task to stack if tied
687 #ifdef BUILD_TIED_TASK_STACK
688 if (taskdata
->td_flags
.tiedness
== TASK_TIED
) {
689 __kmp_push_task_stack(gtid
, thread
, taskdata
);
691 #endif /* BUILD_TIED_TASK_STACK */
693 // mark starting task as executing and as current task
694 thread
->th
.th_current_task
= taskdata
;
696 KMP_DEBUG_ASSERT(taskdata
->td_flags
.started
== 0 ||
697 taskdata
->td_flags
.tiedness
== TASK_UNTIED
);
698 KMP_DEBUG_ASSERT(taskdata
->td_flags
.executing
== 0 ||
699 taskdata
->td_flags
.tiedness
== TASK_UNTIED
);
700 taskdata
->td_flags
.started
= 1;
701 taskdata
->td_flags
.executing
= 1;
702 KMP_DEBUG_ASSERT(taskdata
->td_flags
.complete
== 0);
703 KMP_DEBUG_ASSERT(taskdata
->td_flags
.freed
== 0);
705 // GEH TODO: shouldn't we pass some sort of location identifier here?
706 // APT: yes, we will pass location here.
707 // need to store current thread state (in a thread or taskdata structure)
708 // before setting work_state, otherwise wrong state is set after end of task
710 KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid
, taskdata
));
716 //------------------------------------------------------------------------------
718 // Initialize OMPT fields maintained by a task. This will only be called after
719 // ompt_start_tool, so we already know whether ompt is enabled or not.
721 static inline void __ompt_task_init(kmp_taskdata_t
*task
, int tid
) {
722 // The calls to __ompt_task_init already have the ompt_enabled condition.
723 task
->ompt_task_info
.task_data
.value
= 0;
724 task
->ompt_task_info
.frame
.exit_frame
= ompt_data_none
;
725 task
->ompt_task_info
.frame
.enter_frame
= ompt_data_none
;
726 task
->ompt_task_info
.frame
.exit_frame_flags
=
727 ompt_frame_runtime
| ompt_frame_framepointer
;
728 task
->ompt_task_info
.frame
.enter_frame_flags
=
729 ompt_frame_runtime
| ompt_frame_framepointer
;
730 task
->ompt_task_info
.dispatch_chunk
.start
= 0;
731 task
->ompt_task_info
.dispatch_chunk
.iterations
= 0;
734 // __ompt_task_start:
735 // Build and trigger task-begin event
736 static inline void __ompt_task_start(kmp_task_t
*task
,
737 kmp_taskdata_t
*current_task
,
739 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
740 ompt_task_status_t status
= ompt_task_switch
;
741 if (__kmp_threads
[gtid
]->th
.ompt_thread_info
.ompt_task_yielded
) {
742 status
= ompt_task_yield
;
743 __kmp_threads
[gtid
]->th
.ompt_thread_info
.ompt_task_yielded
= 0;
745 /* let OMPT know that we're about to run this task */
746 if (ompt_enabled
.ompt_callback_task_schedule
) {
747 ompt_callbacks
.ompt_callback(ompt_callback_task_schedule
)(
748 &(current_task
->ompt_task_info
.task_data
), status
,
749 &(taskdata
->ompt_task_info
.task_data
));
751 taskdata
->ompt_task_info
.scheduling_parent
= current_task
;
754 // __ompt_task_finish:
755 // Build and trigger final task-schedule event
756 static inline void __ompt_task_finish(kmp_task_t
*task
,
757 kmp_taskdata_t
*resumed_task
,
758 ompt_task_status_t status
) {
759 if (ompt_enabled
.ompt_callback_task_schedule
) {
760 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
761 if (__kmp_omp_cancellation
&& taskdata
->td_taskgroup
&&
762 taskdata
->td_taskgroup
->cancel_request
== cancel_taskgroup
) {
763 status
= ompt_task_cancel
;
766 /* let OMPT know that we're returning to the callee task */
767 ompt_callbacks
.ompt_callback(ompt_callback_task_schedule
)(
768 &(taskdata
->ompt_task_info
.task_data
), status
,
769 (resumed_task
? &(resumed_task
->ompt_task_info
.task_data
) : NULL
));
775 static void __kmpc_omp_task_begin_if0_template(ident_t
*loc_ref
, kmp_int32 gtid
,
778 void *return_address
) {
779 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
780 kmp_taskdata_t
*current_task
= __kmp_threads
[gtid
]->th
.th_current_task
;
782 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p "
784 gtid
, loc_ref
, taskdata
, current_task
));
786 if (UNLIKELY(taskdata
->td_flags
.tiedness
== TASK_UNTIED
)) {
787 // untied task needs to increment counter so that the task structure is not
789 kmp_int32 counter
= 1 + KMP_ATOMIC_INC(&taskdata
->td_untied_count
);
790 KMP_DEBUG_USE_VAR(counter
);
791 KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) "
792 "incremented for task %p\n",
793 gtid
, counter
, taskdata
));
796 taskdata
->td_flags
.task_serial
=
797 1; // Execute this task immediately, not deferred.
798 __kmp_task_start(gtid
, task
, current_task
);
802 if (current_task
->ompt_task_info
.frame
.enter_frame
.ptr
== NULL
) {
803 current_task
->ompt_task_info
.frame
.enter_frame
.ptr
=
804 taskdata
->ompt_task_info
.frame
.exit_frame
.ptr
= frame_address
;
805 current_task
->ompt_task_info
.frame
.enter_frame_flags
=
806 taskdata
->ompt_task_info
.frame
.exit_frame_flags
=
807 ompt_frame_application
| ompt_frame_framepointer
;
809 if (ompt_enabled
.ompt_callback_task_create
) {
810 ompt_task_info_t
*parent_info
= &(current_task
->ompt_task_info
);
811 ompt_callbacks
.ompt_callback(ompt_callback_task_create
)(
812 &(parent_info
->task_data
), &(parent_info
->frame
),
813 &(taskdata
->ompt_task_info
.task_data
),
814 TASK_TYPE_DETAILS_FORMAT(taskdata
), 0, return_address
);
816 __ompt_task_start(task
, current_task
, gtid
);
818 #endif // OMPT_SUPPORT
820 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid
,
826 static void __kmpc_omp_task_begin_if0_ompt(ident_t
*loc_ref
, kmp_int32 gtid
,
829 void *return_address
) {
830 __kmpc_omp_task_begin_if0_template
<true>(loc_ref
, gtid
, task
, frame_address
,
833 #endif // OMPT_SUPPORT
835 // __kmpc_omp_task_begin_if0: report that a given serialized task has started
838 // loc_ref: source location information; points to beginning of task block.
839 // gtid: global thread number.
840 // task: task thunk for the started task.
842 // This is required for OMPT_GET_FRAME_ADDRESS(1) to compile on s390x.
843 // In order for it to work correctly, the caller also needs to be compiled with
844 // backchain. If a caller is compiled without backchain,
845 // OMPT_GET_FRAME_ADDRESS(1) will produce an incorrect value, but will not
847 __attribute__((target("backchain")))
849 void __kmpc_omp_task_begin_if0(ident_t
*loc_ref
, kmp_int32 gtid
,
852 if (UNLIKELY(ompt_enabled
.enabled
)) {
853 OMPT_STORE_RETURN_ADDRESS(gtid
);
854 __kmpc_omp_task_begin_if0_ompt(loc_ref
, gtid
, task
,
855 OMPT_GET_FRAME_ADDRESS(1),
856 OMPT_LOAD_RETURN_ADDRESS(gtid
));
860 __kmpc_omp_task_begin_if0_template
<false>(loc_ref
, gtid
, task
, NULL
, NULL
);
864 // __kmpc_omp_task_begin: report that a given task has started execution
865 // NEVER GENERATED BY COMPILER, DEPRECATED!!!
866 void __kmpc_omp_task_begin(ident_t
*loc_ref
, kmp_int32 gtid
, kmp_task_t
*task
) {
867 kmp_taskdata_t
*current_task
= __kmp_threads
[gtid
]->th
.th_current_task
;
871 ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n",
872 gtid
, loc_ref
, KMP_TASK_TO_TASKDATA(task
), current_task
));
874 __kmp_task_start(gtid
, task
, current_task
);
876 KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid
,
877 loc_ref
, KMP_TASK_TO_TASKDATA(task
)));
880 #endif // TASK_UNUSED
882 // __kmp_free_task: free the current task space and the space for shareds
884 // gtid: Global thread ID of calling thread
885 // taskdata: task to free
886 // thread: thread data structure of caller
887 static void __kmp_free_task(kmp_int32 gtid
, kmp_taskdata_t
*taskdata
,
888 kmp_info_t
*thread
) {
889 KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid
,
892 // Check to make sure all flags and counters have the correct values
893 KMP_DEBUG_ASSERT(taskdata
->td_flags
.tasktype
== TASK_EXPLICIT
);
894 KMP_DEBUG_ASSERT(taskdata
->td_flags
.executing
== 0);
895 KMP_DEBUG_ASSERT(taskdata
->td_flags
.complete
== 1);
896 KMP_DEBUG_ASSERT(taskdata
->td_flags
.freed
== 0);
897 KMP_DEBUG_ASSERT(taskdata
->td_allocated_child_tasks
== 0 ||
898 taskdata
->td_flags
.task_serial
== 1);
899 KMP_DEBUG_ASSERT(taskdata
->td_incomplete_child_tasks
== 0);
900 kmp_task_t
*task
= KMP_TASKDATA_TO_TASK(taskdata
);
901 // Clear data to not be re-used later by mistake.
902 task
->data1
.destructors
= NULL
;
903 task
->data2
.priority
= 0;
905 taskdata
->td_flags
.freed
= 1;
907 // do not free tasks in taskgraph
908 if (!taskdata
->is_taskgraph
) {
910 // deallocate the taskdata and shared variable blocks associated with this task
912 __kmp_fast_free(thread
, taskdata
);
913 #else /* ! USE_FAST_MEMORY */
914 __kmp_thread_free(thread
, taskdata
);
918 taskdata
->td_flags
.complete
= 0;
919 taskdata
->td_flags
.started
= 0;
920 taskdata
->td_flags
.freed
= 0;
921 taskdata
->td_flags
.executing
= 0;
922 taskdata
->td_flags
.task_serial
=
923 (taskdata
->td_parent
->td_flags
.final
||
924 taskdata
->td_flags
.team_serial
|| taskdata
->td_flags
.tasking_ser
);
926 // taskdata->td_allow_completion_event.pending_events_count = 1;
927 KMP_ATOMIC_ST_RLX(&taskdata
->td_untied_count
, 0);
928 KMP_ATOMIC_ST_RLX(&taskdata
->td_incomplete_child_tasks
, 0);
929 // start at one because counts current task and children
930 KMP_ATOMIC_ST_RLX(&taskdata
->td_allocated_child_tasks
, 1);
934 KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid
, taskdata
));
937 // __kmp_free_task_and_ancestors: free the current task and ancestors without
940 // gtid: Global thread ID of calling thread
941 // taskdata: task to free
942 // thread: thread data structure of caller
943 static void __kmp_free_task_and_ancestors(kmp_int32 gtid
,
944 kmp_taskdata_t
*taskdata
,
945 kmp_info_t
*thread
) {
946 // Proxy tasks must always be allowed to free their parents
947 // because they can be run in background even in serial mode.
948 kmp_int32 team_serial
=
949 (taskdata
->td_flags
.team_serial
|| taskdata
->td_flags
.tasking_ser
) &&
950 !taskdata
->td_flags
.proxy
;
951 KMP_DEBUG_ASSERT(taskdata
->td_flags
.tasktype
== TASK_EXPLICIT
);
953 kmp_int32 children
= KMP_ATOMIC_DEC(&taskdata
->td_allocated_child_tasks
) - 1;
954 KMP_DEBUG_ASSERT(children
>= 0);
956 // Now, go up the ancestor tree to see if any ancestors can now be freed.
957 while (children
== 0) {
958 kmp_taskdata_t
*parent_taskdata
= taskdata
->td_parent
;
960 KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete "
961 "and freeing itself\n",
964 // --- Deallocate my ancestor task ---
965 __kmp_free_task(gtid
, taskdata
, thread
);
967 taskdata
= parent_taskdata
;
971 // Stop checking ancestors at implicit task instead of walking up ancestor
972 // tree to avoid premature deallocation of ancestors.
973 if (taskdata
->td_flags
.tasktype
== TASK_IMPLICIT
) {
974 if (taskdata
->td_dephash
) { // do we need to cleanup dephash?
975 int children
= KMP_ATOMIC_LD_ACQ(&taskdata
->td_incomplete_child_tasks
);
976 kmp_tasking_flags_t flags_old
= taskdata
->td_flags
;
977 if (children
== 0 && flags_old
.complete
== 1) {
978 kmp_tasking_flags_t flags_new
= flags_old
;
979 flags_new
.complete
= 0;
980 if (KMP_COMPARE_AND_STORE_ACQ32(
981 RCAST(kmp_int32
*, &taskdata
->td_flags
),
982 *RCAST(kmp_int32
*, &flags_old
),
983 *RCAST(kmp_int32
*, &flags_new
))) {
984 KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans "
985 "dephash of implicit task %p\n",
987 // cleanup dephash of finished implicit task
988 __kmp_dephash_free_entries(thread
, taskdata
->td_dephash
);
994 // Predecrement simulated by "- 1" calculation
995 children
= KMP_ATOMIC_DEC(&taskdata
->td_allocated_child_tasks
) - 1;
996 KMP_DEBUG_ASSERT(children
>= 0);
1000 20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; "
1001 "not freeing it yet\n",
1002 gtid
, taskdata
, children
));
1005 // Only need to keep track of child task counts if any of the following:
1006 // 1. team parallel and tasking not serialized;
1007 // 2. it is a proxy or detachable or hidden helper task
1008 // 3. the children counter of its parent task is greater than 0.
1009 // The reason for the 3rd one is for serialized team that found detached task,
1010 // hidden helper task, T. In this case, the execution of T is still deferred,
1011 // and it is also possible that a regular task depends on T. In this case, if we
1012 // don't track the children, task synchronization will be broken.
1013 static bool __kmp_track_children_task(kmp_taskdata_t
*taskdata
) {
1014 kmp_tasking_flags_t flags
= taskdata
->td_flags
;
1015 bool ret
= !(flags
.team_serial
|| flags
.tasking_ser
);
1016 ret
= ret
|| flags
.proxy
== TASK_PROXY
||
1017 flags
.detachable
== TASK_DETACHABLE
|| flags
.hidden_helper
;
1019 KMP_ATOMIC_LD_ACQ(&taskdata
->td_parent
->td_incomplete_child_tasks
) > 0;
1021 if (taskdata
->td_taskgroup
&& taskdata
->is_taskgraph
)
1022 ret
= ret
|| KMP_ATOMIC_LD_ACQ(&taskdata
->td_taskgroup
->count
) > 0;
1027 // __kmp_task_finish: bookkeeping to do when a task finishes execution
1029 // gtid: global thread ID for calling thread
1030 // task: task to be finished
1031 // resumed_task: task to be resumed. (may be NULL if task is serialized)
1033 // template<ompt>: effectively ompt_enabled.enabled!=0
1034 // the version with ompt=false is inlined, allowing to optimize away all ompt
1035 // code in this case
1036 template <bool ompt
>
1037 static void __kmp_task_finish(kmp_int32 gtid
, kmp_task_t
*task
,
1038 kmp_taskdata_t
*resumed_task
) {
1039 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
1040 kmp_info_t
*thread
= __kmp_threads
[gtid
];
1041 kmp_task_team_t
*task_team
=
1042 thread
->th
.th_task_team
; // might be NULL for serial teams...
1044 // to avoid seg fault when we need to access taskdata->td_flags after free when using vanilla taskloop
1048 kmp_int32 children
= 0;
1050 KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming "
1052 gtid
, taskdata
, resumed_task
));
1054 KMP_DEBUG_ASSERT(taskdata
->td_flags
.tasktype
== TASK_EXPLICIT
);
1057 is_taskgraph
= taskdata
->is_taskgraph
;
1060 // Pop task from stack if tied
1061 #ifdef BUILD_TIED_TASK_STACK
1062 if (taskdata
->td_flags
.tiedness
== TASK_TIED
) {
1063 __kmp_pop_task_stack(gtid
, thread
, taskdata
);
1065 #endif /* BUILD_TIED_TASK_STACK */
1067 if (UNLIKELY(taskdata
->td_flags
.tiedness
== TASK_UNTIED
)) {
1068 // untied task needs to check the counter so that the task structure is not
1069 // freed prematurely
1070 kmp_int32 counter
= KMP_ATOMIC_DEC(&taskdata
->td_untied_count
) - 1;
1073 ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n",
1074 gtid
, counter
, taskdata
));
1076 // untied task is not done, to be continued possibly by other thread, do
1078 if (resumed_task
== NULL
) {
1079 KMP_DEBUG_ASSERT(taskdata
->td_flags
.task_serial
);
1080 resumed_task
= taskdata
->td_parent
; // In a serialized task, the resumed
1081 // task is the parent
1083 thread
->th
.th_current_task
= resumed_task
; // restore current_task
1084 resumed_task
->td_flags
.executing
= 1; // resume previous task
1085 KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, "
1086 "resuming task %p\n",
1087 gtid
, taskdata
, resumed_task
));
1092 // bookkeeping for resuming task:
1093 // GEH - note tasking_ser => task_serial
1095 (taskdata
->td_flags
.tasking_ser
|| taskdata
->td_flags
.task_serial
) ==
1096 taskdata
->td_flags
.task_serial
);
1097 if (taskdata
->td_flags
.task_serial
) {
1098 if (resumed_task
== NULL
) {
1099 resumed_task
= taskdata
->td_parent
; // In a serialized task, the resumed
1100 // task is the parent
1103 KMP_DEBUG_ASSERT(resumed_task
!=
1104 NULL
); // verify that resumed task is passed as argument
1107 /* If the tasks' destructor thunk flag has been set, we need to invoke the
1108 destructor thunk that has been generated by the compiler. The code is
1109 placed here, since at this point other tasks might have been released
1110 hence overlapping the destructor invocations with some other work in the
1111 released tasks. The OpenMP spec is not specific on when the destructors
1112 are invoked, so we should be free to choose. */
1113 if (UNLIKELY(taskdata
->td_flags
.destructors_thunk
)) {
1114 kmp_routine_entry_t destr_thunk
= task
->data1
.destructors
;
1115 KMP_ASSERT(destr_thunk
);
1116 destr_thunk(gtid
, task
);
1119 KMP_DEBUG_ASSERT(taskdata
->td_flags
.complete
== 0);
1120 KMP_DEBUG_ASSERT(taskdata
->td_flags
.started
== 1);
1121 KMP_DEBUG_ASSERT(taskdata
->td_flags
.freed
== 0);
1123 bool completed
= true;
1124 if (UNLIKELY(taskdata
->td_flags
.detachable
== TASK_DETACHABLE
)) {
1125 if (taskdata
->td_allow_completion_event
.type
==
1126 KMP_EVENT_ALLOW_COMPLETION
) {
1127 // event hasn't been fulfilled yet. Try to detach task.
1128 __kmp_acquire_tas_lock(&taskdata
->td_allow_completion_event
.lock
, gtid
);
1129 if (taskdata
->td_allow_completion_event
.type
==
1130 KMP_EVENT_ALLOW_COMPLETION
) {
1131 // task finished execution
1132 KMP_DEBUG_ASSERT(taskdata
->td_flags
.executing
== 1);
1133 taskdata
->td_flags
.executing
= 0; // suspend the finishing task
1136 // For a detached task, which is not completed, we switch back
1137 // the omp_fulfill_event signals completion
1138 // locking is necessary to avoid a race with ompt_task_late_fulfill
1140 __ompt_task_finish(task
, resumed_task
, ompt_task_detach
);
1143 // no access to taskdata after this point!
1144 // __kmp_fulfill_event might free taskdata at any time from now
1146 taskdata
->td_flags
.proxy
= TASK_PROXY
; // proxify!
1149 __kmp_release_tas_lock(&taskdata
->td_allow_completion_event
.lock
, gtid
);
1153 // Tasks with valid target async handles must be re-enqueued.
1154 if (taskdata
->td_target_data
.async_handle
!= NULL
) {
1155 // Note: no need to translate gtid to its shadow. If the current thread is a
1156 // hidden helper one, then the gtid is already correct. Otherwise, hidden
1157 // helper threads are disabled, and gtid refers to a OpenMP thread.
1160 __ompt_task_finish(task
, resumed_task
, ompt_task_switch
);
1163 __kmpc_give_task(task
, __kmp_tid_from_gtid(gtid
));
1164 if (KMP_HIDDEN_HELPER_THREAD(gtid
))
1165 __kmp_hidden_helper_worker_thread_signal();
1170 taskdata
->td_flags
.complete
= 1; // mark the task as completed
1172 taskdata
->td_flags
.onced
= 1; // mark the task as ran once already
1176 // This is not a detached task, we are done here
1178 __ompt_task_finish(task
, resumed_task
, ompt_task_complete
);
1180 // TODO: What would be the balance between the conditions in the function
1181 // and an atomic operation?
1182 if (__kmp_track_children_task(taskdata
)) {
1183 __kmp_release_deps(gtid
, taskdata
);
1184 // Predecrement simulated by "- 1" calculation
1188 KMP_ATOMIC_DEC(&taskdata
->td_parent
->td_incomplete_child_tasks
);
1189 KMP_DEBUG_ASSERT(children
>= 0);
1191 if (taskdata
->td_taskgroup
&& !taskdata
->is_taskgraph
)
1193 if (taskdata
->td_taskgroup
)
1195 KMP_ATOMIC_DEC(&taskdata
->td_taskgroup
->count
);
1196 } else if (task_team
&& (task_team
->tt
.tt_found_proxy_tasks
||
1197 task_team
->tt
.tt_hidden_helper_task_encountered
)) {
1198 // if we found proxy or hidden helper tasks there could exist a dependency
1199 // chain with the proxy task as origin
1200 __kmp_release_deps(gtid
, taskdata
);
1202 // td_flags.executing must be marked as 0 after __kmp_release_deps has been
1203 // called. Othertwise, if a task is executed immediately from the
1204 // release_deps code, the flag will be reset to 1 again by this same
1206 KMP_DEBUG_ASSERT(taskdata
->td_flags
.executing
== 1);
1207 taskdata
->td_flags
.executing
= 0; // suspend the finishing task
1209 // Decrement the counter of hidden helper tasks to be executed.
1210 if (taskdata
->td_flags
.hidden_helper
) {
1211 // Hidden helper tasks can only be executed by hidden helper threads.
1212 KMP_ASSERT(KMP_HIDDEN_HELPER_THREAD(gtid
));
1213 KMP_ATOMIC_DEC(&__kmp_unexecuted_hidden_helper_tasks
);
1218 20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n",
1219 gtid
, taskdata
, children
));
1221 // Free this task and then ancestor tasks if they have no children.
1222 // Restore th_current_task first as suggested by John:
1223 // johnmc: if an asynchronous inquiry peers into the runtime system
1224 // it doesn't see the freed task as the current task.
1225 thread
->th
.th_current_task
= resumed_task
;
1227 __kmp_free_task_and_ancestors(gtid
, taskdata
, thread
);
1229 // TODO: GEH - make sure root team implicit task is initialized properly.
1230 // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 );
1231 resumed_task
->td_flags
.executing
= 1; // resume previous task
1234 if (is_taskgraph
&& __kmp_track_children_task(taskdata
) &&
1235 taskdata
->td_taskgroup
) {
1236 // TDG: we only release taskgroup barrier here because
1237 // free_task_and_ancestors will call
1238 // __kmp_free_task, which resets all task parameters such as
1239 // taskdata->started, etc. If we release the barrier earlier, these
1240 // parameters could be read before being reset. This is not an issue for
1241 // non-TDG implementation because we never reuse a task(data) structure
1242 KMP_ATOMIC_DEC(&taskdata
->td_taskgroup
->count
);
1247 10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n",
1248 gtid
, taskdata
, resumed_task
));
1253 template <bool ompt
>
1254 static void __kmpc_omp_task_complete_if0_template(ident_t
*loc_ref
,
1257 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n",
1258 gtid
, loc_ref
, KMP_TASK_TO_TASKDATA(task
)));
1259 KMP_DEBUG_ASSERT(gtid
>= 0);
1260 // this routine will provide task to resume
1261 __kmp_task_finish
<ompt
>(gtid
, task
, NULL
);
1263 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n",
1264 gtid
, loc_ref
, KMP_TASK_TO_TASKDATA(task
)));
1268 ompt_frame_t
*ompt_frame
;
1269 __ompt_get_task_info_internal(0, NULL
, NULL
, &ompt_frame
, NULL
, NULL
);
1270 ompt_frame
->enter_frame
= ompt_data_none
;
1271 ompt_frame
->enter_frame_flags
=
1272 ompt_frame_runtime
| ompt_frame_framepointer
;
1281 void __kmpc_omp_task_complete_if0_ompt(ident_t
*loc_ref
, kmp_int32 gtid
,
1283 __kmpc_omp_task_complete_if0_template
<true>(loc_ref
, gtid
, task
);
1285 #endif // OMPT_SUPPORT
1287 // __kmpc_omp_task_complete_if0: report that a task has completed execution
1289 // loc_ref: source location information; points to end of task block.
1290 // gtid: global thread number.
1291 // task: task thunk for the completed task.
1292 void __kmpc_omp_task_complete_if0(ident_t
*loc_ref
, kmp_int32 gtid
,
1295 if (UNLIKELY(ompt_enabled
.enabled
)) {
1296 __kmpc_omp_task_complete_if0_ompt(loc_ref
, gtid
, task
);
1300 __kmpc_omp_task_complete_if0_template
<false>(loc_ref
, gtid
, task
);
1304 // __kmpc_omp_task_complete: report that a task has completed execution
1305 // NEVER GENERATED BY COMPILER, DEPRECATED!!!
1306 void __kmpc_omp_task_complete(ident_t
*loc_ref
, kmp_int32 gtid
,
1308 KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid
,
1309 loc_ref
, KMP_TASK_TO_TASKDATA(task
)));
1311 __kmp_task_finish
<false>(gtid
, task
,
1312 NULL
); // Not sure how to find task to resume
1314 KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid
,
1315 loc_ref
, KMP_TASK_TO_TASKDATA(task
)));
1318 #endif // TASK_UNUSED
1320 // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit
1321 // task for a given thread
1323 // loc_ref: reference to source location of parallel region
1324 // this_thr: thread data structure corresponding to implicit task
1325 // team: team for this_thr
1326 // tid: thread id of given thread within team
1327 // set_curr_task: TRUE if need to push current task to thread
1328 // NOTE: Routine does not set up the implicit task ICVS. This is assumed to
1329 // have already been done elsewhere.
1330 // TODO: Get better loc_ref. Value passed in may be NULL
1331 void __kmp_init_implicit_task(ident_t
*loc_ref
, kmp_info_t
*this_thr
,
1332 kmp_team_t
*team
, int tid
, int set_curr_task
) {
1333 kmp_taskdata_t
*task
= &team
->t
.t_implicit_task_taskdata
[tid
];
1337 ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n",
1338 tid
, team
, task
, set_curr_task
? "TRUE" : "FALSE"));
1340 task
->td_task_id
= KMP_GEN_TASK_ID();
1341 task
->td_team
= team
;
1342 // task->td_parent = NULL; // fix for CQ230101 (broken parent task info
1344 task
->td_ident
= loc_ref
;
1345 task
->td_taskwait_ident
= NULL
;
1346 task
->td_taskwait_counter
= 0;
1347 task
->td_taskwait_thread
= 0;
1349 task
->td_flags
.tiedness
= TASK_TIED
;
1350 task
->td_flags
.tasktype
= TASK_IMPLICIT
;
1351 task
->td_flags
.proxy
= TASK_FULL
;
1353 // All implicit tasks are executed immediately, not deferred
1354 task
->td_flags
.task_serial
= 1;
1355 task
->td_flags
.tasking_ser
= (__kmp_tasking_mode
== tskm_immediate_exec
);
1356 task
->td_flags
.team_serial
= (team
->t
.t_serialized
) ? 1 : 0;
1358 task
->td_flags
.started
= 1;
1359 task
->td_flags
.executing
= 1;
1360 task
->td_flags
.complete
= 0;
1361 task
->td_flags
.freed
= 0;
1363 task
->td_flags
.onced
= 0;
1366 task
->td_depnode
= NULL
;
1367 task
->td_last_tied
= task
;
1368 task
->td_allow_completion_event
.type
= KMP_EVENT_UNINITIALIZED
;
1370 if (set_curr_task
) { // only do this init first time thread is created
1371 KMP_ATOMIC_ST_REL(&task
->td_incomplete_child_tasks
, 0);
1372 // Not used: don't need to deallocate implicit task
1373 KMP_ATOMIC_ST_REL(&task
->td_allocated_child_tasks
, 0);
1374 task
->td_taskgroup
= NULL
; // An implicit task does not have taskgroup
1375 task
->td_dephash
= NULL
;
1376 __kmp_push_current_task_to_thread(this_thr
, team
, tid
);
1378 KMP_DEBUG_ASSERT(task
->td_incomplete_child_tasks
== 0);
1379 KMP_DEBUG_ASSERT(task
->td_allocated_child_tasks
== 0);
1383 if (UNLIKELY(ompt_enabled
.enabled
))
1384 __ompt_task_init(task
, tid
);
1387 KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid
,
1391 // __kmp_finish_implicit_task: Release resources associated to implicit tasks
1392 // at the end of parallel regions. Some resources are kept for reuse in the next
1395 // thread: thread data structure corresponding to implicit task
1396 void __kmp_finish_implicit_task(kmp_info_t
*thread
) {
1397 kmp_taskdata_t
*task
= thread
->th
.th_current_task
;
1398 if (task
->td_dephash
) {
1400 task
->td_flags
.complete
= 1;
1402 task
->td_flags
.onced
= 1;
1404 children
= KMP_ATOMIC_LD_ACQ(&task
->td_incomplete_child_tasks
);
1405 kmp_tasking_flags_t flags_old
= task
->td_flags
;
1406 if (children
== 0 && flags_old
.complete
== 1) {
1407 kmp_tasking_flags_t flags_new
= flags_old
;
1408 flags_new
.complete
= 0;
1409 if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32
*, &task
->td_flags
),
1410 *RCAST(kmp_int32
*, &flags_old
),
1411 *RCAST(kmp_int32
*, &flags_new
))) {
1412 KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans "
1413 "dephash of implicit task %p\n",
1414 thread
->th
.th_info
.ds
.ds_gtid
, task
));
1415 __kmp_dephash_free_entries(thread
, task
->td_dephash
);
1421 // __kmp_free_implicit_task: Release resources associated to implicit tasks
1422 // when these are destroyed regions
1424 // thread: thread data structure corresponding to implicit task
1425 void __kmp_free_implicit_task(kmp_info_t
*thread
) {
1426 kmp_taskdata_t
*task
= thread
->th
.th_current_task
;
1427 if (task
&& task
->td_dephash
) {
1428 __kmp_dephash_free(thread
, task
->td_dephash
);
1429 task
->td_dephash
= NULL
;
1433 // Round up a size to a power of two specified by val: Used to insert padding
1434 // between structures co-allocated using a single malloc() call
1435 static size_t __kmp_round_up_to_val(size_t size
, size_t val
) {
1436 if (size
& (val
- 1)) {
1438 if (size
<= KMP_SIZE_T_MAX
- val
) {
1439 size
+= val
; // Round up if there is no overflow.
1443 } // __kmp_round_up_to_va
1445 // __kmp_task_alloc: Allocate the taskdata and task data structures for a task
1447 // loc_ref: source location information
1448 // gtid: global thread number.
1449 // flags: include tiedness & task type (explicit vs. implicit) of the ''new''
1450 // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine.
1451 // sizeof_kmp_task_t: Size in bytes of kmp_task_t data structure including
1452 // private vars accessed in task.
1453 // sizeof_shareds: Size in bytes of array of pointers to shared vars accessed
1455 // task_entry: Pointer to task code entry point generated by compiler.
1456 // returns: a pointer to the allocated kmp_task_t structure (task).
1457 kmp_task_t
*__kmp_task_alloc(ident_t
*loc_ref
, kmp_int32 gtid
,
1458 kmp_tasking_flags_t
*flags
,
1459 size_t sizeof_kmp_task_t
, size_t sizeof_shareds
,
1460 kmp_routine_entry_t task_entry
) {
1462 kmp_taskdata_t
*taskdata
;
1463 kmp_info_t
*thread
= __kmp_threads
[gtid
];
1464 kmp_team_t
*team
= thread
->th
.th_team
;
1465 kmp_taskdata_t
*parent_task
= thread
->th
.th_current_task
;
1466 size_t shareds_offset
;
1468 if (UNLIKELY(!TCR_4(__kmp_init_middle
)))
1469 __kmp_middle_initialize();
1471 if (flags
->hidden_helper
) {
1472 if (__kmp_enable_hidden_helper
) {
1473 if (!TCR_4(__kmp_init_hidden_helper
))
1474 __kmp_hidden_helper_initialize();
1476 // If the hidden helper task is not enabled, reset the flag to FALSE.
1477 flags
->hidden_helper
= FALSE
;
1481 KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) "
1482 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1483 gtid
, loc_ref
, *((kmp_int32
*)flags
), sizeof_kmp_task_t
,
1484 sizeof_shareds
, task_entry
));
1486 KMP_DEBUG_ASSERT(parent_task
);
1487 if (parent_task
->td_flags
.final
) {
1488 if (flags
->merged_if0
) {
1493 if (flags
->tiedness
== TASK_UNTIED
&& !team
->t
.t_serialized
) {
1494 // Untied task encountered causes the TSC algorithm to check entire deque of
1495 // the victim thread. If no untied task encountered, then checking the head
1496 // of the deque should be enough.
1497 KMP_CHECK_UPDATE(thread
->th
.th_task_team
->tt
.tt_untied_task_encountered
, 1);
1500 // Detachable tasks are not proxy tasks yet but could be in the future. Doing
1501 // the tasking setup
1502 // when that happens is too late.
1503 if (UNLIKELY(flags
->proxy
== TASK_PROXY
||
1504 flags
->detachable
== TASK_DETACHABLE
|| flags
->hidden_helper
)) {
1505 if (flags
->proxy
== TASK_PROXY
) {
1506 flags
->tiedness
= TASK_UNTIED
;
1507 flags
->merged_if0
= 1;
1509 /* are we running in a sequential parallel or tskm_immediate_exec... we need
1510 tasking support enabled */
1511 if ((thread
->th
.th_task_team
) == NULL
) {
1512 /* This should only happen if the team is serialized
1513 setup a task team and propagate it to the thread */
1514 KMP_DEBUG_ASSERT(team
->t
.t_serialized
);
1516 ("T#%d creating task team in __kmp_task_alloc for proxy task\n",
1518 __kmp_task_team_setup(thread
, team
);
1519 thread
->th
.th_task_team
= team
->t
.t_task_team
[thread
->th
.th_task_state
];
1521 kmp_task_team_t
*task_team
= thread
->th
.th_task_team
;
1523 /* tasking must be enabled now as the task might not be pushed */
1524 if (!KMP_TASKING_ENABLED(task_team
)) {
1527 ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid
));
1528 __kmp_enable_tasking(task_team
, thread
);
1529 kmp_int32 tid
= thread
->th
.th_info
.ds
.ds_tid
;
1530 kmp_thread_data_t
*thread_data
= &task_team
->tt
.tt_threads_data
[tid
];
1531 // No lock needed since only owner can allocate
1532 if (thread_data
->td
.td_deque
== NULL
) {
1533 __kmp_alloc_task_deque(thread
, thread_data
);
1537 if ((flags
->proxy
== TASK_PROXY
|| flags
->detachable
== TASK_DETACHABLE
) &&
1538 task_team
->tt
.tt_found_proxy_tasks
== FALSE
)
1539 TCW_4(task_team
->tt
.tt_found_proxy_tasks
, TRUE
);
1540 if (flags
->hidden_helper
&&
1541 task_team
->tt
.tt_hidden_helper_task_encountered
== FALSE
)
1542 TCW_4(task_team
->tt
.tt_hidden_helper_task_encountered
, TRUE
);
1545 // Calculate shared structure offset including padding after kmp_task_t struct
1546 // to align pointers in shared struct
1547 shareds_offset
= sizeof(kmp_taskdata_t
) + sizeof_kmp_task_t
;
1548 shareds_offset
= __kmp_round_up_to_val(shareds_offset
, sizeof(void *));
1550 // Allocate a kmp_taskdata_t block and a kmp_task_t block.
1551 KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid
,
1553 KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid
,
1556 // Avoid double allocation here by combining shareds with taskdata
1558 taskdata
= (kmp_taskdata_t
*)__kmp_fast_allocate(thread
, shareds_offset
+
1560 #else /* ! USE_FAST_MEMORY */
1561 taskdata
= (kmp_taskdata_t
*)__kmp_thread_malloc(thread
, shareds_offset
+
1563 #endif /* USE_FAST_MEMORY */
1565 task
= KMP_TASKDATA_TO_TASK(taskdata
);
1567 // Make sure task & taskdata are aligned appropriately
1568 #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || KMP_ARCH_S390X || !KMP_HAVE_QUAD
1569 KMP_DEBUG_ASSERT((((kmp_uintptr_t
)taskdata
) & (sizeof(double) - 1)) == 0);
1570 KMP_DEBUG_ASSERT((((kmp_uintptr_t
)task
) & (sizeof(double) - 1)) == 0);
1572 KMP_DEBUG_ASSERT((((kmp_uintptr_t
)taskdata
) & (sizeof(_Quad
) - 1)) == 0);
1573 KMP_DEBUG_ASSERT((((kmp_uintptr_t
)task
) & (sizeof(_Quad
) - 1)) == 0);
1575 if (sizeof_shareds
> 0) {
1576 // Avoid double allocation here by combining shareds with taskdata
1577 task
->shareds
= &((char *)taskdata
)[shareds_offset
];
1578 // Make sure shareds struct is aligned to pointer size
1579 KMP_DEBUG_ASSERT((((kmp_uintptr_t
)task
->shareds
) & (sizeof(void *) - 1)) ==
1582 task
->shareds
= NULL
;
1584 task
->routine
= task_entry
;
1585 task
->part_id
= 0; // AC: Always start with 0 part id
1587 taskdata
->td_task_id
= KMP_GEN_TASK_ID();
1588 taskdata
->td_team
= thread
->th
.th_team
;
1589 taskdata
->td_alloc_thread
= thread
;
1590 taskdata
->td_parent
= parent_task
;
1591 taskdata
->td_level
= parent_task
->td_level
+ 1; // increment nesting level
1592 KMP_ATOMIC_ST_RLX(&taskdata
->td_untied_count
, 0);
1593 taskdata
->td_ident
= loc_ref
;
1594 taskdata
->td_taskwait_ident
= NULL
;
1595 taskdata
->td_taskwait_counter
= 0;
1596 taskdata
->td_taskwait_thread
= 0;
1597 KMP_DEBUG_ASSERT(taskdata
->td_parent
!= NULL
);
1598 // avoid copying icvs for proxy tasks
1599 if (flags
->proxy
== TASK_FULL
)
1600 copy_icvs(&taskdata
->td_icvs
, &taskdata
->td_parent
->td_icvs
);
1602 taskdata
->td_flags
= *flags
;
1603 taskdata
->td_task_team
= thread
->th
.th_task_team
;
1604 taskdata
->td_size_alloc
= shareds_offset
+ sizeof_shareds
;
1605 taskdata
->td_flags
.tasktype
= TASK_EXPLICIT
;
1606 // If it is hidden helper task, we need to set the team and task team
1608 if (flags
->hidden_helper
) {
1609 kmp_info_t
*shadow_thread
= __kmp_threads
[KMP_GTID_TO_SHADOW_GTID(gtid
)];
1610 taskdata
->td_team
= shadow_thread
->th
.th_team
;
1611 taskdata
->td_task_team
= shadow_thread
->th
.th_task_team
;
1614 // GEH - TODO: fix this to copy parent task's value of tasking_ser flag
1615 taskdata
->td_flags
.tasking_ser
= (__kmp_tasking_mode
== tskm_immediate_exec
);
1617 // GEH - TODO: fix this to copy parent task's value of team_serial flag
1618 taskdata
->td_flags
.team_serial
= (team
->t
.t_serialized
) ? 1 : 0;
1620 // GEH - Note we serialize the task if the team is serialized to make sure
1621 // implicit parallel region tasks are not left until program termination to
1622 // execute. Also, it helps locality to execute immediately.
1624 taskdata
->td_flags
.task_serial
=
1625 (parent_task
->td_flags
.final
|| taskdata
->td_flags
.team_serial
||
1626 taskdata
->td_flags
.tasking_ser
|| flags
->merged_if0
);
1628 taskdata
->td_flags
.started
= 0;
1629 taskdata
->td_flags
.executing
= 0;
1630 taskdata
->td_flags
.complete
= 0;
1631 taskdata
->td_flags
.freed
= 0;
1633 taskdata
->td_flags
.onced
= 0;
1635 KMP_ATOMIC_ST_RLX(&taskdata
->td_incomplete_child_tasks
, 0);
1636 // start at one because counts current task and children
1637 KMP_ATOMIC_ST_RLX(&taskdata
->td_allocated_child_tasks
, 1);
1638 taskdata
->td_taskgroup
=
1639 parent_task
->td_taskgroup
; // task inherits taskgroup from the parent task
1640 taskdata
->td_dephash
= NULL
;
1641 taskdata
->td_depnode
= NULL
;
1642 taskdata
->td_target_data
.async_handle
= NULL
;
1643 if (flags
->tiedness
== TASK_UNTIED
)
1644 taskdata
->td_last_tied
= NULL
; // will be set when the task is scheduled
1646 taskdata
->td_last_tied
= taskdata
;
1647 taskdata
->td_allow_completion_event
.type
= KMP_EVENT_UNINITIALIZED
;
1649 if (UNLIKELY(ompt_enabled
.enabled
))
1650 __ompt_task_init(taskdata
, gtid
);
1652 // TODO: What would be the balance between the conditions in the function and
1653 // an atomic operation?
1654 if (__kmp_track_children_task(taskdata
)) {
1655 KMP_ATOMIC_INC(&parent_task
->td_incomplete_child_tasks
);
1656 if (parent_task
->td_taskgroup
)
1657 KMP_ATOMIC_INC(&parent_task
->td_taskgroup
->count
);
1658 // Only need to keep track of allocated child tasks for explicit tasks since
1659 // implicit not deallocated
1660 if (taskdata
->td_parent
->td_flags
.tasktype
== TASK_EXPLICIT
) {
1661 KMP_ATOMIC_INC(&taskdata
->td_parent
->td_allocated_child_tasks
);
1663 if (flags
->hidden_helper
) {
1664 taskdata
->td_flags
.task_serial
= FALSE
;
1665 // Increment the number of hidden helper tasks to be executed
1666 KMP_ATOMIC_INC(&__kmp_unexecuted_hidden_helper_tasks
);
1671 kmp_tdg_info_t
*tdg
= __kmp_find_tdg(__kmp_curr_tdg_idx
);
1672 if (tdg
&& __kmp_tdg_is_recording(tdg
->tdg_status
) &&
1673 (task_entry
!= (kmp_routine_entry_t
)__kmp_taskloop_task
)) {
1674 taskdata
->is_taskgraph
= 1;
1675 taskdata
->tdg
= __kmp_global_tdgs
[__kmp_curr_tdg_idx
];
1676 taskdata
->td_task_id
= KMP_ATOMIC_INC(&__kmp_tdg_task_id
);
1679 KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n",
1680 gtid
, taskdata
, taskdata
->td_parent
));
1685 kmp_task_t
*__kmpc_omp_task_alloc(ident_t
*loc_ref
, kmp_int32 gtid
,
1686 kmp_int32 flags
, size_t sizeof_kmp_task_t
,
1687 size_t sizeof_shareds
,
1688 kmp_routine_entry_t task_entry
) {
1690 kmp_tasking_flags_t
*input_flags
= (kmp_tasking_flags_t
*)&flags
;
1691 __kmp_assert_valid_gtid(gtid
);
1692 input_flags
->native
= FALSE
;
1693 // __kmp_task_alloc() sets up all other runtime flags
1694 KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) "
1695 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1696 gtid
, loc_ref
, input_flags
->tiedness
? "tied " : "untied",
1697 input_flags
->proxy
? "proxy" : "",
1698 input_flags
->detachable
? "detachable" : "", sizeof_kmp_task_t
,
1699 sizeof_shareds
, task_entry
));
1701 retval
= __kmp_task_alloc(loc_ref
, gtid
, input_flags
, sizeof_kmp_task_t
,
1702 sizeof_shareds
, task_entry
);
1704 KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid
, retval
));
1709 kmp_task_t
*__kmpc_omp_target_task_alloc(ident_t
*loc_ref
, kmp_int32 gtid
,
1711 size_t sizeof_kmp_task_t
,
1712 size_t sizeof_shareds
,
1713 kmp_routine_entry_t task_entry
,
1714 kmp_int64 device_id
) {
1715 auto &input_flags
= reinterpret_cast<kmp_tasking_flags_t
&>(flags
);
1716 // target task is untied defined in the specification
1717 input_flags
.tiedness
= TASK_UNTIED
;
1718 input_flags
.target
= 1;
1720 if (__kmp_enable_hidden_helper
)
1721 input_flags
.hidden_helper
= TRUE
;
1723 return __kmpc_omp_task_alloc(loc_ref
, gtid
, flags
, sizeof_kmp_task_t
,
1724 sizeof_shareds
, task_entry
);
1729 @param loc_ref location of the original task directive
1730 @param gtid Global Thread ID of encountering thread
1731 @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new
1733 @param naffins Number of affinity items
1734 @param affin_list List of affinity items
1735 @return Returns non-zero if registering affinity information was not successful.
1736 Returns 0 if registration was successful
1737 This entry registers the affinity information attached to a task with the task
1738 thunk structure kmp_taskdata_t.
1741 __kmpc_omp_reg_task_with_affinity(ident_t
*loc_ref
, kmp_int32 gtid
,
1742 kmp_task_t
*new_task
, kmp_int32 naffins
,
1743 kmp_task_affinity_info_t
*affin_list
) {
1747 // __kmp_invoke_task: invoke the specified task
1749 // gtid: global thread ID of caller
1750 // task: the task to invoke
1751 // current_task: the task to resume after task invocation
1753 __attribute__((target("backchain")))
1756 __kmp_invoke_task(kmp_int32 gtid
, kmp_task_t
*task
,
1757 kmp_taskdata_t
*current_task
) {
1758 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
1760 int discard
= 0 /* false */;
1762 30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n",
1763 gtid
, taskdata
, current_task
));
1764 KMP_DEBUG_ASSERT(task
);
1765 if (UNLIKELY(taskdata
->td_flags
.proxy
== TASK_PROXY
&&
1766 taskdata
->td_flags
.complete
== 1)) {
1767 // This is a proxy task that was already completed but it needs to run
1768 // its bottom-half finish
1771 ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n",
1774 __kmp_bottom_half_finish_proxy(gtid
, task
);
1776 KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for "
1777 "proxy task %p, resuming task %p\n",
1778 gtid
, taskdata
, current_task
));
1784 // For untied tasks, the first task executed only calls __kmpc_omp_task and
1785 // does not execute code.
1786 ompt_thread_info_t oldInfo
;
1787 if (UNLIKELY(ompt_enabled
.enabled
)) {
1788 // Store the threads states and restore them after the task
1789 thread
= __kmp_threads
[gtid
];
1790 oldInfo
= thread
->th
.ompt_thread_info
;
1791 thread
->th
.ompt_thread_info
.wait_id
= 0;
1792 thread
->th
.ompt_thread_info
.state
= (thread
->th
.th_team_serialized
)
1793 ? ompt_state_work_serial
1794 : ompt_state_work_parallel
;
1795 taskdata
->ompt_task_info
.frame
.exit_frame
.ptr
= OMPT_GET_FRAME_ADDRESS(0);
1799 // Proxy tasks are not handled by the runtime
1800 if (taskdata
->td_flags
.proxy
!= TASK_PROXY
) {
1801 __kmp_task_start(gtid
, task
, current_task
); // OMPT only if not discarded
1804 // TODO: cancel tasks if the parallel region has also been cancelled
1805 // TODO: check if this sequence can be hoisted above __kmp_task_start
1806 // if cancellation has been enabled for this run ...
1807 if (UNLIKELY(__kmp_omp_cancellation
)) {
1808 thread
= __kmp_threads
[gtid
];
1809 kmp_team_t
*this_team
= thread
->th
.th_team
;
1810 kmp_taskgroup_t
*taskgroup
= taskdata
->td_taskgroup
;
1811 if ((taskgroup
&& taskgroup
->cancel_request
) ||
1812 (this_team
->t
.t_cancel_request
== cancel_parallel
)) {
1813 #if OMPT_SUPPORT && OMPT_OPTIONAL
1814 ompt_data_t
*task_data
;
1815 if (UNLIKELY(ompt_enabled
.ompt_callback_cancel
)) {
1816 __ompt_get_task_info_internal(0, NULL
, &task_data
, NULL
, NULL
, NULL
);
1817 ompt_callbacks
.ompt_callback(ompt_callback_cancel
)(
1819 ((taskgroup
&& taskgroup
->cancel_request
) ? ompt_cancel_taskgroup
1820 : ompt_cancel_parallel
) |
1821 ompt_cancel_discarded_task
,
1825 KMP_COUNT_BLOCK(TASK_cancelled
);
1826 // this task belongs to a task group and we need to cancel it
1827 discard
= 1 /* true */;
1831 // Invoke the task routine and pass in relevant data.
1832 // Thunks generated by gcc take a different argument list.
1834 if (taskdata
->td_flags
.tiedness
== TASK_UNTIED
) {
1835 taskdata
->td_last_tied
= current_task
->td_last_tied
;
1836 KMP_DEBUG_ASSERT(taskdata
->td_last_tied
);
1838 #if KMP_STATS_ENABLED
1839 KMP_COUNT_BLOCK(TASK_executed
);
1840 switch (KMP_GET_THREAD_STATE()) {
1841 case FORK_JOIN_BARRIER
:
1842 KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar
);
1845 KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar
);
1848 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield
);
1851 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait
);
1854 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup
);
1857 KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate
);
1860 #endif // KMP_STATS_ENABLED
1864 if (UNLIKELY(ompt_enabled
.enabled
))
1865 __ompt_task_start(task
, current_task
, gtid
);
1867 #if OMPT_SUPPORT && OMPT_OPTIONAL
1868 if (UNLIKELY(ompt_enabled
.ompt_callback_dispatch
&&
1869 taskdata
->ompt_task_info
.dispatch_chunk
.iterations
> 0)) {
1870 ompt_data_t instance
= ompt_data_none
;
1871 instance
.ptr
= &(taskdata
->ompt_task_info
.dispatch_chunk
);
1872 ompt_team_info_t
*team_info
= __ompt_get_teaminfo(0, NULL
);
1873 ompt_callbacks
.ompt_callback(ompt_callback_dispatch
)(
1874 &(team_info
->parallel_data
), &(taskdata
->ompt_task_info
.task_data
),
1875 ompt_dispatch_taskloop_chunk
, instance
);
1876 taskdata
->ompt_task_info
.dispatch_chunk
= {0, 0};
1878 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1881 if (ompd_state
& OMPD_ENABLE_BP
)
1882 ompd_bp_task_begin();
1885 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1886 kmp_uint64 cur_time
;
1887 kmp_int32 kmp_itt_count_task
=
1888 __kmp_forkjoin_frames_mode
== 3 && !taskdata
->td_flags
.task_serial
&&
1889 current_task
->td_flags
.tasktype
== TASK_IMPLICIT
;
1890 if (kmp_itt_count_task
) {
1891 thread
= __kmp_threads
[gtid
];
1892 // Time outer level explicit task on barrier for adjusting imbalance time
1893 if (thread
->th
.th_bar_arrive_time
)
1894 cur_time
= __itt_get_timestamp();
1896 kmp_itt_count_task
= 0; // thread is not on a barrier - skip timing
1898 KMP_FSYNC_ACQUIRED(taskdata
); // acquired self (new task)
1901 #if ENABLE_LIBOMPTARGET
1902 if (taskdata
->td_target_data
.async_handle
!= NULL
) {
1903 // If we have a valid target async handle, that means that we have already
1904 // executed the task routine once. We must query for the handle completion
1905 // instead of re-executing the routine.
1906 KMP_ASSERT(tgt_target_nowait_query
);
1907 tgt_target_nowait_query(&taskdata
->td_target_data
.async_handle
);
1910 if (task
->routine
!= NULL
) {
1911 #ifdef KMP_GOMP_COMPAT
1912 if (taskdata
->td_flags
.native
) {
1913 ((void (*)(void *))(*(task
->routine
)))(task
->shareds
);
1915 #endif /* KMP_GOMP_COMPAT */
1917 (*(task
->routine
))(gtid
, task
);
1920 KMP_POP_PARTITIONED_TIMER();
1922 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1923 if (kmp_itt_count_task
) {
1924 // Barrier imbalance - adjust arrive time with the task duration
1925 thread
->th
.th_bar_arrive_time
+= (__itt_get_timestamp() - cur_time
);
1927 KMP_FSYNC_CANCEL(taskdata
); // destroy self (just executed)
1928 KMP_FSYNC_RELEASING(taskdata
->td_parent
); // releasing parent
1933 if (ompd_state
& OMPD_ENABLE_BP
)
1937 // Proxy tasks are not handled by the runtime
1938 if (taskdata
->td_flags
.proxy
!= TASK_PROXY
) {
1940 if (UNLIKELY(ompt_enabled
.enabled
)) {
1941 thread
->th
.ompt_thread_info
= oldInfo
;
1942 if (taskdata
->td_flags
.tiedness
== TASK_TIED
) {
1943 taskdata
->ompt_task_info
.frame
.exit_frame
= ompt_data_none
;
1945 __kmp_task_finish
<true>(gtid
, task
, current_task
);
1948 __kmp_task_finish
<false>(gtid
, task
, current_task
);
1951 else if (UNLIKELY(ompt_enabled
.enabled
&& taskdata
->td_flags
.target
)) {
1952 __ompt_task_finish(task
, current_task
, ompt_task_switch
);
1958 ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n",
1959 gtid
, taskdata
, current_task
));
1963 // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution
1965 // loc_ref: location of original task pragma (ignored)
1966 // gtid: Global Thread ID of encountering thread
1967 // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task''
1969 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1970 // be resumed later.
1971 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1973 kmp_int32
__kmpc_omp_task_parts(ident_t
*loc_ref
, kmp_int32 gtid
,
1974 kmp_task_t
*new_task
) {
1975 kmp_taskdata_t
*new_taskdata
= KMP_TASK_TO_TASKDATA(new_task
);
1977 KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid
,
1978 loc_ref
, new_taskdata
));
1981 kmp_taskdata_t
*parent
;
1982 if (UNLIKELY(ompt_enabled
.enabled
)) {
1983 parent
= new_taskdata
->td_parent
;
1984 if (ompt_enabled
.ompt_callback_task_create
) {
1985 ompt_callbacks
.ompt_callback(ompt_callback_task_create
)(
1986 &(parent
->ompt_task_info
.task_data
), &(parent
->ompt_task_info
.frame
),
1987 &(new_taskdata
->ompt_task_info
.task_data
),
1988 TASK_TYPE_DETAILS_FORMAT(new_taskdata
), 0,
1989 OMPT_GET_RETURN_ADDRESS(0));
1994 /* Should we execute the new task or queue it? For now, let's just always try
1995 to queue it. If the queue fills up, then we'll execute it. */
1997 if (__kmp_push_task(gtid
, new_task
) == TASK_NOT_PUSHED
) // if cannot defer
1998 { // Execute this task immediately
1999 kmp_taskdata_t
*current_task
= __kmp_threads
[gtid
]->th
.th_current_task
;
2000 new_taskdata
->td_flags
.task_serial
= 1;
2001 __kmp_invoke_task(gtid
, new_task
, current_task
);
2006 ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: "
2007 "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n",
2008 gtid
, loc_ref
, new_taskdata
));
2011 if (UNLIKELY(ompt_enabled
.enabled
)) {
2012 parent
->ompt_task_info
.frame
.enter_frame
= ompt_data_none
;
2015 return TASK_CURRENT_NOT_QUEUED
;
2018 // __kmp_omp_task: Schedule a non-thread-switchable task for execution
2020 // gtid: Global Thread ID of encountering thread
2021 // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc()
2022 // serialize_immediate: if TRUE then if the task is executed immediately its
2023 // execution will be serialized
2025 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
2026 // be resumed later.
2027 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
2029 kmp_int32
__kmp_omp_task(kmp_int32 gtid
, kmp_task_t
*new_task
,
2030 bool serialize_immediate
) {
2031 kmp_taskdata_t
*new_taskdata
= KMP_TASK_TO_TASKDATA(new_task
);
2034 if (new_taskdata
->is_taskgraph
&&
2035 __kmp_tdg_is_recording(new_taskdata
->tdg
->tdg_status
)) {
2036 kmp_tdg_info_t
*tdg
= new_taskdata
->tdg
;
2037 // extend the record_map if needed
2038 if (new_taskdata
->td_task_id
>= new_taskdata
->tdg
->map_size
) {
2039 __kmp_acquire_bootstrap_lock(&tdg
->graph_lock
);
2040 // map_size could have been updated by another thread if recursive
2042 if (new_taskdata
->td_task_id
>= tdg
->map_size
) {
2043 kmp_uint old_size
= tdg
->map_size
;
2044 kmp_uint new_size
= old_size
* 2;
2045 kmp_node_info_t
*old_record
= tdg
->record_map
;
2046 kmp_node_info_t
*new_record
= (kmp_node_info_t
*)__kmp_allocate(
2047 new_size
* sizeof(kmp_node_info_t
));
2049 KMP_MEMCPY(new_record
, old_record
, old_size
* sizeof(kmp_node_info_t
));
2050 tdg
->record_map
= new_record
;
2052 __kmp_free(old_record
);
2054 for (kmp_int i
= old_size
; i
< new_size
; i
++) {
2055 kmp_int32
*successorsList
= (kmp_int32
*)__kmp_allocate(
2056 __kmp_successors_size
* sizeof(kmp_int32
));
2057 new_record
[i
].task
= nullptr;
2058 new_record
[i
].successors
= successorsList
;
2059 new_record
[i
].nsuccessors
= 0;
2060 new_record
[i
].npredecessors
= 0;
2061 new_record
[i
].successors_size
= __kmp_successors_size
;
2062 KMP_ATOMIC_ST_REL(&new_record
[i
].npredecessors_counter
, 0);
2064 // update the size at the end, so that we avoid other
2065 // threads use old_record while map_size is already updated
2066 tdg
->map_size
= new_size
;
2068 __kmp_release_bootstrap_lock(&tdg
->graph_lock
);
2071 if (tdg
->record_map
[new_taskdata
->td_task_id
].task
== nullptr) {
2072 tdg
->record_map
[new_taskdata
->td_task_id
].task
= new_task
;
2073 tdg
->record_map
[new_taskdata
->td_task_id
].parent_task
=
2074 new_taskdata
->td_parent
;
2075 KMP_ATOMIC_INC(&tdg
->num_tasks
);
2080 /* Should we execute the new task or queue it? For now, let's just always try
2081 to queue it. If the queue fills up, then we'll execute it. */
2082 if (new_taskdata
->td_flags
.proxy
== TASK_PROXY
||
2083 __kmp_push_task(gtid
, new_task
) == TASK_NOT_PUSHED
) // if cannot defer
2084 { // Execute this task immediately
2085 kmp_taskdata_t
*current_task
= __kmp_threads
[gtid
]->th
.th_current_task
;
2086 if (serialize_immediate
)
2087 new_taskdata
->td_flags
.task_serial
= 1;
2088 __kmp_invoke_task(gtid
, new_task
, current_task
);
2089 } else if (__kmp_dflt_blocktime
!= KMP_MAX_BLOCKTIME
&&
2090 __kmp_wpolicy_passive
) {
2091 kmp_info_t
*this_thr
= __kmp_threads
[gtid
];
2092 kmp_team_t
*team
= this_thr
->th
.th_team
;
2093 kmp_int32 nthreads
= this_thr
->th
.th_team_nproc
;
2094 for (int i
= 0; i
< nthreads
; ++i
) {
2095 kmp_info_t
*thread
= team
->t
.t_threads
[i
];
2096 if (thread
== this_thr
)
2098 if (thread
->th
.th_sleep_loc
!= NULL
) {
2099 __kmp_null_resume_wrapper(thread
);
2100 break; // awake one thread at a time
2104 return TASK_CURRENT_NOT_QUEUED
;
2107 // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a
2108 // non-thread-switchable task from the parent thread only!
2110 // loc_ref: location of original task pragma (ignored)
2111 // gtid: Global Thread ID of encountering thread
2112 // new_task: non-thread-switchable task thunk allocated by
2113 // __kmp_omp_task_alloc()
2115 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
2116 // be resumed later.
2117 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
2119 kmp_int32
__kmpc_omp_task(ident_t
*loc_ref
, kmp_int32 gtid
,
2120 kmp_task_t
*new_task
) {
2122 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK
);
2124 #if KMP_DEBUG || OMPT_SUPPORT
2125 kmp_taskdata_t
*new_taskdata
= KMP_TASK_TO_TASKDATA(new_task
);
2127 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid
, loc_ref
,
2129 __kmp_assert_valid_gtid(gtid
);
2132 kmp_taskdata_t
*parent
= NULL
;
2133 if (UNLIKELY(ompt_enabled
.enabled
)) {
2134 if (!new_taskdata
->td_flags
.started
) {
2135 OMPT_STORE_RETURN_ADDRESS(gtid
);
2136 parent
= new_taskdata
->td_parent
;
2137 if (!parent
->ompt_task_info
.frame
.enter_frame
.ptr
) {
2138 parent
->ompt_task_info
.frame
.enter_frame
.ptr
=
2139 OMPT_GET_FRAME_ADDRESS(0);
2141 if (ompt_enabled
.ompt_callback_task_create
) {
2142 ompt_callbacks
.ompt_callback(ompt_callback_task_create
)(
2143 &(parent
->ompt_task_info
.task_data
),
2144 &(parent
->ompt_task_info
.frame
),
2145 &(new_taskdata
->ompt_task_info
.task_data
),
2146 TASK_TYPE_DETAILS_FORMAT(new_taskdata
), 0,
2147 OMPT_LOAD_RETURN_ADDRESS(gtid
));
2150 // We are scheduling the continuation of an UNTIED task.
2151 // Scheduling back to the parent task.
2152 __ompt_task_finish(new_task
,
2153 new_taskdata
->ompt_task_info
.scheduling_parent
,
2155 new_taskdata
->ompt_task_info
.frame
.exit_frame
= ompt_data_none
;
2160 res
= __kmp_omp_task(gtid
, new_task
, true);
2162 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
2163 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
2164 gtid
, loc_ref
, new_taskdata
));
2166 if (UNLIKELY(ompt_enabled
.enabled
&& parent
!= NULL
)) {
2167 parent
->ompt_task_info
.frame
.enter_frame
= ompt_data_none
;
2173 // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule
2174 // a taskloop task with the correct OMPT return address
2176 // loc_ref: location of original task pragma (ignored)
2177 // gtid: Global Thread ID of encountering thread
2178 // new_task: non-thread-switchable task thunk allocated by
2179 // __kmp_omp_task_alloc()
2180 // codeptr_ra: return address for OMPT callback
2182 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
2183 // be resumed later.
2184 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
2186 kmp_int32
__kmp_omp_taskloop_task(ident_t
*loc_ref
, kmp_int32 gtid
,
2187 kmp_task_t
*new_task
, void *codeptr_ra
) {
2189 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK
);
2191 #if KMP_DEBUG || OMPT_SUPPORT
2192 kmp_taskdata_t
*new_taskdata
= KMP_TASK_TO_TASKDATA(new_task
);
2194 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid
, loc_ref
,
2198 kmp_taskdata_t
*parent
= NULL
;
2199 if (UNLIKELY(ompt_enabled
.enabled
&& !new_taskdata
->td_flags
.started
)) {
2200 parent
= new_taskdata
->td_parent
;
2201 if (!parent
->ompt_task_info
.frame
.enter_frame
.ptr
)
2202 parent
->ompt_task_info
.frame
.enter_frame
.ptr
= OMPT_GET_FRAME_ADDRESS(0);
2203 if (ompt_enabled
.ompt_callback_task_create
) {
2204 ompt_callbacks
.ompt_callback(ompt_callback_task_create
)(
2205 &(parent
->ompt_task_info
.task_data
), &(parent
->ompt_task_info
.frame
),
2206 &(new_taskdata
->ompt_task_info
.task_data
),
2207 TASK_TYPE_DETAILS_FORMAT(new_taskdata
), 0, codeptr_ra
);
2212 res
= __kmp_omp_task(gtid
, new_task
, true);
2214 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
2215 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
2216 gtid
, loc_ref
, new_taskdata
));
2218 if (UNLIKELY(ompt_enabled
.enabled
&& parent
!= NULL
)) {
2219 parent
->ompt_task_info
.frame
.enter_frame
= ompt_data_none
;
2225 template <bool ompt
>
2226 static kmp_int32
__kmpc_omp_taskwait_template(ident_t
*loc_ref
, kmp_int32 gtid
,
2227 void *frame_address
,
2228 void *return_address
) {
2229 kmp_taskdata_t
*taskdata
= nullptr;
2231 int thread_finished
= FALSE
;
2232 KMP_SET_THREAD_STATE_BLOCK(TASKWAIT
);
2234 KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid
, loc_ref
));
2235 KMP_DEBUG_ASSERT(gtid
>= 0);
2237 if (__kmp_tasking_mode
!= tskm_immediate_exec
) {
2238 thread
= __kmp_threads
[gtid
];
2239 taskdata
= thread
->th
.th_current_task
;
2241 #if OMPT_SUPPORT && OMPT_OPTIONAL
2242 ompt_data_t
*my_task_data
;
2243 ompt_data_t
*my_parallel_data
;
2246 my_task_data
= &(taskdata
->ompt_task_info
.task_data
);
2247 my_parallel_data
= OMPT_CUR_TEAM_DATA(thread
);
2249 taskdata
->ompt_task_info
.frame
.enter_frame
.ptr
= frame_address
;
2251 if (ompt_enabled
.ompt_callback_sync_region
) {
2252 ompt_callbacks
.ompt_callback(ompt_callback_sync_region
)(
2253 ompt_sync_region_taskwait
, ompt_scope_begin
, my_parallel_data
,
2254 my_task_data
, return_address
);
2257 if (ompt_enabled
.ompt_callback_sync_region_wait
) {
2258 ompt_callbacks
.ompt_callback(ompt_callback_sync_region_wait
)(
2259 ompt_sync_region_taskwait
, ompt_scope_begin
, my_parallel_data
,
2260 my_task_data
, return_address
);
2263 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
2265 // Debugger: The taskwait is active. Store location and thread encountered the
2268 // Note: These values are used by ITT events as well.
2269 #endif /* USE_ITT_BUILD */
2270 taskdata
->td_taskwait_counter
+= 1;
2271 taskdata
->td_taskwait_ident
= loc_ref
;
2272 taskdata
->td_taskwait_thread
= gtid
+ 1;
2275 void *itt_sync_obj
= NULL
;
2277 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj
);
2278 #endif /* USE_ITT_NOTIFY */
2279 #endif /* USE_ITT_BUILD */
2282 !taskdata
->td_flags
.team_serial
&& !taskdata
->td_flags
.final
;
2284 must_wait
= must_wait
|| (thread
->th
.th_task_team
!= NULL
&&
2285 thread
->th
.th_task_team
->tt
.tt_found_proxy_tasks
);
2286 // If hidden helper thread is encountered, we must enable wait here.
2289 (__kmp_enable_hidden_helper
&& thread
->th
.th_task_team
!= NULL
&&
2290 thread
->th
.th_task_team
->tt
.tt_hidden_helper_task_encountered
);
2293 kmp_flag_32
<false, false> flag(
2294 RCAST(std::atomic
<kmp_uint32
> *,
2295 &(taskdata
->td_incomplete_child_tasks
)),
2297 while (KMP_ATOMIC_LD_ACQ(&taskdata
->td_incomplete_child_tasks
) != 0) {
2298 flag
.execute_tasks(thread
, gtid
, FALSE
,
2299 &thread_finished
USE_ITT_BUILD_ARG(itt_sync_obj
),
2300 __kmp_task_stealing_constraint
);
2304 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj
);
2305 KMP_FSYNC_ACQUIRED(taskdata
); // acquire self - sync with children
2306 #endif /* USE_ITT_BUILD */
2308 // Debugger: The taskwait is completed. Location remains, but thread is
2310 taskdata
->td_taskwait_thread
= -taskdata
->td_taskwait_thread
;
2312 #if OMPT_SUPPORT && OMPT_OPTIONAL
2314 if (ompt_enabled
.ompt_callback_sync_region_wait
) {
2315 ompt_callbacks
.ompt_callback(ompt_callback_sync_region_wait
)(
2316 ompt_sync_region_taskwait
, ompt_scope_end
, my_parallel_data
,
2317 my_task_data
, return_address
);
2319 if (ompt_enabled
.ompt_callback_sync_region
) {
2320 ompt_callbacks
.ompt_callback(ompt_callback_sync_region
)(
2321 ompt_sync_region_taskwait
, ompt_scope_end
, my_parallel_data
,
2322 my_task_data
, return_address
);
2324 taskdata
->ompt_task_info
.frame
.enter_frame
= ompt_data_none
;
2326 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
2329 KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, "
2330 "returning TASK_CURRENT_NOT_QUEUED\n",
2333 return TASK_CURRENT_NOT_QUEUED
;
2336 #if OMPT_SUPPORT && OMPT_OPTIONAL
2338 static kmp_int32
__kmpc_omp_taskwait_ompt(ident_t
*loc_ref
, kmp_int32 gtid
,
2339 void *frame_address
,
2340 void *return_address
) {
2341 return __kmpc_omp_taskwait_template
<true>(loc_ref
, gtid
, frame_address
,
2344 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
2346 // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are
2348 kmp_int32
__kmpc_omp_taskwait(ident_t
*loc_ref
, kmp_int32 gtid
) {
2349 #if OMPT_SUPPORT && OMPT_OPTIONAL
2350 if (UNLIKELY(ompt_enabled
.enabled
)) {
2351 OMPT_STORE_RETURN_ADDRESS(gtid
);
2352 return __kmpc_omp_taskwait_ompt(loc_ref
, gtid
, OMPT_GET_FRAME_ADDRESS(0),
2353 OMPT_LOAD_RETURN_ADDRESS(gtid
));
2356 return __kmpc_omp_taskwait_template
<false>(loc_ref
, gtid
, NULL
, NULL
);
2359 // __kmpc_omp_taskyield: switch to a different task
2360 kmp_int32
__kmpc_omp_taskyield(ident_t
*loc_ref
, kmp_int32 gtid
, int end_part
) {
2361 kmp_taskdata_t
*taskdata
= NULL
;
2363 int thread_finished
= FALSE
;
2365 KMP_COUNT_BLOCK(OMP_TASKYIELD
);
2366 KMP_SET_THREAD_STATE_BLOCK(TASKYIELD
);
2368 KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n",
2369 gtid
, loc_ref
, end_part
));
2370 __kmp_assert_valid_gtid(gtid
);
2372 if (__kmp_tasking_mode
!= tskm_immediate_exec
&& __kmp_init_parallel
) {
2373 thread
= __kmp_threads
[gtid
];
2374 taskdata
= thread
->th
.th_current_task
;
2375 // Should we model this as a task wait or not?
2376 // Debugger: The taskwait is active. Store location and thread encountered the
2379 // Note: These values are used by ITT events as well.
2380 #endif /* USE_ITT_BUILD */
2381 taskdata
->td_taskwait_counter
+= 1;
2382 taskdata
->td_taskwait_ident
= loc_ref
;
2383 taskdata
->td_taskwait_thread
= gtid
+ 1;
2386 void *itt_sync_obj
= NULL
;
2388 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj
);
2389 #endif /* USE_ITT_NOTIFY */
2390 #endif /* USE_ITT_BUILD */
2391 if (!taskdata
->td_flags
.team_serial
) {
2392 kmp_task_team_t
*task_team
= thread
->th
.th_task_team
;
2393 if (task_team
!= NULL
) {
2394 if (KMP_TASKING_ENABLED(task_team
)) {
2396 if (UNLIKELY(ompt_enabled
.enabled
))
2397 thread
->th
.ompt_thread_info
.ompt_task_yielded
= 1;
2399 __kmp_execute_tasks_32(
2400 thread
, gtid
, (kmp_flag_32
<> *)NULL
, FALSE
,
2401 &thread_finished
USE_ITT_BUILD_ARG(itt_sync_obj
),
2402 __kmp_task_stealing_constraint
);
2404 if (UNLIKELY(ompt_enabled
.enabled
))
2405 thread
->th
.ompt_thread_info
.ompt_task_yielded
= 0;
2411 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj
);
2412 #endif /* USE_ITT_BUILD */
2414 // Debugger: The taskwait is completed. Location remains, but thread is
2416 taskdata
->td_taskwait_thread
= -taskdata
->td_taskwait_thread
;
2419 KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, "
2420 "returning TASK_CURRENT_NOT_QUEUED\n",
2423 return TASK_CURRENT_NOT_QUEUED
;
2426 // Task Reduction implementation
2428 // Note: initial implementation didn't take into account the possibility
2429 // to specify omp_orig for initializer of the UDR (user defined reduction).
2430 // Corrected implementation takes into account the omp_orig object.
2431 // Compiler is free to use old implementation if omp_orig is not specified.
2434 @ingroup BASIC_TYPES
2439 Flags for special info per task reduction item.
2441 typedef struct kmp_taskred_flags
{
2442 /*! 1 - use lazy alloc/init (e.g. big objects, num tasks < num threads) */
2443 unsigned lazy_priv
: 1;
2444 unsigned reserved31
: 31;
2445 } kmp_taskred_flags_t
;
2448 Internal struct for reduction data item related info set up by compiler.
2450 typedef struct kmp_task_red_input
{
2451 void *reduce_shar
; /**< shared between tasks item to reduce into */
2452 size_t reduce_size
; /**< size of data item in bytes */
2453 // three compiler-generated routines (init, fini are optional):
2454 void *reduce_init
; /**< data initialization routine (single parameter) */
2455 void *reduce_fini
; /**< data finalization routine */
2456 void *reduce_comb
; /**< data combiner routine */
2457 kmp_taskred_flags_t flags
; /**< flags for additional info from compiler */
2458 } kmp_task_red_input_t
;
2461 Internal struct for reduction data item related info saved by the library.
2463 typedef struct kmp_taskred_data
{
2464 void *reduce_shar
; /**< shared between tasks item to reduce into */
2465 size_t reduce_size
; /**< size of data item */
2466 kmp_taskred_flags_t flags
; /**< flags for additional info from compiler */
2467 void *reduce_priv
; /**< array of thread specific items */
2468 void *reduce_pend
; /**< end of private data for faster comparison op */
2469 // three compiler-generated routines (init, fini are optional):
2470 void *reduce_comb
; /**< data combiner routine */
2471 void *reduce_init
; /**< data initialization routine (two parameters) */
2472 void *reduce_fini
; /**< data finalization routine */
2473 void *reduce_orig
; /**< original item (can be used in UDR initializer) */
2474 } kmp_taskred_data_t
;
2477 Internal struct for reduction data item related info set up by compiler.
2479 New interface: added reduce_orig field to provide omp_orig for UDR initializer.
2481 typedef struct kmp_taskred_input
{
2482 void *reduce_shar
; /**< shared between tasks item to reduce into */
2483 void *reduce_orig
; /**< original reduction item used for initialization */
2484 size_t reduce_size
; /**< size of data item */
2485 // three compiler-generated routines (init, fini are optional):
2486 void *reduce_init
; /**< data initialization routine (two parameters) */
2487 void *reduce_fini
; /**< data finalization routine */
2488 void *reduce_comb
; /**< data combiner routine */
2489 kmp_taskred_flags_t flags
; /**< flags for additional info from compiler */
2490 } kmp_taskred_input_t
;
2495 template <typename T
> void __kmp_assign_orig(kmp_taskred_data_t
&item
, T
&src
);
2497 void __kmp_assign_orig
<kmp_task_red_input_t
>(kmp_taskred_data_t
&item
,
2498 kmp_task_red_input_t
&src
) {
2499 item
.reduce_orig
= NULL
;
2502 void __kmp_assign_orig
<kmp_taskred_input_t
>(kmp_taskred_data_t
&item
,
2503 kmp_taskred_input_t
&src
) {
2504 if (src
.reduce_orig
!= NULL
) {
2505 item
.reduce_orig
= src
.reduce_orig
;
2507 item
.reduce_orig
= src
.reduce_shar
;
2508 } // non-NULL reduce_orig means new interface used
2511 template <typename T
> void __kmp_call_init(kmp_taskred_data_t
&item
, size_t j
);
2513 void __kmp_call_init
<kmp_task_red_input_t
>(kmp_taskred_data_t
&item
,
2515 ((void (*)(void *))item
.reduce_init
)((char *)(item
.reduce_priv
) + offset
);
2518 void __kmp_call_init
<kmp_taskred_input_t
>(kmp_taskred_data_t
&item
,
2520 ((void (*)(void *, void *))item
.reduce_init
)(
2521 (char *)(item
.reduce_priv
) + offset
, item
.reduce_orig
);
2524 template <typename T
>
2525 void *__kmp_task_reduction_init(int gtid
, int num
, T
*data
) {
2526 __kmp_assert_valid_gtid(gtid
);
2527 kmp_info_t
*thread
= __kmp_threads
[gtid
];
2528 kmp_taskgroup_t
*tg
= thread
->th
.th_current_task
->td_taskgroup
;
2529 kmp_uint32 nth
= thread
->th
.th_team_nproc
;
2530 kmp_taskred_data_t
*arr
;
2532 // check input data just in case
2533 KMP_ASSERT(tg
!= NULL
);
2534 KMP_ASSERT(data
!= NULL
);
2535 KMP_ASSERT(num
> 0);
2536 if (nth
== 1 && !__kmp_enable_hidden_helper
) {
2537 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n",
2541 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n",
2543 arr
= (kmp_taskred_data_t
*)__kmp_thread_malloc(
2544 thread
, num
* sizeof(kmp_taskred_data_t
));
2545 for (int i
= 0; i
< num
; ++i
) {
2546 size_t size
= data
[i
].reduce_size
- 1;
2547 // round the size up to cache line per thread-specific item
2548 size
+= CACHE_LINE
- size
% CACHE_LINE
;
2549 KMP_ASSERT(data
[i
].reduce_comb
!= NULL
); // combiner is mandatory
2550 arr
[i
].reduce_shar
= data
[i
].reduce_shar
;
2551 arr
[i
].reduce_size
= size
;
2552 arr
[i
].flags
= data
[i
].flags
;
2553 arr
[i
].reduce_comb
= data
[i
].reduce_comb
;
2554 arr
[i
].reduce_init
= data
[i
].reduce_init
;
2555 arr
[i
].reduce_fini
= data
[i
].reduce_fini
;
2556 __kmp_assign_orig
<T
>(arr
[i
], data
[i
]);
2557 if (!arr
[i
].flags
.lazy_priv
) {
2558 // allocate cache-line aligned block and fill it with zeros
2559 arr
[i
].reduce_priv
= __kmp_allocate(nth
* size
);
2560 arr
[i
].reduce_pend
= (char *)(arr
[i
].reduce_priv
) + nth
* size
;
2561 if (arr
[i
].reduce_init
!= NULL
) {
2562 // initialize all thread-specific items
2563 for (size_t j
= 0; j
< nth
; ++j
) {
2564 __kmp_call_init
<T
>(arr
[i
], j
* size
);
2568 // only allocate space for pointers now,
2569 // objects will be lazily allocated/initialized if/when requested
2570 // note that __kmp_allocate zeroes the allocated memory
2571 arr
[i
].reduce_priv
= __kmp_allocate(nth
* sizeof(void *));
2574 tg
->reduce_data
= (void *)arr
;
2575 tg
->reduce_num_data
= num
;
2581 @param gtid Global thread ID
2582 @param num Number of data items to reduce
2583 @param data Array of data for reduction
2584 @return The taskgroup identifier
2586 Initialize task reduction for the taskgroup.
2588 Note: this entry supposes the optional compiler-generated initializer routine
2589 has single parameter - pointer to object to be initialized. That means
2590 the reduction either does not use omp_orig object, or the omp_orig is accessible
2591 without help of the runtime library.
2593 void *__kmpc_task_reduction_init(int gtid
, int num
, void *data
) {
2595 kmp_tdg_info_t
*tdg
= __kmp_find_tdg(__kmp_curr_tdg_idx
);
2596 if (tdg
&& __kmp_tdg_is_recording(tdg
->tdg_status
)) {
2597 kmp_tdg_info_t
*this_tdg
= __kmp_global_tdgs
[__kmp_curr_tdg_idx
];
2598 this_tdg
->rec_taskred_data
=
2599 __kmp_allocate(sizeof(kmp_task_red_input_t
) * num
);
2600 this_tdg
->rec_num_taskred
= num
;
2601 KMP_MEMCPY(this_tdg
->rec_taskred_data
, data
,
2602 sizeof(kmp_task_red_input_t
) * num
);
2605 return __kmp_task_reduction_init(gtid
, num
, (kmp_task_red_input_t
*)data
);
2610 @param gtid Global thread ID
2611 @param num Number of data items to reduce
2612 @param data Array of data for reduction
2613 @return The taskgroup identifier
2615 Initialize task reduction for the taskgroup.
2617 Note: this entry supposes the optional compiler-generated initializer routine
2618 has two parameters, pointer to object to be initialized and pointer to omp_orig
2620 void *__kmpc_taskred_init(int gtid
, int num
, void *data
) {
2622 kmp_tdg_info_t
*tdg
= __kmp_find_tdg(__kmp_curr_tdg_idx
);
2623 if (tdg
&& __kmp_tdg_is_recording(tdg
->tdg_status
)) {
2624 kmp_tdg_info_t
*this_tdg
= __kmp_global_tdgs
[__kmp_curr_tdg_idx
];
2625 this_tdg
->rec_taskred_data
=
2626 __kmp_allocate(sizeof(kmp_task_red_input_t
) * num
);
2627 this_tdg
->rec_num_taskred
= num
;
2628 KMP_MEMCPY(this_tdg
->rec_taskred_data
, data
,
2629 sizeof(kmp_task_red_input_t
) * num
);
2632 return __kmp_task_reduction_init(gtid
, num
, (kmp_taskred_input_t
*)data
);
2635 // Copy task reduction data (except for shared pointers).
2636 template <typename T
>
2637 void __kmp_task_reduction_init_copy(kmp_info_t
*thr
, int num
, T
*data
,
2638 kmp_taskgroup_t
*tg
, void *reduce_data
) {
2639 kmp_taskred_data_t
*arr
;
2640 KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p,"
2642 thr
, tg
, reduce_data
));
2643 arr
= (kmp_taskred_data_t
*)__kmp_thread_malloc(
2644 thr
, num
* sizeof(kmp_taskred_data_t
));
2645 // threads will share private copies, thunk routines, sizes, flags, etc.:
2646 KMP_MEMCPY(arr
, reduce_data
, num
* sizeof(kmp_taskred_data_t
));
2647 for (int i
= 0; i
< num
; ++i
) {
2648 arr
[i
].reduce_shar
= data
[i
].reduce_shar
; // init unique shared pointers
2650 tg
->reduce_data
= (void *)arr
;
2651 tg
->reduce_num_data
= num
;
2656 @param gtid Global thread ID
2657 @param tskgrp The taskgroup ID (optional)
2658 @param data Shared location of the item
2659 @return The pointer to per-thread data
2661 Get thread-specific location of data item
2663 void *__kmpc_task_reduction_get_th_data(int gtid
, void *tskgrp
, void *data
) {
2664 __kmp_assert_valid_gtid(gtid
);
2665 kmp_info_t
*thread
= __kmp_threads
[gtid
];
2666 kmp_int32 nth
= thread
->th
.th_team_nproc
;
2668 return data
; // nothing to do
2670 kmp_taskgroup_t
*tg
= (kmp_taskgroup_t
*)tskgrp
;
2672 tg
= thread
->th
.th_current_task
->td_taskgroup
;
2673 KMP_ASSERT(tg
!= NULL
);
2674 kmp_taskred_data_t
*arr
;
2676 kmp_int32 tid
= thread
->th
.th_info
.ds
.ds_tid
;
2679 if ((thread
->th
.th_current_task
->is_taskgraph
) &&
2680 (!__kmp_tdg_is_recording(
2681 __kmp_global_tdgs
[__kmp_curr_tdg_idx
]->tdg_status
))) {
2682 tg
= thread
->th
.th_current_task
->td_taskgroup
;
2683 KMP_ASSERT(tg
!= NULL
);
2684 KMP_ASSERT(tg
->reduce_data
!= NULL
);
2685 arr
= (kmp_taskred_data_t
*)(tg
->reduce_data
);
2686 num
= tg
->reduce_num_data
;
2690 KMP_ASSERT(data
!= NULL
);
2691 while (tg
!= NULL
) {
2692 arr
= (kmp_taskred_data_t
*)(tg
->reduce_data
);
2693 num
= tg
->reduce_num_data
;
2694 for (int i
= 0; i
< num
; ++i
) {
2695 if (!arr
[i
].flags
.lazy_priv
) {
2696 if (data
== arr
[i
].reduce_shar
||
2697 (data
>= arr
[i
].reduce_priv
&& data
< arr
[i
].reduce_pend
))
2698 return (char *)(arr
[i
].reduce_priv
) + tid
* arr
[i
].reduce_size
;
2700 // check shared location first
2701 void **p_priv
= (void **)(arr
[i
].reduce_priv
);
2702 if (data
== arr
[i
].reduce_shar
)
2704 // check if we get some thread specific location as parameter
2705 for (int j
= 0; j
< nth
; ++j
)
2706 if (data
== p_priv
[j
])
2708 continue; // not found, continue search
2710 if (p_priv
[tid
] == NULL
) {
2711 // allocate thread specific object lazily
2712 p_priv
[tid
] = __kmp_allocate(arr
[i
].reduce_size
);
2713 if (arr
[i
].reduce_init
!= NULL
) {
2714 if (arr
[i
].reduce_orig
!= NULL
) { // new interface
2715 ((void (*)(void *, void *))arr
[i
].reduce_init
)(
2716 p_priv
[tid
], arr
[i
].reduce_orig
);
2717 } else { // old interface (single parameter)
2718 ((void (*)(void *))arr
[i
].reduce_init
)(p_priv
[tid
]);
2725 KMP_ASSERT(tg
->parent
);
2728 KMP_ASSERT2(0, "Unknown task reduction item");
2729 return NULL
; // ERROR, this line never executed
2732 // Finalize task reduction.
2733 // Called from __kmpc_end_taskgroup()
2734 static void __kmp_task_reduction_fini(kmp_info_t
*th
, kmp_taskgroup_t
*tg
) {
2735 kmp_int32 nth
= th
->th
.th_team_nproc
;
2738 __kmp_enable_hidden_helper
); // should not be called if nth == 1 unless we
2739 // are using hidden helper threads
2740 kmp_taskred_data_t
*arr
= (kmp_taskred_data_t
*)tg
->reduce_data
;
2741 kmp_int32 num
= tg
->reduce_num_data
;
2742 for (int i
= 0; i
< num
; ++i
) {
2743 void *sh_data
= arr
[i
].reduce_shar
;
2744 void (*f_fini
)(void *) = (void (*)(void *))(arr
[i
].reduce_fini
);
2745 void (*f_comb
)(void *, void *) =
2746 (void (*)(void *, void *))(arr
[i
].reduce_comb
);
2747 if (!arr
[i
].flags
.lazy_priv
) {
2748 void *pr_data
= arr
[i
].reduce_priv
;
2749 size_t size
= arr
[i
].reduce_size
;
2750 for (int j
= 0; j
< nth
; ++j
) {
2751 void *priv_data
= (char *)pr_data
+ j
* size
;
2752 f_comb(sh_data
, priv_data
); // combine results
2754 f_fini(priv_data
); // finalize if needed
2757 void **pr_data
= (void **)(arr
[i
].reduce_priv
);
2758 for (int j
= 0; j
< nth
; ++j
) {
2759 if (pr_data
[j
] != NULL
) {
2760 f_comb(sh_data
, pr_data
[j
]); // combine results
2762 f_fini(pr_data
[j
]); // finalize if needed
2763 __kmp_free(pr_data
[j
]);
2767 __kmp_free(arr
[i
].reduce_priv
);
2769 __kmp_thread_free(th
, arr
);
2770 tg
->reduce_data
= NULL
;
2771 tg
->reduce_num_data
= 0;
2774 // Cleanup task reduction data for parallel or worksharing,
2775 // do not touch task private data other threads still working with.
2776 // Called from __kmpc_end_taskgroup()
2777 static void __kmp_task_reduction_clean(kmp_info_t
*th
, kmp_taskgroup_t
*tg
) {
2778 __kmp_thread_free(th
, tg
->reduce_data
);
2779 tg
->reduce_data
= NULL
;
2780 tg
->reduce_num_data
= 0;
2783 template <typename T
>
2784 void *__kmp_task_reduction_modifier_init(ident_t
*loc
, int gtid
, int is_ws
,
2786 __kmp_assert_valid_gtid(gtid
);
2787 kmp_info_t
*thr
= __kmp_threads
[gtid
];
2788 kmp_int32 nth
= thr
->th
.th_team_nproc
;
2789 __kmpc_taskgroup(loc
, gtid
); // form new taskgroup first
2792 ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n",
2793 gtid
, thr
->th
.th_current_task
->td_taskgroup
));
2794 return (void *)thr
->th
.th_current_task
->td_taskgroup
;
2796 kmp_team_t
*team
= thr
->th
.th_team
;
2798 kmp_taskgroup_t
*tg
;
2799 reduce_data
= KMP_ATOMIC_LD_RLX(&team
->t
.t_tg_reduce_data
[is_ws
]);
2800 if (reduce_data
== NULL
&&
2801 __kmp_atomic_compare_store(&team
->t
.t_tg_reduce_data
[is_ws
], reduce_data
,
2803 // single thread enters this block to initialize common reduction data
2804 KMP_DEBUG_ASSERT(reduce_data
== NULL
);
2805 // first initialize own data, then make a copy other threads can use
2806 tg
= (kmp_taskgroup_t
*)__kmp_task_reduction_init
<T
>(gtid
, num
, data
);
2807 reduce_data
= __kmp_thread_malloc(thr
, num
* sizeof(kmp_taskred_data_t
));
2808 KMP_MEMCPY(reduce_data
, tg
->reduce_data
, num
* sizeof(kmp_taskred_data_t
));
2809 // fini counters should be 0 at this point
2810 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team
->t
.t_tg_fini_counter
[0]) == 0);
2811 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team
->t
.t_tg_fini_counter
[1]) == 0);
2812 KMP_ATOMIC_ST_REL(&team
->t
.t_tg_reduce_data
[is_ws
], reduce_data
);
2815 (reduce_data
= KMP_ATOMIC_LD_ACQ(&team
->t
.t_tg_reduce_data
[is_ws
])) ==
2816 (void *)1) { // wait for task reduction initialization
2819 KMP_DEBUG_ASSERT(reduce_data
> (void *)1); // should be valid pointer here
2820 tg
= thr
->th
.th_current_task
->td_taskgroup
;
2821 __kmp_task_reduction_init_copy
<T
>(thr
, num
, data
, tg
, reduce_data
);
2828 @param loc Source location info
2829 @param gtid Global thread ID
2830 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise
2831 @param num Number of data items to reduce
2832 @param data Array of data for reduction
2833 @return The taskgroup identifier
2835 Initialize task reduction for a parallel or worksharing.
2837 Note: this entry supposes the optional compiler-generated initializer routine
2838 has single parameter - pointer to object to be initialized. That means
2839 the reduction either does not use omp_orig object, or the omp_orig is accessible
2840 without help of the runtime library.
2842 void *__kmpc_task_reduction_modifier_init(ident_t
*loc
, int gtid
, int is_ws
,
2843 int num
, void *data
) {
2844 return __kmp_task_reduction_modifier_init(loc
, gtid
, is_ws
, num
,
2845 (kmp_task_red_input_t
*)data
);
2850 @param loc Source location info
2851 @param gtid Global thread ID
2852 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise
2853 @param num Number of data items to reduce
2854 @param data Array of data for reduction
2855 @return The taskgroup identifier
2857 Initialize task reduction for a parallel or worksharing.
2859 Note: this entry supposes the optional compiler-generated initializer routine
2860 has two parameters, pointer to object to be initialized and pointer to omp_orig
2862 void *__kmpc_taskred_modifier_init(ident_t
*loc
, int gtid
, int is_ws
, int num
,
2864 return __kmp_task_reduction_modifier_init(loc
, gtid
, is_ws
, num
,
2865 (kmp_taskred_input_t
*)data
);
2870 @param loc Source location info
2871 @param gtid Global thread ID
2872 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise
2874 Finalize task reduction for a parallel or worksharing.
2876 void __kmpc_task_reduction_modifier_fini(ident_t
*loc
, int gtid
, int is_ws
) {
2877 __kmpc_end_taskgroup(loc
, gtid
);
2880 // __kmpc_taskgroup: Start a new taskgroup
2881 void __kmpc_taskgroup(ident_t
*loc
, int gtid
) {
2882 __kmp_assert_valid_gtid(gtid
);
2883 kmp_info_t
*thread
= __kmp_threads
[gtid
];
2884 kmp_taskdata_t
*taskdata
= thread
->th
.th_current_task
;
2885 kmp_taskgroup_t
*tg_new
=
2886 (kmp_taskgroup_t
*)__kmp_thread_malloc(thread
, sizeof(kmp_taskgroup_t
));
2887 KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid
, loc
, tg_new
));
2888 KMP_ATOMIC_ST_RLX(&tg_new
->count
, 0);
2889 KMP_ATOMIC_ST_RLX(&tg_new
->cancel_request
, cancel_noreq
);
2890 tg_new
->parent
= taskdata
->td_taskgroup
;
2891 tg_new
->reduce_data
= NULL
;
2892 tg_new
->reduce_num_data
= 0;
2893 tg_new
->gomp_data
= NULL
;
2894 taskdata
->td_taskgroup
= tg_new
;
2896 #if OMPT_SUPPORT && OMPT_OPTIONAL
2897 if (UNLIKELY(ompt_enabled
.ompt_callback_sync_region
)) {
2898 void *codeptr
= OMPT_LOAD_RETURN_ADDRESS(gtid
);
2900 codeptr
= OMPT_GET_RETURN_ADDRESS(0);
2901 kmp_team_t
*team
= thread
->th
.th_team
;
2902 ompt_data_t my_task_data
= taskdata
->ompt_task_info
.task_data
;
2903 // FIXME: I think this is wrong for lwt!
2904 ompt_data_t my_parallel_data
= team
->t
.ompt_team_info
.parallel_data
;
2906 ompt_callbacks
.ompt_callback(ompt_callback_sync_region
)(
2907 ompt_sync_region_taskgroup
, ompt_scope_begin
, &(my_parallel_data
),
2908 &(my_task_data
), codeptr
);
2913 // __kmpc_end_taskgroup: Wait until all tasks generated by the current task
2914 // and its descendants are complete
2915 void __kmpc_end_taskgroup(ident_t
*loc
, int gtid
) {
2916 __kmp_assert_valid_gtid(gtid
);
2917 kmp_info_t
*thread
= __kmp_threads
[gtid
];
2918 kmp_taskdata_t
*taskdata
= thread
->th
.th_current_task
;
2919 kmp_taskgroup_t
*taskgroup
= taskdata
->td_taskgroup
;
2920 int thread_finished
= FALSE
;
2922 #if OMPT_SUPPORT && OMPT_OPTIONAL
2924 ompt_data_t my_task_data
;
2925 ompt_data_t my_parallel_data
;
2926 void *codeptr
= nullptr;
2927 if (UNLIKELY(ompt_enabled
.enabled
)) {
2928 team
= thread
->th
.th_team
;
2929 my_task_data
= taskdata
->ompt_task_info
.task_data
;
2930 // FIXME: I think this is wrong for lwt!
2931 my_parallel_data
= team
->t
.ompt_team_info
.parallel_data
;
2932 codeptr
= OMPT_LOAD_RETURN_ADDRESS(gtid
);
2934 codeptr
= OMPT_GET_RETURN_ADDRESS(0);
2938 KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid
, loc
));
2939 KMP_DEBUG_ASSERT(taskgroup
!= NULL
);
2940 KMP_SET_THREAD_STATE_BLOCK(TASKGROUP
);
2942 if (__kmp_tasking_mode
!= tskm_immediate_exec
) {
2943 // mark task as waiting not on a barrier
2944 taskdata
->td_taskwait_counter
+= 1;
2945 taskdata
->td_taskwait_ident
= loc
;
2946 taskdata
->td_taskwait_thread
= gtid
+ 1;
2948 // For ITT the taskgroup wait is similar to taskwait until we need to
2950 void *itt_sync_obj
= NULL
;
2952 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj
);
2953 #endif /* USE_ITT_NOTIFY */
2954 #endif /* USE_ITT_BUILD */
2956 #if OMPT_SUPPORT && OMPT_OPTIONAL
2957 if (UNLIKELY(ompt_enabled
.ompt_callback_sync_region_wait
)) {
2958 ompt_callbacks
.ompt_callback(ompt_callback_sync_region_wait
)(
2959 ompt_sync_region_taskgroup
, ompt_scope_begin
, &(my_parallel_data
),
2960 &(my_task_data
), codeptr
);
2964 if (!taskdata
->td_flags
.team_serial
||
2965 (thread
->th
.th_task_team
!= NULL
&&
2966 (thread
->th
.th_task_team
->tt
.tt_found_proxy_tasks
||
2967 thread
->th
.th_task_team
->tt
.tt_hidden_helper_task_encountered
))) {
2968 kmp_flag_32
<false, false> flag(
2969 RCAST(std::atomic
<kmp_uint32
> *, &(taskgroup
->count
)), 0U);
2970 while (KMP_ATOMIC_LD_ACQ(&taskgroup
->count
) != 0) {
2971 flag
.execute_tasks(thread
, gtid
, FALSE
,
2972 &thread_finished
USE_ITT_BUILD_ARG(itt_sync_obj
),
2973 __kmp_task_stealing_constraint
);
2976 taskdata
->td_taskwait_thread
= -taskdata
->td_taskwait_thread
; // end waiting
2978 #if OMPT_SUPPORT && OMPT_OPTIONAL
2979 if (UNLIKELY(ompt_enabled
.ompt_callback_sync_region_wait
)) {
2980 ompt_callbacks
.ompt_callback(ompt_callback_sync_region_wait
)(
2981 ompt_sync_region_taskgroup
, ompt_scope_end
, &(my_parallel_data
),
2982 &(my_task_data
), codeptr
);
2987 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj
);
2988 KMP_FSYNC_ACQUIRED(taskdata
); // acquire self - sync with descendants
2989 #endif /* USE_ITT_BUILD */
2991 KMP_DEBUG_ASSERT(taskgroup
->count
== 0);
2993 if (taskgroup
->reduce_data
!= NULL
&&
2994 !taskgroup
->gomp_data
) { // need to reduce?
2997 kmp_team_t
*t
= thread
->th
.th_team
;
2998 kmp_taskred_data_t
*arr
= (kmp_taskred_data_t
*)taskgroup
->reduce_data
;
2999 // check if <priv> data of the first reduction variable shared for the team
3000 void *priv0
= arr
[0].reduce_priv
;
3001 if ((reduce_data
= KMP_ATOMIC_LD_ACQ(&t
->t
.t_tg_reduce_data
[0])) != NULL
&&
3002 ((kmp_taskred_data_t
*)reduce_data
)[0].reduce_priv
== priv0
) {
3003 // finishing task reduction on parallel
3004 cnt
= KMP_ATOMIC_INC(&t
->t
.t_tg_fini_counter
[0]);
3005 if (cnt
== thread
->th
.th_team_nproc
- 1) {
3006 // we are the last thread passing __kmpc_reduction_modifier_fini()
3007 // finalize task reduction:
3008 __kmp_task_reduction_fini(thread
, taskgroup
);
3009 // cleanup fields in the team structure:
3010 // TODO: is relaxed store enough here (whole barrier should follow)?
3011 __kmp_thread_free(thread
, reduce_data
);
3012 KMP_ATOMIC_ST_REL(&t
->t
.t_tg_reduce_data
[0], NULL
);
3013 KMP_ATOMIC_ST_REL(&t
->t
.t_tg_fini_counter
[0], 0);
3015 // we are not the last thread passing __kmpc_reduction_modifier_fini(),
3016 // so do not finalize reduction, just clean own copy of the data
3017 __kmp_task_reduction_clean(thread
, taskgroup
);
3019 } else if ((reduce_data
= KMP_ATOMIC_LD_ACQ(&t
->t
.t_tg_reduce_data
[1])) !=
3021 ((kmp_taskred_data_t
*)reduce_data
)[0].reduce_priv
== priv0
) {
3022 // finishing task reduction on worksharing
3023 cnt
= KMP_ATOMIC_INC(&t
->t
.t_tg_fini_counter
[1]);
3024 if (cnt
== thread
->th
.th_team_nproc
- 1) {
3025 // we are the last thread passing __kmpc_reduction_modifier_fini()
3026 __kmp_task_reduction_fini(thread
, taskgroup
);
3027 // cleanup fields in team structure:
3028 // TODO: is relaxed store enough here (whole barrier should follow)?
3029 __kmp_thread_free(thread
, reduce_data
);
3030 KMP_ATOMIC_ST_REL(&t
->t
.t_tg_reduce_data
[1], NULL
);
3031 KMP_ATOMIC_ST_REL(&t
->t
.t_tg_fini_counter
[1], 0);
3033 // we are not the last thread passing __kmpc_reduction_modifier_fini(),
3034 // so do not finalize reduction, just clean own copy of the data
3035 __kmp_task_reduction_clean(thread
, taskgroup
);
3038 // finishing task reduction on taskgroup
3039 __kmp_task_reduction_fini(thread
, taskgroup
);
3042 // Restore parent taskgroup for the current task
3043 taskdata
->td_taskgroup
= taskgroup
->parent
;
3044 __kmp_thread_free(thread
, taskgroup
);
3046 KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n",
3049 #if OMPT_SUPPORT && OMPT_OPTIONAL
3050 if (UNLIKELY(ompt_enabled
.ompt_callback_sync_region
)) {
3051 ompt_callbacks
.ompt_callback(ompt_callback_sync_region
)(
3052 ompt_sync_region_taskgroup
, ompt_scope_end
, &(my_parallel_data
),
3053 &(my_task_data
), codeptr
);
3058 static kmp_task_t
*__kmp_get_priority_task(kmp_int32 gtid
,
3059 kmp_task_team_t
*task_team
,
3060 kmp_int32 is_constrained
) {
3061 kmp_task_t
*task
= NULL
;
3062 kmp_taskdata_t
*taskdata
;
3063 kmp_taskdata_t
*current
;
3064 kmp_thread_data_t
*thread_data
;
3065 int ntasks
= task_team
->tt
.tt_num_task_pri
;
3068 20, ("__kmp_get_priority_task(exit #1): T#%d No tasks to get\n", gtid
));
3072 // decrement num_tasks to "reserve" one task to get for execution
3073 if (__kmp_atomic_compare_store(&task_team
->tt
.tt_num_task_pri
, ntasks
,
3076 ntasks
= task_team
->tt
.tt_num_task_pri
;
3077 } while (ntasks
> 0);
3079 KA_TRACE(20, ("__kmp_get_priority_task(exit #2): T#%d No tasks to get\n",
3083 // We got a "ticket" to get a "reserved" priority task
3085 kmp_task_pri_t
*list
= task_team
->tt
.tt_task_pri_list
;
3087 KMP_ASSERT(list
!= NULL
);
3088 thread_data
= &list
->td
;
3089 __kmp_acquire_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3090 deque_ntasks
= thread_data
->td
.td_deque_ntasks
;
3091 if (deque_ntasks
== 0) {
3092 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3093 KA_TRACE(20, ("__kmp_get_priority_task: T#%d No tasks to get from %p\n",
3094 __kmp_get_gtid(), thread_data
));
3097 } while (deque_ntasks
== 0);
3098 KMP_DEBUG_ASSERT(deque_ntasks
);
3099 int target
= thread_data
->td
.td_deque_head
;
3100 current
= __kmp_threads
[gtid
]->th
.th_current_task
;
3101 taskdata
= thread_data
->td
.td_deque
[target
];
3102 if (__kmp_task_is_allowed(gtid
, is_constrained
, taskdata
, current
)) {
3103 // Bump head pointer and Wrap.
3104 thread_data
->td
.td_deque_head
=
3105 (target
+ 1) & TASK_DEQUE_MASK(thread_data
->td
);
3107 if (!task_team
->tt
.tt_untied_task_encountered
) {
3108 // The TSC does not allow to steal victim task
3109 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3110 KA_TRACE(20, ("__kmp_get_priority_task(exit #3): T#%d could not get task "
3111 "from %p: task_team=%p ntasks=%d head=%u tail=%u\n",
3112 gtid
, thread_data
, task_team
, deque_ntasks
, target
,
3113 thread_data
->td
.td_deque_tail
));
3114 task_team
->tt
.tt_num_task_pri
++; // atomic inc, restore value
3118 // walk through the deque trying to steal any task
3120 for (i
= 1; i
< deque_ntasks
; ++i
) {
3121 target
= (target
+ 1) & TASK_DEQUE_MASK(thread_data
->td
);
3122 taskdata
= thread_data
->td
.td_deque
[target
];
3123 if (__kmp_task_is_allowed(gtid
, is_constrained
, taskdata
, current
)) {
3124 break; // found task to execute
3129 if (taskdata
== NULL
) {
3130 // No appropriate candidate found to execute
3131 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3133 10, ("__kmp_get_priority_task(exit #4): T#%d could not get task from "
3134 "%p: task_team=%p ntasks=%d head=%u tail=%u\n",
3135 gtid
, thread_data
, task_team
, deque_ntasks
,
3136 thread_data
->td
.td_deque_head
, thread_data
->td
.td_deque_tail
));
3137 task_team
->tt
.tt_num_task_pri
++; // atomic inc, restore value
3141 for (i
= i
+ 1; i
< deque_ntasks
; ++i
) {
3142 // shift remaining tasks in the deque left by 1
3143 target
= (target
+ 1) & TASK_DEQUE_MASK(thread_data
->td
);
3144 thread_data
->td
.td_deque
[prev
] = thread_data
->td
.td_deque
[target
];
3148 thread_data
->td
.td_deque_tail
==
3149 (kmp_uint32
)((target
+ 1) & TASK_DEQUE_MASK(thread_data
->td
)));
3150 thread_data
->td
.td_deque_tail
= target
; // tail -= 1 (wrapped))
3152 thread_data
->td
.td_deque_ntasks
= deque_ntasks
- 1;
3153 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3154 task
= KMP_TASKDATA_TO_TASK(taskdata
);
3158 // __kmp_remove_my_task: remove a task from my own deque
3159 static kmp_task_t
*__kmp_remove_my_task(kmp_info_t
*thread
, kmp_int32 gtid
,
3160 kmp_task_team_t
*task_team
,
3161 kmp_int32 is_constrained
) {
3163 kmp_taskdata_t
*taskdata
;
3164 kmp_thread_data_t
*thread_data
;
3167 KMP_DEBUG_ASSERT(__kmp_tasking_mode
!= tskm_immediate_exec
);
3168 KMP_DEBUG_ASSERT(task_team
->tt
.tt_threads_data
!=
3169 NULL
); // Caller should check this condition
3171 thread_data
= &task_team
->tt
.tt_threads_data
[__kmp_tid_from_gtid(gtid
)];
3173 KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n",
3174 gtid
, thread_data
->td
.td_deque_ntasks
,
3175 thread_data
->td
.td_deque_head
, thread_data
->td
.td_deque_tail
));
3177 if (TCR_4(thread_data
->td
.td_deque_ntasks
) == 0) {
3179 ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: "
3180 "ntasks=%d head=%u tail=%u\n",
3181 gtid
, thread_data
->td
.td_deque_ntasks
,
3182 thread_data
->td
.td_deque_head
, thread_data
->td
.td_deque_tail
));
3186 __kmp_acquire_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3188 if (TCR_4(thread_data
->td
.td_deque_ntasks
) == 0) {
3189 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3191 ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: "
3192 "ntasks=%d head=%u tail=%u\n",
3193 gtid
, thread_data
->td
.td_deque_ntasks
,
3194 thread_data
->td
.td_deque_head
, thread_data
->td
.td_deque_tail
));
3198 tail
= (thread_data
->td
.td_deque_tail
- 1) &
3199 TASK_DEQUE_MASK(thread_data
->td
); // Wrap index.
3200 taskdata
= thread_data
->td
.td_deque
[tail
];
3202 if (!__kmp_task_is_allowed(gtid
, is_constrained
, taskdata
,
3203 thread
->th
.th_current_task
)) {
3204 // The TSC does not allow to steal victim task
3205 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3207 ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: "
3208 "ntasks=%d head=%u tail=%u\n",
3209 gtid
, thread_data
->td
.td_deque_ntasks
,
3210 thread_data
->td
.td_deque_head
, thread_data
->td
.td_deque_tail
));
3214 thread_data
->td
.td_deque_tail
= tail
;
3215 TCW_4(thread_data
->td
.td_deque_ntasks
, thread_data
->td
.td_deque_ntasks
- 1);
3217 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3219 KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: "
3220 "ntasks=%d head=%u tail=%u\n",
3221 gtid
, taskdata
, thread_data
->td
.td_deque_ntasks
,
3222 thread_data
->td
.td_deque_head
, thread_data
->td
.td_deque_tail
));
3224 task
= KMP_TASKDATA_TO_TASK(taskdata
);
3228 // __kmp_steal_task: remove a task from another thread's deque
3229 // Assume that calling thread has already checked existence of
3230 // task_team thread_data before calling this routine.
3231 static kmp_task_t
*__kmp_steal_task(kmp_int32 victim_tid
, kmp_int32 gtid
,
3232 kmp_task_team_t
*task_team
,
3233 std::atomic
<kmp_int32
> *unfinished_threads
,
3234 int *thread_finished
,
3235 kmp_int32 is_constrained
) {
3237 kmp_taskdata_t
*taskdata
;
3238 kmp_taskdata_t
*current
;
3239 kmp_thread_data_t
*victim_td
, *threads_data
;
3241 kmp_info_t
*victim_thr
;
3243 KMP_DEBUG_ASSERT(__kmp_tasking_mode
!= tskm_immediate_exec
);
3245 threads_data
= task_team
->tt
.tt_threads_data
;
3246 KMP_DEBUG_ASSERT(threads_data
!= NULL
); // Caller should check this condition
3247 KMP_DEBUG_ASSERT(victim_tid
>= 0);
3248 KMP_DEBUG_ASSERT(victim_tid
< task_team
->tt
.tt_max_threads
);
3250 victim_td
= &threads_data
[victim_tid
];
3251 victim_thr
= victim_td
->td
.td_thr
;
3252 (void)victim_thr
; // Use in TRACE messages which aren't always enabled.
3254 KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: "
3255 "task_team=%p ntasks=%d head=%u tail=%u\n",
3256 gtid
, __kmp_gtid_from_thread(victim_thr
), task_team
,
3257 victim_td
->td
.td_deque_ntasks
, victim_td
->td
.td_deque_head
,
3258 victim_td
->td
.td_deque_tail
));
3260 if (TCR_4(victim_td
->td
.td_deque_ntasks
) == 0) {
3261 KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: "
3262 "task_team=%p ntasks=%d head=%u tail=%u\n",
3263 gtid
, __kmp_gtid_from_thread(victim_thr
), task_team
,
3264 victim_td
->td
.td_deque_ntasks
, victim_td
->td
.td_deque_head
,
3265 victim_td
->td
.td_deque_tail
));
3269 __kmp_acquire_bootstrap_lock(&victim_td
->td
.td_deque_lock
);
3271 int ntasks
= TCR_4(victim_td
->td
.td_deque_ntasks
);
3272 // Check again after we acquire the lock
3274 __kmp_release_bootstrap_lock(&victim_td
->td
.td_deque_lock
);
3275 KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: "
3276 "task_team=%p ntasks=%d head=%u tail=%u\n",
3277 gtid
, __kmp_gtid_from_thread(victim_thr
), task_team
, ntasks
,
3278 victim_td
->td
.td_deque_head
, victim_td
->td
.td_deque_tail
));
3282 KMP_DEBUG_ASSERT(victim_td
->td
.td_deque
!= NULL
);
3283 current
= __kmp_threads
[gtid
]->th
.th_current_task
;
3284 taskdata
= victim_td
->td
.td_deque
[victim_td
->td
.td_deque_head
];
3285 if (__kmp_task_is_allowed(gtid
, is_constrained
, taskdata
, current
)) {
3286 // Bump head pointer and Wrap.
3287 victim_td
->td
.td_deque_head
=
3288 (victim_td
->td
.td_deque_head
+ 1) & TASK_DEQUE_MASK(victim_td
->td
);
3290 if (!task_team
->tt
.tt_untied_task_encountered
) {
3291 // The TSC does not allow to steal victim task
3292 __kmp_release_bootstrap_lock(&victim_td
->td
.td_deque_lock
);
3293 KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from "
3294 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
3295 gtid
, __kmp_gtid_from_thread(victim_thr
), task_team
, ntasks
,
3296 victim_td
->td
.td_deque_head
, victim_td
->td
.td_deque_tail
));
3300 // walk through victim's deque trying to steal any task
3301 target
= victim_td
->td
.td_deque_head
;
3303 for (i
= 1; i
< ntasks
; ++i
) {
3304 target
= (target
+ 1) & TASK_DEQUE_MASK(victim_td
->td
);
3305 taskdata
= victim_td
->td
.td_deque
[target
];
3306 if (__kmp_task_is_allowed(gtid
, is_constrained
, taskdata
, current
)) {
3307 break; // found victim task
3312 if (taskdata
== NULL
) {
3313 // No appropriate candidate to steal found
3314 __kmp_release_bootstrap_lock(&victim_td
->td
.td_deque_lock
);
3315 KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from "
3316 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
3317 gtid
, __kmp_gtid_from_thread(victim_thr
), task_team
, ntasks
,
3318 victim_td
->td
.td_deque_head
, victim_td
->td
.td_deque_tail
));
3322 for (i
= i
+ 1; i
< ntasks
; ++i
) {
3323 // shift remaining tasks in the deque left by 1
3324 target
= (target
+ 1) & TASK_DEQUE_MASK(victim_td
->td
);
3325 victim_td
->td
.td_deque
[prev
] = victim_td
->td
.td_deque
[target
];
3329 victim_td
->td
.td_deque_tail
==
3330 (kmp_uint32
)((target
+ 1) & TASK_DEQUE_MASK(victim_td
->td
)));
3331 victim_td
->td
.td_deque_tail
= target
; // tail -= 1 (wrapped))
3333 if (*thread_finished
) {
3334 // We need to un-mark this victim as a finished victim. This must be done
3335 // before releasing the lock, or else other threads (starting with the
3336 // primary thread victim) might be prematurely released from the barrier!!!
3340 KMP_ATOMIC_INC(unfinished_threads
);
3343 ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n",
3344 gtid
, count
+ 1, task_team
));
3345 *thread_finished
= FALSE
;
3347 TCW_4(victim_td
->td
.td_deque_ntasks
, ntasks
- 1);
3349 __kmp_release_bootstrap_lock(&victim_td
->td
.td_deque_lock
);
3351 KMP_COUNT_BLOCK(TASK_stolen
);
3353 ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: "
3354 "task_team=%p ntasks=%d head=%u tail=%u\n",
3355 gtid
, taskdata
, __kmp_gtid_from_thread(victim_thr
), task_team
,
3356 ntasks
, victim_td
->td
.td_deque_head
, victim_td
->td
.td_deque_tail
));
3358 task
= KMP_TASKDATA_TO_TASK(taskdata
);
3362 // __kmp_execute_tasks_template: Choose and execute tasks until either the
3363 // condition is statisfied (return true) or there are none left (return false).
3365 // final_spin is TRUE if this is the spin at the release barrier.
3366 // thread_finished indicates whether the thread is finished executing all
3367 // the tasks it has on its deque, and is at the release barrier.
3368 // spinner is the location on which to spin.
3369 // spinner == NULL means only execute a single task and return.
3370 // checker is the value to check to terminate the spin.
3372 static inline int __kmp_execute_tasks_template(
3373 kmp_info_t
*thread
, kmp_int32 gtid
, C
*flag
, int final_spin
,
3374 int *thread_finished
USE_ITT_BUILD_ARG(void *itt_sync_obj
),
3375 kmp_int32 is_constrained
) {
3376 kmp_task_team_t
*task_team
= thread
->th
.th_task_team
;
3377 kmp_thread_data_t
*threads_data
;
3379 kmp_info_t
*other_thread
;
3380 kmp_taskdata_t
*current_task
= thread
->th
.th_current_task
;
3381 std::atomic
<kmp_int32
> *unfinished_threads
;
3382 kmp_int32 nthreads
, victim_tid
= -2, use_own_tasks
= 1, new_victim
= 0,
3383 tid
= thread
->th
.th_info
.ds
.ds_tid
;
3385 KMP_DEBUG_ASSERT(__kmp_tasking_mode
!= tskm_immediate_exec
);
3386 KMP_DEBUG_ASSERT(thread
== __kmp_threads
[gtid
]);
3388 if (task_team
== NULL
|| current_task
== NULL
)
3391 KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d "
3392 "*thread_finished=%d\n",
3393 gtid
, final_spin
, *thread_finished
));
3395 thread
->th
.th_reap_state
= KMP_NOT_SAFE_TO_REAP
;
3396 threads_data
= (kmp_thread_data_t
*)TCR_PTR(task_team
->tt
.tt_threads_data
);
3398 KMP_DEBUG_ASSERT(threads_data
!= NULL
);
3400 nthreads
= task_team
->tt
.tt_nproc
;
3401 unfinished_threads
= &(task_team
->tt
.tt_unfinished_threads
);
3402 KMP_DEBUG_ASSERT(*unfinished_threads
>= 0);
3404 while (1) { // Outer loop keeps trying to find tasks in case of single thread
3405 // getting tasks from target constructs
3406 while (1) { // Inner loop to find a task and execute it
3408 if (task_team
->tt
.tt_num_task_pri
) { // get priority task first
3409 task
= __kmp_get_priority_task(gtid
, task_team
, is_constrained
);
3411 if (task
== NULL
&& use_own_tasks
) { // check own queue next
3412 task
= __kmp_remove_my_task(thread
, gtid
, task_team
, is_constrained
);
3414 if ((task
== NULL
) && (nthreads
> 1)) { // Steal a task finally
3417 // Try to steal from the last place I stole from successfully.
3418 if (victim_tid
== -2) { // haven't stolen anything yet
3419 victim_tid
= threads_data
[tid
].td
.td_deque_last_stolen
;
3421 -1) // if we have a last stolen from victim, get the thread
3422 other_thread
= threads_data
[victim_tid
].td
.td_thr
;
3424 if (victim_tid
!= -1) { // found last victim
3426 } else if (!new_victim
) { // no recent steals and we haven't already
3427 // used a new victim; select a random thread
3428 do { // Find a different thread to steal work from.
3429 // Pick a random thread. Initial plan was to cycle through all the
3430 // threads, and only return if we tried to steal from every thread,
3431 // and failed. Arch says that's not such a great idea.
3432 victim_tid
= __kmp_get_random(thread
) % (nthreads
- 1);
3433 if (victim_tid
>= tid
) {
3434 ++victim_tid
; // Adjusts random distribution to exclude self
3436 // Found a potential victim
3437 other_thread
= threads_data
[victim_tid
].td
.td_thr
;
3438 // There is a slight chance that __kmp_enable_tasking() did not wake
3439 // up all threads waiting at the barrier. If victim is sleeping,
3440 // then wake it up. Since we were going to pay the cache miss
3441 // penalty for referencing another thread's kmp_info_t struct
3443 // the check shouldn't cost too much performance at this point. In
3444 // extra barrier mode, tasks do not sleep at the separate tasking
3445 // barrier, so this isn't a problem.
3447 if ((__kmp_tasking_mode
== tskm_task_teams
) &&
3448 (__kmp_dflt_blocktime
!= KMP_MAX_BLOCKTIME
) &&
3449 (TCR_PTR(CCAST(void *, other_thread
->th
.th_sleep_loc
)) !=
3452 __kmp_null_resume_wrapper(other_thread
);
3453 // A sleeping thread should not have any tasks on it's queue.
3454 // There is a slight possibility that it resumes, steals a task
3455 // from another thread, which spawns more tasks, all in the time
3456 // that it takes this thread to check => don't write an assertion
3457 // that the victim's queue is empty. Try stealing from a
3458 // different thread.
3464 // We have a victim to try to steal from
3466 __kmp_steal_task(victim_tid
, gtid
, task_team
, unfinished_threads
,
3467 thread_finished
, is_constrained
);
3469 if (task
!= NULL
) { // set last stolen to victim
3470 if (threads_data
[tid
].td
.td_deque_last_stolen
!= victim_tid
) {
3471 threads_data
[tid
].td
.td_deque_last_stolen
= victim_tid
;
3472 // The pre-refactored code did not try more than 1 successful new
3473 // vicitm, unless the last one generated more local tasks;
3474 // new_victim keeps track of this
3477 } else { // No tasks found; unset last_stolen
3478 KMP_CHECK_UPDATE(threads_data
[tid
].td
.td_deque_last_stolen
, -1);
3479 victim_tid
= -2; // no successful victim found
3484 break; // break out of tasking loop
3486 // Found a task; execute it
3487 #if USE_ITT_BUILD && USE_ITT_NOTIFY
3488 if (__itt_sync_create_ptr
|| KMP_ITT_DEBUG
) {
3489 if (itt_sync_obj
== NULL
) { // we are at fork barrier where we could not
3490 // get the object reliably
3491 itt_sync_obj
= __kmp_itt_barrier_object(gtid
, bs_forkjoin_barrier
);
3493 __kmp_itt_task_starting(itt_sync_obj
);
3495 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
3496 __kmp_invoke_task(gtid
, task
, current_task
);
3498 if (itt_sync_obj
!= NULL
)
3499 __kmp_itt_task_finished(itt_sync_obj
);
3500 #endif /* USE_ITT_BUILD */
3501 // If this thread is only partway through the barrier and the condition is
3502 // met, then return now, so that the barrier gather/release pattern can
3503 // proceed. If this thread is in the last spin loop in the barrier,
3504 // waiting to be released, we know that the termination condition will not
3505 // be satisfied, so don't waste any cycles checking it.
3506 if (flag
== NULL
|| (!final_spin
&& flag
->done_check())) {
3509 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3513 if (thread
->th
.th_task_team
== NULL
) {
3516 KMP_YIELD(__kmp_library
== library_throughput
); // Yield before next task
3517 // If execution of a stolen task results in more tasks being placed on our
3518 // run queue, reset use_own_tasks
3519 if (!use_own_tasks
&& TCR_4(threads_data
[tid
].td
.td_deque_ntasks
) != 0) {
3520 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned "
3521 "other tasks, restart\n",
3528 // The task source has been exhausted. If in final spin loop of barrier,
3529 // check if termination condition is satisfied. The work queue may be empty
3530 // but there might be proxy tasks still executing.
3532 KMP_ATOMIC_LD_ACQ(¤t_task
->td_incomplete_child_tasks
) == 0) {
3533 // First, decrement the #unfinished threads, if that has not already been
3534 // done. This decrement might be to the spin location, and result in the
3535 // termination condition being satisfied.
3536 if (!*thread_finished
) {
3538 kmp_int32 count
= -1 +
3540 KMP_ATOMIC_DEC(unfinished_threads
);
3541 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec "
3542 "unfinished_threads to %d task_team=%p\n",
3543 gtid
, count
, task_team
));
3544 *thread_finished
= TRUE
;
3547 // It is now unsafe to reference thread->th.th_team !!!
3548 // Decrementing task_team->tt.tt_unfinished_threads can allow the primary
3549 // thread to pass through the barrier, where it might reset each thread's
3550 // th.th_team field for the next parallel region. If we can steal more
3551 // work, we know that this has not happened yet.
3552 if (flag
!= NULL
&& flag
->done_check()) {
3555 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3561 // If this thread's task team is NULL, primary thread has recognized that
3562 // there are no more tasks; bail out
3563 if (thread
->th
.th_task_team
== NULL
) {
3565 ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid
));
3569 // Check the flag again to see if it has already done in case to be trapped
3570 // into infinite loop when a if0 task depends on a hidden helper task
3571 // outside any parallel region. Detached tasks are not impacted in this case
3572 // because the only thread executing this function has to execute the proxy
3573 // task so it is in another code path that has the same check.
3574 if (flag
== NULL
|| (!final_spin
&& flag
->done_check())) {
3576 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3581 // We could be getting tasks from target constructs; if this is the only
3582 // thread, keep trying to execute tasks from own queue
3583 if (nthreads
== 1 &&
3584 KMP_ATOMIC_LD_ACQ(¤t_task
->td_incomplete_child_tasks
))
3588 ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid
));
3594 template <bool C
, bool S
>
3595 int __kmp_execute_tasks_32(
3596 kmp_info_t
*thread
, kmp_int32 gtid
, kmp_flag_32
<C
, S
> *flag
, int final_spin
,
3597 int *thread_finished
USE_ITT_BUILD_ARG(void *itt_sync_obj
),
3598 kmp_int32 is_constrained
) {
3599 return __kmp_execute_tasks_template(
3600 thread
, gtid
, flag
, final_spin
,
3601 thread_finished
USE_ITT_BUILD_ARG(itt_sync_obj
), is_constrained
);
3604 template <bool C
, bool S
>
3605 int __kmp_execute_tasks_64(
3606 kmp_info_t
*thread
, kmp_int32 gtid
, kmp_flag_64
<C
, S
> *flag
, int final_spin
,
3607 int *thread_finished
USE_ITT_BUILD_ARG(void *itt_sync_obj
),
3608 kmp_int32 is_constrained
) {
3609 return __kmp_execute_tasks_template(
3610 thread
, gtid
, flag
, final_spin
,
3611 thread_finished
USE_ITT_BUILD_ARG(itt_sync_obj
), is_constrained
);
3614 template <bool C
, bool S
>
3615 int __kmp_atomic_execute_tasks_64(
3616 kmp_info_t
*thread
, kmp_int32 gtid
, kmp_atomic_flag_64
<C
, S
> *flag
,
3617 int final_spin
, int *thread_finished
USE_ITT_BUILD_ARG(void *itt_sync_obj
),
3618 kmp_int32 is_constrained
) {
3619 return __kmp_execute_tasks_template(
3620 thread
, gtid
, flag
, final_spin
,
3621 thread_finished
USE_ITT_BUILD_ARG(itt_sync_obj
), is_constrained
);
3624 int __kmp_execute_tasks_oncore(
3625 kmp_info_t
*thread
, kmp_int32 gtid
, kmp_flag_oncore
*flag
, int final_spin
,
3626 int *thread_finished
USE_ITT_BUILD_ARG(void *itt_sync_obj
),
3627 kmp_int32 is_constrained
) {
3628 return __kmp_execute_tasks_template(
3629 thread
, gtid
, flag
, final_spin
,
3630 thread_finished
USE_ITT_BUILD_ARG(itt_sync_obj
), is_constrained
);
3634 __kmp_execute_tasks_32
<false, false>(kmp_info_t
*, kmp_int32
,
3635 kmp_flag_32
<false, false> *, int,
3636 int *USE_ITT_BUILD_ARG(void *), kmp_int32
);
3638 template int __kmp_execute_tasks_64
<false, true>(kmp_info_t
*, kmp_int32
,
3639 kmp_flag_64
<false, true> *,
3641 int *USE_ITT_BUILD_ARG(void *),
3644 template int __kmp_execute_tasks_64
<true, false>(kmp_info_t
*, kmp_int32
,
3645 kmp_flag_64
<true, false> *,
3647 int *USE_ITT_BUILD_ARG(void *),
3650 template int __kmp_atomic_execute_tasks_64
<false, true>(
3651 kmp_info_t
*, kmp_int32
, kmp_atomic_flag_64
<false, true> *, int,
3652 int *USE_ITT_BUILD_ARG(void *), kmp_int32
);
3654 template int __kmp_atomic_execute_tasks_64
<true, false>(
3655 kmp_info_t
*, kmp_int32
, kmp_atomic_flag_64
<true, false> *, int,
3656 int *USE_ITT_BUILD_ARG(void *), kmp_int32
);
3658 // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the
3659 // next barrier so they can assist in executing enqueued tasks.
3660 // First thread in allocates the task team atomically.
3661 static void __kmp_enable_tasking(kmp_task_team_t
*task_team
,
3662 kmp_info_t
*this_thr
) {
3663 kmp_thread_data_t
*threads_data
;
3664 int nthreads
, i
, is_init_thread
;
3666 KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n",
3667 __kmp_gtid_from_thread(this_thr
)));
3669 KMP_DEBUG_ASSERT(task_team
!= NULL
);
3670 KMP_DEBUG_ASSERT(this_thr
->th
.th_team
!= NULL
);
3672 nthreads
= task_team
->tt
.tt_nproc
;
3673 KMP_DEBUG_ASSERT(nthreads
> 0);
3674 KMP_DEBUG_ASSERT(nthreads
== this_thr
->th
.th_team
->t
.t_nproc
);
3676 // Allocate or increase the size of threads_data if necessary
3677 is_init_thread
= __kmp_realloc_task_threads_data(this_thr
, task_team
);
3679 if (!is_init_thread
) {
3680 // Some other thread already set up the array.
3683 ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n",
3684 __kmp_gtid_from_thread(this_thr
)));
3687 threads_data
= (kmp_thread_data_t
*)TCR_PTR(task_team
->tt
.tt_threads_data
);
3688 KMP_DEBUG_ASSERT(threads_data
!= NULL
);
3690 if (__kmp_tasking_mode
== tskm_task_teams
&&
3691 (__kmp_dflt_blocktime
!= KMP_MAX_BLOCKTIME
)) {
3692 // Release any threads sleeping at the barrier, so that they can steal
3693 // tasks and execute them. In extra barrier mode, tasks do not sleep
3694 // at the separate tasking barrier, so this isn't a problem.
3695 for (i
= 0; i
< nthreads
; i
++) {
3697 kmp_info_t
*thread
= threads_data
[i
].td
.td_thr
;
3699 if (i
== this_thr
->th
.th_info
.ds
.ds_tid
) {
3702 // Since we haven't locked the thread's suspend mutex lock at this
3703 // point, there is a small window where a thread might be putting
3704 // itself to sleep, but hasn't set the th_sleep_loc field yet.
3705 // To work around this, __kmp_execute_tasks_template() periodically checks
3706 // see if other threads are sleeping (using the same random mechanism that
3707 // is used for task stealing) and awakens them if they are.
3708 if ((sleep_loc
= TCR_PTR(CCAST(void *, thread
->th
.th_sleep_loc
))) !=
3710 KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n",
3711 __kmp_gtid_from_thread(this_thr
),
3712 __kmp_gtid_from_thread(thread
)));
3713 __kmp_null_resume_wrapper(thread
);
3715 KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n",
3716 __kmp_gtid_from_thread(this_thr
),
3717 __kmp_gtid_from_thread(thread
)));
3722 KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n",
3723 __kmp_gtid_from_thread(this_thr
)));
3726 /* // TODO: Check the comment consistency
3727 * Utility routines for "task teams". A task team (kmp_task_t) is kind of
3728 * like a shadow of the kmp_team_t data struct, with a different lifetime.
3729 * After a child * thread checks into a barrier and calls __kmp_release() from
3730 * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no
3731 * longer assume that the kmp_team_t structure is intact (at any moment, the
3732 * primary thread may exit the barrier code and free the team data structure,
3733 * and return the threads to the thread pool).
3735 * This does not work with the tasking code, as the thread is still
3736 * expected to participate in the execution of any tasks that may have been
3737 * spawned my a member of the team, and the thread still needs access to all
3738 * to each thread in the team, so that it can steal work from it.
3740 * Enter the existence of the kmp_task_team_t struct. It employs a reference
3741 * counting mechanism, and is allocated by the primary thread before calling
3742 * __kmp_<barrier_kind>_release, and then is release by the last thread to
3743 * exit __kmp_<barrier_kind>_release at the next barrier. I.e. the lifetimes
3744 * of the kmp_task_team_t structs for consecutive barriers can overlap
3745 * (and will, unless the primary thread is the last thread to exit the barrier
3746 * release phase, which is not typical). The existence of such a struct is
3747 * useful outside the context of tasking.
3749 * We currently use the existence of the threads array as an indicator that
3750 * tasks were spawned since the last barrier. If the structure is to be
3751 * useful outside the context of tasking, then this will have to change, but
3752 * not setting the field minimizes the performance impact of tasking on
3753 * barriers, when no explicit tasks were spawned (pushed, actually).
3756 static kmp_task_team_t
*__kmp_free_task_teams
=
3757 NULL
; // Free list for task_team data structures
3758 // Lock for task team data structures
3759 kmp_bootstrap_lock_t __kmp_task_team_lock
=
3760 KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock
);
3762 // __kmp_alloc_task_deque:
3763 // Allocates a task deque for a particular thread, and initialize the necessary
3764 // data structures relating to the deque. This only happens once per thread
3765 // per task team since task teams are recycled. No lock is needed during
3766 // allocation since each thread allocates its own deque.
3767 static void __kmp_alloc_task_deque(kmp_info_t
*thread
,
3768 kmp_thread_data_t
*thread_data
) {
3769 __kmp_init_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3770 KMP_DEBUG_ASSERT(thread_data
->td
.td_deque
== NULL
);
3772 // Initialize last stolen task field to "none"
3773 thread_data
->td
.td_deque_last_stolen
= -1;
3775 KMP_DEBUG_ASSERT(TCR_4(thread_data
->td
.td_deque_ntasks
) == 0);
3776 KMP_DEBUG_ASSERT(thread_data
->td
.td_deque_head
== 0);
3777 KMP_DEBUG_ASSERT(thread_data
->td
.td_deque_tail
== 0);
3781 ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n",
3782 __kmp_gtid_from_thread(thread
), INITIAL_TASK_DEQUE_SIZE
, thread_data
));
3783 // Allocate space for task deque, and zero the deque
3784 // Cannot use __kmp_thread_calloc() because threads not around for
3785 // kmp_reap_task_team( ).
3786 thread_data
->td
.td_deque
= (kmp_taskdata_t
**)__kmp_allocate(
3787 INITIAL_TASK_DEQUE_SIZE
* sizeof(kmp_taskdata_t
*));
3788 thread_data
->td
.td_deque_size
= INITIAL_TASK_DEQUE_SIZE
;
3791 // __kmp_free_task_deque:
3792 // Deallocates a task deque for a particular thread. Happens at library
3793 // deallocation so don't need to reset all thread data fields.
3794 static void __kmp_free_task_deque(kmp_thread_data_t
*thread_data
) {
3795 if (thread_data
->td
.td_deque
!= NULL
) {
3796 __kmp_acquire_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3797 TCW_4(thread_data
->td
.td_deque_ntasks
, 0);
3798 __kmp_free(thread_data
->td
.td_deque
);
3799 thread_data
->td
.td_deque
= NULL
;
3800 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
3803 #ifdef BUILD_TIED_TASK_STACK
3804 // GEH: Figure out what to do here for td_susp_tied_tasks
3805 if (thread_data
->td
.td_susp_tied_tasks
.ts_entries
!= TASK_STACK_EMPTY
) {
3806 __kmp_free_task_stack(__kmp_thread_from_gtid(gtid
), thread_data
);
3808 #endif // BUILD_TIED_TASK_STACK
3811 // __kmp_realloc_task_threads_data:
3812 // Allocates a threads_data array for a task team, either by allocating an
3813 // initial array or enlarging an existing array. Only the first thread to get
3814 // the lock allocs or enlarges the array and re-initializes the array elements.
3815 // That thread returns "TRUE", the rest return "FALSE".
3816 // Assumes that the new array size is given by task_team -> tt.tt_nproc.
3817 // The current size is given by task_team -> tt.tt_max_threads.
3818 static int __kmp_realloc_task_threads_data(kmp_info_t
*thread
,
3819 kmp_task_team_t
*task_team
) {
3820 kmp_thread_data_t
**threads_data_p
;
3821 kmp_int32 nthreads
, maxthreads
;
3822 int is_init_thread
= FALSE
;
3824 if (TCR_4(task_team
->tt
.tt_found_tasks
)) {
3825 // Already reallocated and initialized.
3829 threads_data_p
= &task_team
->tt
.tt_threads_data
;
3830 nthreads
= task_team
->tt
.tt_nproc
;
3831 maxthreads
= task_team
->tt
.tt_max_threads
;
3833 // All threads must lock when they encounter the first task of the implicit
3834 // task region to make sure threads_data fields are (re)initialized before
3836 __kmp_acquire_bootstrap_lock(&task_team
->tt
.tt_threads_lock
);
3838 if (!TCR_4(task_team
->tt
.tt_found_tasks
)) {
3839 // first thread to enable tasking
3840 kmp_team_t
*team
= thread
->th
.th_team
;
3843 is_init_thread
= TRUE
;
3844 if (maxthreads
< nthreads
) {
3846 if (*threads_data_p
!= NULL
) {
3847 kmp_thread_data_t
*old_data
= *threads_data_p
;
3848 kmp_thread_data_t
*new_data
= NULL
;
3852 ("__kmp_realloc_task_threads_data: T#%d reallocating "
3853 "threads data for task_team %p, new_size = %d, old_size = %d\n",
3854 __kmp_gtid_from_thread(thread
), task_team
, nthreads
, maxthreads
));
3855 // Reallocate threads_data to have more elements than current array
3856 // Cannot use __kmp_thread_realloc() because threads not around for
3857 // kmp_reap_task_team( ). Note all new array entries are initialized
3858 // to zero by __kmp_allocate().
3859 new_data
= (kmp_thread_data_t
*)__kmp_allocate(
3860 nthreads
* sizeof(kmp_thread_data_t
));
3861 // copy old data to new data
3862 KMP_MEMCPY_S((void *)new_data
, nthreads
* sizeof(kmp_thread_data_t
),
3863 (void *)old_data
, maxthreads
* sizeof(kmp_thread_data_t
));
3865 #ifdef BUILD_TIED_TASK_STACK
3866 // GEH: Figure out if this is the right thing to do
3867 for (i
= maxthreads
; i
< nthreads
; i
++) {
3868 kmp_thread_data_t
*thread_data
= &(*threads_data_p
)[i
];
3869 __kmp_init_task_stack(__kmp_gtid_from_thread(thread
), thread_data
);
3871 #endif // BUILD_TIED_TASK_STACK
3872 // Install the new data and free the old data
3873 (*threads_data_p
) = new_data
;
3874 __kmp_free(old_data
);
3876 KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating "
3877 "threads data for task_team %p, size = %d\n",
3878 __kmp_gtid_from_thread(thread
), task_team
, nthreads
));
3879 // Make the initial allocate for threads_data array, and zero entries
3880 // Cannot use __kmp_thread_calloc() because threads not around for
3881 // kmp_reap_task_team( ).
3882 *threads_data_p
= (kmp_thread_data_t
*)__kmp_allocate(
3883 nthreads
* sizeof(kmp_thread_data_t
));
3884 #ifdef BUILD_TIED_TASK_STACK
3885 // GEH: Figure out if this is the right thing to do
3886 for (i
= 0; i
< nthreads
; i
++) {
3887 kmp_thread_data_t
*thread_data
= &(*threads_data_p
)[i
];
3888 __kmp_init_task_stack(__kmp_gtid_from_thread(thread
), thread_data
);
3890 #endif // BUILD_TIED_TASK_STACK
3892 task_team
->tt
.tt_max_threads
= nthreads
;
3894 // If array has (more than) enough elements, go ahead and use it
3895 KMP_DEBUG_ASSERT(*threads_data_p
!= NULL
);
3898 // initialize threads_data pointers back to thread_info structures
3899 for (i
= 0; i
< nthreads
; i
++) {
3900 kmp_thread_data_t
*thread_data
= &(*threads_data_p
)[i
];
3901 thread_data
->td
.td_thr
= team
->t
.t_threads
[i
];
3903 if (thread_data
->td
.td_deque_last_stolen
>= nthreads
) {
3904 // The last stolen field survives across teams / barrier, and the number
3905 // of threads may have changed. It's possible (likely?) that a new
3906 // parallel region will exhibit the same behavior as previous region.
3907 thread_data
->td
.td_deque_last_stolen
= -1;
3912 TCW_SYNC_4(task_team
->tt
.tt_found_tasks
, TRUE
);
3915 __kmp_release_bootstrap_lock(&task_team
->tt
.tt_threads_lock
);
3916 return is_init_thread
;
3919 // __kmp_free_task_threads_data:
3920 // Deallocates a threads_data array for a task team, including any attached
3921 // tasking deques. Only occurs at library shutdown.
3922 static void __kmp_free_task_threads_data(kmp_task_team_t
*task_team
) {
3923 __kmp_acquire_bootstrap_lock(&task_team
->tt
.tt_threads_lock
);
3924 if (task_team
->tt
.tt_threads_data
!= NULL
) {
3926 for (i
= 0; i
< task_team
->tt
.tt_max_threads
; i
++) {
3927 __kmp_free_task_deque(&task_team
->tt
.tt_threads_data
[i
]);
3929 __kmp_free(task_team
->tt
.tt_threads_data
);
3930 task_team
->tt
.tt_threads_data
= NULL
;
3932 __kmp_release_bootstrap_lock(&task_team
->tt
.tt_threads_lock
);
3935 // __kmp_free_task_pri_list:
3936 // Deallocates tasking deques used for priority tasks.
3937 // Only occurs at library shutdown.
3938 static void __kmp_free_task_pri_list(kmp_task_team_t
*task_team
) {
3939 __kmp_acquire_bootstrap_lock(&task_team
->tt
.tt_task_pri_lock
);
3940 if (task_team
->tt
.tt_task_pri_list
!= NULL
) {
3941 kmp_task_pri_t
*list
= task_team
->tt
.tt_task_pri_list
;
3942 while (list
!= NULL
) {
3943 kmp_task_pri_t
*next
= list
->next
;
3944 __kmp_free_task_deque(&list
->td
);
3948 task_team
->tt
.tt_task_pri_list
= NULL
;
3950 __kmp_release_bootstrap_lock(&task_team
->tt
.tt_task_pri_lock
);
3953 static inline void __kmp_task_team_init(kmp_task_team_t
*task_team
,
3955 int team_nth
= team
->t
.t_nproc
;
3956 // Only need to init if task team is isn't active or team size changed
3957 if (!task_team
->tt
.tt_active
|| team_nth
!= task_team
->tt
.tt_nproc
) {
3958 TCW_4(task_team
->tt
.tt_found_tasks
, FALSE
);
3959 TCW_4(task_team
->tt
.tt_found_proxy_tasks
, FALSE
);
3960 TCW_4(task_team
->tt
.tt_hidden_helper_task_encountered
, FALSE
);
3961 TCW_4(task_team
->tt
.tt_nproc
, team_nth
);
3962 KMP_ATOMIC_ST_REL(&task_team
->tt
.tt_unfinished_threads
, team_nth
);
3963 TCW_4(task_team
->tt
.tt_active
, TRUE
);
3967 // __kmp_allocate_task_team:
3968 // Allocates a task team associated with a specific team, taking it from
3969 // the global task team free list if possible. Also initializes data
3971 static kmp_task_team_t
*__kmp_allocate_task_team(kmp_info_t
*thread
,
3973 kmp_task_team_t
*task_team
= NULL
;
3975 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n",
3976 (thread
? __kmp_gtid_from_thread(thread
) : -1), team
));
3978 if (TCR_PTR(__kmp_free_task_teams
) != NULL
) {
3979 // Take a task team from the task team pool
3980 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock
);
3981 if (__kmp_free_task_teams
!= NULL
) {
3982 task_team
= __kmp_free_task_teams
;
3983 TCW_PTR(__kmp_free_task_teams
, task_team
->tt
.tt_next
);
3984 task_team
->tt
.tt_next
= NULL
;
3986 __kmp_release_bootstrap_lock(&__kmp_task_team_lock
);
3989 if (task_team
== NULL
) {
3990 KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating "
3991 "task team for team %p\n",
3992 __kmp_gtid_from_thread(thread
), team
));
3993 // Allocate a new task team if one is not available. Cannot use
3994 // __kmp_thread_malloc because threads not around for kmp_reap_task_team.
3995 task_team
= (kmp_task_team_t
*)__kmp_allocate(sizeof(kmp_task_team_t
));
3996 __kmp_init_bootstrap_lock(&task_team
->tt
.tt_threads_lock
);
3997 __kmp_init_bootstrap_lock(&task_team
->tt
.tt_task_pri_lock
);
3998 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG
3999 // suppress race conditions detection on synchronization flags in debug mode
4000 // this helps to analyze library internals eliminating false positives
4001 __itt_suppress_mark_range(
4002 __itt_suppress_range
, __itt_suppress_threading_errors
,
4003 &task_team
->tt
.tt_found_tasks
, sizeof(task_team
->tt
.tt_found_tasks
));
4004 __itt_suppress_mark_range(__itt_suppress_range
,
4005 __itt_suppress_threading_errors
,
4006 CCAST(kmp_uint32
*, &task_team
->tt
.tt_active
),
4007 sizeof(task_team
->tt
.tt_active
));
4008 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */
4009 // Note: __kmp_allocate zeroes returned memory, othewise we would need:
4010 // task_team->tt.tt_threads_data = NULL;
4011 // task_team->tt.tt_max_threads = 0;
4012 // task_team->tt.tt_next = NULL;
4015 __kmp_task_team_init(task_team
, team
);
4017 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p "
4018 "unfinished_threads init'd to %d\n",
4019 (thread
? __kmp_gtid_from_thread(thread
) : -1), task_team
,
4020 KMP_ATOMIC_LD_RLX(&task_team
->tt
.tt_unfinished_threads
)));
4024 // __kmp_free_task_team:
4025 // Frees the task team associated with a specific thread, and adds it
4026 // to the global task team free list.
4027 void __kmp_free_task_team(kmp_info_t
*thread
, kmp_task_team_t
*task_team
) {
4028 KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n",
4029 thread
? __kmp_gtid_from_thread(thread
) : -1, task_team
));
4031 // Put task team back on free list
4032 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock
);
4034 KMP_DEBUG_ASSERT(task_team
->tt
.tt_next
== NULL
);
4035 task_team
->tt
.tt_next
= __kmp_free_task_teams
;
4036 TCW_PTR(__kmp_free_task_teams
, task_team
);
4038 __kmp_release_bootstrap_lock(&__kmp_task_team_lock
);
4041 // __kmp_reap_task_teams:
4042 // Free all the task teams on the task team free list.
4043 // Should only be done during library shutdown.
4044 // Cannot do anything that needs a thread structure or gtid since they are
4046 void __kmp_reap_task_teams(void) {
4047 kmp_task_team_t
*task_team
;
4049 if (TCR_PTR(__kmp_free_task_teams
) != NULL
) {
4050 // Free all task_teams on the free list
4051 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock
);
4052 while ((task_team
= __kmp_free_task_teams
) != NULL
) {
4053 __kmp_free_task_teams
= task_team
->tt
.tt_next
;
4054 task_team
->tt
.tt_next
= NULL
;
4056 // Free threads_data if necessary
4057 if (task_team
->tt
.tt_threads_data
!= NULL
) {
4058 __kmp_free_task_threads_data(task_team
);
4060 if (task_team
->tt
.tt_task_pri_list
!= NULL
) {
4061 __kmp_free_task_pri_list(task_team
);
4063 __kmp_free(task_team
);
4065 __kmp_release_bootstrap_lock(&__kmp_task_team_lock
);
4069 // View the array of two task team pointers as a pair of pointers:
4070 // 1) a single task_team pointer
4071 // 2) next pointer for stack
4072 // Serial teams can create a stack of task teams for nested serial teams.
4073 void __kmp_push_task_team_node(kmp_info_t
*thread
, kmp_team_t
*team
) {
4074 KMP_DEBUG_ASSERT(team
->t
.t_nproc
== 1);
4075 kmp_task_team_list_t
*current
=
4076 (kmp_task_team_list_t
*)(&team
->t
.t_task_team
[0]);
4077 kmp_task_team_list_t
*node
=
4078 (kmp_task_team_list_t
*)__kmp_allocate(sizeof(kmp_task_team_list_t
));
4079 node
->task_team
= current
->task_team
;
4080 node
->next
= current
->next
;
4081 thread
->th
.th_task_team
= current
->task_team
= NULL
;
4082 current
->next
= node
;
4085 // Serial team pops a task team off the stack
4086 void __kmp_pop_task_team_node(kmp_info_t
*thread
, kmp_team_t
*team
) {
4087 KMP_DEBUG_ASSERT(team
->t
.t_nproc
== 1);
4088 kmp_task_team_list_t
*current
=
4089 (kmp_task_team_list_t
*)(&team
->t
.t_task_team
[0]);
4090 if (current
->task_team
) {
4091 __kmp_free_task_team(thread
, current
->task_team
);
4093 kmp_task_team_list_t
*next
= current
->next
;
4095 current
->task_team
= next
->task_team
;
4096 current
->next
= next
->next
;
4097 KMP_DEBUG_ASSERT(next
!= current
);
4099 thread
->th
.th_task_team
= current
->task_team
;
4103 // __kmp_wait_to_unref_task_teams:
4104 // Some threads could still be in the fork barrier release code, possibly
4105 // trying to steal tasks. Wait for each thread to unreference its task team.
4106 void __kmp_wait_to_unref_task_teams(void) {
4112 KMP_INIT_YIELD(spins
);
4113 KMP_INIT_BACKOFF(time
);
4118 // TODO: GEH - this may be is wrong because some sync would be necessary
4119 // in case threads are added to the pool during the traversal. Need to
4120 // verify that lock for thread pool is held when calling this routine.
4121 for (thread
= CCAST(kmp_info_t
*, __kmp_thread_pool
); thread
!= NULL
;
4122 thread
= thread
->th
.th_next_pool
) {
4126 if (TCR_PTR(thread
->th
.th_task_team
) == NULL
) {
4127 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n",
4128 __kmp_gtid_from_thread(thread
)));
4132 // TODO: GEH - add this check for Linux* OS / OS X* as well?
4133 if (!__kmp_is_thread_alive(thread
, &exit_val
)) {
4134 thread
->th
.th_task_team
= NULL
;
4139 done
= FALSE
; // Because th_task_team pointer is not NULL for this thread
4141 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to "
4142 "unreference task_team\n",
4143 __kmp_gtid_from_thread(thread
)));
4145 if (__kmp_dflt_blocktime
!= KMP_MAX_BLOCKTIME
) {
4147 // If the thread is sleeping, awaken it.
4148 if ((sleep_loc
= TCR_PTR(CCAST(void *, thread
->th
.th_sleep_loc
))) !=
4152 ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n",
4153 __kmp_gtid_from_thread(thread
), __kmp_gtid_from_thread(thread
)));
4154 __kmp_null_resume_wrapper(thread
);
4162 // If oversubscribed or have waited a bit, yield.
4163 KMP_YIELD_OVERSUB_ELSE_SPIN(spins
, time
);
4167 // __kmp_task_team_setup: Create a task_team for the current team, but use
4168 // an already created, unused one if it already exists.
4169 void __kmp_task_team_setup(kmp_info_t
*this_thr
, kmp_team_t
*team
) {
4170 KMP_DEBUG_ASSERT(__kmp_tasking_mode
!= tskm_immediate_exec
);
4172 // For the serial and root teams, setup the first task team pointer to point
4173 // to task team. The other pointer is a stack of task teams from previous
4175 if (team
== this_thr
->th
.th_serial_team
||
4176 team
== this_thr
->th
.th_root
->r
.r_root_team
) {
4177 KMP_DEBUG_ASSERT(team
->t
.t_nproc
== 1);
4178 if (team
->t
.t_task_team
[0] == NULL
) {
4179 team
->t
.t_task_team
[0] = __kmp_allocate_task_team(this_thr
, team
);
4181 20, ("__kmp_task_team_setup: Primary T#%d created new task_team %p"
4182 " for serial/root team %p\n",
4183 __kmp_gtid_from_thread(this_thr
), team
->t
.t_task_team
[0], team
));
4186 __kmp_task_team_init(team
->t
.t_task_team
[0], team
);
4190 // If this task_team hasn't been created yet, allocate it. It will be used in
4191 // the region after the next.
4192 // If it exists, it is the current task team and shouldn't be touched yet as
4193 // it may still be in use.
4194 if (team
->t
.t_task_team
[this_thr
->th
.th_task_state
] == NULL
) {
4195 team
->t
.t_task_team
[this_thr
->th
.th_task_state
] =
4196 __kmp_allocate_task_team(this_thr
, team
);
4197 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created new task_team %p"
4198 " for team %d at parity=%d\n",
4199 __kmp_gtid_from_thread(this_thr
),
4200 team
->t
.t_task_team
[this_thr
->th
.th_task_state
], team
->t
.t_id
,
4201 this_thr
->th
.th_task_state
));
4204 // After threads exit the release, they will call sync, and then point to this
4205 // other task_team; make sure it is allocated and properly initialized. As
4206 // threads spin in the barrier release phase, they will continue to use the
4207 // previous task_team struct(above), until they receive the signal to stop
4208 // checking for tasks (they can't safely reference the kmp_team_t struct,
4209 // which could be reallocated by the primary thread).
4210 int other_team
= 1 - this_thr
->th
.th_task_state
;
4211 KMP_DEBUG_ASSERT(other_team
>= 0 && other_team
< 2);
4212 if (team
->t
.t_task_team
[other_team
] == NULL
) { // setup other team as well
4213 team
->t
.t_task_team
[other_team
] = __kmp_allocate_task_team(this_thr
, team
);
4214 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created second new "
4215 "task_team %p for team %d at parity=%d\n",
4216 __kmp_gtid_from_thread(this_thr
),
4217 team
->t
.t_task_team
[other_team
], team
->t
.t_id
, other_team
));
4218 } else { // Leave the old task team struct in place for the upcoming region;
4220 kmp_task_team_t
*task_team
= team
->t
.t_task_team
[other_team
];
4221 __kmp_task_team_init(task_team
, team
);
4222 // if team size has changed, the first thread to enable tasking will
4223 // realloc threads_data if necessary
4224 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d reset next task_team "
4225 "%p for team %d at parity=%d\n",
4226 __kmp_gtid_from_thread(this_thr
),
4227 team
->t
.t_task_team
[other_team
], team
->t
.t_id
, other_team
));
4230 // For regular thread, task enabling should be called when the task is going
4231 // to be pushed to a dequeue. However, for the hidden helper thread, we need
4232 // it ahead of time so that some operations can be performed without race
4234 if (this_thr
== __kmp_hidden_helper_main_thread
) {
4235 for (int i
= 0; i
< 2; ++i
) {
4236 kmp_task_team_t
*task_team
= team
->t
.t_task_team
[i
];
4237 if (KMP_TASKING_ENABLED(task_team
)) {
4240 __kmp_enable_tasking(task_team
, this_thr
);
4241 for (int j
= 0; j
< task_team
->tt
.tt_nproc
; ++j
) {
4242 kmp_thread_data_t
*thread_data
= &task_team
->tt
.tt_threads_data
[j
];
4243 if (thread_data
->td
.td_deque
== NULL
) {
4244 __kmp_alloc_task_deque(__kmp_hidden_helper_threads
[j
], thread_data
);
4251 // __kmp_task_team_sync: Propagation of task team data from team to threads
4252 // which happens just after the release phase of a team barrier. This may be
4253 // called by any thread. This is not called for serial or root teams.
4254 void __kmp_task_team_sync(kmp_info_t
*this_thr
, kmp_team_t
*team
) {
4255 KMP_DEBUG_ASSERT(__kmp_tasking_mode
!= tskm_immediate_exec
);
4256 KMP_DEBUG_ASSERT(team
!= this_thr
->th
.th_serial_team
);
4257 KMP_DEBUG_ASSERT(team
!= this_thr
->th
.th_root
->r
.r_root_team
);
4259 // Toggle the th_task_state field, to switch which task_team this thread
4261 this_thr
->th
.th_task_state
= (kmp_uint8
)(1 - this_thr
->th
.th_task_state
);
4263 // It is now safe to propagate the task team pointer from the team struct to
4264 // the current thread.
4265 TCW_PTR(this_thr
->th
.th_task_team
,
4266 team
->t
.t_task_team
[this_thr
->th
.th_task_state
]);
4268 ("__kmp_task_team_sync: Thread T#%d task team switched to task_team "
4269 "%p from Team #%d (parity=%d)\n",
4270 __kmp_gtid_from_thread(this_thr
), this_thr
->th
.th_task_team
,
4271 team
->t
.t_id
, this_thr
->th
.th_task_state
));
4274 // __kmp_task_team_wait: Primary thread waits for outstanding tasks after the
4275 // barrier gather phase. Only called by the primary thread.
4277 // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off
4278 // by passing in 0 optionally as the last argument. When wait is zero, primary
4279 // thread does not wait for unfinished_threads to reach 0.
4280 void __kmp_task_team_wait(
4281 kmp_info_t
*this_thr
,
4282 kmp_team_t
*team
USE_ITT_BUILD_ARG(void *itt_sync_obj
), int wait
) {
4283 kmp_task_team_t
*task_team
= team
->t
.t_task_team
[this_thr
->th
.th_task_state
];
4285 KMP_DEBUG_ASSERT(__kmp_tasking_mode
!= tskm_immediate_exec
);
4286 KMP_DEBUG_ASSERT(task_team
== this_thr
->th
.th_task_team
);
4288 if ((task_team
!= NULL
) && KMP_TASKING_ENABLED(task_team
)) {
4290 KA_TRACE(20, ("__kmp_task_team_wait: Primary T#%d waiting for all tasks "
4291 "(for unfinished_threads to reach 0) on task_team = %p\n",
4292 __kmp_gtid_from_thread(this_thr
), task_team
));
4293 // Worker threads may have dropped through to release phase, but could
4294 // still be executing tasks. Wait here for tasks to complete. To avoid
4295 // memory contention, only primary thread checks termination condition.
4296 kmp_flag_32
<false, false> flag(
4297 RCAST(std::atomic
<kmp_uint32
> *,
4298 &task_team
->tt
.tt_unfinished_threads
),
4300 flag
.wait(this_thr
, TRUE
USE_ITT_BUILD_ARG(itt_sync_obj
));
4302 // Deactivate the old task team, so that the worker threads will stop
4303 // referencing it while spinning.
4306 ("__kmp_task_team_wait: Primary T#%d deactivating task_team %p: "
4307 "setting active to false, setting local and team's pointer to NULL\n",
4308 __kmp_gtid_from_thread(this_thr
), task_team
));
4309 TCW_SYNC_4(task_team
->tt
.tt_found_proxy_tasks
, FALSE
);
4310 TCW_SYNC_4(task_team
->tt
.tt_hidden_helper_task_encountered
, FALSE
);
4311 KMP_CHECK_UPDATE(task_team
->tt
.tt_untied_task_encountered
, 0);
4312 TCW_SYNC_4(task_team
->tt
.tt_active
, FALSE
);
4315 TCW_PTR(this_thr
->th
.th_task_team
, NULL
);
4319 // __kmp_tasking_barrier:
4320 // This routine is called only when __kmp_tasking_mode == tskm_extra_barrier.
4321 // Internal function to execute all tasks prior to a regular barrier or a join
4322 // barrier. It is a full barrier itself, which unfortunately turns regular
4323 // barriers into double barriers and join barriers into 1 1/2 barriers.
4324 void __kmp_tasking_barrier(kmp_team_t
*team
, kmp_info_t
*thread
, int gtid
) {
4325 std::atomic
<kmp_uint32
> *spin
= RCAST(
4326 std::atomic
<kmp_uint32
> *,
4327 &team
->t
.t_task_team
[thread
->th
.th_task_state
]->tt
.tt_unfinished_threads
);
4329 KMP_DEBUG_ASSERT(__kmp_tasking_mode
== tskm_extra_barrier
);
4332 KMP_FSYNC_SPIN_INIT(spin
, NULL
);
4333 #endif /* USE_ITT_BUILD */
4334 kmp_flag_32
<false, false> spin_flag(spin
, 0U);
4335 while (!spin_flag
.execute_tasks(thread
, gtid
, TRUE
,
4336 &flag
USE_ITT_BUILD_ARG(NULL
), 0)) {
4338 // TODO: What about itt_sync_obj??
4339 KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin
));
4340 #endif /* USE_ITT_BUILD */
4342 if (TCR_4(__kmp_global
.g
.g_done
)) {
4343 if (__kmp_global
.g
.g_abort
)
4344 __kmp_abort_thread();
4350 KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin
));
4351 #endif /* USE_ITT_BUILD */
4354 // __kmp_give_task puts a task into a given thread queue if:
4355 // - the queue for that thread was created
4356 // - there's space in that queue
4357 // Because of this, __kmp_push_task needs to check if there's space after
4359 static bool __kmp_give_task(kmp_info_t
*thread
, kmp_int32 tid
, kmp_task_t
*task
,
4361 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
4362 kmp_task_team_t
*task_team
= taskdata
->td_task_team
;
4364 KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n",
4367 // If task_team is NULL something went really bad...
4368 KMP_DEBUG_ASSERT(task_team
!= NULL
);
4370 bool result
= false;
4371 kmp_thread_data_t
*thread_data
= &task_team
->tt
.tt_threads_data
[tid
];
4373 if (thread_data
->td
.td_deque
== NULL
) {
4374 // There's no queue in this thread, go find another one
4375 // We're guaranteed that at least one thread has a queue
4377 ("__kmp_give_task: thread %d has no queue while giving task %p.\n",
4382 if (TCR_4(thread_data
->td
.td_deque_ntasks
) >=
4383 TASK_DEQUE_SIZE(thread_data
->td
)) {
4386 ("__kmp_give_task: queue is full while giving task %p to thread %d.\n",
4389 // if this deque is bigger than the pass ratio give a chance to another
4391 if (TASK_DEQUE_SIZE(thread_data
->td
) / INITIAL_TASK_DEQUE_SIZE
>= pass
)
4394 __kmp_acquire_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
4395 if (TCR_4(thread_data
->td
.td_deque_ntasks
) >=
4396 TASK_DEQUE_SIZE(thread_data
->td
)) {
4397 // expand deque to push the task which is not allowed to execute
4398 __kmp_realloc_task_deque(thread
, thread_data
);
4403 __kmp_acquire_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
4405 if (TCR_4(thread_data
->td
.td_deque_ntasks
) >=
4406 TASK_DEQUE_SIZE(thread_data
->td
)) {
4407 KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to "
4411 // if this deque is bigger than the pass ratio give a chance to another
4413 if (TASK_DEQUE_SIZE(thread_data
->td
) / INITIAL_TASK_DEQUE_SIZE
>= pass
)
4414 goto release_and_exit
;
4416 __kmp_realloc_task_deque(thread
, thread_data
);
4420 // lock is held here, and there is space in the deque
4422 thread_data
->td
.td_deque
[thread_data
->td
.td_deque_tail
] = taskdata
;
4424 thread_data
->td
.td_deque_tail
=
4425 (thread_data
->td
.td_deque_tail
+ 1) & TASK_DEQUE_MASK(thread_data
->td
);
4426 TCW_4(thread_data
->td
.td_deque_ntasks
,
4427 TCR_4(thread_data
->td
.td_deque_ntasks
) + 1);
4430 KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n",
4434 __kmp_release_bootstrap_lock(&thread_data
->td
.td_deque_lock
);
4439 #define PROXY_TASK_FLAG 0x40000000
4440 /* The finish of the proxy tasks is divided in two pieces:
4441 - the top half is the one that can be done from a thread outside the team
4442 - the bottom half must be run from a thread within the team
4444 In order to run the bottom half the task gets queued back into one of the
4445 threads of the team. Once the td_incomplete_child_task counter of the parent
4446 is decremented the threads can leave the barriers. So, the bottom half needs
4447 to be queued before the counter is decremented. The top half is therefore
4448 divided in two parts:
4449 - things that can be run before queuing the bottom half
4450 - things that must be run after queuing the bottom half
4452 This creates a second race as the bottom half can free the task before the
4453 second top half is executed. To avoid this we use the
4454 td_incomplete_child_task of the proxy task to synchronize the top and bottom
4456 static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t
*taskdata
) {
4457 KMP_DEBUG_ASSERT(taskdata
->td_flags
.tasktype
== TASK_EXPLICIT
);
4458 KMP_DEBUG_ASSERT(taskdata
->td_flags
.proxy
== TASK_PROXY
);
4459 KMP_DEBUG_ASSERT(taskdata
->td_flags
.complete
== 0);
4460 KMP_DEBUG_ASSERT(taskdata
->td_flags
.freed
== 0);
4462 taskdata
->td_flags
.complete
= 1; // mark the task as completed
4464 taskdata
->td_flags
.onced
= 1;
4467 if (taskdata
->td_taskgroup
)
4468 KMP_ATOMIC_DEC(&taskdata
->td_taskgroup
->count
);
4470 // Create an imaginary children for this task so the bottom half cannot
4471 // release the task before we have completed the second top half
4472 KMP_ATOMIC_OR(&taskdata
->td_incomplete_child_tasks
, PROXY_TASK_FLAG
);
4475 static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t
*taskdata
) {
4477 kmp_int32 children
= 0;
4478 // Predecrement simulated by "- 1" calculation
4481 KMP_ATOMIC_DEC(&taskdata
->td_parent
->td_incomplete_child_tasks
);
4482 KMP_DEBUG_ASSERT(children
>= 0);
4484 // Remove the imaginary children
4485 KMP_ATOMIC_AND(&taskdata
->td_incomplete_child_tasks
, ~PROXY_TASK_FLAG
);
4488 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid
, kmp_task_t
*ptask
) {
4489 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(ptask
);
4490 kmp_info_t
*thread
= __kmp_threads
[gtid
];
4492 KMP_DEBUG_ASSERT(taskdata
->td_flags
.proxy
== TASK_PROXY
);
4493 KMP_DEBUG_ASSERT(taskdata
->td_flags
.complete
==
4494 1); // top half must run before bottom half
4496 // We need to wait to make sure the top half is finished
4497 // Spinning here should be ok as this should happen quickly
4498 while ((KMP_ATOMIC_LD_ACQ(&taskdata
->td_incomplete_child_tasks
) &
4499 PROXY_TASK_FLAG
) > 0)
4502 __kmp_release_deps(gtid
, taskdata
);
4503 __kmp_free_task_and_ancestors(gtid
, taskdata
, thread
);
4508 @param gtid Global Thread ID of encountering thread
4509 @param ptask Task which execution is completed
4511 Execute the completion of a proxy task from a thread of that is part of the
4512 team. Run first and bottom halves directly.
4514 void __kmpc_proxy_task_completed(kmp_int32 gtid
, kmp_task_t
*ptask
) {
4515 KMP_DEBUG_ASSERT(ptask
!= NULL
);
4516 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(ptask
);
4518 10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n",
4520 __kmp_assert_valid_gtid(gtid
);
4521 KMP_DEBUG_ASSERT(taskdata
->td_flags
.proxy
== TASK_PROXY
);
4523 __kmp_first_top_half_finish_proxy(taskdata
);
4524 __kmp_second_top_half_finish_proxy(taskdata
);
4525 __kmp_bottom_half_finish_proxy(gtid
, ptask
);
4528 ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n",
4532 void __kmpc_give_task(kmp_task_t
*ptask
, kmp_int32 start
= 0) {
4533 KMP_DEBUG_ASSERT(ptask
!= NULL
);
4534 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(ptask
);
4536 // Enqueue task to complete bottom half completion from a thread within the
4537 // corresponding team
4538 kmp_team_t
*team
= taskdata
->td_team
;
4539 kmp_int32 nthreads
= team
->t
.t_nproc
;
4542 // This should be similar to start_k = __kmp_get_random( thread ) % nthreads
4543 // but we cannot use __kmp_get_random here
4544 kmp_int32 start_k
= start
% nthreads
;
4546 kmp_int32 k
= start_k
;
4549 // For now we're just linearly trying to find a thread
4550 thread
= team
->t
.t_threads
[k
];
4551 k
= (k
+ 1) % nthreads
;
4553 // we did a full pass through all the threads
4557 } while (!__kmp_give_task(thread
, k
, ptask
, pass
));
4559 if (__kmp_dflt_blocktime
!= KMP_MAX_BLOCKTIME
&& __kmp_wpolicy_passive
) {
4560 // awake at least one thread to execute given task
4561 for (int i
= 0; i
< nthreads
; ++i
) {
4562 thread
= team
->t
.t_threads
[i
];
4563 if (thread
->th
.th_sleep_loc
!= NULL
) {
4564 __kmp_null_resume_wrapper(thread
);
4573 @param ptask Task which execution is completed
4575 Execute the completion of a proxy task from a thread that could not belong to
4578 void __kmpc_proxy_task_completed_ooo(kmp_task_t
*ptask
) {
4579 KMP_DEBUG_ASSERT(ptask
!= NULL
);
4580 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(ptask
);
4584 ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n",
4587 KMP_DEBUG_ASSERT(taskdata
->td_flags
.proxy
== TASK_PROXY
);
4589 __kmp_first_top_half_finish_proxy(taskdata
);
4591 __kmpc_give_task(ptask
);
4593 __kmp_second_top_half_finish_proxy(taskdata
);
4597 ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n",
4601 kmp_event_t
*__kmpc_task_allow_completion_event(ident_t
*loc_ref
, int gtid
,
4603 kmp_taskdata_t
*td
= KMP_TASK_TO_TASKDATA(task
);
4604 if (td
->td_allow_completion_event
.type
== KMP_EVENT_UNINITIALIZED
) {
4605 td
->td_allow_completion_event
.type
= KMP_EVENT_ALLOW_COMPLETION
;
4606 td
->td_allow_completion_event
.ed
.task
= task
;
4607 __kmp_init_tas_lock(&td
->td_allow_completion_event
.lock
);
4609 return &td
->td_allow_completion_event
;
4612 void __kmp_fulfill_event(kmp_event_t
*event
) {
4613 if (event
->type
== KMP_EVENT_ALLOW_COMPLETION
) {
4614 kmp_task_t
*ptask
= event
->ed
.task
;
4615 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(ptask
);
4616 bool detached
= false;
4617 int gtid
= __kmp_get_gtid();
4619 // The associated task might have completed or could be completing at this
4621 // We need to take the lock to avoid races
4622 __kmp_acquire_tas_lock(&event
->lock
, gtid
);
4623 if (taskdata
->td_flags
.proxy
== TASK_PROXY
) {
4627 // The OMPT event must occur under mutual exclusion,
4628 // otherwise the tool might access ptask after free
4629 if (UNLIKELY(ompt_enabled
.enabled
))
4630 __ompt_task_finish(ptask
, NULL
, ompt_task_early_fulfill
);
4633 event
->type
= KMP_EVENT_UNINITIALIZED
;
4634 __kmp_release_tas_lock(&event
->lock
, gtid
);
4638 // We free ptask afterwards and know the task is finished,
4639 // so locking is not necessary
4640 if (UNLIKELY(ompt_enabled
.enabled
))
4641 __ompt_task_finish(ptask
, NULL
, ompt_task_late_fulfill
);
4643 // If the task detached complete the proxy task
4645 kmp_team_t
*team
= taskdata
->td_team
;
4646 kmp_info_t
*thread
= __kmp_get_thread();
4647 if (thread
->th
.th_team
== team
) {
4648 __kmpc_proxy_task_completed(gtid
, ptask
);
4654 __kmpc_proxy_task_completed_ooo(ptask
);
4659 // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task
4662 // thread: allocating thread
4663 // task_src: pointer to source task to be duplicated
4664 // taskloop_recur: used only when dealing with taskgraph,
4665 // indicating whether we need to update task->td_task_id
4666 // returns: a pointer to the allocated kmp_task_t structure (task).
4667 kmp_task_t
*__kmp_task_dup_alloc(kmp_info_t
*thread
, kmp_task_t
*task_src
4669 , int taskloop_recur
4673 kmp_taskdata_t
*taskdata
;
4674 kmp_taskdata_t
*taskdata_src
= KMP_TASK_TO_TASKDATA(task_src
);
4675 kmp_taskdata_t
*parent_task
= taskdata_src
->td_parent
; // same parent task
4676 size_t shareds_offset
;
4679 KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread
,
4681 KMP_DEBUG_ASSERT(taskdata_src
->td_flags
.proxy
==
4682 TASK_FULL
); // it should not be proxy task
4683 KMP_DEBUG_ASSERT(taskdata_src
->td_flags
.tasktype
== TASK_EXPLICIT
);
4684 task_size
= taskdata_src
->td_size_alloc
;
4686 // Allocate a kmp_taskdata_t block and a kmp_task_t block.
4687 KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread
,
4690 taskdata
= (kmp_taskdata_t
*)__kmp_fast_allocate(thread
, task_size
);
4692 taskdata
= (kmp_taskdata_t
*)__kmp_thread_malloc(thread
, task_size
);
4693 #endif /* USE_FAST_MEMORY */
4694 KMP_MEMCPY(taskdata
, taskdata_src
, task_size
);
4696 task
= KMP_TASKDATA_TO_TASK(taskdata
);
4698 // Initialize new task (only specific fields not affected by memcpy)
4700 if (!taskdata
->is_taskgraph
|| taskloop_recur
)
4701 taskdata
->td_task_id
= KMP_GEN_TASK_ID();
4702 else if (taskdata
->is_taskgraph
&&
4703 __kmp_tdg_is_recording(taskdata_src
->tdg
->tdg_status
))
4704 taskdata
->td_task_id
= KMP_ATOMIC_INC(&__kmp_tdg_task_id
);
4706 taskdata
->td_task_id
= KMP_GEN_TASK_ID();
4708 if (task
->shareds
!= NULL
) { // need setup shareds pointer
4709 shareds_offset
= (char *)task_src
->shareds
- (char *)taskdata_src
;
4710 task
->shareds
= &((char *)taskdata
)[shareds_offset
];
4711 KMP_DEBUG_ASSERT((((kmp_uintptr_t
)task
->shareds
) & (sizeof(void *) - 1)) ==
4714 taskdata
->td_alloc_thread
= thread
;
4715 taskdata
->td_parent
= parent_task
;
4716 // task inherits the taskgroup from the parent task
4717 taskdata
->td_taskgroup
= parent_task
->td_taskgroup
;
4718 // tied task needs to initialize the td_last_tied at creation,
4719 // untied one does this when it is scheduled for execution
4720 if (taskdata
->td_flags
.tiedness
== TASK_TIED
)
4721 taskdata
->td_last_tied
= taskdata
;
4723 // Only need to keep track of child task counts if team parallel and tasking
4725 if (!(taskdata
->td_flags
.team_serial
|| taskdata
->td_flags
.tasking_ser
)) {
4726 KMP_ATOMIC_INC(&parent_task
->td_incomplete_child_tasks
);
4727 if (parent_task
->td_taskgroup
)
4728 KMP_ATOMIC_INC(&parent_task
->td_taskgroup
->count
);
4729 // Only need to keep track of allocated child tasks for explicit tasks since
4730 // implicit not deallocated
4731 if (taskdata
->td_parent
->td_flags
.tasktype
== TASK_EXPLICIT
)
4732 KMP_ATOMIC_INC(&taskdata
->td_parent
->td_allocated_child_tasks
);
4736 ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n",
4737 thread
, taskdata
, taskdata
->td_parent
));
4739 if (UNLIKELY(ompt_enabled
.enabled
))
4740 __ompt_task_init(taskdata
, thread
->th
.th_info
.ds
.ds_gtid
);
4745 // Routine optionally generated by the compiler for setting the lastprivate flag
4746 // and calling needed constructors for private/firstprivate objects
4747 // (used to form taskloop tasks from pattern task)
4748 // Parameters: dest task, src task, lastprivate flag.
4749 typedef void (*p_task_dup_t
)(kmp_task_t
*, kmp_task_t
*, kmp_int32
);
4751 KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8);
4753 // class to encapsulate manipulating loop bounds in a taskloop task.
4754 // this abstracts away the Intel vs GOMP taskloop interface for setting/getting
4755 // the loop bound variables.
4756 class kmp_taskloop_bounds_t
{
4758 const kmp_taskdata_t
*taskdata
;
4759 size_t lower_offset
;
4760 size_t upper_offset
;
4763 kmp_taskloop_bounds_t(kmp_task_t
*_task
, kmp_uint64
*lb
, kmp_uint64
*ub
)
4764 : task(_task
), taskdata(KMP_TASK_TO_TASKDATA(task
)),
4765 lower_offset((char *)lb
- (char *)task
),
4766 upper_offset((char *)ub
- (char *)task
) {
4767 KMP_DEBUG_ASSERT((char *)lb
> (char *)_task
);
4768 KMP_DEBUG_ASSERT((char *)ub
> (char *)_task
);
4770 kmp_taskloop_bounds_t(kmp_task_t
*_task
, const kmp_taskloop_bounds_t
&bounds
)
4771 : task(_task
), taskdata(KMP_TASK_TO_TASKDATA(_task
)),
4772 lower_offset(bounds
.lower_offset
), upper_offset(bounds
.upper_offset
) {}
4773 size_t get_lower_offset() const { return lower_offset
; }
4774 size_t get_upper_offset() const { return upper_offset
; }
4775 kmp_uint64
get_lb() const {
4777 #if defined(KMP_GOMP_COMPAT)
4778 // Intel task just returns the lower bound normally
4779 if (!taskdata
->td_flags
.native
) {
4780 retval
= *(kmp_int64
*)((char *)task
+ lower_offset
);
4782 // GOMP task has to take into account the sizeof(long)
4783 if (taskdata
->td_size_loop_bounds
== 4) {
4784 kmp_int32
*lb
= RCAST(kmp_int32
*, task
->shareds
);
4785 retval
= (kmp_int64
)*lb
;
4787 kmp_int64
*lb
= RCAST(kmp_int64
*, task
->shareds
);
4788 retval
= (kmp_int64
)*lb
;
4793 retval
= *(kmp_int64
*)((char *)task
+ lower_offset
);
4794 #endif // defined(KMP_GOMP_COMPAT)
4797 kmp_uint64
get_ub() const {
4799 #if defined(KMP_GOMP_COMPAT)
4800 // Intel task just returns the upper bound normally
4801 if (!taskdata
->td_flags
.native
) {
4802 retval
= *(kmp_int64
*)((char *)task
+ upper_offset
);
4804 // GOMP task has to take into account the sizeof(long)
4805 if (taskdata
->td_size_loop_bounds
== 4) {
4806 kmp_int32
*ub
= RCAST(kmp_int32
*, task
->shareds
) + 1;
4807 retval
= (kmp_int64
)*ub
;
4809 kmp_int64
*ub
= RCAST(kmp_int64
*, task
->shareds
) + 1;
4810 retval
= (kmp_int64
)*ub
;
4814 retval
= *(kmp_int64
*)((char *)task
+ upper_offset
);
4815 #endif // defined(KMP_GOMP_COMPAT)
4818 void set_lb(kmp_uint64 lb
) {
4819 #if defined(KMP_GOMP_COMPAT)
4820 // Intel task just sets the lower bound normally
4821 if (!taskdata
->td_flags
.native
) {
4822 *(kmp_uint64
*)((char *)task
+ lower_offset
) = lb
;
4824 // GOMP task has to take into account the sizeof(long)
4825 if (taskdata
->td_size_loop_bounds
== 4) {
4826 kmp_uint32
*lower
= RCAST(kmp_uint32
*, task
->shareds
);
4827 *lower
= (kmp_uint32
)lb
;
4829 kmp_uint64
*lower
= RCAST(kmp_uint64
*, task
->shareds
);
4830 *lower
= (kmp_uint64
)lb
;
4834 *(kmp_uint64
*)((char *)task
+ lower_offset
) = lb
;
4835 #endif // defined(KMP_GOMP_COMPAT)
4837 void set_ub(kmp_uint64 ub
) {
4838 #if defined(KMP_GOMP_COMPAT)
4839 // Intel task just sets the upper bound normally
4840 if (!taskdata
->td_flags
.native
) {
4841 *(kmp_uint64
*)((char *)task
+ upper_offset
) = ub
;
4843 // GOMP task has to take into account the sizeof(long)
4844 if (taskdata
->td_size_loop_bounds
== 4) {
4845 kmp_uint32
*upper
= RCAST(kmp_uint32
*, task
->shareds
) + 1;
4846 *upper
= (kmp_uint32
)ub
;
4848 kmp_uint64
*upper
= RCAST(kmp_uint64
*, task
->shareds
) + 1;
4849 *upper
= (kmp_uint64
)ub
;
4853 *(kmp_uint64
*)((char *)task
+ upper_offset
) = ub
;
4854 #endif // defined(KMP_GOMP_COMPAT)
4858 // __kmp_taskloop_linear: Start tasks of the taskloop linearly
4860 // loc Source location information
4861 // gtid Global thread ID
4862 // task Pattern task, exposes the loop iteration range
4863 // lb Pointer to loop lower bound in task structure
4864 // ub Pointer to loop upper bound in task structure
4866 // ub_glob Global upper bound (used for lastprivate check)
4867 // num_tasks Number of tasks to execute
4868 // grainsize Number of loop iterations per task
4869 // extras Number of chunks with grainsize+1 iterations
4870 // last_chunk Reduction of grainsize for last task
4871 // tc Iterations count
4872 // task_dup Tasks duplication routine
4873 // codeptr_ra Return address for OMPT events
4874 void __kmp_taskloop_linear(ident_t
*loc
, int gtid
, kmp_task_t
*task
,
4875 kmp_uint64
*lb
, kmp_uint64
*ub
, kmp_int64 st
,
4876 kmp_uint64 ub_glob
, kmp_uint64 num_tasks
,
4877 kmp_uint64 grainsize
, kmp_uint64 extras
,
4878 kmp_int64 last_chunk
, kmp_uint64 tc
,
4883 KMP_COUNT_BLOCK(OMP_TASKLOOP
);
4884 KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling
);
4885 p_task_dup_t ptask_dup
= (p_task_dup_t
)task_dup
;
4886 // compiler provides global bounds here
4887 kmp_taskloop_bounds_t
task_bounds(task
, lb
, ub
);
4888 kmp_uint64 lower
= task_bounds
.get_lb();
4889 kmp_uint64 upper
= task_bounds
.get_ub();
4891 kmp_info_t
*thread
= __kmp_threads
[gtid
];
4892 kmp_taskdata_t
*current_task
= thread
->th
.th_current_task
;
4893 kmp_task_t
*next_task
;
4894 kmp_int32 lastpriv
= 0;
4896 KMP_DEBUG_ASSERT(tc
== num_tasks
* grainsize
+
4897 (last_chunk
< 0 ? last_chunk
: extras
));
4898 KMP_DEBUG_ASSERT(num_tasks
> extras
);
4899 KMP_DEBUG_ASSERT(num_tasks
> 0);
4900 KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, "
4901 "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n",
4902 gtid
, num_tasks
, grainsize
, extras
, last_chunk
, lower
, upper
,
4903 ub_glob
, st
, task_dup
));
4905 // Launch num_tasks tasks, assign grainsize iterations each task
4906 for (i
= 0; i
< num_tasks
; ++i
) {
4907 kmp_uint64 chunk_minus_1
;
4909 chunk_minus_1
= grainsize
- 1;
4911 chunk_minus_1
= grainsize
;
4912 --extras
; // first extras iterations get bigger chunk (grainsize+1)
4914 upper
= lower
+ st
* chunk_minus_1
;
4918 if (i
== num_tasks
- 1) {
4919 // schedule the last task, set lastprivate flag if needed
4920 if (st
== 1) { // most common case
4921 KMP_DEBUG_ASSERT(upper
== *ub
);
4922 if (upper
== ub_glob
)
4924 } else if (st
> 0) { // positive loop stride
4925 KMP_DEBUG_ASSERT((kmp_uint64
)st
> *ub
- upper
);
4926 if ((kmp_uint64
)st
> ub_glob
- upper
)
4928 } else { // negative loop stride
4929 KMP_DEBUG_ASSERT(upper
+ st
< *ub
);
4930 if (upper
- ub_glob
< (kmp_uint64
)(-st
))
4936 next_task
= __kmp_task_dup_alloc(thread
, task
, /* taskloop_recur */ 0);
4938 next_task
= __kmp_task_dup_alloc(thread
, task
); // allocate new task
4941 kmp_taskdata_t
*next_taskdata
= KMP_TASK_TO_TASKDATA(next_task
);
4942 kmp_taskloop_bounds_t next_task_bounds
=
4943 kmp_taskloop_bounds_t(next_task
, task_bounds
);
4945 // adjust task-specific bounds
4946 next_task_bounds
.set_lb(lower
);
4947 if (next_taskdata
->td_flags
.native
) {
4948 next_task_bounds
.set_ub(upper
+ (st
> 0 ? 1 : -1));
4950 next_task_bounds
.set_ub(upper
);
4952 if (ptask_dup
!= NULL
) // set lastprivate flag, construct firstprivates,
4954 ptask_dup(next_task
, task
, lastpriv
);
4956 ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, "
4957 "upper %lld stride %lld, (offsets %p %p)\n",
4958 gtid
, i
, next_task
, lower
, upper
, st
,
4959 next_task_bounds
.get_lower_offset(),
4960 next_task_bounds
.get_upper_offset()));
4962 __kmp_omp_taskloop_task(NULL
, gtid
, next_task
,
4963 codeptr_ra
); // schedule new task
4965 if (ompt_enabled
.ompt_callback_dispatch
) {
4966 OMPT_GET_DISPATCH_CHUNK(next_taskdata
->ompt_task_info
.dispatch_chunk
,
4969 #endif // OMPT_OPTIONAL
4971 __kmp_omp_task(gtid
, next_task
, true); // schedule new task
4973 lower
= upper
+ st
; // adjust lower bound for the next iteration
4975 // free the pattern task and exit
4976 __kmp_task_start(gtid
, task
, current_task
); // make internal bookkeeping
4977 // do not execute the pattern task, just do internal bookkeeping
4978 __kmp_task_finish
<false>(gtid
, task
, current_task
);
4981 // Structure to keep taskloop parameters for auxiliary task
4982 // kept in the shareds of the task structure.
4983 typedef struct __taskloop_params
{
4990 kmp_uint64 num_tasks
;
4991 kmp_uint64 grainsize
;
4993 kmp_int64 last_chunk
;
4995 kmp_uint64 num_t_min
;
4999 } __taskloop_params_t
;
5001 void __kmp_taskloop_recur(ident_t
*, int, kmp_task_t
*, kmp_uint64
*,
5002 kmp_uint64
*, kmp_int64
, kmp_uint64
, kmp_uint64
,
5003 kmp_uint64
, kmp_uint64
, kmp_int64
, kmp_uint64
,
5010 // Execute part of the taskloop submitted as a task.
5011 int __kmp_taskloop_task(int gtid
, void *ptask
) {
5012 __taskloop_params_t
*p
=
5013 (__taskloop_params_t
*)((kmp_task_t
*)ptask
)->shareds
;
5014 kmp_task_t
*task
= p
->task
;
5015 kmp_uint64
*lb
= p
->lb
;
5016 kmp_uint64
*ub
= p
->ub
;
5017 void *task_dup
= p
->task_dup
;
5018 // p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
5019 kmp_int64 st
= p
->st
;
5020 kmp_uint64 ub_glob
= p
->ub_glob
;
5021 kmp_uint64 num_tasks
= p
->num_tasks
;
5022 kmp_uint64 grainsize
= p
->grainsize
;
5023 kmp_uint64 extras
= p
->extras
;
5024 kmp_int64 last_chunk
= p
->last_chunk
;
5025 kmp_uint64 tc
= p
->tc
;
5026 kmp_uint64 num_t_min
= p
->num_t_min
;
5028 void *codeptr_ra
= p
->codeptr_ra
;
5031 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
5032 KMP_DEBUG_ASSERT(task
!= NULL
);
5034 ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize"
5035 " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n",
5036 gtid
, taskdata
, num_tasks
, grainsize
, extras
, last_chunk
, *lb
, *ub
,
5039 KMP_DEBUG_ASSERT(num_tasks
* 2 + 1 > num_t_min
);
5040 if (num_tasks
> num_t_min
)
5041 __kmp_taskloop_recur(NULL
, gtid
, task
, lb
, ub
, st
, ub_glob
, num_tasks
,
5042 grainsize
, extras
, last_chunk
, tc
, num_t_min
,
5048 __kmp_taskloop_linear(NULL
, gtid
, task
, lb
, ub
, st
, ub_glob
, num_tasks
,
5049 grainsize
, extras
, last_chunk
, tc
,
5055 KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid
));
5059 // Schedule part of the taskloop as a task,
5060 // execute the rest of the taskloop.
5062 // loc Source location information
5063 // gtid Global thread ID
5064 // task Pattern task, exposes the loop iteration range
5065 // lb Pointer to loop lower bound in task structure
5066 // ub Pointer to loop upper bound in task structure
5068 // ub_glob Global upper bound (used for lastprivate check)
5069 // num_tasks Number of tasks to execute
5070 // grainsize Number of loop iterations per task
5071 // extras Number of chunks with grainsize+1 iterations
5072 // last_chunk Reduction of grainsize for last task
5073 // tc Iterations count
5074 // num_t_min Threshold to launch tasks recursively
5075 // task_dup Tasks duplication routine
5076 // codeptr_ra Return address for OMPT events
5077 void __kmp_taskloop_recur(ident_t
*loc
, int gtid
, kmp_task_t
*task
,
5078 kmp_uint64
*lb
, kmp_uint64
*ub
, kmp_int64 st
,
5079 kmp_uint64 ub_glob
, kmp_uint64 num_tasks
,
5080 kmp_uint64 grainsize
, kmp_uint64 extras
,
5081 kmp_int64 last_chunk
, kmp_uint64 tc
,
5082 kmp_uint64 num_t_min
,
5087 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
5088 KMP_DEBUG_ASSERT(task
!= NULL
);
5089 KMP_DEBUG_ASSERT(num_tasks
> num_t_min
);
5091 ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize"
5092 " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n",
5093 gtid
, taskdata
, num_tasks
, grainsize
, extras
, last_chunk
, *lb
, *ub
,
5095 p_task_dup_t ptask_dup
= (p_task_dup_t
)task_dup
;
5096 kmp_uint64 lower
= *lb
;
5097 kmp_info_t
*thread
= __kmp_threads
[gtid
];
5098 // kmp_taskdata_t *current_task = thread->th.th_current_task;
5099 kmp_task_t
*next_task
;
5100 size_t lower_offset
=
5101 (char *)lb
- (char *)task
; // remember offset of lb in the task structure
5102 size_t upper_offset
=
5103 (char *)ub
- (char *)task
; // remember offset of ub in the task structure
5105 KMP_DEBUG_ASSERT(tc
== num_tasks
* grainsize
+
5106 (last_chunk
< 0 ? last_chunk
: extras
));
5107 KMP_DEBUG_ASSERT(num_tasks
> extras
);
5108 KMP_DEBUG_ASSERT(num_tasks
> 0);
5110 // split the loop in two halves
5111 kmp_uint64 lb1
, ub0
, tc0
, tc1
, ext0
, ext1
;
5112 kmp_int64 last_chunk0
= 0, last_chunk1
= 0;
5113 kmp_uint64 gr_size0
= grainsize
;
5114 kmp_uint64 n_tsk0
= num_tasks
>> 1; // num_tasks/2 to execute
5115 kmp_uint64 n_tsk1
= num_tasks
- n_tsk0
; // to schedule as a task
5116 if (last_chunk
< 0) {
5118 last_chunk1
= last_chunk
;
5119 tc0
= grainsize
* n_tsk0
;
5121 } else if (n_tsk0
<= extras
) {
5122 gr_size0
++; // integrate extras into grainsize
5123 ext0
= 0; // no extra iters in 1st half
5124 ext1
= extras
- n_tsk0
; // remaining extras
5125 tc0
= gr_size0
* n_tsk0
;
5127 } else { // n_tsk0 > extras
5128 ext1
= 0; // no extra iters in 2nd half
5130 tc1
= grainsize
* n_tsk1
;
5133 ub0
= lower
+ st
* (tc0
- 1);
5136 // create pattern task for 2nd half of the loop
5138 next_task
= __kmp_task_dup_alloc(thread
, task
,
5139 /* taskloop_recur */ 1);
5141 next_task
= __kmp_task_dup_alloc(thread
, task
); // duplicate the task
5143 // adjust lower bound (upper bound is not changed) for the 2nd half
5144 *(kmp_uint64
*)((char *)next_task
+ lower_offset
) = lb1
;
5145 if (ptask_dup
!= NULL
) // construct firstprivates, etc.
5146 ptask_dup(next_task
, task
, 0);
5147 *ub
= ub0
; // adjust upper bound for the 1st half
5149 // create auxiliary task for 2nd half of the loop
5150 // make sure new task has same parent task as the pattern task
5151 kmp_taskdata_t
*current_task
= thread
->th
.th_current_task
;
5152 thread
->th
.th_current_task
= taskdata
->td_parent
;
5153 kmp_task_t
*new_task
=
5154 __kmpc_omp_task_alloc(loc
, gtid
, 1, 3 * sizeof(void *),
5155 sizeof(__taskloop_params_t
), &__kmp_taskloop_task
);
5156 // restore current task
5157 thread
->th
.th_current_task
= current_task
;
5158 __taskloop_params_t
*p
= (__taskloop_params_t
*)new_task
->shareds
;
5159 p
->task
= next_task
;
5160 p
->lb
= (kmp_uint64
*)((char *)next_task
+ lower_offset
);
5161 p
->ub
= (kmp_uint64
*)((char *)next_task
+ upper_offset
);
5162 p
->task_dup
= task_dup
;
5164 p
->ub_glob
= ub_glob
;
5165 p
->num_tasks
= n_tsk1
;
5166 p
->grainsize
= grainsize
;
5168 p
->last_chunk
= last_chunk1
;
5170 p
->num_t_min
= num_t_min
;
5172 p
->codeptr_ra
= codeptr_ra
;
5176 kmp_taskdata_t
*new_task_data
= KMP_TASK_TO_TASKDATA(new_task
);
5177 new_task_data
->tdg
= taskdata
->tdg
;
5178 new_task_data
->is_taskgraph
= 0;
5182 // schedule new task with correct return address for OMPT events
5183 __kmp_omp_taskloop_task(NULL
, gtid
, new_task
, codeptr_ra
);
5185 __kmp_omp_task(gtid
, new_task
, true); // schedule new task
5188 // execute the 1st half of current subrange
5189 if (n_tsk0
> num_t_min
)
5190 __kmp_taskloop_recur(loc
, gtid
, task
, lb
, ub
, st
, ub_glob
, n_tsk0
, gr_size0
,
5191 ext0
, last_chunk0
, tc0
, num_t_min
,
5197 __kmp_taskloop_linear(loc
, gtid
, task
, lb
, ub
, st
, ub_glob
, n_tsk0
,
5198 gr_size0
, ext0
, last_chunk0
, tc0
,
5204 KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n", gtid
));
5207 static void __kmp_taskloop(ident_t
*loc
, int gtid
, kmp_task_t
*task
, int if_val
,
5208 kmp_uint64
*lb
, kmp_uint64
*ub
, kmp_int64 st
,
5209 int nogroup
, int sched
, kmp_uint64 grainsize
,
5210 int modifier
, void *task_dup
) {
5211 kmp_taskdata_t
*taskdata
= KMP_TASK_TO_TASKDATA(task
);
5212 KMP_DEBUG_ASSERT(task
!= NULL
);
5214 #if OMPT_SUPPORT && OMPT_OPTIONAL
5215 OMPT_STORE_RETURN_ADDRESS(gtid
);
5217 __kmpc_taskgroup(loc
, gtid
);
5221 KMP_ATOMIC_DEC(&__kmp_tdg_task_id
);
5223 // =========================================================================
5224 // calculate loop parameters
5225 kmp_taskloop_bounds_t
task_bounds(task
, lb
, ub
);
5227 // compiler provides global bounds here
5228 kmp_uint64 lower
= task_bounds
.get_lb();
5229 kmp_uint64 upper
= task_bounds
.get_ub();
5230 kmp_uint64 ub_glob
= upper
; // global upper used to calc lastprivate flag
5231 kmp_uint64 num_tasks
= 0, extras
= 0;
5232 kmp_int64 last_chunk
=
5233 0; // reduce grainsize of last task by last_chunk in strict mode
5234 kmp_uint64 num_tasks_min
= __kmp_taskloop_min_tasks
;
5235 kmp_info_t
*thread
= __kmp_threads
[gtid
];
5236 kmp_taskdata_t
*current_task
= thread
->th
.th_current_task
;
5238 KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, "
5239 "grain %llu(%d, %d), dup %p\n",
5240 gtid
, taskdata
, lower
, upper
, st
, grainsize
, sched
, modifier
,
5243 // compute trip count
5244 if (st
== 1) { // most common case
5245 tc
= upper
- lower
+ 1;
5246 } else if (st
< 0) {
5247 tc
= (lower
- upper
) / (-st
) + 1;
5249 tc
= (upper
- lower
) / st
+ 1;
5252 KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n", gtid
));
5253 // free the pattern task and exit
5254 __kmp_task_start(gtid
, task
, current_task
);
5255 // do not execute anything for zero-trip loop
5256 __kmp_task_finish
<false>(gtid
, task
, current_task
);
5260 #if OMPT_SUPPORT && OMPT_OPTIONAL
5261 ompt_team_info_t
*team_info
= __ompt_get_teaminfo(0, NULL
);
5262 ompt_task_info_t
*task_info
= __ompt_get_task_info_object(0);
5263 if (ompt_enabled
.ompt_callback_work
) {
5264 ompt_callbacks
.ompt_callback(ompt_callback_work
)(
5265 ompt_work_taskloop
, ompt_scope_begin
, &(team_info
->parallel_data
),
5266 &(task_info
->task_data
), tc
, OMPT_GET_RETURN_ADDRESS(0));
5270 if (num_tasks_min
== 0)
5271 // TODO: can we choose better default heuristic?
5273 KMP_MIN(thread
->th
.th_team_nproc
* 10, INITIAL_TASK_DEQUE_SIZE
);
5275 // compute num_tasks/grainsize based on the input provided
5277 case 0: // no schedule clause specified, we can choose the default
5278 // let's try to schedule (team_size*10) tasks
5279 grainsize
= thread
->th
.th_team_nproc
* static_cast<kmp_uint64
>(10);
5281 case 2: // num_tasks provided
5282 if (grainsize
> tc
) {
5283 num_tasks
= tc
; // too big num_tasks requested, adjust values
5287 num_tasks
= grainsize
;
5288 grainsize
= tc
/ num_tasks
;
5289 extras
= tc
% num_tasks
;
5292 case 1: // grainsize provided
5293 if (grainsize
> tc
) {
5295 grainsize
= tc
; // too big grainsize requested, adjust values
5299 num_tasks
= (tc
+ grainsize
- 1) / grainsize
;
5300 last_chunk
= tc
- (num_tasks
* grainsize
);
5303 num_tasks
= tc
/ grainsize
;
5304 // adjust grainsize for balanced distribution of iterations
5305 grainsize
= tc
/ num_tasks
;
5306 extras
= tc
% num_tasks
;
5311 KMP_ASSERT2(0, "unknown scheduling of taskloop");
5314 KMP_DEBUG_ASSERT(tc
== num_tasks
* grainsize
+
5315 (last_chunk
< 0 ? last_chunk
: extras
));
5316 KMP_DEBUG_ASSERT(num_tasks
> extras
);
5317 KMP_DEBUG_ASSERT(num_tasks
> 0);
5318 // =========================================================================
5320 // check if clause value first
5321 // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native)
5322 if (if_val
== 0) { // if(0) specified, mark task as serial
5323 taskdata
->td_flags
.task_serial
= 1;
5324 taskdata
->td_flags
.tiedness
= TASK_TIED
; // AC: serial task cannot be untied
5325 // always start serial tasks linearly
5326 __kmp_taskloop_linear(loc
, gtid
, task
, lb
, ub
, st
, ub_glob
, num_tasks
,
5327 grainsize
, extras
, last_chunk
, tc
,
5329 OMPT_GET_RETURN_ADDRESS(0),
5332 // !taskdata->td_flags.native => currently force linear spawning of tasks
5333 // for GOMP_taskloop
5334 } else if (num_tasks
> num_tasks_min
&& !taskdata
->td_flags
.native
) {
5335 KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu"
5336 "(%lld), grain %llu, extras %llu, last_chunk %lld\n",
5337 gtid
, tc
, num_tasks
, num_tasks_min
, grainsize
, extras
,
5339 __kmp_taskloop_recur(loc
, gtid
, task
, lb
, ub
, st
, ub_glob
, num_tasks
,
5340 grainsize
, extras
, last_chunk
, tc
, num_tasks_min
,
5342 OMPT_GET_RETURN_ADDRESS(0),
5346 KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu"
5347 "(%lld), grain %llu, extras %llu, last_chunk %lld\n",
5348 gtid
, tc
, num_tasks
, num_tasks_min
, grainsize
, extras
,
5350 __kmp_taskloop_linear(loc
, gtid
, task
, lb
, ub
, st
, ub_glob
, num_tasks
,
5351 grainsize
, extras
, last_chunk
, tc
,
5353 OMPT_GET_RETURN_ADDRESS(0),
5358 #if OMPT_SUPPORT && OMPT_OPTIONAL
5359 if (ompt_enabled
.ompt_callback_work
) {
5360 ompt_callbacks
.ompt_callback(ompt_callback_work
)(
5361 ompt_work_taskloop
, ompt_scope_end
, &(team_info
->parallel_data
),
5362 &(task_info
->task_data
), tc
, OMPT_GET_RETURN_ADDRESS(0));
5367 #if OMPT_SUPPORT && OMPT_OPTIONAL
5368 OMPT_STORE_RETURN_ADDRESS(gtid
);
5370 __kmpc_end_taskgroup(loc
, gtid
);
5372 KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n", gtid
));
5377 @param loc Source location information
5378 @param gtid Global thread ID
5379 @param task Task structure
5380 @param if_val Value of the if clause
5381 @param lb Pointer to loop lower bound in task structure
5382 @param ub Pointer to loop upper bound in task structure
5383 @param st Loop stride
5384 @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise
5385 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks
5386 @param grainsize Schedule value if specified
5387 @param task_dup Tasks duplication routine
5389 Execute the taskloop construct.
5391 void __kmpc_taskloop(ident_t
*loc
, int gtid
, kmp_task_t
*task
, int if_val
,
5392 kmp_uint64
*lb
, kmp_uint64
*ub
, kmp_int64 st
, int nogroup
,
5393 int sched
, kmp_uint64 grainsize
, void *task_dup
) {
5394 __kmp_assert_valid_gtid(gtid
);
5395 KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n", gtid
));
5396 __kmp_taskloop(loc
, gtid
, task
, if_val
, lb
, ub
, st
, nogroup
, sched
, grainsize
,
5398 KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid
));
5403 @param loc Source location information
5404 @param gtid Global thread ID
5405 @param task Task structure
5406 @param if_val Value of the if clause
5407 @param lb Pointer to loop lower bound in task structure
5408 @param ub Pointer to loop upper bound in task structure
5409 @param st Loop stride
5410 @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise
5411 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks
5412 @param grainsize Schedule value if specified
5413 @param modifier Modifier 'strict' for sched, 1 if present, 0 otherwise
5414 @param task_dup Tasks duplication routine
5416 Execute the taskloop construct.
5418 void __kmpc_taskloop_5(ident_t
*loc
, int gtid
, kmp_task_t
*task
, int if_val
,
5419 kmp_uint64
*lb
, kmp_uint64
*ub
, kmp_int64 st
,
5420 int nogroup
, int sched
, kmp_uint64 grainsize
,
5421 int modifier
, void *task_dup
) {
5422 __kmp_assert_valid_gtid(gtid
);
5423 KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n", gtid
));
5424 __kmp_taskloop(loc
, gtid
, task
, if_val
, lb
, ub
, st
, nogroup
, sched
, grainsize
,
5425 modifier
, task_dup
);
5426 KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n", gtid
));
5431 @param gtid Global Thread ID of current thread
5432 @return Returns a pointer to the thread's current task async handle. If no task
5433 is present or gtid is invalid, returns NULL.
5435 Acqurires a pointer to the target async handle from the current task.
5437 void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid
) {
5438 if (gtid
== KMP_GTID_DNE
)
5441 kmp_info_t
*thread
= __kmp_thread_from_gtid(gtid
);
5442 kmp_taskdata_t
*taskdata
= thread
->th
.th_current_task
;
5447 return &taskdata
->td_target_data
.async_handle
;
5452 @param gtid Global Thread ID of current thread
5453 @return Returns TRUE if the current task being executed of the given thread has
5454 a task team allocated to it. Otherwise, returns FALSE.
5456 Checks if the current thread has a task team.
5458 bool __kmpc_omp_has_task_team(kmp_int32 gtid
) {
5459 if (gtid
== KMP_GTID_DNE
)
5462 kmp_info_t
*thread
= __kmp_thread_from_gtid(gtid
);
5463 kmp_taskdata_t
*taskdata
= thread
->th
.th_current_task
;
5468 return taskdata
->td_task_team
!= NULL
;
5472 // __kmp_find_tdg: identify a TDG through its ID
5473 // gtid: Global Thread ID
5474 // tdg_id: ID of the TDG
5475 // returns: If a TDG corresponding to this ID is found and not
5476 // its initial state, return the pointer to it, otherwise nullptr
5477 static kmp_tdg_info_t
*__kmp_find_tdg(kmp_int32 tdg_id
) {
5478 kmp_tdg_info_t
*res
= nullptr;
5479 if (__kmp_max_tdgs
== 0)
5482 if (__kmp_global_tdgs
== NULL
)
5483 __kmp_global_tdgs
= (kmp_tdg_info_t
**)__kmp_allocate(
5484 sizeof(kmp_tdg_info_t
*) * __kmp_max_tdgs
);
5486 if ((__kmp_global_tdgs
[tdg_id
]) &&
5487 (__kmp_global_tdgs
[tdg_id
]->tdg_status
!= KMP_TDG_NONE
))
5488 res
= __kmp_global_tdgs
[tdg_id
];
5492 // __kmp_print_tdg_dot: prints the TDG to a dot file
5493 // tdg: ID of the TDG
5494 // gtid: Global Thread ID
5495 void __kmp_print_tdg_dot(kmp_tdg_info_t
*tdg
, kmp_int32 gtid
) {
5496 kmp_int32 tdg_id
= tdg
->tdg_id
;
5497 KA_TRACE(10, ("__kmp_print_tdg_dot(enter): T#%d tdg_id=%d \n", gtid
, tdg_id
));
5500 sprintf(file_name
, "tdg_%d.dot", tdg_id
);
5501 kmp_safe_raii_file_t
tdg_file(file_name
, "w");
5503 kmp_int32 num_tasks
= KMP_ATOMIC_LD_RLX(&tdg
->num_tasks
);
5507 " subgraph cluster {\n"
5510 for (kmp_int32 i
= 0; i
< num_tasks
; i
++) {
5511 fprintf(tdg_file
, " %d[style=bold]\n", i
);
5513 fprintf(tdg_file
, " }\n");
5514 for (kmp_int32 i
= 0; i
< num_tasks
; i
++) {
5515 kmp_int32 nsuccessors
= tdg
->record_map
[i
].nsuccessors
;
5516 kmp_int32
*successors
= tdg
->record_map
[i
].successors
;
5517 if (nsuccessors
> 0) {
5518 for (kmp_int32 j
= 0; j
< nsuccessors
; j
++)
5519 fprintf(tdg_file
, " %d -> %d \n", i
, successors
[j
]);
5522 fprintf(tdg_file
, "}");
5523 KA_TRACE(10, ("__kmp_print_tdg_dot(exit): T#%d tdg_id=%d \n", gtid
, tdg_id
));
5526 // __kmp_start_record: launch the execution of a previous
5528 // gtid: Global Thread ID
5529 // tdg: ID of the TDG
5530 void __kmp_exec_tdg(kmp_int32 gtid
, kmp_tdg_info_t
*tdg
) {
5531 KMP_DEBUG_ASSERT(tdg
->tdg_status
== KMP_TDG_READY
);
5532 KA_TRACE(10, ("__kmp_exec_tdg(enter): T#%d tdg_id=%d num_roots=%d\n", gtid
,
5533 tdg
->tdg_id
, tdg
->num_roots
));
5534 kmp_node_info_t
*this_record_map
= tdg
->record_map
;
5535 kmp_int32
*this_root_tasks
= tdg
->root_tasks
;
5536 kmp_int32 this_num_roots
= tdg
->num_roots
;
5537 kmp_int32 this_num_tasks
= KMP_ATOMIC_LD_RLX(&tdg
->num_tasks
);
5539 kmp_info_t
*thread
= __kmp_threads
[gtid
];
5540 kmp_taskdata_t
*parent_task
= thread
->th
.th_current_task
;
5542 if (tdg
->rec_taskred_data
) {
5543 __kmpc_taskred_init(gtid
, tdg
->rec_num_taskred
, tdg
->rec_taskred_data
);
5546 for (kmp_int32 j
= 0; j
< this_num_tasks
; j
++) {
5547 kmp_taskdata_t
*td
= KMP_TASK_TO_TASKDATA(this_record_map
[j
].task
);
5549 td
->td_parent
= parent_task
;
5550 this_record_map
[j
].parent_task
= parent_task
;
5552 kmp_taskgroup_t
*parent_taskgroup
=
5553 this_record_map
[j
].parent_task
->td_taskgroup
;
5555 KMP_ATOMIC_ST_RLX(&this_record_map
[j
].npredecessors_counter
,
5556 this_record_map
[j
].npredecessors
);
5557 KMP_ATOMIC_INC(&this_record_map
[j
].parent_task
->td_incomplete_child_tasks
);
5559 if (parent_taskgroup
) {
5560 KMP_ATOMIC_INC(&parent_taskgroup
->count
);
5561 // The taskgroup is different so we must update it
5562 td
->td_taskgroup
= parent_taskgroup
;
5563 } else if (td
->td_taskgroup
!= nullptr) {
5564 // If the parent doesnt have a taskgroup, remove it from the task
5565 td
->td_taskgroup
= nullptr;
5567 if (this_record_map
[j
].parent_task
->td_flags
.tasktype
== TASK_EXPLICIT
)
5568 KMP_ATOMIC_INC(&this_record_map
[j
].parent_task
->td_allocated_child_tasks
);
5571 for (kmp_int32 j
= 0; j
< this_num_roots
; ++j
) {
5572 __kmp_omp_task(gtid
, this_record_map
[this_root_tasks
[j
]].task
, true);
5574 KA_TRACE(10, ("__kmp_exec_tdg(exit): T#%d tdg_id=%d num_roots=%d\n", gtid
,
5575 tdg
->tdg_id
, tdg
->num_roots
));
5578 // __kmp_start_record: set up a TDG structure and turn the
5579 // recording flag to true
5580 // gtid: Global Thread ID of the encountering thread
5581 // input_flags: Flags associated with the TDG
5582 // tdg_id: ID of the TDG to record
5583 static inline void __kmp_start_record(kmp_int32 gtid
,
5584 kmp_taskgraph_flags_t
*flags
,
5586 kmp_tdg_info_t
*tdg
=
5587 (kmp_tdg_info_t
*)__kmp_allocate(sizeof(kmp_tdg_info_t
));
5588 __kmp_global_tdgs
[__kmp_curr_tdg_idx
] = tdg
;
5589 // Initializing the TDG structure
5590 tdg
->tdg_id
= tdg_id
;
5591 tdg
->map_size
= INIT_MAPSIZE
;
5592 tdg
->num_roots
= -1;
5593 tdg
->root_tasks
= nullptr;
5594 tdg
->tdg_status
= KMP_TDG_RECORDING
;
5595 tdg
->rec_num_taskred
= 0;
5596 tdg
->rec_taskred_data
= nullptr;
5597 KMP_ATOMIC_ST_RLX(&tdg
->num_tasks
, 0);
5599 // Initializing the list of nodes in this TDG
5600 kmp_node_info_t
*this_record_map
=
5601 (kmp_node_info_t
*)__kmp_allocate(INIT_MAPSIZE
* sizeof(kmp_node_info_t
));
5602 for (kmp_int32 i
= 0; i
< INIT_MAPSIZE
; i
++) {
5603 kmp_int32
*successorsList
=
5604 (kmp_int32
*)__kmp_allocate(__kmp_successors_size
* sizeof(kmp_int32
));
5605 this_record_map
[i
].task
= nullptr;
5606 this_record_map
[i
].successors
= successorsList
;
5607 this_record_map
[i
].nsuccessors
= 0;
5608 this_record_map
[i
].npredecessors
= 0;
5609 this_record_map
[i
].successors_size
= __kmp_successors_size
;
5610 KMP_ATOMIC_ST_RLX(&this_record_map
[i
].npredecessors_counter
, 0);
5613 __kmp_global_tdgs
[__kmp_curr_tdg_idx
]->record_map
= this_record_map
;
5616 // __kmpc_start_record_task: Wrapper around __kmp_start_record to mark
5617 // the beginning of the record process of a task region
5618 // loc_ref: Location of TDG, not used yet
5619 // gtid: Global Thread ID of the encountering thread
5620 // input_flags: Flags associated with the TDG
5621 // tdg_id: ID of the TDG to record, for now, incremental integer
5622 // returns: 1 if we record, otherwise, 0
5623 kmp_int32
__kmpc_start_record_task(ident_t
*loc_ref
, kmp_int32 gtid
,
5624 kmp_int32 input_flags
, kmp_int32 tdg_id
) {
5627 kmp_taskgraph_flags_t
*flags
= (kmp_taskgraph_flags_t
*)&input_flags
;
5629 ("__kmpc_start_record_task(enter): T#%d loc=%p flags=%d tdg_id=%d\n",
5630 gtid
, loc_ref
, input_flags
, tdg_id
));
5632 if (__kmp_max_tdgs
== 0) {
5635 ("__kmpc_start_record_task(abandon): T#%d loc=%p flags=%d tdg_id = %d, "
5636 "__kmp_max_tdgs = 0\n",
5637 gtid
, loc_ref
, input_flags
, tdg_id
));
5641 __kmpc_taskgroup(loc_ref
, gtid
);
5642 if (kmp_tdg_info_t
*tdg
= __kmp_find_tdg(tdg_id
)) {
5643 // TODO: use re_record flag
5644 __kmp_exec_tdg(gtid
, tdg
);
5647 __kmp_curr_tdg_idx
= tdg_id
;
5648 KMP_DEBUG_ASSERT(__kmp_curr_tdg_idx
< __kmp_max_tdgs
);
5649 __kmp_start_record(gtid
, flags
, tdg_id
);
5653 KA_TRACE(10, ("__kmpc_start_record_task(exit): T#%d TDG %d starts to %s\n",
5654 gtid
, tdg_id
, res
? "record" : "execute"));
5658 // __kmp_end_record: set up a TDG after recording it
5659 // gtid: Global thread ID
5660 // tdg: Pointer to the TDG
5661 void __kmp_end_record(kmp_int32 gtid
, kmp_tdg_info_t
*tdg
) {
5663 kmp_node_info_t
*this_record_map
= tdg
->record_map
;
5664 kmp_int32 this_num_tasks
= KMP_ATOMIC_LD_RLX(&tdg
->num_tasks
);
5665 kmp_int32
*this_root_tasks
=
5666 (kmp_int32
*)__kmp_allocate(this_num_tasks
* sizeof(kmp_int32
));
5667 kmp_int32 this_map_size
= tdg
->map_size
;
5668 kmp_int32 this_num_roots
= 0;
5669 kmp_info_t
*thread
= __kmp_threads
[gtid
];
5671 for (kmp_int32 i
= 0; i
< this_num_tasks
; i
++) {
5672 if (this_record_map
[i
].npredecessors
== 0) {
5673 this_root_tasks
[this_num_roots
++] = i
;
5677 // Update with roots info and mapsize
5678 tdg
->map_size
= this_map_size
;
5679 tdg
->num_roots
= this_num_roots
;
5680 tdg
->root_tasks
= this_root_tasks
;
5681 KMP_DEBUG_ASSERT(tdg
->tdg_status
== KMP_TDG_RECORDING
);
5682 tdg
->tdg_status
= KMP_TDG_READY
;
5684 if (thread
->th
.th_current_task
->td_dephash
) {
5685 __kmp_dephash_free(thread
, thread
->th
.th_current_task
->td_dephash
);
5686 thread
->th
.th_current_task
->td_dephash
= NULL
;
5689 // Reset predecessor counter
5690 for (kmp_int32 i
= 0; i
< this_num_tasks
; i
++) {
5691 KMP_ATOMIC_ST_RLX(&this_record_map
[i
].npredecessors_counter
,
5692 this_record_map
[i
].npredecessors
);
5694 KMP_ATOMIC_ST_RLX(&__kmp_tdg_task_id
, 0);
5697 __kmp_print_tdg_dot(tdg
, gtid
);
5700 // __kmpc_end_record_task: wrapper around __kmp_end_record to mark
5701 // the end of recording phase
5703 // loc_ref: Source location information
5704 // gtid: Global thread ID
5705 // input_flags: Flags attached to the graph
5706 // tdg_id: ID of the TDG just finished recording
5707 void __kmpc_end_record_task(ident_t
*loc_ref
, kmp_int32 gtid
,
5708 kmp_int32 input_flags
, kmp_int32 tdg_id
) {
5709 kmp_tdg_info_t
*tdg
= __kmp_find_tdg(tdg_id
);
5711 KA_TRACE(10, ("__kmpc_end_record_task(enter): T#%d loc=%p finishes recording"
5712 " tdg=%d with flags=%d\n",
5713 gtid
, loc_ref
, tdg_id
, input_flags
));
5714 if (__kmp_max_tdgs
) {
5715 // TODO: use input_flags->nowait
5716 __kmpc_end_taskgroup(loc_ref
, gtid
);
5717 if (__kmp_tdg_is_recording(tdg
->tdg_status
))
5718 __kmp_end_record(gtid
, tdg
);
5720 KA_TRACE(10, ("__kmpc_end_record_task(exit): T#%d loc=%p finished recording"
5721 " tdg=%d, its status is now READY\n",
5722 gtid
, loc_ref
, tdg_id
));