[flang][cuda] Adapt ExternalNameConversion to work in gpu module (#117039)
[llvm-project.git] / compiler-rt / lib / cfi / cfi.cpp
blobad1c91623514e8fdf70072d4ed59f53dc545059b
1 //===-------- cfi.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the runtime support for the cross-DSO CFI.
11 //===----------------------------------------------------------------------===//
13 #include <assert.h>
14 #include <elf.h>
16 #include "sanitizer_common/sanitizer_common.h"
17 #if SANITIZER_FREEBSD
18 #include <sys/link_elf.h>
19 #endif
20 #include <link.h>
21 #include <string.h>
22 #include <stdlib.h>
23 #include <sys/mman.h>
25 #if SANITIZER_LINUX
26 typedef ElfW(Phdr) Elf_Phdr;
27 typedef ElfW(Ehdr) Elf_Ehdr;
28 typedef ElfW(Addr) Elf_Addr;
29 typedef ElfW(Sym) Elf_Sym;
30 typedef ElfW(Dyn) Elf_Dyn;
31 #elif SANITIZER_FREEBSD
32 #if SANITIZER_WORDSIZE == 64
33 #define ElfW64_Dyn Elf_Dyn
34 #define ElfW64_Sym Elf_Sym
35 #else
36 #define ElfW32_Dyn Elf_Dyn
37 #define ElfW32_Sym Elf_Sym
38 #endif
39 #endif
41 #include "interception/interception.h"
42 #include "sanitizer_common/sanitizer_flag_parser.h"
43 #include "ubsan/ubsan_init.h"
44 #include "ubsan/ubsan_flags.h"
46 #ifdef CFI_ENABLE_DIAG
47 #include "ubsan/ubsan_handlers.h"
48 #endif
50 using namespace __sanitizer;
52 namespace __cfi {
54 #if SANITIZER_LOONGARCH64
55 #define kCfiShadowLimitsStorageSize 16384 // 16KiB on loongarch64 per page
56 #else
57 #define kCfiShadowLimitsStorageSize 4096 // 1 page
58 #endif
59 // Lets hope that the data segment is mapped with 4K pages.
60 // The pointer to the cfi shadow region is stored at the start of this page.
61 // The rest of the page is unused and re-mapped read-only.
62 static union {
63 char space[kCfiShadowLimitsStorageSize];
64 struct {
65 uptr start;
66 uptr size;
67 } limits;
68 } cfi_shadow_limits_storage
69 __attribute__((aligned(kCfiShadowLimitsStorageSize)));
70 static constexpr uptr kShadowGranularity = 12;
71 static constexpr uptr kShadowAlign = 1UL << kShadowGranularity; // 4096
73 static constexpr uint16_t kInvalidShadow = 0;
74 static constexpr uint16_t kUncheckedShadow = 0xFFFFU;
76 // Get the start address of the CFI shadow region.
77 uptr GetShadow() {
78 return cfi_shadow_limits_storage.limits.start;
81 uptr GetShadowSize() {
82 return cfi_shadow_limits_storage.limits.size;
85 // This will only work while the shadow is not allocated.
86 void SetShadowSize(uptr size) {
87 cfi_shadow_limits_storage.limits.size = size;
90 uptr MemToShadowOffset(uptr x) {
91 return (x >> kShadowGranularity) << 1;
94 uint16_t *MemToShadow(uptr x, uptr shadow_base) {
95 return (uint16_t *)(shadow_base + MemToShadowOffset(x));
98 typedef int (*CFICheckFn)(u64, void *, void *);
100 // This class reads and decodes the shadow contents.
101 class ShadowValue {
102 uptr addr;
103 uint16_t v;
104 explicit ShadowValue(uptr addr, uint16_t v) : addr(addr), v(v) {}
106 public:
107 bool is_invalid() const { return v == kInvalidShadow; }
109 bool is_unchecked() const { return v == kUncheckedShadow; }
111 CFICheckFn get_cfi_check() const {
112 assert(!is_invalid() && !is_unchecked());
113 uptr aligned_addr = addr & ~(kShadowAlign - 1);
114 uptr p = aligned_addr - (((uptr)v - 1) << kShadowGranularity);
115 return reinterpret_cast<CFICheckFn>(p);
118 // Load a shadow value for the given application memory address.
119 static const ShadowValue load(uptr addr) {
120 uptr shadow_base = GetShadow();
121 uptr shadow_offset = MemToShadowOffset(addr);
122 if (shadow_offset > GetShadowSize())
123 return ShadowValue(addr, kInvalidShadow);
124 else
125 return ShadowValue(
126 addr, *reinterpret_cast<uint16_t *>(shadow_base + shadow_offset));
130 class ShadowBuilder {
131 uptr shadow_;
133 public:
134 // Allocate a new empty shadow (for the entire address space) on the side.
135 void Start();
136 // Mark the given address range as unchecked.
137 // This is used for uninstrumented libraries like libc.
138 // Any CFI check with a target in that range will pass.
139 void AddUnchecked(uptr begin, uptr end);
140 // Mark the given address range as belonging to a library with the given
141 // cfi_check function.
142 void Add(uptr begin, uptr end, uptr cfi_check);
143 // Finish shadow construction. Atomically switch the current active shadow
144 // region with the newly constructed one and deallocate the former.
145 void Install();
148 void ShadowBuilder::Start() {
149 shadow_ = (uptr)MmapNoReserveOrDie(GetShadowSize(), "CFI shadow");
150 VReport(1, "CFI: shadow at %zx .. %zx\n", shadow_, shadow_ + GetShadowSize());
153 void ShadowBuilder::AddUnchecked(uptr begin, uptr end) {
154 uint16_t *shadow_begin = MemToShadow(begin, shadow_);
155 uint16_t *shadow_end = MemToShadow(end - 1, shadow_) + 1;
156 // memset takes a byte, so our unchecked shadow value requires both bytes to
157 // be the same. Make sure we're ok during compilation.
158 static_assert((kUncheckedShadow & 0xff) == ((kUncheckedShadow >> 8) & 0xff),
159 "Both bytes of the 16-bit value must be the same!");
160 memset(shadow_begin, kUncheckedShadow & 0xff,
161 (shadow_end - shadow_begin) * sizeof(*shadow_begin));
164 void ShadowBuilder::Add(uptr begin, uptr end, uptr cfi_check) {
165 assert((cfi_check & (kShadowAlign - 1)) == 0);
167 // Don't fill anything below cfi_check. We can not represent those addresses
168 // in the shadow, and must make sure at codegen to place all valid call
169 // targets above cfi_check.
170 begin = Max(begin, cfi_check);
171 uint16_t *s = MemToShadow(begin, shadow_);
172 uint16_t *s_end = MemToShadow(end - 1, shadow_) + 1;
173 uint16_t sv = ((begin - cfi_check) >> kShadowGranularity) + 1;
174 for (; s < s_end; s++, sv++)
175 *s = sv;
178 #if SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD
179 void ShadowBuilder::Install() {
180 MprotectReadOnly(shadow_, GetShadowSize());
181 uptr main_shadow = GetShadow();
182 if (main_shadow) {
183 // Update.
184 #if SANITIZER_LINUX
185 void *res = mremap((void *)shadow_, GetShadowSize(), GetShadowSize(),
186 MREMAP_MAYMOVE | MREMAP_FIXED, (void *)main_shadow);
187 CHECK(res != MAP_FAILED);
188 #elif SANITIZER_NETBSD
189 void *res = mremap((void *)shadow_, GetShadowSize(), (void *)main_shadow,
190 GetShadowSize(), MAP_FIXED);
191 CHECK(res != MAP_FAILED);
192 #else
193 void *res = MmapFixedOrDie(shadow_, GetShadowSize(), "cfi shadow");
194 CHECK(res != MAP_FAILED);
195 ::memcpy(&shadow_, &main_shadow, GetShadowSize());
196 #endif
197 } else {
198 // Initial setup.
199 CHECK_EQ(kCfiShadowLimitsStorageSize, GetPageSizeCached());
200 CHECK_EQ(0, GetShadow());
201 cfi_shadow_limits_storage.limits.start = shadow_;
202 MprotectReadOnly((uptr)&cfi_shadow_limits_storage,
203 sizeof(cfi_shadow_limits_storage));
204 CHECK_EQ(shadow_, GetShadow());
207 #else
208 #error not implemented
209 #endif
211 // This is a workaround for a glibc bug:
212 // https://sourceware.org/bugzilla/show_bug.cgi?id=15199
213 // Other platforms can, hopefully, just do
214 // dlopen(RTLD_NOLOAD | RTLD_LAZY)
215 // dlsym("__cfi_check").
216 uptr find_cfi_check_in_dso(dl_phdr_info *info) {
217 const Elf_Dyn *dynamic = nullptr;
218 for (int i = 0; i < info->dlpi_phnum; ++i) {
219 if (info->dlpi_phdr[i].p_type == PT_DYNAMIC) {
220 dynamic =
221 (const Elf_Dyn *)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
222 break;
225 if (!dynamic) return 0;
226 uptr strtab = 0, symtab = 0, strsz = 0;
227 for (const Elf_Dyn *p = dynamic; p->d_tag != PT_NULL; ++p) {
228 if (p->d_tag == DT_SYMTAB)
229 symtab = p->d_un.d_ptr;
230 else if (p->d_tag == DT_STRTAB)
231 strtab = p->d_un.d_ptr;
232 else if (p->d_tag == DT_STRSZ)
233 strsz = p->d_un.d_ptr;
236 if (symtab > strtab) {
237 VReport(1, "Can not handle: symtab > strtab (%zx > %zx)\n", symtab, strtab);
238 return 0;
241 // Verify that strtab and symtab are inside of the same LOAD segment.
242 // This excludes VDSO, which has (very high) bogus strtab and symtab pointers.
243 int phdr_idx;
244 for (phdr_idx = 0; phdr_idx < info->dlpi_phnum; phdr_idx++) {
245 const Elf_Phdr *phdr = &info->dlpi_phdr[phdr_idx];
246 if (phdr->p_type == PT_LOAD) {
247 uptr beg = info->dlpi_addr + phdr->p_vaddr;
248 uptr end = beg + phdr->p_memsz;
249 if (strtab >= beg && strtab + strsz < end && symtab >= beg &&
250 symtab < end)
251 break;
254 if (phdr_idx == info->dlpi_phnum) {
255 // Nope, either different segments or just bogus pointers.
256 // Can not handle this.
257 VReport(1, "Can not handle: symtab %zx, strtab %zx\n", symtab, strtab);
258 return 0;
261 for (const Elf_Sym *p = (const Elf_Sym *)symtab; (Elf_Addr)p < strtab;
262 ++p) {
263 // There is no reliable way to find the end of the symbol table. In
264 // lld-produces files, there are other sections between symtab and strtab.
265 // Stop looking when the symbol name is not inside strtab.
266 if (p->st_name >= strsz) break;
267 char *name = (char*)(strtab + p->st_name);
268 if (strcmp(name, "__cfi_check") == 0) {
269 assert(p->st_info == ELF32_ST_INFO(STB_GLOBAL, STT_FUNC) ||
270 p->st_info == ELF32_ST_INFO(STB_WEAK, STT_FUNC));
271 uptr addr = info->dlpi_addr + p->st_value;
272 return addr;
275 return 0;
278 int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *data) {
279 uptr cfi_check = find_cfi_check_in_dso(info);
280 if (cfi_check)
281 VReport(1, "Module '%s' __cfi_check %zx\n", info->dlpi_name, cfi_check);
283 ShadowBuilder *b = reinterpret_cast<ShadowBuilder *>(data);
285 for (int i = 0; i < info->dlpi_phnum; i++) {
286 const Elf_Phdr *phdr = &info->dlpi_phdr[i];
287 if (phdr->p_type == PT_LOAD) {
288 // Jump tables are in the executable segment.
289 // VTables are in the non-executable one.
290 // Need to fill shadow for both.
291 // FIXME: reject writable if vtables are in the r/o segment. Depend on
292 // PT_RELRO?
293 uptr cur_beg = info->dlpi_addr + phdr->p_vaddr;
294 uptr cur_end = cur_beg + phdr->p_memsz;
295 if (cfi_check) {
296 VReport(1, " %zx .. %zx\n", cur_beg, cur_end);
297 b->Add(cur_beg, cur_end, cfi_check);
298 } else {
299 b->AddUnchecked(cur_beg, cur_end);
303 return 0;
306 // Init or update shadow for the current set of loaded libraries.
307 void UpdateShadow() {
308 ShadowBuilder b;
309 b.Start();
310 dl_iterate_phdr(dl_iterate_phdr_cb, &b);
311 b.Install();
314 void InitShadow() {
315 CHECK_EQ(0, GetShadow());
316 CHECK_EQ(0, GetShadowSize());
318 uptr vma = GetMaxUserVirtualAddress();
319 // Shadow is 2 -> 2**kShadowGranularity.
320 SetShadowSize((vma >> (kShadowGranularity - 1)) + 1);
321 VReport(1, "CFI: VMA size %zx, shadow size %zx\n", vma, GetShadowSize());
323 UpdateShadow();
326 THREADLOCAL int in_loader;
327 Mutex shadow_update_lock;
329 void EnterLoader() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
330 if (in_loader == 0) {
331 shadow_update_lock.Lock();
333 ++in_loader;
336 void ExitLoader() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
337 CHECK(in_loader > 0);
338 --in_loader;
339 UpdateShadow();
340 if (in_loader == 0) {
341 shadow_update_lock.Unlock();
345 ALWAYS_INLINE void CfiSlowPathCommon(u64 CallSiteTypeId, void *Ptr,
346 void *DiagData) {
347 uptr Addr = (uptr)Ptr;
348 VReport(3, "__cfi_slowpath: %llx, %p\n", CallSiteTypeId, Ptr);
349 ShadowValue sv = ShadowValue::load(Addr);
350 if (sv.is_invalid()) {
351 VReport(1, "CFI: invalid memory region for a check target: %p\n", Ptr);
352 #ifdef CFI_ENABLE_DIAG
353 if (DiagData) {
354 __ubsan_handle_cfi_check_fail(
355 reinterpret_cast<__ubsan::CFICheckFailData *>(DiagData), Addr, false);
356 return;
358 #endif
359 Trap();
361 if (sv.is_unchecked()) {
362 VReport(2, "CFI: unchecked call (shadow=FFFF): %p\n", Ptr);
363 return;
365 CFICheckFn cfi_check = sv.get_cfi_check();
366 VReport(2, "__cfi_check at %p\n", (void *)cfi_check);
367 cfi_check(CallSiteTypeId, Ptr, DiagData);
370 void InitializeFlags() {
371 SetCommonFlagsDefaults();
372 #ifdef CFI_ENABLE_DIAG
373 __ubsan::Flags *uf = __ubsan::flags();
374 uf->SetDefaults();
375 #endif
377 FlagParser cfi_parser;
378 RegisterCommonFlags(&cfi_parser);
379 cfi_parser.ParseStringFromEnv("CFI_OPTIONS");
381 #ifdef CFI_ENABLE_DIAG
382 FlagParser ubsan_parser;
383 __ubsan::RegisterUbsanFlags(&ubsan_parser, uf);
384 RegisterCommonFlags(&ubsan_parser);
386 const char *ubsan_default_options = __ubsan_default_options();
387 ubsan_parser.ParseString(ubsan_default_options);
388 ubsan_parser.ParseStringFromEnv("UBSAN_OPTIONS");
389 #endif
391 InitializeCommonFlags();
393 if (Verbosity())
394 ReportUnrecognizedFlags();
396 if (common_flags()->help) {
397 cfi_parser.PrintFlagDescriptions();
401 } // namespace __cfi
403 using namespace __cfi;
405 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
406 __cfi_slowpath(u64 CallSiteTypeId, void *Ptr) {
407 CfiSlowPathCommon(CallSiteTypeId, Ptr, nullptr);
410 #ifdef CFI_ENABLE_DIAG
411 extern "C" SANITIZER_INTERFACE_ATTRIBUTE void
412 __cfi_slowpath_diag(u64 CallSiteTypeId, void *Ptr, void *DiagData) {
413 CfiSlowPathCommon(CallSiteTypeId, Ptr, DiagData);
415 #endif
417 static void EnsureInterceptorsInitialized();
419 // Setup shadow for dlopen()ed libraries.
420 // The actual shadow setup happens after dlopen() returns, which means that
421 // a library can not be a target of any CFI checks while its constructors are
422 // running. It's unclear how to fix this without some extra help from libc.
423 // In glibc, mmap inside dlopen is not interceptable.
424 // Maybe a seccomp-bpf filter?
425 // We could insert a high-priority constructor into the library, but that would
426 // not help with the uninstrumented libraries.
427 INTERCEPTOR(void*, dlopen, const char *filename, int flag) {
428 EnsureInterceptorsInitialized();
429 EnterLoader();
430 void *handle = REAL(dlopen)(filename, flag);
431 ExitLoader();
432 return handle;
435 INTERCEPTOR(int, dlclose, void *handle) {
436 EnsureInterceptorsInitialized();
437 EnterLoader();
438 int res = REAL(dlclose)(handle);
439 ExitLoader();
440 return res;
443 static Mutex interceptor_init_lock;
444 static bool interceptors_inited = false;
446 static void EnsureInterceptorsInitialized() {
447 Lock lock(&interceptor_init_lock);
448 if (interceptors_inited)
449 return;
451 INTERCEPT_FUNCTION(dlopen);
452 INTERCEPT_FUNCTION(dlclose);
454 interceptors_inited = true;
457 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
458 #if !SANITIZER_CAN_USE_PREINIT_ARRAY
459 // On ELF platforms, the constructor is invoked using .preinit_array (see below)
460 __attribute__((constructor(0)))
461 #endif
462 void __cfi_init() {
463 SanitizerToolName = "CFI";
464 InitializeFlags();
465 InitShadow();
467 #ifdef CFI_ENABLE_DIAG
468 __ubsan::InitAsPlugin();
469 #endif
472 #if SANITIZER_CAN_USE_PREINIT_ARRAY
473 // On ELF platforms, run cfi initialization before any other constructors.
474 // On other platforms we use the constructor attribute to arrange to run our
475 // initialization early.
476 extern "C" {
477 __attribute__((section(".preinit_array"),
478 used)) void (*__cfi_preinit)(void) = __cfi_init;
480 #endif