1 //===-- lib/Decimal/binary-to-decimal.cpp ---------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "big-radix-floating-point.h"
10 #include "flang/Decimal/decimal.h"
15 namespace Fortran::decimal
{
17 template <int PREC
, int LOG10RADIX
>
18 BigRadixFloatingPointNumber
<PREC
, LOG10RADIX
>::BigRadixFloatingPointNumber(
19 BinaryFloatingPointNumber
<PREC
> x
, enum FortranRounding rounding
)
20 : rounding_
{rounding
} {
21 bool negative
{x
.IsNegative()};
23 isNegative_
= negative
;
29 int twoPow
{x
.UnbiasedExponent()};
31 if (!x
.isImplicitMSB
) {
34 int lshift
{x
.exponentBits
};
35 if (twoPow
<= -lshift
) {
38 } else if (twoPow
< 0) {
42 auto word
{x
.Fraction()};
45 isNegative_
= negative
;
47 // The significand is now encoded in *this as an integer (D) and
48 // decimal exponent (E): x = D * 10.**E * 2.**twoPow
49 // twoPow can be positive or negative.
50 // The goal now is to get twoPow up or down to zero, leaving us with
51 // only decimal digits and decimal exponent. This is done by
52 // fast multiplications and divisions of D by 2 and 5.
54 // (5*D) * 10.**E * 2.**twoPow -> D * 10.**(E+1) * 2.**(twoPow-1)
55 for (; twoPow
> 0 && IsDivisibleBy
<5>(); --twoPow
) {
61 for (; twoPow
>= 9; twoPow
-= 9) {
62 // D * 10.**E * 2.**twoPow -> (D*(2**9)) * 10.**E * 2.**(twoPow-9)
63 overflow
|= MultiplyBy
<512>();
65 for (; twoPow
>= 3; twoPow
-= 3) {
66 // D * 10.**E * 2.**twoPow -> (D*(2**3)) * 10.**E * 2.**(twoPow-3)
67 overflow
|= MultiplyBy
<8>();
69 for (; twoPow
> 0; --twoPow
) {
70 // D * 10.**E * 2.**twoPow -> (2*D) * 10.**E * 2.**(twoPow-1)
71 overflow
|= MultiplyBy
<2>();
74 overflow
|= DivideByPowerOfTwoInPlace(-twoPow
);
75 assert(overflow
== 0);
79 template <int PREC
, int LOG10RADIX
>
80 ConversionToDecimalResult
81 BigRadixFloatingPointNumber
<PREC
, LOG10RADIX
>::ConvertToDecimal(char *buffer
,
82 std::size_t n
, enum DecimalConversionFlags flags
, int maxDigits
) const {
83 if (n
< static_cast<std::size_t>(3 + digits_
* LOG10RADIX
)) {
84 return {nullptr, 0, 0, Overflow
};
89 } else if (flags
& AlwaysSign
) {
95 return {buffer
, static_cast<std::size_t>(start
- buffer
), 0, Exact
};
98 static_assert((LOG10RADIX
% 2) == 0, "radix not a power of 100");
99 static const char lut
[] = "0001020304050607080910111213141516171819"
100 "2021222324252627282930313233343536373839"
101 "4041424344454647484950515253545556575859"
102 "6061626364656667686970717273747576777879"
103 "8081828384858687888990919293949596979899";
104 // Treat the MSD specially: don't emit leading zeroes.
105 Digit dig
{digit_
[digits_
- 1]};
106 char stack
[LOG10RADIX
], *sp
{stack
};
107 for (int k
{0}; k
< log10Radix
; k
+= 2) {
108 Digit newDig
{dig
/ 100};
109 auto d
{static_cast<std::uint32_t>(dig
) -
110 std::uint32_t{100} * static_cast<std::uint32_t>(newDig
)};
112 const char *q
{lut
+ d
+ d
};
116 while (sp
> stack
&& sp
[-1] == '0') {
122 for (int j
{digits_
- 1}; j
-- > 0;) {
123 Digit dig
{digit_
[j
]};
124 char *reverse
{p
+= log10Radix
};
125 for (int k
{0}; k
< log10Radix
; k
+= 2) {
126 Digit newDig
{dig
/ 100};
127 auto d
{static_cast<std::uint32_t>(dig
) -
128 std::uint32_t{100} * static_cast<std::uint32_t>(newDig
)};
130 const char *q
{lut
+ d
+ d
};
135 // Adjust exponent so the effective decimal point is to
136 // the left of the first digit.
137 int expo
= exponent_
+ p
- start
;
138 // Trim trailing zeroes.
139 while (p
[-1] == '0') {
142 char *end
{start
+ maxDigits
};
143 if (maxDigits
== 0) {
148 return {buffer
, static_cast<std::size_t>(p
- buffer
), expo
, Exact
};
150 // Apply a digit limit, possibly with rounding.
155 (*end
== '5' && (p
> end
+ 1 || ((end
[-1] - '0') & 1) != 0));
165 case RoundCompatible
:
171 while (p
> start
&& p
[-1] == '9') {
183 return {buffer
, static_cast<std::size_t>(p
- buffer
), expo
, Inexact
};
187 template <int PREC
, int LOG10RADIX
>
188 bool BigRadixFloatingPointNumber
<PREC
, LOG10RADIX
>::Mean(
189 const BigRadixFloatingPointNumber
&that
) {
190 while (digits_
< that
.digits_
) {
191 digit_
[digits_
++] = 0;
194 for (int j
{0}; j
< that
.digits_
; ++j
) {
195 Digit v
{digit_
[j
] + that
.digit_
[j
] + carry
};
197 digit_
[j
] = v
- radix
;
205 AddCarry(that
.digits_
, carry
);
207 return DivideBy
<2>() != 0;
210 template <int PREC
, int LOG10RADIX
>
211 void BigRadixFloatingPointNumber
<PREC
, LOG10RADIX
>::Minimize(
212 BigRadixFloatingPointNumber
&&less
, BigRadixFloatingPointNumber
&&more
) {
213 int leastExponent
{exponent_
};
214 if (less
.exponent_
< leastExponent
) {
215 leastExponent
= less
.exponent_
;
217 if (more
.exponent_
< leastExponent
) {
218 leastExponent
= more
.exponent_
;
220 while (exponent_
> leastExponent
) {
224 while (less
.exponent_
> leastExponent
) {
226 less
.MultiplyBy
<10>();
228 while (more
.exponent_
> leastExponent
) {
230 more
.MultiplyBy
<10>();
232 if (less
.Mean(*this)) {
233 less
.AddCarry(); // round up
235 if (!more
.Mean(*this)) {
236 more
.Decrement(); // round down
238 while (less
.digits_
< more
.digits_
) {
239 less
.digit_
[less
.digits_
++] = 0;
241 while (more
.digits_
< less
.digits_
) {
242 more
.digit_
[more
.digits_
++] = 0;
244 int digits
{more
.digits_
};
246 while (same
< digits
&&
247 less
.digit_
[digits
- 1 - same
] == more
.digit_
[digits
- 1 - same
]) {
250 if (same
== digits
) {
254 int offset
{digits
- digits_
};
255 exponent_
+= offset
* log10Radix
;
256 for (int j
{0}; j
< digits_
; ++j
) {
257 digit_
[j
] = more
.digit_
[j
+ offset
];
259 Digit least
{less
.digit_
[offset
]};
263 Digit r
{my
- 10 * q
};
264 Digit lq
{least
/ 10u};
265 Digit lr
{least
- 10 * lq
};
266 if (r
!= 0 && lq
== q
) {
267 Digit sub
{(r
- lr
) >> 1};
281 ConversionToDecimalResult
ConvertToDecimal(char *buffer
, std::size_t size
,
282 enum DecimalConversionFlags flags
, int digits
,
283 enum FortranRounding rounding
, BinaryFloatingPointNumber
<PREC
> x
) {
285 return {"NaN", 3, 0, Invalid
};
286 } else if (x
.IsInfinite()) {
287 if (x
.IsNegative()) {
288 return {"-Inf", 4, 0, Exact
};
289 } else if (flags
& AlwaysSign
) {
290 return {"+Inf", 4, 0, Exact
};
292 return {"Inf", 3, 0, Exact
};
295 using Big
= BigRadixFloatingPointNumber
<PREC
>;
296 Big number
{x
, rounding
};
297 if ((flags
& Minimize
) && !x
.IsZero()) {
298 // To emit the fewest decimal digits necessary to represent the value
299 // in such a way that decimal-to-binary conversion to the same format
300 // with a fixed assumption about rounding will return the same binary
301 // value, we also perform binary-to-decimal conversion on the two
302 // binary values immediately adjacent to this one, use them to identify
303 // the bounds of the range of decimal values that will map back to the
304 // original binary value, and find a (not necessary unique) shortest
305 // decimal sequence in that range.
306 using Binary
= typename
Big::Real
;
310 if (!x
.IsMaximalFiniteMagnitude()) {
313 number
.Minimize(Big
{less
, rounding
}, Big
{more
, rounding
});
315 return number
.ConvertToDecimal(buffer
, size
, flags
, digits
);
319 template ConversionToDecimalResult ConvertToDecimal
<8>(char *, std::size_t,
320 enum DecimalConversionFlags
, int, enum FortranRounding
,
321 BinaryFloatingPointNumber
<8>);
322 template ConversionToDecimalResult ConvertToDecimal
<11>(char *, std::size_t,
323 enum DecimalConversionFlags
, int, enum FortranRounding
,
324 BinaryFloatingPointNumber
<11>);
325 template ConversionToDecimalResult ConvertToDecimal
<24>(char *, std::size_t,
326 enum DecimalConversionFlags
, int, enum FortranRounding
,
327 BinaryFloatingPointNumber
<24>);
328 template ConversionToDecimalResult ConvertToDecimal
<53>(char *, std::size_t,
329 enum DecimalConversionFlags
, int, enum FortranRounding
,
330 BinaryFloatingPointNumber
<53>);
331 template ConversionToDecimalResult ConvertToDecimal
<64>(char *, std::size_t,
332 enum DecimalConversionFlags
, int, enum FortranRounding
,
333 BinaryFloatingPointNumber
<64>);
334 template ConversionToDecimalResult ConvertToDecimal
<113>(char *, std::size_t,
335 enum DecimalConversionFlags
, int, enum FortranRounding
,
336 BinaryFloatingPointNumber
<113>);
339 RT_EXT_API_GROUP_BEGIN
341 ConversionToDecimalResult
ConvertFloatToDecimal(char *buffer
, std::size_t size
,
342 enum DecimalConversionFlags flags
, int digits
,
343 enum FortranRounding rounding
, float x
) {
344 return Fortran::decimal::ConvertToDecimal(buffer
, size
, flags
, digits
,
345 rounding
, Fortran::decimal::BinaryFloatingPointNumber
<24>(x
));
348 ConversionToDecimalResult
ConvertDoubleToDecimal(char *buffer
, std::size_t size
,
349 enum DecimalConversionFlags flags
, int digits
,
350 enum FortranRounding rounding
, double x
) {
351 return Fortran::decimal::ConvertToDecimal(buffer
, size
, flags
, digits
,
352 rounding
, Fortran::decimal::BinaryFloatingPointNumber
<53>(x
));
355 #if LDBL_MANT_DIG == 64
356 ConversionToDecimalResult
ConvertLongDoubleToDecimal(char *buffer
,
357 std::size_t size
, enum DecimalConversionFlags flags
, int digits
,
358 enum FortranRounding rounding
, long double x
) {
359 return Fortran::decimal::ConvertToDecimal(buffer
, size
, flags
, digits
,
360 rounding
, Fortran::decimal::BinaryFloatingPointNumber
<64>(x
));
362 #elif LDBL_MANT_DIG == 113
363 ConversionToDecimalResult
ConvertLongDoubleToDecimal(char *buffer
,
364 std::size_t size
, enum DecimalConversionFlags flags
, int digits
,
365 enum FortranRounding rounding
, long double x
) {
366 return Fortran::decimal::ConvertToDecimal(buffer
, size
, flags
, digits
,
367 rounding
, Fortran::decimal::BinaryFloatingPointNumber
<113>(x
));
374 template <int PREC
, int LOG10RADIX
>
375 template <typename STREAM
>
376 STREAM
&BigRadixFloatingPointNumber
<PREC
, LOG10RADIX
>::Dump(STREAM
&o
) const {
380 o
<< "10**(" << exponent_
<< ") * ... (rounding "
381 << static_cast<int>(rounding_
) << ")\n";
382 for (int j
{digits_
}; --j
>= 0;) {
383 std::string str
{std::to_string(digit_
[j
])};
384 o
<< std::string(20 - str
.size(), ' ') << str
<< " [" << j
<< ']';
385 if (j
+ 1 == digitLimit_
) {
392 } // namespace Fortran::decimal