[flang][cuda] Adapt ExternalNameConversion to work in gpu module (#117039)
[llvm-project.git] / compiler-rt / lib / sanitizer_common / sanitizer_fuchsia.cpp
blobacbf3ebfc95c0e78cf6a7bcdb6ecfb73de106062
1 //===-- sanitizer_fuchsia.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between AddressSanitizer and other sanitizer
10 // run-time libraries and implements Fuchsia-specific functions from
11 // sanitizer_common.h.
12 //===----------------------------------------------------------------------===//
14 #include "sanitizer_fuchsia.h"
15 #if SANITIZER_FUCHSIA
17 # include <pthread.h>
18 # include <stdlib.h>
19 # include <unistd.h>
20 # include <zircon/errors.h>
21 # include <zircon/process.h>
22 # include <zircon/syscalls.h>
23 # include <zircon/utc.h>
25 # include "sanitizer_common.h"
26 # include "sanitizer_interface_internal.h"
27 # include "sanitizer_libc.h"
28 # include "sanitizer_mutex.h"
30 namespace __sanitizer {
32 void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); }
34 uptr internal_sched_yield() {
35 zx_status_t status = _zx_thread_legacy_yield(0u);
36 CHECK_EQ(status, ZX_OK);
37 return 0; // Why doesn't this return void?
40 void internal_usleep(u64 useconds) {
41 zx_status_t status = _zx_nanosleep(_zx_deadline_after(ZX_USEC(useconds)));
42 CHECK_EQ(status, ZX_OK);
45 u64 NanoTime() {
46 zx_handle_t utc_clock = _zx_utc_reference_get();
47 CHECK_NE(utc_clock, ZX_HANDLE_INVALID);
48 zx_time_t time;
49 zx_status_t status = _zx_clock_read(utc_clock, &time);
50 CHECK_EQ(status, ZX_OK);
51 return time;
54 u64 MonotonicNanoTime() { return _zx_clock_get_monotonic(); }
56 uptr internal_getpid() {
57 zx_info_handle_basic_t info;
58 zx_status_t status =
59 _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info,
60 sizeof(info), NULL, NULL);
61 CHECK_EQ(status, ZX_OK);
62 uptr pid = static_cast<uptr>(info.koid);
63 CHECK_EQ(pid, info.koid);
64 return pid;
67 int internal_dlinfo(void *handle, int request, void *p) { UNIMPLEMENTED(); }
69 uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); }
71 tid_t GetTid() { return GetThreadSelf(); }
73 void Abort() { abort(); }
75 int Atexit(void (*function)(void)) { return atexit(function); }
77 void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) {
78 pthread_attr_t attr;
79 CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0);
80 void *base;
81 size_t size;
82 CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0);
83 CHECK_EQ(pthread_attr_destroy(&attr), 0);
85 *stack_bottom = reinterpret_cast<uptr>(base);
86 *stack_top = *stack_bottom + size;
89 void InitializePlatformEarly() {}
90 void CheckASLR() {}
91 void CheckMPROTECT() {}
92 void PlatformPrepareForSandboxing(void *args) {}
93 void DisableCoreDumperIfNecessary() {}
94 void InstallDeadlySignalHandlers(SignalHandlerType handler) {}
95 void SetAlternateSignalStack() {}
96 void UnsetAlternateSignalStack() {}
98 bool SignalContext::IsStackOverflow() const { return false; }
99 void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); }
100 const char *SignalContext::Describe() const { UNIMPLEMENTED(); }
102 void FutexWait(atomic_uint32_t *p, u32 cmp) {
103 zx_status_t status = _zx_futex_wait(reinterpret_cast<zx_futex_t *>(p), cmp,
104 ZX_HANDLE_INVALID, ZX_TIME_INFINITE);
105 if (status != ZX_ERR_BAD_STATE) // Normal race.
106 CHECK_EQ(status, ZX_OK);
109 void FutexWake(atomic_uint32_t *p, u32 count) {
110 zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(p), count);
111 CHECK_EQ(status, ZX_OK);
114 uptr GetPageSize() { return _zx_system_get_page_size(); }
116 uptr GetMmapGranularity() { return _zx_system_get_page_size(); }
118 sanitizer_shadow_bounds_t ShadowBounds;
120 void InitShadowBounds() { ShadowBounds = __sanitizer_shadow_bounds(); }
122 uptr GetMaxUserVirtualAddress() {
123 InitShadowBounds();
124 return ShadowBounds.memory_limit - 1;
127 uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); }
129 bool ErrorIsOOM(error_t err) { return err == ZX_ERR_NO_MEMORY; }
131 // For any sanitizer internal that needs to map something which can be unmapped
132 // later, first attempt to map to a pre-allocated VMAR. This helps reduce
133 // fragmentation from many small anonymous mmap calls. A good value for this
134 // VMAR size would be the total size of your typical sanitizer internal objects
135 // allocated in an "average" process lifetime. Examples of this include:
136 // FakeStack, LowLevelAllocator mappings, TwoLevelMap, InternalMmapVector,
137 // StackStore, CreateAsanThread, etc.
139 // This is roughly equal to the total sum of sanitizer internal mappings for a
140 // large test case.
141 constexpr size_t kSanitizerHeapVmarSize = 13ULL << 20;
142 static zx_handle_t gSanitizerHeapVmar = ZX_HANDLE_INVALID;
144 static zx_status_t GetSanitizerHeapVmar(zx_handle_t *vmar) {
145 zx_status_t status = ZX_OK;
146 if (gSanitizerHeapVmar == ZX_HANDLE_INVALID) {
147 CHECK_EQ(kSanitizerHeapVmarSize % GetPageSizeCached(), 0);
148 uintptr_t base;
149 status = _zx_vmar_allocate(
150 _zx_vmar_root_self(),
151 ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, 0,
152 kSanitizerHeapVmarSize, &gSanitizerHeapVmar, &base);
154 *vmar = gSanitizerHeapVmar;
155 if (status == ZX_OK)
156 CHECK_NE(gSanitizerHeapVmar, ZX_HANDLE_INVALID);
157 return status;
160 static zx_status_t TryVmoMapSanitizerVmar(zx_vm_option_t options,
161 size_t vmar_offset, zx_handle_t vmo,
162 size_t size, uintptr_t *addr,
163 zx_handle_t *vmar_used = nullptr) {
164 zx_handle_t vmar;
165 zx_status_t status = GetSanitizerHeapVmar(&vmar);
166 if (status != ZX_OK)
167 return status;
169 status = _zx_vmar_map(gSanitizerHeapVmar, options, vmar_offset, vmo,
170 /*vmo_offset=*/0, size, addr);
171 if (vmar_used)
172 *vmar_used = gSanitizerHeapVmar;
173 if (status == ZX_ERR_NO_RESOURCES || status == ZX_ERR_INVALID_ARGS) {
174 // This means there's no space in the heap VMAR, so fallback to the root
175 // VMAR.
176 status = _zx_vmar_map(_zx_vmar_root_self(), options, vmar_offset, vmo,
177 /*vmo_offset=*/0, size, addr);
178 if (vmar_used)
179 *vmar_used = _zx_vmar_root_self();
182 return status;
185 static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type,
186 bool raw_report, bool die_for_nomem) {
187 size = RoundUpTo(size, GetPageSize());
189 zx_handle_t vmo;
190 zx_status_t status = _zx_vmo_create(size, 0, &vmo);
191 if (status != ZX_OK) {
192 if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
193 ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status,
194 raw_report);
195 return nullptr;
197 _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
198 internal_strlen(mem_type));
200 uintptr_t addr;
201 status = TryVmoMapSanitizerVmar(ZX_VM_PERM_READ | ZX_VM_PERM_WRITE,
202 /*vmar_offset=*/0, vmo, size, &addr);
203 _zx_handle_close(vmo);
205 if (status != ZX_OK) {
206 if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
207 ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status,
208 raw_report);
209 return nullptr;
212 IncreaseTotalMmap(size);
214 return reinterpret_cast<void *>(addr);
217 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
218 return DoAnonymousMmapOrDie(size, mem_type, raw_report, true);
221 void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
222 return MmapOrDie(size, mem_type);
225 void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
226 return DoAnonymousMmapOrDie(size, mem_type, false, false);
229 uptr ReservedAddressRange::Init(uptr init_size, const char *name,
230 uptr fixed_addr) {
231 init_size = RoundUpTo(init_size, GetPageSize());
232 DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID);
233 uintptr_t base;
234 zx_handle_t vmar;
235 zx_status_t status = _zx_vmar_allocate(
236 _zx_vmar_root_self(),
237 ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, 0,
238 init_size, &vmar, &base);
239 if (status != ZX_OK)
240 ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status);
241 base_ = reinterpret_cast<void *>(base);
242 size_ = init_size;
243 name_ = name;
244 os_handle_ = vmar;
246 return reinterpret_cast<uptr>(base_);
249 static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size,
250 void *base, const char *name, bool die_for_nomem) {
251 uptr offset = fixed_addr - reinterpret_cast<uptr>(base);
252 map_size = RoundUpTo(map_size, GetPageSize());
253 zx_handle_t vmo;
254 zx_status_t status = _zx_vmo_create(map_size, 0, &vmo);
255 if (status != ZX_OK) {
256 if (status != ZX_ERR_NO_MEMORY || die_for_nomem)
257 ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status);
258 return 0;
260 _zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name));
261 DCHECK_GE(base + size_, map_size + offset);
262 uintptr_t addr;
264 status =
265 _zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC,
266 offset, vmo, 0, map_size, &addr);
267 _zx_handle_close(vmo);
268 if (status != ZX_OK) {
269 if (status != ZX_ERR_NO_MEMORY || die_for_nomem) {
270 ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status);
272 return 0;
274 IncreaseTotalMmap(map_size);
275 return addr;
278 uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size,
279 const char *name) {
280 return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
281 name ? name : name_, false);
284 uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size,
285 const char *name) {
286 return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_,
287 name ? name : name_, true);
290 void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar,
291 bool raw_report) {
292 if (!addr || !size)
293 return;
294 size = RoundUpTo(size, GetPageSize());
296 zx_status_t status =
297 _zx_vmar_unmap(target_vmar, reinterpret_cast<uintptr_t>(addr), size);
298 if (status == ZX_ERR_INVALID_ARGS && target_vmar == gSanitizerHeapVmar) {
299 // If there wasn't any space in the heap vmar, the fallback was the root
300 // vmar.
301 status = _zx_vmar_unmap(_zx_vmar_root_self(),
302 reinterpret_cast<uintptr_t>(addr), size);
304 if (status != ZX_OK)
305 ReportMunmapFailureAndDie(addr, size, status, raw_report);
307 DecreaseTotalMmap(size);
310 void ReservedAddressRange::Unmap(uptr addr, uptr size) {
311 CHECK_LE(size, size_);
312 const zx_handle_t vmar = static_cast<zx_handle_t>(os_handle_);
313 if (addr == reinterpret_cast<uptr>(base_)) {
314 if (size == size_) {
315 // Destroying the vmar effectively unmaps the whole mapping.
316 _zx_vmar_destroy(vmar);
317 _zx_handle_close(vmar);
318 os_handle_ = static_cast<uptr>(ZX_HANDLE_INVALID);
319 DecreaseTotalMmap(size);
320 return;
322 } else {
323 CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_);
325 // Partial unmapping does not affect the fact that the initial range is still
326 // reserved, and the resulting unmapped memory can't be reused.
327 UnmapOrDieVmar(reinterpret_cast<void *>(addr), size, vmar,
328 /*raw_report=*/false);
331 // This should never be called.
332 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) {
333 UNIMPLEMENTED();
336 bool MprotectNoAccess(uptr addr, uptr size) {
337 return _zx_vmar_protect(_zx_vmar_root_self(), 0, addr, size) == ZX_OK;
340 bool MprotectReadOnly(uptr addr, uptr size) {
341 return _zx_vmar_protect(_zx_vmar_root_self(), ZX_VM_PERM_READ, addr, size) ==
342 ZX_OK;
345 bool MprotectReadWrite(uptr addr, uptr size) {
346 return _zx_vmar_protect(_zx_vmar_root_self(),
347 ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, addr,
348 size) == ZX_OK;
351 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
352 const char *mem_type) {
353 CHECK_GE(size, GetPageSize());
354 CHECK(IsPowerOfTwo(size));
355 CHECK(IsPowerOfTwo(alignment));
357 zx_handle_t vmo;
358 zx_status_t status = _zx_vmo_create(size, 0, &vmo);
359 if (status != ZX_OK) {
360 if (status != ZX_ERR_NO_MEMORY)
361 ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false);
362 return nullptr;
364 _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type,
365 internal_strlen(mem_type));
367 // Map a larger size to get a chunk of address space big enough that
368 // it surely contains an aligned region of the requested size. Then
369 // overwrite the aligned middle portion with a mapping from the
370 // beginning of the VMO, and unmap the excess before and after.
371 size_t map_size = size + alignment;
372 uintptr_t addr;
373 zx_handle_t vmar_used;
374 status = TryVmoMapSanitizerVmar(ZX_VM_PERM_READ | ZX_VM_PERM_WRITE,
375 /*vmar_offset=*/0, vmo, map_size, &addr,
376 &vmar_used);
377 if (status == ZX_OK) {
378 uintptr_t map_addr = addr;
379 uintptr_t map_end = map_addr + map_size;
380 addr = RoundUpTo(map_addr, alignment);
381 uintptr_t end = addr + size;
382 if (addr != map_addr) {
383 zx_info_vmar_t info;
384 status = _zx_object_get_info(vmar_used, ZX_INFO_VMAR, &info, sizeof(info),
385 NULL, NULL);
386 if (status == ZX_OK) {
387 uintptr_t new_addr;
388 status = _zx_vmar_map(
389 vmar_used,
390 ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE,
391 addr - info.base, vmo, 0, size, &new_addr);
392 if (status == ZX_OK)
393 CHECK_EQ(new_addr, addr);
396 if (status == ZX_OK && addr != map_addr)
397 status = _zx_vmar_unmap(vmar_used, map_addr, addr - map_addr);
398 if (status == ZX_OK && end != map_end)
399 status = _zx_vmar_unmap(vmar_used, end, map_end - end);
401 _zx_handle_close(vmo);
403 if (status != ZX_OK) {
404 if (status != ZX_ERR_NO_MEMORY)
405 ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false);
406 return nullptr;
409 IncreaseTotalMmap(size);
411 return reinterpret_cast<void *>(addr);
414 void UnmapOrDie(void *addr, uptr size, bool raw_report) {
415 UnmapOrDieVmar(addr, size, gSanitizerHeapVmar, raw_report);
418 void ReleaseMemoryPagesToOS(uptr beg, uptr end) {
419 uptr beg_aligned = RoundUpTo(beg, GetPageSize());
420 uptr end_aligned = RoundDownTo(end, GetPageSize());
421 if (beg_aligned < end_aligned) {
422 zx_handle_t root_vmar = _zx_vmar_root_self();
423 CHECK_NE(root_vmar, ZX_HANDLE_INVALID);
424 zx_status_t status =
425 _zx_vmar_op_range(root_vmar, ZX_VMAR_OP_DECOMMIT, beg_aligned,
426 end_aligned - beg_aligned, nullptr, 0);
427 CHECK_EQ(status, ZX_OK);
431 void DumpProcessMap() {
432 // TODO(mcgrathr): write it
433 return;
436 bool IsAccessibleMemoryRange(uptr beg, uptr size) {
437 // TODO(mcgrathr): Figure out a better way.
438 zx_handle_t vmo;
439 zx_status_t status = _zx_vmo_create(size, 0, &vmo);
440 if (status == ZX_OK) {
441 status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size);
442 _zx_handle_close(vmo);
444 return status == ZX_OK;
447 bool TryMemCpy(void *dest, const void *src, uptr n) {
448 // TODO: implement.
449 return false;
452 // FIXME implement on this platform.
453 void GetMemoryProfile(fill_profile_f cb, uptr *stats) {}
455 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
456 uptr *read_len, uptr max_len, error_t *errno_p) {
457 *errno_p = ZX_ERR_NOT_SUPPORTED;
458 return false;
461 void RawWrite(const char *buffer) {
462 constexpr size_t size = 128;
463 static _Thread_local char line[size];
464 static _Thread_local size_t lastLineEnd = 0;
465 static _Thread_local size_t cur = 0;
467 while (*buffer) {
468 if (cur >= size) {
469 if (lastLineEnd == 0)
470 lastLineEnd = size;
471 __sanitizer_log_write(line, lastLineEnd);
472 internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
473 cur = cur - lastLineEnd;
474 lastLineEnd = 0;
476 if (*buffer == '\n')
477 lastLineEnd = cur + 1;
478 line[cur++] = *buffer++;
480 // Flush all complete lines before returning.
481 if (lastLineEnd != 0) {
482 __sanitizer_log_write(line, lastLineEnd);
483 internal_memmove(line, line + lastLineEnd, cur - lastLineEnd);
484 cur = cur - lastLineEnd;
485 lastLineEnd = 0;
489 void CatastrophicErrorWrite(const char *buffer, uptr length) {
490 __sanitizer_log_write(buffer, length);
493 char **StoredArgv;
494 char **StoredEnviron;
496 char **GetArgv() { return StoredArgv; }
497 char **GetEnviron() { return StoredEnviron; }
499 const char *GetEnv(const char *name) {
500 if (StoredEnviron) {
501 uptr NameLen = internal_strlen(name);
502 for (char **Env = StoredEnviron; *Env != 0; Env++) {
503 if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=')
504 return (*Env) + NameLen + 1;
507 return nullptr;
510 uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) {
511 const char *argv0 = "<UNKNOWN>";
512 if (StoredArgv && StoredArgv[0]) {
513 argv0 = StoredArgv[0];
515 internal_strncpy(buf, argv0, buf_len);
516 return internal_strlen(buf);
519 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) {
520 return ReadBinaryName(buf, buf_len);
523 uptr MainThreadStackBase, MainThreadStackSize;
525 bool GetRandom(void *buffer, uptr length, bool blocking) {
526 _zx_cprng_draw(buffer, length);
527 return true;
530 u32 GetNumberOfCPUs() { return zx_system_get_num_cpus(); }
532 uptr GetRSS() { UNIMPLEMENTED(); }
534 void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; }
535 void internal_join_thread(void *th) {}
537 void InitializePlatformCommonFlags(CommonFlags *cf) {}
539 } // namespace __sanitizer
541 using namespace __sanitizer;
543 extern "C" {
544 void __sanitizer_startup_hook(int argc, char **argv, char **envp,
545 void *stack_base, size_t stack_size) {
546 __sanitizer::StoredArgv = argv;
547 __sanitizer::StoredEnviron = envp;
548 __sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base);
549 __sanitizer::MainThreadStackSize = stack_size;
552 void __sanitizer_set_report_path(const char *path) {
553 // Handle the initialization code in each sanitizer, but no other calls.
554 // This setting is never consulted on Fuchsia.
555 DCHECK_EQ(path, common_flags()->log_path);
558 void __sanitizer_set_report_fd(void *fd) {
559 UNREACHABLE("not available on Fuchsia");
562 const char *__sanitizer_get_report_path() {
563 UNREACHABLE("not available on Fuchsia");
565 } // extern "C"
567 #endif // SANITIZER_FUCHSIA