1 //===-- sanitizer_common.h --------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file is shared between run-time libraries of sanitizers.
11 // It declares common functions and classes that are used in both runtimes.
12 // Implementation of some functions are provided in sanitizer_common, while
13 // others must be defined by run-time library itself.
14 //===----------------------------------------------------------------------===//
15 #ifndef SANITIZER_COMMON_H
16 #define SANITIZER_COMMON_H
18 #include "sanitizer_flags.h"
19 #include "sanitizer_internal_defs.h"
20 #include "sanitizer_libc.h"
21 #include "sanitizer_list.h"
22 #include "sanitizer_mutex.h"
24 #if defined(_MSC_VER) && !defined(__clang__)
25 extern "C" void _ReadWriteBarrier();
26 #pragma intrinsic(_ReadWriteBarrier)
29 namespace __sanitizer
{
32 struct BufferedStackTrace
;
35 struct SymbolizedStack
;
38 const uptr kWordSize
= SANITIZER_WORDSIZE
/ 8;
39 const uptr kWordSizeInBits
= 8 * kWordSize
;
41 const uptr kCacheLineSize
= SANITIZER_CACHE_LINE_SIZE
;
43 const uptr kMaxPathLength
= 4096;
45 const uptr kMaxThreadStackSize
= 1 << 30; // 1Gb
47 const uptr kErrorMessageBufferSize
= 1 << 16;
49 // Denotes fake PC values that come from JIT/JAVA/etc.
50 // For such PC values __tsan_symbolize_external_ex() will be called.
51 const u64 kExternalPCBit
= 1ULL << 60;
53 extern const char *SanitizerToolName
; // Can be changed by the tool.
55 extern atomic_uint32_t current_verbosity
;
56 inline void SetVerbosity(int verbosity
) {
57 atomic_store(¤t_verbosity
, verbosity
, memory_order_relaxed
);
59 inline int Verbosity() {
60 return atomic_load(¤t_verbosity
, memory_order_relaxed
);
63 #if SANITIZER_ANDROID && !defined(__aarch64__)
64 // 32-bit Android only has 4k pages.
65 inline uptr
GetPageSize() { return 4096; }
66 inline uptr
GetPageSizeCached() { return 4096; }
69 extern uptr PageSizeCached
;
70 inline uptr
GetPageSizeCached() {
72 PageSizeCached
= GetPageSize();
73 return PageSizeCached
;
77 uptr
GetMmapGranularity();
78 uptr
GetMaxVirtualAddress();
79 uptr
GetMaxUserVirtualAddress();
82 int TgKill(pid_t pid
, tid_t tid
, int sig
);
84 void GetThreadStackTopAndBottom(bool at_initialization
, uptr
*stack_top
,
86 void GetThreadStackAndTls(bool main
, uptr
*stk_begin
, uptr
*stk_end
,
87 uptr
*tls_begin
, uptr
*tls_end
);
90 void *MmapOrDie(uptr size
, const char *mem_type
, bool raw_report
= false);
92 inline void *MmapOrDieQuietly(uptr size
, const char *mem_type
) {
93 return MmapOrDie(size
, mem_type
, /*raw_report*/ true);
95 void UnmapOrDie(void *addr
, uptr size
, bool raw_report
= false);
96 // Behaves just like MmapOrDie, but tolerates out of memory condition, in that
97 // case returns nullptr.
98 void *MmapOrDieOnFatalError(uptr size
, const char *mem_type
);
99 bool MmapFixedNoReserve(uptr fixed_addr
, uptr size
, const char *name
= nullptr)
101 bool MmapFixedSuperNoReserve(uptr fixed_addr
, uptr size
,
102 const char *name
= nullptr) WARN_UNUSED_RESULT
;
103 void *MmapNoReserveOrDie(uptr size
, const char *mem_type
);
104 void *MmapFixedOrDie(uptr fixed_addr
, uptr size
, const char *name
= nullptr);
105 // Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in
106 // that case returns nullptr.
107 void *MmapFixedOrDieOnFatalError(uptr fixed_addr
, uptr size
,
108 const char *name
= nullptr);
109 void *MmapFixedNoAccess(uptr fixed_addr
, uptr size
, const char *name
= nullptr);
110 void *MmapNoAccess(uptr size
);
111 // Map aligned chunk of address space; size and alignment are powers of two.
112 // Dies on all but out of memory errors, in the latter case returns nullptr.
113 void *MmapAlignedOrDieOnFatalError(uptr size
, uptr alignment
,
114 const char *mem_type
);
115 // Disallow access to a memory range. Use MmapFixedNoAccess to allocate an
116 // unaccessible memory.
117 bool MprotectNoAccess(uptr addr
, uptr size
);
118 bool MprotectReadOnly(uptr addr
, uptr size
);
119 bool MprotectReadWrite(uptr addr
, uptr size
);
121 void MprotectMallocZones(void *addr
, int prot
);
123 #if SANITIZER_WINDOWS
124 // Zero previously mmap'd memory. Currently used only on Windows.
125 bool ZeroMmapFixedRegion(uptr fixed_addr
, uptr size
) WARN_UNUSED_RESULT
;
129 // Unmap memory. Currently only used on Linux.
130 void UnmapFromTo(uptr from
, uptr to
);
133 // Maps shadow_size_bytes of shadow memory and returns shadow address. It will
134 // be aligned to the mmap granularity * 2^shadow_scale, or to
135 // 2^min_shadow_base_alignment if that is larger. The returned address will
136 // have max(2^min_shadow_base_alignment, mmap granularity) on the left, and
137 // shadow_size_bytes bytes on the right, which on linux is mapped no access.
138 // The high_mem_end may be updated if the original shadow size doesn't fit.
139 uptr
MapDynamicShadow(uptr shadow_size_bytes
, uptr shadow_scale
,
140 uptr min_shadow_base_alignment
, uptr
&high_mem_end
,
143 // Let S = max(shadow_size, num_aliases * alias_size, ring_buffer_size).
144 // Reserves 2*S bytes of address space to the right of the returned address and
145 // ring_buffer_size bytes to the left. The returned address is aligned to 2*S.
146 // Also creates num_aliases regions of accessible memory starting at offset S
147 // from the returned address. Each region has size alias_size and is backed by
148 // the same physical memory.
149 uptr
MapDynamicShadowAndAliases(uptr shadow_size
, uptr alias_size
,
150 uptr num_aliases
, uptr ring_buffer_size
);
152 // Reserve memory range [beg, end]. If madvise_shadow is true then apply
153 // madvise (e.g. hugepages, core dumping) requested by options.
154 void ReserveShadowMemoryRange(uptr beg
, uptr end
, const char *name
,
155 bool madvise_shadow
= true);
157 // Protect size bytes of memory starting at addr. Also try to protect
158 // several pages at the start of the address space as specified by
159 // zero_base_shadow_start, at most up to the size or zero_base_max_shadow_start.
160 void ProtectGap(uptr addr
, uptr size
, uptr zero_base_shadow_start
,
161 uptr zero_base_max_shadow_start
);
163 // Find an available address space.
164 uptr
FindAvailableMemoryRange(uptr size
, uptr alignment
, uptr left_padding
,
165 uptr
*largest_gap_found
, uptr
*max_occupied_addr
);
167 // Used to check if we can map shadow memory to a fixed location.
168 bool MemoryRangeIsAvailable(uptr range_start
, uptr range_end
);
169 // Releases memory pages entirely within the [beg, end] address range. Noop if
170 // the provided range does not contain at least one entire page.
171 void ReleaseMemoryPagesToOS(uptr beg
, uptr end
);
172 void IncreaseTotalMmap(uptr size
);
173 void DecreaseTotalMmap(uptr size
);
175 void SetShadowRegionHugePageMode(uptr addr
, uptr length
);
176 bool DontDumpShadowMemory(uptr addr
, uptr length
);
177 // Check if the built VMA size matches the runtime one.
179 void RunMallocHooks(void *ptr
, uptr size
);
180 int RunFreeHooks(void *ptr
);
182 class ReservedAddressRange
{
184 uptr
Init(uptr size
, const char *name
= nullptr, uptr fixed_addr
= 0);
185 uptr
InitAligned(uptr size
, uptr align
, const char *name
= nullptr);
186 uptr
Map(uptr fixed_addr
, uptr size
, const char *name
= nullptr);
187 uptr
MapOrDie(uptr fixed_addr
, uptr size
, const char *name
= nullptr);
188 void Unmap(uptr addr
, uptr size
);
189 void *base() const { return base_
; }
190 uptr
size() const { return size_
; }
199 typedef void (*fill_profile_f
)(uptr start
, uptr rss
, bool file
,
200 /*out*/ uptr
*stats
);
202 // Parse the contents of /proc/self/smaps and generate a memory profile.
203 // |cb| is a tool-specific callback that fills the |stats| array.
204 void GetMemoryProfile(fill_profile_f cb
, uptr
*stats
);
205 void ParseUnixMemoryProfile(fill_profile_f cb
, uptr
*stats
, char *smaps
,
208 // Simple low-level (mmap-based) allocator for internal use. Doesn't have
209 // constructor, so all instances of LowLevelAllocator should be
210 // linker initialized.
212 // NOTE: Users should instead use the singleton provided via
213 // `GetGlobalLowLevelAllocator()` rather than create a new one. This way, the
214 // number of mmap fragments can be reduced and use the same contiguous mmap
215 // provided by this singleton.
216 class LowLevelAllocator
{
218 // Requires an external lock.
219 void *Allocate(uptr size
);
222 char *allocated_end_
;
223 char *allocated_current_
;
225 // Set the min alignment of LowLevelAllocator to at least alignment.
226 void SetLowLevelAllocateMinAlignment(uptr alignment
);
227 typedef void (*LowLevelAllocateCallback
)(uptr ptr
, uptr size
);
228 // Allows to register tool-specific callbacks for LowLevelAllocator.
229 // Passing NULL removes the callback.
230 void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback
);
232 LowLevelAllocator
&GetGlobalLowLevelAllocator();
235 void CatastrophicErrorWrite(const char *buffer
, uptr length
);
236 void RawWrite(const char *buffer
);
237 bool ColorizeReports();
238 void RemoveANSIEscapeSequencesFromString(char *buffer
);
239 void Printf(const char *format
, ...) FORMAT(1, 2);
240 void Report(const char *format
, ...) FORMAT(1, 2);
241 void SetPrintfAndReportCallback(void (*callback
)(const char *));
242 #define VReport(level, ...) \
244 if (UNLIKELY((uptr)Verbosity() >= (level))) \
245 Report(__VA_ARGS__); \
247 #define VPrintf(level, ...) \
249 if (UNLIKELY((uptr)Verbosity() >= (level))) \
250 Printf(__VA_ARGS__); \
253 // Lock sanitizer error reporting and protects against nested errors.
254 class ScopedErrorReportLock
{
256 ScopedErrorReportLock() SANITIZER_ACQUIRE(mutex_
) { Lock(); }
257 ~ScopedErrorReportLock() SANITIZER_RELEASE(mutex_
) { Unlock(); }
259 static void Lock() SANITIZER_ACQUIRE(mutex_
);
260 static void Unlock() SANITIZER_RELEASE(mutex_
);
261 static void CheckLocked() SANITIZER_CHECK_LOCKED(mutex_
);
264 static atomic_uintptr_t reporting_thread_
;
265 static StaticSpinMutex mutex_
;
268 extern uptr stoptheworld_tracer_pid
;
269 extern uptr stoptheworld_tracer_ppid
;
271 // Returns true if the entire range can be read.
272 bool IsAccessibleMemoryRange(uptr beg
, uptr size
);
273 // Attempts to copy `n` bytes from memory range starting at `src` to `dest`.
274 // Returns true if the entire range can be read. Returns `false` if any part of
275 // the source range cannot be read, in which case the contents of `dest` are
277 bool TryMemCpy(void *dest
, const void *src
, uptr n
);
278 // Copies accessible memory, and zero fill inaccessible.
279 void MemCpyAccessible(void *dest
, const void *src
, uptr n
);
281 // Error report formatting.
282 const char *StripPathPrefix(const char *filepath
,
283 const char *strip_file_prefix
);
284 // Strip the directories from the module name.
285 const char *StripModuleName(const char *module
);
288 uptr
ReadBinaryName(/*out*/char *buf
, uptr buf_len
);
289 uptr
ReadBinaryNameCached(/*out*/char *buf
, uptr buf_len
);
290 uptr
ReadBinaryDir(/*out*/ char *buf
, uptr buf_len
);
291 uptr
ReadLongProcessName(/*out*/ char *buf
, uptr buf_len
);
292 const char *GetProcessName();
293 void UpdateProcessName();
294 void CacheBinaryName();
295 void DisableCoreDumperIfNecessary();
296 void DumpProcessMap();
297 const char *GetEnv(const char *name
);
298 bool SetEnv(const char *name
, const char *value
);
303 void CheckMPROTECT();
307 bool StackSizeIsUnlimited();
308 void SetStackSizeLimitInBytes(uptr limit
);
309 bool AddressSpaceIsUnlimited();
310 void SetAddressSpaceUnlimited();
311 void AdjustStackSize(void *attr
);
312 void PlatformPrepareForSandboxing(void *args
);
313 void SetSandboxingCallback(void (*f
)());
315 void InitializeCoverage(bool enabled
, const char *coverage_dir
);
321 void WaitForDebugger(unsigned seconds
, const char *label
);
322 void SleepForSeconds(unsigned seconds
);
323 void SleepForMillis(unsigned millis
);
325 u64
MonotonicNanoTime();
326 int Atexit(void (*function
)(void));
327 bool TemplateMatch(const char *templ
, const char *str
);
330 void NORETURN
Abort();
333 CheckFailed(const char *file
, int line
, const char *cond
, u64 v1
, u64 v2
);
334 void NORETURN
ReportMmapFailureAndDie(uptr size
, const char *mem_type
,
335 const char *mmap_type
, error_t err
,
336 bool raw_report
= false);
337 void NORETURN
ReportMunmapFailureAndDie(void *ptr
, uptr size
, error_t err
,
338 bool raw_report
= false);
340 // Returns true if the platform-specific error reported is an OOM error.
341 bool ErrorIsOOM(error_t err
);
343 // This reports an error in the form:
345 // `ERROR: {{SanitizerToolName}}: out of memory: {{err_msg}}`
347 // Downstream tools that read sanitizer output will know that errors starting
348 // in this format are specifically OOM errors.
349 #define ERROR_OOM(err_msg, ...) \
350 Report("ERROR: %s: out of memory: " err_msg, SanitizerToolName, __VA_ARGS__)
352 // Specific tools may override behavior of "Die" function to do tool-specific
354 typedef void (*DieCallbackType
)(void);
356 // It's possible to add several callbacks that would be run when "Die" is
357 // called. The callbacks will be run in the opposite order. The tools are
358 // strongly recommended to setup all callbacks during initialization, when there
359 // is only a single thread.
360 bool AddDieCallback(DieCallbackType callback
);
361 bool RemoveDieCallback(DieCallbackType callback
);
363 void SetUserDieCallback(DieCallbackType callback
);
365 void SetCheckUnwindCallback(void (*callback
)());
367 // Functions related to signal handling.
368 typedef void (*SignalHandlerType
)(int, void *, void *);
369 HandleSignalMode
GetHandleSignalMode(int signum
);
370 void InstallDeadlySignalHandlers(SignalHandlerType handler
);
373 // Each sanitizer uses slightly different implementation of stack unwinding.
374 typedef void (*UnwindSignalStackCallbackType
)(const SignalContext
&sig
,
375 const void *callback_context
,
376 BufferedStackTrace
*stack
);
377 // Print deadly signal report and die.
378 void HandleDeadlySignal(void *siginfo
, void *context
, u32 tid
,
379 UnwindSignalStackCallbackType unwind
,
380 const void *unwind_context
);
382 // Part of HandleDeadlySignal, exposed for asan.
383 void StartReportDeadlySignal();
384 // Part of HandleDeadlySignal, exposed for asan.
385 void ReportDeadlySignal(const SignalContext
&sig
, u32 tid
,
386 UnwindSignalStackCallbackType unwind
,
387 const void *unwind_context
);
389 // Alternative signal stack (POSIX-only).
390 void SetAlternateSignalStack();
391 void UnsetAlternateSignalStack();
393 // Construct a one-line string:
394 // SUMMARY: SanitizerToolName: error_message
395 // and pass it to __sanitizer_report_error_summary.
396 // If alt_tool_name is provided, it's used in place of SanitizerToolName.
397 void ReportErrorSummary(const char *error_message
,
398 const char *alt_tool_name
= nullptr);
399 // Same as above, but construct error_message as:
400 // error_type file:line[:column][ function]
401 void ReportErrorSummary(const char *error_type
, const AddressInfo
&info
,
402 const char *alt_tool_name
= nullptr);
403 // Same as above, but obtains AddressInfo by symbolizing top stack trace frame.
404 void ReportErrorSummary(const char *error_type
, const StackTrace
*trace
,
405 const char *alt_tool_name
= nullptr);
406 // Skips frames which we consider internal and not usefull to the users.
407 const SymbolizedStack
*SkipInternalFrames(const SymbolizedStack
*frames
);
409 void ReportMmapWriteExec(int prot
, int mflags
);
412 #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__)
414 unsigned char _BitScanForward(unsigned long *index
, unsigned long mask
);
415 unsigned char _BitScanReverse(unsigned long *index
, unsigned long mask
);
417 unsigned char _BitScanForward64(unsigned long *index
, unsigned __int64 mask
);
418 unsigned char _BitScanReverse64(unsigned long *index
, unsigned __int64 mask
);
423 inline uptr
MostSignificantSetBitIndex(uptr x
) {
426 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
428 up
= SANITIZER_WORDSIZE
- 1 - __builtin_clzll(x
);
430 up
= SANITIZER_WORDSIZE
- 1 - __builtin_clzl(x
);
432 #elif defined(_WIN64)
433 _BitScanReverse64(&up
, x
);
435 _BitScanReverse(&up
, x
);
440 inline uptr
LeastSignificantSetBitIndex(uptr x
) {
443 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
445 up
= __builtin_ctzll(x
);
447 up
= __builtin_ctzl(x
);
449 #elif defined(_WIN64)
450 _BitScanForward64(&up
, x
);
452 _BitScanForward(&up
, x
);
457 inline constexpr bool IsPowerOfTwo(uptr x
) { return (x
& (x
- 1)) == 0; }
459 inline uptr
RoundUpToPowerOfTwo(uptr size
) {
461 if (IsPowerOfTwo(size
)) return size
;
463 uptr up
= MostSignificantSetBitIndex(size
);
464 CHECK_LT(size
, (1ULL << (up
+ 1)));
465 CHECK_GT(size
, (1ULL << up
));
466 return 1ULL << (up
+ 1);
469 inline constexpr uptr
RoundUpTo(uptr size
, uptr boundary
) {
470 RAW_CHECK(IsPowerOfTwo(boundary
));
471 return (size
+ boundary
- 1) & ~(boundary
- 1);
474 inline constexpr uptr
RoundDownTo(uptr x
, uptr boundary
) {
475 return x
& ~(boundary
- 1);
478 inline constexpr bool IsAligned(uptr a
, uptr alignment
) {
479 return (a
& (alignment
- 1)) == 0;
482 inline uptr
Log2(uptr x
) {
483 CHECK(IsPowerOfTwo(x
));
484 return LeastSignificantSetBitIndex(x
);
487 // Don't use std::min, std::max or std::swap, to minimize dependency
490 constexpr T
Min(T a
, T b
) {
491 return a
< b
? a
: b
;
494 constexpr T
Max(T a
, T b
) {
495 return a
> b
? a
: b
;
498 constexpr T
Abs(T a
) {
499 return a
< 0 ? -a
: a
;
501 template<class T
> void Swap(T
& a
, T
& b
) {
508 inline bool IsSpace(int c
) {
509 return (c
== ' ') || (c
== '\n') || (c
== '\t') ||
510 (c
== '\f') || (c
== '\r') || (c
== '\v');
512 inline bool IsDigit(int c
) {
513 return (c
>= '0') && (c
<= '9');
515 inline int ToLower(int c
) {
516 return (c
>= 'A' && c
<= 'Z') ? (c
+ 'a' - 'A') : c
;
519 // A low-level vector based on mmap. May incur a significant memory overhead for
521 // WARNING: The current implementation supports only POD types.
522 template <typename T
, bool raw_report
= false>
523 class InternalMmapVectorNoCtor
{
525 using value_type
= T
;
526 void Initialize(uptr initial_capacity
) {
530 reserve(initial_capacity
);
532 void Destroy() { UnmapOrDie(data_
, capacity_bytes_
, raw_report
); }
533 T
&operator[](uptr i
) {
537 const T
&operator[](uptr i
) const {
541 void push_back(const T
&element
) {
542 if (UNLIKELY(size_
>= capacity())) {
543 CHECK_EQ(size_
, capacity());
544 uptr new_capacity
= RoundUpToPowerOfTwo(size_
+ 1);
545 Realloc(new_capacity
);
547 internal_memcpy(&data_
[size_
++], &element
, sizeof(T
));
551 return data_
[size_
- 1];
560 const T
*data() const {
566 uptr
capacity() const { return capacity_bytes_
/ sizeof(T
); }
567 void reserve(uptr new_size
) {
568 // Never downsize internal buffer.
569 if (new_size
> capacity())
572 void resize(uptr new_size
) {
573 if (new_size
> size_
) {
575 internal_memset(&data_
[size_
], 0, sizeof(T
) * (new_size
- size_
));
580 void clear() { size_
= 0; }
581 bool empty() const { return size() == 0; }
583 const T
*begin() const {
589 const T
*end() const {
590 return data() + size();
593 return data() + size();
596 void swap(InternalMmapVectorNoCtor
&other
) {
597 Swap(data_
, other
.data_
);
598 Swap(capacity_bytes_
, other
.capacity_bytes_
);
599 Swap(size_
, other
.size_
);
603 NOINLINE
void Realloc(uptr new_capacity
) {
604 CHECK_GT(new_capacity
, 0);
605 CHECK_LE(size_
, new_capacity
);
606 uptr new_capacity_bytes
=
607 RoundUpTo(new_capacity
* sizeof(T
), GetPageSizeCached());
609 (T
*)MmapOrDie(new_capacity_bytes
, "InternalMmapVector", raw_report
);
610 internal_memcpy(new_data
, data_
, size_
* sizeof(T
));
611 UnmapOrDie(data_
, capacity_bytes_
, raw_report
);
613 capacity_bytes_
= new_capacity_bytes
;
617 uptr capacity_bytes_
;
621 template <typename T
>
622 bool operator==(const InternalMmapVectorNoCtor
<T
> &lhs
,
623 const InternalMmapVectorNoCtor
<T
> &rhs
) {
624 if (lhs
.size() != rhs
.size()) return false;
625 return internal_memcmp(lhs
.data(), rhs
.data(), lhs
.size() * sizeof(T
)) == 0;
628 template <typename T
>
629 bool operator!=(const InternalMmapVectorNoCtor
<T
> &lhs
,
630 const InternalMmapVectorNoCtor
<T
> &rhs
) {
631 return !(lhs
== rhs
);
635 class InternalMmapVector
: public InternalMmapVectorNoCtor
<T
> {
637 InternalMmapVector() { InternalMmapVectorNoCtor
<T
>::Initialize(0); }
638 explicit InternalMmapVector(uptr cnt
) {
639 InternalMmapVectorNoCtor
<T
>::Initialize(cnt
);
642 ~InternalMmapVector() { InternalMmapVectorNoCtor
<T
>::Destroy(); }
643 // Disallow copies and moves.
644 InternalMmapVector(const InternalMmapVector
&) = delete;
645 InternalMmapVector
&operator=(const InternalMmapVector
&) = delete;
646 InternalMmapVector(InternalMmapVector
&&) = delete;
647 InternalMmapVector
&operator=(InternalMmapVector
&&) = delete;
650 class InternalScopedString
{
652 InternalScopedString() : buffer_(1) { buffer_
[0] = '\0'; }
654 uptr
length() const { return buffer_
.size() - 1; }
659 void Append(const char *str
);
660 void AppendF(const char *format
, ...) FORMAT(2, 3);
661 const char *data() const { return buffer_
.data(); }
662 char *data() { return buffer_
.data(); }
665 InternalMmapVector
<char> buffer_
;
670 bool operator()(const T
&a
, const T
&b
) const { return a
< b
; }
673 // HeapSort for arrays and InternalMmapVector.
674 template <class T
, class Compare
= CompareLess
<T
>>
675 void Sort(T
*v
, uptr size
, Compare comp
= {}) {
678 // Stage 1: insert elements to the heap.
679 for (uptr i
= 1; i
< size
; i
++) {
681 for (j
= i
; j
> 0; j
= p
) {
683 if (comp(v
[p
], v
[j
]))
689 // Stage 2: swap largest element with the last one,
690 // and sink the new top.
691 for (uptr i
= size
- 1; i
> 0; i
--) {
694 for (j
= 0; j
< i
; j
= max_ind
) {
695 uptr left
= 2 * j
+ 1;
696 uptr right
= 2 * j
+ 2;
698 if (left
< i
&& comp(v
[max_ind
], v
[left
]))
700 if (right
< i
&& comp(v
[max_ind
], v
[right
]))
703 Swap(v
[j
], v
[max_ind
]);
710 // Works like std::lower_bound: finds the first element that is not less
712 template <class Container
, class T
,
713 class Compare
= CompareLess
<typename
Container::value_type
>>
714 uptr
InternalLowerBound(const Container
&v
, const T
&val
, Compare comp
= {}) {
716 uptr last
= v
.size();
717 while (last
> first
) {
718 uptr mid
= (first
+ last
) / 2;
719 if (comp(v
[mid
], val
))
737 kModuleArchLoongArch64
,
742 // Sorts and removes duplicates from the container.
743 template <class Container
,
744 class Compare
= CompareLess
<typename
Container::value_type
>>
745 void SortAndDedup(Container
&v
, Compare comp
= {}) {
746 Sort(v
.data(), v
.size(), comp
);
747 uptr size
= v
.size();
751 for (uptr i
= 1; i
< size
; ++i
) {
752 if (comp(v
[last
], v
[i
])) {
757 CHECK(!comp(v
[i
], v
[last
]));
763 constexpr uptr kDefaultFileMaxSize
= FIRST_32_SECOND_64(1 << 26, 1 << 28);
765 // Opens the file 'file_name" and reads up to 'max_len' bytes.
766 // The resulting buffer is mmaped and stored in '*buff'.
767 // Returns true if file was successfully opened and read.
768 bool ReadFileToVector(const char *file_name
,
769 InternalMmapVectorNoCtor
<char> *buff
,
770 uptr max_len
= kDefaultFileMaxSize
,
771 error_t
*errno_p
= nullptr);
773 // Opens the file 'file_name" and reads up to 'max_len' bytes.
774 // This function is less I/O efficient than ReadFileToVector as it may reread
775 // file multiple times to avoid mmap during read attempts. It's used to read
776 // procmap, so short reads with mmap in between can produce inconsistent result.
777 // The resulting buffer is mmaped and stored in '*buff'.
778 // The size of the mmaped region is stored in '*buff_size'.
779 // The total number of read bytes is stored in '*read_len'.
780 // Returns true if file was successfully opened and read.
781 bool ReadFileToBuffer(const char *file_name
, char **buff
, uptr
*buff_size
,
782 uptr
*read_len
, uptr max_len
= kDefaultFileMaxSize
,
783 error_t
*errno_p
= nullptr);
785 int GetModuleAndOffsetForPc(uptr pc
, char *module_name
, uptr module_name_len
,
788 // When adding a new architecture, don't forget to also update
789 // script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cpp.
790 inline const char *ModuleArchToString(ModuleArch arch
) {
792 case kModuleArchUnknown
:
794 case kModuleArchI386
:
796 case kModuleArchX86_64
:
798 case kModuleArchX86_64H
:
800 case kModuleArchARMV6
:
802 case kModuleArchARMV7
:
804 case kModuleArchARMV7S
:
806 case kModuleArchARMV7K
:
808 case kModuleArchARM64
:
810 case kModuleArchLoongArch64
:
811 return "loongarch64";
812 case kModuleArchRISCV64
:
814 case kModuleArchHexagon
:
817 CHECK(0 && "Invalid module arch");
822 const uptr kModuleUUIDSize
= 16;
824 const uptr kModuleUUIDSize
= 32;
826 const uptr kMaxSegName
= 16;
828 // Represents a binary loaded into virtual memory (e.g. this can be an
829 // executable or a shared object).
833 : full_name_(nullptr),
836 arch_(kModuleArchUnknown
),
838 instrumented_(false) {
839 internal_memset(uuid_
, 0, kModuleUUIDSize
);
842 void set(const char *module_name
, uptr base_address
);
843 void set(const char *module_name
, uptr base_address
, ModuleArch arch
,
844 u8 uuid
[kModuleUUIDSize
], bool instrumented
);
845 void setUuid(const char *uuid
, uptr size
);
847 void addAddressRange(uptr beg
, uptr end
, bool executable
, bool writable
,
848 const char *name
= nullptr);
849 bool containsAddress(uptr address
) const;
851 const char *full_name() const { return full_name_
; }
852 uptr
base_address() const { return base_address_
; }
853 uptr
max_address() const { return max_address_
; }
854 ModuleArch
arch() const { return arch_
; }
855 const u8
*uuid() const { return uuid_
; }
856 uptr
uuid_size() const { return uuid_size_
; }
857 bool instrumented() const { return instrumented_
; }
859 struct AddressRange
{
865 char name
[kMaxSegName
];
867 AddressRange(uptr beg
, uptr end
, bool executable
, bool writable
,
872 executable(executable
),
874 internal_strncpy(this->name
, (name
? name
: ""), ARRAY_SIZE(this->name
));
878 const IntrusiveList
<AddressRange
> &ranges() const { return ranges_
; }
881 char *full_name_
; // Owned.
886 u8 uuid_
[kModuleUUIDSize
];
888 IntrusiveList
<AddressRange
> ranges_
;
891 // List of LoadedModules. OS-dependent implementation is responsible for
892 // filling this information.
893 class ListOfModules
{
895 ListOfModules() : initialized(false) {}
896 ~ListOfModules() { clear(); }
898 void fallbackInit(); // Uses fallback init if available, otherwise clears
899 const LoadedModule
*begin() const { return modules_
.begin(); }
900 LoadedModule
*begin() { return modules_
.begin(); }
901 const LoadedModule
*end() const { return modules_
.end(); }
902 LoadedModule
*end() { return modules_
.end(); }
903 uptr
size() const { return modules_
.size(); }
904 const LoadedModule
&operator[](uptr i
) const {
905 CHECK_LT(i
, modules_
.size());
911 for (auto &module
: modules_
) module
.clear();
915 initialized
? clear() : modules_
.Initialize(kInitialCapacity
);
919 InternalMmapVectorNoCtor
<LoadedModule
> modules_
;
920 // We rarely have more than 16K loaded modules.
921 static const uptr kInitialCapacity
= 1 << 14;
925 // Callback type for iterating over a set of memory ranges.
926 typedef void (*RangeIteratorCallback
)(uptr begin
, uptr end
, void *arg
);
928 enum AndroidApiLevel
{
929 ANDROID_NOT_ANDROID
= 0,
931 ANDROID_LOLLIPOP_MR1
= 22,
932 ANDROID_POST_LOLLIPOP
= 23
935 void WriteToSyslog(const char *buffer
);
937 #if defined(SANITIZER_WINDOWS) && defined(_MSC_VER) && !defined(__clang__)
938 #define SANITIZER_WIN_TRACE 1
940 #define SANITIZER_WIN_TRACE 0
943 #if SANITIZER_APPLE || SANITIZER_WIN_TRACE
944 void LogFullErrorReport(const char *buffer
);
946 inline void LogFullErrorReport(const char *buffer
) {}
949 #if SANITIZER_LINUX || SANITIZER_APPLE
950 void WriteOneLineToSyslog(const char *s
);
951 void LogMessageOnPrintf(const char *str
);
953 inline void WriteOneLineToSyslog(const char *s
) {}
954 inline void LogMessageOnPrintf(const char *str
) {}
957 #if SANITIZER_LINUX || SANITIZER_WIN_TRACE
958 // Initialize Android logging. Any writes before this are silently lost.
959 void AndroidLogInit();
960 void SetAbortMessage(const char *);
962 inline void AndroidLogInit() {}
963 // FIXME: MacOS implementation could use CRSetCrashLogMessage.
964 inline void SetAbortMessage(const char *) {}
967 #if SANITIZER_ANDROID
968 void SanitizerInitializeUnwinder();
969 AndroidApiLevel
AndroidGetApiLevel();
971 inline void AndroidLogWrite(const char *buffer_unused
) {}
972 inline void SanitizerInitializeUnwinder() {}
973 inline AndroidApiLevel
AndroidGetApiLevel() { return ANDROID_NOT_ANDROID
; }
976 inline uptr
GetPthreadDestructorIterations() {
977 #if SANITIZER_ANDROID
978 return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1
) ? 8 : 4;
979 #elif SANITIZER_POSIX
982 // Unused on Windows.
987 void *internal_start_thread(void *(*func
)(void*), void *arg
);
988 void internal_join_thread(void *th
);
989 void MaybeStartBackgroudThread();
991 // Make the compiler think that something is going on there.
992 // Use this inside a loop that looks like memset/memcpy/etc to prevent the
993 // compiler from recognising it and turning it into an actual call to
994 // memset/memcpy/etc.
995 static inline void SanitizerBreakOptimization(void *arg
) {
996 #if defined(_MSC_VER) && !defined(__clang__)
999 __asm__
__volatile__("" : : "r" (arg
) : "memory");
1003 struct SignalContext
{
1010 bool is_memory_access
;
1011 enum WriteFlag
{ Unknown
, Read
, Write
} write_flag
;
1013 // In some cases the kernel cannot provide the true faulting address; `addr`
1014 // will be zero then. This field allows to distinguish between these cases
1015 // and dereferences of null.
1016 bool is_true_faulting_addr
;
1018 // VS2013 doesn't implement unrestricted unions, so we need a trivial default
1020 SignalContext() = default;
1022 // Creates signal context in a platform-specific manner.
1023 // SignalContext is going to keep pointers to siginfo and context without
1025 SignalContext(void *siginfo
, void *context
)
1029 is_memory_access(IsMemoryAccess()),
1030 write_flag(GetWriteFlag()),
1031 is_true_faulting_addr(IsTrueFaultingAddress()) {
1035 static void DumpAllRegisters(void *context
);
1037 // Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION.
1038 int GetType() const;
1040 // String description of the signal.
1041 const char *Describe() const;
1043 // Returns true if signal is stack overflow.
1044 bool IsStackOverflow() const;
1047 // Platform specific initialization.
1049 uptr
GetAddress() const;
1050 WriteFlag
GetWriteFlag() const;
1051 bool IsMemoryAccess() const;
1052 bool IsTrueFaultingAddress() const;
1055 void InitializePlatformEarly();
1057 template <typename Fn
>
1058 class RunOnDestruction
{
1060 explicit RunOnDestruction(Fn fn
) : fn_(fn
) {}
1061 ~RunOnDestruction() { fn_(); }
1067 // A simple scope guard. Usage:
1068 // auto cleanup = at_scope_exit([]{ do_cleanup; });
1069 template <typename Fn
>
1070 RunOnDestruction
<Fn
> at_scope_exit(Fn fn
) {
1071 return RunOnDestruction
<Fn
>(fn
);
1074 // Linux on 64-bit s390 had a nasty bug that crashes the whole machine
1075 // if a process uses virtual memory over 4TB (as many sanitizers like
1076 // to do). This function will abort the process if running on a kernel
1077 // that looks vulnerable.
1078 #if SANITIZER_LINUX && SANITIZER_S390_64
1079 void AvoidCVE_2016_2143();
1081 inline void AvoidCVE_2016_2143() {}
1084 struct StackDepotStats
{
1089 // The default value for allocator_release_to_os_interval_ms common flag to
1090 // indicate that sanitizer allocator should not attempt to release memory to OS.
1091 const s32 kReleaseToOSIntervalNever
= -1;
1093 void CheckNoDeepBind(const char *filename
, int flag
);
1095 // Returns the requested amount of random data (up to 256 bytes) that can then
1096 // be used to seed a PRNG. Defaults to blocking like the underlying syscall.
1097 bool GetRandom(void *buffer
, uptr length
, bool blocking
= true);
1099 // Returns the number of logical processors on the system.
1100 u32
GetNumberOfCPUs();
1101 extern u32 NumberOfCPUsCached
;
1102 inline u32
GetNumberOfCPUsCached() {
1103 if (!NumberOfCPUsCached
)
1104 NumberOfCPUsCached
= GetNumberOfCPUs();
1105 return NumberOfCPUsCached
;
1108 } // namespace __sanitizer
1110 inline void *operator new(__sanitizer::usize size
,
1111 __sanitizer::LowLevelAllocator
&alloc
) {
1112 return alloc
.Allocate(size
);
1115 #endif // SANITIZER_COMMON_H