1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements semantic analysis for declarations.
11 //===----------------------------------------------------------------------===//
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/MangleNumberingContext.h"
27 #include "clang/AST/NonTrivialTypeVisitor.h"
28 #include "clang/AST/Randstruct.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/DiagnosticComment.h"
33 #include "clang/Basic/PartialDiagnostic.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
37 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
38 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
39 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
40 #include "clang/Sema/CXXFieldCollector.h"
41 #include "clang/Sema/DeclSpec.h"
42 #include "clang/Sema/DelayedDiagnostic.h"
43 #include "clang/Sema/Initialization.h"
44 #include "clang/Sema/Lookup.h"
45 #include "clang/Sema/ParsedTemplate.h"
46 #include "clang/Sema/Scope.h"
47 #include "clang/Sema/ScopeInfo.h"
48 #include "clang/Sema/SemaARM.h"
49 #include "clang/Sema/SemaCUDA.h"
50 #include "clang/Sema/SemaHLSL.h"
51 #include "clang/Sema/SemaInternal.h"
52 #include "clang/Sema/SemaObjC.h"
53 #include "clang/Sema/SemaOpenMP.h"
54 #include "clang/Sema/SemaPPC.h"
55 #include "clang/Sema/SemaRISCV.h"
56 #include "clang/Sema/SemaSYCL.h"
57 #include "clang/Sema/SemaSwift.h"
58 #include "clang/Sema/SemaWasm.h"
59 #include "clang/Sema/Template.h"
60 #include "llvm/ADT/STLForwardCompat.h"
61 #include "llvm/ADT/SmallString.h"
62 #include "llvm/ADT/StringExtras.h"
63 #include "llvm/TargetParser/Triple.h"
67 #include <unordered_map>
69 using namespace clang
;
72 Sema::DeclGroupPtrTy
Sema::ConvertDeclToDeclGroup(Decl
*Ptr
, Decl
*OwnedType
) {
74 Decl
*Group
[2] = { OwnedType
, Ptr
};
75 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context
, Group
, 2));
78 return DeclGroupPtrTy::make(DeclGroupRef(Ptr
));
83 class TypeNameValidatorCCC final
: public CorrectionCandidateCallback
{
85 TypeNameValidatorCCC(bool AllowInvalid
, bool WantClass
= false,
86 bool AllowTemplates
= false,
87 bool AllowNonTemplates
= true)
88 : AllowInvalidDecl(AllowInvalid
), WantClassName(WantClass
),
89 AllowTemplates(AllowTemplates
), AllowNonTemplates(AllowNonTemplates
) {
90 WantExpressionKeywords
= false;
91 WantCXXNamedCasts
= false;
92 WantRemainingKeywords
= false;
95 bool ValidateCandidate(const TypoCorrection
&candidate
) override
{
96 if (NamedDecl
*ND
= candidate
.getCorrectionDecl()) {
97 if (!AllowInvalidDecl
&& ND
->isInvalidDecl())
100 if (getAsTypeTemplateDecl(ND
))
101 return AllowTemplates
;
103 bool IsType
= isa
<TypeDecl
>(ND
) || isa
<ObjCInterfaceDecl
>(ND
);
107 if (AllowNonTemplates
)
110 // An injected-class-name of a class template (specialization) is valid
111 // as a template or as a non-template.
112 if (AllowTemplates
) {
113 auto *RD
= dyn_cast
<CXXRecordDecl
>(ND
);
114 if (!RD
|| !RD
->isInjectedClassName())
116 RD
= cast
<CXXRecordDecl
>(RD
->getDeclContext());
117 return RD
->getDescribedClassTemplate() ||
118 isa
<ClassTemplateSpecializationDecl
>(RD
);
124 return !WantClassName
&& candidate
.isKeyword();
127 std::unique_ptr
<CorrectionCandidateCallback
> clone() override
{
128 return std::make_unique
<TypeNameValidatorCCC
>(*this);
132 bool AllowInvalidDecl
;
135 bool AllowNonTemplates
;
138 } // end anonymous namespace
141 enum class UnqualifiedTypeNameLookupResult
{
146 } // end anonymous namespace
148 /// Tries to perform unqualified lookup of the type decls in bases for
150 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
151 /// type decl, \a FoundType if only type decls are found.
152 static UnqualifiedTypeNameLookupResult
153 lookupUnqualifiedTypeNameInBase(Sema
&S
, const IdentifierInfo
&II
,
154 SourceLocation NameLoc
,
155 const CXXRecordDecl
*RD
) {
156 if (!RD
->hasDefinition())
157 return UnqualifiedTypeNameLookupResult::NotFound
;
158 // Look for type decls in base classes.
159 UnqualifiedTypeNameLookupResult FoundTypeDecl
=
160 UnqualifiedTypeNameLookupResult::NotFound
;
161 for (const auto &Base
: RD
->bases()) {
162 const CXXRecordDecl
*BaseRD
= nullptr;
163 if (auto *BaseTT
= Base
.getType()->getAs
<TagType
>())
164 BaseRD
= BaseTT
->getAsCXXRecordDecl();
165 else if (auto *TST
= Base
.getType()->getAs
<TemplateSpecializationType
>()) {
166 // Look for type decls in dependent base classes that have known primary
168 if (!TST
|| !TST
->isDependentType())
170 auto *TD
= TST
->getTemplateName().getAsTemplateDecl();
173 if (auto *BasePrimaryTemplate
=
174 dyn_cast_or_null
<CXXRecordDecl
>(TD
->getTemplatedDecl())) {
175 if (BasePrimaryTemplate
->getCanonicalDecl() != RD
->getCanonicalDecl())
176 BaseRD
= BasePrimaryTemplate
;
177 else if (auto *CTD
= dyn_cast
<ClassTemplateDecl
>(TD
)) {
178 if (const ClassTemplatePartialSpecializationDecl
*PS
=
179 CTD
->findPartialSpecialization(Base
.getType()))
180 if (PS
->getCanonicalDecl() != RD
->getCanonicalDecl())
186 for (NamedDecl
*ND
: BaseRD
->lookup(&II
)) {
187 if (!isa
<TypeDecl
>(ND
))
188 return UnqualifiedTypeNameLookupResult::FoundNonType
;
189 FoundTypeDecl
= UnqualifiedTypeNameLookupResult::FoundType
;
191 if (FoundTypeDecl
== UnqualifiedTypeNameLookupResult::NotFound
) {
192 switch (lookupUnqualifiedTypeNameInBase(S
, II
, NameLoc
, BaseRD
)) {
193 case UnqualifiedTypeNameLookupResult::FoundNonType
:
194 return UnqualifiedTypeNameLookupResult::FoundNonType
;
195 case UnqualifiedTypeNameLookupResult::FoundType
:
196 FoundTypeDecl
= UnqualifiedTypeNameLookupResult::FoundType
;
198 case UnqualifiedTypeNameLookupResult::NotFound
:
205 return FoundTypeDecl
;
208 static ParsedType
recoverFromTypeInKnownDependentBase(Sema
&S
,
209 const IdentifierInfo
&II
,
210 SourceLocation NameLoc
) {
211 // Lookup in the parent class template context, if any.
212 const CXXRecordDecl
*RD
= nullptr;
213 UnqualifiedTypeNameLookupResult FoundTypeDecl
=
214 UnqualifiedTypeNameLookupResult::NotFound
;
215 for (DeclContext
*DC
= S
.CurContext
;
216 DC
&& FoundTypeDecl
== UnqualifiedTypeNameLookupResult::NotFound
;
217 DC
= DC
->getParent()) {
218 // Look for type decls in dependent base classes that have known primary
220 RD
= dyn_cast
<CXXRecordDecl
>(DC
);
221 if (RD
&& RD
->getDescribedClassTemplate())
222 FoundTypeDecl
= lookupUnqualifiedTypeNameInBase(S
, II
, NameLoc
, RD
);
224 if (FoundTypeDecl
!= UnqualifiedTypeNameLookupResult::FoundType
)
227 // We found some types in dependent base classes. Recover as if the user
228 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
229 // lookup during template instantiation.
230 S
.Diag(NameLoc
, diag::ext_found_in_dependent_base
) << &II
;
232 ASTContext
&Context
= S
.Context
;
233 auto *NNS
= NestedNameSpecifier::Create(Context
, nullptr, false,
234 cast
<Type
>(Context
.getRecordType(RD
)));
236 Context
.getDependentNameType(ElaboratedTypeKeyword::Typename
, NNS
, &II
);
239 SS
.MakeTrivial(Context
, NNS
, SourceRange(NameLoc
));
241 TypeLocBuilder Builder
;
242 DependentNameTypeLoc DepTL
= Builder
.push
<DependentNameTypeLoc
>(T
);
243 DepTL
.setNameLoc(NameLoc
);
244 DepTL
.setElaboratedKeywordLoc(SourceLocation());
245 DepTL
.setQualifierLoc(SS
.getWithLocInContext(Context
));
246 return S
.CreateParsedType(T
, Builder
.getTypeSourceInfo(Context
, T
));
249 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
250 static ParsedType
buildNamedType(Sema
&S
, const CXXScopeSpec
*SS
, QualType T
,
251 SourceLocation NameLoc
,
252 bool WantNontrivialTypeSourceInfo
= true) {
253 switch (T
->getTypeClass()) {
254 case Type::DeducedTemplateSpecialization
:
256 case Type::InjectedClassName
:
259 case Type::UnresolvedUsing
:
262 // These can never be qualified so an ElaboratedType node
263 // would carry no additional meaning.
264 case Type::ObjCInterface
:
265 case Type::ObjCTypeParam
:
266 case Type::TemplateTypeParm
:
267 return ParsedType::make(T
);
269 llvm_unreachable("Unexpected Type Class");
272 if (!SS
|| SS
->isEmpty())
273 return ParsedType::make(S
.Context
.getElaboratedType(
274 ElaboratedTypeKeyword::None
, nullptr, T
, nullptr));
276 QualType ElTy
= S
.getElaboratedType(ElaboratedTypeKeyword::None
, *SS
, T
);
277 if (!WantNontrivialTypeSourceInfo
)
278 return ParsedType::make(ElTy
);
280 TypeLocBuilder Builder
;
281 Builder
.pushTypeSpec(T
).setNameLoc(NameLoc
);
282 ElaboratedTypeLoc ElabTL
= Builder
.push
<ElaboratedTypeLoc
>(ElTy
);
283 ElabTL
.setElaboratedKeywordLoc(SourceLocation());
284 ElabTL
.setQualifierLoc(SS
->getWithLocInContext(S
.Context
));
285 return S
.CreateParsedType(ElTy
, Builder
.getTypeSourceInfo(S
.Context
, ElTy
));
288 ParsedType
Sema::getTypeName(const IdentifierInfo
&II
, SourceLocation NameLoc
,
289 Scope
*S
, CXXScopeSpec
*SS
, bool isClassName
,
290 bool HasTrailingDot
, ParsedType ObjectTypePtr
,
291 bool IsCtorOrDtorName
,
292 bool WantNontrivialTypeSourceInfo
,
293 bool IsClassTemplateDeductionContext
,
294 ImplicitTypenameContext AllowImplicitTypename
,
295 IdentifierInfo
**CorrectedII
) {
296 // FIXME: Consider allowing this outside C++1z mode as an extension.
297 bool AllowDeducedTemplate
= IsClassTemplateDeductionContext
&&
298 getLangOpts().CPlusPlus17
&& !IsCtorOrDtorName
&&
299 !isClassName
&& !HasTrailingDot
;
301 // Determine where we will perform name lookup.
302 DeclContext
*LookupCtx
= nullptr;
304 QualType ObjectType
= ObjectTypePtr
.get();
305 if (ObjectType
->isRecordType())
306 LookupCtx
= computeDeclContext(ObjectType
);
307 } else if (SS
&& SS
->isNotEmpty()) {
308 LookupCtx
= computeDeclContext(*SS
, false);
311 if (isDependentScopeSpecifier(*SS
)) {
313 // A qualified-id that refers to a type and in which the
314 // nested-name-specifier depends on a template-parameter (14.6.2)
315 // shall be prefixed by the keyword typename to indicate that the
316 // qualified-id denotes a type, forming an
317 // elaborated-type-specifier (7.1.5.3).
319 // We therefore do not perform any name lookup if the result would
320 // refer to a member of an unknown specialization.
321 // In C++2a, in several contexts a 'typename' is not required. Also
322 // allow this as an extension.
323 if (AllowImplicitTypename
== ImplicitTypenameContext::No
&&
324 !isClassName
&& !IsCtorOrDtorName
)
326 bool IsImplicitTypename
= !isClassName
&& !IsCtorOrDtorName
;
327 if (IsImplicitTypename
) {
328 SourceLocation QualifiedLoc
= SS
->getRange().getBegin();
329 if (getLangOpts().CPlusPlus20
)
330 Diag(QualifiedLoc
, diag::warn_cxx17_compat_implicit_typename
);
332 Diag(QualifiedLoc
, diag::ext_implicit_typename
)
333 << SS
->getScopeRep() << II
.getName()
334 << FixItHint::CreateInsertion(QualifiedLoc
, "typename ");
337 // We know from the grammar that this name refers to a type,
338 // so build a dependent node to describe the type.
339 if (WantNontrivialTypeSourceInfo
)
340 return ActOnTypenameType(S
, SourceLocation(), *SS
, II
, NameLoc
,
341 (ImplicitTypenameContext
)IsImplicitTypename
)
344 NestedNameSpecifierLoc QualifierLoc
= SS
->getWithLocInContext(Context
);
345 QualType T
= CheckTypenameType(
346 IsImplicitTypename
? ElaboratedTypeKeyword::Typename
347 : ElaboratedTypeKeyword::None
,
348 SourceLocation(), QualifierLoc
, II
, NameLoc
);
349 return ParsedType::make(T
);
355 if (!LookupCtx
->isDependentContext() &&
356 RequireCompleteDeclContext(*SS
, LookupCtx
))
360 // In the case where we know that the identifier is a class name, we know that
361 // it is a type declaration (struct, class, union or enum) so we can use tag
364 // C++ [class.derived]p2 (wrt lookup in a base-specifier): The lookup for
365 // the component name of the type-name or simple-template-id is type-only.
366 LookupNameKind Kind
= isClassName
? LookupTagName
: LookupOrdinaryName
;
367 LookupResult
Result(*this, &II
, NameLoc
, Kind
);
369 // Perform "qualified" name lookup into the declaration context we
370 // computed, which is either the type of the base of a member access
371 // expression or the declaration context associated with a prior
372 // nested-name-specifier.
373 LookupQualifiedName(Result
, LookupCtx
);
375 if (ObjectTypePtr
&& Result
.empty()) {
376 // C++ [basic.lookup.classref]p3:
377 // If the unqualified-id is ~type-name, the type-name is looked up
378 // in the context of the entire postfix-expression. If the type T of
379 // the object expression is of a class type C, the type-name is also
380 // looked up in the scope of class C. At least one of the lookups shall
381 // find a name that refers to (possibly cv-qualified) T.
382 LookupName(Result
, S
);
385 // Perform unqualified name lookup.
386 LookupName(Result
, S
);
388 // For unqualified lookup in a class template in MSVC mode, look into
389 // dependent base classes where the primary class template is known.
390 if (Result
.empty() && getLangOpts().MSVCCompat
&& (!SS
|| SS
->isEmpty())) {
391 if (ParsedType TypeInBase
=
392 recoverFromTypeInKnownDependentBase(*this, II
, NameLoc
))
397 NamedDecl
*IIDecl
= nullptr;
398 UsingShadowDecl
*FoundUsingShadow
= nullptr;
399 switch (Result
.getResultKind()) {
400 case LookupResult::NotFound
:
402 TypeNameValidatorCCC
CCC(/*AllowInvalid=*/true, isClassName
,
403 AllowDeducedTemplate
);
404 TypoCorrection Correction
= CorrectTypo(Result
.getLookupNameInfo(), Kind
,
405 S
, SS
, CCC
, CTK_ErrorRecovery
);
406 IdentifierInfo
*NewII
= Correction
.getCorrectionAsIdentifierInfo();
408 bool MemberOfUnknownSpecialization
;
409 UnqualifiedId TemplateName
;
410 TemplateName
.setIdentifier(NewII
, NameLoc
);
411 NestedNameSpecifier
*NNS
= Correction
.getCorrectionSpecifier();
412 CXXScopeSpec NewSS
, *NewSSPtr
= SS
;
414 NewSS
.MakeTrivial(Context
, NNS
, SourceRange(NameLoc
));
417 if (Correction
&& (NNS
|| NewII
!= &II
) &&
418 // Ignore a correction to a template type as the to-be-corrected
419 // identifier is not a template (typo correction for template names
420 // is handled elsewhere).
421 !(getLangOpts().CPlusPlus
&& NewSSPtr
&&
422 isTemplateName(S
, *NewSSPtr
, false, TemplateName
, nullptr, false,
423 Template
, MemberOfUnknownSpecialization
))) {
424 ParsedType Ty
= getTypeName(*NewII
, NameLoc
, S
, NewSSPtr
,
425 isClassName
, HasTrailingDot
, ObjectTypePtr
,
427 WantNontrivialTypeSourceInfo
,
428 IsClassTemplateDeductionContext
);
430 diagnoseTypo(Correction
,
431 PDiag(diag::err_unknown_type_or_class_name_suggest
)
432 << Result
.getLookupName() << isClassName
);
434 SS
->MakeTrivial(Context
, NNS
, SourceRange(NameLoc
));
435 *CorrectedII
= NewII
;
440 Result
.suppressDiagnostics();
442 case LookupResult::NotFoundInCurrentInstantiation
:
443 if (AllowImplicitTypename
== ImplicitTypenameContext::Yes
) {
444 QualType T
= Context
.getDependentNameType(ElaboratedTypeKeyword::None
,
445 SS
->getScopeRep(), &II
);
447 DependentNameTypeLoc TL
= TLB
.push
<DependentNameTypeLoc
>(T
);
448 TL
.setElaboratedKeywordLoc(SourceLocation());
449 TL
.setQualifierLoc(SS
->getWithLocInContext(Context
));
450 TL
.setNameLoc(NameLoc
);
451 return CreateParsedType(T
, TLB
.getTypeSourceInfo(Context
, T
));
454 case LookupResult::FoundOverloaded
:
455 case LookupResult::FoundUnresolvedValue
:
456 Result
.suppressDiagnostics();
459 case LookupResult::Ambiguous
:
460 // Recover from type-hiding ambiguities by hiding the type. We'll
461 // do the lookup again when looking for an object, and we can
462 // diagnose the error then. If we don't do this, then the error
463 // about hiding the type will be immediately followed by an error
464 // that only makes sense if the identifier was treated like a type.
465 if (Result
.getAmbiguityKind() == LookupResult::AmbiguousTagHiding
) {
466 Result
.suppressDiagnostics();
470 // Look to see if we have a type anywhere in the list of results.
471 for (LookupResult::iterator Res
= Result
.begin(), ResEnd
= Result
.end();
472 Res
!= ResEnd
; ++Res
) {
473 NamedDecl
*RealRes
= (*Res
)->getUnderlyingDecl();
474 if (isa
<TypeDecl
, ObjCInterfaceDecl
, UnresolvedUsingIfExistsDecl
>(
476 (AllowDeducedTemplate
&& getAsTypeTemplateDecl(RealRes
))) {
478 // Make the selection of the recovery decl deterministic.
479 RealRes
->getLocation() < IIDecl
->getLocation()) {
481 FoundUsingShadow
= dyn_cast
<UsingShadowDecl
>(*Res
);
487 // None of the entities we found is a type, so there is no way
488 // to even assume that the result is a type. In this case, don't
489 // complain about the ambiguity. The parser will either try to
490 // perform this lookup again (e.g., as an object name), which
491 // will produce the ambiguity, or will complain that it expected
493 Result
.suppressDiagnostics();
497 // We found a type within the ambiguous lookup; diagnose the
498 // ambiguity and then return that type. This might be the right
499 // answer, or it might not be, but it suppresses any attempt to
500 // perform the name lookup again.
503 case LookupResult::Found
:
504 IIDecl
= Result
.getFoundDecl();
505 FoundUsingShadow
= dyn_cast
<UsingShadowDecl
>(*Result
.begin());
509 assert(IIDecl
&& "Didn't find decl");
512 if (TypeDecl
*TD
= dyn_cast
<TypeDecl
>(IIDecl
)) {
513 // C++ [class.qual]p2: A lookup that would find the injected-class-name
514 // instead names the constructors of the class, except when naming a class.
515 // This is ill-formed when we're not actually forming a ctor or dtor name.
516 auto *LookupRD
= dyn_cast_or_null
<CXXRecordDecl
>(LookupCtx
);
517 auto *FoundRD
= dyn_cast
<CXXRecordDecl
>(TD
);
518 if (!isClassName
&& !IsCtorOrDtorName
&& LookupRD
&& FoundRD
&&
519 FoundRD
->isInjectedClassName() &&
520 declaresSameEntity(LookupRD
, cast
<Decl
>(FoundRD
->getParent())))
521 Diag(NameLoc
, diag::err_out_of_line_qualified_id_type_names_constructor
)
524 DiagnoseUseOfDecl(IIDecl
, NameLoc
);
526 T
= Context
.getTypeDeclType(TD
);
527 MarkAnyDeclReferenced(TD
->getLocation(), TD
, /*OdrUse=*/false);
528 } else if (ObjCInterfaceDecl
*IDecl
= dyn_cast
<ObjCInterfaceDecl
>(IIDecl
)) {
529 (void)DiagnoseUseOfDecl(IDecl
, NameLoc
);
531 T
= Context
.getObjCInterfaceType(IDecl
);
532 FoundUsingShadow
= nullptr; // FIXME: Target must be a TypeDecl.
533 } else if (auto *UD
= dyn_cast
<UnresolvedUsingIfExistsDecl
>(IIDecl
)) {
534 (void)DiagnoseUseOfDecl(UD
, NameLoc
);
535 // Recover with 'int'
536 return ParsedType::make(Context
.IntTy
);
537 } else if (AllowDeducedTemplate
) {
538 if (auto *TD
= getAsTypeTemplateDecl(IIDecl
)) {
539 assert(!FoundUsingShadow
|| FoundUsingShadow
->getTargetDecl() == TD
);
540 TemplateName Template
= Context
.getQualifiedTemplateName(
541 SS
? SS
->getScopeRep() : nullptr, /*TemplateKeyword=*/false,
542 FoundUsingShadow
? TemplateName(FoundUsingShadow
) : TemplateName(TD
));
543 T
= Context
.getDeducedTemplateSpecializationType(Template
, QualType(),
545 // Don't wrap in a further UsingType.
546 FoundUsingShadow
= nullptr;
551 // If it's not plausibly a type, suppress diagnostics.
552 Result
.suppressDiagnostics();
556 if (FoundUsingShadow
)
557 T
= Context
.getUsingType(FoundUsingShadow
, T
);
559 return buildNamedType(*this, SS
, T
, NameLoc
, WantNontrivialTypeSourceInfo
);
562 // Builds a fake NNS for the given decl context.
563 static NestedNameSpecifier
*
564 synthesizeCurrentNestedNameSpecifier(ASTContext
&Context
, DeclContext
*DC
) {
565 for (;; DC
= DC
->getLookupParent()) {
566 DC
= DC
->getPrimaryContext();
567 auto *ND
= dyn_cast
<NamespaceDecl
>(DC
);
568 if (ND
&& !ND
->isInline() && !ND
->isAnonymousNamespace())
569 return NestedNameSpecifier::Create(Context
, nullptr, ND
);
570 else if (auto *RD
= dyn_cast
<CXXRecordDecl
>(DC
))
571 return NestedNameSpecifier::Create(Context
, nullptr, RD
->isTemplateDecl(),
572 RD
->getTypeForDecl());
573 else if (isa
<TranslationUnitDecl
>(DC
))
574 return NestedNameSpecifier::GlobalSpecifier(Context
);
576 llvm_unreachable("something isn't in TU scope?");
579 /// Find the parent class with dependent bases of the innermost enclosing method
580 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
581 /// up allowing unqualified dependent type names at class-level, which MSVC
582 /// correctly rejects.
583 static const CXXRecordDecl
*
584 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext
*DC
) {
585 for (; DC
&& DC
->isDependentContext(); DC
= DC
->getLookupParent()) {
586 DC
= DC
->getPrimaryContext();
587 if (const auto *MD
= dyn_cast
<CXXMethodDecl
>(DC
))
588 if (MD
->getParent()->hasAnyDependentBases())
589 return MD
->getParent();
594 ParsedType
Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo
&II
,
595 SourceLocation NameLoc
,
596 bool IsTemplateTypeArg
) {
597 assert(getLangOpts().MSVCCompat
&& "shouldn't be called in non-MSVC mode");
599 NestedNameSpecifier
*NNS
= nullptr;
600 if (IsTemplateTypeArg
&& getCurScope()->isTemplateParamScope()) {
601 // If we weren't able to parse a default template argument, delay lookup
602 // until instantiation time by making a non-dependent DependentTypeName. We
603 // pretend we saw a NestedNameSpecifier referring to the current scope, and
604 // lookup is retried.
605 // FIXME: This hurts our diagnostic quality, since we get errors like "no
606 // type named 'Foo' in 'current_namespace'" when the user didn't write any
608 NNS
= synthesizeCurrentNestedNameSpecifier(Context
, CurContext
);
609 Diag(NameLoc
, diag::ext_ms_delayed_template_argument
) << &II
;
610 } else if (const CXXRecordDecl
*RD
=
611 findRecordWithDependentBasesOfEnclosingMethod(CurContext
)) {
612 // Build a DependentNameType that will perform lookup into RD at
613 // instantiation time.
614 NNS
= NestedNameSpecifier::Create(Context
, nullptr, RD
->isTemplateDecl(),
615 RD
->getTypeForDecl());
617 // Diagnose that this identifier was undeclared, and retry the lookup during
618 // template instantiation.
619 Diag(NameLoc
, diag::ext_undeclared_unqual_id_with_dependent_base
) << &II
622 // This is not a situation that we should recover from.
627 Context
.getDependentNameType(ElaboratedTypeKeyword::None
, NNS
, &II
);
629 // Build type location information. We synthesized the qualifier, so we have
630 // to build a fake NestedNameSpecifierLoc.
631 NestedNameSpecifierLocBuilder NNSLocBuilder
;
632 NNSLocBuilder
.MakeTrivial(Context
, NNS
, SourceRange(NameLoc
));
633 NestedNameSpecifierLoc QualifierLoc
= NNSLocBuilder
.getWithLocInContext(Context
);
635 TypeLocBuilder Builder
;
636 DependentNameTypeLoc DepTL
= Builder
.push
<DependentNameTypeLoc
>(T
);
637 DepTL
.setNameLoc(NameLoc
);
638 DepTL
.setElaboratedKeywordLoc(SourceLocation());
639 DepTL
.setQualifierLoc(QualifierLoc
);
640 return CreateParsedType(T
, Builder
.getTypeSourceInfo(Context
, T
));
643 DeclSpec::TST
Sema::isTagName(IdentifierInfo
&II
, Scope
*S
) {
644 // Do a tag name lookup in this scope.
645 LookupResult
R(*this, &II
, SourceLocation(), LookupTagName
);
646 LookupName(R
, S
, false);
647 R
.suppressDiagnostics();
648 if (R
.getResultKind() == LookupResult::Found
)
649 if (const TagDecl
*TD
= R
.getAsSingle
<TagDecl
>()) {
650 switch (TD
->getTagKind()) {
651 case TagTypeKind::Struct
:
652 return DeclSpec::TST_struct
;
653 case TagTypeKind::Interface
:
654 return DeclSpec::TST_interface
;
655 case TagTypeKind::Union
:
656 return DeclSpec::TST_union
;
657 case TagTypeKind::Class
:
658 return DeclSpec::TST_class
;
659 case TagTypeKind::Enum
:
660 return DeclSpec::TST_enum
;
664 return DeclSpec::TST_unspecified
;
667 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec
*SS
, Scope
*S
) {
668 if (CurContext
->isRecord()) {
669 if (SS
->getScopeRep()->getKind() == NestedNameSpecifier::Super
)
672 const Type
*Ty
= SS
->getScopeRep()->getAsType();
674 CXXRecordDecl
*RD
= cast
<CXXRecordDecl
>(CurContext
);
675 for (const auto &Base
: RD
->bases())
676 if (Ty
&& Context
.hasSameUnqualifiedType(QualType(Ty
, 1), Base
.getType()))
678 return S
->isFunctionPrototypeScope();
680 return CurContext
->isFunctionOrMethod() || S
->isFunctionPrototypeScope();
683 void Sema::DiagnoseUnknownTypeName(IdentifierInfo
*&II
,
684 SourceLocation IILoc
,
687 ParsedType
&SuggestedType
,
688 bool IsTemplateName
) {
689 // Don't report typename errors for editor placeholders.
690 if (II
->isEditorPlaceholder())
692 // We don't have anything to suggest (yet).
693 SuggestedType
= nullptr;
695 // There may have been a typo in the name of the type. Look up typo
696 // results, in case we have something that we can suggest.
697 TypeNameValidatorCCC
CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
698 /*AllowTemplates=*/IsTemplateName
,
699 /*AllowNonTemplates=*/!IsTemplateName
);
700 if (TypoCorrection Corrected
=
701 CorrectTypo(DeclarationNameInfo(II
, IILoc
), LookupOrdinaryName
, S
, SS
,
702 CCC
, CTK_ErrorRecovery
)) {
703 // FIXME: Support error recovery for the template-name case.
704 bool CanRecover
= !IsTemplateName
;
705 if (Corrected
.isKeyword()) {
706 // We corrected to a keyword.
707 diagnoseTypo(Corrected
,
708 PDiag(IsTemplateName
? diag::err_no_template_suggest
709 : diag::err_unknown_typename_suggest
)
711 II
= Corrected
.getCorrectionAsIdentifierInfo();
713 // We found a similarly-named type or interface; suggest that.
714 if (!SS
|| !SS
->isSet()) {
715 diagnoseTypo(Corrected
,
716 PDiag(IsTemplateName
? diag::err_no_template_suggest
717 : diag::err_unknown_typename_suggest
)
719 } else if (DeclContext
*DC
= computeDeclContext(*SS
, false)) {
720 std::string
CorrectedStr(Corrected
.getAsString(getLangOpts()));
721 bool DroppedSpecifier
=
722 Corrected
.WillReplaceSpecifier() && II
->getName() == CorrectedStr
;
723 diagnoseTypo(Corrected
,
725 ? diag::err_no_member_template_suggest
726 : diag::err_unknown_nested_typename_suggest
)
727 << II
<< DC
<< DroppedSpecifier
<< SS
->getRange(),
730 llvm_unreachable("could not have corrected a typo here");
737 if (Corrected
.getCorrectionSpecifier())
738 tmpSS
.MakeTrivial(Context
, Corrected
.getCorrectionSpecifier(),
740 // FIXME: Support class template argument deduction here.
742 getTypeName(*Corrected
.getCorrectionAsIdentifierInfo(), IILoc
, S
,
743 tmpSS
.isSet() ? &tmpSS
: SS
, false, false, nullptr,
744 /*IsCtorOrDtorName=*/false,
745 /*WantNontrivialTypeSourceInfo=*/true);
750 if (getLangOpts().CPlusPlus
&& !IsTemplateName
) {
751 // See if II is a class template that the user forgot to pass arguments to.
753 Name
.setIdentifier(II
, IILoc
);
754 CXXScopeSpec EmptySS
;
755 TemplateTy TemplateResult
;
756 bool MemberOfUnknownSpecialization
;
757 if (isTemplateName(S
, SS
? *SS
: EmptySS
, /*hasTemplateKeyword=*/false,
758 Name
, nullptr, true, TemplateResult
,
759 MemberOfUnknownSpecialization
) == TNK_Type_template
) {
760 diagnoseMissingTemplateArguments(TemplateResult
.get(), IILoc
);
765 // FIXME: Should we move the logic that tries to recover from a missing tag
766 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
768 if (!SS
|| (!SS
->isSet() && !SS
->isInvalid()))
769 Diag(IILoc
, IsTemplateName
? diag::err_no_template
770 : diag::err_unknown_typename
)
772 else if (DeclContext
*DC
= computeDeclContext(*SS
, false))
773 Diag(IILoc
, IsTemplateName
? diag::err_no_member_template
774 : diag::err_typename_nested_not_found
)
775 << II
<< DC
<< SS
->getRange();
776 else if (SS
->isValid() && SS
->getScopeRep()->containsErrors()) {
778 ActOnTypenameType(S
, SourceLocation(), *SS
, *II
, IILoc
).get();
779 } else if (isDependentScopeSpecifier(*SS
)) {
780 unsigned DiagID
= diag::err_typename_missing
;
781 if (getLangOpts().MSVCCompat
&& isMicrosoftMissingTypename(SS
, S
))
782 DiagID
= diag::ext_typename_missing
;
784 Diag(SS
->getRange().getBegin(), DiagID
)
785 << SS
->getScopeRep() << II
->getName()
786 << SourceRange(SS
->getRange().getBegin(), IILoc
)
787 << FixItHint::CreateInsertion(SS
->getRange().getBegin(), "typename ");
788 SuggestedType
= ActOnTypenameType(S
, SourceLocation(),
789 *SS
, *II
, IILoc
).get();
791 assert(SS
&& SS
->isInvalid() &&
792 "Invalid scope specifier has already been diagnosed");
796 /// Determine whether the given result set contains either a type name
798 static bool isResultTypeOrTemplate(LookupResult
&R
, const Token
&NextToken
) {
799 bool CheckTemplate
= R
.getSema().getLangOpts().CPlusPlus
&&
800 NextToken
.is(tok::less
);
802 for (LookupResult::iterator I
= R
.begin(), IEnd
= R
.end(); I
!= IEnd
; ++I
) {
803 if (isa
<TypeDecl
>(*I
) || isa
<ObjCInterfaceDecl
>(*I
))
806 if (CheckTemplate
&& isa
<TemplateDecl
>(*I
))
813 static bool isTagTypeWithMissingTag(Sema
&SemaRef
, LookupResult
&Result
,
814 Scope
*S
, CXXScopeSpec
&SS
,
815 IdentifierInfo
*&Name
,
816 SourceLocation NameLoc
) {
817 LookupResult
R(SemaRef
, Name
, NameLoc
, Sema::LookupTagName
);
818 SemaRef
.LookupParsedName(R
, S
, &SS
, /*ObjectType=*/QualType());
819 if (TagDecl
*Tag
= R
.getAsSingle
<TagDecl
>()) {
820 StringRef FixItTagName
;
821 switch (Tag
->getTagKind()) {
822 case TagTypeKind::Class
:
823 FixItTagName
= "class ";
826 case TagTypeKind::Enum
:
827 FixItTagName
= "enum ";
830 case TagTypeKind::Struct
:
831 FixItTagName
= "struct ";
834 case TagTypeKind::Interface
:
835 FixItTagName
= "__interface ";
838 case TagTypeKind::Union
:
839 FixItTagName
= "union ";
843 StringRef TagName
= FixItTagName
.drop_back();
844 SemaRef
.Diag(NameLoc
, diag::err_use_of_tag_name_without_tag
)
845 << Name
<< TagName
<< SemaRef
.getLangOpts().CPlusPlus
846 << FixItHint::CreateInsertion(NameLoc
, FixItTagName
);
848 for (LookupResult::iterator I
= Result
.begin(), IEnd
= Result
.end();
850 SemaRef
.Diag((*I
)->getLocation(), diag::note_decl_hiding_tag_type
)
853 // Replace lookup results with just the tag decl.
854 Result
.clear(Sema::LookupTagName
);
855 SemaRef
.LookupParsedName(Result
, S
, &SS
, /*ObjectType=*/QualType());
862 Sema::NameClassification
Sema::ClassifyName(Scope
*S
, CXXScopeSpec
&SS
,
863 IdentifierInfo
*&Name
,
864 SourceLocation NameLoc
,
865 const Token
&NextToken
,
866 CorrectionCandidateCallback
*CCC
) {
867 DeclarationNameInfo
NameInfo(Name
, NameLoc
);
868 ObjCMethodDecl
*CurMethod
= getCurMethodDecl();
870 assert(NextToken
.isNot(tok::coloncolon
) &&
871 "parse nested name specifiers before calling ClassifyName");
872 if (getLangOpts().CPlusPlus
&& SS
.isSet() &&
873 isCurrentClassName(*Name
, S
, &SS
)) {
874 // Per [class.qual]p2, this names the constructors of SS, not the
875 // injected-class-name. We don't have a classification for that.
876 // There's not much point caching this result, since the parser
877 // will reject it later.
878 return NameClassification::Unknown();
881 LookupResult
Result(*this, Name
, NameLoc
, LookupOrdinaryName
);
882 LookupParsedName(Result
, S
, &SS
, /*ObjectType=*/QualType(),
883 /*AllowBuiltinCreation=*/!CurMethod
);
886 return NameClassification::Error();
888 // For unqualified lookup in a class template in MSVC mode, look into
889 // dependent base classes where the primary class template is known.
890 if (Result
.empty() && SS
.isEmpty() && getLangOpts().MSVCCompat
) {
891 if (ParsedType TypeInBase
=
892 recoverFromTypeInKnownDependentBase(*this, *Name
, NameLoc
))
896 // Perform lookup for Objective-C instance variables (including automatically
897 // synthesized instance variables), if we're in an Objective-C method.
898 // FIXME: This lookup really, really needs to be folded in to the normal
899 // unqualified lookup mechanism.
900 if (SS
.isEmpty() && CurMethod
&& !isResultTypeOrTemplate(Result
, NextToken
)) {
901 DeclResult Ivar
= ObjC().LookupIvarInObjCMethod(Result
, S
, Name
);
902 if (Ivar
.isInvalid())
903 return NameClassification::Error();
905 return NameClassification::NonType(cast
<NamedDecl
>(Ivar
.get()));
907 // We defer builtin creation until after ivar lookup inside ObjC methods.
909 LookupBuiltin(Result
);
912 bool SecondTry
= false;
913 bool IsFilteredTemplateName
= false;
916 switch (Result
.getResultKind()) {
917 case LookupResult::NotFound
:
918 // If an unqualified-id is followed by a '(', then we have a function
920 if (SS
.isEmpty() && NextToken
.is(tok::l_paren
)) {
921 // In C++, this is an ADL-only call.
923 if (getLangOpts().CPlusPlus
)
924 return NameClassification::UndeclaredNonType();
927 // If the expression that precedes the parenthesized argument list in a
928 // function call consists solely of an identifier, and if no
929 // declaration is visible for this identifier, the identifier is
930 // implicitly declared exactly as if, in the innermost block containing
931 // the function call, the declaration
933 // extern int identifier ();
937 // We also allow this in C99 as an extension. However, this is not
938 // allowed in all language modes as functions without prototypes may not
940 if (getLangOpts().implicitFunctionsAllowed()) {
941 if (NamedDecl
*D
= ImplicitlyDefineFunction(NameLoc
, *Name
, S
))
942 return NameClassification::NonType(D
);
946 if (getLangOpts().CPlusPlus20
&& SS
.isEmpty() && NextToken
.is(tok::less
)) {
947 // In C++20 onwards, this could be an ADL-only call to a function
948 // template, and we're required to assume that this is a template name.
950 // FIXME: Find a way to still do typo correction in this case.
951 TemplateName Template
=
952 Context
.getAssumedTemplateName(NameInfo
.getName());
953 return NameClassification::UndeclaredTemplate(Template
);
956 // In C, we first see whether there is a tag type by the same name, in
957 // which case it's likely that the user just forgot to write "enum",
958 // "struct", or "union".
959 if (!getLangOpts().CPlusPlus
&& !SecondTry
&&
960 isTagTypeWithMissingTag(*this, Result
, S
, SS
, Name
, NameLoc
)) {
964 // Perform typo correction to determine if there is another name that is
965 // close to this name.
966 if (!SecondTry
&& CCC
) {
968 if (TypoCorrection Corrected
=
969 CorrectTypo(Result
.getLookupNameInfo(), Result
.getLookupKind(), S
,
970 &SS
, *CCC
, CTK_ErrorRecovery
)) {
971 unsigned UnqualifiedDiag
= diag::err_undeclared_var_use_suggest
;
972 unsigned QualifiedDiag
= diag::err_no_member_suggest
;
974 NamedDecl
*FirstDecl
= Corrected
.getFoundDecl();
975 NamedDecl
*UnderlyingFirstDecl
= Corrected
.getCorrectionDecl();
976 if (getLangOpts().CPlusPlus
&& NextToken
.is(tok::less
) &&
977 UnderlyingFirstDecl
&& isa
<TemplateDecl
>(UnderlyingFirstDecl
)) {
978 UnqualifiedDiag
= diag::err_no_template_suggest
;
979 QualifiedDiag
= diag::err_no_member_template_suggest
;
980 } else if (UnderlyingFirstDecl
&&
981 (isa
<TypeDecl
>(UnderlyingFirstDecl
) ||
982 isa
<ObjCInterfaceDecl
>(UnderlyingFirstDecl
) ||
983 isa
<ObjCCompatibleAliasDecl
>(UnderlyingFirstDecl
))) {
984 UnqualifiedDiag
= diag::err_unknown_typename_suggest
;
985 QualifiedDiag
= diag::err_unknown_nested_typename_suggest
;
989 diagnoseTypo(Corrected
, PDiag(UnqualifiedDiag
) << Name
);
990 } else {// FIXME: is this even reachable? Test it.
991 std::string
CorrectedStr(Corrected
.getAsString(getLangOpts()));
992 bool DroppedSpecifier
= Corrected
.WillReplaceSpecifier() &&
993 Name
->getName() == CorrectedStr
;
994 diagnoseTypo(Corrected
, PDiag(QualifiedDiag
)
995 << Name
<< computeDeclContext(SS
, false)
996 << DroppedSpecifier
<< SS
.getRange());
999 // Update the name, so that the caller has the new name.
1000 Name
= Corrected
.getCorrectionAsIdentifierInfo();
1002 // Typo correction corrected to a keyword.
1003 if (Corrected
.isKeyword())
1006 // Also update the LookupResult...
1007 // FIXME: This should probably go away at some point
1009 Result
.setLookupName(Corrected
.getCorrection());
1011 Result
.addDecl(FirstDecl
);
1013 // If we found an Objective-C instance variable, let
1014 // LookupInObjCMethod build the appropriate expression to
1015 // reference the ivar.
1016 // FIXME: This is a gross hack.
1017 if (ObjCIvarDecl
*Ivar
= Result
.getAsSingle
<ObjCIvarDecl
>()) {
1019 ObjC().LookupIvarInObjCMethod(Result
, S
, Ivar
->getIdentifier());
1021 return NameClassification::Error();
1023 return NameClassification::NonType(Ivar
);
1030 // We failed to correct; just fall through and let the parser deal with it.
1031 Result
.suppressDiagnostics();
1032 return NameClassification::Unknown();
1034 case LookupResult::NotFoundInCurrentInstantiation
: {
1035 // We performed name lookup into the current instantiation, and there were
1036 // dependent bases, so we treat this result the same way as any other
1037 // dependent nested-name-specifier.
1039 // C++ [temp.res]p2:
1040 // A name used in a template declaration or definition and that is
1041 // dependent on a template-parameter is assumed not to name a type
1042 // unless the applicable name lookup finds a type name or the name is
1043 // qualified by the keyword typename.
1045 // FIXME: If the next token is '<', we might want to ask the parser to
1046 // perform some heroics to see if we actually have a
1047 // template-argument-list, which would indicate a missing 'template'
1049 return NameClassification::DependentNonType();
1052 case LookupResult::Found
:
1053 case LookupResult::FoundOverloaded
:
1054 case LookupResult::FoundUnresolvedValue
:
1057 case LookupResult::Ambiguous
:
1058 if (getLangOpts().CPlusPlus
&& NextToken
.is(tok::less
) &&
1059 hasAnyAcceptableTemplateNames(Result
, /*AllowFunctionTemplates=*/true,
1060 /*AllowDependent=*/false)) {
1061 // C++ [temp.local]p3:
1062 // A lookup that finds an injected-class-name (10.2) can result in an
1063 // ambiguity in certain cases (for example, if it is found in more than
1064 // one base class). If all of the injected-class-names that are found
1065 // refer to specializations of the same class template, and if the name
1066 // is followed by a template-argument-list, the reference refers to the
1067 // class template itself and not a specialization thereof, and is not
1070 // This filtering can make an ambiguous result into an unambiguous one,
1071 // so try again after filtering out template names.
1072 FilterAcceptableTemplateNames(Result
);
1073 if (!Result
.isAmbiguous()) {
1074 IsFilteredTemplateName
= true;
1079 // Diagnose the ambiguity and return an error.
1080 return NameClassification::Error();
1083 if (getLangOpts().CPlusPlus
&& NextToken
.is(tok::less
) &&
1084 (IsFilteredTemplateName
||
1085 hasAnyAcceptableTemplateNames(
1086 Result
, /*AllowFunctionTemplates=*/true,
1087 /*AllowDependent=*/false,
1088 /*AllowNonTemplateFunctions*/ SS
.isEmpty() &&
1089 getLangOpts().CPlusPlus20
))) {
1090 // C++ [temp.names]p3:
1091 // After name lookup (3.4) finds that a name is a template-name or that
1092 // an operator-function-id or a literal- operator-id refers to a set of
1093 // overloaded functions any member of which is a function template if
1094 // this is followed by a <, the < is always taken as the delimiter of a
1095 // template-argument-list and never as the less-than operator.
1096 // C++2a [temp.names]p2:
1097 // A name is also considered to refer to a template if it is an
1098 // unqualified-id followed by a < and name lookup finds either one
1099 // or more functions or finds nothing.
1100 if (!IsFilteredTemplateName
)
1101 FilterAcceptableTemplateNames(Result
);
1103 bool IsFunctionTemplate
;
1105 TemplateName Template
;
1106 if (Result
.end() - Result
.begin() > 1) {
1107 IsFunctionTemplate
= true;
1108 Template
= Context
.getOverloadedTemplateName(Result
.begin(),
1110 } else if (!Result
.empty()) {
1111 auto *TD
= cast
<TemplateDecl
>(getAsTemplateNameDecl(
1112 *Result
.begin(), /*AllowFunctionTemplates=*/true,
1113 /*AllowDependent=*/false));
1114 IsFunctionTemplate
= isa
<FunctionTemplateDecl
>(TD
);
1115 IsVarTemplate
= isa
<VarTemplateDecl
>(TD
);
1117 UsingShadowDecl
*FoundUsingShadow
=
1118 dyn_cast
<UsingShadowDecl
>(*Result
.begin());
1119 assert(!FoundUsingShadow
||
1120 TD
== cast
<TemplateDecl
>(FoundUsingShadow
->getTargetDecl()));
1121 Template
= Context
.getQualifiedTemplateName(
1123 /*TemplateKeyword=*/false,
1124 FoundUsingShadow
? TemplateName(FoundUsingShadow
) : TemplateName(TD
));
1126 // All results were non-template functions. This is a function template
1128 IsFunctionTemplate
= true;
1129 Template
= Context
.getAssumedTemplateName(NameInfo
.getName());
1132 if (IsFunctionTemplate
) {
1133 // Function templates always go through overload resolution, at which
1134 // point we'll perform the various checks (e.g., accessibility) we need
1135 // to based on which function we selected.
1136 Result
.suppressDiagnostics();
1138 return NameClassification::FunctionTemplate(Template
);
1141 return IsVarTemplate
? NameClassification::VarTemplate(Template
)
1142 : NameClassification::TypeTemplate(Template
);
1145 auto BuildTypeFor
= [&](TypeDecl
*Type
, NamedDecl
*Found
) {
1146 QualType T
= Context
.getTypeDeclType(Type
);
1147 if (const auto *USD
= dyn_cast
<UsingShadowDecl
>(Found
))
1148 T
= Context
.getUsingType(USD
, T
);
1149 return buildNamedType(*this, &SS
, T
, NameLoc
);
1152 NamedDecl
*FirstDecl
= (*Result
.begin())->getUnderlyingDecl();
1153 if (TypeDecl
*Type
= dyn_cast
<TypeDecl
>(FirstDecl
)) {
1154 DiagnoseUseOfDecl(Type
, NameLoc
);
1155 MarkAnyDeclReferenced(Type
->getLocation(), Type
, /*OdrUse=*/false);
1156 return BuildTypeFor(Type
, *Result
.begin());
1159 ObjCInterfaceDecl
*Class
= dyn_cast
<ObjCInterfaceDecl
>(FirstDecl
);
1161 // FIXME: It's unfortunate that we don't have a Type node for handling this.
1162 if (ObjCCompatibleAliasDecl
*Alias
=
1163 dyn_cast
<ObjCCompatibleAliasDecl
>(FirstDecl
))
1164 Class
= Alias
->getClassInterface();
1168 DiagnoseUseOfDecl(Class
, NameLoc
);
1170 if (NextToken
.is(tok::period
)) {
1171 // Interface. <something> is parsed as a property reference expression.
1172 // Just return "unknown" as a fall-through for now.
1173 Result
.suppressDiagnostics();
1174 return NameClassification::Unknown();
1177 QualType T
= Context
.getObjCInterfaceType(Class
);
1178 return ParsedType::make(T
);
1181 if (isa
<ConceptDecl
>(FirstDecl
)) {
1182 // We want to preserve the UsingShadowDecl for concepts.
1183 if (auto *USD
= dyn_cast
<UsingShadowDecl
>(Result
.getRepresentativeDecl()))
1184 return NameClassification::Concept(TemplateName(USD
));
1185 return NameClassification::Concept(
1186 TemplateName(cast
<TemplateDecl
>(FirstDecl
)));
1189 if (auto *EmptyD
= dyn_cast
<UnresolvedUsingIfExistsDecl
>(FirstDecl
)) {
1190 (void)DiagnoseUseOfDecl(EmptyD
, NameLoc
);
1191 return NameClassification::Error();
1194 // We can have a type template here if we're classifying a template argument.
1195 if (isa
<TemplateDecl
>(FirstDecl
) && !isa
<FunctionTemplateDecl
>(FirstDecl
) &&
1196 !isa
<VarTemplateDecl
>(FirstDecl
))
1197 return NameClassification::TypeTemplate(
1198 TemplateName(cast
<TemplateDecl
>(FirstDecl
)));
1200 // Check for a tag type hidden by a non-type decl in a few cases where it
1201 // seems likely a type is wanted instead of the non-type that was found.
1202 bool NextIsOp
= NextToken
.isOneOf(tok::amp
, tok::star
);
1203 if ((NextToken
.is(tok::identifier
) ||
1205 FirstDecl
->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1206 isTagTypeWithMissingTag(*this, Result
, S
, SS
, Name
, NameLoc
)) {
1207 TypeDecl
*Type
= Result
.getAsSingle
<TypeDecl
>();
1208 DiagnoseUseOfDecl(Type
, NameLoc
);
1209 return BuildTypeFor(Type
, *Result
.begin());
1212 // If we already know which single declaration is referenced, just annotate
1213 // that declaration directly. Defer resolving even non-overloaded class
1214 // member accesses, as we need to defer certain access checks until we know
1216 bool ADL
= UseArgumentDependentLookup(SS
, Result
, NextToken
.is(tok::l_paren
));
1217 if (Result
.isSingleResult() && !ADL
&&
1218 (!FirstDecl
->isCXXClassMember() || isa
<EnumConstantDecl
>(FirstDecl
)))
1219 return NameClassification::NonType(Result
.getRepresentativeDecl());
1221 // Otherwise, this is an overload set that we will need to resolve later.
1222 Result
.suppressDiagnostics();
1223 return NameClassification::OverloadSet(UnresolvedLookupExpr::Create(
1224 Context
, Result
.getNamingClass(), SS
.getWithLocInContext(Context
),
1225 Result
.getLookupNameInfo(), ADL
, Result
.begin(), Result
.end(),
1226 /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false));
1230 Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo
*Name
,
1231 SourceLocation NameLoc
) {
1232 assert(getLangOpts().CPlusPlus
&& "ADL-only call in C?");
1234 LookupResult
Result(*this, Name
, NameLoc
, LookupOrdinaryName
);
1235 return BuildDeclarationNameExpr(SS
, Result
, /*ADL=*/true);
1239 Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec
&SS
,
1240 IdentifierInfo
*Name
,
1241 SourceLocation NameLoc
,
1242 bool IsAddressOfOperand
) {
1243 DeclarationNameInfo
NameInfo(Name
, NameLoc
);
1244 return ActOnDependentIdExpression(SS
, /*TemplateKWLoc=*/SourceLocation(),
1245 NameInfo
, IsAddressOfOperand
,
1246 /*TemplateArgs=*/nullptr);
1249 ExprResult
Sema::ActOnNameClassifiedAsNonType(Scope
*S
, const CXXScopeSpec
&SS
,
1251 SourceLocation NameLoc
,
1252 const Token
&NextToken
) {
1253 if (getCurMethodDecl() && SS
.isEmpty())
1254 if (auto *Ivar
= dyn_cast
<ObjCIvarDecl
>(Found
->getUnderlyingDecl()))
1255 return ObjC().BuildIvarRefExpr(S
, NameLoc
, Ivar
);
1257 // Reconstruct the lookup result.
1258 LookupResult
Result(*this, Found
->getDeclName(), NameLoc
, LookupOrdinaryName
);
1259 Result
.addDecl(Found
);
1260 Result
.resolveKind();
1262 bool ADL
= UseArgumentDependentLookup(SS
, Result
, NextToken
.is(tok::l_paren
));
1263 return BuildDeclarationNameExpr(SS
, Result
, ADL
, /*AcceptInvalidDecl=*/true);
1266 ExprResult
Sema::ActOnNameClassifiedAsOverloadSet(Scope
*S
, Expr
*E
) {
1267 // For an implicit class member access, transform the result into a member
1268 // access expression if necessary.
1269 auto *ULE
= cast
<UnresolvedLookupExpr
>(E
);
1270 if ((*ULE
->decls_begin())->isCXXClassMember()) {
1272 SS
.Adopt(ULE
->getQualifierLoc());
1274 // Reconstruct the lookup result.
1275 LookupResult
Result(*this, ULE
->getName(), ULE
->getNameLoc(),
1276 LookupOrdinaryName
);
1277 Result
.setNamingClass(ULE
->getNamingClass());
1278 for (auto I
= ULE
->decls_begin(), E
= ULE
->decls_end(); I
!= E
; ++I
)
1279 Result
.addDecl(*I
, I
.getAccess());
1280 Result
.resolveKind();
1281 return BuildPossibleImplicitMemberExpr(SS
, SourceLocation(), Result
,
1285 // Otherwise, this is already in the form we needed, and no further checks
1290 Sema::TemplateNameKindForDiagnostics
1291 Sema::getTemplateNameKindForDiagnostics(TemplateName Name
) {
1292 auto *TD
= Name
.getAsTemplateDecl();
1294 return TemplateNameKindForDiagnostics::DependentTemplate
;
1295 if (isa
<ClassTemplateDecl
>(TD
))
1296 return TemplateNameKindForDiagnostics::ClassTemplate
;
1297 if (isa
<FunctionTemplateDecl
>(TD
))
1298 return TemplateNameKindForDiagnostics::FunctionTemplate
;
1299 if (isa
<VarTemplateDecl
>(TD
))
1300 return TemplateNameKindForDiagnostics::VarTemplate
;
1301 if (isa
<TypeAliasTemplateDecl
>(TD
))
1302 return TemplateNameKindForDiagnostics::AliasTemplate
;
1303 if (isa
<TemplateTemplateParmDecl
>(TD
))
1304 return TemplateNameKindForDiagnostics::TemplateTemplateParam
;
1305 if (isa
<ConceptDecl
>(TD
))
1306 return TemplateNameKindForDiagnostics::Concept
;
1307 return TemplateNameKindForDiagnostics::DependentTemplate
;
1310 void Sema::PushDeclContext(Scope
*S
, DeclContext
*DC
) {
1311 assert(DC
->getLexicalParent() == CurContext
&&
1312 "The next DeclContext should be lexically contained in the current one.");
1317 void Sema::PopDeclContext() {
1318 assert(CurContext
&& "DeclContext imbalance!");
1320 CurContext
= CurContext
->getLexicalParent();
1321 assert(CurContext
&& "Popped translation unit!");
1324 Sema::SkippedDefinitionContext
Sema::ActOnTagStartSkippedDefinition(Scope
*S
,
1326 // Unlike PushDeclContext, the context to which we return is not necessarily
1327 // the containing DC of TD, because the new context will be some pre-existing
1328 // TagDecl definition instead of a fresh one.
1329 auto Result
= static_cast<SkippedDefinitionContext
>(CurContext
);
1330 CurContext
= cast
<TagDecl
>(D
)->getDefinition();
1331 assert(CurContext
&& "skipping definition of undefined tag");
1332 // Start lookups from the parent of the current context; we don't want to look
1333 // into the pre-existing complete definition.
1334 S
->setEntity(CurContext
->getLookupParent());
1338 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context
) {
1339 CurContext
= static_cast<decltype(CurContext
)>(Context
);
1342 void Sema::EnterDeclaratorContext(Scope
*S
, DeclContext
*DC
) {
1343 // C++0x [basic.lookup.unqual]p13:
1344 // A name used in the definition of a static data member of class
1345 // X (after the qualified-id of the static member) is looked up as
1346 // if the name was used in a member function of X.
1347 // C++0x [basic.lookup.unqual]p14:
1348 // If a variable member of a namespace is defined outside of the
1349 // scope of its namespace then any name used in the definition of
1350 // the variable member (after the declarator-id) is looked up as
1351 // if the definition of the variable member occurred in its
1353 // Both of these imply that we should push a scope whose context
1354 // is the semantic context of the declaration. We can't use
1355 // PushDeclContext here because that context is not necessarily
1356 // lexically contained in the current context. Fortunately,
1357 // the containing scope should have the appropriate information.
1359 assert(!S
->getEntity() && "scope already has entity");
1362 Scope
*Ancestor
= S
->getParent();
1363 while (!Ancestor
->getEntity()) Ancestor
= Ancestor
->getParent();
1364 assert(Ancestor
->getEntity() == CurContext
&& "ancestor context mismatch");
1370 if (S
->getParent()->isTemplateParamScope()) {
1371 // Also set the corresponding entities for all immediately-enclosing
1372 // template parameter scopes.
1373 EnterTemplatedContext(S
->getParent(), DC
);
1377 void Sema::ExitDeclaratorContext(Scope
*S
) {
1378 assert(S
->getEntity() == CurContext
&& "Context imbalance!");
1380 // Switch back to the lexical context. The safety of this is
1381 // enforced by an assert in EnterDeclaratorContext.
1382 Scope
*Ancestor
= S
->getParent();
1383 while (!Ancestor
->getEntity()) Ancestor
= Ancestor
->getParent();
1384 CurContext
= Ancestor
->getEntity();
1386 // We don't need to do anything with the scope, which is going to
1390 void Sema::EnterTemplatedContext(Scope
*S
, DeclContext
*DC
) {
1391 assert(S
->isTemplateParamScope() &&
1392 "expected to be initializing a template parameter scope");
1394 // C++20 [temp.local]p7:
1395 // In the definition of a member of a class template that appears outside
1396 // of the class template definition, the name of a member of the class
1397 // template hides the name of a template-parameter of any enclosing class
1398 // templates (but not a template-parameter of the member if the member is a
1399 // class or function template).
1400 // C++20 [temp.local]p9:
1401 // In the definition of a class template or in the definition of a member
1402 // of such a template that appears outside of the template definition, for
1403 // each non-dependent base class (13.8.2.1), if the name of the base class
1404 // or the name of a member of the base class is the same as the name of a
1405 // template-parameter, the base class name or member name hides the
1406 // template-parameter name (6.4.10).
1408 // This means that a template parameter scope should be searched immediately
1409 // after searching the DeclContext for which it is a template parameter
1410 // scope. For example, for
1411 // template<typename T> template<typename U> template<typename V>
1412 // void N::A<T>::B<U>::f(...)
1413 // we search V then B<U> (and base classes) then U then A<T> (and base
1414 // classes) then T then N then ::.
1415 unsigned ScopeDepth
= getTemplateDepth(S
);
1416 for (; S
&& S
->isTemplateParamScope(); S
= S
->getParent(), --ScopeDepth
) {
1417 DeclContext
*SearchDCAfterScope
= DC
;
1418 for (; DC
; DC
= DC
->getLookupParent()) {
1419 if (const TemplateParameterList
*TPL
=
1420 cast
<Decl
>(DC
)->getDescribedTemplateParams()) {
1421 unsigned DCDepth
= TPL
->getDepth() + 1;
1422 if (DCDepth
> ScopeDepth
)
1424 if (ScopeDepth
== DCDepth
)
1425 SearchDCAfterScope
= DC
= DC
->getLookupParent();
1429 S
->setLookupEntity(SearchDCAfterScope
);
1433 void Sema::ActOnReenterFunctionContext(Scope
* S
, Decl
*D
) {
1434 // We assume that the caller has already called
1435 // ActOnReenterTemplateScope so getTemplatedDecl() works.
1436 FunctionDecl
*FD
= D
->getAsFunction();
1440 // Same implementation as PushDeclContext, but enters the context
1441 // from the lexical parent, rather than the top-level class.
1442 assert(CurContext
== FD
->getLexicalParent() &&
1443 "The next DeclContext should be lexically contained in the current one.");
1445 S
->setEntity(CurContext
);
1447 for (unsigned P
= 0, NumParams
= FD
->getNumParams(); P
< NumParams
; ++P
) {
1448 ParmVarDecl
*Param
= FD
->getParamDecl(P
);
1449 // If the parameter has an identifier, then add it to the scope
1450 if (Param
->getIdentifier()) {
1452 IdResolver
.AddDecl(Param
);
1457 void Sema::ActOnExitFunctionContext() {
1458 // Same implementation as PopDeclContext, but returns to the lexical parent,
1459 // rather than the top-level class.
1460 assert(CurContext
&& "DeclContext imbalance!");
1461 CurContext
= CurContext
->getLexicalParent();
1462 assert(CurContext
&& "Popped translation unit!");
1465 /// Determine whether overloading is allowed for a new function
1466 /// declaration considering prior declarations of the same name.
1468 /// This routine determines whether overloading is possible, not
1469 /// whether a new declaration actually overloads a previous one.
1470 /// It will return true in C++ (where overloads are always permitted)
1471 /// or, as a C extension, when either the new declaration or a
1472 /// previous one is declared with the 'overloadable' attribute.
1473 static bool AllowOverloadingOfFunction(const LookupResult
&Previous
,
1474 ASTContext
&Context
,
1475 const FunctionDecl
*New
) {
1476 if (Context
.getLangOpts().CPlusPlus
|| New
->hasAttr
<OverloadableAttr
>())
1479 // Multiversion function declarations are not overloads in the
1480 // usual sense of that term, but lookup will report that an
1481 // overload set was found if more than one multiversion function
1482 // declaration is present for the same name. It is therefore
1483 // inadequate to assume that some prior declaration(s) had
1484 // the overloadable attribute; checking is required. Since one
1485 // declaration is permitted to omit the attribute, it is necessary
1486 // to check at least two; hence the 'any_of' check below. Note that
1487 // the overloadable attribute is implicitly added to declarations
1488 // that were required to have it but did not.
1489 if (Previous
.getResultKind() == LookupResult::FoundOverloaded
) {
1490 return llvm::any_of(Previous
, [](const NamedDecl
*ND
) {
1491 return ND
->hasAttr
<OverloadableAttr
>();
1493 } else if (Previous
.getResultKind() == LookupResult::Found
)
1494 return Previous
.getFoundDecl()->hasAttr
<OverloadableAttr
>();
1499 void Sema::PushOnScopeChains(NamedDecl
*D
, Scope
*S
, bool AddToContext
) {
1500 // Move up the scope chain until we find the nearest enclosing
1501 // non-transparent context. The declaration will be introduced into this
1503 while (S
->getEntity() && S
->getEntity()->isTransparentContext())
1506 // Add scoped declarations into their context, so that they can be
1507 // found later. Declarations without a context won't be inserted
1508 // into any context.
1510 CurContext
->addDecl(D
);
1512 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1513 // are function-local declarations.
1514 if (getLangOpts().CPlusPlus
&& D
->isOutOfLine() && !S
->getFnParent())
1517 // Template instantiations should also not be pushed into scope.
1518 if (isa
<FunctionDecl
>(D
) &&
1519 cast
<FunctionDecl
>(D
)->isFunctionTemplateSpecialization())
1522 if (isa
<UsingEnumDecl
>(D
) && D
->getDeclName().isEmpty()) {
1526 // If this replaces anything in the current scope,
1527 IdentifierResolver::iterator I
= IdResolver
.begin(D
->getDeclName()),
1528 IEnd
= IdResolver
.end();
1529 for (; I
!= IEnd
; ++I
) {
1530 if (S
->isDeclScope(*I
) && D
->declarationReplaces(*I
)) {
1532 IdResolver
.RemoveDecl(*I
);
1534 // Should only need to replace one decl.
1541 if (isa
<LabelDecl
>(D
) && !cast
<LabelDecl
>(D
)->isGnuLocal()) {
1542 // Implicitly-generated labels may end up getting generated in an order that
1543 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1544 // the label at the appropriate place in the identifier chain.
1545 for (I
= IdResolver
.begin(D
->getDeclName()); I
!= IEnd
; ++I
) {
1546 DeclContext
*IDC
= (*I
)->getLexicalDeclContext()->getRedeclContext();
1547 if (IDC
== CurContext
) {
1548 if (!S
->isDeclScope(*I
))
1550 } else if (IDC
->Encloses(CurContext
))
1554 IdResolver
.InsertDeclAfter(I
, D
);
1556 IdResolver
.AddDecl(D
);
1558 warnOnReservedIdentifier(D
);
1561 bool Sema::isDeclInScope(NamedDecl
*D
, DeclContext
*Ctx
, Scope
*S
,
1562 bool AllowInlineNamespace
) const {
1563 return IdResolver
.isDeclInScope(D
, Ctx
, S
, AllowInlineNamespace
);
1566 Scope
*Sema::getScopeForDeclContext(Scope
*S
, DeclContext
*DC
) {
1567 DeclContext
*TargetDC
= DC
->getPrimaryContext();
1569 if (DeclContext
*ScopeDC
= S
->getEntity())
1570 if (ScopeDC
->getPrimaryContext() == TargetDC
)
1572 } while ((S
= S
->getParent()));
1577 static bool isOutOfScopePreviousDeclaration(NamedDecl
*,
1581 void Sema::FilterLookupForScope(LookupResult
&R
, DeclContext
*Ctx
, Scope
*S
,
1582 bool ConsiderLinkage
,
1583 bool AllowInlineNamespace
) {
1584 LookupResult::Filter F
= R
.makeFilter();
1585 while (F
.hasNext()) {
1586 NamedDecl
*D
= F
.next();
1588 if (isDeclInScope(D
, Ctx
, S
, AllowInlineNamespace
))
1591 if (ConsiderLinkage
&& isOutOfScopePreviousDeclaration(D
, Ctx
, Context
))
1600 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl
*New
, NamedDecl
*Old
) {
1601 // [module.interface]p7:
1602 // A declaration is attached to a module as follows:
1603 // - If the declaration is a non-dependent friend declaration that nominates a
1604 // function with a declarator-id that is a qualified-id or template-id or that
1605 // nominates a class other than with an elaborated-type-specifier with neither
1606 // a nested-name-specifier nor a simple-template-id, it is attached to the
1607 // module to which the friend is attached ([basic.link]).
1608 if (New
->getFriendObjectKind() &&
1609 Old
->getOwningModuleForLinkage() != New
->getOwningModuleForLinkage()) {
1610 New
->setLocalOwningModule(Old
->getOwningModule());
1611 makeMergedDefinitionVisible(New
);
1615 Module
*NewM
= New
->getOwningModule();
1616 Module
*OldM
= Old
->getOwningModule();
1618 if (NewM
&& NewM
->isPrivateModule())
1619 NewM
= NewM
->Parent
;
1620 if (OldM
&& OldM
->isPrivateModule())
1621 OldM
= OldM
->Parent
;
1627 // A module implementation unit has visibility of the decls in its
1628 // implicitly imported interface.
1629 if (NewM
->isModuleImplementation() && OldM
== ThePrimaryInterface
)
1632 // Partitions are part of the module, but a partition could import another
1633 // module, so verify that the PMIs agree.
1634 if ((NewM
->isModulePartition() || OldM
->isModulePartition()) &&
1635 getASTContext().isInSameModule(NewM
, OldM
))
1639 bool NewIsModuleInterface
= NewM
&& NewM
->isNamedModule();
1640 bool OldIsModuleInterface
= OldM
&& OldM
->isNamedModule();
1641 if (NewIsModuleInterface
|| OldIsModuleInterface
) {
1642 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1643 // if a declaration of D [...] appears in the purview of a module, all
1644 // other such declarations shall appear in the purview of the same module
1645 Diag(New
->getLocation(), diag::err_mismatched_owning_module
)
1647 << NewIsModuleInterface
1648 << (NewIsModuleInterface
? NewM
->getFullModuleName() : "")
1649 << OldIsModuleInterface
1650 << (OldIsModuleInterface
? OldM
->getFullModuleName() : "");
1651 Diag(Old
->getLocation(), diag::note_previous_declaration
);
1652 New
->setInvalidDecl();
1659 bool Sema::CheckRedeclarationExported(NamedDecl
*New
, NamedDecl
*Old
) {
1660 // [module.interface]p1:
1661 // An export-declaration shall inhabit a namespace scope.
1663 // So it is meaningless to talk about redeclaration which is not at namespace
1665 if (!New
->getLexicalDeclContext()
1666 ->getNonTransparentContext()
1667 ->isFileContext() ||
1668 !Old
->getLexicalDeclContext()
1669 ->getNonTransparentContext()
1673 bool IsNewExported
= New
->isInExportDeclContext();
1674 bool IsOldExported
= Old
->isInExportDeclContext();
1676 // It should be irrevelant if both of them are not exported.
1677 if (!IsNewExported
&& !IsOldExported
)
1683 // If the Old declaration are not attached to named modules
1684 // and the New declaration are attached to global module.
1685 // It should be fine to allow the export since it doesn't change
1686 // the linkage of declarations. See
1687 // https://github.com/llvm/llvm-project/issues/98583 for details.
1688 if (!Old
->isInNamedModule() && New
->getOwningModule() &&
1689 New
->getOwningModule()->isImplicitGlobalModule())
1692 assert(IsNewExported
);
1694 auto Lk
= Old
->getFormalLinkage();
1696 if (Lk
== Linkage::Internal
)
1698 else if (Lk
== Linkage::Module
)
1700 Diag(New
->getLocation(), diag::err_redeclaration_non_exported
) << New
<< S
;
1701 Diag(Old
->getLocation(), diag::note_previous_declaration
);
1705 bool Sema::CheckRedeclarationInModule(NamedDecl
*New
, NamedDecl
*Old
) {
1706 if (CheckRedeclarationModuleOwnership(New
, Old
))
1709 if (CheckRedeclarationExported(New
, Old
))
1715 bool Sema::IsRedefinitionInModule(const NamedDecl
*New
,
1716 const NamedDecl
*Old
) const {
1717 assert(getASTContext().isSameEntity(New
, Old
) &&
1718 "New and Old are not the same definition, we should diagnostic it "
1719 "immediately instead of checking it.");
1720 assert(const_cast<Sema
*>(this)->isReachable(New
) &&
1721 const_cast<Sema
*>(this)->isReachable(Old
) &&
1722 "We shouldn't see unreachable definitions here.");
1724 Module
*NewM
= New
->getOwningModule();
1725 Module
*OldM
= Old
->getOwningModule();
1727 // We only checks for named modules here. The header like modules is skipped.
1728 // FIXME: This is not right if we import the header like modules in the module
1731 // For example, assuming "header.h" provides definition for `D`.
1735 // import "header.h"; // or #include "header.h" but import it by clang modules
1740 // import "header.h"; // or uses clang modules.
1743 // In this case, `D` has multiple definitions in multiple TU (M.cppm and
1744 // Use.cpp) and `D` is attached to a named module `M`. The compiler should
1745 // reject it. But the current implementation couldn't detect the case since we
1746 // don't record the information about the importee modules.
1748 // But this might not be painful in practice. Since the design of C++20 Named
1749 // Modules suggests us to use headers in global module fragment instead of
1751 if (NewM
&& NewM
->isHeaderLikeModule())
1753 if (OldM
&& OldM
->isHeaderLikeModule())
1759 // [basic.def.odr]p14.3
1760 // Each such definition shall not be attached to a named module
1762 if ((NewM
&& NewM
->isNamedModule()) || (OldM
&& OldM
->isNamedModule()))
1765 // Then New and Old lives in the same TU if their share one same module unit.
1767 NewM
= NewM
->getTopLevelModule();
1769 OldM
= OldM
->getTopLevelModule();
1770 return OldM
== NewM
;
1773 static bool isUsingDeclNotAtClassScope(NamedDecl
*D
) {
1774 if (D
->getDeclContext()->isFileContext())
1777 return isa
<UsingShadowDecl
>(D
) ||
1778 isa
<UnresolvedUsingTypenameDecl
>(D
) ||
1779 isa
<UnresolvedUsingValueDecl
>(D
);
1782 /// Removes using shadow declarations not at class scope from the lookup
1784 static void RemoveUsingDecls(LookupResult
&R
) {
1785 LookupResult::Filter F
= R
.makeFilter();
1787 if (isUsingDeclNotAtClassScope(F
.next()))
1793 /// Check for this common pattern:
1796 /// S(const S&); // DO NOT IMPLEMENT
1797 /// void operator=(const S&); // DO NOT IMPLEMENT
1800 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl
*D
) {
1801 // FIXME: Should check for private access too but access is set after we get
1803 if (D
->doesThisDeclarationHaveABody())
1806 if (const CXXConstructorDecl
*CD
= dyn_cast
<CXXConstructorDecl
>(D
))
1807 return CD
->isCopyConstructor();
1808 return D
->isCopyAssignmentOperator();
1811 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl
*D
) {
1812 const DeclContext
*DC
= D
->getDeclContext();
1813 while (!DC
->isTranslationUnit()) {
1814 if (const RecordDecl
*RD
= dyn_cast
<RecordDecl
>(DC
)){
1815 if (!RD
->hasNameForLinkage())
1818 DC
= DC
->getParent();
1821 return !D
->isExternallyVisible();
1824 // FIXME: This needs to be refactored; some other isInMainFile users want
1826 static bool isMainFileLoc(const Sema
&S
, SourceLocation Loc
) {
1827 if (S
.TUKind
!= TU_Complete
|| S
.getLangOpts().IsHeaderFile
)
1829 return S
.SourceMgr
.isInMainFile(Loc
);
1832 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl
*D
) const {
1835 if (D
->isInvalidDecl() || D
->isUsed() || D
->hasAttr
<UnusedAttr
>())
1838 // Ignore all entities declared within templates, and out-of-line definitions
1839 // of members of class templates.
1840 if (D
->getDeclContext()->isDependentContext() ||
1841 D
->getLexicalDeclContext()->isDependentContext())
1844 if (const FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
1845 if (FD
->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
)
1847 // A non-out-of-line declaration of a member specialization was implicitly
1848 // instantiated; it's the out-of-line declaration that we're interested in.
1849 if (FD
->getTemplateSpecializationKind() == TSK_ExplicitSpecialization
&&
1850 FD
->getMemberSpecializationInfo() && !FD
->isOutOfLine())
1853 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
1854 if (MD
->isVirtual() || IsDisallowedCopyOrAssign(MD
))
1857 // 'static inline' functions are defined in headers; don't warn.
1858 if (FD
->isInlined() && !isMainFileLoc(*this, FD
->getLocation()))
1862 if (FD
->doesThisDeclarationHaveABody() &&
1863 Context
.DeclMustBeEmitted(FD
))
1865 } else if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
1866 // Constants and utility variables are defined in headers with internal
1867 // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1869 if (!isMainFileLoc(*this, VD
->getLocation()))
1872 if (Context
.DeclMustBeEmitted(VD
))
1875 if (VD
->isStaticDataMember() &&
1876 VD
->getTemplateSpecializationKind() == TSK_ImplicitInstantiation
)
1878 if (VD
->isStaticDataMember() &&
1879 VD
->getTemplateSpecializationKind() == TSK_ExplicitSpecialization
&&
1880 VD
->getMemberSpecializationInfo() && !VD
->isOutOfLine())
1883 if (VD
->isInline() && !isMainFileLoc(*this, VD
->getLocation()))
1889 // Only warn for unused decls internal to the translation unit.
1890 // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1891 // for inline functions defined in the main source file, for instance.
1892 return mightHaveNonExternalLinkage(D
);
1895 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl
*D
) {
1899 if (const FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
1900 const FunctionDecl
*First
= FD
->getFirstDecl();
1901 if (FD
!= First
&& ShouldWarnIfUnusedFileScopedDecl(First
))
1902 return; // First should already be in the vector.
1905 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
1906 const VarDecl
*First
= VD
->getFirstDecl();
1907 if (VD
!= First
&& ShouldWarnIfUnusedFileScopedDecl(First
))
1908 return; // First should already be in the vector.
1911 if (ShouldWarnIfUnusedFileScopedDecl(D
))
1912 UnusedFileScopedDecls
.push_back(D
);
1915 static bool ShouldDiagnoseUnusedDecl(const LangOptions
&LangOpts
,
1916 const NamedDecl
*D
) {
1917 if (D
->isInvalidDecl())
1920 if (const auto *DD
= dyn_cast
<DecompositionDecl
>(D
)) {
1921 // For a decomposition declaration, warn if none of the bindings are
1922 // referenced, instead of if the variable itself is referenced (which
1923 // it is, by the bindings' expressions).
1924 bool IsAllPlaceholders
= true;
1925 for (const auto *BD
: DD
->bindings()) {
1926 if (BD
->isReferenced() || BD
->hasAttr
<UnusedAttr
>())
1928 IsAllPlaceholders
= IsAllPlaceholders
&& BD
->isPlaceholderVar(LangOpts
);
1930 if (IsAllPlaceholders
)
1932 } else if (!D
->getDeclName()) {
1934 } else if (D
->isReferenced() || D
->isUsed()) {
1938 if (D
->isPlaceholderVar(LangOpts
))
1941 if (D
->hasAttr
<UnusedAttr
>() || D
->hasAttr
<ObjCPreciseLifetimeAttr
>() ||
1942 D
->hasAttr
<CleanupAttr
>())
1945 if (isa
<LabelDecl
>(D
))
1948 // Except for labels, we only care about unused decls that are local to
1950 bool WithinFunction
= D
->getDeclContext()->isFunctionOrMethod();
1951 if (const auto *R
= dyn_cast
<CXXRecordDecl
>(D
->getDeclContext()))
1952 // For dependent types, the diagnostic is deferred.
1954 WithinFunction
|| (R
->isLocalClass() && !R
->isDependentType());
1955 if (!WithinFunction
)
1958 if (isa
<TypedefNameDecl
>(D
))
1961 // White-list anything that isn't a local variable.
1962 if (!isa
<VarDecl
>(D
) || isa
<ParmVarDecl
>(D
) || isa
<ImplicitParamDecl
>(D
))
1965 // Types of valid local variables should be complete, so this should succeed.
1966 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
1968 const Expr
*Init
= VD
->getInit();
1969 if (const auto *Cleanups
= dyn_cast_if_present
<ExprWithCleanups
>(Init
))
1970 Init
= Cleanups
->getSubExpr();
1972 const auto *Ty
= VD
->getType().getTypePtr();
1974 // Only look at the outermost level of typedef.
1975 if (const TypedefType
*TT
= Ty
->getAs
<TypedefType
>()) {
1976 // Allow anything marked with __attribute__((unused)).
1977 if (TT
->getDecl()->hasAttr
<UnusedAttr
>())
1981 // Warn for reference variables whose initializtion performs lifetime
1983 if (const auto *MTE
= dyn_cast_if_present
<MaterializeTemporaryExpr
>(Init
);
1984 MTE
&& MTE
->getExtendingDecl()) {
1985 Ty
= VD
->getType().getNonReferenceType().getTypePtr();
1986 Init
= MTE
->getSubExpr()->IgnoreImplicitAsWritten();
1989 // If we failed to complete the type for some reason, or if the type is
1990 // dependent, don't diagnose the variable.
1991 if (Ty
->isIncompleteType() || Ty
->isDependentType())
1994 // Look at the element type to ensure that the warning behaviour is
1995 // consistent for both scalars and arrays.
1996 Ty
= Ty
->getBaseElementTypeUnsafe();
1998 if (const TagType
*TT
= Ty
->getAs
<TagType
>()) {
1999 const TagDecl
*Tag
= TT
->getDecl();
2000 if (Tag
->hasAttr
<UnusedAttr
>())
2003 if (const auto *RD
= dyn_cast
<CXXRecordDecl
>(Tag
)) {
2004 if (!RD
->hasTrivialDestructor() && !RD
->hasAttr
<WarnUnusedAttr
>())
2008 const auto *Construct
=
2009 dyn_cast
<CXXConstructExpr
>(Init
->IgnoreImpCasts());
2010 if (Construct
&& !Construct
->isElidable()) {
2011 const CXXConstructorDecl
*CD
= Construct
->getConstructor();
2012 if (!CD
->isTrivial() && !RD
->hasAttr
<WarnUnusedAttr
>() &&
2013 (VD
->getInit()->isValueDependent() || !VD
->evaluateValue()))
2017 // Suppress the warning if we don't know how this is constructed, and
2018 // it could possibly be non-trivial constructor.
2019 if (Init
->isTypeDependent()) {
2020 for (const CXXConstructorDecl
*Ctor
: RD
->ctors())
2021 if (!Ctor
->isTrivial())
2025 // Suppress the warning if the constructor is unresolved because
2026 // its arguments are dependent.
2027 if (isa
<CXXUnresolvedConstructExpr
>(Init
))
2033 // TODO: __attribute__((unused)) templates?
2039 static void GenerateFixForUnusedDecl(const NamedDecl
*D
, ASTContext
&Ctx
,
2041 if (isa
<LabelDecl
>(D
)) {
2042 SourceLocation AfterColon
= Lexer::findLocationAfterToken(
2043 D
->getEndLoc(), tok::colon
, Ctx
.getSourceManager(), Ctx
.getLangOpts(),
2044 /*SkipTrailingWhitespaceAndNewline=*/false);
2045 if (AfterColon
.isInvalid())
2047 Hint
= FixItHint::CreateRemoval(
2048 CharSourceRange::getCharRange(D
->getBeginLoc(), AfterColon
));
2052 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl
*D
) {
2053 DiagnoseUnusedNestedTypedefs(
2054 D
, [this](SourceLocation Loc
, PartialDiagnostic PD
) { Diag(Loc
, PD
); });
2057 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl
*D
,
2058 DiagReceiverTy DiagReceiver
) {
2059 if (D
->getTypeForDecl()->isDependentType())
2062 for (auto *TmpD
: D
->decls()) {
2063 if (const auto *T
= dyn_cast
<TypedefNameDecl
>(TmpD
))
2064 DiagnoseUnusedDecl(T
, DiagReceiver
);
2065 else if(const auto *R
= dyn_cast
<RecordDecl
>(TmpD
))
2066 DiagnoseUnusedNestedTypedefs(R
, DiagReceiver
);
2070 void Sema::DiagnoseUnusedDecl(const NamedDecl
*D
) {
2072 D
, [this](SourceLocation Loc
, PartialDiagnostic PD
) { Diag(Loc
, PD
); });
2075 void Sema::DiagnoseUnusedDecl(const NamedDecl
*D
, DiagReceiverTy DiagReceiver
) {
2076 if (!ShouldDiagnoseUnusedDecl(getLangOpts(), D
))
2079 if (auto *TD
= dyn_cast
<TypedefNameDecl
>(D
)) {
2080 // typedefs can be referenced later on, so the diagnostics are emitted
2081 // at end-of-translation-unit.
2082 UnusedLocalTypedefNameCandidates
.insert(TD
);
2087 GenerateFixForUnusedDecl(D
, Context
, Hint
);
2090 if (isa
<VarDecl
>(D
) && cast
<VarDecl
>(D
)->isExceptionVariable())
2091 DiagID
= diag::warn_unused_exception_param
;
2092 else if (isa
<LabelDecl
>(D
))
2093 DiagID
= diag::warn_unused_label
;
2095 DiagID
= diag::warn_unused_variable
;
2097 SourceLocation DiagLoc
= D
->getLocation();
2098 DiagReceiver(DiagLoc
, PDiag(DiagID
) << D
<< Hint
<< SourceRange(DiagLoc
));
2101 void Sema::DiagnoseUnusedButSetDecl(const VarDecl
*VD
,
2102 DiagReceiverTy DiagReceiver
) {
2103 // If it's not referenced, it can't be set. If it has the Cleanup attribute,
2104 // it's not really unused.
2105 if (!VD
->isReferenced() || !VD
->getDeclName() || VD
->hasAttr
<CleanupAttr
>())
2108 // In C++, `_` variables behave as if they were maybe_unused
2109 if (VD
->hasAttr
<UnusedAttr
>() || VD
->isPlaceholderVar(getLangOpts()))
2112 const auto *Ty
= VD
->getType().getTypePtr()->getBaseElementTypeUnsafe();
2114 if (Ty
->isReferenceType() || Ty
->isDependentType())
2117 if (const TagType
*TT
= Ty
->getAs
<TagType
>()) {
2118 const TagDecl
*Tag
= TT
->getDecl();
2119 if (Tag
->hasAttr
<UnusedAttr
>())
2121 // In C++, don't warn for record types that don't have WarnUnusedAttr, to
2122 // mimic gcc's behavior.
2123 if (const auto *RD
= dyn_cast
<CXXRecordDecl
>(Tag
);
2124 RD
&& !RD
->hasAttr
<WarnUnusedAttr
>())
2128 // Don't warn about __block Objective-C pointer variables, as they might
2129 // be assigned in the block but not used elsewhere for the purpose of lifetime
2131 if (VD
->hasAttr
<BlocksAttr
>() && Ty
->isObjCObjectPointerType())
2134 // Don't warn about Objective-C pointer variables with precise lifetime
2135 // semantics; they can be used to ensure ARC releases the object at a known
2136 // time, which may mean assignment but no other references.
2137 if (VD
->hasAttr
<ObjCPreciseLifetimeAttr
>() && Ty
->isObjCObjectPointerType())
2140 auto iter
= RefsMinusAssignments
.find(VD
);
2141 if (iter
== RefsMinusAssignments
.end())
2144 assert(iter
->getSecond() >= 0 &&
2145 "Found a negative number of references to a VarDecl");
2146 if (int RefCnt
= iter
->getSecond(); RefCnt
> 0) {
2147 // Assume the given VarDecl is "used" if its ref count stored in
2148 // `RefMinusAssignments` is positive, with one exception.
2150 // For a C++ variable whose decl (with initializer) entirely consist the
2151 // condition expression of a if/while/for construct,
2152 // Clang creates a DeclRefExpr for the condition expression rather than a
2153 // BinaryOperator of AssignmentOp. Thus, the C++ variable's ref
2154 // count stored in `RefMinusAssignment` equals 1 when the variable is never
2155 // used in the body of the if/while/for construct.
2156 bool UnusedCXXCondDecl
= VD
->isCXXCondDecl() && (RefCnt
== 1);
2157 if (!UnusedCXXCondDecl
)
2161 unsigned DiagID
= isa
<ParmVarDecl
>(VD
) ? diag::warn_unused_but_set_parameter
2162 : diag::warn_unused_but_set_variable
;
2163 DiagReceiver(VD
->getLocation(), PDiag(DiagID
) << VD
);
2166 static void CheckPoppedLabel(LabelDecl
*L
, Sema
&S
,
2167 Sema::DiagReceiverTy DiagReceiver
) {
2168 // Verify that we have no forward references left. If so, there was a goto
2169 // or address of a label taken, but no definition of it. Label fwd
2170 // definitions are indicated with a null substmt which is also not a resolved
2171 // MS inline assembly label name.
2172 bool Diagnose
= false;
2173 if (L
->isMSAsmLabel())
2174 Diagnose
= !L
->isResolvedMSAsmLabel();
2176 Diagnose
= L
->getStmt() == nullptr;
2178 DiagReceiver(L
->getLocation(), S
.PDiag(diag::err_undeclared_label_use
)
2182 void Sema::ActOnPopScope(SourceLocation Loc
, Scope
*S
) {
2185 if (S
->decl_empty()) return;
2186 assert((S
->getFlags() & (Scope::DeclScope
| Scope::TemplateParamScope
)) &&
2187 "Scope shouldn't contain decls!");
2189 /// We visit the decls in non-deterministic order, but we want diagnostics
2190 /// emitted in deterministic order. Collect any diagnostic that may be emitted
2191 /// and sort the diagnostics before emitting them, after we visited all decls.
2194 std::optional
<SourceLocation
> PreviousDeclLoc
;
2195 PartialDiagnostic PD
;
2197 SmallVector
<LocAndDiag
, 16> DeclDiags
;
2198 auto addDiag
= [&DeclDiags
](SourceLocation Loc
, PartialDiagnostic PD
) {
2199 DeclDiags
.push_back(LocAndDiag
{Loc
, std::nullopt
, std::move(PD
)});
2201 auto addDiagWithPrev
= [&DeclDiags
](SourceLocation Loc
,
2202 SourceLocation PreviousDeclLoc
,
2203 PartialDiagnostic PD
) {
2204 DeclDiags
.push_back(LocAndDiag
{Loc
, PreviousDeclLoc
, std::move(PD
)});
2207 for (auto *TmpD
: S
->decls()) {
2208 assert(TmpD
&& "This decl didn't get pushed??");
2210 assert(isa
<NamedDecl
>(TmpD
) && "Decl isn't NamedDecl?");
2211 NamedDecl
*D
= cast
<NamedDecl
>(TmpD
);
2213 // Diagnose unused variables in this scope.
2214 if (!S
->hasUnrecoverableErrorOccurred()) {
2215 DiagnoseUnusedDecl(D
, addDiag
);
2216 if (const auto *RD
= dyn_cast
<RecordDecl
>(D
))
2217 DiagnoseUnusedNestedTypedefs(RD
, addDiag
);
2218 if (VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
2219 DiagnoseUnusedButSetDecl(VD
, addDiag
);
2220 RefsMinusAssignments
.erase(VD
);
2224 if (!D
->getDeclName()) continue;
2226 // If this was a forward reference to a label, verify it was defined.
2227 if (LabelDecl
*LD
= dyn_cast
<LabelDecl
>(D
))
2228 CheckPoppedLabel(LD
, *this, addDiag
);
2230 // Partial translation units that are created in incremental processing must
2231 // not clean up the IdResolver because PTUs should take into account the
2232 // declarations that came from previous PTUs.
2233 if (!PP
.isIncrementalProcessingEnabled() || getLangOpts().ObjC
||
2234 getLangOpts().CPlusPlus
)
2235 IdResolver
.RemoveDecl(D
);
2237 // Warn on it if we are shadowing a declaration.
2238 auto ShadowI
= ShadowingDecls
.find(D
);
2239 if (ShadowI
!= ShadowingDecls
.end()) {
2240 if (const auto *FD
= dyn_cast
<FieldDecl
>(ShadowI
->second
)) {
2241 addDiagWithPrev(D
->getLocation(), FD
->getLocation(),
2242 PDiag(diag::warn_ctor_parm_shadows_field
)
2243 << D
<< FD
<< FD
->getParent());
2245 ShadowingDecls
.erase(ShadowI
);
2249 llvm::sort(DeclDiags
,
2250 [](const LocAndDiag
&LHS
, const LocAndDiag
&RHS
) -> bool {
2251 // The particular order for diagnostics is not important, as long
2252 // as the order is deterministic. Using the raw location is going
2253 // to generally be in source order unless there are macro
2254 // expansions involved.
2255 return LHS
.Loc
.getRawEncoding() < RHS
.Loc
.getRawEncoding();
2257 for (const LocAndDiag
&D
: DeclDiags
) {
2259 if (D
.PreviousDeclLoc
)
2260 Diag(*D
.PreviousDeclLoc
, diag::note_previous_declaration
);
2264 Scope
*Sema::getNonFieldDeclScope(Scope
*S
) {
2265 while (((S
->getFlags() & Scope::DeclScope
) == 0) ||
2266 (S
->getEntity() && S
->getEntity()->isTransparentContext()) ||
2267 (S
->isClassScope() && !getLangOpts().CPlusPlus
))
2272 static StringRef
getHeaderName(Builtin::Context
&BuiltinInfo
, unsigned ID
,
2273 ASTContext::GetBuiltinTypeError Error
) {
2275 case ASTContext::GE_None
:
2277 case ASTContext::GE_Missing_type
:
2278 return BuiltinInfo
.getHeaderName(ID
);
2279 case ASTContext::GE_Missing_stdio
:
2281 case ASTContext::GE_Missing_setjmp
:
2283 case ASTContext::GE_Missing_ucontext
:
2284 return "ucontext.h";
2286 llvm_unreachable("unhandled error kind");
2289 FunctionDecl
*Sema::CreateBuiltin(IdentifierInfo
*II
, QualType Type
,
2290 unsigned ID
, SourceLocation Loc
) {
2291 DeclContext
*Parent
= Context
.getTranslationUnitDecl();
2293 if (getLangOpts().CPlusPlus
) {
2294 LinkageSpecDecl
*CLinkageDecl
= LinkageSpecDecl::Create(
2295 Context
, Parent
, Loc
, Loc
, LinkageSpecLanguageIDs::C
, false);
2296 CLinkageDecl
->setImplicit();
2297 Parent
->addDecl(CLinkageDecl
);
2298 Parent
= CLinkageDecl
;
2301 ConstexprSpecKind ConstexprKind
= ConstexprSpecKind::Unspecified
;
2302 if (Context
.BuiltinInfo
.isImmediate(ID
)) {
2303 assert(getLangOpts().CPlusPlus20
&&
2304 "consteval builtins should only be available in C++20 mode");
2305 ConstexprKind
= ConstexprSpecKind::Consteval
;
2308 FunctionDecl
*New
= FunctionDecl::Create(
2309 Context
, Parent
, Loc
, Loc
, II
, Type
, /*TInfo=*/nullptr, SC_Extern
,
2310 getCurFPFeatures().isFPConstrained(), /*isInlineSpecified=*/false,
2311 Type
->isFunctionProtoType(), ConstexprKind
);
2313 New
->addAttr(BuiltinAttr::CreateImplicit(Context
, ID
));
2315 // Create Decl objects for each parameter, adding them to the
2317 if (const FunctionProtoType
*FT
= dyn_cast
<FunctionProtoType
>(Type
)) {
2318 SmallVector
<ParmVarDecl
*, 16> Params
;
2319 for (unsigned i
= 0, e
= FT
->getNumParams(); i
!= e
; ++i
) {
2320 ParmVarDecl
*parm
= ParmVarDecl::Create(
2321 Context
, New
, SourceLocation(), SourceLocation(), nullptr,
2322 FT
->getParamType(i
), /*TInfo=*/nullptr, SC_None
, nullptr);
2323 parm
->setScopeInfo(0, i
);
2324 Params
.push_back(parm
);
2326 New
->setParams(Params
);
2329 AddKnownFunctionAttributes(New
);
2333 NamedDecl
*Sema::LazilyCreateBuiltin(IdentifierInfo
*II
, unsigned ID
,
2334 Scope
*S
, bool ForRedeclaration
,
2335 SourceLocation Loc
) {
2336 LookupNecessaryTypesForBuiltin(S
, ID
);
2338 ASTContext::GetBuiltinTypeError Error
;
2339 QualType R
= Context
.GetBuiltinType(ID
, Error
);
2341 if (!ForRedeclaration
)
2344 // If we have a builtin without an associated type we should not emit a
2345 // warning when we were not able to find a type for it.
2346 if (Error
== ASTContext::GE_Missing_type
||
2347 Context
.BuiltinInfo
.allowTypeMismatch(ID
))
2350 // If we could not find a type for setjmp it is because the jmp_buf type was
2351 // not defined prior to the setjmp declaration.
2352 if (Error
== ASTContext::GE_Missing_setjmp
) {
2353 Diag(Loc
, diag::warn_implicit_decl_no_jmp_buf
)
2354 << Context
.BuiltinInfo
.getName(ID
);
2358 // Generally, we emit a warning that the declaration requires the
2359 // appropriate header.
2360 Diag(Loc
, diag::warn_implicit_decl_requires_sysheader
)
2361 << getHeaderName(Context
.BuiltinInfo
, ID
, Error
)
2362 << Context
.BuiltinInfo
.getName(ID
);
2366 if (!ForRedeclaration
&&
2367 (Context
.BuiltinInfo
.isPredefinedLibFunction(ID
) ||
2368 Context
.BuiltinInfo
.isHeaderDependentFunction(ID
))) {
2369 Diag(Loc
, LangOpts
.C99
? diag::ext_implicit_lib_function_decl_c99
2370 : diag::ext_implicit_lib_function_decl
)
2371 << Context
.BuiltinInfo
.getName(ID
) << R
;
2372 if (const char *Header
= Context
.BuiltinInfo
.getHeaderName(ID
))
2373 Diag(Loc
, diag::note_include_header_or_declare
)
2374 << Header
<< Context
.BuiltinInfo
.getName(ID
);
2380 FunctionDecl
*New
= CreateBuiltin(II
, R
, ID
, Loc
);
2381 RegisterLocallyScopedExternCDecl(New
, S
);
2383 // TUScope is the translation-unit scope to insert this function into.
2384 // FIXME: This is hideous. We need to teach PushOnScopeChains to
2385 // relate Scopes to DeclContexts, and probably eliminate CurContext
2386 // entirely, but we're not there yet.
2387 DeclContext
*SavedContext
= CurContext
;
2388 CurContext
= New
->getDeclContext();
2389 PushOnScopeChains(New
, TUScope
);
2390 CurContext
= SavedContext
;
2394 /// Typedef declarations don't have linkage, but they still denote the same
2395 /// entity if their types are the same.
2396 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2399 filterNonConflictingPreviousTypedefDecls(Sema
&S
, const TypedefNameDecl
*Decl
,
2400 LookupResult
&Previous
) {
2401 // This is only interesting when modules are enabled.
2402 if (!S
.getLangOpts().Modules
&& !S
.getLangOpts().ModulesLocalVisibility
)
2405 // Empty sets are uninteresting.
2406 if (Previous
.empty())
2409 LookupResult::Filter Filter
= Previous
.makeFilter();
2410 while (Filter
.hasNext()) {
2411 NamedDecl
*Old
= Filter
.next();
2413 // Non-hidden declarations are never ignored.
2414 if (S
.isVisible(Old
))
2417 // Declarations of the same entity are not ignored, even if they have
2418 // different linkages.
2419 if (auto *OldTD
= dyn_cast
<TypedefNameDecl
>(Old
)) {
2420 if (S
.Context
.hasSameType(OldTD
->getUnderlyingType(),
2421 Decl
->getUnderlyingType()))
2424 // If both declarations give a tag declaration a typedef name for linkage
2425 // purposes, then they declare the same entity.
2426 if (OldTD
->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2427 Decl
->getAnonDeclWithTypedefName())
2437 bool Sema::isIncompatibleTypedef(const TypeDecl
*Old
, TypedefNameDecl
*New
) {
2439 if (const TypedefNameDecl
*OldTypedef
= dyn_cast
<TypedefNameDecl
>(Old
))
2440 OldType
= OldTypedef
->getUnderlyingType();
2442 OldType
= Context
.getTypeDeclType(Old
);
2443 QualType NewType
= New
->getUnderlyingType();
2445 if (NewType
->isVariablyModifiedType()) {
2446 // Must not redefine a typedef with a variably-modified type.
2447 int Kind
= isa
<TypeAliasDecl
>(Old
) ? 1 : 0;
2448 Diag(New
->getLocation(), diag::err_redefinition_variably_modified_typedef
)
2450 if (Old
->getLocation().isValid())
2451 notePreviousDefinition(Old
, New
->getLocation());
2452 New
->setInvalidDecl();
2456 if (OldType
!= NewType
&&
2457 !OldType
->isDependentType() &&
2458 !NewType
->isDependentType() &&
2459 !Context
.hasSameType(OldType
, NewType
)) {
2460 int Kind
= isa
<TypeAliasDecl
>(Old
) ? 1 : 0;
2461 Diag(New
->getLocation(), diag::err_redefinition_different_typedef
)
2462 << Kind
<< NewType
<< OldType
;
2463 if (Old
->getLocation().isValid())
2464 notePreviousDefinition(Old
, New
->getLocation());
2465 New
->setInvalidDecl();
2471 void Sema::MergeTypedefNameDecl(Scope
*S
, TypedefNameDecl
*New
,
2472 LookupResult
&OldDecls
) {
2473 // If the new decl is known invalid already, don't bother doing any
2475 if (New
->isInvalidDecl()) return;
2477 // Allow multiple definitions for ObjC built-in typedefs.
2478 // FIXME: Verify the underlying types are equivalent!
2479 if (getLangOpts().ObjC
) {
2480 const IdentifierInfo
*TypeID
= New
->getIdentifier();
2481 switch (TypeID
->getLength()) {
2485 if (!TypeID
->isStr("id"))
2487 QualType T
= New
->getUnderlyingType();
2488 if (!T
->isPointerType())
2490 if (!T
->isVoidPointerType()) {
2491 QualType PT
= T
->castAs
<PointerType
>()->getPointeeType();
2492 if (!PT
->isStructureType())
2495 Context
.setObjCIdRedefinitionType(T
);
2496 // Install the built-in type for 'id', ignoring the current definition.
2497 New
->setTypeForDecl(Context
.getObjCIdType().getTypePtr());
2501 if (!TypeID
->isStr("Class"))
2503 Context
.setObjCClassRedefinitionType(New
->getUnderlyingType());
2504 // Install the built-in type for 'Class', ignoring the current definition.
2505 New
->setTypeForDecl(Context
.getObjCClassType().getTypePtr());
2508 if (!TypeID
->isStr("SEL"))
2510 Context
.setObjCSelRedefinitionType(New
->getUnderlyingType());
2511 // Install the built-in type for 'SEL', ignoring the current definition.
2512 New
->setTypeForDecl(Context
.getObjCSelType().getTypePtr());
2515 // Fall through - the typedef name was not a builtin type.
2518 // Verify the old decl was also a type.
2519 TypeDecl
*Old
= OldDecls
.getAsSingle
<TypeDecl
>();
2521 Diag(New
->getLocation(), diag::err_redefinition_different_kind
)
2522 << New
->getDeclName();
2524 NamedDecl
*OldD
= OldDecls
.getRepresentativeDecl();
2525 if (OldD
->getLocation().isValid())
2526 notePreviousDefinition(OldD
, New
->getLocation());
2528 return New
->setInvalidDecl();
2531 // If the old declaration is invalid, just give up here.
2532 if (Old
->isInvalidDecl())
2533 return New
->setInvalidDecl();
2535 if (auto *OldTD
= dyn_cast
<TypedefNameDecl
>(Old
)) {
2536 auto *OldTag
= OldTD
->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2537 auto *NewTag
= New
->getAnonDeclWithTypedefName();
2538 NamedDecl
*Hidden
= nullptr;
2539 if (OldTag
&& NewTag
&&
2540 OldTag
->getCanonicalDecl() != NewTag
->getCanonicalDecl() &&
2541 !hasVisibleDefinition(OldTag
, &Hidden
)) {
2542 // There is a definition of this tag, but it is not visible. Use it
2543 // instead of our tag.
2544 New
->setTypeForDecl(OldTD
->getTypeForDecl());
2545 if (OldTD
->isModed())
2546 New
->setModedTypeSourceInfo(OldTD
->getTypeSourceInfo(),
2547 OldTD
->getUnderlyingType());
2549 New
->setTypeSourceInfo(OldTD
->getTypeSourceInfo());
2551 // Make the old tag definition visible.
2552 makeMergedDefinitionVisible(Hidden
);
2554 // If this was an unscoped enumeration, yank all of its enumerators
2555 // out of the scope.
2556 if (isa
<EnumDecl
>(NewTag
)) {
2557 Scope
*EnumScope
= getNonFieldDeclScope(S
);
2558 for (auto *D
: NewTag
->decls()) {
2559 auto *ED
= cast
<EnumConstantDecl
>(D
);
2560 assert(EnumScope
->isDeclScope(ED
));
2561 EnumScope
->RemoveDecl(ED
);
2562 IdResolver
.RemoveDecl(ED
);
2563 ED
->getLexicalDeclContext()->removeDecl(ED
);
2569 // If the typedef types are not identical, reject them in all languages and
2570 // with any extensions enabled.
2571 if (isIncompatibleTypedef(Old
, New
))
2574 // The types match. Link up the redeclaration chain and merge attributes if
2575 // the old declaration was a typedef.
2576 if (TypedefNameDecl
*Typedef
= dyn_cast
<TypedefNameDecl
>(Old
)) {
2577 New
->setPreviousDecl(Typedef
);
2578 mergeDeclAttributes(New
, Old
);
2581 if (getLangOpts().MicrosoftExt
)
2584 if (getLangOpts().CPlusPlus
) {
2585 // C++ [dcl.typedef]p2:
2586 // In a given non-class scope, a typedef specifier can be used to
2587 // redefine the name of any type declared in that scope to refer
2588 // to the type to which it already refers.
2589 if (!isa
<CXXRecordDecl
>(CurContext
))
2592 // C++0x [dcl.typedef]p4:
2593 // In a given class scope, a typedef specifier can be used to redefine
2594 // any class-name declared in that scope that is not also a typedef-name
2595 // to refer to the type to which it already refers.
2597 // This wording came in via DR424, which was a correction to the
2598 // wording in DR56, which accidentally banned code like:
2601 // typedef struct A { } A;
2604 // in the C++03 standard. We implement the C++0x semantics, which
2605 // allow the above but disallow
2612 // since that was the intent of DR56.
2613 if (!isa
<TypedefNameDecl
>(Old
))
2616 Diag(New
->getLocation(), diag::err_redefinition
)
2617 << New
->getDeclName();
2618 notePreviousDefinition(Old
, New
->getLocation());
2619 return New
->setInvalidDecl();
2622 // Modules always permit redefinition of typedefs, as does C11.
2623 if (getLangOpts().Modules
|| getLangOpts().C11
)
2626 // If we have a redefinition of a typedef in C, emit a warning. This warning
2627 // is normally mapped to an error, but can be controlled with
2628 // -Wtypedef-redefinition. If either the original or the redefinition is
2629 // in a system header, don't emit this for compatibility with GCC.
2630 if (getDiagnostics().getSuppressSystemWarnings() &&
2631 // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2632 (Old
->isImplicit() ||
2633 Context
.getSourceManager().isInSystemHeader(Old
->getLocation()) ||
2634 Context
.getSourceManager().isInSystemHeader(New
->getLocation())))
2637 Diag(New
->getLocation(), diag::ext_redefinition_of_typedef
)
2638 << New
->getDeclName();
2639 notePreviousDefinition(Old
, New
->getLocation());
2642 /// DeclhasAttr - returns true if decl Declaration already has the target
2644 static bool DeclHasAttr(const Decl
*D
, const Attr
*A
) {
2645 const OwnershipAttr
*OA
= dyn_cast
<OwnershipAttr
>(A
);
2646 const AnnotateAttr
*Ann
= dyn_cast
<AnnotateAttr
>(A
);
2647 for (const auto *i
: D
->attrs())
2648 if (i
->getKind() == A
->getKind()) {
2650 if (Ann
->getAnnotation() == cast
<AnnotateAttr
>(i
)->getAnnotation())
2654 // FIXME: Don't hardcode this check
2655 if (OA
&& isa
<OwnershipAttr
>(i
))
2656 return OA
->getOwnKind() == cast
<OwnershipAttr
>(i
)->getOwnKind();
2663 static bool isAttributeTargetADefinition(Decl
*D
) {
2664 if (VarDecl
*VD
= dyn_cast
<VarDecl
>(D
))
2665 return VD
->isThisDeclarationADefinition();
2666 if (TagDecl
*TD
= dyn_cast
<TagDecl
>(D
))
2667 return TD
->isCompleteDefinition() || TD
->isBeingDefined();
2671 /// Merge alignment attributes from \p Old to \p New, taking into account the
2672 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2674 /// \return \c true if any attributes were added to \p New.
2675 static bool mergeAlignedAttrs(Sema
&S
, NamedDecl
*New
, Decl
*Old
) {
2676 // Look for alignas attributes on Old, and pick out whichever attribute
2677 // specifies the strictest alignment requirement.
2678 AlignedAttr
*OldAlignasAttr
= nullptr;
2679 AlignedAttr
*OldStrictestAlignAttr
= nullptr;
2680 unsigned OldAlign
= 0;
2681 for (auto *I
: Old
->specific_attrs
<AlignedAttr
>()) {
2682 // FIXME: We have no way of representing inherited dependent alignments
2684 // template<int A, int B> struct alignas(A) X;
2685 // template<int A, int B> struct alignas(B) X {};
2686 // For now, we just ignore any alignas attributes which are not on the
2687 // definition in such a case.
2688 if (I
->isAlignmentDependent())
2694 unsigned Align
= I
->getAlignment(S
.Context
);
2695 if (Align
> OldAlign
) {
2697 OldStrictestAlignAttr
= I
;
2701 // Look for alignas attributes on New.
2702 AlignedAttr
*NewAlignasAttr
= nullptr;
2703 unsigned NewAlign
= 0;
2704 for (auto *I
: New
->specific_attrs
<AlignedAttr
>()) {
2705 if (I
->isAlignmentDependent())
2711 unsigned Align
= I
->getAlignment(S
.Context
);
2712 if (Align
> NewAlign
)
2716 if (OldAlignasAttr
&& NewAlignasAttr
&& OldAlign
!= NewAlign
) {
2717 // Both declarations have 'alignas' attributes. We require them to match.
2718 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2719 // fall short. (If two declarations both have alignas, they must both match
2720 // every definition, and so must match each other if there is a definition.)
2722 // If either declaration only contains 'alignas(0)' specifiers, then it
2723 // specifies the natural alignment for the type.
2724 if (OldAlign
== 0 || NewAlign
== 0) {
2726 if (ValueDecl
*VD
= dyn_cast
<ValueDecl
>(New
))
2729 Ty
= S
.Context
.getTagDeclType(cast
<TagDecl
>(New
));
2732 OldAlign
= S
.Context
.getTypeAlign(Ty
);
2734 NewAlign
= S
.Context
.getTypeAlign(Ty
);
2737 if (OldAlign
!= NewAlign
) {
2738 S
.Diag(NewAlignasAttr
->getLocation(), diag::err_alignas_mismatch
)
2739 << (unsigned)S
.Context
.toCharUnitsFromBits(OldAlign
).getQuantity()
2740 << (unsigned)S
.Context
.toCharUnitsFromBits(NewAlign
).getQuantity();
2741 S
.Diag(OldAlignasAttr
->getLocation(), diag::note_previous_declaration
);
2745 if (OldAlignasAttr
&& !NewAlignasAttr
&& isAttributeTargetADefinition(New
)) {
2746 // C++11 [dcl.align]p6:
2747 // if any declaration of an entity has an alignment-specifier,
2748 // every defining declaration of that entity shall specify an
2749 // equivalent alignment.
2751 // If the definition of an object does not have an alignment
2752 // specifier, any other declaration of that object shall also
2753 // have no alignment specifier.
2754 S
.Diag(New
->getLocation(), diag::err_alignas_missing_on_definition
)
2756 S
.Diag(OldAlignasAttr
->getLocation(), diag::note_alignas_on_declaration
)
2760 bool AnyAdded
= false;
2762 // Ensure we have an attribute representing the strictest alignment.
2763 if (OldAlign
> NewAlign
) {
2764 AlignedAttr
*Clone
= OldStrictestAlignAttr
->clone(S
.Context
);
2765 Clone
->setInherited(true);
2766 New
->addAttr(Clone
);
2770 // Ensure we have an alignas attribute if the old declaration had one.
2771 if (OldAlignasAttr
&& !NewAlignasAttr
&&
2772 !(AnyAdded
&& OldStrictestAlignAttr
->isAlignas())) {
2773 AlignedAttr
*Clone
= OldAlignasAttr
->clone(S
.Context
);
2774 Clone
->setInherited(true);
2775 New
->addAttr(Clone
);
2782 #define WANT_DECL_MERGE_LOGIC
2783 #include "clang/Sema/AttrParsedAttrImpl.inc"
2784 #undef WANT_DECL_MERGE_LOGIC
2786 static bool mergeDeclAttribute(Sema
&S
, NamedDecl
*D
,
2787 const InheritableAttr
*Attr
,
2788 Sema::AvailabilityMergeKind AMK
) {
2789 // Diagnose any mutual exclusions between the attribute that we want to add
2790 // and attributes that already exist on the declaration.
2791 if (!DiagnoseMutualExclusions(S
, D
, Attr
))
2794 // This function copies an attribute Attr from a previous declaration to the
2795 // new declaration D if the new declaration doesn't itself have that attribute
2796 // yet or if that attribute allows duplicates.
2797 // If you're adding a new attribute that requires logic different from
2798 // "use explicit attribute on decl if present, else use attribute from
2799 // previous decl", for example if the attribute needs to be consistent
2800 // between redeclarations, you need to call a custom merge function here.
2801 InheritableAttr
*NewAttr
= nullptr;
2802 if (const auto *AA
= dyn_cast
<AvailabilityAttr
>(Attr
))
2803 NewAttr
= S
.mergeAvailabilityAttr(
2804 D
, *AA
, AA
->getPlatform(), AA
->isImplicit(), AA
->getIntroduced(),
2805 AA
->getDeprecated(), AA
->getObsoleted(), AA
->getUnavailable(),
2806 AA
->getMessage(), AA
->getStrict(), AA
->getReplacement(), AMK
,
2807 AA
->getPriority(), AA
->getEnvironment());
2808 else if (const auto *VA
= dyn_cast
<VisibilityAttr
>(Attr
))
2809 NewAttr
= S
.mergeVisibilityAttr(D
, *VA
, VA
->getVisibility());
2810 else if (const auto *VA
= dyn_cast
<TypeVisibilityAttr
>(Attr
))
2811 NewAttr
= S
.mergeTypeVisibilityAttr(D
, *VA
, VA
->getVisibility());
2812 else if (const auto *ImportA
= dyn_cast
<DLLImportAttr
>(Attr
))
2813 NewAttr
= S
.mergeDLLImportAttr(D
, *ImportA
);
2814 else if (const auto *ExportA
= dyn_cast
<DLLExportAttr
>(Attr
))
2815 NewAttr
= S
.mergeDLLExportAttr(D
, *ExportA
);
2816 else if (const auto *EA
= dyn_cast
<ErrorAttr
>(Attr
))
2817 NewAttr
= S
.mergeErrorAttr(D
, *EA
, EA
->getUserDiagnostic());
2818 else if (const auto *FA
= dyn_cast
<FormatAttr
>(Attr
))
2819 NewAttr
= S
.mergeFormatAttr(D
, *FA
, FA
->getType(), FA
->getFormatIdx(),
2821 else if (const auto *SA
= dyn_cast
<SectionAttr
>(Attr
))
2822 NewAttr
= S
.mergeSectionAttr(D
, *SA
, SA
->getName());
2823 else if (const auto *CSA
= dyn_cast
<CodeSegAttr
>(Attr
))
2824 NewAttr
= S
.mergeCodeSegAttr(D
, *CSA
, CSA
->getName());
2825 else if (const auto *IA
= dyn_cast
<MSInheritanceAttr
>(Attr
))
2826 NewAttr
= S
.mergeMSInheritanceAttr(D
, *IA
, IA
->getBestCase(),
2827 IA
->getInheritanceModel());
2828 else if (const auto *AA
= dyn_cast
<AlwaysInlineAttr
>(Attr
))
2829 NewAttr
= S
.mergeAlwaysInlineAttr(D
, *AA
,
2830 &S
.Context
.Idents
.get(AA
->getSpelling()));
2831 else if (S
.getLangOpts().CUDA
&& isa
<FunctionDecl
>(D
) &&
2832 (isa
<CUDAHostAttr
>(Attr
) || isa
<CUDADeviceAttr
>(Attr
) ||
2833 isa
<CUDAGlobalAttr
>(Attr
))) {
2834 // CUDA target attributes are part of function signature for
2835 // overloading purposes and must not be merged.
2837 } else if (const auto *MA
= dyn_cast
<MinSizeAttr
>(Attr
))
2838 NewAttr
= S
.mergeMinSizeAttr(D
, *MA
);
2839 else if (const auto *SNA
= dyn_cast
<SwiftNameAttr
>(Attr
))
2840 NewAttr
= S
.Swift().mergeNameAttr(D
, *SNA
, SNA
->getName());
2841 else if (const auto *OA
= dyn_cast
<OptimizeNoneAttr
>(Attr
))
2842 NewAttr
= S
.mergeOptimizeNoneAttr(D
, *OA
);
2843 else if (const auto *InternalLinkageA
= dyn_cast
<InternalLinkageAttr
>(Attr
))
2844 NewAttr
= S
.mergeInternalLinkageAttr(D
, *InternalLinkageA
);
2845 else if (isa
<AlignedAttr
>(Attr
))
2846 // AlignedAttrs are handled separately, because we need to handle all
2847 // such attributes on a declaration at the same time.
2849 else if ((isa
<DeprecatedAttr
>(Attr
) || isa
<UnavailableAttr
>(Attr
)) &&
2850 (AMK
== Sema::AMK_Override
||
2851 AMK
== Sema::AMK_ProtocolImplementation
||
2852 AMK
== Sema::AMK_OptionalProtocolImplementation
))
2854 else if (const auto *UA
= dyn_cast
<UuidAttr
>(Attr
))
2855 NewAttr
= S
.mergeUuidAttr(D
, *UA
, UA
->getGuid(), UA
->getGuidDecl());
2856 else if (const auto *IMA
= dyn_cast
<WebAssemblyImportModuleAttr
>(Attr
))
2857 NewAttr
= S
.Wasm().mergeImportModuleAttr(D
, *IMA
);
2858 else if (const auto *INA
= dyn_cast
<WebAssemblyImportNameAttr
>(Attr
))
2859 NewAttr
= S
.Wasm().mergeImportNameAttr(D
, *INA
);
2860 else if (const auto *TCBA
= dyn_cast
<EnforceTCBAttr
>(Attr
))
2861 NewAttr
= S
.mergeEnforceTCBAttr(D
, *TCBA
);
2862 else if (const auto *TCBLA
= dyn_cast
<EnforceTCBLeafAttr
>(Attr
))
2863 NewAttr
= S
.mergeEnforceTCBLeafAttr(D
, *TCBLA
);
2864 else if (const auto *BTFA
= dyn_cast
<BTFDeclTagAttr
>(Attr
))
2865 NewAttr
= S
.mergeBTFDeclTagAttr(D
, *BTFA
);
2866 else if (const auto *NT
= dyn_cast
<HLSLNumThreadsAttr
>(Attr
))
2867 NewAttr
= S
.HLSL().mergeNumThreadsAttr(D
, *NT
, NT
->getX(), NT
->getY(),
2869 else if (const auto *WS
= dyn_cast
<HLSLWaveSizeAttr
>(Attr
))
2870 NewAttr
= S
.HLSL().mergeWaveSizeAttr(D
, *WS
, WS
->getMin(), WS
->getMax(),
2872 WS
->getSpelledArgsCount());
2873 else if (const auto *SA
= dyn_cast
<HLSLShaderAttr
>(Attr
))
2874 NewAttr
= S
.HLSL().mergeShaderAttr(D
, *SA
, SA
->getType());
2875 else if (isa
<SuppressAttr
>(Attr
))
2876 // Do nothing. Each redeclaration should be suppressed separately.
2878 else if (Attr
->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D
, Attr
))
2879 NewAttr
= cast
<InheritableAttr
>(Attr
->clone(S
.Context
));
2882 NewAttr
->setInherited(true);
2883 D
->addAttr(NewAttr
);
2884 if (isa
<MSInheritanceAttr
>(NewAttr
))
2885 S
.Consumer
.AssignInheritanceModel(cast
<CXXRecordDecl
>(D
));
2892 static const NamedDecl
*getDefinition(const Decl
*D
) {
2893 if (const TagDecl
*TD
= dyn_cast
<TagDecl
>(D
))
2894 return TD
->getDefinition();
2895 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(D
)) {
2896 const VarDecl
*Def
= VD
->getDefinition();
2899 return VD
->getActingDefinition();
2901 if (const FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
2902 const FunctionDecl
*Def
= nullptr;
2903 if (FD
->isDefined(Def
, true))
2909 static bool hasAttribute(const Decl
*D
, attr::Kind Kind
) {
2910 for (const auto *Attribute
: D
->attrs())
2911 if (Attribute
->getKind() == Kind
)
2916 /// checkNewAttributesAfterDef - If we already have a definition, check that
2917 /// there are no new attributes in this declaration.
2918 static void checkNewAttributesAfterDef(Sema
&S
, Decl
*New
, const Decl
*Old
) {
2919 if (!New
->hasAttrs())
2922 const NamedDecl
*Def
= getDefinition(Old
);
2923 if (!Def
|| Def
== New
)
2926 AttrVec
&NewAttributes
= New
->getAttrs();
2927 for (unsigned I
= 0, E
= NewAttributes
.size(); I
!= E
;) {
2928 Attr
*NewAttribute
= NewAttributes
[I
];
2930 if (isa
<AliasAttr
>(NewAttribute
) || isa
<IFuncAttr
>(NewAttribute
)) {
2931 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(New
)) {
2932 SkipBodyInfo SkipBody
;
2933 S
.CheckForFunctionRedefinition(FD
, cast
<FunctionDecl
>(Def
), &SkipBody
);
2935 // If we're skipping this definition, drop the "alias" attribute.
2936 if (SkipBody
.ShouldSkip
) {
2937 NewAttributes
.erase(NewAttributes
.begin() + I
);
2942 VarDecl
*VD
= cast
<VarDecl
>(New
);
2943 unsigned Diag
= cast
<VarDecl
>(Def
)->isThisDeclarationADefinition() ==
2944 VarDecl::TentativeDefinition
2945 ? diag::err_alias_after_tentative
2946 : diag::err_redefinition
;
2947 S
.Diag(VD
->getLocation(), Diag
) << VD
->getDeclName();
2948 if (Diag
== diag::err_redefinition
)
2949 S
.notePreviousDefinition(Def
, VD
->getLocation());
2951 S
.Diag(Def
->getLocation(), diag::note_previous_definition
);
2952 VD
->setInvalidDecl();
2958 if (const VarDecl
*VD
= dyn_cast
<VarDecl
>(Def
)) {
2959 // Tentative definitions are only interesting for the alias check above.
2960 if (VD
->isThisDeclarationADefinition() != VarDecl::Definition
) {
2966 if (hasAttribute(Def
, NewAttribute
->getKind())) {
2968 continue; // regular attr merging will take care of validating this.
2971 if (isa
<C11NoReturnAttr
>(NewAttribute
)) {
2972 // C's _Noreturn is allowed to be added to a function after it is defined.
2975 } else if (isa
<UuidAttr
>(NewAttribute
)) {
2976 // msvc will allow a subsequent definition to add an uuid to a class
2979 } else if (const AlignedAttr
*AA
= dyn_cast
<AlignedAttr
>(NewAttribute
)) {
2980 if (AA
->isAlignas()) {
2981 // C++11 [dcl.align]p6:
2982 // if any declaration of an entity has an alignment-specifier,
2983 // every defining declaration of that entity shall specify an
2984 // equivalent alignment.
2986 // If the definition of an object does not have an alignment
2987 // specifier, any other declaration of that object shall also
2988 // have no alignment specifier.
2989 S
.Diag(Def
->getLocation(), diag::err_alignas_missing_on_definition
)
2991 S
.Diag(NewAttribute
->getLocation(), diag::note_alignas_on_declaration
)
2993 NewAttributes
.erase(NewAttributes
.begin() + I
);
2997 } else if (isa
<LoaderUninitializedAttr
>(NewAttribute
)) {
2998 // If there is a C definition followed by a redeclaration with this
2999 // attribute then there are two different definitions. In C++, prefer the
3000 // standard diagnostics.
3001 if (!S
.getLangOpts().CPlusPlus
) {
3002 S
.Diag(NewAttribute
->getLocation(),
3003 diag::err_loader_uninitialized_redeclaration
);
3004 S
.Diag(Def
->getLocation(), diag::note_previous_definition
);
3005 NewAttributes
.erase(NewAttributes
.begin() + I
);
3009 } else if (isa
<SelectAnyAttr
>(NewAttribute
) &&
3010 cast
<VarDecl
>(New
)->isInline() &&
3011 !cast
<VarDecl
>(New
)->isInlineSpecified()) {
3012 // Don't warn about applying selectany to implicitly inline variables.
3013 // Older compilers and language modes would require the use of selectany
3014 // to make such variables inline, and it would have no effect if we
3018 } else if (isa
<OMPDeclareVariantAttr
>(NewAttribute
)) {
3019 // We allow to add OMP[Begin]DeclareVariantAttr to be added to
3020 // declarations after definitions.
3023 } else if (isa
<SYCLKernelEntryPointAttr
>(NewAttribute
)) {
3024 // Elevate latent uses of the sycl_kernel_entry_point attribute to an
3025 // error since the definition will have already been created without
3026 // the semantic effects of the attribute having been applied.
3027 S
.Diag(NewAttribute
->getLocation(),
3028 diag::err_sycl_entry_point_after_definition
);
3029 S
.Diag(Def
->getLocation(), diag::note_previous_definition
);
3030 cast
<SYCLKernelEntryPointAttr
>(NewAttribute
)->setInvalidAttr();
3035 S
.Diag(NewAttribute
->getLocation(),
3036 diag::warn_attribute_precede_definition
);
3037 S
.Diag(Def
->getLocation(), diag::note_previous_definition
);
3038 NewAttributes
.erase(NewAttributes
.begin() + I
);
3043 static void diagnoseMissingConstinit(Sema
&S
, const VarDecl
*InitDecl
,
3044 const ConstInitAttr
*CIAttr
,
3045 bool AttrBeforeInit
) {
3046 SourceLocation InsertLoc
= InitDecl
->getInnerLocStart();
3048 // Figure out a good way to write this specifier on the old declaration.
3049 // FIXME: We should just use the spelling of CIAttr, but we don't preserve
3050 // enough of the attribute list spelling information to extract that without
3052 std::string SuitableSpelling
;
3053 if (S
.getLangOpts().CPlusPlus20
)
3054 SuitableSpelling
= std::string(
3055 S
.PP
.getLastMacroWithSpelling(InsertLoc
, {tok::kw_constinit
}));
3056 if (SuitableSpelling
.empty() && S
.getLangOpts().CPlusPlus11
)
3057 SuitableSpelling
= std::string(S
.PP
.getLastMacroWithSpelling(
3058 InsertLoc
, {tok::l_square
, tok::l_square
,
3059 S
.PP
.getIdentifierInfo("clang"), tok::coloncolon
,
3060 S
.PP
.getIdentifierInfo("require_constant_initialization"),
3061 tok::r_square
, tok::r_square
}));
3062 if (SuitableSpelling
.empty())
3063 SuitableSpelling
= std::string(S
.PP
.getLastMacroWithSpelling(
3064 InsertLoc
, {tok::kw___attribute
, tok::l_paren
, tok::r_paren
,
3065 S
.PP
.getIdentifierInfo("require_constant_initialization"),
3066 tok::r_paren
, tok::r_paren
}));
3067 if (SuitableSpelling
.empty() && S
.getLangOpts().CPlusPlus20
)
3068 SuitableSpelling
= "constinit";
3069 if (SuitableSpelling
.empty() && S
.getLangOpts().CPlusPlus11
)
3070 SuitableSpelling
= "[[clang::require_constant_initialization]]";
3071 if (SuitableSpelling
.empty())
3072 SuitableSpelling
= "__attribute__((require_constant_initialization))";
3073 SuitableSpelling
+= " ";
3075 if (AttrBeforeInit
) {
3076 // extern constinit int a;
3077 // int a = 0; // error (missing 'constinit'), accepted as extension
3078 assert(CIAttr
->isConstinit() && "should not diagnose this for attribute");
3079 S
.Diag(InitDecl
->getLocation(), diag::ext_constinit_missing
)
3080 << InitDecl
<< FixItHint::CreateInsertion(InsertLoc
, SuitableSpelling
);
3081 S
.Diag(CIAttr
->getLocation(), diag::note_constinit_specified_here
);
3084 // constinit extern int a; // error (missing 'constinit')
3085 S
.Diag(CIAttr
->getLocation(),
3086 CIAttr
->isConstinit() ? diag::err_constinit_added_too_late
3087 : diag::warn_require_const_init_added_too_late
)
3088 << FixItHint::CreateRemoval(SourceRange(CIAttr
->getLocation()));
3089 S
.Diag(InitDecl
->getLocation(), diag::note_constinit_missing_here
)
3090 << CIAttr
->isConstinit()
3091 << FixItHint::CreateInsertion(InsertLoc
, SuitableSpelling
);
3095 void Sema::mergeDeclAttributes(NamedDecl
*New
, Decl
*Old
,
3096 AvailabilityMergeKind AMK
) {
3097 if (UsedAttr
*OldAttr
= Old
->getMostRecentDecl()->getAttr
<UsedAttr
>()) {
3098 UsedAttr
*NewAttr
= OldAttr
->clone(Context
);
3099 NewAttr
->setInherited(true);
3100 New
->addAttr(NewAttr
);
3102 if (RetainAttr
*OldAttr
= Old
->getMostRecentDecl()->getAttr
<RetainAttr
>()) {
3103 RetainAttr
*NewAttr
= OldAttr
->clone(Context
);
3104 NewAttr
->setInherited(true);
3105 New
->addAttr(NewAttr
);
3108 if (!Old
->hasAttrs() && !New
->hasAttrs())
3111 // [dcl.constinit]p1:
3112 // If the [constinit] specifier is applied to any declaration of a
3113 // variable, it shall be applied to the initializing declaration.
3114 const auto *OldConstInit
= Old
->getAttr
<ConstInitAttr
>();
3115 const auto *NewConstInit
= New
->getAttr
<ConstInitAttr
>();
3116 if (bool(OldConstInit
) != bool(NewConstInit
)) {
3117 const auto *OldVD
= cast
<VarDecl
>(Old
);
3118 auto *NewVD
= cast
<VarDecl
>(New
);
3120 // Find the initializing declaration. Note that we might not have linked
3121 // the new declaration into the redeclaration chain yet.
3122 const VarDecl
*InitDecl
= OldVD
->getInitializingDeclaration();
3124 (NewVD
->hasInit() || NewVD
->isThisDeclarationADefinition()))
3127 if (InitDecl
== NewVD
) {
3128 // This is the initializing declaration. If it would inherit 'constinit',
3129 // that's ill-formed. (Note that we do not apply this to the attribute
3131 if (OldConstInit
&& OldConstInit
->isConstinit())
3132 diagnoseMissingConstinit(*this, NewVD
, OldConstInit
,
3133 /*AttrBeforeInit=*/true);
3134 } else if (NewConstInit
) {
3135 // This is the first time we've been told that this declaration should
3136 // have a constant initializer. If we already saw the initializing
3137 // declaration, this is too late.
3138 if (InitDecl
&& InitDecl
!= NewVD
) {
3139 diagnoseMissingConstinit(*this, InitDecl
, NewConstInit
,
3140 /*AttrBeforeInit=*/false);
3141 NewVD
->dropAttr
<ConstInitAttr
>();
3146 // Attributes declared post-definition are currently ignored.
3147 checkNewAttributesAfterDef(*this, New
, Old
);
3149 if (AsmLabelAttr
*NewA
= New
->getAttr
<AsmLabelAttr
>()) {
3150 if (AsmLabelAttr
*OldA
= Old
->getAttr
<AsmLabelAttr
>()) {
3151 if (!OldA
->isEquivalent(NewA
)) {
3152 // This redeclaration changes __asm__ label.
3153 Diag(New
->getLocation(), diag::err_different_asm_label
);
3154 Diag(OldA
->getLocation(), diag::note_previous_declaration
);
3156 } else if (Old
->isUsed()) {
3157 // This redeclaration adds an __asm__ label to a declaration that has
3158 // already been ODR-used.
3159 Diag(New
->getLocation(), diag::err_late_asm_label_name
)
3160 << isa
<FunctionDecl
>(Old
) << New
->getAttr
<AsmLabelAttr
>()->getRange();
3164 // Re-declaration cannot add abi_tag's.
3165 if (const auto *NewAbiTagAttr
= New
->getAttr
<AbiTagAttr
>()) {
3166 if (const auto *OldAbiTagAttr
= Old
->getAttr
<AbiTagAttr
>()) {
3167 for (const auto &NewTag
: NewAbiTagAttr
->tags()) {
3168 if (!llvm::is_contained(OldAbiTagAttr
->tags(), NewTag
)) {
3169 Diag(NewAbiTagAttr
->getLocation(),
3170 diag::err_new_abi_tag_on_redeclaration
)
3172 Diag(OldAbiTagAttr
->getLocation(), diag::note_previous_declaration
);
3176 Diag(NewAbiTagAttr
->getLocation(), diag::err_abi_tag_on_redeclaration
);
3177 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3181 // This redeclaration adds a section attribute.
3182 if (New
->hasAttr
<SectionAttr
>() && !Old
->hasAttr
<SectionAttr
>()) {
3183 if (auto *VD
= dyn_cast
<VarDecl
>(New
)) {
3184 if (VD
->isThisDeclarationADefinition() == VarDecl::DeclarationOnly
) {
3185 Diag(New
->getLocation(), diag::warn_attribute_section_on_redeclaration
);
3186 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3191 // Redeclaration adds code-seg attribute.
3192 const auto *NewCSA
= New
->getAttr
<CodeSegAttr
>();
3193 if (NewCSA
&& !Old
->hasAttr
<CodeSegAttr
>() &&
3194 !NewCSA
->isImplicit() && isa
<CXXMethodDecl
>(New
)) {
3195 Diag(New
->getLocation(), diag::warn_mismatched_section
)
3197 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3200 if (!Old
->hasAttrs())
3203 bool foundAny
= New
->hasAttrs();
3205 // Ensure that any moving of objects within the allocated map is done before
3207 if (!foundAny
) New
->setAttrs(AttrVec());
3209 for (auto *I
: Old
->specific_attrs
<InheritableAttr
>()) {
3210 // Ignore deprecated/unavailable/availability attributes if requested.
3211 AvailabilityMergeKind LocalAMK
= AMK_None
;
3212 if (isa
<DeprecatedAttr
>(I
) ||
3213 isa
<UnavailableAttr
>(I
) ||
3214 isa
<AvailabilityAttr
>(I
)) {
3219 case AMK_Redeclaration
:
3221 case AMK_ProtocolImplementation
:
3222 case AMK_OptionalProtocolImplementation
:
3229 if (isa
<UsedAttr
>(I
) || isa
<RetainAttr
>(I
))
3232 if (mergeDeclAttribute(*this, New
, I
, LocalAMK
))
3236 if (mergeAlignedAttrs(*this, New
, Old
))
3239 if (!foundAny
) New
->dropAttrs();
3242 // Returns the number of added attributes.
3244 static unsigned propagateAttribute(ParmVarDecl
*To
, const ParmVarDecl
*From
,
3247 for (const auto *I
: From
->specific_attrs
<T
>()) {
3248 if (!DeclHasAttr(To
, I
)) {
3249 T
*newAttr
= cast
<T
>(I
->clone(S
.Context
));
3250 newAttr
->setInherited(true);
3251 To
->addAttr(newAttr
);
3259 static void propagateAttributes(ParmVarDecl
*To
, const ParmVarDecl
*From
,
3261 if (!From
->hasAttrs()) {
3265 bool foundAny
= To
->hasAttrs();
3267 // Ensure that any moving of objects within the allocated map is
3268 // done before we process them.
3270 To
->setAttrs(AttrVec());
3272 foundAny
|= std::forward
<F
>(propagator
)(To
, From
) != 0;
3278 /// mergeParamDeclAttributes - Copy attributes from the old parameter
3280 static void mergeParamDeclAttributes(ParmVarDecl
*newDecl
,
3281 const ParmVarDecl
*oldDecl
,
3283 // C++11 [dcl.attr.depend]p2:
3284 // The first declaration of a function shall specify the
3285 // carries_dependency attribute for its declarator-id if any declaration
3286 // of the function specifies the carries_dependency attribute.
3287 const CarriesDependencyAttr
*CDA
= newDecl
->getAttr
<CarriesDependencyAttr
>();
3288 if (CDA
&& !oldDecl
->hasAttr
<CarriesDependencyAttr
>()) {
3289 S
.Diag(CDA
->getLocation(),
3290 diag::err_carries_dependency_missing_on_first_decl
) << 1/*Param*/;
3291 // Find the first declaration of the parameter.
3292 // FIXME: Should we build redeclaration chains for function parameters?
3293 const FunctionDecl
*FirstFD
=
3294 cast
<FunctionDecl
>(oldDecl
->getDeclContext())->getFirstDecl();
3295 const ParmVarDecl
*FirstVD
=
3296 FirstFD
->getParamDecl(oldDecl
->getFunctionScopeIndex());
3297 S
.Diag(FirstVD
->getLocation(),
3298 diag::note_carries_dependency_missing_first_decl
) << 1/*Param*/;
3301 propagateAttributes(
3302 newDecl
, oldDecl
, [&S
](ParmVarDecl
*To
, const ParmVarDecl
*From
) {
3304 found
+= propagateAttribute
<InheritableParamAttr
>(To
, From
, S
);
3305 // Propagate the lifetimebound attribute from parameters to the
3306 // most recent declaration. Note that this doesn't include the implicit
3307 // 'this' parameter, as the attribute is applied to the function type in
3309 found
+= propagateAttribute
<LifetimeBoundAttr
>(To
, From
, S
);
3314 static bool EquivalentArrayTypes(QualType Old
, QualType New
,
3315 const ASTContext
&Ctx
) {
3317 auto NoSizeInfo
= [&Ctx
](QualType Ty
) {
3318 if (Ty
->isIncompleteArrayType() || Ty
->isPointerType())
3320 if (const auto *VAT
= Ctx
.getAsVariableArrayType(Ty
))
3321 return VAT
->getSizeModifier() == ArraySizeModifier::Star
;
3325 // `type[]` is equivalent to `type *` and `type[*]`.
3326 if (NoSizeInfo(Old
) && NoSizeInfo(New
))
3329 // Don't try to compare VLA sizes, unless one of them has the star modifier.
3330 if (Old
->isVariableArrayType() && New
->isVariableArrayType()) {
3331 const auto *OldVAT
= Ctx
.getAsVariableArrayType(Old
);
3332 const auto *NewVAT
= Ctx
.getAsVariableArrayType(New
);
3333 if ((OldVAT
->getSizeModifier() == ArraySizeModifier::Star
) ^
3334 (NewVAT
->getSizeModifier() == ArraySizeModifier::Star
))
3339 // Only compare size, ignore Size modifiers and CVR.
3340 if (Old
->isConstantArrayType() && New
->isConstantArrayType()) {
3341 return Ctx
.getAsConstantArrayType(Old
)->getSize() ==
3342 Ctx
.getAsConstantArrayType(New
)->getSize();
3345 // Don't try to compare dependent sized array
3346 if (Old
->isDependentSizedArrayType() && New
->isDependentSizedArrayType()) {
3353 static void mergeParamDeclTypes(ParmVarDecl
*NewParam
,
3354 const ParmVarDecl
*OldParam
,
3356 if (auto Oldnullability
= OldParam
->getType()->getNullability()) {
3357 if (auto Newnullability
= NewParam
->getType()->getNullability()) {
3358 if (*Oldnullability
!= *Newnullability
) {
3359 S
.Diag(NewParam
->getLocation(), diag::warn_mismatched_nullability_attr
)
3360 << DiagNullabilityKind(
3362 ((NewParam
->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability
)
3364 << DiagNullabilityKind(
3366 ((OldParam
->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability
)
3368 S
.Diag(OldParam
->getLocation(), diag::note_previous_declaration
);
3371 QualType NewT
= NewParam
->getType();
3372 NewT
= S
.Context
.getAttributedType(*Oldnullability
, NewT
, NewT
);
3373 NewParam
->setType(NewT
);
3376 const auto *OldParamDT
= dyn_cast
<DecayedType
>(OldParam
->getType());
3377 const auto *NewParamDT
= dyn_cast
<DecayedType
>(NewParam
->getType());
3378 if (OldParamDT
&& NewParamDT
&&
3379 OldParamDT
->getPointeeType() == NewParamDT
->getPointeeType()) {
3380 QualType OldParamOT
= OldParamDT
->getOriginalType();
3381 QualType NewParamOT
= NewParamDT
->getOriginalType();
3382 if (!EquivalentArrayTypes(OldParamOT
, NewParamOT
, S
.getASTContext())) {
3383 S
.Diag(NewParam
->getLocation(), diag::warn_inconsistent_array_form
)
3384 << NewParam
<< NewParamOT
;
3385 S
.Diag(OldParam
->getLocation(), diag::note_previous_declaration_as
)
3393 /// Used in MergeFunctionDecl to keep track of function parameters in
3395 struct GNUCompatibleParamWarning
{
3396 ParmVarDecl
*OldParm
;
3397 ParmVarDecl
*NewParm
;
3398 QualType PromotedType
;
3401 } // end anonymous namespace
3403 // Determine whether the previous declaration was a definition, implicit
3404 // declaration, or a declaration.
3405 template <typename T
>
3406 static std::pair
<diag::kind
, SourceLocation
>
3407 getNoteDiagForInvalidRedeclaration(const T
*Old
, const T
*New
) {
3408 diag::kind PrevDiag
;
3409 SourceLocation OldLocation
= Old
->getLocation();
3410 if (Old
->isThisDeclarationADefinition())
3411 PrevDiag
= diag::note_previous_definition
;
3412 else if (Old
->isImplicit()) {
3413 PrevDiag
= diag::note_previous_implicit_declaration
;
3414 if (const auto *FD
= dyn_cast
<FunctionDecl
>(Old
)) {
3415 if (FD
->getBuiltinID())
3416 PrevDiag
= diag::note_previous_builtin_declaration
;
3418 if (OldLocation
.isInvalid())
3419 OldLocation
= New
->getLocation();
3421 PrevDiag
= diag::note_previous_declaration
;
3422 return std::make_pair(PrevDiag
, OldLocation
);
3425 /// canRedefineFunction - checks if a function can be redefined. Currently,
3426 /// only extern inline functions can be redefined, and even then only in
3428 static bool canRedefineFunction(const FunctionDecl
*FD
,
3429 const LangOptions
& LangOpts
) {
3430 return ((FD
->hasAttr
<GNUInlineAttr
>() || LangOpts
.GNUInline
) &&
3431 !LangOpts
.CPlusPlus
&&
3432 FD
->isInlineSpecified() &&
3433 FD
->getStorageClass() == SC_Extern
);
3436 const AttributedType
*Sema::getCallingConvAttributedType(QualType T
) const {
3437 const AttributedType
*AT
= T
->getAs
<AttributedType
>();
3438 while (AT
&& !AT
->isCallingConv())
3439 AT
= AT
->getModifiedType()->getAs
<AttributedType
>();
3443 template <typename T
>
3444 static bool haveIncompatibleLanguageLinkages(const T
*Old
, const T
*New
) {
3445 const DeclContext
*DC
= Old
->getDeclContext();
3449 LanguageLinkage OldLinkage
= Old
->getLanguageLinkage();
3450 if (OldLinkage
== CXXLanguageLinkage
&& New
->isInExternCContext())
3452 if (OldLinkage
== CLanguageLinkage
&& New
->isInExternCXXContext())
3457 template<typename T
> static bool isExternC(T
*D
) { return D
->isExternC(); }
3458 static bool isExternC(VarTemplateDecl
*) { return false; }
3459 static bool isExternC(FunctionTemplateDecl
*) { return false; }
3461 /// Check whether a redeclaration of an entity introduced by a
3462 /// using-declaration is valid, given that we know it's not an overload
3463 /// (nor a hidden tag declaration).
3464 template<typename ExpectedDecl
>
3465 static bool checkUsingShadowRedecl(Sema
&S
, UsingShadowDecl
*OldS
,
3466 ExpectedDecl
*New
) {
3467 // C++11 [basic.scope.declarative]p4:
3468 // Given a set of declarations in a single declarative region, each of
3469 // which specifies the same unqualified name,
3470 // -- they shall all refer to the same entity, or all refer to functions
3471 // and function templates; or
3472 // -- exactly one declaration shall declare a class name or enumeration
3473 // name that is not a typedef name and the other declarations shall all
3474 // refer to the same variable or enumerator, or all refer to functions
3475 // and function templates; in this case the class name or enumeration
3476 // name is hidden (3.3.10).
3478 // C++11 [namespace.udecl]p14:
3479 // If a function declaration in namespace scope or block scope has the
3480 // same name and the same parameter-type-list as a function introduced
3481 // by a using-declaration, and the declarations do not declare the same
3482 // function, the program is ill-formed.
3484 auto *Old
= dyn_cast
<ExpectedDecl
>(OldS
->getTargetDecl());
3486 !Old
->getDeclContext()->getRedeclContext()->Equals(
3487 New
->getDeclContext()->getRedeclContext()) &&
3488 !(isExternC(Old
) && isExternC(New
)))
3492 S
.Diag(New
->getLocation(), diag::err_using_decl_conflict_reverse
);
3493 S
.Diag(OldS
->getTargetDecl()->getLocation(), diag::note_using_decl_target
);
3494 S
.Diag(OldS
->getIntroducer()->getLocation(), diag::note_using_decl
) << 0;
3500 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl
*A
,
3501 const FunctionDecl
*B
) {
3502 assert(A
->getNumParams() == B
->getNumParams());
3504 auto AttrEq
= [](const ParmVarDecl
*A
, const ParmVarDecl
*B
) {
3505 const auto *AttrA
= A
->getAttr
<PassObjectSizeAttr
>();
3506 const auto *AttrB
= B
->getAttr
<PassObjectSizeAttr
>();
3509 return AttrA
&& AttrB
&& AttrA
->getType() == AttrB
->getType() &&
3510 AttrA
->isDynamic() == AttrB
->isDynamic();
3513 return std::equal(A
->param_begin(), A
->param_end(), B
->param_begin(), AttrEq
);
3516 /// If necessary, adjust the semantic declaration context for a qualified
3517 /// declaration to name the correct inline namespace within the qualifier.
3518 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl
*NewD
,
3519 DeclaratorDecl
*OldD
) {
3520 // The only case where we need to update the DeclContext is when
3521 // redeclaration lookup for a qualified name finds a declaration
3522 // in an inline namespace within the context named by the qualifier:
3524 // inline namespace N { int f(); }
3525 // int ::f(); // Sema DC needs adjusting from :: to N::.
3527 // For unqualified declarations, the semantic context *can* change
3528 // along the redeclaration chain (for local extern declarations,
3529 // extern "C" declarations, and friend declarations in particular).
3530 if (!NewD
->getQualifier())
3533 // NewD is probably already in the right context.
3534 auto *NamedDC
= NewD
->getDeclContext()->getRedeclContext();
3535 auto *SemaDC
= OldD
->getDeclContext()->getRedeclContext();
3536 if (NamedDC
->Equals(SemaDC
))
3539 assert((NamedDC
->InEnclosingNamespaceSetOf(SemaDC
) ||
3540 NewD
->isInvalidDecl() || OldD
->isInvalidDecl()) &&
3541 "unexpected context for redeclaration");
3543 auto *LexDC
= NewD
->getLexicalDeclContext();
3544 auto FixSemaDC
= [=](NamedDecl
*D
) {
3547 D
->setDeclContext(SemaDC
);
3548 D
->setLexicalDeclContext(LexDC
);
3552 if (auto *FD
= dyn_cast
<FunctionDecl
>(NewD
))
3553 FixSemaDC(FD
->getDescribedFunctionTemplate());
3554 else if (auto *VD
= dyn_cast
<VarDecl
>(NewD
))
3555 FixSemaDC(VD
->getDescribedVarTemplate());
3558 bool Sema::MergeFunctionDecl(FunctionDecl
*New
, NamedDecl
*&OldD
, Scope
*S
,
3559 bool MergeTypeWithOld
, bool NewDeclIsDefn
) {
3560 // Verify the old decl was also a function.
3561 FunctionDecl
*Old
= OldD
->getAsFunction();
3563 if (UsingShadowDecl
*Shadow
= dyn_cast
<UsingShadowDecl
>(OldD
)) {
3564 if (New
->getFriendObjectKind()) {
3565 Diag(New
->getLocation(), diag::err_using_decl_friend
);
3566 Diag(Shadow
->getTargetDecl()->getLocation(),
3567 diag::note_using_decl_target
);
3568 Diag(Shadow
->getIntroducer()->getLocation(), diag::note_using_decl
)
3573 // Check whether the two declarations might declare the same function or
3574 // function template.
3575 if (FunctionTemplateDecl
*NewTemplate
=
3576 New
->getDescribedFunctionTemplate()) {
3577 if (checkUsingShadowRedecl
<FunctionTemplateDecl
>(*this, Shadow
,
3580 OldD
= Old
= cast
<FunctionTemplateDecl
>(Shadow
->getTargetDecl())
3583 if (checkUsingShadowRedecl
<FunctionDecl
>(*this, Shadow
, New
))
3585 OldD
= Old
= cast
<FunctionDecl
>(Shadow
->getTargetDecl());
3588 Diag(New
->getLocation(), diag::err_redefinition_different_kind
)
3589 << New
->getDeclName();
3590 notePreviousDefinition(OldD
, New
->getLocation());
3595 // If the old declaration was found in an inline namespace and the new
3596 // declaration was qualified, update the DeclContext to match.
3597 adjustDeclContextForDeclaratorDecl(New
, Old
);
3599 // If the old declaration is invalid, just give up here.
3600 if (Old
->isInvalidDecl())
3603 // Disallow redeclaration of some builtins.
3604 if (!getASTContext().canBuiltinBeRedeclared(Old
)) {
3605 Diag(New
->getLocation(), diag::err_builtin_redeclare
) << Old
->getDeclName();
3606 Diag(Old
->getLocation(), diag::note_previous_builtin_declaration
)
3607 << Old
<< Old
->getType();
3611 diag::kind PrevDiag
;
3612 SourceLocation OldLocation
;
3613 std::tie(PrevDiag
, OldLocation
) =
3614 getNoteDiagForInvalidRedeclaration(Old
, New
);
3616 // Don't complain about this if we're in GNU89 mode and the old function
3617 // is an extern inline function.
3618 // Don't complain about specializations. They are not supposed to have
3620 if (!isa
<CXXMethodDecl
>(New
) && !isa
<CXXMethodDecl
>(Old
) &&
3621 New
->getStorageClass() == SC_Static
&&
3622 Old
->hasExternalFormalLinkage() &&
3623 !New
->getTemplateSpecializationInfo() &&
3624 !canRedefineFunction(Old
, getLangOpts())) {
3625 if (getLangOpts().MicrosoftExt
) {
3626 Diag(New
->getLocation(), diag::ext_static_non_static
) << New
;
3627 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
3629 Diag(New
->getLocation(), diag::err_static_non_static
) << New
;
3630 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
3635 if (const auto *ILA
= New
->getAttr
<InternalLinkageAttr
>())
3636 if (!Old
->hasAttr
<InternalLinkageAttr
>()) {
3637 Diag(New
->getLocation(), diag::err_attribute_missing_on_first_decl
)
3639 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3640 New
->dropAttr
<InternalLinkageAttr
>();
3643 if (auto *EA
= New
->getAttr
<ErrorAttr
>()) {
3644 if (!Old
->hasAttr
<ErrorAttr
>()) {
3645 Diag(EA
->getLocation(), diag::err_attribute_missing_on_first_decl
) << EA
;
3646 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3647 New
->dropAttr
<ErrorAttr
>();
3651 if (CheckRedeclarationInModule(New
, Old
))
3654 if (!getLangOpts().CPlusPlus
) {
3655 bool OldOvl
= Old
->hasAttr
<OverloadableAttr
>();
3656 if (OldOvl
!= New
->hasAttr
<OverloadableAttr
>() && !Old
->isImplicit()) {
3657 Diag(New
->getLocation(), diag::err_attribute_overloadable_mismatch
)
3660 // Try our best to find a decl that actually has the overloadable
3661 // attribute for the note. In most cases (e.g. programs with only one
3662 // broken declaration/definition), this won't matter.
3664 // FIXME: We could do this if we juggled some extra state in
3665 // OverloadableAttr, rather than just removing it.
3666 const Decl
*DiagOld
= Old
;
3668 auto OldIter
= llvm::find_if(Old
->redecls(), [](const Decl
*D
) {
3669 const auto *A
= D
->getAttr
<OverloadableAttr
>();
3670 return A
&& !A
->isImplicit();
3672 // If we've implicitly added *all* of the overloadable attrs to this
3673 // chain, emitting a "previous redecl" note is pointless.
3674 DiagOld
= OldIter
== Old
->redecls_end() ? nullptr : *OldIter
;
3678 Diag(DiagOld
->getLocation(),
3679 diag::note_attribute_overloadable_prev_overload
)
3683 New
->addAttr(OverloadableAttr::CreateImplicit(Context
));
3685 New
->dropAttr
<OverloadableAttr
>();
3689 // It is not permitted to redeclare an SME function with different SME
3691 if (IsInvalidSMECallConversion(Old
->getType(), New
->getType())) {
3692 Diag(New
->getLocation(), diag::err_sme_attr_mismatch
)
3693 << New
->getType() << Old
->getType();
3694 Diag(OldLocation
, diag::note_previous_declaration
);
3698 // If a function is first declared with a calling convention, but is later
3699 // declared or defined without one, all following decls assume the calling
3700 // convention of the first.
3702 // It's OK if a function is first declared without a calling convention,
3703 // but is later declared or defined with the default calling convention.
3705 // To test if either decl has an explicit calling convention, we look for
3706 // AttributedType sugar nodes on the type as written. If they are missing or
3707 // were canonicalized away, we assume the calling convention was implicit.
3709 // Note also that we DO NOT return at this point, because we still have
3710 // other tests to run.
3711 QualType OldQType
= Context
.getCanonicalType(Old
->getType());
3712 QualType NewQType
= Context
.getCanonicalType(New
->getType());
3713 const FunctionType
*OldType
= cast
<FunctionType
>(OldQType
);
3714 const FunctionType
*NewType
= cast
<FunctionType
>(NewQType
);
3715 FunctionType::ExtInfo OldTypeInfo
= OldType
->getExtInfo();
3716 FunctionType::ExtInfo NewTypeInfo
= NewType
->getExtInfo();
3717 bool RequiresAdjustment
= false;
3719 if (OldTypeInfo
.getCC() != NewTypeInfo
.getCC()) {
3720 FunctionDecl
*First
= Old
->getFirstDecl();
3721 const FunctionType
*FT
=
3722 First
->getType().getCanonicalType()->castAs
<FunctionType
>();
3723 FunctionType::ExtInfo FI
= FT
->getExtInfo();
3724 bool NewCCExplicit
= getCallingConvAttributedType(New
->getType());
3725 if (!NewCCExplicit
) {
3726 // Inherit the CC from the previous declaration if it was specified
3727 // there but not here.
3728 NewTypeInfo
= NewTypeInfo
.withCallingConv(OldTypeInfo
.getCC());
3729 RequiresAdjustment
= true;
3730 } else if (Old
->getBuiltinID()) {
3731 // Builtin attribute isn't propagated to the new one yet at this point,
3732 // so we check if the old one is a builtin.
3734 // Calling Conventions on a Builtin aren't really useful and setting a
3735 // default calling convention and cdecl'ing some builtin redeclarations is
3736 // common, so warn and ignore the calling convention on the redeclaration.
3737 Diag(New
->getLocation(), diag::warn_cconv_unsupported
)
3738 << FunctionType::getNameForCallConv(NewTypeInfo
.getCC())
3739 << (int)CallingConventionIgnoredReason::BuiltinFunction
;
3740 NewTypeInfo
= NewTypeInfo
.withCallingConv(OldTypeInfo
.getCC());
3741 RequiresAdjustment
= true;
3743 // Calling conventions aren't compatible, so complain.
3744 bool FirstCCExplicit
= getCallingConvAttributedType(First
->getType());
3745 Diag(New
->getLocation(), diag::err_cconv_change
)
3746 << FunctionType::getNameForCallConv(NewTypeInfo
.getCC())
3748 << (!FirstCCExplicit
? "" :
3749 FunctionType::getNameForCallConv(FI
.getCC()));
3751 // Put the note on the first decl, since it is the one that matters.
3752 Diag(First
->getLocation(), diag::note_previous_declaration
);
3757 // FIXME: diagnose the other way around?
3758 if (OldTypeInfo
.getNoReturn() && !NewTypeInfo
.getNoReturn()) {
3759 NewTypeInfo
= NewTypeInfo
.withNoReturn(true);
3760 RequiresAdjustment
= true;
3763 // Merge regparm attribute.
3764 if (OldTypeInfo
.getHasRegParm() != NewTypeInfo
.getHasRegParm() ||
3765 OldTypeInfo
.getRegParm() != NewTypeInfo
.getRegParm()) {
3766 if (NewTypeInfo
.getHasRegParm()) {
3767 Diag(New
->getLocation(), diag::err_regparm_mismatch
)
3768 << NewType
->getRegParmType()
3769 << OldType
->getRegParmType();
3770 Diag(OldLocation
, diag::note_previous_declaration
);
3774 NewTypeInfo
= NewTypeInfo
.withRegParm(OldTypeInfo
.getRegParm());
3775 RequiresAdjustment
= true;
3778 // Merge ns_returns_retained attribute.
3779 if (OldTypeInfo
.getProducesResult() != NewTypeInfo
.getProducesResult()) {
3780 if (NewTypeInfo
.getProducesResult()) {
3781 Diag(New
->getLocation(), diag::err_function_attribute_mismatch
)
3782 << "'ns_returns_retained'";
3783 Diag(OldLocation
, diag::note_previous_declaration
);
3787 NewTypeInfo
= NewTypeInfo
.withProducesResult(true);
3788 RequiresAdjustment
= true;
3791 if (OldTypeInfo
.getNoCallerSavedRegs() !=
3792 NewTypeInfo
.getNoCallerSavedRegs()) {
3793 if (NewTypeInfo
.getNoCallerSavedRegs()) {
3794 AnyX86NoCallerSavedRegistersAttr
*Attr
=
3795 New
->getAttr
<AnyX86NoCallerSavedRegistersAttr
>();
3796 Diag(New
->getLocation(), diag::err_function_attribute_mismatch
) << Attr
;
3797 Diag(OldLocation
, diag::note_previous_declaration
);
3801 NewTypeInfo
= NewTypeInfo
.withNoCallerSavedRegs(true);
3802 RequiresAdjustment
= true;
3805 if (RequiresAdjustment
) {
3806 const FunctionType
*AdjustedType
= New
->getType()->getAs
<FunctionType
>();
3807 AdjustedType
= Context
.adjustFunctionType(AdjustedType
, NewTypeInfo
);
3808 New
->setType(QualType(AdjustedType
, 0));
3809 NewQType
= Context
.getCanonicalType(New
->getType());
3812 // If this redeclaration makes the function inline, we may need to add it to
3813 // UndefinedButUsed.
3814 if (!Old
->isInlined() && New
->isInlined() &&
3815 !New
->hasAttr
<GNUInlineAttr
>() &&
3816 !getLangOpts().GNUInline
&&
3817 Old
->isUsed(false) &&
3818 !Old
->isDefined() && !New
->isThisDeclarationADefinition())
3819 UndefinedButUsed
.insert(std::make_pair(Old
->getCanonicalDecl(),
3822 // If this redeclaration makes it newly gnu_inline, we don't want to warn
3824 if (New
->hasAttr
<GNUInlineAttr
>() &&
3825 Old
->isInlined() && !Old
->hasAttr
<GNUInlineAttr
>()) {
3826 UndefinedButUsed
.erase(Old
->getCanonicalDecl());
3829 // If pass_object_size params don't match up perfectly, this isn't a valid
3831 if (Old
->getNumParams() > 0 && Old
->getNumParams() == New
->getNumParams() &&
3832 !hasIdenticalPassObjectSizeAttrs(Old
, New
)) {
3833 Diag(New
->getLocation(), diag::err_different_pass_object_size_params
)
3834 << New
->getDeclName();
3835 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
3839 QualType OldQTypeForComparison
= OldQType
;
3840 if (Context
.hasAnyFunctionEffects()) {
3841 const auto OldFX
= Old
->getFunctionEffects();
3842 const auto NewFX
= New
->getFunctionEffects();
3843 if (OldFX
!= NewFX
) {
3844 const auto Diffs
= FunctionEffectDiffVector(OldFX
, NewFX
);
3845 for (const auto &Diff
: Diffs
) {
3846 if (Diff
.shouldDiagnoseRedeclaration(*Old
, OldFX
, *New
, NewFX
)) {
3847 Diag(New
->getLocation(),
3848 diag::warn_mismatched_func_effect_redeclaration
)
3849 << Diff
.effectName();
3850 Diag(Old
->getLocation(), diag::note_previous_declaration
);
3853 // Following a warning, we could skip merging effects from the previous
3854 // declaration, but that would trigger an additional "conflicting types"
3856 if (const auto *NewFPT
= NewQType
->getAs
<FunctionProtoType
>()) {
3857 FunctionEffectSet::Conflicts MergeErrs
;
3858 FunctionEffectSet MergedFX
=
3859 FunctionEffectSet::getUnion(OldFX
, NewFX
, MergeErrs
);
3860 if (!MergeErrs
.empty())
3861 diagnoseFunctionEffectMergeConflicts(MergeErrs
, New
->getLocation(),
3862 Old
->getLocation());
3864 FunctionProtoType::ExtProtoInfo EPI
= NewFPT
->getExtProtoInfo();
3865 EPI
.FunctionEffects
= FunctionEffectsRef(MergedFX
);
3866 QualType ModQT
= Context
.getFunctionType(NewFPT
->getReturnType(),
3867 NewFPT
->getParamTypes(), EPI
);
3869 New
->setType(ModQT
);
3870 NewQType
= New
->getType();
3872 // Revise OldQTForComparison to include the merged effects,
3873 // so as not to fail due to differences later.
3874 if (const auto *OldFPT
= OldQType
->getAs
<FunctionProtoType
>()) {
3875 EPI
= OldFPT
->getExtProtoInfo();
3876 EPI
.FunctionEffects
= FunctionEffectsRef(MergedFX
);
3877 OldQTypeForComparison
= Context
.getFunctionType(
3878 OldFPT
->getReturnType(), OldFPT
->getParamTypes(), EPI
);
3880 if (OldFX
.empty()) {
3881 // A redeclaration may add the attribute to a previously seen function
3882 // body which needs to be verified.
3883 maybeAddDeclWithEffects(Old
, MergedFX
);
3889 if (getLangOpts().CPlusPlus
) {
3890 OldQType
= Context
.getCanonicalType(Old
->getType());
3891 NewQType
= Context
.getCanonicalType(New
->getType());
3893 // Go back to the type source info to compare the declared return types,
3894 // per C++1y [dcl.type.auto]p13:
3895 // Redeclarations or specializations of a function or function template
3896 // with a declared return type that uses a placeholder type shall also
3897 // use that placeholder, not a deduced type.
3898 QualType OldDeclaredReturnType
= Old
->getDeclaredReturnType();
3899 QualType NewDeclaredReturnType
= New
->getDeclaredReturnType();
3900 if (!Context
.hasSameType(OldDeclaredReturnType
, NewDeclaredReturnType
) &&
3901 canFullyTypeCheckRedeclaration(New
, Old
, NewDeclaredReturnType
,
3902 OldDeclaredReturnType
)) {
3904 if (NewDeclaredReturnType
->isObjCObjectPointerType() &&
3905 OldDeclaredReturnType
->isObjCObjectPointerType())
3906 // FIXME: This does the wrong thing for a deduced return type.
3907 ResQT
= Context
.mergeObjCGCQualifiers(NewQType
, OldQType
);
3908 if (ResQT
.isNull()) {
3909 if (New
->isCXXClassMember() && New
->isOutOfLine())
3910 Diag(New
->getLocation(), diag::err_member_def_does_not_match_ret_type
)
3911 << New
<< New
->getReturnTypeSourceRange();
3912 else if (Old
->isExternC() && New
->isExternC() &&
3913 !Old
->hasAttr
<OverloadableAttr
>() &&
3914 !New
->hasAttr
<OverloadableAttr
>())
3915 Diag(New
->getLocation(), diag::err_conflicting_types
) << New
;
3917 Diag(New
->getLocation(), diag::err_ovl_diff_return_type
)
3918 << New
->getReturnTypeSourceRange();
3919 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType()
3920 << Old
->getReturnTypeSourceRange();
3927 QualType OldReturnType
= OldType
->getReturnType();
3928 QualType NewReturnType
= cast
<FunctionType
>(NewQType
)->getReturnType();
3929 if (OldReturnType
!= NewReturnType
) {
3930 // If this function has a deduced return type and has already been
3931 // defined, copy the deduced value from the old declaration.
3932 AutoType
*OldAT
= Old
->getReturnType()->getContainedAutoType();
3933 if (OldAT
&& OldAT
->isDeduced()) {
3934 QualType DT
= OldAT
->getDeducedType();
3936 New
->setType(SubstAutoTypeDependent(New
->getType()));
3937 NewQType
= Context
.getCanonicalType(SubstAutoTypeDependent(NewQType
));
3939 New
->setType(SubstAutoType(New
->getType(), DT
));
3940 NewQType
= Context
.getCanonicalType(SubstAutoType(NewQType
, DT
));
3945 const CXXMethodDecl
*OldMethod
= dyn_cast
<CXXMethodDecl
>(Old
);
3946 CXXMethodDecl
*NewMethod
= dyn_cast
<CXXMethodDecl
>(New
);
3947 if (OldMethod
&& NewMethod
) {
3948 // Preserve triviality.
3949 NewMethod
->setTrivial(OldMethod
->isTrivial());
3951 // MSVC allows explicit template specialization at class scope:
3952 // 2 CXXMethodDecls referring to the same function will be injected.
3953 // We don't want a redeclaration error.
3954 bool IsClassScopeExplicitSpecialization
=
3955 OldMethod
->isFunctionTemplateSpecialization() &&
3956 NewMethod
->isFunctionTemplateSpecialization();
3957 bool isFriend
= NewMethod
->getFriendObjectKind();
3959 if (!isFriend
&& NewMethod
->getLexicalDeclContext()->isRecord() &&
3960 !IsClassScopeExplicitSpecialization
) {
3961 // -- Member function declarations with the same name and the
3962 // same parameter types cannot be overloaded if any of them
3963 // is a static member function declaration.
3964 if (OldMethod
->isStatic() != NewMethod
->isStatic()) {
3965 Diag(New
->getLocation(), diag::err_ovl_static_nonstatic_member
);
3966 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
3970 // C++ [class.mem]p1:
3971 // [...] A member shall not be declared twice in the
3972 // member-specification, except that a nested class or member
3973 // class template can be declared and then later defined.
3974 if (!inTemplateInstantiation()) {
3976 if (isa
<CXXConstructorDecl
>(OldMethod
))
3977 NewDiag
= diag::err_constructor_redeclared
;
3978 else if (isa
<CXXDestructorDecl
>(NewMethod
))
3979 NewDiag
= diag::err_destructor_redeclared
;
3980 else if (isa
<CXXConversionDecl
>(NewMethod
))
3981 NewDiag
= diag::err_conv_function_redeclared
;
3983 NewDiag
= diag::err_member_redeclared
;
3985 Diag(New
->getLocation(), NewDiag
);
3987 Diag(New
->getLocation(), diag::err_member_redeclared_in_instantiation
)
3988 << New
<< New
->getType();
3990 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
3993 // Complain if this is an explicit declaration of a special
3994 // member that was initially declared implicitly.
3996 // As an exception, it's okay to befriend such methods in order
3997 // to permit the implicit constructor/destructor/operator calls.
3998 } else if (OldMethod
->isImplicit()) {
4000 NewMethod
->setImplicit();
4002 Diag(NewMethod
->getLocation(),
4003 diag::err_definition_of_implicitly_declared_member
)
4004 << New
<< llvm::to_underlying(getSpecialMember(OldMethod
));
4007 } else if (OldMethod
->getFirstDecl()->isExplicitlyDefaulted() && !isFriend
) {
4008 Diag(NewMethod
->getLocation(),
4009 diag::err_definition_of_explicitly_defaulted_member
)
4010 << llvm::to_underlying(getSpecialMember(OldMethod
));
4015 // C++1z [over.load]p2
4016 // Certain function declarations cannot be overloaded:
4017 // -- Function declarations that differ only in the return type,
4018 // the exception specification, or both cannot be overloaded.
4020 // Check the exception specifications match. This may recompute the type of
4021 // both Old and New if it resolved exception specifications, so grab the
4022 // types again after this. Because this updates the type, we do this before
4023 // any of the other checks below, which may update the "de facto" NewQType
4024 // but do not necessarily update the type of New.
4025 if (CheckEquivalentExceptionSpec(Old
, New
))
4028 // C++11 [dcl.attr.noreturn]p1:
4029 // The first declaration of a function shall specify the noreturn
4030 // attribute if any declaration of that function specifies the noreturn
4032 if (const auto *NRA
= New
->getAttr
<CXX11NoReturnAttr
>())
4033 if (!Old
->hasAttr
<CXX11NoReturnAttr
>()) {
4034 Diag(NRA
->getLocation(), diag::err_attribute_missing_on_first_decl
)
4036 Diag(Old
->getLocation(), diag::note_previous_declaration
);
4039 // C++11 [dcl.attr.depend]p2:
4040 // The first declaration of a function shall specify the
4041 // carries_dependency attribute for its declarator-id if any declaration
4042 // of the function specifies the carries_dependency attribute.
4043 const CarriesDependencyAttr
*CDA
= New
->getAttr
<CarriesDependencyAttr
>();
4044 if (CDA
&& !Old
->hasAttr
<CarriesDependencyAttr
>()) {
4045 Diag(CDA
->getLocation(),
4046 diag::err_carries_dependency_missing_on_first_decl
) << 0/*Function*/;
4047 Diag(Old
->getFirstDecl()->getLocation(),
4048 diag::note_carries_dependency_missing_first_decl
) << 0/*Function*/;
4052 // All declarations for a function shall agree exactly in both the
4053 // return type and the parameter-type-list.
4054 // We also want to respect all the extended bits except noreturn.
4056 // noreturn should now match unless the old type info didn't have it.
4057 if (!OldTypeInfo
.getNoReturn() && NewTypeInfo
.getNoReturn()) {
4058 auto *OldType
= OldQTypeForComparison
->castAs
<FunctionProtoType
>();
4059 const FunctionType
*OldTypeForComparison
4060 = Context
.adjustFunctionType(OldType
, OldTypeInfo
.withNoReturn(true));
4061 OldQTypeForComparison
= QualType(OldTypeForComparison
, 0);
4062 assert(OldQTypeForComparison
.isCanonical());
4065 if (haveIncompatibleLanguageLinkages(Old
, New
)) {
4066 // As a special case, retain the language linkage from previous
4067 // declarations of a friend function as an extension.
4069 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
4070 // and is useful because there's otherwise no way to specify language
4071 // linkage within class scope.
4073 // Check cautiously as the friend object kind isn't yet complete.
4074 if (New
->getFriendObjectKind() != Decl::FOK_None
) {
4075 Diag(New
->getLocation(), diag::ext_retained_language_linkage
) << New
;
4076 Diag(OldLocation
, PrevDiag
);
4078 Diag(New
->getLocation(), diag::err_different_language_linkage
) << New
;
4079 Diag(OldLocation
, PrevDiag
);
4084 // HLSL check parameters for matching ABI specifications.
4085 if (getLangOpts().HLSL
) {
4086 if (HLSL().CheckCompatibleParameterABI(New
, Old
))
4089 // If no errors are generated when checking parameter ABIs we can check if
4090 // the two declarations have the same type ignoring the ABIs and if so,
4091 // the declarations can be merged. This case for merging is only valid in
4092 // HLSL because there are no valid cases of merging mismatched parameter
4093 // ABIs except the HLSL implicit in and explicit in.
4094 if (Context
.hasSameFunctionTypeIgnoringParamABI(OldQTypeForComparison
,
4096 return MergeCompatibleFunctionDecls(New
, Old
, S
, MergeTypeWithOld
);
4097 // Fall through for conflicting redeclarations and redefinitions.
4100 // If the function types are compatible, merge the declarations. Ignore the
4101 // exception specifier because it was already checked above in
4102 // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
4103 // about incompatible types under -fms-compatibility.
4104 if (Context
.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison
,
4106 return MergeCompatibleFunctionDecls(New
, Old
, S
, MergeTypeWithOld
);
4108 // If the types are imprecise (due to dependent constructs in friends or
4109 // local extern declarations), it's OK if they differ. We'll check again
4110 // during instantiation.
4111 if (!canFullyTypeCheckRedeclaration(New
, Old
, NewQType
, OldQType
))
4114 // Fall through for conflicting redeclarations and redefinitions.
4117 // C: Function types need to be compatible, not identical. This handles
4118 // duplicate function decls like "void f(int); void f(enum X);" properly.
4119 if (!getLangOpts().CPlusPlus
) {
4120 // C99 6.7.5.3p15: ...If one type has a parameter type list and the other
4121 // type is specified by a function definition that contains a (possibly
4122 // empty) identifier list, both shall agree in the number of parameters
4123 // and the type of each parameter shall be compatible with the type that
4124 // results from the application of default argument promotions to the
4125 // type of the corresponding identifier. ...
4126 // This cannot be handled by ASTContext::typesAreCompatible() because that
4127 // doesn't know whether the function type is for a definition or not when
4128 // eventually calling ASTContext::mergeFunctionTypes(). The only situation
4129 // we need to cover here is that the number of arguments agree as the
4130 // default argument promotion rules were already checked by
4131 // ASTContext::typesAreCompatible().
4132 if (Old
->hasPrototype() && !New
->hasWrittenPrototype() && NewDeclIsDefn
&&
4133 Old
->getNumParams() != New
->getNumParams() && !Old
->isImplicit()) {
4134 if (Old
->hasInheritedPrototype())
4135 Old
= Old
->getCanonicalDecl();
4136 Diag(New
->getLocation(), diag::err_conflicting_types
) << New
;
4137 Diag(Old
->getLocation(), PrevDiag
) << Old
<< Old
->getType();
4141 // If we are merging two functions where only one of them has a prototype,
4142 // we may have enough information to decide to issue a diagnostic that the
4143 // function without a prototype will change behavior in C23. This handles
4145 // void i(); void i(int j);
4146 // void i(int j); void i();
4147 // void i(); void i(int j) {}
4148 // See ActOnFinishFunctionBody() for other cases of the behavior change
4149 // diagnostic. See GetFullTypeForDeclarator() for handling of a function
4150 // type without a prototype.
4151 if (New
->hasWrittenPrototype() != Old
->hasWrittenPrototype() &&
4152 !New
->isImplicit() && !Old
->isImplicit()) {
4153 const FunctionDecl
*WithProto
, *WithoutProto
;
4154 if (New
->hasWrittenPrototype()) {
4162 if (WithProto
->getNumParams() != 0) {
4163 if (WithoutProto
->getBuiltinID() == 0 && !WithoutProto
->isImplicit()) {
4164 // The one without the prototype will be changing behavior in C23, so
4165 // warn about that one so long as it's a user-visible declaration.
4166 bool IsWithoutProtoADef
= false, IsWithProtoADef
= false;
4167 if (WithoutProto
== New
)
4168 IsWithoutProtoADef
= NewDeclIsDefn
;
4170 IsWithProtoADef
= NewDeclIsDefn
;
4171 Diag(WithoutProto
->getLocation(),
4172 diag::warn_non_prototype_changes_behavior
)
4173 << IsWithoutProtoADef
<< (WithoutProto
->getNumParams() ? 0 : 1)
4174 << (WithoutProto
== Old
) << IsWithProtoADef
;
4176 // The reason the one without the prototype will be changing behavior
4177 // is because of the one with the prototype, so note that so long as
4178 // it's a user-visible declaration. There is one exception to this:
4179 // when the new declaration is a definition without a prototype, the
4180 // old declaration with a prototype is not the cause of the issue,
4181 // and that does not need to be noted because the one with a
4182 // prototype will not change behavior in C23.
4183 if (WithProto
->getBuiltinID() == 0 && !WithProto
->isImplicit() &&
4184 !IsWithoutProtoADef
)
4185 Diag(WithProto
->getLocation(), diag::note_conflicting_prototype
);
4190 if (Context
.typesAreCompatible(OldQType
, NewQType
)) {
4191 const FunctionType
*OldFuncType
= OldQType
->getAs
<FunctionType
>();
4192 const FunctionType
*NewFuncType
= NewQType
->getAs
<FunctionType
>();
4193 const FunctionProtoType
*OldProto
= nullptr;
4194 if (MergeTypeWithOld
&& isa
<FunctionNoProtoType
>(NewFuncType
) &&
4195 (OldProto
= dyn_cast
<FunctionProtoType
>(OldFuncType
))) {
4196 // The old declaration provided a function prototype, but the
4197 // new declaration does not. Merge in the prototype.
4198 assert(!OldProto
->hasExceptionSpec() && "Exception spec in C");
4199 NewQType
= Context
.getFunctionType(NewFuncType
->getReturnType(),
4200 OldProto
->getParamTypes(),
4201 OldProto
->getExtProtoInfo());
4202 New
->setType(NewQType
);
4203 New
->setHasInheritedPrototype();
4205 // Synthesize parameters with the same types.
4206 SmallVector
<ParmVarDecl
*, 16> Params
;
4207 for (const auto &ParamType
: OldProto
->param_types()) {
4208 ParmVarDecl
*Param
= ParmVarDecl::Create(
4209 Context
, New
, SourceLocation(), SourceLocation(), nullptr,
4210 ParamType
, /*TInfo=*/nullptr, SC_None
, nullptr);
4211 Param
->setScopeInfo(0, Params
.size());
4212 Param
->setImplicit();
4213 Params
.push_back(Param
);
4216 New
->setParams(Params
);
4219 return MergeCompatibleFunctionDecls(New
, Old
, S
, MergeTypeWithOld
);
4223 // Check if the function types are compatible when pointer size address
4224 // spaces are ignored.
4225 if (Context
.hasSameFunctionTypeIgnoringPtrSizes(OldQType
, NewQType
))
4228 // GNU C permits a K&R definition to follow a prototype declaration
4229 // if the declared types of the parameters in the K&R definition
4230 // match the types in the prototype declaration, even when the
4231 // promoted types of the parameters from the K&R definition differ
4232 // from the types in the prototype. GCC then keeps the types from
4235 // If a variadic prototype is followed by a non-variadic K&R definition,
4236 // the K&R definition becomes variadic. This is sort of an edge case, but
4237 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
4239 if (!getLangOpts().CPlusPlus
&&
4240 Old
->hasPrototype() && !New
->hasPrototype() &&
4241 New
->getType()->getAs
<FunctionProtoType
>() &&
4242 Old
->getNumParams() == New
->getNumParams()) {
4243 SmallVector
<QualType
, 16> ArgTypes
;
4244 SmallVector
<GNUCompatibleParamWarning
, 16> Warnings
;
4245 const FunctionProtoType
*OldProto
4246 = Old
->getType()->getAs
<FunctionProtoType
>();
4247 const FunctionProtoType
*NewProto
4248 = New
->getType()->getAs
<FunctionProtoType
>();
4250 // Determine whether this is the GNU C extension.
4251 QualType MergedReturn
= Context
.mergeTypes(OldProto
->getReturnType(),
4252 NewProto
->getReturnType());
4253 bool LooseCompatible
= !MergedReturn
.isNull();
4254 for (unsigned Idx
= 0, End
= Old
->getNumParams();
4255 LooseCompatible
&& Idx
!= End
; ++Idx
) {
4256 ParmVarDecl
*OldParm
= Old
->getParamDecl(Idx
);
4257 ParmVarDecl
*NewParm
= New
->getParamDecl(Idx
);
4258 if (Context
.typesAreCompatible(OldParm
->getType(),
4259 NewProto
->getParamType(Idx
))) {
4260 ArgTypes
.push_back(NewParm
->getType());
4261 } else if (Context
.typesAreCompatible(OldParm
->getType(),
4263 /*CompareUnqualified=*/true)) {
4264 GNUCompatibleParamWarning Warn
= { OldParm
, NewParm
,
4265 NewProto
->getParamType(Idx
) };
4266 Warnings
.push_back(Warn
);
4267 ArgTypes
.push_back(NewParm
->getType());
4269 LooseCompatible
= false;
4272 if (LooseCompatible
) {
4273 for (unsigned Warn
= 0; Warn
< Warnings
.size(); ++Warn
) {
4274 Diag(Warnings
[Warn
].NewParm
->getLocation(),
4275 diag::ext_param_promoted_not_compatible_with_prototype
)
4276 << Warnings
[Warn
].PromotedType
4277 << Warnings
[Warn
].OldParm
->getType();
4278 if (Warnings
[Warn
].OldParm
->getLocation().isValid())
4279 Diag(Warnings
[Warn
].OldParm
->getLocation(),
4280 diag::note_previous_declaration
);
4283 if (MergeTypeWithOld
)
4284 New
->setType(Context
.getFunctionType(MergedReturn
, ArgTypes
,
4285 OldProto
->getExtProtoInfo()));
4286 return MergeCompatibleFunctionDecls(New
, Old
, S
, MergeTypeWithOld
);
4289 // Fall through to diagnose conflicting types.
4292 // A function that has already been declared has been redeclared or
4293 // defined with a different type; show an appropriate diagnostic.
4295 // If the previous declaration was an implicitly-generated builtin
4296 // declaration, then at the very least we should use a specialized note.
4298 if (Old
->isImplicit() && (BuiltinID
= Old
->getBuiltinID())) {
4299 // If it's actually a library-defined builtin function like 'malloc'
4300 // or 'printf', just warn about the incompatible redeclaration.
4301 if (Context
.BuiltinInfo
.isPredefinedLibFunction(BuiltinID
)) {
4302 Diag(New
->getLocation(), diag::warn_redecl_library_builtin
) << New
;
4303 Diag(OldLocation
, diag::note_previous_builtin_declaration
)
4304 << Old
<< Old
->getType();
4308 PrevDiag
= diag::note_previous_builtin_declaration
;
4311 Diag(New
->getLocation(), diag::err_conflicting_types
) << New
->getDeclName();
4312 Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
4316 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl
*New
, FunctionDecl
*Old
,
4317 Scope
*S
, bool MergeTypeWithOld
) {
4318 // Merge the attributes
4319 mergeDeclAttributes(New
, Old
);
4321 // Merge "pure" flag.
4322 if (Old
->isPureVirtual())
4323 New
->setIsPureVirtual();
4325 // Merge "used" flag.
4326 if (Old
->getMostRecentDecl()->isUsed(false))
4329 // Merge attributes from the parameters. These can mismatch with K&R
4331 if (New
->getNumParams() == Old
->getNumParams())
4332 for (unsigned i
= 0, e
= New
->getNumParams(); i
!= e
; ++i
) {
4333 ParmVarDecl
*NewParam
= New
->getParamDecl(i
);
4334 ParmVarDecl
*OldParam
= Old
->getParamDecl(i
);
4335 mergeParamDeclAttributes(NewParam
, OldParam
, *this);
4336 mergeParamDeclTypes(NewParam
, OldParam
, *this);
4339 if (getLangOpts().CPlusPlus
)
4340 return MergeCXXFunctionDecl(New
, Old
, S
);
4342 // Merge the function types so the we get the composite types for the return
4343 // and argument types. Per C11 6.2.7/4, only update the type if the old decl
4345 QualType Merged
= Context
.mergeTypes(Old
->getType(), New
->getType());
4346 if (!Merged
.isNull() && MergeTypeWithOld
)
4347 New
->setType(Merged
);
4352 void Sema::mergeObjCMethodDecls(ObjCMethodDecl
*newMethod
,
4353 ObjCMethodDecl
*oldMethod
) {
4354 // Merge the attributes, including deprecated/unavailable
4355 AvailabilityMergeKind MergeKind
=
4356 isa
<ObjCProtocolDecl
>(oldMethod
->getDeclContext())
4357 ? (oldMethod
->isOptional() ? AMK_OptionalProtocolImplementation
4358 : AMK_ProtocolImplementation
)
4359 : isa
<ObjCImplDecl
>(newMethod
->getDeclContext()) ? AMK_Redeclaration
4362 mergeDeclAttributes(newMethod
, oldMethod
, MergeKind
);
4364 // Merge attributes from the parameters.
4365 ObjCMethodDecl::param_const_iterator oi
= oldMethod
->param_begin(),
4366 oe
= oldMethod
->param_end();
4367 for (ObjCMethodDecl::param_iterator
4368 ni
= newMethod
->param_begin(), ne
= newMethod
->param_end();
4369 ni
!= ne
&& oi
!= oe
; ++ni
, ++oi
)
4370 mergeParamDeclAttributes(*ni
, *oi
, *this);
4372 ObjC().CheckObjCMethodOverride(newMethod
, oldMethod
);
4375 static void diagnoseVarDeclTypeMismatch(Sema
&S
, VarDecl
*New
, VarDecl
* Old
) {
4376 assert(!S
.Context
.hasSameType(New
->getType(), Old
->getType()));
4378 S
.Diag(New
->getLocation(), New
->isThisDeclarationADefinition()
4379 ? diag::err_redefinition_different_type
4380 : diag::err_redeclaration_different_type
)
4381 << New
->getDeclName() << New
->getType() << Old
->getType();
4383 diag::kind PrevDiag
;
4384 SourceLocation OldLocation
;
4385 std::tie(PrevDiag
, OldLocation
)
4386 = getNoteDiagForInvalidRedeclaration(Old
, New
);
4387 S
.Diag(OldLocation
, PrevDiag
) << Old
<< Old
->getType();
4388 New
->setInvalidDecl();
4391 void Sema::MergeVarDeclTypes(VarDecl
*New
, VarDecl
*Old
,
4392 bool MergeTypeWithOld
) {
4393 if (New
->isInvalidDecl() || Old
->isInvalidDecl() || New
->getType()->containsErrors() || Old
->getType()->containsErrors())
4397 if (getLangOpts().CPlusPlus
) {
4398 if (New
->getType()->isUndeducedType()) {
4399 // We don't know what the new type is until the initializer is attached.
4401 } else if (Context
.hasSameType(New
->getType(), Old
->getType())) {
4402 // These could still be something that needs exception specs checked.
4403 return MergeVarDeclExceptionSpecs(New
, Old
);
4405 // C++ [basic.link]p10:
4406 // [...] the types specified by all declarations referring to a given
4407 // object or function shall be identical, except that declarations for an
4408 // array object can specify array types that differ by the presence or
4409 // absence of a major array bound (8.3.4).
4410 else if (Old
->getType()->isArrayType() && New
->getType()->isArrayType()) {
4411 const ArrayType
*OldArray
= Context
.getAsArrayType(Old
->getType());
4412 const ArrayType
*NewArray
= Context
.getAsArrayType(New
->getType());
4414 // We are merging a variable declaration New into Old. If it has an array
4415 // bound, and that bound differs from Old's bound, we should diagnose the
4417 if (!NewArray
->isIncompleteArrayType() && !NewArray
->isDependentType()) {
4418 for (VarDecl
*PrevVD
= Old
->getMostRecentDecl(); PrevVD
;
4419 PrevVD
= PrevVD
->getPreviousDecl()) {
4420 QualType PrevVDTy
= PrevVD
->getType();
4421 if (PrevVDTy
->isIncompleteArrayType() || PrevVDTy
->isDependentType())
4424 if (!Context
.hasSameType(New
->getType(), PrevVDTy
))
4425 return diagnoseVarDeclTypeMismatch(*this, New
, PrevVD
);
4429 if (OldArray
->isIncompleteArrayType() && NewArray
->isArrayType()) {
4430 if (Context
.hasSameType(OldArray
->getElementType(),
4431 NewArray
->getElementType()))
4432 MergedT
= New
->getType();
4434 // FIXME: Check visibility. New is hidden but has a complete type. If New
4435 // has no array bound, it should not inherit one from Old, if Old is not
4437 else if (OldArray
->isArrayType() && NewArray
->isIncompleteArrayType()) {
4438 if (Context
.hasSameType(OldArray
->getElementType(),
4439 NewArray
->getElementType()))
4440 MergedT
= Old
->getType();
4443 else if (New
->getType()->isObjCObjectPointerType() &&
4444 Old
->getType()->isObjCObjectPointerType()) {
4445 MergedT
= Context
.mergeObjCGCQualifiers(New
->getType(),
4450 // All declarations that refer to the same object or function shall have
4452 MergedT
= Context
.mergeTypes(New
->getType(), Old
->getType());
4454 if (MergedT
.isNull()) {
4455 // It's OK if we couldn't merge types if either type is dependent, for a
4456 // block-scope variable. In other cases (static data members of class
4457 // templates, variable templates, ...), we require the types to be
4459 // FIXME: The C++ standard doesn't say anything about this.
4460 if ((New
->getType()->isDependentType() ||
4461 Old
->getType()->isDependentType()) && New
->isLocalVarDecl()) {
4462 // If the old type was dependent, we can't merge with it, so the new type
4463 // becomes dependent for now. We'll reproduce the original type when we
4464 // instantiate the TypeSourceInfo for the variable.
4465 if (!New
->getType()->isDependentType() && MergeTypeWithOld
)
4466 New
->setType(Context
.DependentTy
);
4469 return diagnoseVarDeclTypeMismatch(*this, New
, Old
);
4472 // Don't actually update the type on the new declaration if the old
4473 // declaration was an extern declaration in a different scope.
4474 if (MergeTypeWithOld
)
4475 New
->setType(MergedT
);
4478 static bool mergeTypeWithPrevious(Sema
&S
, VarDecl
*NewVD
, VarDecl
*OldVD
,
4479 LookupResult
&Previous
) {
4481 // For an identifier with internal or external linkage declared
4482 // in a scope in which a prior declaration of that identifier is
4483 // visible, if the prior declaration specifies internal or
4484 // external linkage, the type of the identifier at the later
4485 // declaration becomes the composite type.
4487 // If the variable isn't visible, we do not merge with its type.
4488 if (Previous
.isShadowed())
4491 if (S
.getLangOpts().CPlusPlus
) {
4492 // C++11 [dcl.array]p3:
4493 // If there is a preceding declaration of the entity in the same
4494 // scope in which the bound was specified, an omitted array bound
4495 // is taken to be the same as in that earlier declaration.
4496 return NewVD
->isPreviousDeclInSameBlockScope() ||
4497 (!OldVD
->getLexicalDeclContext()->isFunctionOrMethod() &&
4498 !NewVD
->getLexicalDeclContext()->isFunctionOrMethod());
4500 // If the old declaration was function-local, don't merge with its
4501 // type unless we're in the same function.
4502 return !OldVD
->getLexicalDeclContext()->isFunctionOrMethod() ||
4503 OldVD
->getLexicalDeclContext() == NewVD
->getLexicalDeclContext();
4507 void Sema::MergeVarDecl(VarDecl
*New
, LookupResult
&Previous
) {
4508 // If the new decl is already invalid, don't do any other checking.
4509 if (New
->isInvalidDecl())
4512 if (!shouldLinkPossiblyHiddenDecl(Previous
, New
))
4515 VarTemplateDecl
*NewTemplate
= New
->getDescribedVarTemplate();
4517 // Verify the old decl was also a variable or variable template.
4518 VarDecl
*Old
= nullptr;
4519 VarTemplateDecl
*OldTemplate
= nullptr;
4520 if (Previous
.isSingleResult()) {
4522 OldTemplate
= dyn_cast
<VarTemplateDecl
>(Previous
.getFoundDecl());
4523 Old
= OldTemplate
? OldTemplate
->getTemplatedDecl() : nullptr;
4526 dyn_cast
<UsingShadowDecl
>(Previous
.getRepresentativeDecl()))
4527 if (checkUsingShadowRedecl
<VarTemplateDecl
>(*this, Shadow
, NewTemplate
))
4528 return New
->setInvalidDecl();
4530 Old
= dyn_cast
<VarDecl
>(Previous
.getFoundDecl());
4533 dyn_cast
<UsingShadowDecl
>(Previous
.getRepresentativeDecl()))
4534 if (checkUsingShadowRedecl
<VarDecl
>(*this, Shadow
, New
))
4535 return New
->setInvalidDecl();
4539 Diag(New
->getLocation(), diag::err_redefinition_different_kind
)
4540 << New
->getDeclName();
4541 notePreviousDefinition(Previous
.getRepresentativeDecl(),
4542 New
->getLocation());
4543 return New
->setInvalidDecl();
4546 // If the old declaration was found in an inline namespace and the new
4547 // declaration was qualified, update the DeclContext to match.
4548 adjustDeclContextForDeclaratorDecl(New
, Old
);
4550 // Ensure the template parameters are compatible.
4552 !TemplateParameterListsAreEqual(NewTemplate
->getTemplateParameters(),
4553 OldTemplate
->getTemplateParameters(),
4554 /*Complain=*/true, TPL_TemplateMatch
))
4555 return New
->setInvalidDecl();
4557 // C++ [class.mem]p1:
4558 // A member shall not be declared twice in the member-specification [...]
4560 // Here, we need only consider static data members.
4561 if (Old
->isStaticDataMember() && !New
->isOutOfLine()) {
4562 Diag(New
->getLocation(), diag::err_duplicate_member
)
4563 << New
->getIdentifier();
4564 Diag(Old
->getLocation(), diag::note_previous_declaration
);
4565 New
->setInvalidDecl();
4568 mergeDeclAttributes(New
, Old
);
4569 // Warn if an already-defined variable is made a weak_import in a subsequent
4571 if (New
->hasAttr
<WeakImportAttr
>())
4572 for (auto *D
= Old
; D
; D
= D
->getPreviousDecl()) {
4573 if (D
->isThisDeclarationADefinition() != VarDecl::DeclarationOnly
) {
4574 Diag(New
->getLocation(), diag::warn_weak_import
) << New
->getDeclName();
4575 Diag(D
->getLocation(), diag::note_previous_definition
);
4576 // Remove weak_import attribute on new declaration.
4577 New
->dropAttr
<WeakImportAttr
>();
4582 if (const auto *ILA
= New
->getAttr
<InternalLinkageAttr
>())
4583 if (!Old
->hasAttr
<InternalLinkageAttr
>()) {
4584 Diag(New
->getLocation(), diag::err_attribute_missing_on_first_decl
)
4586 Diag(Old
->getLocation(), diag::note_previous_declaration
);
4587 New
->dropAttr
<InternalLinkageAttr
>();
4591 VarDecl
*MostRecent
= Old
->getMostRecentDecl();
4592 if (MostRecent
!= Old
) {
4593 MergeVarDeclTypes(New
, MostRecent
,
4594 mergeTypeWithPrevious(*this, New
, MostRecent
, Previous
));
4595 if (New
->isInvalidDecl())
4599 MergeVarDeclTypes(New
, Old
, mergeTypeWithPrevious(*this, New
, Old
, Previous
));
4600 if (New
->isInvalidDecl())
4603 diag::kind PrevDiag
;
4604 SourceLocation OldLocation
;
4605 std::tie(PrevDiag
, OldLocation
) =
4606 getNoteDiagForInvalidRedeclaration(Old
, New
);
4608 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4609 if (New
->getStorageClass() == SC_Static
&&
4610 !New
->isStaticDataMember() &&
4611 Old
->hasExternalFormalLinkage()) {
4612 if (getLangOpts().MicrosoftExt
) {
4613 Diag(New
->getLocation(), diag::ext_static_non_static
)
4614 << New
->getDeclName();
4615 Diag(OldLocation
, PrevDiag
);
4617 Diag(New
->getLocation(), diag::err_static_non_static
)
4618 << New
->getDeclName();
4619 Diag(OldLocation
, PrevDiag
);
4620 return New
->setInvalidDecl();
4624 // For an identifier declared with the storage-class specifier
4625 // extern in a scope in which a prior declaration of that
4626 // identifier is visible,23) if the prior declaration specifies
4627 // internal or external linkage, the linkage of the identifier at
4628 // the later declaration is the same as the linkage specified at
4629 // the prior declaration. If no prior declaration is visible, or
4630 // if the prior declaration specifies no linkage, then the
4631 // identifier has external linkage.
4632 if (New
->hasExternalStorage() && Old
->hasLinkage())
4634 else if (New
->getCanonicalDecl()->getStorageClass() != SC_Static
&&
4635 !New
->isStaticDataMember() &&
4636 Old
->getCanonicalDecl()->getStorageClass() == SC_Static
) {
4637 Diag(New
->getLocation(), diag::err_non_static_static
) << New
->getDeclName();
4638 Diag(OldLocation
, PrevDiag
);
4639 return New
->setInvalidDecl();
4642 // Check if extern is followed by non-extern and vice-versa.
4643 if (New
->hasExternalStorage() &&
4644 !Old
->hasLinkage() && Old
->isLocalVarDeclOrParm()) {
4645 Diag(New
->getLocation(), diag::err_extern_non_extern
) << New
->getDeclName();
4646 Diag(OldLocation
, PrevDiag
);
4647 return New
->setInvalidDecl();
4649 if (Old
->hasLinkage() && New
->isLocalVarDeclOrParm() &&
4650 !New
->hasExternalStorage()) {
4651 Diag(New
->getLocation(), diag::err_non_extern_extern
) << New
->getDeclName();
4652 Diag(OldLocation
, PrevDiag
);
4653 return New
->setInvalidDecl();
4656 if (CheckRedeclarationInModule(New
, Old
))
4659 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4661 // FIXME: The test for external storage here seems wrong? We still
4662 // need to check for mismatches.
4663 if (!New
->hasExternalStorage() && !New
->isFileVarDecl() &&
4664 // Don't complain about out-of-line definitions of static members.
4665 !(Old
->getLexicalDeclContext()->isRecord() &&
4666 !New
->getLexicalDeclContext()->isRecord())) {
4667 Diag(New
->getLocation(), diag::err_redefinition
) << New
->getDeclName();
4668 Diag(OldLocation
, PrevDiag
);
4669 return New
->setInvalidDecl();
4672 if (New
->isInline() && !Old
->getMostRecentDecl()->isInline()) {
4673 if (VarDecl
*Def
= Old
->getDefinition()) {
4674 // C++1z [dcl.fcn.spec]p4:
4675 // If the definition of a variable appears in a translation unit before
4676 // its first declaration as inline, the program is ill-formed.
4677 Diag(New
->getLocation(), diag::err_inline_decl_follows_def
) << New
;
4678 Diag(Def
->getLocation(), diag::note_previous_definition
);
4682 // If this redeclaration makes the variable inline, we may need to add it to
4683 // UndefinedButUsed.
4684 if (!Old
->isInline() && New
->isInline() && Old
->isUsed(false) &&
4685 !Old
->getDefinition() && !New
->isThisDeclarationADefinition())
4686 UndefinedButUsed
.insert(std::make_pair(Old
->getCanonicalDecl(),
4689 if (New
->getTLSKind() != Old
->getTLSKind()) {
4690 if (!Old
->getTLSKind()) {
4691 Diag(New
->getLocation(), diag::err_thread_non_thread
) << New
->getDeclName();
4692 Diag(OldLocation
, PrevDiag
);
4693 } else if (!New
->getTLSKind()) {
4694 Diag(New
->getLocation(), diag::err_non_thread_thread
) << New
->getDeclName();
4695 Diag(OldLocation
, PrevDiag
);
4697 // Do not allow redeclaration to change the variable between requiring
4698 // static and dynamic initialization.
4699 // FIXME: GCC allows this, but uses the TLS keyword on the first
4700 // declaration to determine the kind. Do we need to be compatible here?
4701 Diag(New
->getLocation(), diag::err_thread_thread_different_kind
)
4702 << New
->getDeclName() << (New
->getTLSKind() == VarDecl::TLS_Dynamic
);
4703 Diag(OldLocation
, PrevDiag
);
4707 // C++ doesn't have tentative definitions, so go right ahead and check here.
4708 if (getLangOpts().CPlusPlus
) {
4709 if (Old
->isStaticDataMember() && Old
->getCanonicalDecl()->isInline() &&
4710 Old
->getCanonicalDecl()->isConstexpr()) {
4711 // This definition won't be a definition any more once it's been merged.
4712 Diag(New
->getLocation(),
4713 diag::warn_deprecated_redundant_constexpr_static_def
);
4714 } else if (New
->isThisDeclarationADefinition() == VarDecl::Definition
) {
4715 VarDecl
*Def
= Old
->getDefinition();
4716 if (Def
&& checkVarDeclRedefinition(Def
, New
))
4721 if (haveIncompatibleLanguageLinkages(Old
, New
)) {
4722 Diag(New
->getLocation(), diag::err_different_language_linkage
) << New
;
4723 Diag(OldLocation
, PrevDiag
);
4724 New
->setInvalidDecl();
4728 // Merge "used" flag.
4729 if (Old
->getMostRecentDecl()->isUsed(false))
4732 // Keep a chain of previous declarations.
4733 New
->setPreviousDecl(Old
);
4735 NewTemplate
->setPreviousDecl(OldTemplate
);
4737 // Inherit access appropriately.
4738 New
->setAccess(Old
->getAccess());
4740 NewTemplate
->setAccess(New
->getAccess());
4742 if (Old
->isInline())
4743 New
->setImplicitlyInline();
4746 void Sema::notePreviousDefinition(const NamedDecl
*Old
, SourceLocation New
) {
4747 SourceManager
&SrcMgr
= getSourceManager();
4748 auto FNewDecLoc
= SrcMgr
.getDecomposedLoc(New
);
4749 auto FOldDecLoc
= SrcMgr
.getDecomposedLoc(Old
->getLocation());
4750 auto *FNew
= SrcMgr
.getFileEntryForID(FNewDecLoc
.first
);
4751 auto FOld
= SrcMgr
.getFileEntryRefForID(FOldDecLoc
.first
);
4752 auto &HSI
= PP
.getHeaderSearchInfo();
4753 StringRef HdrFilename
=
4754 SrcMgr
.getFilename(SrcMgr
.getSpellingLoc(Old
->getLocation()));
4756 auto noteFromModuleOrInclude
= [&](Module
*Mod
,
4757 SourceLocation IncLoc
) -> bool {
4758 // Redefinition errors with modules are common with non modular mapped
4759 // headers, example: a non-modular header H in module A that also gets
4760 // included directly in a TU. Pointing twice to the same header/definition
4761 // is confusing, try to get better diagnostics when modules is on.
4762 if (IncLoc
.isValid()) {
4764 Diag(IncLoc
, diag::note_redefinition_modules_same_file
)
4765 << HdrFilename
.str() << Mod
->getFullModuleName();
4766 if (!Mod
->DefinitionLoc
.isInvalid())
4767 Diag(Mod
->DefinitionLoc
, diag::note_defined_here
)
4768 << Mod
->getFullModuleName();
4770 Diag(IncLoc
, diag::note_redefinition_include_same_file
)
4771 << HdrFilename
.str();
4779 // Is it the same file and same offset? Provide more information on why
4780 // this leads to a redefinition error.
4781 if (FNew
== FOld
&& FNewDecLoc
.second
== FOldDecLoc
.second
) {
4782 SourceLocation OldIncLoc
= SrcMgr
.getIncludeLoc(FOldDecLoc
.first
);
4783 SourceLocation NewIncLoc
= SrcMgr
.getIncludeLoc(FNewDecLoc
.first
);
4785 noteFromModuleOrInclude(Old
->getOwningModule(), OldIncLoc
);
4786 EmittedDiag
|= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc
);
4788 // If the header has no guards, emit a note suggesting one.
4789 if (FOld
&& !HSI
.isFileMultipleIncludeGuarded(*FOld
))
4790 Diag(Old
->getLocation(), diag::note_use_ifdef_guards
);
4796 // Redefinition coming from different files or couldn't do better above.
4797 if (Old
->getLocation().isValid())
4798 Diag(Old
->getLocation(), diag::note_previous_definition
);
4801 bool Sema::checkVarDeclRedefinition(VarDecl
*Old
, VarDecl
*New
) {
4802 if (!hasVisibleDefinition(Old
) &&
4803 (New
->getFormalLinkage() == Linkage::Internal
|| New
->isInline() ||
4804 isa
<VarTemplateSpecializationDecl
>(New
) ||
4805 New
->getDescribedVarTemplate() || New
->getNumTemplateParameterLists() ||
4806 New
->getDeclContext()->isDependentContext())) {
4807 // The previous definition is hidden, and multiple definitions are
4808 // permitted (in separate TUs). Demote this to a declaration.
4809 New
->demoteThisDefinitionToDeclaration();
4811 // Make the canonical definition visible.
4812 if (auto *OldTD
= Old
->getDescribedVarTemplate())
4813 makeMergedDefinitionVisible(OldTD
);
4814 makeMergedDefinitionVisible(Old
);
4817 Diag(New
->getLocation(), diag::err_redefinition
) << New
;
4818 notePreviousDefinition(Old
, New
->getLocation());
4819 New
->setInvalidDecl();
4824 Decl
*Sema::ParsedFreeStandingDeclSpec(Scope
*S
, AccessSpecifier AS
,
4826 const ParsedAttributesView
&DeclAttrs
,
4827 RecordDecl
*&AnonRecord
) {
4828 return ParsedFreeStandingDeclSpec(
4829 S
, AS
, DS
, DeclAttrs
, MultiTemplateParamsArg(), false, AnonRecord
);
4832 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4833 // disambiguate entities defined in different scopes.
4834 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4836 // We will pick our mangling number depending on which version of MSVC is being
4838 static unsigned getMSManglingNumber(const LangOptions
&LO
, Scope
*S
) {
4839 return LO
.isCompatibleWithMSVC(LangOptions::MSVC2015
)
4840 ? S
->getMSCurManglingNumber()
4841 : S
->getMSLastManglingNumber();
4844 void Sema::handleTagNumbering(const TagDecl
*Tag
, Scope
*TagScope
) {
4845 if (!Context
.getLangOpts().CPlusPlus
)
4848 if (isa
<CXXRecordDecl
>(Tag
->getParent())) {
4849 // If this tag is the direct child of a class, number it if
4851 if (!Tag
->getName().empty() || Tag
->getTypedefNameForAnonDecl())
4853 MangleNumberingContext
&MCtx
=
4854 Context
.getManglingNumberContext(Tag
->getParent());
4855 Context
.setManglingNumber(
4856 Tag
, MCtx
.getManglingNumber(
4857 Tag
, getMSManglingNumber(getLangOpts(), TagScope
)));
4861 // If this tag isn't a direct child of a class, number it if it is local.
4862 MangleNumberingContext
*MCtx
;
4863 Decl
*ManglingContextDecl
;
4864 std::tie(MCtx
, ManglingContextDecl
) =
4865 getCurrentMangleNumberContext(Tag
->getDeclContext());
4867 Context
.setManglingNumber(
4868 Tag
, MCtx
->getManglingNumber(
4869 Tag
, getMSManglingNumber(getLangOpts(), TagScope
)));
4874 struct NonCLikeKind
{
4886 explicit operator bool() { return Kind
!= None
; }
4890 /// Determine whether a class is C-like, according to the rules of C++
4891 /// [dcl.typedef] for anonymous classes with typedef names for linkage.
4892 static NonCLikeKind
getNonCLikeKindForAnonymousStruct(const CXXRecordDecl
*RD
) {
4893 if (RD
->isInvalidDecl())
4894 return {NonCLikeKind::Invalid
, {}};
4896 // C++ [dcl.typedef]p9: [P1766R1]
4897 // An unnamed class with a typedef name for linkage purposes shall not
4899 // -- have any base classes
4900 if (RD
->getNumBases())
4901 return {NonCLikeKind::BaseClass
,
4902 SourceRange(RD
->bases_begin()->getBeginLoc(),
4903 RD
->bases_end()[-1].getEndLoc())};
4904 bool Invalid
= false;
4905 for (Decl
*D
: RD
->decls()) {
4906 // Don't complain about things we already diagnosed.
4907 if (D
->isInvalidDecl()) {
4912 // -- have any [...] default member initializers
4913 if (auto *FD
= dyn_cast
<FieldDecl
>(D
)) {
4914 if (FD
->hasInClassInitializer()) {
4915 auto *Init
= FD
->getInClassInitializer();
4916 return {NonCLikeKind::DefaultMemberInit
,
4917 Init
? Init
->getSourceRange() : D
->getSourceRange()};
4922 // FIXME: We don't allow friend declarations. This violates the wording of
4923 // P1766, but not the intent.
4924 if (isa
<FriendDecl
>(D
))
4925 return {NonCLikeKind::Friend
, D
->getSourceRange()};
4927 // -- declare any members other than non-static data members, member
4928 // enumerations, or member classes,
4929 if (isa
<StaticAssertDecl
>(D
) || isa
<IndirectFieldDecl
>(D
) ||
4932 auto *MemberRD
= dyn_cast
<CXXRecordDecl
>(D
);
4934 if (D
->isImplicit())
4936 return {NonCLikeKind::OtherMember
, D
->getSourceRange()};
4939 // -- contain a lambda-expression,
4940 if (MemberRD
->isLambda())
4941 return {NonCLikeKind::Lambda
, MemberRD
->getSourceRange()};
4943 // and all member classes shall also satisfy these requirements
4945 if (MemberRD
->isThisDeclarationADefinition()) {
4946 if (auto Kind
= getNonCLikeKindForAnonymousStruct(MemberRD
))
4951 return {Invalid
? NonCLikeKind::Invalid
: NonCLikeKind::None
, {}};
4954 void Sema::setTagNameForLinkagePurposes(TagDecl
*TagFromDeclSpec
,
4955 TypedefNameDecl
*NewTD
) {
4956 if (TagFromDeclSpec
->isInvalidDecl())
4959 // Do nothing if the tag already has a name for linkage purposes.
4960 if (TagFromDeclSpec
->hasNameForLinkage())
4963 // A well-formed anonymous tag must always be a TagUseKind::Definition.
4964 assert(TagFromDeclSpec
->isThisDeclarationADefinition());
4966 // The type must match the tag exactly; no qualifiers allowed.
4967 if (!Context
.hasSameType(NewTD
->getUnderlyingType(),
4968 Context
.getTagDeclType(TagFromDeclSpec
))) {
4969 if (getLangOpts().CPlusPlus
)
4970 Context
.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec
, NewTD
);
4974 // C++ [dcl.typedef]p9: [P1766R1, applied as DR]
4975 // An unnamed class with a typedef name for linkage purposes shall [be
4978 // FIXME: Also diagnose if we've already computed the linkage. That ideally
4979 // shouldn't happen, but there are constructs that the language rule doesn't
4980 // disallow for which we can't reasonably avoid computing linkage early.
4981 const CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(TagFromDeclSpec
);
4982 NonCLikeKind NonCLike
= RD
? getNonCLikeKindForAnonymousStruct(RD
)
4984 bool ChangesLinkage
= TagFromDeclSpec
->hasLinkageBeenComputed();
4985 if (NonCLike
|| ChangesLinkage
) {
4986 if (NonCLike
.Kind
== NonCLikeKind::Invalid
)
4989 unsigned DiagID
= diag::ext_non_c_like_anon_struct_in_typedef
;
4990 if (ChangesLinkage
) {
4991 // If the linkage changes, we can't accept this as an extension.
4992 if (NonCLike
.Kind
== NonCLikeKind::None
)
4993 DiagID
= diag::err_typedef_changes_linkage
;
4995 DiagID
= diag::err_non_c_like_anon_struct_in_typedef
;
4998 SourceLocation FixitLoc
=
4999 getLocForEndOfToken(TagFromDeclSpec
->getInnerLocStart());
5000 llvm::SmallString
<40> TextToInsert
;
5001 TextToInsert
+= ' ';
5002 TextToInsert
+= NewTD
->getIdentifier()->getName();
5004 Diag(FixitLoc
, DiagID
)
5005 << isa
<TypeAliasDecl
>(NewTD
)
5006 << FixItHint::CreateInsertion(FixitLoc
, TextToInsert
);
5007 if (NonCLike
.Kind
!= NonCLikeKind::None
) {
5008 Diag(NonCLike
.Range
.getBegin(), diag::note_non_c_like_anon_struct
)
5009 << NonCLike
.Kind
- 1 << NonCLike
.Range
;
5011 Diag(NewTD
->getLocation(), diag::note_typedef_for_linkage_here
)
5012 << NewTD
<< isa
<TypeAliasDecl
>(NewTD
);
5018 // Otherwise, set this as the anon-decl typedef for the tag.
5019 TagFromDeclSpec
->setTypedefNameForAnonDecl(NewTD
);
5021 // Now that we have a name for the tag, process API notes again.
5022 ProcessAPINotes(TagFromDeclSpec
);
5025 static unsigned GetDiagnosticTypeSpecifierID(const DeclSpec
&DS
) {
5026 DeclSpec::TST T
= DS
.getTypeSpecType();
5028 case DeclSpec::TST_class
:
5030 case DeclSpec::TST_struct
:
5032 case DeclSpec::TST_interface
:
5034 case DeclSpec::TST_union
:
5036 case DeclSpec::TST_enum
:
5037 if (const auto *ED
= dyn_cast
<EnumDecl
>(DS
.getRepAsDecl())) {
5038 if (ED
->isScopedUsingClassTag())
5045 llvm_unreachable("unexpected type specifier");
5049 Decl
*Sema::ParsedFreeStandingDeclSpec(Scope
*S
, AccessSpecifier AS
,
5051 const ParsedAttributesView
&DeclAttrs
,
5052 MultiTemplateParamsArg TemplateParams
,
5053 bool IsExplicitInstantiation
,
5054 RecordDecl
*&AnonRecord
,
5055 SourceLocation EllipsisLoc
) {
5056 Decl
*TagD
= nullptr;
5057 TagDecl
*Tag
= nullptr;
5058 if (DS
.getTypeSpecType() == DeclSpec::TST_class
||
5059 DS
.getTypeSpecType() == DeclSpec::TST_struct
||
5060 DS
.getTypeSpecType() == DeclSpec::TST_interface
||
5061 DS
.getTypeSpecType() == DeclSpec::TST_union
||
5062 DS
.getTypeSpecType() == DeclSpec::TST_enum
) {
5063 TagD
= DS
.getRepAsDecl();
5065 if (!TagD
) // We probably had an error
5068 // Note that the above type specs guarantee that the
5069 // type rep is a Decl, whereas in many of the others
5071 if (isa
<TagDecl
>(TagD
))
5072 Tag
= cast
<TagDecl
>(TagD
);
5073 else if (ClassTemplateDecl
*CTD
= dyn_cast
<ClassTemplateDecl
>(TagD
))
5074 Tag
= CTD
->getTemplatedDecl();
5078 handleTagNumbering(Tag
, S
);
5079 Tag
->setFreeStanding();
5080 if (Tag
->isInvalidDecl())
5084 if (unsigned TypeQuals
= DS
.getTypeQualifiers()) {
5085 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
5086 // or incomplete types shall not be restrict-qualified."
5087 if (TypeQuals
& DeclSpec::TQ_restrict
)
5088 Diag(DS
.getRestrictSpecLoc(),
5089 diag::err_typecheck_invalid_restrict_not_pointer_noarg
)
5090 << DS
.getSourceRange();
5093 if (DS
.isInlineSpecified())
5094 Diag(DS
.getInlineSpecLoc(), diag::err_inline_non_function
)
5095 << getLangOpts().CPlusPlus17
;
5097 if (DS
.hasConstexprSpecifier()) {
5098 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
5099 // and definitions of functions and variables.
5100 // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
5101 // the declaration of a function or function template
5103 Diag(DS
.getConstexprSpecLoc(), diag::err_constexpr_tag
)
5104 << GetDiagnosticTypeSpecifierID(DS
)
5105 << static_cast<int>(DS
.getConstexprSpecifier());
5106 else if (getLangOpts().C23
)
5107 Diag(DS
.getConstexprSpecLoc(), diag::err_c23_constexpr_not_variable
);
5109 Diag(DS
.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind
)
5110 << static_cast<int>(DS
.getConstexprSpecifier());
5111 // Don't emit warnings after this error.
5115 DiagnoseFunctionSpecifiers(DS
);
5117 if (DS
.isFriendSpecified()) {
5118 // If we're dealing with a decl but not a TagDecl, assume that
5119 // whatever routines created it handled the friendship aspect.
5122 return ActOnFriendTypeDecl(S
, DS
, TemplateParams
, EllipsisLoc
);
5125 assert(EllipsisLoc
.isInvalid() &&
5126 "Friend ellipsis but not friend-specified?");
5128 // Track whether this decl-specifier declares anything.
5129 bool DeclaresAnything
= true;
5131 // Handle anonymous struct definitions.
5132 if (RecordDecl
*Record
= dyn_cast_or_null
<RecordDecl
>(Tag
)) {
5133 if (!Record
->getDeclName() && Record
->isCompleteDefinition() &&
5134 DS
.getStorageClassSpec() != DeclSpec::SCS_typedef
) {
5135 if (getLangOpts().CPlusPlus
||
5136 Record
->getDeclContext()->isRecord()) {
5137 // If CurContext is a DeclContext that can contain statements,
5138 // RecursiveASTVisitor won't visit the decls that
5139 // BuildAnonymousStructOrUnion() will put into CurContext.
5140 // Also store them here so that they can be part of the
5141 // DeclStmt that gets created in this case.
5142 // FIXME: Also return the IndirectFieldDecls created by
5143 // BuildAnonymousStructOr union, for the same reason?
5144 if (CurContext
->isFunctionOrMethod())
5145 AnonRecord
= Record
;
5146 return BuildAnonymousStructOrUnion(S
, DS
, AS
, Record
,
5147 Context
.getPrintingPolicy());
5150 DeclaresAnything
= false;
5155 // A struct-declaration that does not declare an anonymous structure or
5156 // anonymous union shall contain a struct-declarator-list.
5158 // This rule also existed in C89 and C99; the grammar for struct-declaration
5159 // did not permit a struct-declaration without a struct-declarator-list.
5160 if (!getLangOpts().CPlusPlus
&& CurContext
->isRecord() &&
5161 DS
.getStorageClassSpec() == DeclSpec::SCS_unspecified
) {
5162 // Check for Microsoft C extension: anonymous struct/union member.
5163 // Handle 2 kinds of anonymous struct/union:
5167 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
5168 // UNION_TYPE; <- where UNION_TYPE is a typedef union.
5169 if ((Tag
&& Tag
->getDeclName()) ||
5170 DS
.getTypeSpecType() == DeclSpec::TST_typename
) {
5171 RecordDecl
*Record
= nullptr;
5173 Record
= dyn_cast
<RecordDecl
>(Tag
);
5174 else if (const RecordType
*RT
=
5175 DS
.getRepAsType().get()->getAsStructureType())
5176 Record
= RT
->getDecl();
5177 else if (const RecordType
*UT
= DS
.getRepAsType().get()->getAsUnionType())
5178 Record
= UT
->getDecl();
5180 if (Record
&& getLangOpts().MicrosoftExt
) {
5181 Diag(DS
.getBeginLoc(), diag::ext_ms_anonymous_record
)
5182 << Record
->isUnion() << DS
.getSourceRange();
5183 return BuildMicrosoftCAnonymousStruct(S
, DS
, Record
);
5186 DeclaresAnything
= false;
5190 // Skip all the checks below if we have a type error.
5191 if (DS
.getTypeSpecType() == DeclSpec::TST_error
||
5192 (TagD
&& TagD
->isInvalidDecl()))
5195 if (getLangOpts().CPlusPlus
&&
5196 DS
.getStorageClassSpec() != DeclSpec::SCS_typedef
)
5197 if (EnumDecl
*Enum
= dyn_cast_or_null
<EnumDecl
>(Tag
))
5198 if (Enum
->enumerator_begin() == Enum
->enumerator_end() &&
5199 !Enum
->getIdentifier() && !Enum
->isInvalidDecl())
5200 DeclaresAnything
= false;
5202 if (!DS
.isMissingDeclaratorOk()) {
5203 // Customize diagnostic for a typedef missing a name.
5204 if (DS
.getStorageClassSpec() == DeclSpec::SCS_typedef
)
5205 Diag(DS
.getBeginLoc(), diag::ext_typedef_without_a_name
)
5206 << DS
.getSourceRange();
5208 DeclaresAnything
= false;
5211 if (DS
.isModulePrivateSpecified() &&
5212 Tag
&& Tag
->getDeclContext()->isFunctionOrMethod())
5213 Diag(DS
.getModulePrivateSpecLoc(), diag::err_module_private_local_class
)
5214 << llvm::to_underlying(Tag
->getTagKind())
5215 << FixItHint::CreateRemoval(DS
.getModulePrivateSpecLoc());
5217 ActOnDocumentableDecl(TagD
);
5220 // A declaration [...] shall declare at least a declarator [...], a tag,
5221 // or the members of an enumeration.
5223 // [If there are no declarators], and except for the declaration of an
5224 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
5225 // names into the program, or shall redeclare a name introduced by a
5226 // previous declaration.
5227 if (!DeclaresAnything
) {
5228 // In C, we allow this as a (popular) extension / bug. Don't bother
5229 // producing further diagnostics for redundant qualifiers after this.
5230 Diag(DS
.getBeginLoc(), (IsExplicitInstantiation
|| !TemplateParams
.empty())
5231 ? diag::err_no_declarators
5232 : diag::ext_no_declarators
)
5233 << DS
.getSourceRange();
5238 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
5239 // init-declarator-list of the declaration shall not be empty.
5240 // C++ [dcl.fct.spec]p1:
5241 // If a cv-qualifier appears in a decl-specifier-seq, the
5242 // init-declarator-list of the declaration shall not be empty.
5244 // Spurious qualifiers here appear to be valid in C.
5245 unsigned DiagID
= diag::warn_standalone_specifier
;
5246 if (getLangOpts().CPlusPlus
)
5247 DiagID
= diag::ext_standalone_specifier
;
5249 // Note that a linkage-specification sets a storage class, but
5250 // 'extern "C" struct foo;' is actually valid and not theoretically
5252 if (DeclSpec::SCS SCS
= DS
.getStorageClassSpec()) {
5253 if (SCS
== DeclSpec::SCS_mutable
)
5254 // Since mutable is not a viable storage class specifier in C, there is
5255 // no reason to treat it as an extension. Instead, diagnose as an error.
5256 Diag(DS
.getStorageClassSpecLoc(), diag::err_mutable_nonmember
);
5257 else if (!DS
.isExternInLinkageSpec() && SCS
!= DeclSpec::SCS_typedef
)
5258 Diag(DS
.getStorageClassSpecLoc(), DiagID
)
5259 << DeclSpec::getSpecifierName(SCS
);
5262 if (DeclSpec::TSCS TSCS
= DS
.getThreadStorageClassSpec())
5263 Diag(DS
.getThreadStorageClassSpecLoc(), DiagID
)
5264 << DeclSpec::getSpecifierName(TSCS
);
5265 if (DS
.getTypeQualifiers()) {
5266 if (DS
.getTypeQualifiers() & DeclSpec::TQ_const
)
5267 Diag(DS
.getConstSpecLoc(), DiagID
) << "const";
5268 if (DS
.getTypeQualifiers() & DeclSpec::TQ_volatile
)
5269 Diag(DS
.getConstSpecLoc(), DiagID
) << "volatile";
5270 // Restrict is covered above.
5271 if (DS
.getTypeQualifiers() & DeclSpec::TQ_atomic
)
5272 Diag(DS
.getAtomicSpecLoc(), DiagID
) << "_Atomic";
5273 if (DS
.getTypeQualifiers() & DeclSpec::TQ_unaligned
)
5274 Diag(DS
.getUnalignedSpecLoc(), DiagID
) << "__unaligned";
5277 // Warn about ignored type attributes, for example:
5278 // __attribute__((aligned)) struct A;
5279 // Attributes should be placed after tag to apply to type declaration.
5280 if (!DS
.getAttributes().empty() || !DeclAttrs
.empty()) {
5281 DeclSpec::TST TypeSpecType
= DS
.getTypeSpecType();
5282 if (TypeSpecType
== DeclSpec::TST_class
||
5283 TypeSpecType
== DeclSpec::TST_struct
||
5284 TypeSpecType
== DeclSpec::TST_interface
||
5285 TypeSpecType
== DeclSpec::TST_union
||
5286 TypeSpecType
== DeclSpec::TST_enum
) {
5288 auto EmitAttributeDiagnostic
= [this, &DS
](const ParsedAttr
&AL
) {
5289 unsigned DiagnosticId
= diag::warn_declspec_attribute_ignored
;
5290 if (AL
.isAlignas() && !getLangOpts().CPlusPlus
)
5291 DiagnosticId
= diag::warn_attribute_ignored
;
5292 else if (AL
.isRegularKeywordAttribute())
5293 DiagnosticId
= diag::err_declspec_keyword_has_no_effect
;
5295 DiagnosticId
= diag::warn_declspec_attribute_ignored
;
5296 Diag(AL
.getLoc(), DiagnosticId
)
5297 << AL
<< GetDiagnosticTypeSpecifierID(DS
);
5300 llvm::for_each(DS
.getAttributes(), EmitAttributeDiagnostic
);
5301 llvm::for_each(DeclAttrs
, EmitAttributeDiagnostic
);
5308 /// We are trying to inject an anonymous member into the given scope;
5309 /// check if there's an existing declaration that can't be overloaded.
5311 /// \return true if this is a forbidden redeclaration
5312 static bool CheckAnonMemberRedeclaration(Sema
&SemaRef
, Scope
*S
,
5314 DeclarationName Name
,
5315 SourceLocation NameLoc
, bool IsUnion
,
5317 LookupResult
R(SemaRef
, Name
, NameLoc
,
5318 Owner
->isRecord() ? Sema::LookupMemberName
5319 : Sema::LookupOrdinaryName
,
5320 RedeclarationKind::ForVisibleRedeclaration
);
5321 if (!SemaRef
.LookupName(R
, S
)) return false;
5323 // Pick a representative declaration.
5324 NamedDecl
*PrevDecl
= R
.getRepresentativeDecl()->getUnderlyingDecl();
5325 assert(PrevDecl
&& "Expected a non-null Decl");
5327 if (!SemaRef
.isDeclInScope(PrevDecl
, Owner
, S
))
5330 if (SC
== StorageClass::SC_None
&&
5331 PrevDecl
->isPlaceholderVar(SemaRef
.getLangOpts()) &&
5332 (Owner
->isFunctionOrMethod() || Owner
->isRecord())) {
5333 if (!Owner
->isRecord())
5334 SemaRef
.DiagPlaceholderVariableDefinition(NameLoc
);
5338 SemaRef
.Diag(NameLoc
, diag::err_anonymous_record_member_redecl
)
5340 SemaRef
.Diag(PrevDecl
->getLocation(), diag::note_previous_declaration
);
5345 void Sema::ActOnDefinedDeclarationSpecifier(Decl
*D
) {
5346 if (auto *RD
= dyn_cast_if_present
<RecordDecl
>(D
))
5347 DiagPlaceholderFieldDeclDefinitions(RD
);
5350 void Sema::DiagPlaceholderFieldDeclDefinitions(RecordDecl
*Record
) {
5351 if (!getLangOpts().CPlusPlus
)
5354 // This function can be parsed before we have validated the
5355 // structure as an anonymous struct
5356 if (Record
->isAnonymousStructOrUnion())
5359 const NamedDecl
*First
= 0;
5360 for (const Decl
*D
: Record
->decls()) {
5361 const NamedDecl
*ND
= dyn_cast
<NamedDecl
>(D
);
5362 if (!ND
|| !ND
->isPlaceholderVar(getLangOpts()))
5367 DiagPlaceholderVariableDefinition(ND
->getLocation());
5371 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
5372 /// anonymous struct or union AnonRecord into the owning context Owner
5373 /// and scope S. This routine will be invoked just after we realize
5374 /// that an unnamed union or struct is actually an anonymous union or
5381 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
5382 /// // f into the surrounding scope.x
5385 /// This routine is recursive, injecting the names of nested anonymous
5386 /// structs/unions into the owning context and scope as well.
5388 InjectAnonymousStructOrUnionMembers(Sema
&SemaRef
, Scope
*S
, DeclContext
*Owner
,
5389 RecordDecl
*AnonRecord
, AccessSpecifier AS
,
5391 SmallVectorImpl
<NamedDecl
*> &Chaining
) {
5392 bool Invalid
= false;
5394 // Look every FieldDecl and IndirectFieldDecl with a name.
5395 for (auto *D
: AnonRecord
->decls()) {
5396 if ((isa
<FieldDecl
>(D
) || isa
<IndirectFieldDecl
>(D
)) &&
5397 cast
<NamedDecl
>(D
)->getDeclName()) {
5398 ValueDecl
*VD
= cast
<ValueDecl
>(D
);
5399 if (CheckAnonMemberRedeclaration(SemaRef
, S
, Owner
, VD
->getDeclName(),
5400 VD
->getLocation(), AnonRecord
->isUnion(),
5402 // C++ [class.union]p2:
5403 // The names of the members of an anonymous union shall be
5404 // distinct from the names of any other entity in the
5405 // scope in which the anonymous union is declared.
5408 // C++ [class.union]p2:
5409 // For the purpose of name lookup, after the anonymous union
5410 // definition, the members of the anonymous union are
5411 // considered to have been defined in the scope in which the
5412 // anonymous union is declared.
5413 unsigned OldChainingSize
= Chaining
.size();
5414 if (IndirectFieldDecl
*IF
= dyn_cast
<IndirectFieldDecl
>(VD
))
5415 Chaining
.append(IF
->chain_begin(), IF
->chain_end());
5417 Chaining
.push_back(VD
);
5419 assert(Chaining
.size() >= 2);
5420 NamedDecl
**NamedChain
=
5421 new (SemaRef
.Context
)NamedDecl
*[Chaining
.size()];
5422 for (unsigned i
= 0; i
< Chaining
.size(); i
++)
5423 NamedChain
[i
] = Chaining
[i
];
5425 IndirectFieldDecl
*IndirectField
= IndirectFieldDecl::Create(
5426 SemaRef
.Context
, Owner
, VD
->getLocation(), VD
->getIdentifier(),
5427 VD
->getType(), {NamedChain
, Chaining
.size()});
5429 for (const auto *Attr
: VD
->attrs())
5430 IndirectField
->addAttr(Attr
->clone(SemaRef
.Context
));
5432 IndirectField
->setAccess(AS
);
5433 IndirectField
->setImplicit();
5434 SemaRef
.PushOnScopeChains(IndirectField
, S
);
5436 // That includes picking up the appropriate access specifier.
5437 if (AS
!= AS_none
) IndirectField
->setAccess(AS
);
5439 Chaining
.resize(OldChainingSize
);
5447 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
5448 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
5449 /// illegal input values are mapped to SC_None.
5451 StorageClassSpecToVarDeclStorageClass(const DeclSpec
&DS
) {
5452 DeclSpec::SCS StorageClassSpec
= DS
.getStorageClassSpec();
5453 assert(StorageClassSpec
!= DeclSpec::SCS_typedef
&&
5454 "Parser allowed 'typedef' as storage class VarDecl.");
5455 switch (StorageClassSpec
) {
5456 case DeclSpec::SCS_unspecified
: return SC_None
;
5457 case DeclSpec::SCS_extern
:
5458 if (DS
.isExternInLinkageSpec())
5461 case DeclSpec::SCS_static
: return SC_Static
;
5462 case DeclSpec::SCS_auto
: return SC_Auto
;
5463 case DeclSpec::SCS_register
: return SC_Register
;
5464 case DeclSpec::SCS_private_extern
: return SC_PrivateExtern
;
5465 // Illegal SCSs map to None: error reporting is up to the caller.
5466 case DeclSpec::SCS_mutable
: // Fall through.
5467 case DeclSpec::SCS_typedef
: return SC_None
;
5469 llvm_unreachable("unknown storage class specifier");
5472 static SourceLocation
findDefaultInitializer(const CXXRecordDecl
*Record
) {
5473 assert(Record
->hasInClassInitializer());
5475 for (const auto *I
: Record
->decls()) {
5476 const auto *FD
= dyn_cast
<FieldDecl
>(I
);
5477 if (const auto *IFD
= dyn_cast
<IndirectFieldDecl
>(I
))
5478 FD
= IFD
->getAnonField();
5479 if (FD
&& FD
->hasInClassInitializer())
5480 return FD
->getLocation();
5483 llvm_unreachable("couldn't find in-class initializer");
5486 static void checkDuplicateDefaultInit(Sema
&S
, CXXRecordDecl
*Parent
,
5487 SourceLocation DefaultInitLoc
) {
5488 if (!Parent
->isUnion() || !Parent
->hasInClassInitializer())
5491 S
.Diag(DefaultInitLoc
, diag::err_multiple_mem_union_initialization
);
5492 S
.Diag(findDefaultInitializer(Parent
), diag::note_previous_initializer
) << 0;
5495 static void checkDuplicateDefaultInit(Sema
&S
, CXXRecordDecl
*Parent
,
5496 CXXRecordDecl
*AnonUnion
) {
5497 if (!Parent
->isUnion() || !Parent
->hasInClassInitializer())
5500 checkDuplicateDefaultInit(S
, Parent
, findDefaultInitializer(AnonUnion
));
5503 Decl
*Sema::BuildAnonymousStructOrUnion(Scope
*S
, DeclSpec
&DS
,
5506 const PrintingPolicy
&Policy
) {
5507 DeclContext
*Owner
= Record
->getDeclContext();
5509 // Diagnose whether this anonymous struct/union is an extension.
5510 if (Record
->isUnion() && !getLangOpts().CPlusPlus
&& !getLangOpts().C11
)
5511 Diag(Record
->getLocation(), diag::ext_anonymous_union
);
5512 else if (!Record
->isUnion() && getLangOpts().CPlusPlus
)
5513 Diag(Record
->getLocation(), diag::ext_gnu_anonymous_struct
);
5514 else if (!Record
->isUnion() && !getLangOpts().C11
)
5515 Diag(Record
->getLocation(), diag::ext_c11_anonymous_struct
);
5517 // C and C++ require different kinds of checks for anonymous
5519 bool Invalid
= false;
5520 if (getLangOpts().CPlusPlus
) {
5521 const char *PrevSpec
= nullptr;
5522 if (Record
->isUnion()) {
5523 // C++ [class.union]p6:
5524 // C++17 [class.union.anon]p2:
5525 // Anonymous unions declared in a named namespace or in the
5526 // global namespace shall be declared static.
5528 DeclContext
*OwnerScope
= Owner
->getRedeclContext();
5529 if (DS
.getStorageClassSpec() != DeclSpec::SCS_static
&&
5530 (OwnerScope
->isTranslationUnit() ||
5531 (OwnerScope
->isNamespace() &&
5532 !cast
<NamespaceDecl
>(OwnerScope
)->isAnonymousNamespace()))) {
5533 Diag(Record
->getLocation(), diag::err_anonymous_union_not_static
)
5534 << FixItHint::CreateInsertion(Record
->getLocation(), "static ");
5536 // Recover by adding 'static'.
5537 DS
.SetStorageClassSpec(*this, DeclSpec::SCS_static
, SourceLocation(),
5538 PrevSpec
, DiagID
, Policy
);
5540 // C++ [class.union]p6:
5541 // A storage class is not allowed in a declaration of an
5542 // anonymous union in a class scope.
5543 else if (DS
.getStorageClassSpec() != DeclSpec::SCS_unspecified
&&
5544 isa
<RecordDecl
>(Owner
)) {
5545 Diag(DS
.getStorageClassSpecLoc(),
5546 diag::err_anonymous_union_with_storage_spec
)
5547 << FixItHint::CreateRemoval(DS
.getStorageClassSpecLoc());
5549 // Recover by removing the storage specifier.
5550 DS
.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified
,
5552 PrevSpec
, DiagID
, Context
.getPrintingPolicy());
5556 // Ignore const/volatile/restrict qualifiers.
5557 if (DS
.getTypeQualifiers()) {
5558 if (DS
.getTypeQualifiers() & DeclSpec::TQ_const
)
5559 Diag(DS
.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified
)
5560 << Record
->isUnion() << "const"
5561 << FixItHint::CreateRemoval(DS
.getConstSpecLoc());
5562 if (DS
.getTypeQualifiers() & DeclSpec::TQ_volatile
)
5563 Diag(DS
.getVolatileSpecLoc(),
5564 diag::ext_anonymous_struct_union_qualified
)
5565 << Record
->isUnion() << "volatile"
5566 << FixItHint::CreateRemoval(DS
.getVolatileSpecLoc());
5567 if (DS
.getTypeQualifiers() & DeclSpec::TQ_restrict
)
5568 Diag(DS
.getRestrictSpecLoc(),
5569 diag::ext_anonymous_struct_union_qualified
)
5570 << Record
->isUnion() << "restrict"
5571 << FixItHint::CreateRemoval(DS
.getRestrictSpecLoc());
5572 if (DS
.getTypeQualifiers() & DeclSpec::TQ_atomic
)
5573 Diag(DS
.getAtomicSpecLoc(),
5574 diag::ext_anonymous_struct_union_qualified
)
5575 << Record
->isUnion() << "_Atomic"
5576 << FixItHint::CreateRemoval(DS
.getAtomicSpecLoc());
5577 if (DS
.getTypeQualifiers() & DeclSpec::TQ_unaligned
)
5578 Diag(DS
.getUnalignedSpecLoc(),
5579 diag::ext_anonymous_struct_union_qualified
)
5580 << Record
->isUnion() << "__unaligned"
5581 << FixItHint::CreateRemoval(DS
.getUnalignedSpecLoc());
5583 DS
.ClearTypeQualifiers();
5586 // C++ [class.union]p2:
5587 // The member-specification of an anonymous union shall only
5588 // define non-static data members. [Note: nested types and
5589 // functions cannot be declared within an anonymous union. ]
5590 for (auto *Mem
: Record
->decls()) {
5591 // Ignore invalid declarations; we already diagnosed them.
5592 if (Mem
->isInvalidDecl())
5595 if (auto *FD
= dyn_cast
<FieldDecl
>(Mem
)) {
5596 // C++ [class.union]p3:
5597 // An anonymous union shall not have private or protected
5598 // members (clause 11).
5599 assert(FD
->getAccess() != AS_none
);
5600 if (FD
->getAccess() != AS_public
) {
5601 Diag(FD
->getLocation(), diag::err_anonymous_record_nonpublic_member
)
5602 << Record
->isUnion() << (FD
->getAccess() == AS_protected
);
5606 // C++ [class.union]p1
5607 // An object of a class with a non-trivial constructor, a non-trivial
5608 // copy constructor, a non-trivial destructor, or a non-trivial copy
5609 // assignment operator cannot be a member of a union, nor can an
5610 // array of such objects.
5611 if (CheckNontrivialField(FD
))
5613 } else if (Mem
->isImplicit()) {
5614 // Any implicit members are fine.
5615 } else if (isa
<TagDecl
>(Mem
) && Mem
->getDeclContext() != Record
) {
5616 // This is a type that showed up in an
5617 // elaborated-type-specifier inside the anonymous struct or
5618 // union, but which actually declares a type outside of the
5619 // anonymous struct or union. It's okay.
5620 } else if (auto *MemRecord
= dyn_cast
<RecordDecl
>(Mem
)) {
5621 if (!MemRecord
->isAnonymousStructOrUnion() &&
5622 MemRecord
->getDeclName()) {
5623 // Visual C++ allows type definition in anonymous struct or union.
5624 if (getLangOpts().MicrosoftExt
)
5625 Diag(MemRecord
->getLocation(), diag::ext_anonymous_record_with_type
)
5626 << Record
->isUnion();
5628 // This is a nested type declaration.
5629 Diag(MemRecord
->getLocation(), diag::err_anonymous_record_with_type
)
5630 << Record
->isUnion();
5634 // This is an anonymous type definition within another anonymous type.
5635 // This is a popular extension, provided by Plan9, MSVC and GCC, but
5636 // not part of standard C++.
5637 Diag(MemRecord
->getLocation(),
5638 diag::ext_anonymous_record_with_anonymous_type
)
5639 << Record
->isUnion();
5641 } else if (isa
<AccessSpecDecl
>(Mem
)) {
5642 // Any access specifier is fine.
5643 } else if (isa
<StaticAssertDecl
>(Mem
)) {
5644 // In C++1z, static_assert declarations are also fine.
5646 // We have something that isn't a non-static data
5647 // member. Complain about it.
5648 unsigned DK
= diag::err_anonymous_record_bad_member
;
5649 if (isa
<TypeDecl
>(Mem
))
5650 DK
= diag::err_anonymous_record_with_type
;
5651 else if (isa
<FunctionDecl
>(Mem
))
5652 DK
= diag::err_anonymous_record_with_function
;
5653 else if (isa
<VarDecl
>(Mem
))
5654 DK
= diag::err_anonymous_record_with_static
;
5656 // Visual C++ allows type definition in anonymous struct or union.
5657 if (getLangOpts().MicrosoftExt
&&
5658 DK
== diag::err_anonymous_record_with_type
)
5659 Diag(Mem
->getLocation(), diag::ext_anonymous_record_with_type
)
5660 << Record
->isUnion();
5662 Diag(Mem
->getLocation(), DK
) << Record
->isUnion();
5668 // C++11 [class.union]p8 (DR1460):
5669 // At most one variant member of a union may have a
5670 // brace-or-equal-initializer.
5671 if (cast
<CXXRecordDecl
>(Record
)->hasInClassInitializer() &&
5673 checkDuplicateDefaultInit(*this, cast
<CXXRecordDecl
>(Owner
),
5674 cast
<CXXRecordDecl
>(Record
));
5677 if (!Record
->isUnion() && !Owner
->isRecord()) {
5678 Diag(Record
->getLocation(), diag::err_anonymous_struct_not_member
)
5679 << getLangOpts().CPlusPlus
;
5684 // [If there are no declarators], and except for the declaration of an
5685 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
5686 // names into the program
5687 // C++ [class.mem]p2:
5688 // each such member-declaration shall either declare at least one member
5689 // name of the class or declare at least one unnamed bit-field
5691 // For C this is an error even for a named struct, and is diagnosed elsewhere.
5692 if (getLangOpts().CPlusPlus
&& Record
->field_empty())
5693 Diag(DS
.getBeginLoc(), diag::ext_no_declarators
) << DS
.getSourceRange();
5695 // Mock up a declarator.
5696 Declarator
Dc(DS
, ParsedAttributesView::none(), DeclaratorContext::Member
);
5697 StorageClass SC
= StorageClassSpecToVarDeclStorageClass(DS
);
5698 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(Dc
);
5699 assert(TInfo
&& "couldn't build declarator info for anonymous struct/union");
5701 // Create a declaration for this anonymous struct/union.
5702 NamedDecl
*Anon
= nullptr;
5703 if (RecordDecl
*OwningClass
= dyn_cast
<RecordDecl
>(Owner
)) {
5704 Anon
= FieldDecl::Create(
5705 Context
, OwningClass
, DS
.getBeginLoc(), Record
->getLocation(),
5706 /*IdentifierInfo=*/nullptr, Context
.getTypeDeclType(Record
), TInfo
,
5707 /*BitWidth=*/nullptr, /*Mutable=*/false,
5708 /*InitStyle=*/ICIS_NoInit
);
5709 Anon
->setAccess(AS
);
5710 ProcessDeclAttributes(S
, Anon
, Dc
);
5712 if (getLangOpts().CPlusPlus
)
5713 FieldCollector
->Add(cast
<FieldDecl
>(Anon
));
5715 DeclSpec::SCS SCSpec
= DS
.getStorageClassSpec();
5716 if (SCSpec
== DeclSpec::SCS_mutable
) {
5717 // mutable can only appear on non-static class members, so it's always
5719 Diag(Record
->getLocation(), diag::err_mutable_nonmember
);
5724 Anon
= VarDecl::Create(Context
, Owner
, DS
.getBeginLoc(),
5725 Record
->getLocation(), /*IdentifierInfo=*/nullptr,
5726 Context
.getTypeDeclType(Record
), TInfo
, SC
);
5728 Anon
->setInvalidDecl();
5730 ProcessDeclAttributes(S
, Anon
, Dc
);
5732 // Default-initialize the implicit variable. This initialization will be
5733 // trivial in almost all cases, except if a union member has an in-class
5735 // union { int n = 0; };
5736 ActOnUninitializedDecl(Anon
);
5738 Anon
->setImplicit();
5740 // Mark this as an anonymous struct/union type.
5741 Record
->setAnonymousStructOrUnion(true);
5743 // Add the anonymous struct/union object to the current
5744 // context. We'll be referencing this object when we refer to one of
5746 Owner
->addDecl(Anon
);
5748 // Inject the members of the anonymous struct/union into the owning
5749 // context and into the identifier resolver chain for name lookup
5751 SmallVector
<NamedDecl
*, 2> Chain
;
5752 Chain
.push_back(Anon
);
5754 if (InjectAnonymousStructOrUnionMembers(*this, S
, Owner
, Record
, AS
, SC
,
5758 if (VarDecl
*NewVD
= dyn_cast
<VarDecl
>(Anon
)) {
5759 if (getLangOpts().CPlusPlus
&& NewVD
->isStaticLocal()) {
5760 MangleNumberingContext
*MCtx
;
5761 Decl
*ManglingContextDecl
;
5762 std::tie(MCtx
, ManglingContextDecl
) =
5763 getCurrentMangleNumberContext(NewVD
->getDeclContext());
5765 Context
.setManglingNumber(
5766 NewVD
, MCtx
->getManglingNumber(
5767 NewVD
, getMSManglingNumber(getLangOpts(), S
)));
5768 Context
.setStaticLocalNumber(NewVD
, MCtx
->getStaticLocalNumber(NewVD
));
5774 Anon
->setInvalidDecl();
5779 Decl
*Sema::BuildMicrosoftCAnonymousStruct(Scope
*S
, DeclSpec
&DS
,
5780 RecordDecl
*Record
) {
5781 assert(Record
&& "expected a record!");
5783 // Mock up a declarator.
5784 Declarator
Dc(DS
, ParsedAttributesView::none(), DeclaratorContext::TypeName
);
5785 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(Dc
);
5786 assert(TInfo
&& "couldn't build declarator info for anonymous struct");
5788 auto *ParentDecl
= cast
<RecordDecl
>(CurContext
);
5789 QualType RecTy
= Context
.getTypeDeclType(Record
);
5791 // Create a declaration for this anonymous struct.
5793 FieldDecl::Create(Context
, ParentDecl
, DS
.getBeginLoc(), DS
.getBeginLoc(),
5794 /*IdentifierInfo=*/nullptr, RecTy
, TInfo
,
5795 /*BitWidth=*/nullptr, /*Mutable=*/false,
5796 /*InitStyle=*/ICIS_NoInit
);
5797 Anon
->setImplicit();
5799 // Add the anonymous struct object to the current context.
5800 CurContext
->addDecl(Anon
);
5802 // Inject the members of the anonymous struct into the current
5803 // context and into the identifier resolver chain for name lookup
5805 SmallVector
<NamedDecl
*, 2> Chain
;
5806 Chain
.push_back(Anon
);
5808 RecordDecl
*RecordDef
= Record
->getDefinition();
5809 if (RequireCompleteSizedType(Anon
->getLocation(), RecTy
,
5810 diag::err_field_incomplete_or_sizeless
) ||
5811 InjectAnonymousStructOrUnionMembers(
5812 *this, S
, CurContext
, RecordDef
, AS_none
,
5813 StorageClassSpecToVarDeclStorageClass(DS
), Chain
)) {
5814 Anon
->setInvalidDecl();
5815 ParentDecl
->setInvalidDecl();
5821 DeclarationNameInfo
Sema::GetNameForDeclarator(Declarator
&D
) {
5822 return GetNameFromUnqualifiedId(D
.getName());
5826 Sema::GetNameFromUnqualifiedId(const UnqualifiedId
&Name
) {
5827 DeclarationNameInfo NameInfo
;
5828 NameInfo
.setLoc(Name
.StartLocation
);
5830 switch (Name
.getKind()) {
5832 case UnqualifiedIdKind::IK_ImplicitSelfParam
:
5833 case UnqualifiedIdKind::IK_Identifier
:
5834 NameInfo
.setName(Name
.Identifier
);
5837 case UnqualifiedIdKind::IK_DeductionGuideName
: {
5838 // C++ [temp.deduct.guide]p3:
5839 // The simple-template-id shall name a class template specialization.
5840 // The template-name shall be the same identifier as the template-name
5841 // of the simple-template-id.
5842 // These together intend to imply that the template-name shall name a
5844 // FIXME: template<typename T> struct X {};
5845 // template<typename T> using Y = X<T>;
5846 // Y(int) -> Y<int>;
5847 // satisfies these rules but does not name a class template.
5848 TemplateName TN
= Name
.TemplateName
.get().get();
5849 auto *Template
= TN
.getAsTemplateDecl();
5850 if (!Template
|| !isa
<ClassTemplateDecl
>(Template
)) {
5851 Diag(Name
.StartLocation
,
5852 diag::err_deduction_guide_name_not_class_template
)
5853 << (int)getTemplateNameKindForDiagnostics(TN
) << TN
;
5855 NoteTemplateLocation(*Template
);
5856 return DeclarationNameInfo();
5860 Context
.DeclarationNames
.getCXXDeductionGuideName(Template
));
5864 case UnqualifiedIdKind::IK_OperatorFunctionId
:
5865 NameInfo
.setName(Context
.DeclarationNames
.getCXXOperatorName(
5866 Name
.OperatorFunctionId
.Operator
));
5867 NameInfo
.setCXXOperatorNameRange(SourceRange(
5868 Name
.OperatorFunctionId
.SymbolLocations
[0], Name
.EndLocation
));
5871 case UnqualifiedIdKind::IK_LiteralOperatorId
:
5872 NameInfo
.setName(Context
.DeclarationNames
.getCXXLiteralOperatorName(
5874 NameInfo
.setCXXLiteralOperatorNameLoc(Name
.EndLocation
);
5877 case UnqualifiedIdKind::IK_ConversionFunctionId
: {
5878 TypeSourceInfo
*TInfo
;
5879 QualType Ty
= GetTypeFromParser(Name
.ConversionFunctionId
, &TInfo
);
5881 return DeclarationNameInfo();
5882 NameInfo
.setName(Context
.DeclarationNames
.getCXXConversionFunctionName(
5883 Context
.getCanonicalType(Ty
)));
5884 NameInfo
.setNamedTypeInfo(TInfo
);
5888 case UnqualifiedIdKind::IK_ConstructorName
: {
5889 TypeSourceInfo
*TInfo
;
5890 QualType Ty
= GetTypeFromParser(Name
.ConstructorName
, &TInfo
);
5892 return DeclarationNameInfo();
5893 NameInfo
.setName(Context
.DeclarationNames
.getCXXConstructorName(
5894 Context
.getCanonicalType(Ty
)));
5895 NameInfo
.setNamedTypeInfo(TInfo
);
5899 case UnqualifiedIdKind::IK_ConstructorTemplateId
: {
5900 // In well-formed code, we can only have a constructor
5901 // template-id that refers to the current context, so go there
5902 // to find the actual type being constructed.
5903 CXXRecordDecl
*CurClass
= dyn_cast
<CXXRecordDecl
>(CurContext
);
5904 if (!CurClass
|| CurClass
->getIdentifier() != Name
.TemplateId
->Name
)
5905 return DeclarationNameInfo();
5907 // Determine the type of the class being constructed.
5908 QualType CurClassType
= Context
.getTypeDeclType(CurClass
);
5910 // FIXME: Check two things: that the template-id names the same type as
5911 // CurClassType, and that the template-id does not occur when the name
5914 NameInfo
.setName(Context
.DeclarationNames
.getCXXConstructorName(
5915 Context
.getCanonicalType(CurClassType
)));
5916 // FIXME: should we retrieve TypeSourceInfo?
5917 NameInfo
.setNamedTypeInfo(nullptr);
5921 case UnqualifiedIdKind::IK_DestructorName
: {
5922 TypeSourceInfo
*TInfo
;
5923 QualType Ty
= GetTypeFromParser(Name
.DestructorName
, &TInfo
);
5925 return DeclarationNameInfo();
5926 NameInfo
.setName(Context
.DeclarationNames
.getCXXDestructorName(
5927 Context
.getCanonicalType(Ty
)));
5928 NameInfo
.setNamedTypeInfo(TInfo
);
5932 case UnqualifiedIdKind::IK_TemplateId
: {
5933 TemplateName TName
= Name
.TemplateId
->Template
.get();
5934 SourceLocation TNameLoc
= Name
.TemplateId
->TemplateNameLoc
;
5935 return Context
.getNameForTemplate(TName
, TNameLoc
);
5938 } // switch (Name.getKind())
5940 llvm_unreachable("Unknown name kind");
5943 static QualType
getCoreType(QualType Ty
) {
5945 if (Ty
->isPointerOrReferenceType())
5946 Ty
= Ty
->getPointeeType();
5947 else if (Ty
->isArrayType())
5948 Ty
= Ty
->castAsArrayTypeUnsafe()->getElementType();
5950 return Ty
.withoutLocalFastQualifiers();
5954 /// hasSimilarParameters - Determine whether the C++ functions Declaration
5955 /// and Definition have "nearly" matching parameters. This heuristic is
5956 /// used to improve diagnostics in the case where an out-of-line function
5957 /// definition doesn't match any declaration within the class or namespace.
5958 /// Also sets Params to the list of indices to the parameters that differ
5959 /// between the declaration and the definition. If hasSimilarParameters
5960 /// returns true and Params is empty, then all of the parameters match.
5961 static bool hasSimilarParameters(ASTContext
&Context
,
5962 FunctionDecl
*Declaration
,
5963 FunctionDecl
*Definition
,
5964 SmallVectorImpl
<unsigned> &Params
) {
5966 if (Declaration
->param_size() != Definition
->param_size())
5968 for (unsigned Idx
= 0; Idx
< Declaration
->param_size(); ++Idx
) {
5969 QualType DeclParamTy
= Declaration
->getParamDecl(Idx
)->getType();
5970 QualType DefParamTy
= Definition
->getParamDecl(Idx
)->getType();
5972 // The parameter types are identical
5973 if (Context
.hasSameUnqualifiedType(DefParamTy
, DeclParamTy
))
5976 QualType DeclParamBaseTy
= getCoreType(DeclParamTy
);
5977 QualType DefParamBaseTy
= getCoreType(DefParamTy
);
5978 const IdentifierInfo
*DeclTyName
= DeclParamBaseTy
.getBaseTypeIdentifier();
5979 const IdentifierInfo
*DefTyName
= DefParamBaseTy
.getBaseTypeIdentifier();
5981 if (Context
.hasSameUnqualifiedType(DeclParamBaseTy
, DefParamBaseTy
) ||
5982 (DeclTyName
&& DeclTyName
== DefTyName
))
5983 Params
.push_back(Idx
);
5984 else // The two parameters aren't even close
5991 /// RebuildDeclaratorInCurrentInstantiation - Checks whether the given
5992 /// declarator needs to be rebuilt in the current instantiation.
5993 /// Any bits of declarator which appear before the name are valid for
5994 /// consideration here. That's specifically the type in the decl spec
5995 /// and the base type in any member-pointer chunks.
5996 static bool RebuildDeclaratorInCurrentInstantiation(Sema
&S
, Declarator
&D
,
5997 DeclarationName Name
) {
5998 // The types we specifically need to rebuild are:
5999 // - typenames, typeofs, and decltypes
6000 // - types which will become injected class names
6001 // Of course, we also need to rebuild any type referencing such a
6002 // type. It's safest to just say "dependent", but we call out a
6005 DeclSpec
&DS
= D
.getMutableDeclSpec();
6006 switch (DS
.getTypeSpecType()) {
6007 case DeclSpec::TST_typename
:
6008 case DeclSpec::TST_typeofType
:
6009 case DeclSpec::TST_typeof_unqualType
:
6010 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
6011 #include "clang/Basic/TransformTypeTraits.def"
6012 case DeclSpec::TST_atomic
: {
6013 // Grab the type from the parser.
6014 TypeSourceInfo
*TSI
= nullptr;
6015 QualType T
= S
.GetTypeFromParser(DS
.getRepAsType(), &TSI
);
6016 if (T
.isNull() || !T
->isInstantiationDependentType()) break;
6018 // Make sure there's a type source info. This isn't really much
6019 // of a waste; most dependent types should have type source info
6020 // attached already.
6022 TSI
= S
.Context
.getTrivialTypeSourceInfo(T
, DS
.getTypeSpecTypeLoc());
6024 // Rebuild the type in the current instantiation.
6025 TSI
= S
.RebuildTypeInCurrentInstantiation(TSI
, D
.getIdentifierLoc(), Name
);
6026 if (!TSI
) return true;
6028 // Store the new type back in the decl spec.
6029 ParsedType LocType
= S
.CreateParsedType(TSI
->getType(), TSI
);
6030 DS
.UpdateTypeRep(LocType
);
6034 case DeclSpec::TST_decltype
:
6035 case DeclSpec::TST_typeof_unqualExpr
:
6036 case DeclSpec::TST_typeofExpr
: {
6037 Expr
*E
= DS
.getRepAsExpr();
6038 ExprResult Result
= S
.RebuildExprInCurrentInstantiation(E
);
6039 if (Result
.isInvalid()) return true;
6040 DS
.UpdateExprRep(Result
.get());
6045 // Nothing to do for these decl specs.
6049 // It doesn't matter what order we do this in.
6050 for (unsigned I
= 0, E
= D
.getNumTypeObjects(); I
!= E
; ++I
) {
6051 DeclaratorChunk
&Chunk
= D
.getTypeObject(I
);
6053 // The only type information in the declarator which can come
6054 // before the declaration name is the base type of a member
6056 if (Chunk
.Kind
!= DeclaratorChunk::MemberPointer
)
6059 // Rebuild the scope specifier in-place.
6060 CXXScopeSpec
&SS
= Chunk
.Mem
.Scope();
6061 if (S
.RebuildNestedNameSpecifierInCurrentInstantiation(SS
))
6068 /// Returns true if the declaration is declared in a system header or from a
6070 static bool isFromSystemHeader(SourceManager
&SM
, const Decl
*D
) {
6071 return SM
.isInSystemHeader(D
->getLocation()) ||
6072 SM
.isInSystemMacro(D
->getLocation());
6075 void Sema::warnOnReservedIdentifier(const NamedDecl
*D
) {
6076 // Avoid warning twice on the same identifier, and don't warn on redeclaration
6078 if (D
->getPreviousDecl() || D
->isImplicit())
6080 ReservedIdentifierStatus Status
= D
->isReserved(getLangOpts());
6081 if (Status
!= ReservedIdentifierStatus::NotReserved
&&
6082 !isFromSystemHeader(Context
.getSourceManager(), D
)) {
6083 Diag(D
->getLocation(), diag::warn_reserved_extern_symbol
)
6084 << D
<< static_cast<int>(Status
);
6088 Decl
*Sema::ActOnDeclarator(Scope
*S
, Declarator
&D
) {
6089 D
.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration
);
6091 // Check if we are in an `omp begin/end declare variant` scope. Handle this
6092 // declaration only if the `bind_to_declaration` extension is set.
6093 SmallVector
<FunctionDecl
*, 4> Bases
;
6094 if (LangOpts
.OpenMP
&& OpenMP().isInOpenMPDeclareVariantScope())
6095 if (OpenMP().getOMPTraitInfoForSurroundingScope()->isExtensionActive(
6096 llvm::omp::TraitProperty::
6097 implementation_extension_bind_to_declaration
))
6098 OpenMP().ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
6099 S
, D
, MultiTemplateParamsArg(), Bases
);
6101 Decl
*Dcl
= HandleDeclarator(S
, D
, MultiTemplateParamsArg());
6103 if (OriginalLexicalContext
&& OriginalLexicalContext
->isObjCContainer() &&
6104 Dcl
&& Dcl
->getDeclContext()->isFileContext())
6105 Dcl
->setTopLevelDeclInObjCContainer();
6108 OpenMP().ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl
,
6114 bool Sema::DiagnoseClassNameShadow(DeclContext
*DC
,
6115 DeclarationNameInfo NameInfo
) {
6116 DeclarationName Name
= NameInfo
.getName();
6118 CXXRecordDecl
*Record
= dyn_cast
<CXXRecordDecl
>(DC
);
6119 while (Record
&& Record
->isAnonymousStructOrUnion())
6120 Record
= dyn_cast
<CXXRecordDecl
>(Record
->getParent());
6121 if (Record
&& Record
->getIdentifier() && Record
->getDeclName() == Name
) {
6122 Diag(NameInfo
.getLoc(), diag::err_member_name_of_class
) << Name
;
6129 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec
&SS
, DeclContext
*DC
,
6130 DeclarationName Name
,
6132 TemplateIdAnnotation
*TemplateId
,
6133 bool IsMemberSpecialization
) {
6134 assert(SS
.isValid() && "diagnoseQualifiedDeclaration called for declaration "
6135 "without nested-name-specifier");
6136 DeclContext
*Cur
= CurContext
;
6137 while (isa
<LinkageSpecDecl
>(Cur
) || isa
<CapturedDecl
>(Cur
))
6138 Cur
= Cur
->getParent();
6140 // If the user provided a superfluous scope specifier that refers back to the
6141 // class in which the entity is already declared, diagnose and ignore it.
6147 // Note, it was once ill-formed to give redundant qualification in all
6148 // contexts, but that rule was removed by DR482.
6149 if (Cur
->Equals(DC
)) {
6150 if (Cur
->isRecord()) {
6151 Diag(Loc
, LangOpts
.MicrosoftExt
? diag::warn_member_extra_qualification
6152 : diag::err_member_extra_qualification
)
6153 << Name
<< FixItHint::CreateRemoval(SS
.getRange());
6156 Diag(Loc
, diag::warn_namespace_member_extra_qualification
) << Name
;
6161 // Check whether the qualifying scope encloses the scope of the original
6162 // declaration. For a template-id, we perform the checks in
6163 // CheckTemplateSpecializationScope.
6164 if (!Cur
->Encloses(DC
) && !(TemplateId
|| IsMemberSpecialization
)) {
6165 if (Cur
->isRecord())
6166 Diag(Loc
, diag::err_member_qualification
)
6167 << Name
<< SS
.getRange();
6168 else if (isa
<TranslationUnitDecl
>(DC
))
6169 Diag(Loc
, diag::err_invalid_declarator_global_scope
)
6170 << Name
<< SS
.getRange();
6171 else if (isa
<FunctionDecl
>(Cur
))
6172 Diag(Loc
, diag::err_invalid_declarator_in_function
)
6173 << Name
<< SS
.getRange();
6174 else if (isa
<BlockDecl
>(Cur
))
6175 Diag(Loc
, diag::err_invalid_declarator_in_block
)
6176 << Name
<< SS
.getRange();
6177 else if (isa
<ExportDecl
>(Cur
)) {
6178 if (!isa
<NamespaceDecl
>(DC
))
6179 Diag(Loc
, diag::err_export_non_namespace_scope_name
)
6180 << Name
<< SS
.getRange();
6182 // The cases that DC is not NamespaceDecl should be handled in
6183 // CheckRedeclarationExported.
6186 Diag(Loc
, diag::err_invalid_declarator_scope
)
6187 << Name
<< cast
<NamedDecl
>(Cur
) << cast
<NamedDecl
>(DC
) << SS
.getRange();
6192 if (Cur
->isRecord()) {
6193 // Cannot qualify members within a class.
6194 Diag(Loc
, diag::err_member_qualification
)
6195 << Name
<< SS
.getRange();
6198 // C++ constructors and destructors with incorrect scopes can break
6199 // our AST invariants by having the wrong underlying types. If
6200 // that's the case, then drop this declaration entirely.
6201 if ((Name
.getNameKind() == DeclarationName::CXXConstructorName
||
6202 Name
.getNameKind() == DeclarationName::CXXDestructorName
) &&
6203 !Context
.hasSameType(Name
.getCXXNameType(),
6204 Context
.getTypeDeclType(cast
<CXXRecordDecl
>(Cur
))))
6210 // C++23 [temp.names]p5:
6211 // The keyword template shall not appear immediately after a declarative
6212 // nested-name-specifier.
6214 // First check the template-id (if any), and then check each component of the
6215 // nested-name-specifier in reverse order.
6217 // FIXME: nested-name-specifiers in friend declarations are declarative,
6218 // but we don't call diagnoseQualifiedDeclaration for them. We should.
6219 if (TemplateId
&& TemplateId
->TemplateKWLoc
.isValid())
6220 Diag(Loc
, diag::ext_template_after_declarative_nns
)
6221 << FixItHint::CreateRemoval(TemplateId
->TemplateKWLoc
);
6223 NestedNameSpecifierLoc
SpecLoc(SS
.getScopeRep(), SS
.location_data());
6225 if (SpecLoc
.getNestedNameSpecifier()->getKind() ==
6226 NestedNameSpecifier::TypeSpecWithTemplate
)
6227 Diag(Loc
, diag::ext_template_after_declarative_nns
)
6228 << FixItHint::CreateRemoval(
6229 SpecLoc
.getTypeLoc().getTemplateKeywordLoc());
6231 if (const Type
*T
= SpecLoc
.getNestedNameSpecifier()->getAsType()) {
6232 if (const auto *TST
= T
->getAsAdjusted
<TemplateSpecializationType
>()) {
6233 // C++23 [expr.prim.id.qual]p3:
6234 // [...] If a nested-name-specifier N is declarative and has a
6235 // simple-template-id with a template argument list A that involves a
6236 // template parameter, let T be the template nominated by N without A.
6237 // T shall be a class template.
6238 if (TST
->isDependentType() && TST
->isTypeAlias())
6239 Diag(Loc
, diag::ext_alias_template_in_declarative_nns
)
6240 << SpecLoc
.getLocalSourceRange();
6241 } else if (T
->isDecltypeType() || T
->getAsAdjusted
<PackIndexingType
>()) {
6242 // C++23 [expr.prim.id.qual]p2:
6243 // [...] A declarative nested-name-specifier shall not have a
6244 // computed-type-specifier.
6246 // CWG2858 changed this from 'decltype-specifier' to
6247 // 'computed-type-specifier'.
6248 Diag(Loc
, diag::err_computed_type_in_declarative_nns
)
6249 << T
->isDecltypeType() << SpecLoc
.getTypeLoc().getSourceRange();
6252 } while ((SpecLoc
= SpecLoc
.getPrefix()));
6257 NamedDecl
*Sema::HandleDeclarator(Scope
*S
, Declarator
&D
,
6258 MultiTemplateParamsArg TemplateParamLists
) {
6259 // TODO: consider using NameInfo for diagnostic.
6260 DeclarationNameInfo NameInfo
= GetNameForDeclarator(D
);
6261 DeclarationName Name
= NameInfo
.getName();
6263 // All of these full declarators require an identifier. If it doesn't have
6264 // one, the ParsedFreeStandingDeclSpec action should be used.
6265 if (D
.isDecompositionDeclarator()) {
6266 return ActOnDecompositionDeclarator(S
, D
, TemplateParamLists
);
6268 if (!D
.isInvalidType()) // Reject this if we think it is valid.
6269 Diag(D
.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident
)
6270 << D
.getDeclSpec().getSourceRange() << D
.getSourceRange();
6272 } else if (DiagnoseUnexpandedParameterPack(NameInfo
, UPPC_DeclarationType
))
6275 DeclContext
*DC
= CurContext
;
6276 if (D
.getCXXScopeSpec().isInvalid())
6278 else if (D
.getCXXScopeSpec().isSet()) {
6279 if (DiagnoseUnexpandedParameterPack(D
.getCXXScopeSpec(),
6280 UPPC_DeclarationQualifier
))
6283 bool EnteringContext
= !D
.getDeclSpec().isFriendSpecified();
6284 DC
= computeDeclContext(D
.getCXXScopeSpec(), EnteringContext
);
6285 if (!DC
|| isa
<EnumDecl
>(DC
)) {
6286 // If we could not compute the declaration context, it's because the
6287 // declaration context is dependent but does not refer to a class,
6288 // class template, or class template partial specialization. Complain
6289 // and return early, to avoid the coming semantic disaster.
6290 Diag(D
.getIdentifierLoc(),
6291 diag::err_template_qualified_declarator_no_match
)
6292 << D
.getCXXScopeSpec().getScopeRep()
6293 << D
.getCXXScopeSpec().getRange();
6296 bool IsDependentContext
= DC
->isDependentContext();
6298 if (!IsDependentContext
&&
6299 RequireCompleteDeclContext(D
.getCXXScopeSpec(), DC
))
6302 // If a class is incomplete, do not parse entities inside it.
6303 if (isa
<CXXRecordDecl
>(DC
) && !cast
<CXXRecordDecl
>(DC
)->hasDefinition()) {
6304 Diag(D
.getIdentifierLoc(),
6305 diag::err_member_def_undefined_record
)
6306 << Name
<< DC
<< D
.getCXXScopeSpec().getRange();
6309 if (!D
.getDeclSpec().isFriendSpecified()) {
6310 TemplateIdAnnotation
*TemplateId
=
6311 D
.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
6312 ? D
.getName().TemplateId
6314 if (diagnoseQualifiedDeclaration(D
.getCXXScopeSpec(), DC
, Name
,
6315 D
.getIdentifierLoc(), TemplateId
,
6316 /*IsMemberSpecialization=*/false)) {
6324 // Check whether we need to rebuild the type of the given
6325 // declaration in the current instantiation.
6326 if (EnteringContext
&& IsDependentContext
&&
6327 TemplateParamLists
.size() != 0) {
6328 ContextRAII
SavedContext(*this, DC
);
6329 if (RebuildDeclaratorInCurrentInstantiation(*this, D
, Name
))
6334 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(D
);
6335 QualType R
= TInfo
->getType();
6337 if (DiagnoseUnexpandedParameterPack(D
.getIdentifierLoc(), TInfo
,
6338 UPPC_DeclarationType
))
6341 LookupResult
Previous(*this, NameInfo
, LookupOrdinaryName
,
6342 forRedeclarationInCurContext());
6344 // See if this is a redefinition of a variable in the same scope.
6345 if (!D
.getCXXScopeSpec().isSet()) {
6346 bool IsLinkageLookup
= false;
6347 bool CreateBuiltins
= false;
6349 // If the declaration we're planning to build will be a function
6350 // or object with linkage, then look for another declaration with
6351 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
6353 // If the declaration we're planning to build will be declared with
6354 // external linkage in the translation unit, create any builtin with
6356 if (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef
)
6358 else if (CurContext
->isFunctionOrMethod() &&
6359 (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern
||
6360 R
->isFunctionType())) {
6361 IsLinkageLookup
= true;
6363 CurContext
->getEnclosingNamespaceContext()->isTranslationUnit();
6364 } else if (CurContext
->getRedeclContext()->isTranslationUnit() &&
6365 D
.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static
)
6366 CreateBuiltins
= true;
6368 if (IsLinkageLookup
) {
6369 Previous
.clear(LookupRedeclarationWithLinkage
);
6370 Previous
.setRedeclarationKind(
6371 RedeclarationKind::ForExternalRedeclaration
);
6374 LookupName(Previous
, S
, CreateBuiltins
);
6375 } else { // Something like "int foo::x;"
6376 LookupQualifiedName(Previous
, DC
);
6378 // C++ [dcl.meaning]p1:
6379 // When the declarator-id is qualified, the declaration shall refer to a
6380 // previously declared member of the class or namespace to which the
6381 // qualifier refers (or, in the case of a namespace, of an element of the
6382 // inline namespace set of that namespace (7.3.1)) or to a specialization
6385 // Note that we already checked the context above, and that we do not have
6386 // enough information to make sure that Previous contains the declaration
6387 // we want to match. For example, given:
6394 // void X::f(int) { } // ill-formed
6396 // In this case, Previous will point to the overload set
6397 // containing the two f's declared in X, but neither of them
6400 RemoveUsingDecls(Previous
);
6403 if (auto *TPD
= Previous
.getAsSingle
<NamedDecl
>();
6404 TPD
&& TPD
->isTemplateParameter()) {
6405 // Older versions of clang allowed the names of function/variable templates
6406 // to shadow the names of their template parameters. For the compatibility
6407 // purposes we detect such cases and issue a default-to-error warning that
6408 // can be disabled with -Wno-strict-primary-template-shadow.
6409 if (!D
.isInvalidType()) {
6410 bool AllowForCompatibility
= false;
6411 if (Scope
*DeclParent
= S
->getDeclParent();
6412 Scope
*TemplateParamParent
= S
->getTemplateParamParent()) {
6413 AllowForCompatibility
= DeclParent
->Contains(*TemplateParamParent
) &&
6414 TemplateParamParent
->isDeclScope(TPD
);
6416 DiagnoseTemplateParameterShadow(D
.getIdentifierLoc(), TPD
,
6417 AllowForCompatibility
);
6420 // Just pretend that we didn't see the previous declaration.
6424 if (!R
->isFunctionType() && DiagnoseClassNameShadow(DC
, NameInfo
))
6425 // Forget that the previous declaration is the injected-class-name.
6428 // In C++, the previous declaration we find might be a tag type
6429 // (class or enum). In this case, the new declaration will hide the
6430 // tag type. Note that this applies to functions, function templates, and
6431 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
6432 if (Previous
.isSingleTagDecl() &&
6433 D
.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef
&&
6434 (TemplateParamLists
.size() == 0 || R
->isFunctionType()))
6437 // Check that there are no default arguments other than in the parameters
6438 // of a function declaration (C++ only).
6439 if (getLangOpts().CPlusPlus
)
6440 CheckExtraCXXDefaultArguments(D
);
6442 /// Get the innermost enclosing declaration scope.
6443 S
= S
->getDeclParent();
6447 bool AddToScope
= true;
6448 if (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef
) {
6449 if (TemplateParamLists
.size()) {
6450 Diag(D
.getIdentifierLoc(), diag::err_template_typedef
);
6454 New
= ActOnTypedefDeclarator(S
, D
, DC
, TInfo
, Previous
);
6455 } else if (R
->isFunctionType()) {
6456 New
= ActOnFunctionDeclarator(S
, D
, DC
, TInfo
, Previous
,
6460 New
= ActOnVariableDeclarator(S
, D
, DC
, TInfo
, Previous
, TemplateParamLists
,
6467 // If this has an identifier and is not a function template specialization,
6468 // add it to the scope stack.
6469 if (New
->getDeclName() && AddToScope
)
6470 PushOnScopeChains(New
, S
);
6472 if (OpenMP().isInOpenMPDeclareTargetContext())
6473 OpenMP().checkDeclIsAllowedInOpenMPTarget(nullptr, New
);
6478 /// Helper method to turn variable array types into constant array
6479 /// types in certain situations which would otherwise be errors (for
6480 /// GCC compatibility).
6481 static QualType
TryToFixInvalidVariablyModifiedType(QualType T
,
6482 ASTContext
&Context
,
6483 bool &SizeIsNegative
,
6484 llvm::APSInt
&Oversized
) {
6485 // This method tries to turn a variable array into a constant
6486 // array even when the size isn't an ICE. This is necessary
6487 // for compatibility with code that depends on gcc's buggy
6488 // constant expression folding, like struct {char x[(int)(char*)2];}
6489 SizeIsNegative
= false;
6492 if (T
->isDependentType())
6495 QualifierCollector Qs
;
6496 const Type
*Ty
= Qs
.strip(T
);
6498 if (const PointerType
* PTy
= dyn_cast
<PointerType
>(Ty
)) {
6499 QualType Pointee
= PTy
->getPointeeType();
6500 QualType FixedType
=
6501 TryToFixInvalidVariablyModifiedType(Pointee
, Context
, SizeIsNegative
,
6503 if (FixedType
.isNull()) return FixedType
;
6504 FixedType
= Context
.getPointerType(FixedType
);
6505 return Qs
.apply(Context
, FixedType
);
6507 if (const ParenType
* PTy
= dyn_cast
<ParenType
>(Ty
)) {
6508 QualType Inner
= PTy
->getInnerType();
6509 QualType FixedType
=
6510 TryToFixInvalidVariablyModifiedType(Inner
, Context
, SizeIsNegative
,
6512 if (FixedType
.isNull()) return FixedType
;
6513 FixedType
= Context
.getParenType(FixedType
);
6514 return Qs
.apply(Context
, FixedType
);
6517 const VariableArrayType
* VLATy
= dyn_cast
<VariableArrayType
>(T
);
6521 QualType ElemTy
= VLATy
->getElementType();
6522 if (ElemTy
->isVariablyModifiedType()) {
6523 ElemTy
= TryToFixInvalidVariablyModifiedType(ElemTy
, Context
,
6524 SizeIsNegative
, Oversized
);
6525 if (ElemTy
.isNull())
6529 Expr::EvalResult Result
;
6530 if (!VLATy
->getSizeExpr() ||
6531 !VLATy
->getSizeExpr()->EvaluateAsInt(Result
, Context
))
6534 llvm::APSInt Res
= Result
.Val
.getInt();
6536 // Check whether the array size is negative.
6537 if (Res
.isSigned() && Res
.isNegative()) {
6538 SizeIsNegative
= true;
6542 // Check whether the array is too large to be addressed.
6543 unsigned ActiveSizeBits
=
6544 (!ElemTy
->isDependentType() && !ElemTy
->isVariablyModifiedType() &&
6545 !ElemTy
->isIncompleteType() && !ElemTy
->isUndeducedType())
6546 ? ConstantArrayType::getNumAddressingBits(Context
, ElemTy
, Res
)
6547 : Res
.getActiveBits();
6548 if (ActiveSizeBits
> ConstantArrayType::getMaxSizeBits(Context
)) {
6553 QualType FoldedArrayType
= Context
.getConstantArrayType(
6554 ElemTy
, Res
, VLATy
->getSizeExpr(), ArraySizeModifier::Normal
, 0);
6555 return Qs
.apply(Context
, FoldedArrayType
);
6559 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL
, TypeLoc DstTL
) {
6560 SrcTL
= SrcTL
.getUnqualifiedLoc();
6561 DstTL
= DstTL
.getUnqualifiedLoc();
6562 if (PointerTypeLoc SrcPTL
= SrcTL
.getAs
<PointerTypeLoc
>()) {
6563 PointerTypeLoc DstPTL
= DstTL
.castAs
<PointerTypeLoc
>();
6564 FixInvalidVariablyModifiedTypeLoc(SrcPTL
.getPointeeLoc(),
6565 DstPTL
.getPointeeLoc());
6566 DstPTL
.setStarLoc(SrcPTL
.getStarLoc());
6569 if (ParenTypeLoc SrcPTL
= SrcTL
.getAs
<ParenTypeLoc
>()) {
6570 ParenTypeLoc DstPTL
= DstTL
.castAs
<ParenTypeLoc
>();
6571 FixInvalidVariablyModifiedTypeLoc(SrcPTL
.getInnerLoc(),
6572 DstPTL
.getInnerLoc());
6573 DstPTL
.setLParenLoc(SrcPTL
.getLParenLoc());
6574 DstPTL
.setRParenLoc(SrcPTL
.getRParenLoc());
6577 ArrayTypeLoc SrcATL
= SrcTL
.castAs
<ArrayTypeLoc
>();
6578 ArrayTypeLoc DstATL
= DstTL
.castAs
<ArrayTypeLoc
>();
6579 TypeLoc SrcElemTL
= SrcATL
.getElementLoc();
6580 TypeLoc DstElemTL
= DstATL
.getElementLoc();
6581 if (VariableArrayTypeLoc SrcElemATL
=
6582 SrcElemTL
.getAs
<VariableArrayTypeLoc
>()) {
6583 ConstantArrayTypeLoc DstElemATL
= DstElemTL
.castAs
<ConstantArrayTypeLoc
>();
6584 FixInvalidVariablyModifiedTypeLoc(SrcElemATL
, DstElemATL
);
6586 DstElemTL
.initializeFullCopy(SrcElemTL
);
6588 DstATL
.setLBracketLoc(SrcATL
.getLBracketLoc());
6589 DstATL
.setSizeExpr(SrcATL
.getSizeExpr());
6590 DstATL
.setRBracketLoc(SrcATL
.getRBracketLoc());
6593 /// Helper method to turn variable array types into constant array
6594 /// types in certain situations which would otherwise be errors (for
6595 /// GCC compatibility).
6596 static TypeSourceInfo
*
6597 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo
*TInfo
,
6598 ASTContext
&Context
,
6599 bool &SizeIsNegative
,
6600 llvm::APSInt
&Oversized
) {
6602 = TryToFixInvalidVariablyModifiedType(TInfo
->getType(), Context
,
6603 SizeIsNegative
, Oversized
);
6604 if (FixedTy
.isNull())
6606 TypeSourceInfo
*FixedTInfo
= Context
.getTrivialTypeSourceInfo(FixedTy
);
6607 FixInvalidVariablyModifiedTypeLoc(TInfo
->getTypeLoc(),
6608 FixedTInfo
->getTypeLoc());
6612 bool Sema::tryToFixVariablyModifiedVarType(TypeSourceInfo
*&TInfo
,
6613 QualType
&T
, SourceLocation Loc
,
6614 unsigned FailedFoldDiagID
) {
6615 bool SizeIsNegative
;
6616 llvm::APSInt Oversized
;
6617 TypeSourceInfo
*FixedTInfo
= TryToFixInvalidVariablyModifiedTypeSourceInfo(
6618 TInfo
, Context
, SizeIsNegative
, Oversized
);
6620 Diag(Loc
, diag::ext_vla_folded_to_constant
);
6622 T
= FixedTInfo
->getType();
6627 Diag(Loc
, diag::err_typecheck_negative_array_size
);
6628 else if (Oversized
.getBoolValue())
6629 Diag(Loc
, diag::err_array_too_large
) << toString(Oversized
, 10);
6630 else if (FailedFoldDiagID
)
6631 Diag(Loc
, FailedFoldDiagID
);
6636 Sema::RegisterLocallyScopedExternCDecl(NamedDecl
*ND
, Scope
*S
) {
6637 if (!getLangOpts().CPlusPlus
&&
6638 ND
->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
6639 // Don't need to track declarations in the TU in C.
6642 // Note that we have a locally-scoped external with this name.
6643 Context
.getExternCContextDecl()->makeDeclVisibleInContext(ND
);
6646 NamedDecl
*Sema::findLocallyScopedExternCDecl(DeclarationName Name
) {
6647 // FIXME: We can have multiple results via __attribute__((overloadable)).
6648 auto Result
= Context
.getExternCContextDecl()->lookup(Name
);
6649 return Result
.empty() ? nullptr : *Result
.begin();
6652 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec
&DS
) {
6653 // FIXME: We should probably indicate the identifier in question to avoid
6654 // confusion for constructs like "virtual int a(), b;"
6655 if (DS
.isVirtualSpecified())
6656 Diag(DS
.getVirtualSpecLoc(),
6657 diag::err_virtual_non_function
);
6659 if (DS
.hasExplicitSpecifier())
6660 Diag(DS
.getExplicitSpecLoc(),
6661 diag::err_explicit_non_function
);
6663 if (DS
.isNoreturnSpecified())
6664 Diag(DS
.getNoreturnSpecLoc(),
6665 diag::err_noreturn_non_function
);
6669 Sema::ActOnTypedefDeclarator(Scope
* S
, Declarator
& D
, DeclContext
* DC
,
6670 TypeSourceInfo
*TInfo
, LookupResult
&Previous
) {
6671 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
6672 if (D
.getCXXScopeSpec().isSet()) {
6673 Diag(D
.getIdentifierLoc(), diag::err_qualified_typedef_declarator
)
6674 << D
.getCXXScopeSpec().getRange();
6676 // Pretend we didn't see the scope specifier.
6681 DiagnoseFunctionSpecifiers(D
.getDeclSpec());
6683 if (D
.getDeclSpec().isInlineSpecified())
6684 Diag(D
.getDeclSpec().getInlineSpecLoc(),
6685 (getLangOpts().MSVCCompat
&& !getLangOpts().CPlusPlus
)
6686 ? diag::warn_ms_inline_non_function
6687 : diag::err_inline_non_function
)
6688 << getLangOpts().CPlusPlus17
;
6689 if (D
.getDeclSpec().hasConstexprSpecifier())
6690 Diag(D
.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr
)
6691 << 1 << static_cast<int>(D
.getDeclSpec().getConstexprSpecifier());
6693 if (D
.getName().getKind() != UnqualifiedIdKind::IK_Identifier
) {
6694 if (D
.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName
)
6695 Diag(D
.getName().StartLocation
,
6696 diag::err_deduction_guide_invalid_specifier
)
6699 Diag(D
.getName().StartLocation
, diag::err_typedef_not_identifier
)
6700 << D
.getName().getSourceRange();
6704 TypedefDecl
*NewTD
= ParseTypedefDecl(S
, D
, TInfo
->getType(), TInfo
);
6705 if (!NewTD
) return nullptr;
6707 // Handle attributes prior to checking for duplicates in MergeVarDecl
6708 ProcessDeclAttributes(S
, NewTD
, D
);
6710 CheckTypedefForVariablyModifiedType(S
, NewTD
);
6712 bool Redeclaration
= D
.isRedeclaration();
6713 NamedDecl
*ND
= ActOnTypedefNameDecl(S
, DC
, NewTD
, Previous
, Redeclaration
);
6714 D
.setRedeclaration(Redeclaration
);
6719 Sema::CheckTypedefForVariablyModifiedType(Scope
*S
, TypedefNameDecl
*NewTD
) {
6720 // C99 6.7.7p2: If a typedef name specifies a variably modified type
6721 // then it shall have block scope.
6722 // Note that variably modified types must be fixed before merging the decl so
6723 // that redeclarations will match.
6724 TypeSourceInfo
*TInfo
= NewTD
->getTypeSourceInfo();
6725 QualType T
= TInfo
->getType();
6726 if (T
->isVariablyModifiedType()) {
6727 setFunctionHasBranchProtectedScope();
6729 if (S
->getFnParent() == nullptr) {
6730 bool SizeIsNegative
;
6731 llvm::APSInt Oversized
;
6732 TypeSourceInfo
*FixedTInfo
=
6733 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo
, Context
,
6737 Diag(NewTD
->getLocation(), diag::ext_vla_folded_to_constant
);
6738 NewTD
->setTypeSourceInfo(FixedTInfo
);
6741 Diag(NewTD
->getLocation(), diag::err_typecheck_negative_array_size
);
6742 else if (T
->isVariableArrayType())
6743 Diag(NewTD
->getLocation(), diag::err_vla_decl_in_file_scope
);
6744 else if (Oversized
.getBoolValue())
6745 Diag(NewTD
->getLocation(), diag::err_array_too_large
)
6746 << toString(Oversized
, 10);
6748 Diag(NewTD
->getLocation(), diag::err_vm_decl_in_file_scope
);
6749 NewTD
->setInvalidDecl();
6756 Sema::ActOnTypedefNameDecl(Scope
*S
, DeclContext
*DC
, TypedefNameDecl
*NewTD
,
6757 LookupResult
&Previous
, bool &Redeclaration
) {
6759 // Find the shadowed declaration before filtering for scope.
6760 NamedDecl
*ShadowedDecl
= getShadowedDeclaration(NewTD
, Previous
);
6762 // Merge the decl with the existing one if appropriate. If the decl is
6763 // in an outer scope, it isn't the same thing.
6764 FilterLookupForScope(Previous
, DC
, S
, /*ConsiderLinkage*/false,
6765 /*AllowInlineNamespace*/false);
6766 filterNonConflictingPreviousTypedefDecls(*this, NewTD
, Previous
);
6767 if (!Previous
.empty()) {
6768 Redeclaration
= true;
6769 MergeTypedefNameDecl(S
, NewTD
, Previous
);
6771 inferGslPointerAttribute(NewTD
);
6774 if (ShadowedDecl
&& !Redeclaration
)
6775 CheckShadow(NewTD
, ShadowedDecl
, Previous
);
6777 // If this is the C FILE type, notify the AST context.
6778 if (IdentifierInfo
*II
= NewTD
->getIdentifier())
6779 if (!NewTD
->isInvalidDecl() &&
6780 NewTD
->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6781 switch (II
->getNotableIdentifierID()) {
6782 case tok::NotableIdentifierKind::FILE:
6783 Context
.setFILEDecl(NewTD
);
6785 case tok::NotableIdentifierKind::jmp_buf:
6786 Context
.setjmp_bufDecl(NewTD
);
6788 case tok::NotableIdentifierKind::sigjmp_buf
:
6789 Context
.setsigjmp_bufDecl(NewTD
);
6791 case tok::NotableIdentifierKind::ucontext_t
:
6792 Context
.setucontext_tDecl(NewTD
);
6794 case tok::NotableIdentifierKind::float_t
:
6795 case tok::NotableIdentifierKind::double_t
:
6796 NewTD
->addAttr(AvailableOnlyInDefaultEvalMethodAttr::Create(Context
));
6806 /// Determines whether the given declaration is an out-of-scope
6807 /// previous declaration.
6809 /// This routine should be invoked when name lookup has found a
6810 /// previous declaration (PrevDecl) that is not in the scope where a
6811 /// new declaration by the same name is being introduced. If the new
6812 /// declaration occurs in a local scope, previous declarations with
6813 /// linkage may still be considered previous declarations (C99
6814 /// 6.2.2p4-5, C++ [basic.link]p6).
6816 /// \param PrevDecl the previous declaration found by name
6819 /// \param DC the context in which the new declaration is being
6822 /// \returns true if PrevDecl is an out-of-scope previous declaration
6823 /// for a new delcaration with the same name.
6825 isOutOfScopePreviousDeclaration(NamedDecl
*PrevDecl
, DeclContext
*DC
,
6826 ASTContext
&Context
) {
6830 if (!PrevDecl
->hasLinkage())
6833 if (Context
.getLangOpts().CPlusPlus
) {
6834 // C++ [basic.link]p6:
6835 // If there is a visible declaration of an entity with linkage
6836 // having the same name and type, ignoring entities declared
6837 // outside the innermost enclosing namespace scope, the block
6838 // scope declaration declares that same entity and receives the
6839 // linkage of the previous declaration.
6840 DeclContext
*OuterContext
= DC
->getRedeclContext();
6841 if (!OuterContext
->isFunctionOrMethod())
6842 // This rule only applies to block-scope declarations.
6845 DeclContext
*PrevOuterContext
= PrevDecl
->getDeclContext();
6846 if (PrevOuterContext
->isRecord())
6847 // We found a member function: ignore it.
6850 // Find the innermost enclosing namespace for the new and
6851 // previous declarations.
6852 OuterContext
= OuterContext
->getEnclosingNamespaceContext();
6853 PrevOuterContext
= PrevOuterContext
->getEnclosingNamespaceContext();
6855 // The previous declaration is in a different namespace, so it
6856 // isn't the same function.
6857 if (!OuterContext
->Equals(PrevOuterContext
))
6864 static void SetNestedNameSpecifier(Sema
&S
, DeclaratorDecl
*DD
, Declarator
&D
) {
6865 CXXScopeSpec
&SS
= D
.getCXXScopeSpec();
6866 if (!SS
.isSet()) return;
6867 DD
->setQualifierInfo(SS
.getWithLocInContext(S
.Context
));
6870 void Sema::deduceOpenCLAddressSpace(ValueDecl
*Decl
) {
6871 if (Decl
->getType().hasAddressSpace())
6873 if (Decl
->getType()->isDependentType())
6875 if (VarDecl
*Var
= dyn_cast
<VarDecl
>(Decl
)) {
6876 QualType Type
= Var
->getType();
6877 if (Type
->isSamplerT() || Type
->isVoidType())
6879 LangAS ImplAS
= LangAS::opencl_private
;
6880 // OpenCL C v3.0 s6.7.8 - For OpenCL C 2.0 or with the
6881 // __opencl_c_program_scope_global_variables feature, the address space
6882 // for a variable at program scope or a static or extern variable inside
6883 // a function are inferred to be __global.
6884 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()) &&
6885 Var
->hasGlobalStorage())
6886 ImplAS
= LangAS::opencl_global
;
6887 // If the original type from a decayed type is an array type and that array
6888 // type has no address space yet, deduce it now.
6889 if (auto DT
= dyn_cast
<DecayedType
>(Type
)) {
6890 auto OrigTy
= DT
->getOriginalType();
6891 if (!OrigTy
.hasAddressSpace() && OrigTy
->isArrayType()) {
6892 // Add the address space to the original array type and then propagate
6893 // that to the element type through `getAsArrayType`.
6894 OrigTy
= Context
.getAddrSpaceQualType(OrigTy
, ImplAS
);
6895 OrigTy
= QualType(Context
.getAsArrayType(OrigTy
), 0);
6896 // Re-generate the decayed type.
6897 Type
= Context
.getDecayedType(OrigTy
);
6900 Type
= Context
.getAddrSpaceQualType(Type
, ImplAS
);
6901 // Apply any qualifiers (including address space) from the array type to
6902 // the element type. This implements C99 6.7.3p8: "If the specification of
6903 // an array type includes any type qualifiers, the element type is so
6904 // qualified, not the array type."
6905 if (Type
->isArrayType())
6906 Type
= QualType(Context
.getAsArrayType(Type
), 0);
6907 Decl
->setType(Type
);
6911 static void checkWeakAttr(Sema
&S
, NamedDecl
&ND
) {
6912 // 'weak' only applies to declarations with external linkage.
6913 if (WeakAttr
*Attr
= ND
.getAttr
<WeakAttr
>()) {
6914 if (!ND
.isExternallyVisible()) {
6915 S
.Diag(Attr
->getLocation(), diag::err_attribute_weak_static
);
6916 ND
.dropAttr
<WeakAttr
>();
6921 static void checkWeakRefAttr(Sema
&S
, NamedDecl
&ND
) {
6922 if (WeakRefAttr
*Attr
= ND
.getAttr
<WeakRefAttr
>()) {
6923 if (ND
.isExternallyVisible()) {
6924 S
.Diag(Attr
->getLocation(), diag::err_attribute_weakref_not_static
);
6925 ND
.dropAttrs
<WeakRefAttr
, AliasAttr
>();
6930 static void checkAliasAttr(Sema
&S
, NamedDecl
&ND
) {
6931 if (auto *VD
= dyn_cast
<VarDecl
>(&ND
)) {
6932 if (VD
->hasInit()) {
6933 if (const auto *Attr
= VD
->getAttr
<AliasAttr
>()) {
6934 assert(VD
->isThisDeclarationADefinition() &&
6935 !VD
->isExternallyVisible() && "Broken AliasAttr handled late!");
6936 S
.Diag(Attr
->getLocation(), diag::err_alias_is_definition
) << VD
<< 0;
6937 VD
->dropAttr
<AliasAttr
>();
6943 static void checkSelectAnyAttr(Sema
&S
, NamedDecl
&ND
) {
6944 // 'selectany' only applies to externally visible variable declarations.
6945 // It does not apply to functions.
6946 if (SelectAnyAttr
*Attr
= ND
.getAttr
<SelectAnyAttr
>()) {
6947 if (isa
<FunctionDecl
>(ND
) || !ND
.isExternallyVisible()) {
6948 S
.Diag(Attr
->getLocation(),
6949 diag::err_attribute_selectany_non_extern_data
);
6950 ND
.dropAttr
<SelectAnyAttr
>();
6955 static void checkHybridPatchableAttr(Sema
&S
, NamedDecl
&ND
) {
6956 if (HybridPatchableAttr
*Attr
= ND
.getAttr
<HybridPatchableAttr
>()) {
6957 if (!ND
.isExternallyVisible())
6958 S
.Diag(Attr
->getLocation(),
6959 diag::warn_attribute_hybrid_patchable_non_extern
);
6963 static void checkInheritableAttr(Sema
&S
, NamedDecl
&ND
) {
6964 if (const InheritableAttr
*Attr
= getDLLAttr(&ND
)) {
6965 auto *VD
= dyn_cast
<VarDecl
>(&ND
);
6966 bool IsAnonymousNS
= false;
6967 bool IsMicrosoft
= S
.Context
.getTargetInfo().getCXXABI().isMicrosoft();
6969 const NamespaceDecl
*NS
= dyn_cast
<NamespaceDecl
>(VD
->getDeclContext());
6970 while (NS
&& !IsAnonymousNS
) {
6971 IsAnonymousNS
= NS
->isAnonymousNamespace();
6972 NS
= dyn_cast
<NamespaceDecl
>(NS
->getParent());
6975 // dll attributes require external linkage. Static locals may have external
6976 // linkage but still cannot be explicitly imported or exported.
6977 // In Microsoft mode, a variable defined in anonymous namespace must have
6978 // external linkage in order to be exported.
6979 bool AnonNSInMicrosoftMode
= IsAnonymousNS
&& IsMicrosoft
;
6980 if ((ND
.isExternallyVisible() && AnonNSInMicrosoftMode
) ||
6981 (!AnonNSInMicrosoftMode
&&
6982 (!ND
.isExternallyVisible() || (VD
&& VD
->isStaticLocal())))) {
6983 S
.Diag(ND
.getLocation(), diag::err_attribute_dll_not_extern
)
6985 ND
.setInvalidDecl();
6990 static void checkLifetimeBoundAttr(Sema
&S
, NamedDecl
&ND
) {
6991 // Check the attributes on the function type and function params, if any.
6992 if (const auto *FD
= dyn_cast
<FunctionDecl
>(&ND
)) {
6993 FD
= FD
->getMostRecentDecl();
6994 // Don't declare this variable in the second operand of the for-statement;
6995 // GCC miscompiles that by ending its lifetime before evaluating the
6996 // third operand. See gcc.gnu.org/PR86769.
6997 AttributedTypeLoc ATL
;
6998 for (TypeLoc TL
= FD
->getTypeSourceInfo()->getTypeLoc();
6999 (ATL
= TL
.getAsAdjusted
<AttributedTypeLoc
>());
7000 TL
= ATL
.getModifiedLoc()) {
7001 // The [[lifetimebound]] attribute can be applied to the implicit object
7002 // parameter of a non-static member function (other than a ctor or dtor)
7003 // by applying it to the function type.
7004 if (const auto *A
= ATL
.getAttrAs
<LifetimeBoundAttr
>()) {
7005 const auto *MD
= dyn_cast
<CXXMethodDecl
>(FD
);
7006 int NoImplicitObjectError
= -1;
7008 NoImplicitObjectError
= 0;
7009 else if (MD
->isStatic())
7010 NoImplicitObjectError
= 1;
7011 else if (MD
->isExplicitObjectMemberFunction())
7012 NoImplicitObjectError
= 2;
7013 if (NoImplicitObjectError
!= -1) {
7014 S
.Diag(A
->getLocation(), diag::err_lifetimebound_no_object_param
)
7015 << NoImplicitObjectError
<< A
->getRange();
7016 } else if (isa
<CXXConstructorDecl
>(MD
) || isa
<CXXDestructorDecl
>(MD
)) {
7017 S
.Diag(A
->getLocation(), diag::err_lifetimebound_ctor_dtor
)
7018 << isa
<CXXDestructorDecl
>(MD
) << A
->getRange();
7019 } else if (MD
->getReturnType()->isVoidType()) {
7023 err_lifetimebound_implicit_object_parameter_void_return_type
);
7028 for (unsigned int I
= 0; I
< FD
->getNumParams(); ++I
) {
7029 const ParmVarDecl
*P
= FD
->getParamDecl(I
);
7031 // The [[lifetimebound]] attribute can be applied to a function parameter
7032 // only if the function returns a value.
7033 if (auto *A
= P
->getAttr
<LifetimeBoundAttr
>()) {
7034 if (!isa
<CXXConstructorDecl
>(FD
) && FD
->getReturnType()->isVoidType()) {
7035 S
.Diag(A
->getLocation(),
7036 diag::err_lifetimebound_parameter_void_return_type
);
7043 static void checkAttributesAfterMerging(Sema
&S
, NamedDecl
&ND
) {
7044 // Ensure that an auto decl is deduced otherwise the checks below might cache
7045 // the wrong linkage.
7046 assert(S
.ParsingInitForAutoVars
.count(&ND
) == 0);
7048 checkWeakAttr(S
, ND
);
7049 checkWeakRefAttr(S
, ND
);
7050 checkAliasAttr(S
, ND
);
7051 checkSelectAnyAttr(S
, ND
);
7052 checkHybridPatchableAttr(S
, ND
);
7053 checkInheritableAttr(S
, ND
);
7054 checkLifetimeBoundAttr(S
, ND
);
7057 static void checkDLLAttributeRedeclaration(Sema
&S
, NamedDecl
*OldDecl
,
7059 bool IsSpecialization
,
7060 bool IsDefinition
) {
7061 if (OldDecl
->isInvalidDecl() || NewDecl
->isInvalidDecl())
7064 bool IsTemplate
= false;
7065 if (TemplateDecl
*OldTD
= dyn_cast
<TemplateDecl
>(OldDecl
)) {
7066 OldDecl
= OldTD
->getTemplatedDecl();
7068 if (!IsSpecialization
)
7069 IsDefinition
= false;
7071 if (TemplateDecl
*NewTD
= dyn_cast
<TemplateDecl
>(NewDecl
)) {
7072 NewDecl
= NewTD
->getTemplatedDecl();
7076 if (!OldDecl
|| !NewDecl
)
7079 const DLLImportAttr
*OldImportAttr
= OldDecl
->getAttr
<DLLImportAttr
>();
7080 const DLLExportAttr
*OldExportAttr
= OldDecl
->getAttr
<DLLExportAttr
>();
7081 const DLLImportAttr
*NewImportAttr
= NewDecl
->getAttr
<DLLImportAttr
>();
7082 const DLLExportAttr
*NewExportAttr
= NewDecl
->getAttr
<DLLExportAttr
>();
7084 // dllimport and dllexport are inheritable attributes so we have to exclude
7085 // inherited attribute instances.
7086 bool HasNewAttr
= (NewImportAttr
&& !NewImportAttr
->isInherited()) ||
7087 (NewExportAttr
&& !NewExportAttr
->isInherited());
7089 // A redeclaration is not allowed to add a dllimport or dllexport attribute,
7090 // the only exception being explicit specializations.
7091 // Implicitly generated declarations are also excluded for now because there
7092 // is no other way to switch these to use dllimport or dllexport.
7093 bool AddsAttr
= !(OldImportAttr
|| OldExportAttr
) && HasNewAttr
;
7095 if (AddsAttr
&& !IsSpecialization
&& !OldDecl
->isImplicit()) {
7096 // Allow with a warning for free functions and global variables.
7097 bool JustWarn
= false;
7098 if (!OldDecl
->isCXXClassMember()) {
7099 auto *VD
= dyn_cast
<VarDecl
>(OldDecl
);
7100 if (VD
&& !VD
->getDescribedVarTemplate())
7102 auto *FD
= dyn_cast
<FunctionDecl
>(OldDecl
);
7103 if (FD
&& FD
->getTemplatedKind() == FunctionDecl::TK_NonTemplate
)
7107 // We cannot change a declaration that's been used because IR has already
7108 // been emitted. Dllimported functions will still work though (modulo
7109 // address equality) as they can use the thunk.
7110 if (OldDecl
->isUsed())
7111 if (!isa
<FunctionDecl
>(OldDecl
) || !NewImportAttr
)
7114 unsigned DiagID
= JustWarn
? diag::warn_attribute_dll_redeclaration
7115 : diag::err_attribute_dll_redeclaration
;
7116 S
.Diag(NewDecl
->getLocation(), DiagID
)
7118 << (NewImportAttr
? (const Attr
*)NewImportAttr
: NewExportAttr
);
7119 S
.Diag(OldDecl
->getLocation(), diag::note_previous_declaration
);
7121 NewDecl
->setInvalidDecl();
7126 // A redeclaration is not allowed to drop a dllimport attribute, the only
7127 // exceptions being inline function definitions (except for function
7128 // templates), local extern declarations, qualified friend declarations or
7129 // special MSVC extension: in the last case, the declaration is treated as if
7130 // it were marked dllexport.
7131 bool IsInline
= false, IsStaticDataMember
= false, IsQualifiedFriend
= false;
7132 bool IsMicrosoftABI
= S
.Context
.getTargetInfo().shouldDLLImportComdatSymbols();
7133 if (const auto *VD
= dyn_cast
<VarDecl
>(NewDecl
)) {
7134 // Ignore static data because out-of-line definitions are diagnosed
7136 IsStaticDataMember
= VD
->isStaticDataMember();
7137 IsDefinition
= VD
->isThisDeclarationADefinition(S
.Context
) !=
7138 VarDecl::DeclarationOnly
;
7139 } else if (const auto *FD
= dyn_cast
<FunctionDecl
>(NewDecl
)) {
7140 IsInline
= FD
->isInlined();
7141 IsQualifiedFriend
= FD
->getQualifier() &&
7142 FD
->getFriendObjectKind() == Decl::FOK_Declared
;
7145 if (OldImportAttr
&& !HasNewAttr
&&
7146 (!IsInline
|| (IsMicrosoftABI
&& IsTemplate
)) && !IsStaticDataMember
&&
7147 !NewDecl
->isLocalExternDecl() && !IsQualifiedFriend
) {
7148 if (IsMicrosoftABI
&& IsDefinition
) {
7149 if (IsSpecialization
) {
7151 NewDecl
->getLocation(),
7152 diag::err_attribute_dllimport_function_specialization_definition
);
7153 S
.Diag(OldImportAttr
->getLocation(), diag::note_attribute
);
7154 NewDecl
->dropAttr
<DLLImportAttr
>();
7156 S
.Diag(NewDecl
->getLocation(),
7157 diag::warn_redeclaration_without_import_attribute
)
7159 S
.Diag(OldDecl
->getLocation(), diag::note_previous_declaration
);
7160 NewDecl
->dropAttr
<DLLImportAttr
>();
7161 NewDecl
->addAttr(DLLExportAttr::CreateImplicit(
7162 S
.Context
, NewImportAttr
->getRange()));
7164 } else if (IsMicrosoftABI
&& IsSpecialization
) {
7165 assert(!IsDefinition
);
7166 // MSVC allows this. Keep the inherited attribute.
7168 S
.Diag(NewDecl
->getLocation(),
7169 diag::warn_redeclaration_without_attribute_prev_attribute_ignored
)
7170 << NewDecl
<< OldImportAttr
;
7171 S
.Diag(OldDecl
->getLocation(), diag::note_previous_declaration
);
7172 S
.Diag(OldImportAttr
->getLocation(), diag::note_previous_attribute
);
7173 OldDecl
->dropAttr
<DLLImportAttr
>();
7174 NewDecl
->dropAttr
<DLLImportAttr
>();
7176 } else if (IsInline
&& OldImportAttr
&& !IsMicrosoftABI
) {
7177 // In MinGW, seeing a function declared inline drops the dllimport
7179 OldDecl
->dropAttr
<DLLImportAttr
>();
7180 NewDecl
->dropAttr
<DLLImportAttr
>();
7181 S
.Diag(NewDecl
->getLocation(),
7182 diag::warn_dllimport_dropped_from_inline_function
)
7183 << NewDecl
<< OldImportAttr
;
7186 // A specialization of a class template member function is processed here
7187 // since it's a redeclaration. If the parent class is dllexport, the
7188 // specialization inherits that attribute. This doesn't happen automatically
7189 // since the parent class isn't instantiated until later.
7190 if (const CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(NewDecl
)) {
7191 if (MD
->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization
&&
7192 !NewImportAttr
&& !NewExportAttr
) {
7193 if (const DLLExportAttr
*ParentExportAttr
=
7194 MD
->getParent()->getAttr
<DLLExportAttr
>()) {
7195 DLLExportAttr
*NewAttr
= ParentExportAttr
->clone(S
.Context
);
7196 NewAttr
->setInherited(true);
7197 NewDecl
->addAttr(NewAttr
);
7203 /// Given that we are within the definition of the given function,
7204 /// will that definition behave like C99's 'inline', where the
7205 /// definition is discarded except for optimization purposes?
7206 static bool isFunctionDefinitionDiscarded(Sema
&S
, FunctionDecl
*FD
) {
7207 // Try to avoid calling GetGVALinkageForFunction.
7209 // All cases of this require the 'inline' keyword.
7210 if (!FD
->isInlined()) return false;
7212 // This is only possible in C++ with the gnu_inline attribute.
7213 if (S
.getLangOpts().CPlusPlus
&& !FD
->hasAttr
<GNUInlineAttr
>())
7216 // Okay, go ahead and call the relatively-more-expensive function.
7217 return S
.Context
.GetGVALinkageForFunction(FD
) == GVA_AvailableExternally
;
7220 /// Determine whether a variable is extern "C" prior to attaching
7221 /// an initializer. We can't just call isExternC() here, because that
7222 /// will also compute and cache whether the declaration is externally
7223 /// visible, which might change when we attach the initializer.
7225 /// This can only be used if the declaration is known to not be a
7226 /// redeclaration of an internal linkage declaration.
7232 /// Attaching the initializer here makes this declaration not externally
7233 /// visible, because its type has internal linkage.
7235 /// FIXME: This is a hack.
7236 template<typename T
>
7237 static bool isIncompleteDeclExternC(Sema
&S
, const T
*D
) {
7238 if (S
.getLangOpts().CPlusPlus
) {
7239 // In C++, the overloadable attribute negates the effects of extern "C".
7240 if (!D
->isInExternCContext() || D
->template hasAttr
<OverloadableAttr
>())
7243 // So do CUDA's host/device attributes.
7244 if (S
.getLangOpts().CUDA
&& (D
->template hasAttr
<CUDADeviceAttr
>() ||
7245 D
->template hasAttr
<CUDAHostAttr
>()))
7248 return D
->isExternC();
7251 static bool shouldConsiderLinkage(const VarDecl
*VD
) {
7252 const DeclContext
*DC
= VD
->getDeclContext()->getRedeclContext();
7253 if (DC
->isFunctionOrMethod() || isa
<OMPDeclareReductionDecl
>(DC
) ||
7254 isa
<OMPDeclareMapperDecl
>(DC
))
7255 return VD
->hasExternalStorage();
7256 if (DC
->isFileContext())
7260 if (DC
->getDeclKind() == Decl::HLSLBuffer
)
7263 if (isa
<RequiresExprBodyDecl
>(DC
))
7265 llvm_unreachable("Unexpected context");
7268 static bool shouldConsiderLinkage(const FunctionDecl
*FD
) {
7269 const DeclContext
*DC
= FD
->getDeclContext()->getRedeclContext();
7270 if (DC
->isFileContext() || DC
->isFunctionOrMethod() ||
7271 isa
<OMPDeclareReductionDecl
>(DC
) || isa
<OMPDeclareMapperDecl
>(DC
))
7275 llvm_unreachable("Unexpected context");
7278 static bool hasParsedAttr(Scope
*S
, const Declarator
&PD
,
7279 ParsedAttr::Kind Kind
) {
7280 // Check decl attributes on the DeclSpec.
7281 if (PD
.getDeclSpec().getAttributes().hasAttribute(Kind
))
7284 // Walk the declarator structure, checking decl attributes that were in a type
7285 // position to the decl itself.
7286 for (unsigned I
= 0, E
= PD
.getNumTypeObjects(); I
!= E
; ++I
) {
7287 if (PD
.getTypeObject(I
).getAttrs().hasAttribute(Kind
))
7291 // Finally, check attributes on the decl itself.
7292 return PD
.getAttributes().hasAttribute(Kind
) ||
7293 PD
.getDeclarationAttributes().hasAttribute(Kind
);
7296 bool Sema::adjustContextForLocalExternDecl(DeclContext
*&DC
) {
7297 if (!DC
->isFunctionOrMethod())
7300 // If this is a local extern function or variable declared within a function
7301 // template, don't add it into the enclosing namespace scope until it is
7302 // instantiated; it might have a dependent type right now.
7303 if (DC
->isDependentContext())
7306 // C++11 [basic.link]p7:
7307 // When a block scope declaration of an entity with linkage is not found to
7308 // refer to some other declaration, then that entity is a member of the
7309 // innermost enclosing namespace.
7311 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
7312 // semantically-enclosing namespace, not a lexically-enclosing one.
7313 while (!DC
->isFileContext() && !isa
<LinkageSpecDecl
>(DC
))
7314 DC
= DC
->getParent();
7318 /// Returns true if given declaration has external C language linkage.
7319 static bool isDeclExternC(const Decl
*D
) {
7320 if (const auto *FD
= dyn_cast
<FunctionDecl
>(D
))
7321 return FD
->isExternC();
7322 if (const auto *VD
= dyn_cast
<VarDecl
>(D
))
7323 return VD
->isExternC();
7325 llvm_unreachable("Unknown type of decl!");
7328 /// Returns true if there hasn't been any invalid type diagnosed.
7329 static bool diagnoseOpenCLTypes(Sema
&Se
, VarDecl
*NewVD
) {
7330 DeclContext
*DC
= NewVD
->getDeclContext();
7331 QualType R
= NewVD
->getType();
7333 // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
7334 // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
7336 if (R
->isImageType() || R
->isPipeType()) {
7337 Se
.Diag(NewVD
->getLocation(),
7338 diag::err_opencl_type_can_only_be_used_as_function_parameter
)
7340 NewVD
->setInvalidDecl();
7344 // OpenCL v1.2 s6.9.r:
7345 // The event type cannot be used to declare a program scope variable.
7346 // OpenCL v2.0 s6.9.q:
7347 // The clk_event_t and reserve_id_t types cannot be declared in program
7349 if (NewVD
->hasGlobalStorage() && !NewVD
->isStaticLocal()) {
7350 if (R
->isReserveIDT() || R
->isClkEventT() || R
->isEventT()) {
7351 Se
.Diag(NewVD
->getLocation(),
7352 diag::err_invalid_type_for_program_scope_var
)
7354 NewVD
->setInvalidDecl();
7359 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
7360 if (!Se
.getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
7361 Se
.getLangOpts())) {
7362 QualType NR
= R
.getCanonicalType();
7363 while (NR
->isPointerType() || NR
->isMemberFunctionPointerType() ||
7364 NR
->isReferenceType()) {
7365 if (NR
->isFunctionPointerType() || NR
->isMemberFunctionPointerType() ||
7366 NR
->isFunctionReferenceType()) {
7367 Se
.Diag(NewVD
->getLocation(), diag::err_opencl_function_pointer
)
7368 << NR
->isReferenceType();
7369 NewVD
->setInvalidDecl();
7372 NR
= NR
->getPointeeType();
7376 if (!Se
.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
7377 Se
.getLangOpts())) {
7378 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
7379 // half array type (unless the cl_khr_fp16 extension is enabled).
7380 if (Se
.Context
.getBaseElementType(R
)->isHalfType()) {
7381 Se
.Diag(NewVD
->getLocation(), diag::err_opencl_half_declaration
) << R
;
7382 NewVD
->setInvalidDecl();
7387 // OpenCL v1.2 s6.9.r:
7388 // The event type cannot be used with the __local, __constant and __global
7389 // address space qualifiers.
7390 if (R
->isEventT()) {
7391 if (R
.getAddressSpace() != LangAS::opencl_private
) {
7392 Se
.Diag(NewVD
->getBeginLoc(), diag::err_event_t_addr_space_qual
);
7393 NewVD
->setInvalidDecl();
7398 if (R
->isSamplerT()) {
7399 // OpenCL v1.2 s6.9.b p4:
7400 // The sampler type cannot be used with the __local and __global address
7401 // space qualifiers.
7402 if (R
.getAddressSpace() == LangAS::opencl_local
||
7403 R
.getAddressSpace() == LangAS::opencl_global
) {
7404 Se
.Diag(NewVD
->getLocation(), diag::err_wrong_sampler_addressspace
);
7405 NewVD
->setInvalidDecl();
7408 // OpenCL v1.2 s6.12.14.1:
7409 // A global sampler must be declared with either the constant address
7410 // space qualifier or with the const qualifier.
7411 if (DC
->isTranslationUnit() &&
7412 !(R
.getAddressSpace() == LangAS::opencl_constant
||
7413 R
.isConstQualified())) {
7414 Se
.Diag(NewVD
->getLocation(), diag::err_opencl_nonconst_global_sampler
);
7415 NewVD
->setInvalidDecl();
7417 if (NewVD
->isInvalidDecl())
7424 template <typename AttrTy
>
7425 static void copyAttrFromTypedefToDecl(Sema
&S
, Decl
*D
, const TypedefType
*TT
) {
7426 const TypedefNameDecl
*TND
= TT
->getDecl();
7427 if (const auto *Attribute
= TND
->getAttr
<AttrTy
>()) {
7428 AttrTy
*Clone
= Attribute
->clone(S
.Context
);
7429 Clone
->setInherited(true);
7434 // This function emits warning and a corresponding note based on the
7435 // ReadOnlyPlacementAttr attribute. The warning checks that all global variable
7436 // declarations of an annotated type must be const qualified.
7437 static void emitReadOnlyPlacementAttrWarning(Sema
&S
, const VarDecl
*VD
) {
7438 QualType VarType
= VD
->getType().getCanonicalType();
7440 // Ignore local declarations (for now) and those with const qualification.
7441 // TODO: Local variables should not be allowed if their type declaration has
7442 // ReadOnlyPlacementAttr attribute. To be handled in follow-up patch.
7443 if (!VD
|| VD
->hasLocalStorage() || VD
->getType().isConstQualified())
7446 if (VarType
->isArrayType()) {
7447 // Retrieve element type for array declarations.
7448 VarType
= S
.getASTContext().getBaseElementType(VarType
);
7451 const RecordDecl
*RD
= VarType
->getAsRecordDecl();
7453 // Check if the record declaration is present and if it has any attributes.
7457 if (const auto *ConstDecl
= RD
->getAttr
<ReadOnlyPlacementAttr
>()) {
7458 S
.Diag(VD
->getLocation(), diag::warn_var_decl_not_read_only
) << RD
;
7459 S
.Diag(ConstDecl
->getLocation(), diag::note_enforce_read_only_placement
);
7464 // Checks if VD is declared at global scope or with C language linkage.
7465 static bool isMainVar(DeclarationName Name
, VarDecl
*VD
) {
7466 return Name
.getAsIdentifierInfo() &&
7467 Name
.getAsIdentifierInfo()->isStr("main") &&
7468 !VD
->getDescribedVarTemplate() &&
7469 (VD
->getDeclContext()->getRedeclContext()->isTranslationUnit() ||
7473 NamedDecl
*Sema::ActOnVariableDeclarator(
7474 Scope
*S
, Declarator
&D
, DeclContext
*DC
, TypeSourceInfo
*TInfo
,
7475 LookupResult
&Previous
, MultiTemplateParamsArg TemplateParamLists
,
7476 bool &AddToScope
, ArrayRef
<BindingDecl
*> Bindings
) {
7477 QualType R
= TInfo
->getType();
7478 DeclarationName Name
= GetNameForDeclarator(D
).getName();
7480 IdentifierInfo
*II
= Name
.getAsIdentifierInfo();
7481 bool IsPlaceholderVariable
= false;
7483 if (D
.isDecompositionDeclarator()) {
7484 // Take the name of the first declarator as our name for diagnostic
7486 auto &Decomp
= D
.getDecompositionDeclarator();
7487 if (!Decomp
.bindings().empty()) {
7488 II
= Decomp
.bindings()[0].Name
;
7492 Diag(D
.getIdentifierLoc(), diag::err_bad_variable_name
) << Name
;
7497 DeclSpec::SCS SCSpec
= D
.getDeclSpec().getStorageClassSpec();
7498 StorageClass SC
= StorageClassSpecToVarDeclStorageClass(D
.getDeclSpec());
7500 if (LangOpts
.CPlusPlus
&& (DC
->isClosure() || DC
->isFunctionOrMethod()) &&
7501 SC
!= SC_Static
&& SC
!= SC_Extern
&& II
&& II
->isPlaceholder()) {
7502 IsPlaceholderVariable
= true;
7503 if (!Previous
.empty()) {
7504 NamedDecl
*PrevDecl
= *Previous
.begin();
7505 bool SameDC
= PrevDecl
->getDeclContext()->getRedeclContext()->Equals(
7506 DC
->getRedeclContext());
7507 if (SameDC
&& isDeclInScope(PrevDecl
, CurContext
, S
, false))
7508 DiagPlaceholderVariableDefinition(D
.getIdentifierLoc());
7512 // dllimport globals without explicit storage class are treated as extern. We
7513 // have to change the storage class this early to get the right DeclContext.
7514 if (SC
== SC_None
&& !DC
->isRecord() &&
7515 hasParsedAttr(S
, D
, ParsedAttr::AT_DLLImport
) &&
7516 !hasParsedAttr(S
, D
, ParsedAttr::AT_DLLExport
))
7519 DeclContext
*OriginalDC
= DC
;
7520 bool IsLocalExternDecl
= SC
== SC_Extern
&&
7521 adjustContextForLocalExternDecl(DC
);
7523 if (SCSpec
== DeclSpec::SCS_mutable
) {
7524 // mutable can only appear on non-static class members, so it's always
7526 Diag(D
.getIdentifierLoc(), diag::err_mutable_nonmember
);
7531 if (getLangOpts().CPlusPlus11
&& SCSpec
== DeclSpec::SCS_register
&&
7532 !D
.getAsmLabel() && !getSourceManager().isInSystemMacro(
7533 D
.getDeclSpec().getStorageClassSpecLoc())) {
7534 // In C++11, the 'register' storage class specifier is deprecated.
7535 // Suppress the warning in system macros, it's used in macros in some
7536 // popular C system headers, such as in glibc's htonl() macro.
7537 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
7538 getLangOpts().CPlusPlus17
? diag::ext_register_storage_class
7539 : diag::warn_deprecated_register
)
7540 << FixItHint::CreateRemoval(D
.getDeclSpec().getStorageClassSpecLoc());
7543 DiagnoseFunctionSpecifiers(D
.getDeclSpec());
7545 if (!DC
->isRecord() && S
->getFnParent() == nullptr) {
7546 // C99 6.9p2: The storage-class specifiers auto and register shall not
7547 // appear in the declaration specifiers in an external declaration.
7548 // Global Register+Asm is a GNU extension we support.
7549 if (SC
== SC_Auto
|| (SC
== SC_Register
&& !D
.getAsmLabel())) {
7550 Diag(D
.getIdentifierLoc(), diag::err_typecheck_sclass_fscope
);
7555 // If this variable has a VLA type and an initializer, try to
7556 // fold to a constant-sized type. This is otherwise invalid.
7557 if (D
.hasInitializer() && R
->isVariableArrayType())
7558 tryToFixVariablyModifiedVarType(TInfo
, R
, D
.getIdentifierLoc(),
7561 if (AutoTypeLoc TL
= TInfo
->getTypeLoc().getContainedAutoTypeLoc()) {
7562 const AutoType
*AT
= TL
.getTypePtr();
7563 CheckConstrainedAuto(AT
, TL
.getConceptNameLoc());
7566 bool IsMemberSpecialization
= false;
7567 bool IsVariableTemplateSpecialization
= false;
7568 bool IsPartialSpecialization
= false;
7569 bool IsVariableTemplate
= false;
7570 VarDecl
*NewVD
= nullptr;
7571 VarTemplateDecl
*NewTemplate
= nullptr;
7572 TemplateParameterList
*TemplateParams
= nullptr;
7573 if (!getLangOpts().CPlusPlus
) {
7574 NewVD
= VarDecl::Create(Context
, DC
, D
.getBeginLoc(), D
.getIdentifierLoc(),
7577 if (R
->getContainedDeducedType())
7578 ParsingInitForAutoVars
.insert(NewVD
);
7580 if (D
.isInvalidType())
7581 NewVD
->setInvalidDecl();
7583 if (NewVD
->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
7584 NewVD
->hasLocalStorage())
7585 checkNonTrivialCUnion(NewVD
->getType(), NewVD
->getLocation(),
7586 NTCUC_AutoVar
, NTCUK_Destruct
);
7588 bool Invalid
= false;
7589 // Match up the template parameter lists with the scope specifier, then
7590 // determine whether we have a template or a template specialization.
7591 TemplateParams
= MatchTemplateParametersToScopeSpecifier(
7592 D
.getDeclSpec().getBeginLoc(), D
.getIdentifierLoc(),
7593 D
.getCXXScopeSpec(),
7594 D
.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
7595 ? D
.getName().TemplateId
7598 /*never a friend*/ false, IsMemberSpecialization
, Invalid
);
7600 if (TemplateParams
) {
7601 if (DC
->isDependentContext()) {
7602 ContextRAII
SavedContext(*this, DC
);
7603 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams
))
7607 if (!TemplateParams
->size() &&
7608 D
.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) {
7609 // There is an extraneous 'template<>' for this variable. Complain
7610 // about it, but allow the declaration of the variable.
7611 Diag(TemplateParams
->getTemplateLoc(),
7612 diag::err_template_variable_noparams
)
7614 << SourceRange(TemplateParams
->getTemplateLoc(),
7615 TemplateParams
->getRAngleLoc());
7616 TemplateParams
= nullptr;
7618 // Check that we can declare a template here.
7619 if (CheckTemplateDeclScope(S
, TemplateParams
))
7622 if (D
.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
) {
7623 // This is an explicit specialization or a partial specialization.
7624 IsVariableTemplateSpecialization
= true;
7625 IsPartialSpecialization
= TemplateParams
->size() > 0;
7626 } else { // if (TemplateParams->size() > 0)
7627 // This is a template declaration.
7628 IsVariableTemplate
= true;
7630 // Only C++1y supports variable templates (N3651).
7631 Diag(D
.getIdentifierLoc(),
7632 getLangOpts().CPlusPlus14
7633 ? diag::warn_cxx11_compat_variable_template
7634 : diag::ext_variable_template
);
7638 // Check that we can declare a member specialization here.
7639 if (!TemplateParamLists
.empty() && IsMemberSpecialization
&&
7640 CheckTemplateDeclScope(S
, TemplateParamLists
.back()))
7643 D
.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) &&
7644 "should have a 'template<>' for this decl");
7647 bool IsExplicitSpecialization
=
7648 IsVariableTemplateSpecialization
&& !IsPartialSpecialization
;
7650 // C++ [temp.expl.spec]p2:
7651 // The declaration in an explicit-specialization shall not be an
7652 // export-declaration. An explicit specialization shall not use a
7653 // storage-class-specifier other than thread_local.
7655 // We use the storage-class-specifier from DeclSpec because we may have
7656 // added implicit 'extern' for declarations with __declspec(dllimport)!
7657 if (SCSpec
!= DeclSpec::SCS_unspecified
&&
7658 (IsExplicitSpecialization
|| IsMemberSpecialization
)) {
7659 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
7660 diag::ext_explicit_specialization_storage_class
)
7661 << FixItHint::CreateRemoval(D
.getDeclSpec().getStorageClassSpecLoc());
7664 if (CurContext
->isRecord()) {
7665 if (SC
== SC_Static
) {
7666 if (const CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(DC
)) {
7667 // Walk up the enclosing DeclContexts to check for any that are
7668 // incompatible with static data members.
7669 const DeclContext
*FunctionOrMethod
= nullptr;
7670 const CXXRecordDecl
*AnonStruct
= nullptr;
7671 for (DeclContext
*Ctxt
= DC
; Ctxt
; Ctxt
= Ctxt
->getParent()) {
7672 if (Ctxt
->isFunctionOrMethod()) {
7673 FunctionOrMethod
= Ctxt
;
7676 const CXXRecordDecl
*ParentDecl
= dyn_cast
<CXXRecordDecl
>(Ctxt
);
7677 if (ParentDecl
&& !ParentDecl
->getDeclName()) {
7678 AnonStruct
= ParentDecl
;
7682 if (FunctionOrMethod
) {
7683 // C++ [class.static.data]p5: A local class shall not have static
7685 Diag(D
.getIdentifierLoc(),
7686 diag::err_static_data_member_not_allowed_in_local_class
)
7687 << Name
<< RD
->getDeclName()
7688 << llvm::to_underlying(RD
->getTagKind());
7689 } else if (AnonStruct
) {
7690 // C++ [class.static.data]p4: Unnamed classes and classes contained
7691 // directly or indirectly within unnamed classes shall not contain
7692 // static data members.
7693 Diag(D
.getIdentifierLoc(),
7694 diag::err_static_data_member_not_allowed_in_anon_struct
)
7695 << Name
<< llvm::to_underlying(AnonStruct
->getTagKind());
7697 } else if (RD
->isUnion()) {
7698 // C++98 [class.union]p1: If a union contains a static data member,
7699 // the program is ill-formed. C++11 drops this restriction.
7700 Diag(D
.getIdentifierLoc(),
7701 getLangOpts().CPlusPlus11
7702 ? diag::warn_cxx98_compat_static_data_member_in_union
7703 : diag::ext_static_data_member_in_union
)
7707 } else if (IsVariableTemplate
|| IsPartialSpecialization
) {
7708 // There is no such thing as a member field template.
7709 Diag(D
.getIdentifierLoc(), diag::err_template_member
)
7710 << II
<< TemplateParams
->getSourceRange();
7711 // Recover by pretending this is a static data member template.
7714 } else if (DC
->isRecord()) {
7715 // This is an out-of-line definition of a static data member.
7720 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
7721 diag::err_static_out_of_line
)
7722 << FixItHint::CreateRemoval(
7723 D
.getDeclSpec().getStorageClassSpecLoc());
7728 // [dcl.stc] p2: The auto or register specifiers shall be applied only
7729 // to names of variables declared in a block or to function parameters.
7730 // [dcl.stc] p6: The extern specifier cannot be used in the declaration
7733 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
7734 diag::err_storage_class_for_static_member
)
7735 << FixItHint::CreateRemoval(
7736 D
.getDeclSpec().getStorageClassSpecLoc());
7738 case SC_PrivateExtern
:
7739 llvm_unreachable("C storage class in c++!");
7743 if (IsVariableTemplateSpecialization
) {
7744 SourceLocation TemplateKWLoc
=
7745 TemplateParamLists
.size() > 0
7746 ? TemplateParamLists
[0]->getTemplateLoc()
7748 DeclResult Res
= ActOnVarTemplateSpecialization(
7749 S
, D
, TInfo
, Previous
, TemplateKWLoc
, TemplateParams
, SC
,
7750 IsPartialSpecialization
);
7751 if (Res
.isInvalid())
7753 NewVD
= cast
<VarDecl
>(Res
.get());
7755 } else if (D
.isDecompositionDeclarator()) {
7756 NewVD
= DecompositionDecl::Create(Context
, DC
, D
.getBeginLoc(),
7757 D
.getIdentifierLoc(), R
, TInfo
, SC
,
7760 NewVD
= VarDecl::Create(Context
, DC
, D
.getBeginLoc(),
7761 D
.getIdentifierLoc(), II
, R
, TInfo
, SC
);
7763 // If this is supposed to be a variable template, create it as such.
7764 if (IsVariableTemplate
) {
7766 VarTemplateDecl::Create(Context
, DC
, D
.getIdentifierLoc(), Name
,
7767 TemplateParams
, NewVD
);
7768 NewVD
->setDescribedVarTemplate(NewTemplate
);
7771 // If this decl has an auto type in need of deduction, make a note of the
7772 // Decl so we can diagnose uses of it in its own initializer.
7773 if (R
->getContainedDeducedType())
7774 ParsingInitForAutoVars
.insert(NewVD
);
7776 if (D
.isInvalidType() || Invalid
) {
7777 NewVD
->setInvalidDecl();
7779 NewTemplate
->setInvalidDecl();
7782 SetNestedNameSpecifier(*this, NewVD
, D
);
7784 // If we have any template parameter lists that don't directly belong to
7785 // the variable (matching the scope specifier), store them.
7786 // An explicit variable template specialization does not own any template
7788 unsigned VDTemplateParamLists
=
7789 (TemplateParams
&& !IsExplicitSpecialization
) ? 1 : 0;
7790 if (TemplateParamLists
.size() > VDTemplateParamLists
)
7791 NewVD
->setTemplateParameterListsInfo(
7792 Context
, TemplateParamLists
.drop_back(VDTemplateParamLists
));
7795 if (D
.getDeclSpec().isInlineSpecified()) {
7796 if (!getLangOpts().CPlusPlus
) {
7797 Diag(D
.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function
)
7799 } else if (CurContext
->isFunctionOrMethod()) {
7800 // 'inline' is not allowed on block scope variable declaration.
7801 Diag(D
.getDeclSpec().getInlineSpecLoc(),
7802 diag::err_inline_declaration_block_scope
) << Name
7803 << FixItHint::CreateRemoval(D
.getDeclSpec().getInlineSpecLoc());
7805 Diag(D
.getDeclSpec().getInlineSpecLoc(),
7806 getLangOpts().CPlusPlus17
? diag::warn_cxx14_compat_inline_variable
7807 : diag::ext_inline_variable
);
7808 NewVD
->setInlineSpecified();
7812 // Set the lexical context. If the declarator has a C++ scope specifier, the
7813 // lexical context will be different from the semantic context.
7814 NewVD
->setLexicalDeclContext(CurContext
);
7816 NewTemplate
->setLexicalDeclContext(CurContext
);
7818 if (IsLocalExternDecl
) {
7819 if (D
.isDecompositionDeclarator())
7820 for (auto *B
: Bindings
)
7821 B
->setLocalExternDecl();
7823 NewVD
->setLocalExternDecl();
7826 bool EmitTLSUnsupportedError
= false;
7827 if (DeclSpec::TSCS TSCS
= D
.getDeclSpec().getThreadStorageClassSpec()) {
7828 // C++11 [dcl.stc]p4:
7829 // When thread_local is applied to a variable of block scope the
7830 // storage-class-specifier static is implied if it does not appear
7832 // Core issue: 'static' is not implied if the variable is declared
7834 if (NewVD
->hasLocalStorage() &&
7835 (SCSpec
!= DeclSpec::SCS_unspecified
||
7836 TSCS
!= DeclSpec::TSCS_thread_local
||
7837 !DC
->isFunctionOrMethod()))
7838 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
7839 diag::err_thread_non_global
)
7840 << DeclSpec::getSpecifierName(TSCS
);
7841 else if (!Context
.getTargetInfo().isTLSSupported()) {
7842 if (getLangOpts().CUDA
|| getLangOpts().OpenMPIsTargetDevice
||
7843 getLangOpts().SYCLIsDevice
) {
7844 // Postpone error emission until we've collected attributes required to
7845 // figure out whether it's a host or device variable and whether the
7846 // error should be ignored.
7847 EmitTLSUnsupportedError
= true;
7848 // We still need to mark the variable as TLS so it shows up in AST with
7849 // proper storage class for other tools to use even if we're not going
7850 // to emit any code for it.
7851 NewVD
->setTSCSpec(TSCS
);
7853 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
7854 diag::err_thread_unsupported
);
7856 NewVD
->setTSCSpec(TSCS
);
7859 switch (D
.getDeclSpec().getConstexprSpecifier()) {
7860 case ConstexprSpecKind::Unspecified
:
7863 case ConstexprSpecKind::Consteval
:
7864 Diag(D
.getDeclSpec().getConstexprSpecLoc(),
7865 diag::err_constexpr_wrong_decl_kind
)
7866 << static_cast<int>(D
.getDeclSpec().getConstexprSpecifier());
7869 case ConstexprSpecKind::Constexpr
:
7870 NewVD
->setConstexpr(true);
7871 // C++1z [dcl.spec.constexpr]p1:
7872 // A static data member declared with the constexpr specifier is
7873 // implicitly an inline variable.
7874 if (NewVD
->isStaticDataMember() &&
7875 (getLangOpts().CPlusPlus17
||
7876 Context
.getTargetInfo().getCXXABI().isMicrosoft()))
7877 NewVD
->setImplicitlyInline();
7880 case ConstexprSpecKind::Constinit
:
7881 if (!NewVD
->hasGlobalStorage())
7882 Diag(D
.getDeclSpec().getConstexprSpecLoc(),
7883 diag::err_constinit_local_variable
);
7886 ConstInitAttr::Create(Context
, D
.getDeclSpec().getConstexprSpecLoc(),
7887 ConstInitAttr::Keyword_constinit
));
7892 // An inline definition of a function with external linkage shall
7893 // not contain a definition of a modifiable object with static or
7894 // thread storage duration...
7895 // We only apply this when the function is required to be defined
7896 // elsewhere, i.e. when the function is not 'extern inline'. Note
7897 // that a local variable with thread storage duration still has to
7898 // be marked 'static'. Also note that it's possible to get these
7899 // semantics in C++ using __attribute__((gnu_inline)).
7900 if (SC
== SC_Static
&& S
->getFnParent() != nullptr &&
7901 !NewVD
->getType().isConstQualified()) {
7902 FunctionDecl
*CurFD
= getCurFunctionDecl();
7903 if (CurFD
&& isFunctionDefinitionDiscarded(*this, CurFD
)) {
7904 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
7905 diag::warn_static_local_in_extern_inline
);
7906 MaybeSuggestAddingStaticToDecl(CurFD
);
7910 if (D
.getDeclSpec().isModulePrivateSpecified()) {
7911 if (IsVariableTemplateSpecialization
)
7912 Diag(NewVD
->getLocation(), diag::err_module_private_specialization
)
7913 << (IsPartialSpecialization
? 1 : 0)
7914 << FixItHint::CreateRemoval(
7915 D
.getDeclSpec().getModulePrivateSpecLoc());
7916 else if (IsMemberSpecialization
)
7917 Diag(NewVD
->getLocation(), diag::err_module_private_specialization
)
7919 << FixItHint::CreateRemoval(D
.getDeclSpec().getModulePrivateSpecLoc());
7920 else if (NewVD
->hasLocalStorage())
7921 Diag(NewVD
->getLocation(), diag::err_module_private_local
)
7923 << SourceRange(D
.getDeclSpec().getModulePrivateSpecLoc())
7924 << FixItHint::CreateRemoval(
7925 D
.getDeclSpec().getModulePrivateSpecLoc());
7927 NewVD
->setModulePrivate();
7929 NewTemplate
->setModulePrivate();
7930 for (auto *B
: Bindings
)
7931 B
->setModulePrivate();
7935 if (getLangOpts().OpenCL
) {
7936 deduceOpenCLAddressSpace(NewVD
);
7938 DeclSpec::TSCS TSC
= D
.getDeclSpec().getThreadStorageClassSpec();
7939 if (TSC
!= TSCS_unspecified
) {
7940 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
7941 diag::err_opencl_unknown_type_specifier
)
7942 << getLangOpts().getOpenCLVersionString()
7943 << DeclSpec::getSpecifierName(TSC
) << 1;
7944 NewVD
->setInvalidDecl();
7948 // WebAssembly tables are always in address space 1 (wasm_var). Don't apply
7949 // address space if the table has local storage (semantic checks elsewhere
7950 // will produce an error anyway).
7951 if (const auto *ATy
= dyn_cast
<ArrayType
>(NewVD
->getType())) {
7952 if (ATy
&& ATy
->getElementType().isWebAssemblyReferenceType() &&
7953 !NewVD
->hasLocalStorage()) {
7954 QualType Type
= Context
.getAddrSpaceQualType(
7955 NewVD
->getType(), Context
.getLangASForBuiltinAddressSpace(1));
7956 NewVD
->setType(Type
);
7960 // Handle attributes prior to checking for duplicates in MergeVarDecl
7961 ProcessDeclAttributes(S
, NewVD
, D
);
7963 if (getLangOpts().HLSL
)
7964 HLSL().ActOnVariableDeclarator(NewVD
);
7966 // FIXME: This is probably the wrong location to be doing this and we should
7967 // probably be doing this for more attributes (especially for function
7968 // pointer attributes such as format, warn_unused_result, etc.). Ideally
7969 // the code to copy attributes would be generated by TableGen.
7970 if (R
->isFunctionPointerType())
7971 if (const auto *TT
= R
->getAs
<TypedefType
>())
7972 copyAttrFromTypedefToDecl
<AllocSizeAttr
>(*this, NewVD
, TT
);
7974 if (getLangOpts().CUDA
|| getLangOpts().OpenMPIsTargetDevice
||
7975 getLangOpts().SYCLIsDevice
) {
7976 if (EmitTLSUnsupportedError
&&
7977 ((getLangOpts().CUDA
&& DeclAttrsMatchCUDAMode(getLangOpts(), NewVD
)) ||
7978 (getLangOpts().OpenMPIsTargetDevice
&&
7979 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD
))))
7980 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
7981 diag::err_thread_unsupported
);
7983 if (EmitTLSUnsupportedError
&&
7984 (LangOpts
.SYCLIsDevice
||
7985 (LangOpts
.OpenMP
&& LangOpts
.OpenMPIsTargetDevice
)))
7986 targetDiag(D
.getIdentifierLoc(), diag::err_thread_unsupported
);
7987 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
7988 // storage [duration]."
7989 if (SC
== SC_None
&& S
->getFnParent() != nullptr &&
7990 (NewVD
->hasAttr
<CUDASharedAttr
>() ||
7991 NewVD
->hasAttr
<CUDAConstantAttr
>())) {
7992 NewVD
->setStorageClass(SC_Static
);
7996 // Ensure that dllimport globals without explicit storage class are treated as
7997 // extern. The storage class is set above using parsed attributes. Now we can
7998 // check the VarDecl itself.
7999 assert(!NewVD
->hasAttr
<DLLImportAttr
>() ||
8000 NewVD
->getAttr
<DLLImportAttr
>()->isInherited() ||
8001 NewVD
->isStaticDataMember() || NewVD
->getStorageClass() != SC_None
);
8003 // In auto-retain/release, infer strong retension for variables of
8005 if (getLangOpts().ObjCAutoRefCount
&& ObjC().inferObjCARCLifetime(NewVD
))
8006 NewVD
->setInvalidDecl();
8008 // Handle GNU asm-label extension (encoded as an attribute).
8009 if (Expr
*E
= (Expr
*)D
.getAsmLabel()) {
8010 // The parser guarantees this is a string.
8011 StringLiteral
*SE
= cast
<StringLiteral
>(E
);
8012 StringRef Label
= SE
->getString();
8013 if (S
->getFnParent() != nullptr) {
8017 Diag(E
->getExprLoc(), diag::warn_asm_label_on_auto_decl
) << Label
;
8020 // Local Named register
8021 if (!Context
.getTargetInfo().isValidGCCRegisterName(Label
) &&
8022 DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
8023 Diag(E
->getExprLoc(), diag::err_asm_unknown_register_name
) << Label
;
8027 case SC_PrivateExtern
:
8030 } else if (SC
== SC_Register
) {
8031 // Global Named register
8032 if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD
)) {
8033 const auto &TI
= Context
.getTargetInfo();
8034 bool HasSizeMismatch
;
8036 if (!TI
.isValidGCCRegisterName(Label
))
8037 Diag(E
->getExprLoc(), diag::err_asm_unknown_register_name
) << Label
;
8038 else if (!TI
.validateGlobalRegisterVariable(Label
,
8039 Context
.getTypeSize(R
),
8041 Diag(E
->getExprLoc(), diag::err_asm_invalid_global_var_reg
) << Label
;
8042 else if (HasSizeMismatch
)
8043 Diag(E
->getExprLoc(), diag::err_asm_register_size_mismatch
) << Label
;
8046 if (!R
->isIntegralType(Context
) && !R
->isPointerType()) {
8047 Diag(TInfo
->getTypeLoc().getBeginLoc(),
8048 diag::err_asm_unsupported_register_type
)
8049 << TInfo
->getTypeLoc().getSourceRange();
8050 NewVD
->setInvalidDecl(true);
8054 NewVD
->addAttr(AsmLabelAttr::Create(Context
, Label
,
8055 /*IsLiteralLabel=*/true,
8056 SE
->getStrTokenLoc(0)));
8057 } else if (!ExtnameUndeclaredIdentifiers
.empty()) {
8058 llvm::DenseMap
<IdentifierInfo
*,AsmLabelAttr
*>::iterator I
=
8059 ExtnameUndeclaredIdentifiers
.find(NewVD
->getIdentifier());
8060 if (I
!= ExtnameUndeclaredIdentifiers
.end()) {
8061 if (isDeclExternC(NewVD
)) {
8062 NewVD
->addAttr(I
->second
);
8063 ExtnameUndeclaredIdentifiers
.erase(I
);
8065 Diag(NewVD
->getLocation(), diag::warn_redefine_extname_not_applied
)
8066 << /*Variable*/1 << NewVD
;
8070 // Find the shadowed declaration before filtering for scope.
8071 NamedDecl
*ShadowedDecl
= D
.getCXXScopeSpec().isEmpty()
8072 ? getShadowedDeclaration(NewVD
, Previous
)
8075 // Don't consider existing declarations that are in a different
8076 // scope and are out-of-semantic-context declarations (if the new
8077 // declaration has linkage).
8078 FilterLookupForScope(Previous
, OriginalDC
, S
, shouldConsiderLinkage(NewVD
),
8079 D
.getCXXScopeSpec().isNotEmpty() ||
8080 IsMemberSpecialization
||
8081 IsVariableTemplateSpecialization
);
8083 // Check whether the previous declaration is in the same block scope. This
8084 // affects whether we merge types with it, per C++11 [dcl.array]p3.
8085 if (getLangOpts().CPlusPlus
&&
8086 NewVD
->isLocalVarDecl() && NewVD
->hasExternalStorage())
8087 NewVD
->setPreviousDeclInSameBlockScope(
8088 Previous
.isSingleResult() && !Previous
.isShadowed() &&
8089 isDeclInScope(Previous
.getFoundDecl(), OriginalDC
, S
, false));
8091 if (!getLangOpts().CPlusPlus
) {
8092 D
.setRedeclaration(CheckVariableDeclaration(NewVD
, Previous
));
8094 // If this is an explicit specialization of a static data member, check it.
8095 if (IsMemberSpecialization
&& !IsVariableTemplate
&&
8096 !IsVariableTemplateSpecialization
&& !NewVD
->isInvalidDecl() &&
8097 CheckMemberSpecialization(NewVD
, Previous
))
8098 NewVD
->setInvalidDecl();
8100 // Merge the decl with the existing one if appropriate.
8101 if (!Previous
.empty()) {
8102 if (Previous
.isSingleResult() &&
8103 isa
<FieldDecl
>(Previous
.getFoundDecl()) &&
8104 D
.getCXXScopeSpec().isSet()) {
8105 // The user tried to define a non-static data member
8106 // out-of-line (C++ [dcl.meaning]p1).
8107 Diag(NewVD
->getLocation(), diag::err_nonstatic_member_out_of_line
)
8108 << D
.getCXXScopeSpec().getRange();
8110 NewVD
->setInvalidDecl();
8112 } else if (D
.getCXXScopeSpec().isSet() &&
8113 !IsVariableTemplateSpecialization
) {
8114 // No previous declaration in the qualifying scope.
8115 Diag(D
.getIdentifierLoc(), diag::err_no_member
)
8116 << Name
<< computeDeclContext(D
.getCXXScopeSpec(), true)
8117 << D
.getCXXScopeSpec().getRange();
8118 NewVD
->setInvalidDecl();
8121 if (!IsPlaceholderVariable
)
8122 D
.setRedeclaration(CheckVariableDeclaration(NewVD
, Previous
));
8124 // CheckVariableDeclaration will set NewVD as invalid if something is in
8125 // error like WebAssembly tables being declared as arrays with a non-zero
8126 // size, but then parsing continues and emits further errors on that line.
8127 // To avoid that we check here if it happened and return nullptr.
8128 if (NewVD
->getType()->isWebAssemblyTableType() && NewVD
->isInvalidDecl())
8132 VarTemplateDecl
*PrevVarTemplate
=
8133 NewVD
->getPreviousDecl()
8134 ? NewVD
->getPreviousDecl()->getDescribedVarTemplate()
8137 // Check the template parameter list of this declaration, possibly
8138 // merging in the template parameter list from the previous variable
8139 // template declaration.
8140 if (CheckTemplateParameterList(
8142 PrevVarTemplate
? PrevVarTemplate
->getTemplateParameters()
8144 (D
.getCXXScopeSpec().isSet() && DC
&& DC
->isRecord() &&
8145 DC
->isDependentContext())
8146 ? TPC_ClassTemplateMember
8148 NewVD
->setInvalidDecl();
8150 // If we are providing an explicit specialization of a static variable
8151 // template, make a note of that.
8152 if (PrevVarTemplate
&&
8153 PrevVarTemplate
->getInstantiatedFromMemberTemplate())
8154 PrevVarTemplate
->setMemberSpecialization();
8158 // Diagnose shadowed variables iff this isn't a redeclaration.
8159 if (!IsPlaceholderVariable
&& ShadowedDecl
&& !D
.isRedeclaration())
8160 CheckShadow(NewVD
, ShadowedDecl
, Previous
);
8162 ProcessPragmaWeak(S
, NewVD
);
8164 // If this is the first declaration of an extern C variable, update
8165 // the map of such variables.
8166 if (NewVD
->isFirstDecl() && !NewVD
->isInvalidDecl() &&
8167 isIncompleteDeclExternC(*this, NewVD
))
8168 RegisterLocallyScopedExternCDecl(NewVD
, S
);
8170 if (getLangOpts().CPlusPlus
&& NewVD
->isStaticLocal()) {
8171 MangleNumberingContext
*MCtx
;
8172 Decl
*ManglingContextDecl
;
8173 std::tie(MCtx
, ManglingContextDecl
) =
8174 getCurrentMangleNumberContext(NewVD
->getDeclContext());
8176 Context
.setManglingNumber(
8177 NewVD
, MCtx
->getManglingNumber(
8178 NewVD
, getMSManglingNumber(getLangOpts(), S
)));
8179 Context
.setStaticLocalNumber(NewVD
, MCtx
->getStaticLocalNumber(NewVD
));
8183 // Special handling of variable named 'main'.
8184 if (!getLangOpts().Freestanding
&& isMainVar(Name
, NewVD
)) {
8185 // C++ [basic.start.main]p3:
8186 // A program that declares
8187 // - a variable main at global scope, or
8188 // - an entity named main with C language linkage (in any namespace)
8190 if (getLangOpts().CPlusPlus
)
8191 Diag(D
.getBeginLoc(), diag::err_main_global_variable
)
8192 << NewVD
->isExternC();
8194 // In C, and external-linkage variable named main results in undefined
8196 else if (NewVD
->hasExternalFormalLinkage())
8197 Diag(D
.getBeginLoc(), diag::warn_main_redefined
);
8200 if (D
.isRedeclaration() && !Previous
.empty()) {
8201 NamedDecl
*Prev
= Previous
.getRepresentativeDecl();
8202 checkDLLAttributeRedeclaration(*this, Prev
, NewVD
, IsMemberSpecialization
,
8203 D
.isFunctionDefinition());
8207 if (NewVD
->isInvalidDecl())
8208 NewTemplate
->setInvalidDecl();
8209 ActOnDocumentableDecl(NewTemplate
);
8213 if (IsMemberSpecialization
&& !NewVD
->isInvalidDecl())
8214 CompleteMemberSpecialization(NewVD
, Previous
);
8216 emitReadOnlyPlacementAttrWarning(*this, NewVD
);
8221 /// Enum describing the %select options in diag::warn_decl_shadow.
8222 enum ShadowedDeclKind
{
8229 SDK_StructuredBinding
8232 /// Determine what kind of declaration we're shadowing.
8233 static ShadowedDeclKind
computeShadowedDeclKind(const NamedDecl
*ShadowedDecl
,
8234 const DeclContext
*OldDC
) {
8235 if (isa
<TypeAliasDecl
>(ShadowedDecl
))
8237 else if (isa
<TypedefDecl
>(ShadowedDecl
))
8239 else if (isa
<BindingDecl
>(ShadowedDecl
))
8240 return SDK_StructuredBinding
;
8241 else if (isa
<RecordDecl
>(OldDC
))
8242 return isa
<FieldDecl
>(ShadowedDecl
) ? SDK_Field
: SDK_StaticMember
;
8244 return OldDC
->isFileContext() ? SDK_Global
: SDK_Local
;
8247 /// Return the location of the capture if the given lambda captures the given
8248 /// variable \p VD, or an invalid source location otherwise.
8249 static SourceLocation
getCaptureLocation(const LambdaScopeInfo
*LSI
,
8250 const VarDecl
*VD
) {
8251 for (const Capture
&Capture
: LSI
->Captures
) {
8252 if (Capture
.isVariableCapture() && Capture
.getVariable() == VD
)
8253 return Capture
.getLocation();
8255 return SourceLocation();
8258 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine
&Diags
,
8259 const LookupResult
&R
) {
8260 // Only diagnose if we're shadowing an unambiguous field or variable.
8261 if (R
.getResultKind() != LookupResult::Found
)
8264 // Return false if warning is ignored.
8265 return !Diags
.isIgnored(diag::warn_decl_shadow
, R
.getNameLoc());
8268 NamedDecl
*Sema::getShadowedDeclaration(const VarDecl
*D
,
8269 const LookupResult
&R
) {
8270 if (!shouldWarnIfShadowedDecl(Diags
, R
))
8273 // Don't diagnose declarations at file scope.
8274 if (D
->hasGlobalStorage() && !D
->isStaticLocal())
8277 NamedDecl
*ShadowedDecl
= R
.getFoundDecl();
8278 return isa
<VarDecl
, FieldDecl
, BindingDecl
>(ShadowedDecl
) ? ShadowedDecl
8282 NamedDecl
*Sema::getShadowedDeclaration(const TypedefNameDecl
*D
,
8283 const LookupResult
&R
) {
8284 // Don't warn if typedef declaration is part of a class
8285 if (D
->getDeclContext()->isRecord())
8288 if (!shouldWarnIfShadowedDecl(Diags
, R
))
8291 NamedDecl
*ShadowedDecl
= R
.getFoundDecl();
8292 return isa
<TypedefNameDecl
>(ShadowedDecl
) ? ShadowedDecl
: nullptr;
8295 NamedDecl
*Sema::getShadowedDeclaration(const BindingDecl
*D
,
8296 const LookupResult
&R
) {
8297 if (!shouldWarnIfShadowedDecl(Diags
, R
))
8300 NamedDecl
*ShadowedDecl
= R
.getFoundDecl();
8301 return isa
<VarDecl
, FieldDecl
, BindingDecl
>(ShadowedDecl
) ? ShadowedDecl
8305 void Sema::CheckShadow(NamedDecl
*D
, NamedDecl
*ShadowedDecl
,
8306 const LookupResult
&R
) {
8307 DeclContext
*NewDC
= D
->getDeclContext();
8309 if (FieldDecl
*FD
= dyn_cast
<FieldDecl
>(ShadowedDecl
)) {
8310 if (CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(NewDC
)) {
8311 // Fields are not shadowed by variables in C++ static methods.
8315 if (!MD
->getParent()->isLambda() && MD
->isExplicitObjectMemberFunction())
8318 // Fields shadowed by constructor parameters are a special case. Usually
8319 // the constructor initializes the field with the parameter.
8320 if (isa
<CXXConstructorDecl
>(NewDC
))
8321 if (const auto PVD
= dyn_cast
<ParmVarDecl
>(D
)) {
8322 // Remember that this was shadowed so we can either warn about its
8323 // modification or its existence depending on warning settings.
8324 ShadowingDecls
.insert({PVD
->getCanonicalDecl(), FD
});
8329 if (VarDecl
*shadowedVar
= dyn_cast
<VarDecl
>(ShadowedDecl
))
8330 if (shadowedVar
->isExternC()) {
8331 // For shadowing external vars, make sure that we point to the global
8332 // declaration, not a locally scoped extern declaration.
8333 for (auto *I
: shadowedVar
->redecls())
8334 if (I
->isFileVarDecl()) {
8340 DeclContext
*OldDC
= ShadowedDecl
->getDeclContext()->getRedeclContext();
8342 unsigned WarningDiag
= diag::warn_decl_shadow
;
8343 SourceLocation CaptureLoc
;
8344 if (isa
<VarDecl
>(D
) && NewDC
&& isa
<CXXMethodDecl
>(NewDC
)) {
8345 if (const auto *RD
= dyn_cast
<CXXRecordDecl
>(NewDC
->getParent())) {
8346 if (RD
->isLambda() && OldDC
->Encloses(NewDC
->getLexicalParent())) {
8347 if (const auto *VD
= dyn_cast
<VarDecl
>(ShadowedDecl
)) {
8348 const auto *LSI
= cast
<LambdaScopeInfo
>(getCurFunction());
8349 if (RD
->getLambdaCaptureDefault() == LCD_None
) {
8350 // Try to avoid warnings for lambdas with an explicit capture
8351 // list. Warn only when the lambda captures the shadowed decl
8353 CaptureLoc
= getCaptureLocation(LSI
, VD
);
8354 if (CaptureLoc
.isInvalid())
8355 WarningDiag
= diag::warn_decl_shadow_uncaptured_local
;
8357 // Remember that this was shadowed so we can avoid the warning if
8358 // the shadowed decl isn't captured and the warning settings allow
8360 cast
<LambdaScopeInfo
>(getCurFunction())
8361 ->ShadowingDecls
.push_back({D
, VD
});
8365 if (isa
<FieldDecl
>(ShadowedDecl
)) {
8366 // If lambda can capture this, then emit default shadowing warning,
8367 // Otherwise it is not really a shadowing case since field is not
8368 // available in lambda's body.
8369 // At this point we don't know that lambda can capture this, so
8370 // remember that this was shadowed and delay until we know.
8371 cast
<LambdaScopeInfo
>(getCurFunction())
8372 ->ShadowingDecls
.push_back({D
, ShadowedDecl
});
8376 if (const auto *VD
= dyn_cast
<VarDecl
>(ShadowedDecl
);
8377 VD
&& VD
->hasLocalStorage()) {
8378 // A variable can't shadow a local variable in an enclosing scope, if
8379 // they are separated by a non-capturing declaration context.
8380 for (DeclContext
*ParentDC
= NewDC
;
8381 ParentDC
&& !ParentDC
->Equals(OldDC
);
8382 ParentDC
= getLambdaAwareParentOfDeclContext(ParentDC
)) {
8383 // Only block literals, captured statements, and lambda expressions
8384 // can capture; other scopes don't.
8385 if (!isa
<BlockDecl
>(ParentDC
) && !isa
<CapturedDecl
>(ParentDC
) &&
8386 !isLambdaCallOperator(ParentDC
)) {
8394 // Never warn about shadowing a placeholder variable.
8395 if (ShadowedDecl
->isPlaceholderVar(getLangOpts()))
8398 // Only warn about certain kinds of shadowing for class members.
8400 // In particular, don't warn about shadowing non-class members.
8401 if (NewDC
->isRecord() && !OldDC
->isRecord())
8404 // Skip shadowing check if we're in a class scope, dealing with an enum
8405 // constant in a different context.
8406 DeclContext
*ReDC
= NewDC
->getRedeclContext();
8407 if (ReDC
->isRecord() && isa
<EnumConstantDecl
>(D
) && !OldDC
->Equals(ReDC
))
8410 // TODO: should we warn about static data members shadowing
8411 // static data members from base classes?
8413 // TODO: don't diagnose for inaccessible shadowed members.
8414 // This is hard to do perfectly because we might friend the
8415 // shadowing context, but that's just a false negative.
8418 DeclarationName Name
= R
.getLookupName();
8420 // Emit warning and note.
8421 ShadowedDeclKind Kind
= computeShadowedDeclKind(ShadowedDecl
, OldDC
);
8422 Diag(R
.getNameLoc(), WarningDiag
) << Name
<< Kind
<< OldDC
;
8423 if (!CaptureLoc
.isInvalid())
8424 Diag(CaptureLoc
, diag::note_var_explicitly_captured_here
)
8425 << Name
<< /*explicitly*/ 1;
8426 Diag(ShadowedDecl
->getLocation(), diag::note_previous_declaration
);
8429 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo
*LSI
) {
8430 for (const auto &Shadow
: LSI
->ShadowingDecls
) {
8431 const NamedDecl
*ShadowedDecl
= Shadow
.ShadowedDecl
;
8432 // Try to avoid the warning when the shadowed decl isn't captured.
8433 const DeclContext
*OldDC
= ShadowedDecl
->getDeclContext();
8434 if (const auto *VD
= dyn_cast
<VarDecl
>(ShadowedDecl
)) {
8435 SourceLocation CaptureLoc
= getCaptureLocation(LSI
, VD
);
8436 Diag(Shadow
.VD
->getLocation(),
8437 CaptureLoc
.isInvalid() ? diag::warn_decl_shadow_uncaptured_local
8438 : diag::warn_decl_shadow
)
8439 << Shadow
.VD
->getDeclName()
8440 << computeShadowedDeclKind(ShadowedDecl
, OldDC
) << OldDC
;
8441 if (CaptureLoc
.isValid())
8442 Diag(CaptureLoc
, diag::note_var_explicitly_captured_here
)
8443 << Shadow
.VD
->getDeclName() << /*explicitly*/ 0;
8444 Diag(ShadowedDecl
->getLocation(), diag::note_previous_declaration
);
8445 } else if (isa
<FieldDecl
>(ShadowedDecl
)) {
8446 Diag(Shadow
.VD
->getLocation(),
8447 LSI
->isCXXThisCaptured() ? diag::warn_decl_shadow
8448 : diag::warn_decl_shadow_uncaptured_local
)
8449 << Shadow
.VD
->getDeclName()
8450 << computeShadowedDeclKind(ShadowedDecl
, OldDC
) << OldDC
;
8451 Diag(ShadowedDecl
->getLocation(), diag::note_previous_declaration
);
8456 void Sema::CheckShadow(Scope
*S
, VarDecl
*D
) {
8457 if (Diags
.isIgnored(diag::warn_decl_shadow
, D
->getLocation()))
8460 LookupResult
R(*this, D
->getDeclName(), D
->getLocation(),
8461 Sema::LookupOrdinaryName
,
8462 RedeclarationKind::ForVisibleRedeclaration
);
8464 if (NamedDecl
*ShadowedDecl
= getShadowedDeclaration(D
, R
))
8465 CheckShadow(D
, ShadowedDecl
, R
);
8468 /// Check if 'E', which is an expression that is about to be modified, refers
8469 /// to a constructor parameter that shadows a field.
8470 void Sema::CheckShadowingDeclModification(Expr
*E
, SourceLocation Loc
) {
8471 // Quickly ignore expressions that can't be shadowing ctor parameters.
8472 if (!getLangOpts().CPlusPlus
|| ShadowingDecls
.empty())
8474 E
= E
->IgnoreParenImpCasts();
8475 auto *DRE
= dyn_cast
<DeclRefExpr
>(E
);
8478 const NamedDecl
*D
= cast
<NamedDecl
>(DRE
->getDecl()->getCanonicalDecl());
8479 auto I
= ShadowingDecls
.find(D
);
8480 if (I
== ShadowingDecls
.end())
8482 const NamedDecl
*ShadowedDecl
= I
->second
;
8483 const DeclContext
*OldDC
= ShadowedDecl
->getDeclContext();
8484 Diag(Loc
, diag::warn_modifying_shadowing_decl
) << D
<< OldDC
;
8485 Diag(D
->getLocation(), diag::note_var_declared_here
) << D
;
8486 Diag(ShadowedDecl
->getLocation(), diag::note_previous_declaration
);
8488 // Avoid issuing multiple warnings about the same decl.
8489 ShadowingDecls
.erase(I
);
8492 /// Check for conflict between this global or extern "C" declaration and
8493 /// previous global or extern "C" declarations. This is only used in C++.
8494 template<typename T
>
8495 static bool checkGlobalOrExternCConflict(
8496 Sema
&S
, const T
*ND
, bool IsGlobal
, LookupResult
&Previous
) {
8497 assert(S
.getLangOpts().CPlusPlus
&& "only C++ has extern \"C\"");
8498 NamedDecl
*Prev
= S
.findLocallyScopedExternCDecl(ND
->getDeclName());
8500 if (!Prev
&& IsGlobal
&& !isIncompleteDeclExternC(S
, ND
)) {
8501 // The common case: this global doesn't conflict with any extern "C"
8507 if (!IsGlobal
|| isIncompleteDeclExternC(S
, ND
)) {
8508 // Both the old and new declarations have C language linkage. This is a
8511 Previous
.addDecl(Prev
);
8515 // This is a global, non-extern "C" declaration, and there is a previous
8516 // non-global extern "C" declaration. Diagnose if this is a variable
8518 if (!isa
<VarDecl
>(ND
))
8521 // The declaration is extern "C". Check for any declaration in the
8522 // translation unit which might conflict.
8524 // We have already performed the lookup into the translation unit.
8526 for (LookupResult::iterator I
= Previous
.begin(), E
= Previous
.end();
8528 if (isa
<VarDecl
>(*I
)) {
8534 DeclContext::lookup_result R
=
8535 S
.Context
.getTranslationUnitDecl()->lookup(ND
->getDeclName());
8536 for (DeclContext::lookup_result::iterator I
= R
.begin(), E
= R
.end();
8538 if (isa
<VarDecl
>(*I
)) {
8542 // FIXME: If we have any other entity with this name in global scope,
8543 // the declaration is ill-formed, but that is a defect: it breaks the
8544 // 'stat' hack, for instance. Only variables can have mangled name
8545 // clashes with extern "C" declarations, so only they deserve a
8554 // Use the first declaration's location to ensure we point at something which
8555 // is lexically inside an extern "C" linkage-spec.
8556 assert(Prev
&& "should have found a previous declaration to diagnose");
8557 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(Prev
))
8558 Prev
= FD
->getFirstDecl();
8560 Prev
= cast
<VarDecl
>(Prev
)->getFirstDecl();
8562 S
.Diag(ND
->getLocation(), diag::err_extern_c_global_conflict
)
8564 S
.Diag(Prev
->getLocation(), diag::note_extern_c_global_conflict
)
8569 /// Apply special rules for handling extern "C" declarations. Returns \c true
8570 /// if we have found that this is a redeclaration of some prior entity.
8572 /// Per C++ [dcl.link]p6:
8573 /// Two declarations [for a function or variable] with C language linkage
8574 /// with the same name that appear in different scopes refer to the same
8575 /// [entity]. An entity with C language linkage shall not be declared with
8576 /// the same name as an entity in global scope.
8577 template<typename T
>
8578 static bool checkForConflictWithNonVisibleExternC(Sema
&S
, const T
*ND
,
8579 LookupResult
&Previous
) {
8580 if (!S
.getLangOpts().CPlusPlus
) {
8581 // In C, when declaring a global variable, look for a corresponding 'extern'
8582 // variable declared in function scope. We don't need this in C++, because
8583 // we find local extern decls in the surrounding file-scope DeclContext.
8584 if (ND
->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
8585 if (NamedDecl
*Prev
= S
.findLocallyScopedExternCDecl(ND
->getDeclName())) {
8587 Previous
.addDecl(Prev
);
8594 // A declaration in the translation unit can conflict with an extern "C"
8596 if (ND
->getDeclContext()->getRedeclContext()->isTranslationUnit())
8597 return checkGlobalOrExternCConflict(S
, ND
, /*IsGlobal*/true, Previous
);
8599 // An extern "C" declaration can conflict with a declaration in the
8600 // translation unit or can be a redeclaration of an extern "C" declaration
8601 // in another scope.
8602 if (isIncompleteDeclExternC(S
,ND
))
8603 return checkGlobalOrExternCConflict(S
, ND
, /*IsGlobal*/false, Previous
);
8605 // Neither global nor extern "C": nothing to do.
8609 static bool CheckC23ConstexprVarType(Sema
&SemaRef
, SourceLocation VarLoc
,
8611 QualType CanonT
= SemaRef
.Context
.getCanonicalType(T
);
8612 // C23 6.7.1p5: An object declared with storage-class specifier constexpr or
8613 // any of its members, even recursively, shall not have an atomic type, or a
8614 // variably modified type, or a type that is volatile or restrict qualified.
8615 if (CanonT
->isVariablyModifiedType()) {
8616 SemaRef
.Diag(VarLoc
, diag::err_c23_constexpr_invalid_type
) << T
;
8620 // Arrays are qualified by their element type, so get the base type (this
8621 // works on non-arrays as well).
8622 CanonT
= SemaRef
.Context
.getBaseElementType(CanonT
);
8624 if (CanonT
->isAtomicType() || CanonT
.isVolatileQualified() ||
8625 CanonT
.isRestrictQualified()) {
8626 SemaRef
.Diag(VarLoc
, diag::err_c23_constexpr_invalid_type
) << T
;
8630 if (CanonT
->isRecordType()) {
8631 const RecordDecl
*RD
= CanonT
->getAsRecordDecl();
8632 if (llvm::any_of(RD
->fields(), [&SemaRef
, VarLoc
](const FieldDecl
*F
) {
8633 return CheckC23ConstexprVarType(SemaRef
, VarLoc
, F
->getType());
8641 void Sema::CheckVariableDeclarationType(VarDecl
*NewVD
) {
8642 // If the decl is already known invalid, don't check it.
8643 if (NewVD
->isInvalidDecl())
8646 QualType T
= NewVD
->getType();
8648 // Defer checking an 'auto' type until its initializer is attached.
8649 if (T
->isUndeducedType())
8652 if (NewVD
->hasAttrs())
8653 CheckAlignasUnderalignment(NewVD
);
8655 if (T
->isObjCObjectType()) {
8656 Diag(NewVD
->getLocation(), diag::err_statically_allocated_object
)
8657 << FixItHint::CreateInsertion(NewVD
->getLocation(), "*");
8658 T
= Context
.getObjCObjectPointerType(T
);
8662 // Emit an error if an address space was applied to decl with local storage.
8663 // This includes arrays of objects with address space qualifiers, but not
8664 // automatic variables that point to other address spaces.
8665 // ISO/IEC TR 18037 S5.1.2
8666 if (!getLangOpts().OpenCL
&& NewVD
->hasLocalStorage() &&
8667 T
.getAddressSpace() != LangAS::Default
) {
8668 Diag(NewVD
->getLocation(), diag::err_as_qualified_auto_decl
) << 0;
8669 NewVD
->setInvalidDecl();
8673 // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
8675 if (getLangOpts().OpenCLVersion
== 120 &&
8676 !getOpenCLOptions().isAvailableOption("cl_clang_storage_class_specifiers",
8678 NewVD
->isStaticLocal()) {
8679 Diag(NewVD
->getLocation(), diag::err_static_function_scope
);
8680 NewVD
->setInvalidDecl();
8684 if (getLangOpts().OpenCL
) {
8685 if (!diagnoseOpenCLTypes(*this, NewVD
))
8688 // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
8689 if (NewVD
->hasAttr
<BlocksAttr
>()) {
8690 Diag(NewVD
->getLocation(), diag::err_opencl_block_storage_type
);
8694 if (T
->isBlockPointerType()) {
8695 // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
8696 // can't use 'extern' storage class.
8697 if (!T
.isConstQualified()) {
8698 Diag(NewVD
->getLocation(), diag::err_opencl_invalid_block_declaration
)
8700 NewVD
->setInvalidDecl();
8703 if (NewVD
->hasExternalStorage()) {
8704 Diag(NewVD
->getLocation(), diag::err_opencl_extern_block_declaration
);
8705 NewVD
->setInvalidDecl();
8710 // FIXME: Adding local AS in C++ for OpenCL might make sense.
8711 if (NewVD
->isFileVarDecl() || NewVD
->isStaticLocal() ||
8712 NewVD
->hasExternalStorage()) {
8713 if (!T
->isSamplerT() && !T
->isDependentType() &&
8714 !(T
.getAddressSpace() == LangAS::opencl_constant
||
8715 (T
.getAddressSpace() == LangAS::opencl_global
&&
8716 getOpenCLOptions().areProgramScopeVariablesSupported(
8718 int Scope
= NewVD
->isStaticLocal() | NewVD
->hasExternalStorage() << 1;
8719 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()))
8720 Diag(NewVD
->getLocation(), diag::err_opencl_global_invalid_addr_space
)
8721 << Scope
<< "global or constant";
8723 Diag(NewVD
->getLocation(), diag::err_opencl_global_invalid_addr_space
)
8724 << Scope
<< "constant";
8725 NewVD
->setInvalidDecl();
8729 if (T
.getAddressSpace() == LangAS::opencl_global
) {
8730 Diag(NewVD
->getLocation(), diag::err_opencl_function_variable
)
8731 << 1 /*is any function*/ << "global";
8732 NewVD
->setInvalidDecl();
8735 if (T
.getAddressSpace() == LangAS::opencl_constant
||
8736 T
.getAddressSpace() == LangAS::opencl_local
) {
8737 FunctionDecl
*FD
= getCurFunctionDecl();
8738 // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
8740 if (FD
&& !FD
->hasAttr
<OpenCLKernelAttr
>()) {
8741 if (T
.getAddressSpace() == LangAS::opencl_constant
)
8742 Diag(NewVD
->getLocation(), diag::err_opencl_function_variable
)
8743 << 0 /*non-kernel only*/ << "constant";
8745 Diag(NewVD
->getLocation(), diag::err_opencl_function_variable
)
8746 << 0 /*non-kernel only*/ << "local";
8747 NewVD
->setInvalidDecl();
8750 // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
8751 // in the outermost scope of a kernel function.
8752 if (FD
&& FD
->hasAttr
<OpenCLKernelAttr
>()) {
8753 if (!getCurScope()->isFunctionScope()) {
8754 if (T
.getAddressSpace() == LangAS::opencl_constant
)
8755 Diag(NewVD
->getLocation(), diag::err_opencl_addrspace_scope
)
8758 Diag(NewVD
->getLocation(), diag::err_opencl_addrspace_scope
)
8760 NewVD
->setInvalidDecl();
8764 } else if (T
.getAddressSpace() != LangAS::opencl_private
&&
8765 // If we are parsing a template we didn't deduce an addr
8767 T
.getAddressSpace() != LangAS::Default
) {
8768 // Do not allow other address spaces on automatic variable.
8769 Diag(NewVD
->getLocation(), diag::err_as_qualified_auto_decl
) << 1;
8770 NewVD
->setInvalidDecl();
8776 if (NewVD
->hasLocalStorage() && T
.isObjCGCWeak()
8777 && !NewVD
->hasAttr
<BlocksAttr
>()) {
8778 if (getLangOpts().getGC() != LangOptions::NonGC
)
8779 Diag(NewVD
->getLocation(), diag::warn_gc_attribute_weak_on_local
);
8781 assert(!getLangOpts().ObjCAutoRefCount
);
8782 Diag(NewVD
->getLocation(), diag::warn_attribute_weak_on_local
);
8786 // WebAssembly tables must be static with a zero length and can't be
8787 // declared within functions.
8788 if (T
->isWebAssemblyTableType()) {
8789 if (getCurScope()->getParent()) { // Parent is null at top-level
8790 Diag(NewVD
->getLocation(), diag::err_wasm_table_in_function
);
8791 NewVD
->setInvalidDecl();
8794 if (NewVD
->getStorageClass() != SC_Static
) {
8795 Diag(NewVD
->getLocation(), diag::err_wasm_table_must_be_static
);
8796 NewVD
->setInvalidDecl();
8799 const auto *ATy
= dyn_cast
<ConstantArrayType
>(T
.getTypePtr());
8800 if (!ATy
|| ATy
->getZExtSize() != 0) {
8801 Diag(NewVD
->getLocation(),
8802 diag::err_typecheck_wasm_table_must_have_zero_length
);
8803 NewVD
->setInvalidDecl();
8808 // zero sized static arrays are not allowed in HIP device functions
8809 if (getLangOpts().HIP
&& LangOpts
.CUDAIsDevice
) {
8810 if (FunctionDecl
*FD
= getCurFunctionDecl();
8812 (FD
->hasAttr
<CUDADeviceAttr
>() || FD
->hasAttr
<CUDAGlobalAttr
>())) {
8813 if (const ConstantArrayType
*ArrayT
=
8814 getASTContext().getAsConstantArrayType(T
);
8815 ArrayT
&& ArrayT
->isZeroSize()) {
8816 Diag(NewVD
->getLocation(), diag::err_typecheck_zero_array_size
) << 2;
8821 bool isVM
= T
->isVariablyModifiedType();
8822 if (isVM
|| NewVD
->hasAttr
<CleanupAttr
>() ||
8823 NewVD
->hasAttr
<BlocksAttr
>())
8824 setFunctionHasBranchProtectedScope();
8826 if ((isVM
&& NewVD
->hasLinkage()) ||
8827 (T
->isVariableArrayType() && NewVD
->hasGlobalStorage())) {
8828 bool SizeIsNegative
;
8829 llvm::APSInt Oversized
;
8830 TypeSourceInfo
*FixedTInfo
= TryToFixInvalidVariablyModifiedTypeSourceInfo(
8831 NewVD
->getTypeSourceInfo(), Context
, SizeIsNegative
, Oversized
);
8833 if (FixedTInfo
&& T
== NewVD
->getTypeSourceInfo()->getType())
8834 FixedT
= FixedTInfo
->getType();
8835 else if (FixedTInfo
) {
8836 // Type and type-as-written are canonically different. We need to fix up
8837 // both types separately.
8838 FixedT
= TryToFixInvalidVariablyModifiedType(T
, Context
, SizeIsNegative
,
8841 if ((!FixedTInfo
|| FixedT
.isNull()) && T
->isVariableArrayType()) {
8842 const VariableArrayType
*VAT
= Context
.getAsVariableArrayType(T
);
8843 // FIXME: This won't give the correct result for
8845 SourceRange SizeRange
= VAT
->getSizeExpr()->getSourceRange();
8847 if (NewVD
->isFileVarDecl())
8848 Diag(NewVD
->getLocation(), diag::err_vla_decl_in_file_scope
)
8850 else if (NewVD
->isStaticLocal())
8851 Diag(NewVD
->getLocation(), diag::err_vla_decl_has_static_storage
)
8854 Diag(NewVD
->getLocation(), diag::err_vla_decl_has_extern_linkage
)
8856 NewVD
->setInvalidDecl();
8861 if (NewVD
->isFileVarDecl())
8862 Diag(NewVD
->getLocation(), diag::err_vm_decl_in_file_scope
);
8864 Diag(NewVD
->getLocation(), diag::err_vm_decl_has_extern_linkage
);
8865 NewVD
->setInvalidDecl();
8869 Diag(NewVD
->getLocation(), diag::ext_vla_folded_to_constant
);
8870 NewVD
->setType(FixedT
);
8871 NewVD
->setTypeSourceInfo(FixedTInfo
);
8874 if (T
->isVoidType()) {
8875 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
8876 // of objects and functions.
8877 if (NewVD
->isThisDeclarationADefinition() || getLangOpts().CPlusPlus
) {
8878 Diag(NewVD
->getLocation(), diag::err_typecheck_decl_incomplete_type
)
8880 NewVD
->setInvalidDecl();
8885 if (!NewVD
->hasLocalStorage() && NewVD
->hasAttr
<BlocksAttr
>()) {
8886 Diag(NewVD
->getLocation(), diag::err_block_on_nonlocal
);
8887 NewVD
->setInvalidDecl();
8891 if (!NewVD
->hasLocalStorage() && T
->isSizelessType() &&
8892 !T
.isWebAssemblyReferenceType() && !T
->isHLSLSpecificType()) {
8893 Diag(NewVD
->getLocation(), diag::err_sizeless_nonlocal
) << T
;
8894 NewVD
->setInvalidDecl();
8898 if (isVM
&& NewVD
->hasAttr
<BlocksAttr
>()) {
8899 Diag(NewVD
->getLocation(), diag::err_block_on_vm
);
8900 NewVD
->setInvalidDecl();
8904 if (getLangOpts().C23
&& NewVD
->isConstexpr() &&
8905 CheckC23ConstexprVarType(*this, NewVD
->getLocation(), T
)) {
8906 NewVD
->setInvalidDecl();
8910 if (getLangOpts().CPlusPlus
&& NewVD
->isConstexpr() &&
8911 !T
->isDependentType() &&
8912 RequireLiteralType(NewVD
->getLocation(), T
,
8913 diag::err_constexpr_var_non_literal
)) {
8914 NewVD
->setInvalidDecl();
8918 // PPC MMA non-pointer types are not allowed as non-local variable types.
8919 if (Context
.getTargetInfo().getTriple().isPPC64() &&
8920 !NewVD
->isLocalVarDecl() &&
8921 PPC().CheckPPCMMAType(T
, NewVD
->getLocation())) {
8922 NewVD
->setInvalidDecl();
8926 // Check that SVE types are only used in functions with SVE available.
8927 if (T
->isSVESizelessBuiltinType() && isa
<FunctionDecl
>(CurContext
)) {
8928 const FunctionDecl
*FD
= cast
<FunctionDecl
>(CurContext
);
8929 llvm::StringMap
<bool> CallerFeatureMap
;
8930 Context
.getFunctionFeatureMap(CallerFeatureMap
, FD
);
8932 if (!Builtin::evaluateRequiredTargetFeatures("sve", CallerFeatureMap
)) {
8933 if (!Builtin::evaluateRequiredTargetFeatures("sme", CallerFeatureMap
)) {
8934 Diag(NewVD
->getLocation(), diag::err_sve_vector_in_non_sve_target
) << T
;
8935 NewVD
->setInvalidDecl();
8937 } else if (!IsArmStreamingFunction(FD
,
8938 /*IncludeLocallyStreaming=*/true)) {
8939 Diag(NewVD
->getLocation(),
8940 diag::err_sve_vector_in_non_streaming_function
)
8942 NewVD
->setInvalidDecl();
8948 if (T
->isRVVSizelessBuiltinType() && isa
<FunctionDecl
>(CurContext
)) {
8949 const FunctionDecl
*FD
= cast
<FunctionDecl
>(CurContext
);
8950 llvm::StringMap
<bool> CallerFeatureMap
;
8951 Context
.getFunctionFeatureMap(CallerFeatureMap
, FD
);
8952 RISCV().checkRVVTypeSupport(T
, NewVD
->getLocation(), cast
<Decl
>(CurContext
),
8957 bool Sema::CheckVariableDeclaration(VarDecl
*NewVD
, LookupResult
&Previous
) {
8958 CheckVariableDeclarationType(NewVD
);
8960 // If the decl is already known invalid, don't check it.
8961 if (NewVD
->isInvalidDecl())
8964 // If we did not find anything by this name, look for a non-visible
8965 // extern "C" declaration with the same name.
8966 if (Previous
.empty() &&
8967 checkForConflictWithNonVisibleExternC(*this, NewVD
, Previous
))
8968 Previous
.setShadowed();
8970 if (!Previous
.empty()) {
8971 MergeVarDecl(NewVD
, Previous
);
8977 bool Sema::AddOverriddenMethods(CXXRecordDecl
*DC
, CXXMethodDecl
*MD
) {
8978 llvm::SmallPtrSet
<const CXXMethodDecl
*, 4> Overridden
;
8980 // Look for methods in base classes that this method might override.
8981 CXXBasePaths
Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
8982 /*DetectVirtual=*/false);
8983 auto VisitBase
= [&] (const CXXBaseSpecifier
*Specifier
, CXXBasePath
&Path
) {
8984 CXXRecordDecl
*BaseRecord
= Specifier
->getType()->getAsCXXRecordDecl();
8985 DeclarationName Name
= MD
->getDeclName();
8987 if (Name
.getNameKind() == DeclarationName::CXXDestructorName
) {
8988 // We really want to find the base class destructor here.
8989 QualType T
= Context
.getTypeDeclType(BaseRecord
);
8990 CanQualType CT
= Context
.getCanonicalType(T
);
8991 Name
= Context
.DeclarationNames
.getCXXDestructorName(CT
);
8994 for (NamedDecl
*BaseND
: BaseRecord
->lookup(Name
)) {
8995 CXXMethodDecl
*BaseMD
=
8996 dyn_cast
<CXXMethodDecl
>(BaseND
->getCanonicalDecl());
8997 if (!BaseMD
|| !BaseMD
->isVirtual() ||
8998 IsOverride(MD
, BaseMD
, /*UseMemberUsingDeclRules=*/false,
8999 /*ConsiderCudaAttrs=*/true))
9001 if (!CheckExplicitObjectOverride(MD
, BaseMD
))
9003 if (Overridden
.insert(BaseMD
).second
) {
9004 MD
->addOverriddenMethod(BaseMD
);
9005 CheckOverridingFunctionReturnType(MD
, BaseMD
);
9006 CheckOverridingFunctionAttributes(MD
, BaseMD
);
9007 CheckOverridingFunctionExceptionSpec(MD
, BaseMD
);
9008 CheckIfOverriddenFunctionIsMarkedFinal(MD
, BaseMD
);
9011 // A method can only override one function from each base class. We
9012 // don't track indirectly overridden methods from bases of bases.
9019 DC
->lookupInBases(VisitBase
, Paths
);
9020 return !Overridden
.empty();
9024 // Struct for holding all of the extra arguments needed by
9025 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
9026 struct ActOnFDArgs
{
9029 MultiTemplateParamsArg TemplateParamLists
;
9032 } // end anonymous namespace
9036 // Callback to only accept typo corrections that have a non-zero edit distance.
9037 // Also only accept corrections that have the same parent decl.
9038 class DifferentNameValidatorCCC final
: public CorrectionCandidateCallback
{
9040 DifferentNameValidatorCCC(ASTContext
&Context
, FunctionDecl
*TypoFD
,
9041 CXXRecordDecl
*Parent
)
9042 : Context(Context
), OriginalFD(TypoFD
),
9043 ExpectedParent(Parent
? Parent
->getCanonicalDecl() : nullptr) {}
9045 bool ValidateCandidate(const TypoCorrection
&candidate
) override
{
9046 if (candidate
.getEditDistance() == 0)
9049 SmallVector
<unsigned, 1> MismatchedParams
;
9050 for (TypoCorrection::const_decl_iterator CDecl
= candidate
.begin(),
9051 CDeclEnd
= candidate
.end();
9052 CDecl
!= CDeclEnd
; ++CDecl
) {
9053 FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(*CDecl
);
9055 if (FD
&& !FD
->hasBody() &&
9056 hasSimilarParameters(Context
, FD
, OriginalFD
, MismatchedParams
)) {
9057 if (CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
9058 CXXRecordDecl
*Parent
= MD
->getParent();
9059 if (Parent
&& Parent
->getCanonicalDecl() == ExpectedParent
)
9061 } else if (!ExpectedParent
) {
9070 std::unique_ptr
<CorrectionCandidateCallback
> clone() override
{
9071 return std::make_unique
<DifferentNameValidatorCCC
>(*this);
9075 ASTContext
&Context
;
9076 FunctionDecl
*OriginalFD
;
9077 CXXRecordDecl
*ExpectedParent
;
9080 } // end anonymous namespace
9082 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl
*F
) {
9083 TypoCorrectedFunctionDefinitions
.insert(F
);
9086 /// Generate diagnostics for an invalid function redeclaration.
9088 /// This routine handles generating the diagnostic messages for an invalid
9089 /// function redeclaration, including finding possible similar declarations
9090 /// or performing typo correction if there are no previous declarations with
9093 /// Returns a NamedDecl iff typo correction was performed and substituting in
9094 /// the new declaration name does not cause new errors.
9095 static NamedDecl
*DiagnoseInvalidRedeclaration(
9096 Sema
&SemaRef
, LookupResult
&Previous
, FunctionDecl
*NewFD
,
9097 ActOnFDArgs
&ExtraArgs
, bool IsLocalFriend
, Scope
*S
) {
9098 DeclarationName Name
= NewFD
->getDeclName();
9099 DeclContext
*NewDC
= NewFD
->getDeclContext();
9100 SmallVector
<unsigned, 1> MismatchedParams
;
9101 SmallVector
<std::pair
<FunctionDecl
*, unsigned>, 1> NearMatches
;
9102 TypoCorrection Correction
;
9103 bool IsDefinition
= ExtraArgs
.D
.isFunctionDefinition();
9105 IsLocalFriend
? diag::err_no_matching_local_friend
:
9106 NewFD
->getFriendObjectKind() ? diag::err_qualified_friend_no_match
:
9107 diag::err_member_decl_does_not_match
;
9108 LookupResult
Prev(SemaRef
, Name
, NewFD
->getLocation(),
9109 IsLocalFriend
? Sema::LookupLocalFriendName
9110 : Sema::LookupOrdinaryName
,
9111 RedeclarationKind::ForVisibleRedeclaration
);
9113 NewFD
->setInvalidDecl();
9115 SemaRef
.LookupName(Prev
, S
);
9117 SemaRef
.LookupQualifiedName(Prev
, NewDC
);
9118 assert(!Prev
.isAmbiguous() &&
9119 "Cannot have an ambiguity in previous-declaration lookup");
9120 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(NewFD
);
9121 DifferentNameValidatorCCC
CCC(SemaRef
.Context
, NewFD
,
9122 MD
? MD
->getParent() : nullptr);
9123 if (!Prev
.empty()) {
9124 for (LookupResult::iterator Func
= Prev
.begin(), FuncEnd
= Prev
.end();
9125 Func
!= FuncEnd
; ++Func
) {
9126 FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(*Func
);
9128 hasSimilarParameters(SemaRef
.Context
, FD
, NewFD
, MismatchedParams
)) {
9129 // Add 1 to the index so that 0 can mean the mismatch didn't
9130 // involve a parameter
9132 MismatchedParams
.empty() ? 0 : MismatchedParams
.front() + 1;
9133 NearMatches
.push_back(std::make_pair(FD
, ParamNum
));
9136 // If the qualified name lookup yielded nothing, try typo correction
9137 } else if ((Correction
= SemaRef
.CorrectTypo(
9138 Prev
.getLookupNameInfo(), Prev
.getLookupKind(), S
,
9139 &ExtraArgs
.D
.getCXXScopeSpec(), CCC
, Sema::CTK_ErrorRecovery
,
9140 IsLocalFriend
? nullptr : NewDC
))) {
9141 // Set up everything for the call to ActOnFunctionDeclarator
9142 ExtraArgs
.D
.SetIdentifier(Correction
.getCorrectionAsIdentifierInfo(),
9143 ExtraArgs
.D
.getIdentifierLoc());
9145 Previous
.setLookupName(Correction
.getCorrection());
9146 for (TypoCorrection::decl_iterator CDecl
= Correction
.begin(),
9147 CDeclEnd
= Correction
.end();
9148 CDecl
!= CDeclEnd
; ++CDecl
) {
9149 FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(*CDecl
);
9150 if (FD
&& !FD
->hasBody() &&
9151 hasSimilarParameters(SemaRef
.Context
, FD
, NewFD
, MismatchedParams
)) {
9152 Previous
.addDecl(FD
);
9155 bool wasRedeclaration
= ExtraArgs
.D
.isRedeclaration();
9158 // Retry building the function declaration with the new previous
9159 // declarations, and with errors suppressed.
9162 Sema::SFINAETrap
Trap(SemaRef
);
9164 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
9165 // pieces need to verify the typo-corrected C++ declaration and hopefully
9166 // eliminate the need for the parameter pack ExtraArgs.
9167 Result
= SemaRef
.ActOnFunctionDeclarator(
9168 ExtraArgs
.S
, ExtraArgs
.D
,
9169 Correction
.getCorrectionDecl()->getDeclContext(),
9170 NewFD
->getTypeSourceInfo(), Previous
, ExtraArgs
.TemplateParamLists
,
9171 ExtraArgs
.AddToScope
);
9173 if (Trap
.hasErrorOccurred())
9178 // Determine which correction we picked.
9179 Decl
*Canonical
= Result
->getCanonicalDecl();
9180 for (LookupResult::iterator I
= Previous
.begin(), E
= Previous
.end();
9182 if ((*I
)->getCanonicalDecl() == Canonical
)
9183 Correction
.setCorrectionDecl(*I
);
9185 // Let Sema know about the correction.
9186 SemaRef
.MarkTypoCorrectedFunctionDefinition(Result
);
9187 SemaRef
.diagnoseTypo(
9189 SemaRef
.PDiag(IsLocalFriend
9190 ? diag::err_no_matching_local_friend_suggest
9191 : diag::err_member_decl_does_not_match_suggest
)
9192 << Name
<< NewDC
<< IsDefinition
);
9196 // Pretend the typo correction never occurred
9197 ExtraArgs
.D
.SetIdentifier(Name
.getAsIdentifierInfo(),
9198 ExtraArgs
.D
.getIdentifierLoc());
9199 ExtraArgs
.D
.setRedeclaration(wasRedeclaration
);
9201 Previous
.setLookupName(Name
);
9204 SemaRef
.Diag(NewFD
->getLocation(), DiagMsg
)
9205 << Name
<< NewDC
<< IsDefinition
<< NewFD
->getLocation();
9207 CXXMethodDecl
*NewMD
= dyn_cast
<CXXMethodDecl
>(NewFD
);
9208 if (NewMD
&& DiagMsg
== diag::err_member_decl_does_not_match
) {
9209 CXXRecordDecl
*RD
= NewMD
->getParent();
9210 SemaRef
.Diag(RD
->getLocation(), diag::note_defined_here
)
9211 << RD
->getName() << RD
->getLocation();
9214 bool NewFDisConst
= NewMD
&& NewMD
->isConst();
9216 for (SmallVectorImpl
<std::pair
<FunctionDecl
*, unsigned> >::iterator
9217 NearMatch
= NearMatches
.begin(), NearMatchEnd
= NearMatches
.end();
9218 NearMatch
!= NearMatchEnd
; ++NearMatch
) {
9219 FunctionDecl
*FD
= NearMatch
->first
;
9220 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
);
9221 bool FDisConst
= MD
&& MD
->isConst();
9222 bool IsMember
= MD
|| !IsLocalFriend
;
9224 // FIXME: These notes are poorly worded for the local friend case.
9225 if (unsigned Idx
= NearMatch
->second
) {
9226 ParmVarDecl
*FDParam
= FD
->getParamDecl(Idx
-1);
9227 SourceLocation Loc
= FDParam
->getTypeSpecStartLoc();
9228 if (Loc
.isInvalid()) Loc
= FD
->getLocation();
9229 SemaRef
.Diag(Loc
, IsMember
? diag::note_member_def_close_param_match
9230 : diag::note_local_decl_close_param_match
)
9231 << Idx
<< FDParam
->getType()
9232 << NewFD
->getParamDecl(Idx
- 1)->getType();
9233 } else if (FDisConst
!= NewFDisConst
) {
9234 auto DB
= SemaRef
.Diag(FD
->getLocation(),
9235 diag::note_member_def_close_const_match
)
9236 << NewFDisConst
<< FD
->getSourceRange().getEnd();
9237 if (const auto &FTI
= ExtraArgs
.D
.getFunctionTypeInfo(); !NewFDisConst
)
9238 DB
<< FixItHint::CreateInsertion(FTI
.getRParenLoc().getLocWithOffset(1),
9240 else if (FTI
.hasMethodTypeQualifiers() &&
9241 FTI
.getConstQualifierLoc().isValid())
9242 DB
<< FixItHint::CreateRemoval(FTI
.getConstQualifierLoc());
9244 SemaRef
.Diag(FD
->getLocation(),
9245 IsMember
? diag::note_member_def_close_match
9246 : diag::note_local_decl_close_match
);
9252 static StorageClass
getFunctionStorageClass(Sema
&SemaRef
, Declarator
&D
) {
9253 switch (D
.getDeclSpec().getStorageClassSpec()) {
9254 default: llvm_unreachable("Unknown storage class!");
9255 case DeclSpec::SCS_auto
:
9256 case DeclSpec::SCS_register
:
9257 case DeclSpec::SCS_mutable
:
9258 SemaRef
.Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
9259 diag::err_typecheck_sclass_func
);
9260 D
.getMutableDeclSpec().ClearStorageClassSpecs();
9263 case DeclSpec::SCS_unspecified
: break;
9264 case DeclSpec::SCS_extern
:
9265 if (D
.getDeclSpec().isExternInLinkageSpec())
9268 case DeclSpec::SCS_static
: {
9269 if (SemaRef
.CurContext
->getRedeclContext()->isFunctionOrMethod()) {
9271 // The declaration of an identifier for a function that has
9272 // block scope shall have no explicit storage-class specifier
9273 // other than extern
9274 // See also (C++ [dcl.stc]p4).
9275 SemaRef
.Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
9276 diag::err_static_block_func
);
9281 case DeclSpec::SCS_private_extern
: return SC_PrivateExtern
;
9284 // No explicit storage class has already been returned
9288 static FunctionDecl
*CreateNewFunctionDecl(Sema
&SemaRef
, Declarator
&D
,
9289 DeclContext
*DC
, QualType
&R
,
9290 TypeSourceInfo
*TInfo
,
9292 bool &IsVirtualOkay
) {
9293 DeclarationNameInfo NameInfo
= SemaRef
.GetNameForDeclarator(D
);
9294 DeclarationName Name
= NameInfo
.getName();
9296 FunctionDecl
*NewFD
= nullptr;
9297 bool isInline
= D
.getDeclSpec().isInlineSpecified();
9299 ConstexprSpecKind ConstexprKind
= D
.getDeclSpec().getConstexprSpecifier();
9300 if (ConstexprKind
== ConstexprSpecKind::Constinit
||
9301 (SemaRef
.getLangOpts().C23
&&
9302 ConstexprKind
== ConstexprSpecKind::Constexpr
)) {
9304 if (SemaRef
.getLangOpts().C23
)
9305 SemaRef
.Diag(D
.getDeclSpec().getConstexprSpecLoc(),
9306 diag::err_c23_constexpr_not_variable
);
9308 SemaRef
.Diag(D
.getDeclSpec().getConstexprSpecLoc(),
9309 diag::err_constexpr_wrong_decl_kind
)
9310 << static_cast<int>(ConstexprKind
);
9311 ConstexprKind
= ConstexprSpecKind::Unspecified
;
9312 D
.getMutableDeclSpec().ClearConstexprSpec();
9315 if (!SemaRef
.getLangOpts().CPlusPlus
) {
9316 // Determine whether the function was written with a prototype. This is
9318 // - there is a prototype in the declarator, or
9319 // - the type R of the function is some kind of typedef or other non-
9320 // attributed reference to a type name (which eventually refers to a
9321 // function type). Note, we can't always look at the adjusted type to
9322 // check this case because attributes may cause a non-function
9323 // declarator to still have a function type. e.g.,
9324 // typedef void func(int a);
9325 // __attribute__((noreturn)) func other_func; // This has a prototype
9327 (D
.isFunctionDeclarator() && D
.getFunctionTypeInfo().hasPrototype
) ||
9328 (D
.getDeclSpec().isTypeRep() &&
9329 SemaRef
.GetTypeFromParser(D
.getDeclSpec().getRepAsType(), nullptr)
9330 ->isFunctionProtoType()) ||
9331 (!R
->getAsAdjusted
<FunctionType
>() && R
->isFunctionProtoType());
9333 (HasPrototype
|| !SemaRef
.getLangOpts().requiresStrictPrototypes()) &&
9334 "Strict prototypes are required");
9336 NewFD
= FunctionDecl::Create(
9337 SemaRef
.Context
, DC
, D
.getBeginLoc(), NameInfo
, R
, TInfo
, SC
,
9338 SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
, HasPrototype
,
9339 ConstexprSpecKind::Unspecified
,
9340 /*TrailingRequiresClause=*/nullptr);
9341 if (D
.isInvalidType())
9342 NewFD
->setInvalidDecl();
9347 ExplicitSpecifier ExplicitSpecifier
= D
.getDeclSpec().getExplicitSpecifier();
9348 Expr
*TrailingRequiresClause
= D
.getTrailingRequiresClause();
9350 SemaRef
.CheckExplicitObjectMemberFunction(DC
, D
, Name
, R
);
9352 if (Name
.getNameKind() == DeclarationName::CXXConstructorName
) {
9353 // This is a C++ constructor declaration.
9354 assert(DC
->isRecord() &&
9355 "Constructors can only be declared in a member context");
9357 R
= SemaRef
.CheckConstructorDeclarator(D
, R
, SC
);
9358 return CXXConstructorDecl::Create(
9359 SemaRef
.Context
, cast
<CXXRecordDecl
>(DC
), D
.getBeginLoc(), NameInfo
, R
,
9360 TInfo
, ExplicitSpecifier
, SemaRef
.getCurFPFeatures().isFPConstrained(),
9361 isInline
, /*isImplicitlyDeclared=*/false, ConstexprKind
,
9362 InheritedConstructor(), TrailingRequiresClause
);
9364 } else if (Name
.getNameKind() == DeclarationName::CXXDestructorName
) {
9365 // This is a C++ destructor declaration.
9366 if (DC
->isRecord()) {
9367 R
= SemaRef
.CheckDestructorDeclarator(D
, R
, SC
);
9368 CXXRecordDecl
*Record
= cast
<CXXRecordDecl
>(DC
);
9369 CXXDestructorDecl
*NewDD
= CXXDestructorDecl::Create(
9370 SemaRef
.Context
, Record
, D
.getBeginLoc(), NameInfo
, R
, TInfo
,
9371 SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
,
9372 /*isImplicitlyDeclared=*/false, ConstexprKind
,
9373 TrailingRequiresClause
);
9374 // User defined destructors start as not selected if the class definition is still
9376 if (Record
->isBeingDefined())
9377 NewDD
->setIneligibleOrNotSelected(true);
9379 // If the destructor needs an implicit exception specification, set it
9380 // now. FIXME: It'd be nice to be able to create the right type to start
9381 // with, but the type needs to reference the destructor declaration.
9382 if (SemaRef
.getLangOpts().CPlusPlus11
)
9383 SemaRef
.AdjustDestructorExceptionSpec(NewDD
);
9385 IsVirtualOkay
= true;
9389 SemaRef
.Diag(D
.getIdentifierLoc(), diag::err_destructor_not_member
);
9392 // Create a FunctionDecl to satisfy the function definition parsing
9394 return FunctionDecl::Create(
9395 SemaRef
.Context
, DC
, D
.getBeginLoc(), D
.getIdentifierLoc(), Name
, R
,
9396 TInfo
, SC
, SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
,
9397 /*hasPrototype=*/true, ConstexprKind
, TrailingRequiresClause
);
9400 } else if (Name
.getNameKind() == DeclarationName::CXXConversionFunctionName
) {
9401 if (!DC
->isRecord()) {
9402 SemaRef
.Diag(D
.getIdentifierLoc(),
9403 diag::err_conv_function_not_member
);
9407 SemaRef
.CheckConversionDeclarator(D
, R
, SC
);
9408 if (D
.isInvalidType())
9411 IsVirtualOkay
= true;
9412 return CXXConversionDecl::Create(
9413 SemaRef
.Context
, cast
<CXXRecordDecl
>(DC
), D
.getBeginLoc(), NameInfo
, R
,
9414 TInfo
, SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
,
9415 ExplicitSpecifier
, ConstexprKind
, SourceLocation(),
9416 TrailingRequiresClause
);
9418 } else if (Name
.getNameKind() == DeclarationName::CXXDeductionGuideName
) {
9419 if (SemaRef
.CheckDeductionGuideDeclarator(D
, R
, SC
))
9421 return CXXDeductionGuideDecl::Create(
9422 SemaRef
.Context
, DC
, D
.getBeginLoc(), ExplicitSpecifier
, NameInfo
, R
,
9423 TInfo
, D
.getEndLoc(), /*Ctor=*/nullptr,
9424 /*Kind=*/DeductionCandidate::Normal
, TrailingRequiresClause
);
9425 } else if (DC
->isRecord()) {
9426 // If the name of the function is the same as the name of the record,
9427 // then this must be an invalid constructor that has a return type.
9428 // (The parser checks for a return type and makes the declarator a
9429 // constructor if it has no return type).
9430 if (Name
.getAsIdentifierInfo() &&
9431 Name
.getAsIdentifierInfo() == cast
<CXXRecordDecl
>(DC
)->getIdentifier()){
9432 SemaRef
.Diag(D
.getIdentifierLoc(), diag::err_constructor_return_type
)
9433 << SourceRange(D
.getDeclSpec().getTypeSpecTypeLoc())
9434 << SourceRange(D
.getIdentifierLoc());
9438 // This is a C++ method declaration.
9439 CXXMethodDecl
*Ret
= CXXMethodDecl::Create(
9440 SemaRef
.Context
, cast
<CXXRecordDecl
>(DC
), D
.getBeginLoc(), NameInfo
, R
,
9441 TInfo
, SC
, SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
,
9442 ConstexprKind
, SourceLocation(), TrailingRequiresClause
);
9443 IsVirtualOkay
= !Ret
->isStatic();
9447 SemaRef
.getLangOpts().CPlusPlus
&& D
.getDeclSpec().isFriendSpecified();
9448 if (!isFriend
&& SemaRef
.CurContext
->isRecord())
9451 // Determine whether the function was written with a
9452 // prototype. This true when:
9453 // - we're in C++ (where every function has a prototype),
9454 return FunctionDecl::Create(
9455 SemaRef
.Context
, DC
, D
.getBeginLoc(), NameInfo
, R
, TInfo
, SC
,
9456 SemaRef
.getCurFPFeatures().isFPConstrained(), isInline
,
9457 true /*HasPrototype*/, ConstexprKind
, TrailingRequiresClause
);
9461 enum OpenCLParamType
{
9465 InvalidAddrSpacePtrKernelParam
,
9470 static bool isOpenCLSizeDependentType(ASTContext
&C
, QualType Ty
) {
9471 // Size dependent types are just typedefs to normal integer types
9472 // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
9473 // integers other than by their names.
9474 StringRef SizeTypeNames
[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
9476 // Remove typedefs one by one until we reach a typedef
9477 // for a size dependent type.
9478 QualType DesugaredTy
= Ty
;
9480 ArrayRef
<StringRef
> Names(SizeTypeNames
);
9481 auto Match
= llvm::find(Names
, DesugaredTy
.getUnqualifiedType().getAsString());
9482 if (Names
.end() != Match
)
9486 DesugaredTy
= Ty
.getSingleStepDesugaredType(C
);
9487 } while (DesugaredTy
!= Ty
);
9492 static OpenCLParamType
getOpenCLKernelParameterType(Sema
&S
, QualType PT
) {
9493 if (PT
->isDependentType())
9494 return InvalidKernelParam
;
9496 if (PT
->isPointerOrReferenceType()) {
9497 QualType PointeeType
= PT
->getPointeeType();
9498 if (PointeeType
.getAddressSpace() == LangAS::opencl_generic
||
9499 PointeeType
.getAddressSpace() == LangAS::opencl_private
||
9500 PointeeType
.getAddressSpace() == LangAS::Default
)
9501 return InvalidAddrSpacePtrKernelParam
;
9503 if (PointeeType
->isPointerType()) {
9504 // This is a pointer to pointer parameter.
9505 // Recursively check inner type.
9506 OpenCLParamType ParamKind
= getOpenCLKernelParameterType(S
, PointeeType
);
9507 if (ParamKind
== InvalidAddrSpacePtrKernelParam
||
9508 ParamKind
== InvalidKernelParam
)
9511 // OpenCL v3.0 s6.11.a:
9512 // A restriction to pass pointers to pointers only applies to OpenCL C
9514 if (S
.getLangOpts().getOpenCLCompatibleVersion() > 120)
9515 return ValidKernelParam
;
9517 return PtrPtrKernelParam
;
9520 // C++ for OpenCL v1.0 s2.4:
9521 // Moreover the types used in parameters of the kernel functions must be:
9522 // Standard layout types for pointer parameters. The same applies to
9523 // reference if an implementation supports them in kernel parameters.
9524 if (S
.getLangOpts().OpenCLCPlusPlus
&&
9525 !S
.getOpenCLOptions().isAvailableOption(
9526 "__cl_clang_non_portable_kernel_param_types", S
.getLangOpts())) {
9527 auto CXXRec
= PointeeType
.getCanonicalType()->getAsCXXRecordDecl();
9528 bool IsStandardLayoutType
= true;
9530 // If template type is not ODR-used its definition is only available
9531 // in the template definition not its instantiation.
9532 // FIXME: This logic doesn't work for types that depend on template
9533 // parameter (PR58590).
9534 if (!CXXRec
->hasDefinition())
9535 CXXRec
= CXXRec
->getTemplateInstantiationPattern();
9536 if (!CXXRec
|| !CXXRec
->hasDefinition() || !CXXRec
->isStandardLayout())
9537 IsStandardLayoutType
= false;
9539 if (!PointeeType
->isAtomicType() && !PointeeType
->isVoidType() &&
9540 !IsStandardLayoutType
)
9541 return InvalidKernelParam
;
9544 // OpenCL v1.2 s6.9.p:
9545 // A restriction to pass pointers only applies to OpenCL C v1.2 or below.
9546 if (S
.getLangOpts().getOpenCLCompatibleVersion() > 120)
9547 return ValidKernelParam
;
9549 return PtrKernelParam
;
9552 // OpenCL v1.2 s6.9.k:
9553 // Arguments to kernel functions in a program cannot be declared with the
9554 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9555 // uintptr_t or a struct and/or union that contain fields declared to be one
9556 // of these built-in scalar types.
9557 if (isOpenCLSizeDependentType(S
.getASTContext(), PT
))
9558 return InvalidKernelParam
;
9560 if (PT
->isImageType())
9561 return PtrKernelParam
;
9563 if (PT
->isBooleanType() || PT
->isEventT() || PT
->isReserveIDT())
9564 return InvalidKernelParam
;
9566 // OpenCL extension spec v1.2 s9.5:
9567 // This extension adds support for half scalar and vector types as built-in
9568 // types that can be used for arithmetic operations, conversions etc.
9569 if (!S
.getOpenCLOptions().isAvailableOption("cl_khr_fp16", S
.getLangOpts()) &&
9571 return InvalidKernelParam
;
9573 // Look into an array argument to check if it has a forbidden type.
9574 if (PT
->isArrayType()) {
9575 const Type
*UnderlyingTy
= PT
->getPointeeOrArrayElementType();
9576 // Call ourself to check an underlying type of an array. Since the
9577 // getPointeeOrArrayElementType returns an innermost type which is not an
9578 // array, this recursive call only happens once.
9579 return getOpenCLKernelParameterType(S
, QualType(UnderlyingTy
, 0));
9582 // C++ for OpenCL v1.0 s2.4:
9583 // Moreover the types used in parameters of the kernel functions must be:
9584 // Trivial and standard-layout types C++17 [basic.types] (plain old data
9585 // types) for parameters passed by value;
9586 if (S
.getLangOpts().OpenCLCPlusPlus
&&
9587 !S
.getOpenCLOptions().isAvailableOption(
9588 "__cl_clang_non_portable_kernel_param_types", S
.getLangOpts()) &&
9589 !PT
->isOpenCLSpecificType() && !PT
.isPODType(S
.Context
))
9590 return InvalidKernelParam
;
9592 if (PT
->isRecordType())
9593 return RecordKernelParam
;
9595 return ValidKernelParam
;
9598 static void checkIsValidOpenCLKernelParameter(
9602 llvm::SmallPtrSetImpl
<const Type
*> &ValidTypes
) {
9603 QualType PT
= Param
->getType();
9605 // Cache the valid types we encounter to avoid rechecking structs that are
9607 if (ValidTypes
.count(PT
.getTypePtr()))
9610 switch (getOpenCLKernelParameterType(S
, PT
)) {
9611 case PtrPtrKernelParam
:
9612 // OpenCL v3.0 s6.11.a:
9613 // A kernel function argument cannot be declared as a pointer to a pointer
9614 // type. [...] This restriction only applies to OpenCL C 1.2 or below.
9615 S
.Diag(Param
->getLocation(), diag::err_opencl_ptrptr_kernel_param
);
9619 case InvalidAddrSpacePtrKernelParam
:
9620 // OpenCL v1.0 s6.5:
9621 // __kernel function arguments declared to be a pointer of a type can point
9622 // to one of the following address spaces only : __global, __local or
9624 S
.Diag(Param
->getLocation(), diag::err_kernel_arg_address_space
);
9628 // OpenCL v1.2 s6.9.k:
9629 // Arguments to kernel functions in a program cannot be declared with the
9630 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9631 // uintptr_t or a struct and/or union that contain fields declared to be
9632 // one of these built-in scalar types.
9634 case InvalidKernelParam
:
9635 // OpenCL v1.2 s6.8 n:
9636 // A kernel function argument cannot be declared
9638 // Do not diagnose half type since it is diagnosed as invalid argument
9639 // type for any function elsewhere.
9640 if (!PT
->isHalfType()) {
9641 S
.Diag(Param
->getLocation(), diag::err_bad_kernel_param_type
) << PT
;
9643 // Explain what typedefs are involved.
9644 const TypedefType
*Typedef
= nullptr;
9645 while ((Typedef
= PT
->getAs
<TypedefType
>())) {
9646 SourceLocation Loc
= Typedef
->getDecl()->getLocation();
9647 // SourceLocation may be invalid for a built-in type.
9649 S
.Diag(Loc
, diag::note_entity_declared_at
) << PT
;
9650 PT
= Typedef
->desugar();
9657 case PtrKernelParam
:
9658 case ValidKernelParam
:
9659 ValidTypes
.insert(PT
.getTypePtr());
9662 case RecordKernelParam
:
9666 // Track nested structs we will inspect
9667 SmallVector
<const Decl
*, 4> VisitStack
;
9669 // Track where we are in the nested structs. Items will migrate from
9670 // VisitStack to HistoryStack as we do the DFS for bad field.
9671 SmallVector
<const FieldDecl
*, 4> HistoryStack
;
9672 HistoryStack
.push_back(nullptr);
9674 // At this point we already handled everything except of a RecordType or
9675 // an ArrayType of a RecordType.
9676 assert((PT
->isArrayType() || PT
->isRecordType()) && "Unexpected type.");
9677 const RecordType
*RecTy
=
9678 PT
->getPointeeOrArrayElementType()->getAs
<RecordType
>();
9679 const RecordDecl
*OrigRecDecl
= RecTy
->getDecl();
9681 VisitStack
.push_back(RecTy
->getDecl());
9682 assert(VisitStack
.back() && "First decl null?");
9685 const Decl
*Next
= VisitStack
.pop_back_val();
9687 assert(!HistoryStack
.empty());
9688 // Found a marker, we have gone up a level
9689 if (const FieldDecl
*Hist
= HistoryStack
.pop_back_val())
9690 ValidTypes
.insert(Hist
->getType().getTypePtr());
9695 // Adds everything except the original parameter declaration (which is not a
9696 // field itself) to the history stack.
9697 const RecordDecl
*RD
;
9698 if (const FieldDecl
*Field
= dyn_cast
<FieldDecl
>(Next
)) {
9699 HistoryStack
.push_back(Field
);
9701 QualType FieldTy
= Field
->getType();
9702 // Other field types (known to be valid or invalid) are handled while we
9703 // walk around RecordDecl::fields().
9704 assert((FieldTy
->isArrayType() || FieldTy
->isRecordType()) &&
9705 "Unexpected type.");
9706 const Type
*FieldRecTy
= FieldTy
->getPointeeOrArrayElementType();
9708 RD
= FieldRecTy
->castAs
<RecordType
>()->getDecl();
9710 RD
= cast
<RecordDecl
>(Next
);
9713 // Add a null marker so we know when we've gone back up a level
9714 VisitStack
.push_back(nullptr);
9716 for (const auto *FD
: RD
->fields()) {
9717 QualType QT
= FD
->getType();
9719 if (ValidTypes
.count(QT
.getTypePtr()))
9722 OpenCLParamType ParamType
= getOpenCLKernelParameterType(S
, QT
);
9723 if (ParamType
== ValidKernelParam
)
9726 if (ParamType
== RecordKernelParam
) {
9727 VisitStack
.push_back(FD
);
9731 // OpenCL v1.2 s6.9.p:
9732 // Arguments to kernel functions that are declared to be a struct or union
9733 // do not allow OpenCL objects to be passed as elements of the struct or
9734 // union. This restriction was lifted in OpenCL v2.0 with the introduction
9736 if (ParamType
== PtrKernelParam
|| ParamType
== PtrPtrKernelParam
||
9737 ParamType
== InvalidAddrSpacePtrKernelParam
) {
9738 S
.Diag(Param
->getLocation(),
9739 diag::err_record_with_pointers_kernel_param
)
9740 << PT
->isUnionType()
9743 S
.Diag(Param
->getLocation(), diag::err_bad_kernel_param_type
) << PT
;
9746 S
.Diag(OrigRecDecl
->getLocation(), diag::note_within_field_of_type
)
9747 << OrigRecDecl
->getDeclName();
9749 // We have an error, now let's go back up through history and show where
9750 // the offending field came from
9751 for (ArrayRef
<const FieldDecl
*>::const_iterator
9752 I
= HistoryStack
.begin() + 1,
9753 E
= HistoryStack
.end();
9755 const FieldDecl
*OuterField
= *I
;
9756 S
.Diag(OuterField
->getLocation(), diag::note_within_field_of_type
)
9757 << OuterField
->getType();
9760 S
.Diag(FD
->getLocation(), diag::note_illegal_field_declared_here
)
9761 << QT
->isPointerType()
9766 } while (!VisitStack
.empty());
9769 /// Find the DeclContext in which a tag is implicitly declared if we see an
9770 /// elaborated type specifier in the specified context, and lookup finds
9772 static DeclContext
*getTagInjectionContext(DeclContext
*DC
) {
9773 while (!DC
->isFileContext() && !DC
->isFunctionOrMethod())
9774 DC
= DC
->getParent();
9778 /// Find the Scope in which a tag is implicitly declared if we see an
9779 /// elaborated type specifier in the specified context, and lookup finds
9781 static Scope
*getTagInjectionScope(Scope
*S
, const LangOptions
&LangOpts
) {
9782 while (S
->isClassScope() ||
9783 (LangOpts
.CPlusPlus
&&
9784 S
->isFunctionPrototypeScope()) ||
9785 ((S
->getFlags() & Scope::DeclScope
) == 0) ||
9786 (S
->getEntity() && S
->getEntity()->isTransparentContext()))
9791 /// Determine whether a declaration matches a known function in namespace std.
9792 static bool isStdBuiltin(ASTContext
&Ctx
, FunctionDecl
*FD
,
9793 unsigned BuiltinID
) {
9794 switch (BuiltinID
) {
9795 case Builtin::BI__GetExceptionInfo
:
9796 // No type checking whatsoever.
9797 return Ctx
.getTargetInfo().getCXXABI().isMicrosoft();
9799 case Builtin::BIaddressof
:
9800 case Builtin::BI__addressof
:
9801 case Builtin::BIforward
:
9802 case Builtin::BIforward_like
:
9803 case Builtin::BImove
:
9804 case Builtin::BImove_if_noexcept
:
9805 case Builtin::BIas_const
: {
9806 // Ensure that we don't treat the algorithm
9807 // OutputIt std::move(InputIt, InputIt, OutputIt)
9808 // as the builtin std::move.
9809 const auto *FPT
= FD
->getType()->castAs
<FunctionProtoType
>();
9810 return FPT
->getNumParams() == 1 && !FPT
->isVariadic();
9819 Sema::ActOnFunctionDeclarator(Scope
*S
, Declarator
&D
, DeclContext
*DC
,
9820 TypeSourceInfo
*TInfo
, LookupResult
&Previous
,
9821 MultiTemplateParamsArg TemplateParamListsRef
,
9823 QualType R
= TInfo
->getType();
9825 assert(R
->isFunctionType());
9826 if (R
.getCanonicalType()->castAs
<FunctionType
>()->getCmseNSCallAttr())
9827 Diag(D
.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call
);
9829 SmallVector
<TemplateParameterList
*, 4> TemplateParamLists
;
9830 llvm::append_range(TemplateParamLists
, TemplateParamListsRef
);
9831 if (TemplateParameterList
*Invented
= D
.getInventedTemplateParameterList()) {
9832 if (!TemplateParamLists
.empty() && !TemplateParamLists
.back()->empty() &&
9833 Invented
->getDepth() == TemplateParamLists
.back()->getDepth())
9834 TemplateParamLists
.back() = Invented
;
9836 TemplateParamLists
.push_back(Invented
);
9839 // TODO: consider using NameInfo for diagnostic.
9840 DeclarationNameInfo NameInfo
= GetNameForDeclarator(D
);
9841 DeclarationName Name
= NameInfo
.getName();
9842 StorageClass SC
= getFunctionStorageClass(*this, D
);
9844 if (DeclSpec::TSCS TSCS
= D
.getDeclSpec().getThreadStorageClassSpec())
9845 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
9846 diag::err_invalid_thread
)
9847 << DeclSpec::getSpecifierName(TSCS
);
9849 if (D
.isFirstDeclarationOfMember())
9850 adjustMemberFunctionCC(
9851 R
, !(D
.isStaticMember() || D
.isExplicitObjectMemberFunction()),
9852 D
.isCtorOrDtor(), D
.getIdentifierLoc());
9854 bool isFriend
= false;
9855 FunctionTemplateDecl
*FunctionTemplate
= nullptr;
9856 bool isMemberSpecialization
= false;
9857 bool isFunctionTemplateSpecialization
= false;
9859 bool HasExplicitTemplateArgs
= false;
9860 TemplateArgumentListInfo TemplateArgs
;
9862 bool isVirtualOkay
= false;
9864 DeclContext
*OriginalDC
= DC
;
9865 bool IsLocalExternDecl
= adjustContextForLocalExternDecl(DC
);
9867 FunctionDecl
*NewFD
= CreateNewFunctionDecl(*this, D
, DC
, R
, TInfo
, SC
,
9869 if (!NewFD
) return nullptr;
9871 if (OriginalLexicalContext
&& OriginalLexicalContext
->isObjCContainer())
9872 NewFD
->setTopLevelDeclInObjCContainer();
9874 // Set the lexical context. If this is a function-scope declaration, or has a
9875 // C++ scope specifier, or is the object of a friend declaration, the lexical
9876 // context will be different from the semantic context.
9877 NewFD
->setLexicalDeclContext(CurContext
);
9879 if (IsLocalExternDecl
)
9880 NewFD
->setLocalExternDecl();
9882 if (getLangOpts().CPlusPlus
) {
9883 // The rules for implicit inlines changed in C++20 for methods and friends
9884 // with an in-class definition (when such a definition is not attached to
9885 // the global module). This does not affect declarations that are already
9886 // inline (whether explicitly or implicitly by being declared constexpr,
9888 // FIXME: We need a better way to separate C++ standard and clang modules.
9889 bool ImplicitInlineCXX20
= !getLangOpts().CPlusPlusModules
||
9890 !NewFD
->getOwningModule() ||
9891 NewFD
->isFromGlobalModule() ||
9892 NewFD
->getOwningModule()->isHeaderLikeModule();
9893 bool isInline
= D
.getDeclSpec().isInlineSpecified();
9894 bool isVirtual
= D
.getDeclSpec().isVirtualSpecified();
9895 bool hasExplicit
= D
.getDeclSpec().hasExplicitSpecifier();
9896 isFriend
= D
.getDeclSpec().isFriendSpecified();
9897 if (ImplicitInlineCXX20
&& isFriend
&& D
.isFunctionDefinition()) {
9898 // Pre-C++20 [class.friend]p5
9899 // A function can be defined in a friend declaration of a
9900 // class . . . . Such a function is implicitly inline.
9901 // Post C++20 [class.friend]p7
9902 // Such a function is implicitly an inline function if it is attached
9903 // to the global module.
9904 NewFD
->setImplicitlyInline();
9907 // If this is a method defined in an __interface, and is not a constructor
9908 // or an overloaded operator, then set the pure flag (isVirtual will already
9910 if (const CXXRecordDecl
*Parent
=
9911 dyn_cast
<CXXRecordDecl
>(NewFD
->getDeclContext())) {
9912 if (Parent
->isInterface() && cast
<CXXMethodDecl
>(NewFD
)->isUserProvided())
9913 NewFD
->setIsPureVirtual(true);
9915 // C++ [class.union]p2
9916 // A union can have member functions, but not virtual functions.
9917 if (isVirtual
&& Parent
->isUnion()) {
9918 Diag(D
.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union
);
9919 NewFD
->setInvalidDecl();
9921 if ((Parent
->isClass() || Parent
->isStruct()) &&
9922 Parent
->hasAttr
<SYCLSpecialClassAttr
>() &&
9923 NewFD
->getKind() == Decl::Kind::CXXMethod
&& NewFD
->getIdentifier() &&
9924 NewFD
->getName() == "__init" && D
.isFunctionDefinition()) {
9925 if (auto *Def
= Parent
->getDefinition())
9926 Def
->setInitMethod(true);
9930 SetNestedNameSpecifier(*this, NewFD
, D
);
9931 isMemberSpecialization
= false;
9932 isFunctionTemplateSpecialization
= false;
9933 if (D
.isInvalidType())
9934 NewFD
->setInvalidDecl();
9936 // Match up the template parameter lists with the scope specifier, then
9937 // determine whether we have a template or a template specialization.
9938 bool Invalid
= false;
9939 TemplateIdAnnotation
*TemplateId
=
9940 D
.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
9941 ? D
.getName().TemplateId
9943 TemplateParameterList
*TemplateParams
=
9944 MatchTemplateParametersToScopeSpecifier(
9945 D
.getDeclSpec().getBeginLoc(), D
.getIdentifierLoc(),
9946 D
.getCXXScopeSpec(), TemplateId
, TemplateParamLists
, isFriend
,
9947 isMemberSpecialization
, Invalid
);
9948 if (TemplateParams
) {
9949 // Check that we can declare a template here.
9950 if (CheckTemplateDeclScope(S
, TemplateParams
))
9951 NewFD
->setInvalidDecl();
9953 if (TemplateParams
->size() > 0) {
9954 // This is a function template
9956 // A destructor cannot be a template.
9957 if (Name
.getNameKind() == DeclarationName::CXXDestructorName
) {
9958 Diag(NewFD
->getLocation(), diag::err_destructor_template
);
9959 NewFD
->setInvalidDecl();
9960 // Function template with explicit template arguments.
9961 } else if (TemplateId
) {
9962 Diag(D
.getIdentifierLoc(), diag::err_function_template_partial_spec
)
9963 << SourceRange(TemplateId
->LAngleLoc
, TemplateId
->RAngleLoc
);
9964 NewFD
->setInvalidDecl();
9967 // If we're adding a template to a dependent context, we may need to
9968 // rebuilding some of the types used within the template parameter list,
9969 // now that we know what the current instantiation is.
9970 if (DC
->isDependentContext()) {
9971 ContextRAII
SavedContext(*this, DC
);
9972 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams
))
9976 FunctionTemplate
= FunctionTemplateDecl::Create(Context
, DC
,
9977 NewFD
->getLocation(),
9978 Name
, TemplateParams
,
9980 FunctionTemplate
->setLexicalDeclContext(CurContext
);
9981 NewFD
->setDescribedFunctionTemplate(FunctionTemplate
);
9983 // For source fidelity, store the other template param lists.
9984 if (TemplateParamLists
.size() > 1) {
9985 NewFD
->setTemplateParameterListsInfo(Context
,
9986 ArrayRef
<TemplateParameterList
*>(TemplateParamLists
)
9990 // This is a function template specialization.
9991 isFunctionTemplateSpecialization
= true;
9992 // For source fidelity, store all the template param lists.
9993 if (TemplateParamLists
.size() > 0)
9994 NewFD
->setTemplateParameterListsInfo(Context
, TemplateParamLists
);
9996 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
9998 // We want to remove the "template<>", found here.
9999 SourceRange RemoveRange
= TemplateParams
->getSourceRange();
10001 // If we remove the template<> and the name is not a
10002 // template-id, we're actually silently creating a problem:
10003 // the friend declaration will refer to an untemplated decl,
10004 // and clearly the user wants a template specialization. So
10005 // we need to insert '<>' after the name.
10006 SourceLocation InsertLoc
;
10007 if (D
.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) {
10008 InsertLoc
= D
.getName().getSourceRange().getEnd();
10009 InsertLoc
= getLocForEndOfToken(InsertLoc
);
10012 Diag(D
.getIdentifierLoc(), diag::err_template_spec_decl_friend
)
10013 << Name
<< RemoveRange
10014 << FixItHint::CreateRemoval(RemoveRange
)
10015 << FixItHint::CreateInsertion(InsertLoc
, "<>");
10018 // Recover by faking up an empty template argument list.
10019 HasExplicitTemplateArgs
= true;
10020 TemplateArgs
.setLAngleLoc(InsertLoc
);
10021 TemplateArgs
.setRAngleLoc(InsertLoc
);
10025 // Check that we can declare a template here.
10026 if (!TemplateParamLists
.empty() && isMemberSpecialization
&&
10027 CheckTemplateDeclScope(S
, TemplateParamLists
.back()))
10028 NewFD
->setInvalidDecl();
10030 // All template param lists were matched against the scope specifier:
10031 // this is NOT (an explicit specialization of) a template.
10032 if (TemplateParamLists
.size() > 0)
10033 // For source fidelity, store all the template param lists.
10034 NewFD
->setTemplateParameterListsInfo(Context
, TemplateParamLists
);
10036 // "friend void foo<>(int);" is an implicit specialization decl.
10037 if (isFriend
&& TemplateId
)
10038 isFunctionTemplateSpecialization
= true;
10041 // If this is a function template specialization and the unqualified-id of
10042 // the declarator-id is a template-id, convert the template argument list
10043 // into our AST format and check for unexpanded packs.
10044 if (isFunctionTemplateSpecialization
&& TemplateId
) {
10045 HasExplicitTemplateArgs
= true;
10047 TemplateArgs
.setLAngleLoc(TemplateId
->LAngleLoc
);
10048 TemplateArgs
.setRAngleLoc(TemplateId
->RAngleLoc
);
10049 ASTTemplateArgsPtr
TemplateArgsPtr(TemplateId
->getTemplateArgs(),
10050 TemplateId
->NumArgs
);
10051 translateTemplateArguments(TemplateArgsPtr
, TemplateArgs
);
10053 // FIXME: Should we check for unexpanded packs if this was an (invalid)
10054 // declaration of a function template partial specialization? Should we
10055 // consider the unexpanded pack context to be a partial specialization?
10056 for (const TemplateArgumentLoc
&ArgLoc
: TemplateArgs
.arguments()) {
10057 if (DiagnoseUnexpandedParameterPack(
10058 ArgLoc
, isFriend
? UPPC_FriendDeclaration
10059 : UPPC_ExplicitSpecialization
))
10060 NewFD
->setInvalidDecl();
10065 NewFD
->setInvalidDecl();
10066 if (FunctionTemplate
)
10067 FunctionTemplate
->setInvalidDecl();
10070 // C++ [dcl.fct.spec]p5:
10071 // The virtual specifier shall only be used in declarations of
10072 // nonstatic class member functions that appear within a
10073 // member-specification of a class declaration; see 10.3.
10075 if (isVirtual
&& !NewFD
->isInvalidDecl()) {
10076 if (!isVirtualOkay
) {
10077 Diag(D
.getDeclSpec().getVirtualSpecLoc(),
10078 diag::err_virtual_non_function
);
10079 } else if (!CurContext
->isRecord()) {
10080 // 'virtual' was specified outside of the class.
10081 Diag(D
.getDeclSpec().getVirtualSpecLoc(),
10082 diag::err_virtual_out_of_class
)
10083 << FixItHint::CreateRemoval(D
.getDeclSpec().getVirtualSpecLoc());
10084 } else if (NewFD
->getDescribedFunctionTemplate()) {
10085 // C++ [temp.mem]p3:
10086 // A member function template shall not be virtual.
10087 Diag(D
.getDeclSpec().getVirtualSpecLoc(),
10088 diag::err_virtual_member_function_template
)
10089 << FixItHint::CreateRemoval(D
.getDeclSpec().getVirtualSpecLoc());
10091 // Okay: Add virtual to the method.
10092 NewFD
->setVirtualAsWritten(true);
10095 if (getLangOpts().CPlusPlus14
&&
10096 NewFD
->getReturnType()->isUndeducedType())
10097 Diag(D
.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual
);
10100 // C++ [dcl.fct.spec]p3:
10101 // The inline specifier shall not appear on a block scope function
10103 if (isInline
&& !NewFD
->isInvalidDecl()) {
10104 if (CurContext
->isFunctionOrMethod()) {
10105 // 'inline' is not allowed on block scope function declaration.
10106 Diag(D
.getDeclSpec().getInlineSpecLoc(),
10107 diag::err_inline_declaration_block_scope
) << Name
10108 << FixItHint::CreateRemoval(D
.getDeclSpec().getInlineSpecLoc());
10112 // C++ [dcl.fct.spec]p6:
10113 // The explicit specifier shall be used only in the declaration of a
10114 // constructor or conversion function within its class definition;
10115 // see 12.3.1 and 12.3.2.
10116 if (hasExplicit
&& !NewFD
->isInvalidDecl() &&
10117 !isa
<CXXDeductionGuideDecl
>(NewFD
)) {
10118 if (!CurContext
->isRecord()) {
10119 // 'explicit' was specified outside of the class.
10120 Diag(D
.getDeclSpec().getExplicitSpecLoc(),
10121 diag::err_explicit_out_of_class
)
10122 << FixItHint::CreateRemoval(D
.getDeclSpec().getExplicitSpecRange());
10123 } else if (!isa
<CXXConstructorDecl
>(NewFD
) &&
10124 !isa
<CXXConversionDecl
>(NewFD
)) {
10125 // 'explicit' was specified on a function that wasn't a constructor
10126 // or conversion function.
10127 Diag(D
.getDeclSpec().getExplicitSpecLoc(),
10128 diag::err_explicit_non_ctor_or_conv_function
)
10129 << FixItHint::CreateRemoval(D
.getDeclSpec().getExplicitSpecRange());
10133 ConstexprSpecKind ConstexprKind
= D
.getDeclSpec().getConstexprSpecifier();
10134 if (ConstexprKind
!= ConstexprSpecKind::Unspecified
) {
10135 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
10136 // are implicitly inline.
10137 NewFD
->setImplicitlyInline();
10139 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
10140 // be either constructors or to return a literal type. Therefore,
10141 // destructors cannot be declared constexpr.
10142 if (isa
<CXXDestructorDecl
>(NewFD
) &&
10143 (!getLangOpts().CPlusPlus20
||
10144 ConstexprKind
== ConstexprSpecKind::Consteval
)) {
10145 Diag(D
.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor
)
10146 << static_cast<int>(ConstexprKind
);
10147 NewFD
->setConstexprKind(getLangOpts().CPlusPlus20
10148 ? ConstexprSpecKind::Unspecified
10149 : ConstexprSpecKind::Constexpr
);
10151 // C++20 [dcl.constexpr]p2: An allocation function, or a
10152 // deallocation function shall not be declared with the consteval
10154 if (ConstexprKind
== ConstexprSpecKind::Consteval
&&
10155 (NewFD
->getOverloadedOperator() == OO_New
||
10156 NewFD
->getOverloadedOperator() == OO_Array_New
||
10157 NewFD
->getOverloadedOperator() == OO_Delete
||
10158 NewFD
->getOverloadedOperator() == OO_Array_Delete
)) {
10159 Diag(D
.getDeclSpec().getConstexprSpecLoc(),
10160 diag::err_invalid_consteval_decl_kind
)
10162 NewFD
->setConstexprKind(ConstexprSpecKind::Constexpr
);
10166 // If __module_private__ was specified, mark the function accordingly.
10167 if (D
.getDeclSpec().isModulePrivateSpecified()) {
10168 if (isFunctionTemplateSpecialization
) {
10169 SourceLocation ModulePrivateLoc
10170 = D
.getDeclSpec().getModulePrivateSpecLoc();
10171 Diag(ModulePrivateLoc
, diag::err_module_private_specialization
)
10173 << FixItHint::CreateRemoval(ModulePrivateLoc
);
10175 NewFD
->setModulePrivate();
10176 if (FunctionTemplate
)
10177 FunctionTemplate
->setModulePrivate();
10182 if (FunctionTemplate
) {
10183 FunctionTemplate
->setObjectOfFriendDecl();
10184 FunctionTemplate
->setAccess(AS_public
);
10186 NewFD
->setObjectOfFriendDecl();
10187 NewFD
->setAccess(AS_public
);
10190 // If a function is defined as defaulted or deleted, mark it as such now.
10191 // We'll do the relevant checks on defaulted / deleted functions later.
10192 switch (D
.getFunctionDefinitionKind()) {
10193 case FunctionDefinitionKind::Declaration
:
10194 case FunctionDefinitionKind::Definition
:
10197 case FunctionDefinitionKind::Defaulted
:
10198 NewFD
->setDefaulted();
10201 case FunctionDefinitionKind::Deleted
:
10202 NewFD
->setDeletedAsWritten();
10206 if (ImplicitInlineCXX20
&& isa
<CXXMethodDecl
>(NewFD
) && DC
== CurContext
&&
10207 D
.isFunctionDefinition()) {
10208 // Pre C++20 [class.mfct]p2:
10209 // A member function may be defined (8.4) in its class definition, in
10210 // which case it is an inline member function (7.1.2)
10211 // Post C++20 [class.mfct]p1:
10212 // If a member function is attached to the global module and is defined
10213 // in its class definition, it is inline.
10214 NewFD
->setImplicitlyInline();
10217 if (!isFriend
&& SC
!= SC_None
) {
10218 // C++ [temp.expl.spec]p2:
10219 // The declaration in an explicit-specialization shall not be an
10220 // export-declaration. An explicit specialization shall not use a
10221 // storage-class-specifier other than thread_local.
10223 // We diagnose friend declarations with storage-class-specifiers
10225 if (isFunctionTemplateSpecialization
|| isMemberSpecialization
) {
10226 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
10227 diag::ext_explicit_specialization_storage_class
)
10228 << FixItHint::CreateRemoval(
10229 D
.getDeclSpec().getStorageClassSpecLoc());
10232 if (SC
== SC_Static
&& !CurContext
->isRecord() && DC
->isRecord()) {
10233 assert(isa
<CXXMethodDecl
>(NewFD
) &&
10234 "Out-of-line member function should be a CXXMethodDecl");
10235 // C++ [class.static]p1:
10236 // A data or function member of a class may be declared static
10237 // in a class definition, in which case it is a static member of
10240 // Complain about the 'static' specifier if it's on an out-of-line
10241 // member function definition.
10243 // MSVC permits the use of a 'static' storage specifier on an
10244 // out-of-line member function template declaration and class member
10245 // template declaration (MSVC versions before 2015), warn about this.
10246 Diag(D
.getDeclSpec().getStorageClassSpecLoc(),
10247 ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015
) &&
10248 cast
<CXXRecordDecl
>(DC
)->getDescribedClassTemplate()) ||
10249 (getLangOpts().MSVCCompat
&&
10250 NewFD
->getDescribedFunctionTemplate()))
10251 ? diag::ext_static_out_of_line
10252 : diag::err_static_out_of_line
)
10253 << FixItHint::CreateRemoval(
10254 D
.getDeclSpec().getStorageClassSpecLoc());
10258 // C++11 [except.spec]p15:
10259 // A deallocation function with no exception-specification is treated
10260 // as if it were specified with noexcept(true).
10261 const FunctionProtoType
*FPT
= R
->getAs
<FunctionProtoType
>();
10262 if ((Name
.getCXXOverloadedOperator() == OO_Delete
||
10263 Name
.getCXXOverloadedOperator() == OO_Array_Delete
) &&
10264 getLangOpts().CPlusPlus11
&& FPT
&& !FPT
->hasExceptionSpec())
10265 NewFD
->setType(Context
.getFunctionType(
10266 FPT
->getReturnType(), FPT
->getParamTypes(),
10267 FPT
->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept
)));
10269 // C++20 [dcl.inline]/7
10270 // If an inline function or variable that is attached to a named module
10271 // is declared in a definition domain, it shall be defined in that
10273 // So, if the current declaration does not have a definition, we must
10274 // check at the end of the TU (or when the PMF starts) to see that we
10275 // have a definition at that point.
10276 if (isInline
&& !D
.isFunctionDefinition() && getLangOpts().CPlusPlus20
&&
10277 NewFD
->isInNamedModule()) {
10278 PendingInlineFuncDecls
.insert(NewFD
);
10282 // Filter out previous declarations that don't match the scope.
10283 FilterLookupForScope(Previous
, OriginalDC
, S
, shouldConsiderLinkage(NewFD
),
10284 D
.getCXXScopeSpec().isNotEmpty() ||
10285 isMemberSpecialization
||
10286 isFunctionTemplateSpecialization
);
10288 // Handle GNU asm-label extension (encoded as an attribute).
10289 if (Expr
*E
= (Expr
*) D
.getAsmLabel()) {
10290 // The parser guarantees this is a string.
10291 StringLiteral
*SE
= cast
<StringLiteral
>(E
);
10292 NewFD
->addAttr(AsmLabelAttr::Create(Context
, SE
->getString(),
10293 /*IsLiteralLabel=*/true,
10294 SE
->getStrTokenLoc(0)));
10295 } else if (!ExtnameUndeclaredIdentifiers
.empty()) {
10296 llvm::DenseMap
<IdentifierInfo
*,AsmLabelAttr
*>::iterator I
=
10297 ExtnameUndeclaredIdentifiers
.find(NewFD
->getIdentifier());
10298 if (I
!= ExtnameUndeclaredIdentifiers
.end()) {
10299 if (isDeclExternC(NewFD
)) {
10300 NewFD
->addAttr(I
->second
);
10301 ExtnameUndeclaredIdentifiers
.erase(I
);
10303 Diag(NewFD
->getLocation(), diag::warn_redefine_extname_not_applied
)
10304 << /*Variable*/0 << NewFD
;
10308 // Copy the parameter declarations from the declarator D to the function
10309 // declaration NewFD, if they are available. First scavenge them into Params.
10310 SmallVector
<ParmVarDecl
*, 16> Params
;
10312 if (D
.isFunctionDeclarator(FTIIdx
)) {
10313 DeclaratorChunk::FunctionTypeInfo
&FTI
= D
.getTypeObject(FTIIdx
).Fun
;
10315 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
10316 // function that takes no arguments, not a function that takes a
10317 // single void argument.
10318 // We let through "const void" here because Sema::GetTypeForDeclarator
10319 // already checks for that case.
10320 if (FTIHasNonVoidParameters(FTI
) && FTI
.Params
[0].Param
) {
10321 for (unsigned i
= 0, e
= FTI
.NumParams
; i
!= e
; ++i
) {
10322 ParmVarDecl
*Param
= cast
<ParmVarDecl
>(FTI
.Params
[i
].Param
);
10323 assert(Param
->getDeclContext() != NewFD
&& "Was set before ?");
10324 Param
->setDeclContext(NewFD
);
10325 Params
.push_back(Param
);
10327 if (Param
->isInvalidDecl())
10328 NewFD
->setInvalidDecl();
10332 if (!getLangOpts().CPlusPlus
) {
10333 // In C, find all the tag declarations from the prototype and move them
10334 // into the function DeclContext. Remove them from the surrounding tag
10335 // injection context of the function, which is typically but not always
10337 DeclContext
*PrototypeTagContext
=
10338 getTagInjectionContext(NewFD
->getLexicalDeclContext());
10339 for (NamedDecl
*NonParmDecl
: FTI
.getDeclsInPrototype()) {
10340 auto *TD
= dyn_cast
<TagDecl
>(NonParmDecl
);
10342 // We don't want to reparent enumerators. Look at their parent enum
10345 if (auto *ECD
= dyn_cast
<EnumConstantDecl
>(NonParmDecl
))
10346 TD
= cast
<EnumDecl
>(ECD
->getDeclContext());
10350 DeclContext
*TagDC
= TD
->getLexicalDeclContext();
10351 if (!TagDC
->containsDecl(TD
))
10353 TagDC
->removeDecl(TD
);
10354 TD
->setDeclContext(NewFD
);
10355 NewFD
->addDecl(TD
);
10357 // Preserve the lexical DeclContext if it is not the surrounding tag
10358 // injection context of the FD. In this example, the semantic context of
10359 // E will be f and the lexical context will be S, while both the
10360 // semantic and lexical contexts of S will be f:
10361 // void f(struct S { enum E { a } f; } s);
10362 if (TagDC
!= PrototypeTagContext
)
10363 TD
->setLexicalDeclContext(TagDC
);
10366 } else if (const FunctionProtoType
*FT
= R
->getAs
<FunctionProtoType
>()) {
10367 // When we're declaring a function with a typedef, typeof, etc as in the
10368 // following example, we'll need to synthesize (unnamed)
10369 // parameters for use in the declaration.
10372 // typedef void fn(int);
10376 // Synthesize a parameter for each argument type.
10377 for (const auto &AI
: FT
->param_types()) {
10378 ParmVarDecl
*Param
=
10379 BuildParmVarDeclForTypedef(NewFD
, D
.getIdentifierLoc(), AI
);
10380 Param
->setScopeInfo(0, Params
.size());
10381 Params
.push_back(Param
);
10384 assert(R
->isFunctionNoProtoType() && NewFD
->getNumParams() == 0 &&
10385 "Should not need args for typedef of non-prototype fn");
10388 // Finally, we know we have the right number of parameters, install them.
10389 NewFD
->setParams(Params
);
10391 if (D
.getDeclSpec().isNoreturnSpecified())
10393 C11NoReturnAttr::Create(Context
, D
.getDeclSpec().getNoreturnSpecLoc()));
10395 // Functions returning a variably modified type violate C99 6.7.5.2p2
10396 // because all functions have linkage.
10397 if (!NewFD
->isInvalidDecl() &&
10398 NewFD
->getReturnType()->isVariablyModifiedType()) {
10399 Diag(NewFD
->getLocation(), diag::err_vm_func_decl
);
10400 NewFD
->setInvalidDecl();
10403 // Apply an implicit SectionAttr if '#pragma clang section text' is active
10404 if (PragmaClangTextSection
.Valid
&& D
.isFunctionDefinition() &&
10405 !NewFD
->hasAttr
<SectionAttr
>())
10406 NewFD
->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
10407 Context
, PragmaClangTextSection
.SectionName
,
10408 PragmaClangTextSection
.PragmaLocation
));
10410 // Apply an implicit SectionAttr if #pragma code_seg is active.
10411 if (CodeSegStack
.CurrentValue
&& D
.isFunctionDefinition() &&
10412 !NewFD
->hasAttr
<SectionAttr
>()) {
10413 NewFD
->addAttr(SectionAttr::CreateImplicit(
10414 Context
, CodeSegStack
.CurrentValue
->getString(),
10415 CodeSegStack
.CurrentPragmaLocation
, SectionAttr::Declspec_allocate
));
10416 if (UnifySection(CodeSegStack
.CurrentValue
->getString(),
10417 ASTContext::PSF_Implicit
| ASTContext::PSF_Execute
|
10418 ASTContext::PSF_Read
,
10420 NewFD
->dropAttr
<SectionAttr
>();
10423 // Apply an implicit StrictGuardStackCheckAttr if #pragma strict_gs_check is
10425 if (StrictGuardStackCheckStack
.CurrentValue
&& D
.isFunctionDefinition() &&
10426 !NewFD
->hasAttr
<StrictGuardStackCheckAttr
>())
10427 NewFD
->addAttr(StrictGuardStackCheckAttr::CreateImplicit(
10428 Context
, PragmaClangTextSection
.PragmaLocation
));
10430 // Apply an implicit CodeSegAttr from class declspec or
10431 // apply an implicit SectionAttr from #pragma code_seg if active.
10432 if (!NewFD
->hasAttr
<CodeSegAttr
>()) {
10433 if (Attr
*SAttr
= getImplicitCodeSegOrSectionAttrForFunction(NewFD
,
10434 D
.isFunctionDefinition())) {
10435 NewFD
->addAttr(SAttr
);
10439 // Handle attributes.
10440 ProcessDeclAttributes(S
, NewFD
, D
);
10441 const auto *NewTVA
= NewFD
->getAttr
<TargetVersionAttr
>();
10442 if (Context
.getTargetInfo().getTriple().isAArch64() && NewTVA
&&
10443 !NewTVA
->isDefaultVersion() &&
10444 !Context
.getTargetInfo().hasFeature("fmv")) {
10445 // Don't add to scope fmv functions declarations if fmv disabled
10446 AddToScope
= false;
10450 if (getLangOpts().OpenCL
|| getLangOpts().HLSL
) {
10451 // Neither OpenCL nor HLSL allow an address space qualifyer on a return
10454 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
10455 // type declaration will generate a compilation error.
10456 LangAS AddressSpace
= NewFD
->getReturnType().getAddressSpace();
10457 if (AddressSpace
!= LangAS::Default
) {
10458 Diag(NewFD
->getLocation(), diag::err_return_value_with_address_space
);
10459 NewFD
->setInvalidDecl();
10463 if (!getLangOpts().CPlusPlus
) {
10464 // Perform semantic checking on the function declaration.
10465 if (!NewFD
->isInvalidDecl() && NewFD
->isMain())
10466 CheckMain(NewFD
, D
.getDeclSpec());
10468 if (!NewFD
->isInvalidDecl() && NewFD
->isMSVCRTEntryPoint())
10469 CheckMSVCRTEntryPoint(NewFD
);
10471 if (!NewFD
->isInvalidDecl())
10472 D
.setRedeclaration(CheckFunctionDeclaration(S
, NewFD
, Previous
,
10473 isMemberSpecialization
,
10474 D
.isFunctionDefinition()));
10475 else if (!Previous
.empty())
10476 // Recover gracefully from an invalid redeclaration.
10477 D
.setRedeclaration(true);
10478 assert((NewFD
->isInvalidDecl() || !D
.isRedeclaration() ||
10479 Previous
.getResultKind() != LookupResult::FoundOverloaded
) &&
10480 "previous declaration set still overloaded");
10482 // Diagnose no-prototype function declarations with calling conventions that
10483 // don't support variadic calls. Only do this in C and do it after merging
10484 // possibly prototyped redeclarations.
10485 const FunctionType
*FT
= NewFD
->getType()->castAs
<FunctionType
>();
10486 if (isa
<FunctionNoProtoType
>(FT
) && !D
.isFunctionDefinition()) {
10487 CallingConv CC
= FT
->getExtInfo().getCC();
10488 if (!supportsVariadicCall(CC
)) {
10489 // Windows system headers sometimes accidentally use stdcall without
10490 // (void) parameters, so we relax this to a warning.
10492 CC
== CC_X86StdCall
? diag::warn_cconv_knr
: diag::err_cconv_knr
;
10493 Diag(NewFD
->getLocation(), DiagID
)
10494 << FunctionType::getNameForCallConv(CC
);
10498 if (NewFD
->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
10499 NewFD
->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
10500 checkNonTrivialCUnion(NewFD
->getReturnType(),
10501 NewFD
->getReturnTypeSourceRange().getBegin(),
10502 NTCUC_FunctionReturn
, NTCUK_Destruct
|NTCUK_Copy
);
10504 // C++11 [replacement.functions]p3:
10505 // The program's definitions shall not be specified as inline.
10507 // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
10509 // Suppress the diagnostic if the function is __attribute__((used)), since
10510 // that forces an external definition to be emitted.
10511 if (D
.getDeclSpec().isInlineSpecified() &&
10512 NewFD
->isReplaceableGlobalAllocationFunction() &&
10513 !NewFD
->hasAttr
<UsedAttr
>())
10514 Diag(D
.getDeclSpec().getInlineSpecLoc(),
10515 diag::ext_operator_new_delete_declared_inline
)
10516 << NewFD
->getDeclName();
10518 if (Expr
*TRC
= NewFD
->getTrailingRequiresClause()) {
10519 // C++20 [dcl.decl.general]p4:
10520 // The optional requires-clause in an init-declarator or
10521 // member-declarator shall be present only if the declarator declares a
10522 // templated function.
10524 // C++20 [temp.pre]p8:
10525 // An entity is templated if it is
10527 // - an entity defined or created in a templated entity,
10528 // - a member of a templated entity,
10529 // - an enumerator for an enumeration that is a templated entity, or
10530 // - the closure type of a lambda-expression appearing in the
10531 // declaration of a templated entity.
10533 // [Note 6: A local class, a local or block variable, or a friend
10534 // function defined in a templated entity is a templated entity.
10537 // A templated function is a function template or a function that is
10538 // templated. A templated class is a class template or a class that is
10539 // templated. A templated variable is a variable template or a variable
10540 // that is templated.
10541 if (!FunctionTemplate
) {
10542 if (isFunctionTemplateSpecialization
|| isMemberSpecialization
) {
10543 // C++ [temp.expl.spec]p8 (proposed resolution for CWG2847):
10544 // An explicit specialization shall not have a trailing
10545 // requires-clause unless it declares a function template.
10547 // Since a friend function template specialization cannot be
10548 // definition, and since a non-template friend declaration with a
10549 // trailing requires-clause must be a definition, we diagnose
10550 // friend function template specializations with trailing
10551 // requires-clauses on the same path as explicit specializations
10552 // even though they aren't necessarily prohibited by the same
10554 Diag(TRC
->getBeginLoc(), diag::err_non_temp_spec_requires_clause
)
10556 } else if (isFriend
&& NewFD
->isTemplated() &&
10557 !D
.isFunctionDefinition()) {
10558 // C++ [temp.friend]p9:
10559 // A non-template friend declaration with a requires-clause shall be
10561 Diag(NewFD
->getBeginLoc(),
10562 diag::err_non_temp_friend_decl_with_requires_clause_must_be_def
);
10563 NewFD
->setInvalidDecl();
10564 } else if (!NewFD
->isTemplated() ||
10565 !(isa
<CXXMethodDecl
>(NewFD
) || D
.isFunctionDefinition())) {
10566 Diag(TRC
->getBeginLoc(),
10567 diag::err_constrained_non_templated_function
);
10572 // We do not add HD attributes to specializations here because
10573 // they may have different constexpr-ness compared to their
10574 // templates and, after maybeAddHostDeviceAttrs() is applied,
10575 // may end up with different effective targets. Instead, a
10576 // specialization inherits its target attributes from its template
10577 // in the CheckFunctionTemplateSpecialization() call below.
10578 if (getLangOpts().CUDA
&& !isFunctionTemplateSpecialization
)
10579 CUDA().maybeAddHostDeviceAttrs(NewFD
, Previous
);
10581 // Handle explicit specializations of function templates
10582 // and friend function declarations with an explicit
10583 // template argument list.
10584 if (isFunctionTemplateSpecialization
) {
10585 bool isDependentSpecialization
= false;
10587 // For friend function specializations, this is a dependent
10588 // specialization if its semantic context is dependent, its
10589 // type is dependent, or if its template-id is dependent.
10590 isDependentSpecialization
=
10591 DC
->isDependentContext() || NewFD
->getType()->isDependentType() ||
10592 (HasExplicitTemplateArgs
&&
10593 TemplateSpecializationType::
10594 anyInstantiationDependentTemplateArguments(
10595 TemplateArgs
.arguments()));
10596 assert((!isDependentSpecialization
||
10597 (HasExplicitTemplateArgs
== isDependentSpecialization
)) &&
10598 "dependent friend function specialization without template "
10601 // For class-scope explicit specializations of function templates,
10602 // if the lexical context is dependent, then the specialization
10604 isDependentSpecialization
=
10605 CurContext
->isRecord() && CurContext
->isDependentContext();
10608 TemplateArgumentListInfo
*ExplicitTemplateArgs
=
10609 HasExplicitTemplateArgs
? &TemplateArgs
: nullptr;
10610 if (isDependentSpecialization
) {
10611 // If it's a dependent specialization, it may not be possible
10612 // to determine the primary template (for explicit specializations)
10613 // or befriended declaration (for friends) until the enclosing
10614 // template is instantiated. In such cases, we store the declarations
10615 // found by name lookup and defer resolution until instantiation.
10616 if (CheckDependentFunctionTemplateSpecialization(
10617 NewFD
, ExplicitTemplateArgs
, Previous
))
10618 NewFD
->setInvalidDecl();
10619 } else if (!NewFD
->isInvalidDecl()) {
10620 if (CheckFunctionTemplateSpecialization(NewFD
, ExplicitTemplateArgs
,
10622 NewFD
->setInvalidDecl();
10624 } else if (isMemberSpecialization
&& !FunctionTemplate
) {
10625 if (CheckMemberSpecialization(NewFD
, Previous
))
10626 NewFD
->setInvalidDecl();
10629 // Perform semantic checking on the function declaration.
10630 if (!NewFD
->isInvalidDecl() && NewFD
->isMain())
10631 CheckMain(NewFD
, D
.getDeclSpec());
10633 if (!NewFD
->isInvalidDecl() && NewFD
->isMSVCRTEntryPoint())
10634 CheckMSVCRTEntryPoint(NewFD
);
10636 if (!NewFD
->isInvalidDecl())
10637 D
.setRedeclaration(CheckFunctionDeclaration(S
, NewFD
, Previous
,
10638 isMemberSpecialization
,
10639 D
.isFunctionDefinition()));
10640 else if (!Previous
.empty())
10641 // Recover gracefully from an invalid redeclaration.
10642 D
.setRedeclaration(true);
10644 assert((NewFD
->isInvalidDecl() || NewFD
->isMultiVersion() ||
10645 !D
.isRedeclaration() ||
10646 Previous
.getResultKind() != LookupResult::FoundOverloaded
) &&
10647 "previous declaration set still overloaded");
10649 NamedDecl
*PrincipalDecl
= (FunctionTemplate
10650 ? cast
<NamedDecl
>(FunctionTemplate
)
10653 if (isFriend
&& NewFD
->getPreviousDecl()) {
10654 AccessSpecifier Access
= AS_public
;
10655 if (!NewFD
->isInvalidDecl())
10656 Access
= NewFD
->getPreviousDecl()->getAccess();
10658 NewFD
->setAccess(Access
);
10659 if (FunctionTemplate
) FunctionTemplate
->setAccess(Access
);
10662 if (NewFD
->isOverloadedOperator() && !DC
->isRecord() &&
10663 PrincipalDecl
->isInIdentifierNamespace(Decl::IDNS_Ordinary
))
10664 PrincipalDecl
->setNonMemberOperator();
10666 // If we have a function template, check the template parameter
10667 // list. This will check and merge default template arguments.
10668 if (FunctionTemplate
) {
10669 FunctionTemplateDecl
*PrevTemplate
=
10670 FunctionTemplate
->getPreviousDecl();
10671 CheckTemplateParameterList(FunctionTemplate
->getTemplateParameters(),
10672 PrevTemplate
? PrevTemplate
->getTemplateParameters()
10674 D
.getDeclSpec().isFriendSpecified()
10675 ? (D
.isFunctionDefinition()
10676 ? TPC_FriendFunctionTemplateDefinition
10677 : TPC_FriendFunctionTemplate
)
10678 : (D
.getCXXScopeSpec().isSet() &&
10679 DC
&& DC
->isRecord() &&
10680 DC
->isDependentContext())
10681 ? TPC_ClassTemplateMember
10682 : TPC_FunctionTemplate
);
10685 if (NewFD
->isInvalidDecl()) {
10686 // Ignore all the rest of this.
10687 } else if (!D
.isRedeclaration()) {
10688 struct ActOnFDArgs ExtraArgs
= { S
, D
, TemplateParamLists
,
10690 // Fake up an access specifier if it's supposed to be a class member.
10691 if (isa
<CXXRecordDecl
>(NewFD
->getDeclContext()))
10692 NewFD
->setAccess(AS_public
);
10694 // Qualified decls generally require a previous declaration.
10695 if (D
.getCXXScopeSpec().isSet()) {
10696 // ...with the major exception of templated-scope or
10697 // dependent-scope friend declarations.
10699 // TODO: we currently also suppress this check in dependent
10700 // contexts because (1) the parameter depth will be off when
10701 // matching friend templates and (2) we might actually be
10702 // selecting a friend based on a dependent factor. But there
10703 // are situations where these conditions don't apply and we
10704 // can actually do this check immediately.
10706 // Unless the scope is dependent, it's always an error if qualified
10707 // redeclaration lookup found nothing at all. Diagnose that now;
10708 // nothing will diagnose that error later.
10710 (D
.getCXXScopeSpec().getScopeRep()->isDependent() ||
10711 (!Previous
.empty() && CurContext
->isDependentContext()))) {
10713 } else if (NewFD
->isCPUDispatchMultiVersion() ||
10714 NewFD
->isCPUSpecificMultiVersion()) {
10715 // ignore this, we allow the redeclaration behavior here to create new
10716 // versions of the function.
10718 // The user tried to provide an out-of-line definition for a
10719 // function that is a member of a class or namespace, but there
10720 // was no such member function declared (C++ [class.mfct]p2,
10721 // C++ [namespace.memdef]p2). For example:
10727 // void X::f() { } // ill-formed
10729 // Complain about this problem, and attempt to suggest close
10730 // matches (e.g., those that differ only in cv-qualifiers and
10731 // whether the parameter types are references).
10733 if (NamedDecl
*Result
= DiagnoseInvalidRedeclaration(
10734 *this, Previous
, NewFD
, ExtraArgs
, false, nullptr)) {
10735 AddToScope
= ExtraArgs
.AddToScope
;
10740 // Unqualified local friend declarations are required to resolve
10742 } else if (isFriend
&& cast
<CXXRecordDecl
>(CurContext
)->isLocalClass()) {
10743 if (NamedDecl
*Result
= DiagnoseInvalidRedeclaration(
10744 *this, Previous
, NewFD
, ExtraArgs
, true, S
)) {
10745 AddToScope
= ExtraArgs
.AddToScope
;
10749 } else if (!D
.isFunctionDefinition() &&
10750 isa
<CXXMethodDecl
>(NewFD
) && NewFD
->isOutOfLine() &&
10751 !isFriend
&& !isFunctionTemplateSpecialization
&&
10752 !isMemberSpecialization
) {
10753 // An out-of-line member function declaration must also be a
10754 // definition (C++ [class.mfct]p2).
10755 // Note that this is not the case for explicit specializations of
10756 // function templates or member functions of class templates, per
10757 // C++ [temp.expl.spec]p2. We also allow these declarations as an
10758 // extension for compatibility with old SWIG code which likes to
10760 Diag(NewFD
->getLocation(), diag::ext_out_of_line_declaration
)
10761 << D
.getCXXScopeSpec().getRange();
10765 if (getLangOpts().HLSL
&& D
.isFunctionDefinition()) {
10766 // Any top level function could potentially be specified as an entry.
10767 if (!NewFD
->isInvalidDecl() && S
->getDepth() == 0 && Name
.isIdentifier())
10768 HLSL().ActOnTopLevelFunction(NewFD
);
10770 if (NewFD
->hasAttr
<HLSLShaderAttr
>())
10771 HLSL().CheckEntryPoint(NewFD
);
10774 // If this is the first declaration of a library builtin function, add
10775 // attributes as appropriate.
10776 if (!D
.isRedeclaration()) {
10777 if (IdentifierInfo
*II
= Previous
.getLookupName().getAsIdentifierInfo()) {
10778 if (unsigned BuiltinID
= II
->getBuiltinID()) {
10779 bool InStdNamespace
= Context
.BuiltinInfo
.isInStdNamespace(BuiltinID
);
10780 if (!InStdNamespace
&&
10781 NewFD
->getDeclContext()->getRedeclContext()->isFileContext()) {
10782 if (NewFD
->getLanguageLinkage() == CLanguageLinkage
) {
10783 // Validate the type matches unless this builtin is specified as
10784 // matching regardless of its declared type.
10785 if (Context
.BuiltinInfo
.allowTypeMismatch(BuiltinID
)) {
10786 NewFD
->addAttr(BuiltinAttr::CreateImplicit(Context
, BuiltinID
));
10788 ASTContext::GetBuiltinTypeError Error
;
10789 LookupNecessaryTypesForBuiltin(S
, BuiltinID
);
10790 QualType BuiltinType
= Context
.GetBuiltinType(BuiltinID
, Error
);
10792 if (!Error
&& !BuiltinType
.isNull() &&
10793 Context
.hasSameFunctionTypeIgnoringExceptionSpec(
10794 NewFD
->getType(), BuiltinType
))
10795 NewFD
->addAttr(BuiltinAttr::CreateImplicit(Context
, BuiltinID
));
10798 } else if (InStdNamespace
&& NewFD
->isInStdNamespace() &&
10799 isStdBuiltin(Context
, NewFD
, BuiltinID
)) {
10800 NewFD
->addAttr(BuiltinAttr::CreateImplicit(Context
, BuiltinID
));
10806 ProcessPragmaWeak(S
, NewFD
);
10807 checkAttributesAfterMerging(*this, *NewFD
);
10809 AddKnownFunctionAttributes(NewFD
);
10811 if (NewFD
->hasAttr
<OverloadableAttr
>() &&
10812 !NewFD
->getType()->getAs
<FunctionProtoType
>()) {
10813 Diag(NewFD
->getLocation(),
10814 diag::err_attribute_overloadable_no_prototype
)
10816 NewFD
->dropAttr
<OverloadableAttr
>();
10819 // If there's a #pragma GCC visibility in scope, and this isn't a class
10820 // member, set the visibility of this function.
10821 if (!DC
->isRecord() && NewFD
->isExternallyVisible())
10822 AddPushedVisibilityAttribute(NewFD
);
10824 // If there's a #pragma clang arc_cf_code_audited in scope, consider
10825 // marking the function.
10826 ObjC().AddCFAuditedAttribute(NewFD
);
10828 // If this is a function definition, check if we have to apply any
10829 // attributes (i.e. optnone and no_builtin) due to a pragma.
10830 if (D
.isFunctionDefinition()) {
10831 AddRangeBasedOptnone(NewFD
);
10832 AddImplicitMSFunctionNoBuiltinAttr(NewFD
);
10833 AddSectionMSAllocText(NewFD
);
10834 ModifyFnAttributesMSPragmaOptimize(NewFD
);
10837 // If this is the first declaration of an extern C variable, update
10838 // the map of such variables.
10839 if (NewFD
->isFirstDecl() && !NewFD
->isInvalidDecl() &&
10840 isIncompleteDeclExternC(*this, NewFD
))
10841 RegisterLocallyScopedExternCDecl(NewFD
, S
);
10843 // Set this FunctionDecl's range up to the right paren.
10844 NewFD
->setRangeEnd(D
.getSourceRange().getEnd());
10846 if (D
.isRedeclaration() && !Previous
.empty()) {
10847 NamedDecl
*Prev
= Previous
.getRepresentativeDecl();
10848 checkDLLAttributeRedeclaration(*this, Prev
, NewFD
,
10849 isMemberSpecialization
||
10850 isFunctionTemplateSpecialization
,
10851 D
.isFunctionDefinition());
10854 if (getLangOpts().CUDA
) {
10855 IdentifierInfo
*II
= NewFD
->getIdentifier();
10856 if (II
&& II
->isStr(CUDA().getConfigureFuncName()) &&
10857 !NewFD
->isInvalidDecl() &&
10858 NewFD
->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
10859 if (!R
->castAs
<FunctionType
>()->getReturnType()->isScalarType())
10860 Diag(NewFD
->getLocation(), diag::err_config_scalar_return
)
10861 << CUDA().getConfigureFuncName();
10862 Context
.setcudaConfigureCallDecl(NewFD
);
10865 // Variadic functions, other than a *declaration* of printf, are not allowed
10866 // in device-side CUDA code, unless someone passed
10867 // -fcuda-allow-variadic-functions.
10868 if (!getLangOpts().CUDAAllowVariadicFunctions
&& NewFD
->isVariadic() &&
10869 (NewFD
->hasAttr
<CUDADeviceAttr
>() ||
10870 NewFD
->hasAttr
<CUDAGlobalAttr
>()) &&
10871 !(II
&& II
->isStr("printf") && NewFD
->isExternC() &&
10872 !D
.isFunctionDefinition())) {
10873 Diag(NewFD
->getLocation(), diag::err_variadic_device_fn
);
10877 MarkUnusedFileScopedDecl(NewFD
);
10881 if (getLangOpts().OpenCL
&& NewFD
->hasAttr
<OpenCLKernelAttr
>()) {
10882 // OpenCL v1.2 s6.8 static is invalid for kernel functions.
10883 if (SC
== SC_Static
) {
10884 Diag(D
.getIdentifierLoc(), diag::err_static_kernel
);
10885 D
.setInvalidType();
10888 // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
10889 if (!NewFD
->getReturnType()->isVoidType()) {
10890 SourceRange RTRange
= NewFD
->getReturnTypeSourceRange();
10891 Diag(D
.getIdentifierLoc(), diag::err_expected_kernel_void_return_type
)
10892 << (RTRange
.isValid() ? FixItHint::CreateReplacement(RTRange
, "void")
10894 D
.setInvalidType();
10897 llvm::SmallPtrSet
<const Type
*, 16> ValidTypes
;
10898 for (auto *Param
: NewFD
->parameters())
10899 checkIsValidOpenCLKernelParameter(*this, D
, Param
, ValidTypes
);
10901 if (getLangOpts().OpenCLCPlusPlus
) {
10902 if (DC
->isRecord()) {
10903 Diag(D
.getIdentifierLoc(), diag::err_method_kernel
);
10904 D
.setInvalidType();
10906 if (FunctionTemplate
) {
10907 Diag(D
.getIdentifierLoc(), diag::err_template_kernel
);
10908 D
.setInvalidType();
10913 if (getLangOpts().CPlusPlus
) {
10914 // Precalculate whether this is a friend function template with a constraint
10915 // that depends on an enclosing template, per [temp.friend]p9.
10916 if (isFriend
&& FunctionTemplate
&&
10917 FriendConstraintsDependOnEnclosingTemplate(NewFD
)) {
10918 NewFD
->setFriendConstraintRefersToEnclosingTemplate(true);
10920 // C++ [temp.friend]p9:
10921 // A friend function template with a constraint that depends on a
10922 // template parameter from an enclosing template shall be a definition.
10923 if (!D
.isFunctionDefinition()) {
10924 Diag(NewFD
->getBeginLoc(),
10925 diag::err_friend_decl_with_enclosing_temp_constraint_must_be_def
);
10926 NewFD
->setInvalidDecl();
10930 if (FunctionTemplate
) {
10931 if (NewFD
->isInvalidDecl())
10932 FunctionTemplate
->setInvalidDecl();
10933 return FunctionTemplate
;
10936 if (isMemberSpecialization
&& !NewFD
->isInvalidDecl())
10937 CompleteMemberSpecialization(NewFD
, Previous
);
10940 for (const ParmVarDecl
*Param
: NewFD
->parameters()) {
10941 QualType PT
= Param
->getType();
10943 // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
10945 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
10946 if(const PipeType
*PipeTy
= PT
->getAs
<PipeType
>()) {
10947 QualType ElemTy
= PipeTy
->getElementType();
10948 if (ElemTy
->isPointerOrReferenceType()) {
10949 Diag(Param
->getTypeSpecStartLoc(), diag::err_reference_pipe_type
);
10950 D
.setInvalidType();
10954 // WebAssembly tables can't be used as function parameters.
10955 if (Context
.getTargetInfo().getTriple().isWasm()) {
10956 if (PT
->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) {
10957 Diag(Param
->getTypeSpecStartLoc(),
10958 diag::err_wasm_table_as_function_parameter
);
10959 D
.setInvalidType();
10964 // Diagnose availability attributes. Availability cannot be used on functions
10965 // that are run during load/unload.
10966 if (const auto *attr
= NewFD
->getAttr
<AvailabilityAttr
>()) {
10967 if (NewFD
->hasAttr
<ConstructorAttr
>()) {
10968 Diag(attr
->getLocation(), diag::warn_availability_on_static_initializer
)
10970 NewFD
->dropAttr
<AvailabilityAttr
>();
10972 if (NewFD
->hasAttr
<DestructorAttr
>()) {
10973 Diag(attr
->getLocation(), diag::warn_availability_on_static_initializer
)
10975 NewFD
->dropAttr
<AvailabilityAttr
>();
10979 // Diagnose no_builtin attribute on function declaration that are not a
10981 // FIXME: We should really be doing this in
10982 // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
10983 // the FunctionDecl and at this point of the code
10984 // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
10985 // because Sema::ActOnStartOfFunctionDef has not been called yet.
10986 if (const auto *NBA
= NewFD
->getAttr
<NoBuiltinAttr
>())
10987 switch (D
.getFunctionDefinitionKind()) {
10988 case FunctionDefinitionKind::Defaulted
:
10989 case FunctionDefinitionKind::Deleted
:
10990 Diag(NBA
->getLocation(),
10991 diag::err_attribute_no_builtin_on_defaulted_deleted_function
)
10992 << NBA
->getSpelling();
10994 case FunctionDefinitionKind::Declaration
:
10995 Diag(NBA
->getLocation(), diag::err_attribute_no_builtin_on_non_definition
)
10996 << NBA
->getSpelling();
10998 case FunctionDefinitionKind::Definition
:
11002 // Similar to no_builtin logic above, at this point of the code
11003 // FunctionDecl::isThisDeclarationADefinition() always returns `false`
11004 // because Sema::ActOnStartOfFunctionDef has not been called yet.
11005 if (Context
.getTargetInfo().allowDebugInfoForExternalRef() &&
11006 !NewFD
->isInvalidDecl() &&
11007 D
.getFunctionDefinitionKind() == FunctionDefinitionKind::Declaration
)
11008 ExternalDeclarations
.push_back(NewFD
);
11013 /// Return a CodeSegAttr from a containing class. The Microsoft docs say
11014 /// when __declspec(code_seg) "is applied to a class, all member functions of
11015 /// the class and nested classes -- this includes compiler-generated special
11016 /// member functions -- are put in the specified segment."
11017 /// The actual behavior is a little more complicated. The Microsoft compiler
11018 /// won't check outer classes if there is an active value from #pragma code_seg.
11019 /// The CodeSeg is always applied from the direct parent but only from outer
11020 /// classes when the #pragma code_seg stack is empty. See:
11021 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
11022 /// available since MS has removed the page.
11023 static Attr
*getImplicitCodeSegAttrFromClass(Sema
&S
, const FunctionDecl
*FD
) {
11024 const auto *Method
= dyn_cast
<CXXMethodDecl
>(FD
);
11027 const CXXRecordDecl
*Parent
= Method
->getParent();
11028 if (const auto *SAttr
= Parent
->getAttr
<CodeSegAttr
>()) {
11029 Attr
*NewAttr
= SAttr
->clone(S
.getASTContext());
11030 NewAttr
->setImplicit(true);
11034 // The Microsoft compiler won't check outer classes for the CodeSeg
11035 // when the #pragma code_seg stack is active.
11036 if (S
.CodeSegStack
.CurrentValue
)
11039 while ((Parent
= dyn_cast
<CXXRecordDecl
>(Parent
->getParent()))) {
11040 if (const auto *SAttr
= Parent
->getAttr
<CodeSegAttr
>()) {
11041 Attr
*NewAttr
= SAttr
->clone(S
.getASTContext());
11042 NewAttr
->setImplicit(true);
11049 Attr
*Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl
*FD
,
11050 bool IsDefinition
) {
11051 if (Attr
*A
= getImplicitCodeSegAttrFromClass(*this, FD
))
11053 if (!FD
->hasAttr
<SectionAttr
>() && IsDefinition
&&
11054 CodeSegStack
.CurrentValue
)
11055 return SectionAttr::CreateImplicit(
11056 getASTContext(), CodeSegStack
.CurrentValue
->getString(),
11057 CodeSegStack
.CurrentPragmaLocation
, SectionAttr::Declspec_allocate
);
11061 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl
*NewD
, ValueDecl
*OldD
,
11062 QualType NewT
, QualType OldT
) {
11063 if (!NewD
->getLexicalDeclContext()->isDependentContext())
11066 // For dependently-typed local extern declarations and friends, we can't
11067 // perform a correct type check in general until instantiation:
11070 // template<typename T> void g() { T f(); }
11072 // (valid if g() is only instantiated with T = int).
11073 if (NewT
->isDependentType() &&
11074 (NewD
->isLocalExternDecl() || NewD
->getFriendObjectKind()))
11077 // Similarly, if the previous declaration was a dependent local extern
11078 // declaration, we don't really know its type yet.
11079 if (OldT
->isDependentType() && OldD
->isLocalExternDecl())
11085 bool Sema::shouldLinkDependentDeclWithPrevious(Decl
*D
, Decl
*PrevDecl
) {
11086 if (!D
->getLexicalDeclContext()->isDependentContext())
11089 // Don't chain dependent friend function definitions until instantiation, to
11090 // permit cases like
11093 // template<typename T> class C1 { friend void func() {} };
11094 // template<typename T> class C2 { friend void func() {} };
11096 // ... which is valid if only one of C1 and C2 is ever instantiated.
11098 // FIXME: This need only apply to function definitions. For now, we proxy
11099 // this by checking for a file-scope function. We do not want this to apply
11100 // to friend declarations nominating member functions, because that gets in
11101 // the way of access checks.
11102 if (D
->getFriendObjectKind() && D
->getDeclContext()->isFileContext())
11105 auto *VD
= dyn_cast
<ValueDecl
>(D
);
11106 auto *PrevVD
= dyn_cast
<ValueDecl
>(PrevDecl
);
11107 return !VD
|| !PrevVD
||
11108 canFullyTypeCheckRedeclaration(VD
, PrevVD
, VD
->getType(),
11109 PrevVD
->getType());
11112 /// Check the target or target_version attribute of the function for
11113 /// MultiVersion validity.
11115 /// Returns true if there was an error, false otherwise.
11116 static bool CheckMultiVersionValue(Sema
&S
, const FunctionDecl
*FD
) {
11117 const auto *TA
= FD
->getAttr
<TargetAttr
>();
11118 const auto *TVA
= FD
->getAttr
<TargetVersionAttr
>();
11120 assert((TA
|| TVA
) && "Expecting target or target_version attribute");
11122 const TargetInfo
&TargetInfo
= S
.Context
.getTargetInfo();
11123 enum ErrType
{ Feature
= 0, Architecture
= 1 };
11126 ParsedTargetAttr ParseInfo
=
11127 S
.getASTContext().getTargetInfo().parseTargetAttr(TA
->getFeaturesStr());
11128 if (!ParseInfo
.CPU
.empty() && !TargetInfo
.validateCpuIs(ParseInfo
.CPU
)) {
11129 S
.Diag(FD
->getLocation(), diag::err_bad_multiversion_option
)
11130 << Architecture
<< ParseInfo
.CPU
;
11133 for (const auto &Feat
: ParseInfo
.Features
) {
11134 auto BareFeat
= StringRef
{Feat
}.substr(1);
11135 if (Feat
[0] == '-') {
11136 S
.Diag(FD
->getLocation(), diag::err_bad_multiversion_option
)
11137 << Feature
<< ("no-" + BareFeat
).str();
11141 if (!TargetInfo
.validateCpuSupports(BareFeat
) ||
11142 !TargetInfo
.isValidFeatureName(BareFeat
) ||
11143 (BareFeat
!= "default" && TargetInfo
.getFMVPriority(BareFeat
) == 0)) {
11144 S
.Diag(FD
->getLocation(), diag::err_bad_multiversion_option
)
11145 << Feature
<< BareFeat
;
11152 llvm::SmallVector
<StringRef
, 8> Feats
;
11153 ParsedTargetAttr ParseInfo
;
11154 if (S
.getASTContext().getTargetInfo().getTriple().isRISCV()) {
11156 S
.getASTContext().getTargetInfo().parseTargetAttr(TVA
->getName());
11157 for (auto &Feat
: ParseInfo
.Features
)
11158 Feats
.push_back(StringRef
{Feat
}.substr(1));
11160 assert(S
.getASTContext().getTargetInfo().getTriple().isAArch64());
11161 TVA
->getFeatures(Feats
);
11163 for (const auto &Feat
: Feats
) {
11164 if (!TargetInfo
.validateCpuSupports(Feat
)) {
11165 S
.Diag(FD
->getLocation(), diag::err_bad_multiversion_option
)
11166 << Feature
<< Feat
;
11174 // Provide a white-list of attributes that are allowed to be combined with
11175 // multiversion functions.
11176 static bool AttrCompatibleWithMultiVersion(attr::Kind Kind
,
11177 MultiVersionKind MVKind
) {
11178 // Note: this list/diagnosis must match the list in
11179 // checkMultiversionAttributesAllSame.
11183 case attr::ArmLocallyStreaming
:
11184 return MVKind
== MultiVersionKind::TargetVersion
||
11185 MVKind
== MultiVersionKind::TargetClones
;
11187 return MVKind
== MultiVersionKind::Target
;
11188 case attr::NonNull
:
11189 case attr::NoThrow
:
11194 static bool checkNonMultiVersionCompatAttributes(Sema
&S
,
11195 const FunctionDecl
*FD
,
11196 const FunctionDecl
*CausedFD
,
11197 MultiVersionKind MVKind
) {
11198 const auto Diagnose
= [FD
, CausedFD
, MVKind
](Sema
&S
, const Attr
*A
) {
11199 S
.Diag(FD
->getLocation(), diag::err_multiversion_disallowed_other_attr
)
11200 << static_cast<unsigned>(MVKind
) << A
;
11202 S
.Diag(CausedFD
->getLocation(), diag::note_multiversioning_caused_here
);
11206 for (const Attr
*A
: FD
->attrs()) {
11207 switch (A
->getKind()) {
11208 case attr::CPUDispatch
:
11209 case attr::CPUSpecific
:
11210 if (MVKind
!= MultiVersionKind::CPUDispatch
&&
11211 MVKind
!= MultiVersionKind::CPUSpecific
)
11212 return Diagnose(S
, A
);
11215 if (MVKind
!= MultiVersionKind::Target
)
11216 return Diagnose(S
, A
);
11218 case attr::TargetVersion
:
11219 if (MVKind
!= MultiVersionKind::TargetVersion
&&
11220 MVKind
!= MultiVersionKind::TargetClones
)
11221 return Diagnose(S
, A
);
11223 case attr::TargetClones
:
11224 if (MVKind
!= MultiVersionKind::TargetClones
&&
11225 MVKind
!= MultiVersionKind::TargetVersion
)
11226 return Diagnose(S
, A
);
11229 if (!AttrCompatibleWithMultiVersion(A
->getKind(), MVKind
))
11230 return Diagnose(S
, A
);
11237 bool Sema::areMultiversionVariantFunctionsCompatible(
11238 const FunctionDecl
*OldFD
, const FunctionDecl
*NewFD
,
11239 const PartialDiagnostic
&NoProtoDiagID
,
11240 const PartialDiagnosticAt
&NoteCausedDiagIDAt
,
11241 const PartialDiagnosticAt
&NoSupportDiagIDAt
,
11242 const PartialDiagnosticAt
&DiffDiagIDAt
, bool TemplatesSupported
,
11243 bool ConstexprSupported
, bool CLinkageMayDiffer
) {
11244 enum DoesntSupport
{
11251 DefaultedFuncs
= 6,
11252 ConstexprFuncs
= 7,
11253 ConstevalFuncs
= 8,
11262 LanguageLinkage
= 5,
11265 if (NoProtoDiagID
.getDiagID() != 0 && OldFD
&&
11266 !OldFD
->getType()->getAs
<FunctionProtoType
>()) {
11267 Diag(OldFD
->getLocation(), NoProtoDiagID
);
11268 Diag(NoteCausedDiagIDAt
.first
, NoteCausedDiagIDAt
.second
);
11272 if (NoProtoDiagID
.getDiagID() != 0 &&
11273 !NewFD
->getType()->getAs
<FunctionProtoType
>())
11274 return Diag(NewFD
->getLocation(), NoProtoDiagID
);
11276 if (!TemplatesSupported
&&
11277 NewFD
->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate
)
11278 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11281 if (const auto *NewCXXFD
= dyn_cast
<CXXMethodDecl
>(NewFD
)) {
11282 if (NewCXXFD
->isVirtual())
11283 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11286 if (isa
<CXXConstructorDecl
>(NewCXXFD
))
11287 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11290 if (isa
<CXXDestructorDecl
>(NewCXXFD
))
11291 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11295 if (NewFD
->isDeleted())
11296 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11299 if (NewFD
->isDefaulted())
11300 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11303 if (!ConstexprSupported
&& NewFD
->isConstexpr())
11304 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11305 << (NewFD
->isConsteval() ? ConstevalFuncs
: ConstexprFuncs
);
11307 QualType NewQType
= Context
.getCanonicalType(NewFD
->getType());
11308 const auto *NewType
= cast
<FunctionType
>(NewQType
);
11309 QualType NewReturnType
= NewType
->getReturnType();
11311 if (NewReturnType
->isUndeducedType())
11312 return Diag(NoSupportDiagIDAt
.first
, NoSupportDiagIDAt
.second
)
11315 // Ensure the return type is identical.
11317 QualType OldQType
= Context
.getCanonicalType(OldFD
->getType());
11318 const auto *OldType
= cast
<FunctionType
>(OldQType
);
11319 FunctionType::ExtInfo OldTypeInfo
= OldType
->getExtInfo();
11320 FunctionType::ExtInfo NewTypeInfo
= NewType
->getExtInfo();
11322 const auto *OldFPT
= OldFD
->getType()->getAs
<FunctionProtoType
>();
11323 const auto *NewFPT
= NewFD
->getType()->getAs
<FunctionProtoType
>();
11325 bool ArmStreamingCCMismatched
= false;
11326 if (OldFPT
&& NewFPT
) {
11328 OldFPT
->getAArch64SMEAttributes() ^ NewFPT
->getAArch64SMEAttributes();
11329 // Arm-streaming, arm-streaming-compatible and non-streaming versions
11330 // cannot be mixed.
11331 if (Diff
& (FunctionType::SME_PStateSMEnabledMask
|
11332 FunctionType::SME_PStateSMCompatibleMask
))
11333 ArmStreamingCCMismatched
= true;
11336 if (OldTypeInfo
.getCC() != NewTypeInfo
.getCC() || ArmStreamingCCMismatched
)
11337 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << CallingConv
;
11339 QualType OldReturnType
= OldType
->getReturnType();
11341 if (OldReturnType
!= NewReturnType
)
11342 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << ReturnType
;
11344 if (OldFD
->getConstexprKind() != NewFD
->getConstexprKind())
11345 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << ConstexprSpec
;
11347 if (OldFD
->isInlineSpecified() != NewFD
->isInlineSpecified())
11348 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << InlineSpec
;
11350 if (OldFD
->getFormalLinkage() != NewFD
->getFormalLinkage())
11351 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << Linkage
;
11353 if (!CLinkageMayDiffer
&& OldFD
->isExternC() != NewFD
->isExternC())
11354 return Diag(DiffDiagIDAt
.first
, DiffDiagIDAt
.second
) << LanguageLinkage
;
11356 if (CheckEquivalentExceptionSpec(OldFPT
, OldFD
->getLocation(), NewFPT
,
11357 NewFD
->getLocation()))
11363 static bool CheckMultiVersionAdditionalRules(Sema
&S
, const FunctionDecl
*OldFD
,
11364 const FunctionDecl
*NewFD
,
11366 MultiVersionKind MVKind
) {
11367 if (!S
.getASTContext().getTargetInfo().supportsMultiVersioning()) {
11368 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_not_supported
);
11370 S
.Diag(OldFD
->getLocation(), diag::note_previous_declaration
);
11374 bool IsCPUSpecificCPUDispatchMVKind
=
11375 MVKind
== MultiVersionKind::CPUDispatch
||
11376 MVKind
== MultiVersionKind::CPUSpecific
;
11378 if (CausesMV
&& OldFD
&&
11379 checkNonMultiVersionCompatAttributes(S
, OldFD
, NewFD
, MVKind
))
11382 if (checkNonMultiVersionCompatAttributes(S
, NewFD
, nullptr, MVKind
))
11385 // Only allow transition to MultiVersion if it hasn't been used.
11386 if (OldFD
&& CausesMV
&& OldFD
->isUsed(false)) {
11387 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_after_used
);
11388 S
.Diag(OldFD
->getLocation(), diag::note_previous_declaration
);
11392 return S
.areMultiversionVariantFunctionsCompatible(
11393 OldFD
, NewFD
, S
.PDiag(diag::err_multiversion_noproto
),
11394 PartialDiagnosticAt(NewFD
->getLocation(),
11395 S
.PDiag(diag::note_multiversioning_caused_here
)),
11396 PartialDiagnosticAt(NewFD
->getLocation(),
11397 S
.PDiag(diag::err_multiversion_doesnt_support
)
11398 << static_cast<unsigned>(MVKind
)),
11399 PartialDiagnosticAt(NewFD
->getLocation(),
11400 S
.PDiag(diag::err_multiversion_diff
)),
11401 /*TemplatesSupported=*/false,
11402 /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVKind
,
11403 /*CLinkageMayDiffer=*/false);
11406 /// Check the validity of a multiversion function declaration that is the
11407 /// first of its kind. Also sets the multiversion'ness' of the function itself.
11409 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11411 /// Returns true if there was an error, false otherwise.
11412 static bool CheckMultiVersionFirstFunction(Sema
&S
, FunctionDecl
*FD
) {
11413 MultiVersionKind MVKind
= FD
->getMultiVersionKind();
11414 assert(MVKind
!= MultiVersionKind::None
&&
11415 "Function lacks multiversion attribute");
11416 const auto *TA
= FD
->getAttr
<TargetAttr
>();
11417 const auto *TVA
= FD
->getAttr
<TargetVersionAttr
>();
11418 // The target attribute only causes MV if this declaration is the default,
11419 // otherwise it is treated as a normal function.
11420 if (TA
&& !TA
->isDefaultVersion())
11423 if ((TA
|| TVA
) && CheckMultiVersionValue(S
, FD
)) {
11424 FD
->setInvalidDecl();
11428 if (CheckMultiVersionAdditionalRules(S
, nullptr, FD
, true, MVKind
)) {
11429 FD
->setInvalidDecl();
11433 FD
->setIsMultiVersion();
11437 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl
*FD
) {
11438 for (const Decl
*D
= FD
->getPreviousDecl(); D
; D
= D
->getPreviousDecl()) {
11439 if (D
->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None
)
11446 static void patchDefaultTargetVersion(FunctionDecl
*From
, FunctionDecl
*To
) {
11447 if (!From
->getASTContext().getTargetInfo().getTriple().isAArch64() &&
11448 !From
->getASTContext().getTargetInfo().getTriple().isRISCV())
11451 MultiVersionKind MVKindFrom
= From
->getMultiVersionKind();
11452 MultiVersionKind MVKindTo
= To
->getMultiVersionKind();
11454 if (MVKindTo
== MultiVersionKind::None
&&
11455 (MVKindFrom
== MultiVersionKind::TargetVersion
||
11456 MVKindFrom
== MultiVersionKind::TargetClones
))
11457 To
->addAttr(TargetVersionAttr::CreateImplicit(
11458 To
->getASTContext(), "default", To
->getSourceRange()));
11461 static bool CheckDeclarationCausesMultiVersioning(Sema
&S
, FunctionDecl
*OldFD
,
11462 FunctionDecl
*NewFD
,
11463 bool &Redeclaration
,
11464 NamedDecl
*&OldDecl
,
11465 LookupResult
&Previous
) {
11466 assert(!OldFD
->isMultiVersion() && "Unexpected MultiVersion");
11468 const auto *NewTA
= NewFD
->getAttr
<TargetAttr
>();
11469 const auto *OldTA
= OldFD
->getAttr
<TargetAttr
>();
11470 const auto *NewTVA
= NewFD
->getAttr
<TargetVersionAttr
>();
11471 const auto *OldTVA
= OldFD
->getAttr
<TargetVersionAttr
>();
11473 assert((NewTA
|| NewTVA
) && "Excpecting target or target_version attribute");
11475 // The definitions should be allowed in any order. If we have discovered
11476 // a new target version and the preceeding was the default, then add the
11477 // corresponding attribute to it.
11478 patchDefaultTargetVersion(NewFD
, OldFD
);
11480 // If the old decl is NOT MultiVersioned yet, and we don't cause that
11481 // to change, this is a simple redeclaration.
11482 if (NewTA
&& !NewTA
->isDefaultVersion() &&
11483 (!OldTA
|| OldTA
->getFeaturesStr() == NewTA
->getFeaturesStr()))
11486 // Otherwise, this decl causes MultiVersioning.
11487 if (CheckMultiVersionAdditionalRules(S
, OldFD
, NewFD
, true,
11488 NewTVA
? MultiVersionKind::TargetVersion
11489 : MultiVersionKind::Target
)) {
11490 NewFD
->setInvalidDecl();
11494 if (CheckMultiVersionValue(S
, NewFD
)) {
11495 NewFD
->setInvalidDecl();
11499 // If this is 'default', permit the forward declaration.
11500 if ((NewTA
&& NewTA
->isDefaultVersion() && !OldTA
) ||
11501 (NewTVA
&& NewTVA
->isDefaultVersion() && !OldTVA
)) {
11502 Redeclaration
= true;
11504 OldFD
->setIsMultiVersion();
11505 NewFD
->setIsMultiVersion();
11509 if ((OldTA
|| OldTVA
) && CheckMultiVersionValue(S
, OldFD
)) {
11510 S
.Diag(NewFD
->getLocation(), diag::note_multiversioning_caused_here
);
11511 NewFD
->setInvalidDecl();
11516 ParsedTargetAttr OldParsed
=
11517 S
.getASTContext().getTargetInfo().parseTargetAttr(
11518 OldTA
->getFeaturesStr());
11519 llvm::sort(OldParsed
.Features
);
11520 ParsedTargetAttr NewParsed
=
11521 S
.getASTContext().getTargetInfo().parseTargetAttr(
11522 NewTA
->getFeaturesStr());
11523 // Sort order doesn't matter, it just needs to be consistent.
11524 llvm::sort(NewParsed
.Features
);
11525 if (OldParsed
== NewParsed
) {
11526 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_duplicate
);
11527 S
.Diag(OldFD
->getLocation(), diag::note_previous_declaration
);
11528 NewFD
->setInvalidDecl();
11533 for (const auto *FD
: OldFD
->redecls()) {
11534 const auto *CurTA
= FD
->getAttr
<TargetAttr
>();
11535 const auto *CurTVA
= FD
->getAttr
<TargetVersionAttr
>();
11536 // We allow forward declarations before ANY multiversioning attributes, but
11537 // nothing after the fact.
11538 if (PreviousDeclsHaveMultiVersionAttribute(FD
) &&
11539 ((NewTA
&& (!CurTA
|| CurTA
->isInherited())) ||
11540 (NewTVA
&& (!CurTVA
|| CurTVA
->isInherited())))) {
11541 S
.Diag(FD
->getLocation(), diag::err_multiversion_required_in_redecl
)
11542 << (NewTA
? 0 : 2);
11543 S
.Diag(NewFD
->getLocation(), diag::note_multiversioning_caused_here
);
11544 NewFD
->setInvalidDecl();
11549 OldFD
->setIsMultiVersion();
11550 NewFD
->setIsMultiVersion();
11551 Redeclaration
= false;
11557 static bool MultiVersionTypesCompatible(FunctionDecl
*Old
, FunctionDecl
*New
) {
11558 MultiVersionKind OldKind
= Old
->getMultiVersionKind();
11559 MultiVersionKind NewKind
= New
->getMultiVersionKind();
11561 if (OldKind
== NewKind
|| OldKind
== MultiVersionKind::None
||
11562 NewKind
== MultiVersionKind::None
)
11565 if (Old
->getASTContext().getTargetInfo().getTriple().isAArch64()) {
11567 case MultiVersionKind::TargetVersion
:
11568 return NewKind
== MultiVersionKind::TargetClones
;
11569 case MultiVersionKind::TargetClones
:
11570 return NewKind
== MultiVersionKind::TargetVersion
;
11576 case MultiVersionKind::CPUDispatch
:
11577 return NewKind
== MultiVersionKind::CPUSpecific
;
11578 case MultiVersionKind::CPUSpecific
:
11579 return NewKind
== MultiVersionKind::CPUDispatch
;
11586 /// Check the validity of a new function declaration being added to an existing
11587 /// multiversioned declaration collection.
11588 static bool CheckMultiVersionAdditionalDecl(
11589 Sema
&S
, FunctionDecl
*OldFD
, FunctionDecl
*NewFD
,
11590 const CPUDispatchAttr
*NewCPUDisp
, const CPUSpecificAttr
*NewCPUSpec
,
11591 const TargetClonesAttr
*NewClones
, bool &Redeclaration
, NamedDecl
*&OldDecl
,
11592 LookupResult
&Previous
) {
11594 // Disallow mixing of multiversioning types.
11595 if (!MultiVersionTypesCompatible(OldFD
, NewFD
)) {
11596 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_types_mixed
);
11597 S
.Diag(OldFD
->getLocation(), diag::note_previous_declaration
);
11598 NewFD
->setInvalidDecl();
11602 // Add the default target_version attribute if it's missing.
11603 patchDefaultTargetVersion(OldFD
, NewFD
);
11604 patchDefaultTargetVersion(NewFD
, OldFD
);
11606 const auto *NewTA
= NewFD
->getAttr
<TargetAttr
>();
11607 const auto *NewTVA
= NewFD
->getAttr
<TargetVersionAttr
>();
11608 MultiVersionKind NewMVKind
= NewFD
->getMultiVersionKind();
11609 [[maybe_unused
]] MultiVersionKind OldMVKind
= OldFD
->getMultiVersionKind();
11611 ParsedTargetAttr NewParsed
;
11613 NewParsed
= S
.getASTContext().getTargetInfo().parseTargetAttr(
11614 NewTA
->getFeaturesStr());
11615 llvm::sort(NewParsed
.Features
);
11617 llvm::SmallVector
<StringRef
, 8> NewFeats
;
11619 NewTVA
->getFeatures(NewFeats
);
11620 llvm::sort(NewFeats
);
11623 bool UseMemberUsingDeclRules
=
11624 S
.CurContext
->isRecord() && !NewFD
->getFriendObjectKind();
11626 bool MayNeedOverloadableChecks
=
11627 AllowOverloadingOfFunction(Previous
, S
.Context
, NewFD
);
11629 // Next, check ALL non-invalid non-overloads to see if this is a redeclaration
11630 // of a previous member of the MultiVersion set.
11631 for (NamedDecl
*ND
: Previous
) {
11632 FunctionDecl
*CurFD
= ND
->getAsFunction();
11633 if (!CurFD
|| CurFD
->isInvalidDecl())
11635 if (MayNeedOverloadableChecks
&&
11636 S
.IsOverload(NewFD
, CurFD
, UseMemberUsingDeclRules
))
11639 switch (NewMVKind
) {
11640 case MultiVersionKind::None
:
11641 assert(OldMVKind
== MultiVersionKind::TargetClones
&&
11642 "Only target_clones can be omitted in subsequent declarations");
11644 case MultiVersionKind::Target
: {
11645 const auto *CurTA
= CurFD
->getAttr
<TargetAttr
>();
11646 if (CurTA
->getFeaturesStr() == NewTA
->getFeaturesStr()) {
11647 NewFD
->setIsMultiVersion();
11648 Redeclaration
= true;
11653 ParsedTargetAttr CurParsed
=
11654 S
.getASTContext().getTargetInfo().parseTargetAttr(
11655 CurTA
->getFeaturesStr());
11656 llvm::sort(CurParsed
.Features
);
11657 if (CurParsed
== NewParsed
) {
11658 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_duplicate
);
11659 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11660 NewFD
->setInvalidDecl();
11665 case MultiVersionKind::TargetVersion
: {
11666 if (const auto *CurTVA
= CurFD
->getAttr
<TargetVersionAttr
>()) {
11667 if (CurTVA
->getName() == NewTVA
->getName()) {
11668 NewFD
->setIsMultiVersion();
11669 Redeclaration
= true;
11673 llvm::SmallVector
<StringRef
, 8> CurFeats
;
11674 CurTVA
->getFeatures(CurFeats
);
11675 llvm::sort(CurFeats
);
11677 if (CurFeats
== NewFeats
) {
11678 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_duplicate
);
11679 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11680 NewFD
->setInvalidDecl();
11683 } else if (const auto *CurClones
= CurFD
->getAttr
<TargetClonesAttr
>()) {
11685 if (NewFeats
.empty())
11688 for (unsigned I
= 0; I
< CurClones
->featuresStrs_size(); ++I
) {
11689 llvm::SmallVector
<StringRef
, 8> CurFeats
;
11690 CurClones
->getFeatures(CurFeats
, I
);
11691 llvm::sort(CurFeats
);
11693 if (CurFeats
== NewFeats
) {
11694 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_duplicate
);
11695 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11696 NewFD
->setInvalidDecl();
11703 case MultiVersionKind::TargetClones
: {
11704 assert(NewClones
&& "MultiVersionKind does not match attribute type");
11705 if (const auto *CurClones
= CurFD
->getAttr
<TargetClonesAttr
>()) {
11706 if (CurClones
->featuresStrs_size() != NewClones
->featuresStrs_size() ||
11707 !std::equal(CurClones
->featuresStrs_begin(),
11708 CurClones
->featuresStrs_end(),
11709 NewClones
->featuresStrs_begin())) {
11710 S
.Diag(NewFD
->getLocation(), diag::err_target_clone_doesnt_match
);
11711 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11712 NewFD
->setInvalidDecl();
11715 } else if (const auto *CurTVA
= CurFD
->getAttr
<TargetVersionAttr
>()) {
11716 llvm::SmallVector
<StringRef
, 8> CurFeats
;
11717 CurTVA
->getFeatures(CurFeats
);
11718 llvm::sort(CurFeats
);
11721 if (CurFeats
.empty())
11724 for (unsigned I
= 0; I
< NewClones
->featuresStrs_size(); ++I
) {
11726 NewClones
->getFeatures(NewFeats
, I
);
11727 llvm::sort(NewFeats
);
11729 if (CurFeats
== NewFeats
) {
11730 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_duplicate
);
11731 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11732 NewFD
->setInvalidDecl();
11738 Redeclaration
= true;
11740 NewFD
->setIsMultiVersion();
11743 case MultiVersionKind::CPUSpecific
:
11744 case MultiVersionKind::CPUDispatch
: {
11745 const auto *CurCPUSpec
= CurFD
->getAttr
<CPUSpecificAttr
>();
11746 const auto *CurCPUDisp
= CurFD
->getAttr
<CPUDispatchAttr
>();
11747 // Handle CPUDispatch/CPUSpecific versions.
11748 // Only 1 CPUDispatch function is allowed, this will make it go through
11749 // the redeclaration errors.
11750 if (NewMVKind
== MultiVersionKind::CPUDispatch
&&
11751 CurFD
->hasAttr
<CPUDispatchAttr
>()) {
11752 if (CurCPUDisp
->cpus_size() == NewCPUDisp
->cpus_size() &&
11754 CurCPUDisp
->cpus_begin(), CurCPUDisp
->cpus_end(),
11755 NewCPUDisp
->cpus_begin(),
11756 [](const IdentifierInfo
*Cur
, const IdentifierInfo
*New
) {
11757 return Cur
->getName() == New
->getName();
11759 NewFD
->setIsMultiVersion();
11760 Redeclaration
= true;
11765 // If the declarations don't match, this is an error condition.
11766 S
.Diag(NewFD
->getLocation(), diag::err_cpu_dispatch_mismatch
);
11767 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11768 NewFD
->setInvalidDecl();
11771 if (NewMVKind
== MultiVersionKind::CPUSpecific
&& CurCPUSpec
) {
11772 if (CurCPUSpec
->cpus_size() == NewCPUSpec
->cpus_size() &&
11774 CurCPUSpec
->cpus_begin(), CurCPUSpec
->cpus_end(),
11775 NewCPUSpec
->cpus_begin(),
11776 [](const IdentifierInfo
*Cur
, const IdentifierInfo
*New
) {
11777 return Cur
->getName() == New
->getName();
11779 NewFD
->setIsMultiVersion();
11780 Redeclaration
= true;
11785 // Only 1 version of CPUSpecific is allowed for each CPU.
11786 for (const IdentifierInfo
*CurII
: CurCPUSpec
->cpus()) {
11787 for (const IdentifierInfo
*NewII
: NewCPUSpec
->cpus()) {
11788 if (CurII
== NewII
) {
11789 S
.Diag(NewFD
->getLocation(), diag::err_cpu_specific_multiple_defs
)
11791 S
.Diag(CurFD
->getLocation(), diag::note_previous_declaration
);
11792 NewFD
->setInvalidDecl();
11803 // Else, this is simply a non-redecl case. Checking the 'value' is only
11804 // necessary in the Target case, since The CPUSpecific/Dispatch cases are
11805 // handled in the attribute adding step.
11806 if ((NewTA
|| NewTVA
) && CheckMultiVersionValue(S
, NewFD
)) {
11807 NewFD
->setInvalidDecl();
11811 if (CheckMultiVersionAdditionalRules(S
, OldFD
, NewFD
,
11812 !OldFD
->isMultiVersion(), NewMVKind
)) {
11813 NewFD
->setInvalidDecl();
11817 // Permit forward declarations in the case where these two are compatible.
11818 if (!OldFD
->isMultiVersion()) {
11819 OldFD
->setIsMultiVersion();
11820 NewFD
->setIsMultiVersion();
11821 Redeclaration
= true;
11826 NewFD
->setIsMultiVersion();
11827 Redeclaration
= false;
11833 /// Check the validity of a mulitversion function declaration.
11834 /// Also sets the multiversion'ness' of the function itself.
11836 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11838 /// Returns true if there was an error, false otherwise.
11839 static bool CheckMultiVersionFunction(Sema
&S
, FunctionDecl
*NewFD
,
11840 bool &Redeclaration
, NamedDecl
*&OldDecl
,
11841 LookupResult
&Previous
) {
11842 const TargetInfo
&TI
= S
.getASTContext().getTargetInfo();
11844 // Check if FMV is disabled.
11845 if (TI
.getTriple().isAArch64() && !TI
.hasFeature("fmv"))
11848 const auto *NewTA
= NewFD
->getAttr
<TargetAttr
>();
11849 const auto *NewTVA
= NewFD
->getAttr
<TargetVersionAttr
>();
11850 const auto *NewCPUDisp
= NewFD
->getAttr
<CPUDispatchAttr
>();
11851 const auto *NewCPUSpec
= NewFD
->getAttr
<CPUSpecificAttr
>();
11852 const auto *NewClones
= NewFD
->getAttr
<TargetClonesAttr
>();
11853 MultiVersionKind MVKind
= NewFD
->getMultiVersionKind();
11855 // Main isn't allowed to become a multiversion function, however it IS
11856 // permitted to have 'main' be marked with the 'target' optimization hint,
11857 // for 'target_version' only default is allowed.
11858 if (NewFD
->isMain()) {
11859 if (MVKind
!= MultiVersionKind::None
&&
11860 !(MVKind
== MultiVersionKind::Target
&& !NewTA
->isDefaultVersion()) &&
11861 !(MVKind
== MultiVersionKind::TargetVersion
&&
11862 NewTVA
->isDefaultVersion())) {
11863 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_not_allowed_on_main
);
11864 NewFD
->setInvalidDecl();
11870 // Target attribute on AArch64 is not used for multiversioning
11871 if (NewTA
&& TI
.getTriple().isAArch64())
11874 // Target attribute on RISCV is not used for multiversioning
11875 if (NewTA
&& TI
.getTriple().isRISCV())
11878 if (!OldDecl
|| !OldDecl
->getAsFunction() ||
11879 !OldDecl
->getDeclContext()->getRedeclContext()->Equals(
11880 NewFD
->getDeclContext()->getRedeclContext())) {
11881 // If there's no previous declaration, AND this isn't attempting to cause
11882 // multiversioning, this isn't an error condition.
11883 if (MVKind
== MultiVersionKind::None
)
11885 return CheckMultiVersionFirstFunction(S
, NewFD
);
11888 FunctionDecl
*OldFD
= OldDecl
->getAsFunction();
11890 if (!OldFD
->isMultiVersion() && MVKind
== MultiVersionKind::None
)
11893 // Multiversioned redeclarations aren't allowed to omit the attribute, except
11894 // for target_clones and target_version.
11895 if (OldFD
->isMultiVersion() && MVKind
== MultiVersionKind::None
&&
11896 OldFD
->getMultiVersionKind() != MultiVersionKind::TargetClones
&&
11897 OldFD
->getMultiVersionKind() != MultiVersionKind::TargetVersion
) {
11898 S
.Diag(NewFD
->getLocation(), diag::err_multiversion_required_in_redecl
)
11899 << (OldFD
->getMultiVersionKind() != MultiVersionKind::Target
);
11900 NewFD
->setInvalidDecl();
11904 if (!OldFD
->isMultiVersion()) {
11906 case MultiVersionKind::Target
:
11907 case MultiVersionKind::TargetVersion
:
11908 return CheckDeclarationCausesMultiVersioning(
11909 S
, OldFD
, NewFD
, Redeclaration
, OldDecl
, Previous
);
11910 case MultiVersionKind::TargetClones
:
11911 if (OldFD
->isUsed(false)) {
11912 NewFD
->setInvalidDecl();
11913 return S
.Diag(NewFD
->getLocation(), diag::err_multiversion_after_used
);
11915 OldFD
->setIsMultiVersion();
11918 case MultiVersionKind::CPUDispatch
:
11919 case MultiVersionKind::CPUSpecific
:
11920 case MultiVersionKind::None
:
11925 // At this point, we have a multiversion function decl (in OldFD) AND an
11926 // appropriate attribute in the current function decl. Resolve that these are
11927 // still compatible with previous declarations.
11928 return CheckMultiVersionAdditionalDecl(S
, OldFD
, NewFD
, NewCPUDisp
,
11929 NewCPUSpec
, NewClones
, Redeclaration
,
11930 OldDecl
, Previous
);
11933 static void CheckConstPureAttributesUsage(Sema
&S
, FunctionDecl
*NewFD
) {
11934 bool IsPure
= NewFD
->hasAttr
<PureAttr
>();
11935 bool IsConst
= NewFD
->hasAttr
<ConstAttr
>();
11937 // If there are no pure or const attributes, there's nothing to check.
11938 if (!IsPure
&& !IsConst
)
11941 // If the function is marked both pure and const, we retain the const
11942 // attribute because it makes stronger guarantees than the pure attribute, and
11943 // we drop the pure attribute explicitly to prevent later confusion about
11945 if (IsPure
&& IsConst
) {
11946 S
.Diag(NewFD
->getLocation(), diag::warn_const_attr_with_pure_attr
);
11947 NewFD
->dropAttrs
<PureAttr
>();
11950 // Constructors and destructors are functions which return void, so are
11951 // handled here as well.
11952 if (NewFD
->getReturnType()->isVoidType()) {
11953 S
.Diag(NewFD
->getLocation(), diag::warn_pure_function_returns_void
)
11955 NewFD
->dropAttrs
<PureAttr
, ConstAttr
>();
11959 bool Sema::CheckFunctionDeclaration(Scope
*S
, FunctionDecl
*NewFD
,
11960 LookupResult
&Previous
,
11961 bool IsMemberSpecialization
,
11963 assert(!NewFD
->getReturnType()->isVariablyModifiedType() &&
11964 "Variably modified return types are not handled here");
11966 // Determine whether the type of this function should be merged with
11967 // a previous visible declaration. This never happens for functions in C++,
11968 // and always happens in C if the previous declaration was visible.
11969 bool MergeTypeWithPrevious
= !getLangOpts().CPlusPlus
&&
11970 !Previous
.isShadowed();
11972 bool Redeclaration
= false;
11973 NamedDecl
*OldDecl
= nullptr;
11974 bool MayNeedOverloadableChecks
= false;
11976 inferLifetimeCaptureByAttribute(NewFD
);
11977 // Merge or overload the declaration with an existing declaration of
11978 // the same name, if appropriate.
11979 if (!Previous
.empty()) {
11980 // Determine whether NewFD is an overload of PrevDecl or
11981 // a declaration that requires merging. If it's an overload,
11982 // there's no more work to do here; we'll just add the new
11983 // function to the scope.
11984 if (!AllowOverloadingOfFunction(Previous
, Context
, NewFD
)) {
11985 NamedDecl
*Candidate
= Previous
.getRepresentativeDecl();
11986 if (shouldLinkPossiblyHiddenDecl(Candidate
, NewFD
)) {
11987 Redeclaration
= true;
11988 OldDecl
= Candidate
;
11991 MayNeedOverloadableChecks
= true;
11992 switch (CheckOverload(S
, NewFD
, Previous
, OldDecl
,
11993 /*NewIsUsingDecl*/ false)) {
11995 Redeclaration
= true;
11998 case Ovl_NonFunction
:
11999 Redeclaration
= true;
12003 Redeclaration
= false;
12009 // Check for a previous extern "C" declaration with this name.
12010 if (!Redeclaration
&&
12011 checkForConflictWithNonVisibleExternC(*this, NewFD
, Previous
)) {
12012 if (!Previous
.empty()) {
12013 // This is an extern "C" declaration with the same name as a previous
12014 // declaration, and thus redeclares that entity...
12015 Redeclaration
= true;
12016 OldDecl
= Previous
.getFoundDecl();
12017 MergeTypeWithPrevious
= false;
12019 // ... except in the presence of __attribute__((overloadable)).
12020 if (OldDecl
->hasAttr
<OverloadableAttr
>() ||
12021 NewFD
->hasAttr
<OverloadableAttr
>()) {
12022 if (IsOverload(NewFD
, cast
<FunctionDecl
>(OldDecl
), false)) {
12023 MayNeedOverloadableChecks
= true;
12024 Redeclaration
= false;
12031 if (CheckMultiVersionFunction(*this, NewFD
, Redeclaration
, OldDecl
, Previous
))
12032 return Redeclaration
;
12034 // PPC MMA non-pointer types are not allowed as function return types.
12035 if (Context
.getTargetInfo().getTriple().isPPC64() &&
12036 PPC().CheckPPCMMAType(NewFD
->getReturnType(), NewFD
->getLocation())) {
12037 NewFD
->setInvalidDecl();
12040 CheckConstPureAttributesUsage(*this, NewFD
);
12042 // C++ [dcl.spec.auto.general]p12:
12043 // Return type deduction for a templated function with a placeholder in its
12044 // declared type occurs when the definition is instantiated even if the
12045 // function body contains a return statement with a non-type-dependent
12048 // C++ [temp.dep.expr]p3:
12049 // An id-expression is type-dependent if it is a template-id that is not a
12050 // concept-id and is dependent; or if its terminal name is:
12052 // - associated by name lookup with one or more declarations of member
12053 // functions of a class that is the current instantiation declared with a
12054 // return type that contains a placeholder type,
12057 // If this is a templated function with a placeholder in its return type,
12058 // make the placeholder type dependent since it won't be deduced until the
12059 // definition is instantiated. We do this here because it needs to happen
12060 // for implicitly instantiated member functions/member function templates.
12061 if (getLangOpts().CPlusPlus14
&&
12062 (NewFD
->isDependentContext() &&
12063 NewFD
->getReturnType()->isUndeducedType())) {
12064 const FunctionProtoType
*FPT
=
12065 NewFD
->getType()->castAs
<FunctionProtoType
>();
12066 QualType NewReturnType
= SubstAutoTypeDependent(FPT
->getReturnType());
12067 NewFD
->setType(Context
.getFunctionType(NewReturnType
, FPT
->getParamTypes(),
12068 FPT
->getExtProtoInfo()));
12071 // C++11 [dcl.constexpr]p8:
12072 // A constexpr specifier for a non-static member function that is not
12073 // a constructor declares that member function to be const.
12075 // This needs to be delayed until we know whether this is an out-of-line
12076 // definition of a static member function.
12078 // This rule is not present in C++1y, so we produce a backwards
12079 // compatibility warning whenever it happens in C++11.
12080 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(NewFD
);
12081 if (!getLangOpts().CPlusPlus14
&& MD
&& MD
->isConstexpr() &&
12082 !MD
->isStatic() && !isa
<CXXConstructorDecl
>(MD
) &&
12083 !isa
<CXXDestructorDecl
>(MD
) && !MD
->getMethodQualifiers().hasConst()) {
12084 CXXMethodDecl
*OldMD
= nullptr;
12086 OldMD
= dyn_cast_or_null
<CXXMethodDecl
>(OldDecl
->getAsFunction());
12087 if (!OldMD
|| !OldMD
->isStatic()) {
12088 const FunctionProtoType
*FPT
=
12089 MD
->getType()->castAs
<FunctionProtoType
>();
12090 FunctionProtoType::ExtProtoInfo EPI
= FPT
->getExtProtoInfo();
12091 EPI
.TypeQuals
.addConst();
12092 MD
->setType(Context
.getFunctionType(FPT
->getReturnType(),
12093 FPT
->getParamTypes(), EPI
));
12095 // Warn that we did this, if we're not performing template instantiation.
12096 // In that case, we'll have warned already when the template was defined.
12097 if (!inTemplateInstantiation()) {
12098 SourceLocation AddConstLoc
;
12099 if (FunctionTypeLoc FTL
= MD
->getTypeSourceInfo()->getTypeLoc()
12100 .IgnoreParens().getAs
<FunctionTypeLoc
>())
12101 AddConstLoc
= getLocForEndOfToken(FTL
.getRParenLoc());
12103 Diag(MD
->getLocation(), diag::warn_cxx14_compat_constexpr_not_const
)
12104 << FixItHint::CreateInsertion(AddConstLoc
, " const");
12109 if (Redeclaration
) {
12110 // NewFD and OldDecl represent declarations that need to be
12112 if (MergeFunctionDecl(NewFD
, OldDecl
, S
, MergeTypeWithPrevious
,
12114 NewFD
->setInvalidDecl();
12115 return Redeclaration
;
12119 Previous
.addDecl(OldDecl
);
12121 if (FunctionTemplateDecl
*OldTemplateDecl
=
12122 dyn_cast
<FunctionTemplateDecl
>(OldDecl
)) {
12123 auto *OldFD
= OldTemplateDecl
->getTemplatedDecl();
12124 FunctionTemplateDecl
*NewTemplateDecl
12125 = NewFD
->getDescribedFunctionTemplate();
12126 assert(NewTemplateDecl
&& "Template/non-template mismatch");
12128 // The call to MergeFunctionDecl above may have created some state in
12129 // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
12130 // can add it as a redeclaration.
12131 NewTemplateDecl
->mergePrevDecl(OldTemplateDecl
);
12133 NewFD
->setPreviousDeclaration(OldFD
);
12134 if (NewFD
->isCXXClassMember()) {
12135 NewFD
->setAccess(OldTemplateDecl
->getAccess());
12136 NewTemplateDecl
->setAccess(OldTemplateDecl
->getAccess());
12139 // If this is an explicit specialization of a member that is a function
12140 // template, mark it as a member specialization.
12141 if (IsMemberSpecialization
&&
12142 NewTemplateDecl
->getInstantiatedFromMemberTemplate()) {
12143 NewTemplateDecl
->setMemberSpecialization();
12144 assert(OldTemplateDecl
->isMemberSpecialization());
12145 // Explicit specializations of a member template do not inherit deleted
12146 // status from the parent member template that they are specializing.
12147 if (OldFD
->isDeleted()) {
12148 // FIXME: This assert will not hold in the presence of modules.
12149 assert(OldFD
->getCanonicalDecl() == OldFD
);
12150 // FIXME: We need an update record for this AST mutation.
12151 OldFD
->setDeletedAsWritten(false);
12156 if (shouldLinkDependentDeclWithPrevious(NewFD
, OldDecl
)) {
12157 auto *OldFD
= cast
<FunctionDecl
>(OldDecl
);
12158 // This needs to happen first so that 'inline' propagates.
12159 NewFD
->setPreviousDeclaration(OldFD
);
12160 if (NewFD
->isCXXClassMember())
12161 NewFD
->setAccess(OldFD
->getAccess());
12164 } else if (!getLangOpts().CPlusPlus
&& MayNeedOverloadableChecks
&&
12165 !NewFD
->getAttr
<OverloadableAttr
>()) {
12166 assert((Previous
.empty() ||
12167 llvm::any_of(Previous
,
12168 [](const NamedDecl
*ND
) {
12169 return ND
->hasAttr
<OverloadableAttr
>();
12171 "Non-redecls shouldn't happen without overloadable present");
12173 auto OtherUnmarkedIter
= llvm::find_if(Previous
, [](const NamedDecl
*ND
) {
12174 const auto *FD
= dyn_cast
<FunctionDecl
>(ND
);
12175 return FD
&& !FD
->hasAttr
<OverloadableAttr
>();
12178 if (OtherUnmarkedIter
!= Previous
.end()) {
12179 Diag(NewFD
->getLocation(),
12180 diag::err_attribute_overloadable_multiple_unmarked_overloads
);
12181 Diag((*OtherUnmarkedIter
)->getLocation(),
12182 diag::note_attribute_overloadable_prev_overload
)
12185 NewFD
->addAttr(OverloadableAttr::CreateImplicit(Context
));
12189 if (LangOpts
.OpenMP
)
12190 OpenMP().ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD
);
12192 if (NewFD
->hasAttr
<SYCLKernelEntryPointAttr
>())
12193 SYCL().CheckSYCLEntryPointFunctionDecl(NewFD
);
12195 // Semantic checking for this function declaration (in isolation).
12197 if (getLangOpts().CPlusPlus
) {
12198 // C++-specific checks.
12199 if (CXXConstructorDecl
*Constructor
= dyn_cast
<CXXConstructorDecl
>(NewFD
)) {
12200 CheckConstructor(Constructor
);
12201 } else if (CXXDestructorDecl
*Destructor
=
12202 dyn_cast
<CXXDestructorDecl
>(NewFD
)) {
12203 // We check here for invalid destructor names.
12204 // If we have a friend destructor declaration that is dependent, we can't
12205 // diagnose right away because cases like this are still valid:
12206 // template <class T> struct A { friend T::X::~Y(); };
12207 // struct B { struct Y { ~Y(); }; using X = Y; };
12208 // template struct A<B>;
12209 if (NewFD
->getFriendObjectKind() == Decl::FriendObjectKind::FOK_None
||
12210 !Destructor
->getFunctionObjectParameterType()->isDependentType()) {
12211 CXXRecordDecl
*Record
= Destructor
->getParent();
12212 QualType ClassType
= Context
.getTypeDeclType(Record
);
12214 DeclarationName Name
= Context
.DeclarationNames
.getCXXDestructorName(
12215 Context
.getCanonicalType(ClassType
));
12216 if (NewFD
->getDeclName() != Name
) {
12217 Diag(NewFD
->getLocation(), diag::err_destructor_name
);
12218 NewFD
->setInvalidDecl();
12219 return Redeclaration
;
12222 } else if (auto *Guide
= dyn_cast
<CXXDeductionGuideDecl
>(NewFD
)) {
12223 if (auto *TD
= Guide
->getDescribedFunctionTemplate())
12224 CheckDeductionGuideTemplate(TD
);
12226 // A deduction guide is not on the list of entities that can be
12227 // explicitly specialized.
12228 if (Guide
->getTemplateSpecializationKind() == TSK_ExplicitSpecialization
)
12229 Diag(Guide
->getBeginLoc(), diag::err_deduction_guide_specialized
)
12230 << /*explicit specialization*/ 1;
12233 // Find any virtual functions that this function overrides.
12234 if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(NewFD
)) {
12235 if (!Method
->isFunctionTemplateSpecialization() &&
12236 !Method
->getDescribedFunctionTemplate() &&
12237 Method
->isCanonicalDecl()) {
12238 AddOverriddenMethods(Method
->getParent(), Method
);
12240 if (Method
->isVirtual() && NewFD
->getTrailingRequiresClause())
12241 // C++2a [class.virtual]p6
12242 // A virtual method shall not have a requires-clause.
12243 Diag(NewFD
->getTrailingRequiresClause()->getBeginLoc(),
12244 diag::err_constrained_virtual_method
);
12246 if (Method
->isStatic())
12247 checkThisInStaticMemberFunctionType(Method
);
12250 if (CXXConversionDecl
*Conversion
= dyn_cast
<CXXConversionDecl
>(NewFD
))
12251 ActOnConversionDeclarator(Conversion
);
12253 // Extra checking for C++ overloaded operators (C++ [over.oper]).
12254 if (NewFD
->isOverloadedOperator() &&
12255 CheckOverloadedOperatorDeclaration(NewFD
)) {
12256 NewFD
->setInvalidDecl();
12257 return Redeclaration
;
12260 // Extra checking for C++0x literal operators (C++0x [over.literal]).
12261 if (NewFD
->getLiteralIdentifier() &&
12262 CheckLiteralOperatorDeclaration(NewFD
)) {
12263 NewFD
->setInvalidDecl();
12264 return Redeclaration
;
12267 // In C++, check default arguments now that we have merged decls. Unless
12268 // the lexical context is the class, because in this case this is done
12269 // during delayed parsing anyway.
12270 if (!CurContext
->isRecord())
12271 CheckCXXDefaultArguments(NewFD
);
12273 // If this function is declared as being extern "C", then check to see if
12274 // the function returns a UDT (class, struct, or union type) that is not C
12275 // compatible, and if it does, warn the user.
12276 // But, issue any diagnostic on the first declaration only.
12277 if (Previous
.empty() && NewFD
->isExternC()) {
12278 QualType R
= NewFD
->getReturnType();
12279 if (R
->isIncompleteType() && !R
->isVoidType())
12280 Diag(NewFD
->getLocation(), diag::warn_return_value_udt_incomplete
)
12282 else if (!R
.isPODType(Context
) && !R
->isVoidType() &&
12283 !R
->isObjCObjectPointerType())
12284 Diag(NewFD
->getLocation(), diag::warn_return_value_udt
) << NewFD
<< R
;
12287 // C++1z [dcl.fct]p6:
12288 // [...] whether the function has a non-throwing exception-specification
12289 // [is] part of the function type
12291 // This results in an ABI break between C++14 and C++17 for functions whose
12292 // declared type includes an exception-specification in a parameter or
12293 // return type. (Exception specifications on the function itself are OK in
12294 // most cases, and exception specifications are not permitted in most other
12295 // contexts where they could make it into a mangling.)
12296 if (!getLangOpts().CPlusPlus17
&& !NewFD
->getPrimaryTemplate()) {
12297 auto HasNoexcept
= [&](QualType T
) -> bool {
12298 // Strip off declarator chunks that could be between us and a function
12299 // type. We don't need to look far, exception specifications are very
12300 // restricted prior to C++17.
12301 if (auto *RT
= T
->getAs
<ReferenceType
>())
12302 T
= RT
->getPointeeType();
12303 else if (T
->isAnyPointerType())
12304 T
= T
->getPointeeType();
12305 else if (auto *MPT
= T
->getAs
<MemberPointerType
>())
12306 T
= MPT
->getPointeeType();
12307 if (auto *FPT
= T
->getAs
<FunctionProtoType
>())
12308 if (FPT
->isNothrow())
12313 auto *FPT
= NewFD
->getType()->castAs
<FunctionProtoType
>();
12314 bool AnyNoexcept
= HasNoexcept(FPT
->getReturnType());
12315 for (QualType T
: FPT
->param_types())
12316 AnyNoexcept
|= HasNoexcept(T
);
12318 Diag(NewFD
->getLocation(),
12319 diag::warn_cxx17_compat_exception_spec_in_signature
)
12323 if (!Redeclaration
&& LangOpts
.CUDA
) {
12324 bool IsKernel
= NewFD
->hasAttr
<CUDAGlobalAttr
>();
12325 for (auto *Parm
: NewFD
->parameters()) {
12326 if (!Parm
->getType()->isDependentType() &&
12327 Parm
->hasAttr
<CUDAGridConstantAttr
>() &&
12328 !(IsKernel
&& Parm
->getType().isConstQualified()))
12329 Diag(Parm
->getAttr
<CUDAGridConstantAttr
>()->getLocation(),
12330 diag::err_cuda_grid_constant_not_allowed
);
12332 CUDA().checkTargetOverload(NewFD
, Previous
);
12336 if (DeclIsDefn
&& Context
.getTargetInfo().getTriple().isAArch64())
12337 ARM().CheckSMEFunctionDefAttributes(NewFD
);
12339 return Redeclaration
;
12342 void Sema::CheckMain(FunctionDecl
*FD
, const DeclSpec
&DS
) {
12343 // [basic.start.main]p3
12344 // The main function shall not be declared with a linkage-specification.
12345 if (FD
->isExternCContext() ||
12346 (FD
->isExternCXXContext() &&
12347 FD
->getDeclContext()->getRedeclContext()->isTranslationUnit()))
12348 Diag(FD
->getLocation(), diag::ext_main_invalid_linkage_specification
)
12349 << FD
->getLanguageLinkage();
12351 // C++11 [basic.start.main]p3:
12352 // A program that [...] declares main to be inline, static or
12353 // constexpr is ill-formed.
12354 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
12355 // appear in a declaration of main.
12356 // static main is not an error under C99, but we should warn about it.
12357 // We accept _Noreturn main as an extension.
12358 if (FD
->getStorageClass() == SC_Static
)
12359 Diag(DS
.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
12360 ? diag::err_static_main
: diag::warn_static_main
)
12361 << FixItHint::CreateRemoval(DS
.getStorageClassSpecLoc());
12362 if (FD
->isInlineSpecified())
12363 Diag(DS
.getInlineSpecLoc(), diag::err_inline_main
)
12364 << FixItHint::CreateRemoval(DS
.getInlineSpecLoc());
12365 if (DS
.isNoreturnSpecified()) {
12366 SourceLocation NoreturnLoc
= DS
.getNoreturnSpecLoc();
12367 SourceRange
NoreturnRange(NoreturnLoc
, getLocForEndOfToken(NoreturnLoc
));
12368 Diag(NoreturnLoc
, diag::ext_noreturn_main
);
12369 Diag(NoreturnLoc
, diag::note_main_remove_noreturn
)
12370 << FixItHint::CreateRemoval(NoreturnRange
);
12372 if (FD
->isConstexpr()) {
12373 Diag(DS
.getConstexprSpecLoc(), diag::err_constexpr_main
)
12374 << FD
->isConsteval()
12375 << FixItHint::CreateRemoval(DS
.getConstexprSpecLoc());
12376 FD
->setConstexprKind(ConstexprSpecKind::Unspecified
);
12379 if (getLangOpts().OpenCL
) {
12380 Diag(FD
->getLocation(), diag::err_opencl_no_main
)
12381 << FD
->hasAttr
<OpenCLKernelAttr
>();
12382 FD
->setInvalidDecl();
12386 // Functions named main in hlsl are default entries, but don't have specific
12387 // signatures they are required to conform to.
12388 if (getLangOpts().HLSL
)
12391 QualType T
= FD
->getType();
12392 assert(T
->isFunctionType() && "function decl is not of function type");
12393 const FunctionType
* FT
= T
->castAs
<FunctionType
>();
12395 // Set default calling convention for main()
12396 if (FT
->getCallConv() != CC_C
) {
12397 FT
= Context
.adjustFunctionType(FT
, FT
->getExtInfo().withCallingConv(CC_C
));
12398 FD
->setType(QualType(FT
, 0));
12399 T
= Context
.getCanonicalType(FD
->getType());
12402 if (getLangOpts().GNUMode
&& !getLangOpts().CPlusPlus
) {
12403 // In C with GNU extensions we allow main() to have non-integer return
12404 // type, but we should warn about the extension, and we disable the
12405 // implicit-return-zero rule.
12407 // GCC in C mode accepts qualified 'int'.
12408 if (Context
.hasSameUnqualifiedType(FT
->getReturnType(), Context
.IntTy
))
12409 FD
->setHasImplicitReturnZero(true);
12411 Diag(FD
->getTypeSpecStartLoc(), diag::ext_main_returns_nonint
);
12412 SourceRange RTRange
= FD
->getReturnTypeSourceRange();
12413 if (RTRange
.isValid())
12414 Diag(RTRange
.getBegin(), diag::note_main_change_return_type
)
12415 << FixItHint::CreateReplacement(RTRange
, "int");
12418 // In C and C++, main magically returns 0 if you fall off the end;
12419 // set the flag which tells us that.
12420 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
12422 // All the standards say that main() should return 'int'.
12423 if (Context
.hasSameType(FT
->getReturnType(), Context
.IntTy
))
12424 FD
->setHasImplicitReturnZero(true);
12426 // Otherwise, this is just a flat-out error.
12427 SourceRange RTRange
= FD
->getReturnTypeSourceRange();
12428 Diag(FD
->getTypeSpecStartLoc(), diag::err_main_returns_nonint
)
12429 << (RTRange
.isValid() ? FixItHint::CreateReplacement(RTRange
, "int")
12431 FD
->setInvalidDecl(true);
12435 // Treat protoless main() as nullary.
12436 if (isa
<FunctionNoProtoType
>(FT
)) return;
12438 const FunctionProtoType
* FTP
= cast
<const FunctionProtoType
>(FT
);
12439 unsigned nparams
= FTP
->getNumParams();
12440 assert(FD
->getNumParams() == nparams
);
12442 bool HasExtraParameters
= (nparams
> 3);
12444 if (FTP
->isVariadic()) {
12445 Diag(FD
->getLocation(), diag::ext_variadic_main
);
12446 // FIXME: if we had information about the location of the ellipsis, we
12447 // could add a FixIt hint to remove it as a parameter.
12450 // Darwin passes an undocumented fourth argument of type char**. If
12451 // other platforms start sprouting these, the logic below will start
12453 if (nparams
== 4 && Context
.getTargetInfo().getTriple().isOSDarwin())
12454 HasExtraParameters
= false;
12456 if (HasExtraParameters
) {
12457 Diag(FD
->getLocation(), diag::err_main_surplus_args
) << nparams
;
12458 FD
->setInvalidDecl(true);
12462 // FIXME: a lot of the following diagnostics would be improved
12463 // if we had some location information about types.
12466 Context
.getPointerType(Context
.getPointerType(Context
.CharTy
));
12467 QualType Expected
[] = { Context
.IntTy
, CharPP
, CharPP
, CharPP
};
12469 for (unsigned i
= 0; i
< nparams
; ++i
) {
12470 QualType AT
= FTP
->getParamType(i
);
12472 bool mismatch
= true;
12474 if (Context
.hasSameUnqualifiedType(AT
, Expected
[i
]))
12476 else if (Expected
[i
] == CharPP
) {
12477 // As an extension, the following forms are okay:
12479 // char const * const *
12482 QualifierCollector qs
;
12483 const PointerType
* PT
;
12484 if ((PT
= qs
.strip(AT
)->getAs
<PointerType
>()) &&
12485 (PT
= qs
.strip(PT
->getPointeeType())->getAs
<PointerType
>()) &&
12486 Context
.hasSameType(QualType(qs
.strip(PT
->getPointeeType()), 0),
12489 mismatch
= !qs
.empty();
12494 Diag(FD
->getLocation(), diag::err_main_arg_wrong
) << i
<< Expected
[i
];
12495 // TODO: suggest replacing given type with expected type
12496 FD
->setInvalidDecl(true);
12500 if (nparams
== 1 && !FD
->isInvalidDecl()) {
12501 Diag(FD
->getLocation(), diag::warn_main_one_arg
);
12504 if (!FD
->isInvalidDecl() && FD
->getDescribedFunctionTemplate()) {
12505 Diag(FD
->getLocation(), diag::err_mainlike_template_decl
) << FD
;
12506 FD
->setInvalidDecl();
12510 static bool isDefaultStdCall(FunctionDecl
*FD
, Sema
&S
) {
12512 // Default calling convention for main and wmain is __cdecl
12513 if (FD
->getName() == "main" || FD
->getName() == "wmain")
12516 // Default calling convention for MinGW is __cdecl
12517 const llvm::Triple
&T
= S
.Context
.getTargetInfo().getTriple();
12518 if (T
.isWindowsGNUEnvironment())
12521 // Default calling convention for WinMain, wWinMain and DllMain
12522 // is __stdcall on 32 bit Windows
12523 if (T
.isOSWindows() && T
.getArch() == llvm::Triple::x86
)
12529 void Sema::CheckMSVCRTEntryPoint(FunctionDecl
*FD
) {
12530 QualType T
= FD
->getType();
12531 assert(T
->isFunctionType() && "function decl is not of function type");
12532 const FunctionType
*FT
= T
->castAs
<FunctionType
>();
12534 // Set an implicit return of 'zero' if the function can return some integral,
12535 // enumeration, pointer or nullptr type.
12536 if (FT
->getReturnType()->isIntegralOrEnumerationType() ||
12537 FT
->getReturnType()->isAnyPointerType() ||
12538 FT
->getReturnType()->isNullPtrType())
12539 // DllMain is exempt because a return value of zero means it failed.
12540 if (FD
->getName() != "DllMain")
12541 FD
->setHasImplicitReturnZero(true);
12543 // Explicitly specified calling conventions are applied to MSVC entry points
12544 if (!hasExplicitCallingConv(T
)) {
12545 if (isDefaultStdCall(FD
, *this)) {
12546 if (FT
->getCallConv() != CC_X86StdCall
) {
12547 FT
= Context
.adjustFunctionType(
12548 FT
, FT
->getExtInfo().withCallingConv(CC_X86StdCall
));
12549 FD
->setType(QualType(FT
, 0));
12551 } else if (FT
->getCallConv() != CC_C
) {
12552 FT
= Context
.adjustFunctionType(FT
,
12553 FT
->getExtInfo().withCallingConv(CC_C
));
12554 FD
->setType(QualType(FT
, 0));
12558 if (!FD
->isInvalidDecl() && FD
->getDescribedFunctionTemplate()) {
12559 Diag(FD
->getLocation(), diag::err_mainlike_template_decl
) << FD
;
12560 FD
->setInvalidDecl();
12564 bool Sema::CheckForConstantInitializer(Expr
*Init
, unsigned DiagID
) {
12565 // FIXME: Need strict checking. In C89, we need to check for
12566 // any assignment, increment, decrement, function-calls, or
12567 // commas outside of a sizeof. In C99, it's the same list,
12568 // except that the aforementioned are allowed in unevaluated
12569 // expressions. Everything else falls under the
12570 // "may accept other forms of constant expressions" exception.
12572 // Regular C++ code will not end up here (exceptions: language extensions,
12573 // OpenCL C++ etc), so the constant expression rules there don't matter.
12574 if (Init
->isValueDependent()) {
12575 assert(Init
->containsErrors() &&
12576 "Dependent code should only occur in error-recovery path.");
12579 const Expr
*Culprit
;
12580 if (Init
->isConstantInitializer(Context
, false, &Culprit
))
12582 Diag(Culprit
->getExprLoc(), DiagID
) << Culprit
->getSourceRange();
12587 // Visits an initialization expression to see if OrigDecl is evaluated in
12588 // its own initialization and throws a warning if it does.
12589 class SelfReferenceChecker
12590 : public EvaluatedExprVisitor
<SelfReferenceChecker
> {
12595 bool isReferenceType
;
12598 llvm::SmallVector
<unsigned, 4> InitFieldIndex
;
12601 typedef EvaluatedExprVisitor
<SelfReferenceChecker
> Inherited
;
12603 SelfReferenceChecker(Sema
&S
, Decl
*OrigDecl
) : Inherited(S
.Context
),
12604 S(S
), OrigDecl(OrigDecl
) {
12606 isRecordType
= false;
12607 isReferenceType
= false;
12608 isInitList
= false;
12609 if (ValueDecl
*VD
= dyn_cast
<ValueDecl
>(OrigDecl
)) {
12610 isPODType
= VD
->getType().isPODType(S
.Context
);
12611 isRecordType
= VD
->getType()->isRecordType();
12612 isReferenceType
= VD
->getType()->isReferenceType();
12616 // For most expressions, just call the visitor. For initializer lists,
12617 // track the index of the field being initialized since fields are
12618 // initialized in order allowing use of previously initialized fields.
12619 void CheckExpr(Expr
*E
) {
12620 InitListExpr
*InitList
= dyn_cast
<InitListExpr
>(E
);
12626 // Track and increment the index here.
12628 InitFieldIndex
.push_back(0);
12629 for (auto *Child
: InitList
->children()) {
12630 CheckExpr(cast
<Expr
>(Child
));
12631 ++InitFieldIndex
.back();
12633 InitFieldIndex
.pop_back();
12636 // Returns true if MemberExpr is checked and no further checking is needed.
12637 // Returns false if additional checking is required.
12638 bool CheckInitListMemberExpr(MemberExpr
*E
, bool CheckReference
) {
12639 llvm::SmallVector
<FieldDecl
*, 4> Fields
;
12641 bool ReferenceField
= false;
12643 // Get the field members used.
12644 while (MemberExpr
*ME
= dyn_cast
<MemberExpr
>(Base
)) {
12645 FieldDecl
*FD
= dyn_cast
<FieldDecl
>(ME
->getMemberDecl());
12648 Fields
.push_back(FD
);
12649 if (FD
->getType()->isReferenceType())
12650 ReferenceField
= true;
12651 Base
= ME
->getBase()->IgnoreParenImpCasts();
12654 // Keep checking only if the base Decl is the same.
12655 DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(Base
);
12656 if (!DRE
|| DRE
->getDecl() != OrigDecl
)
12659 // A reference field can be bound to an unininitialized field.
12660 if (CheckReference
&& !ReferenceField
)
12663 // Convert FieldDecls to their index number.
12664 llvm::SmallVector
<unsigned, 4> UsedFieldIndex
;
12665 for (const FieldDecl
*I
: llvm::reverse(Fields
))
12666 UsedFieldIndex
.push_back(I
->getFieldIndex());
12668 // See if a warning is needed by checking the first difference in index
12669 // numbers. If field being used has index less than the field being
12670 // initialized, then the use is safe.
12671 for (auto UsedIter
= UsedFieldIndex
.begin(),
12672 UsedEnd
= UsedFieldIndex
.end(),
12673 OrigIter
= InitFieldIndex
.begin(),
12674 OrigEnd
= InitFieldIndex
.end();
12675 UsedIter
!= UsedEnd
&& OrigIter
!= OrigEnd
; ++UsedIter
, ++OrigIter
) {
12676 if (*UsedIter
< *OrigIter
)
12678 if (*UsedIter
> *OrigIter
)
12682 // TODO: Add a different warning which will print the field names.
12683 HandleDeclRefExpr(DRE
);
12687 // For most expressions, the cast is directly above the DeclRefExpr.
12688 // For conditional operators, the cast can be outside the conditional
12689 // operator if both expressions are DeclRefExpr's.
12690 void HandleValue(Expr
*E
) {
12691 E
= E
->IgnoreParens();
12692 if (DeclRefExpr
* DRE
= dyn_cast
<DeclRefExpr
>(E
)) {
12693 HandleDeclRefExpr(DRE
);
12697 if (ConditionalOperator
*CO
= dyn_cast
<ConditionalOperator
>(E
)) {
12698 Visit(CO
->getCond());
12699 HandleValue(CO
->getTrueExpr());
12700 HandleValue(CO
->getFalseExpr());
12704 if (BinaryConditionalOperator
*BCO
=
12705 dyn_cast
<BinaryConditionalOperator
>(E
)) {
12706 Visit(BCO
->getCond());
12707 HandleValue(BCO
->getFalseExpr());
12711 if (OpaqueValueExpr
*OVE
= dyn_cast
<OpaqueValueExpr
>(E
)) {
12712 if (Expr
*SE
= OVE
->getSourceExpr())
12717 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(E
)) {
12718 if (BO
->getOpcode() == BO_Comma
) {
12719 Visit(BO
->getLHS());
12720 HandleValue(BO
->getRHS());
12725 if (isa
<MemberExpr
>(E
)) {
12727 if (CheckInitListMemberExpr(cast
<MemberExpr
>(E
),
12728 false /*CheckReference*/))
12732 Expr
*Base
= E
->IgnoreParenImpCasts();
12733 while (MemberExpr
*ME
= dyn_cast
<MemberExpr
>(Base
)) {
12734 // Check for static member variables and don't warn on them.
12735 if (!isa
<FieldDecl
>(ME
->getMemberDecl()))
12737 Base
= ME
->getBase()->IgnoreParenImpCasts();
12739 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(Base
))
12740 HandleDeclRefExpr(DRE
);
12747 // Reference types not handled in HandleValue are handled here since all
12748 // uses of references are bad, not just r-value uses.
12749 void VisitDeclRefExpr(DeclRefExpr
*E
) {
12750 if (isReferenceType
)
12751 HandleDeclRefExpr(E
);
12754 void VisitImplicitCastExpr(ImplicitCastExpr
*E
) {
12755 if (E
->getCastKind() == CK_LValueToRValue
) {
12756 HandleValue(E
->getSubExpr());
12760 Inherited::VisitImplicitCastExpr(E
);
12763 void VisitMemberExpr(MemberExpr
*E
) {
12765 if (CheckInitListMemberExpr(E
, true /*CheckReference*/))
12769 // Don't warn on arrays since they can be treated as pointers.
12770 if (E
->getType()->canDecayToPointerType()) return;
12772 // Warn when a non-static method call is followed by non-static member
12773 // field accesses, which is followed by a DeclRefExpr.
12774 CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(E
->getMemberDecl());
12775 bool Warn
= (MD
&& !MD
->isStatic());
12776 Expr
*Base
= E
->getBase()->IgnoreParenImpCasts();
12777 while (MemberExpr
*ME
= dyn_cast
<MemberExpr
>(Base
)) {
12778 if (!isa
<FieldDecl
>(ME
->getMemberDecl()))
12780 Base
= ME
->getBase()->IgnoreParenImpCasts();
12783 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(Base
)) {
12785 HandleDeclRefExpr(DRE
);
12789 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
12790 // Visit that expression.
12794 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr
*E
) {
12795 Expr
*Callee
= E
->getCallee();
12797 if (isa
<UnresolvedLookupExpr
>(Callee
))
12798 return Inherited::VisitCXXOperatorCallExpr(E
);
12801 for (auto Arg
: E
->arguments())
12802 HandleValue(Arg
->IgnoreParenImpCasts());
12805 void VisitUnaryOperator(UnaryOperator
*E
) {
12806 // For POD record types, addresses of its own members are well-defined.
12807 if (E
->getOpcode() == UO_AddrOf
&& isRecordType
&&
12808 isa
<MemberExpr
>(E
->getSubExpr()->IgnoreParens())) {
12810 HandleValue(E
->getSubExpr());
12814 if (E
->isIncrementDecrementOp()) {
12815 HandleValue(E
->getSubExpr());
12819 Inherited::VisitUnaryOperator(E
);
12822 void VisitObjCMessageExpr(ObjCMessageExpr
*E
) {}
12824 void VisitCXXConstructExpr(CXXConstructExpr
*E
) {
12825 if (E
->getConstructor()->isCopyConstructor()) {
12826 Expr
*ArgExpr
= E
->getArg(0);
12827 if (InitListExpr
*ILE
= dyn_cast
<InitListExpr
>(ArgExpr
))
12828 if (ILE
->getNumInits() == 1)
12829 ArgExpr
= ILE
->getInit(0);
12830 if (ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(ArgExpr
))
12831 if (ICE
->getCastKind() == CK_NoOp
)
12832 ArgExpr
= ICE
->getSubExpr();
12833 HandleValue(ArgExpr
);
12836 Inherited::VisitCXXConstructExpr(E
);
12839 void VisitCallExpr(CallExpr
*E
) {
12840 // Treat std::move as a use.
12841 if (E
->isCallToStdMove()) {
12842 HandleValue(E
->getArg(0));
12846 Inherited::VisitCallExpr(E
);
12849 void VisitBinaryOperator(BinaryOperator
*E
) {
12850 if (E
->isCompoundAssignmentOp()) {
12851 HandleValue(E
->getLHS());
12852 Visit(E
->getRHS());
12856 Inherited::VisitBinaryOperator(E
);
12859 // A custom visitor for BinaryConditionalOperator is needed because the
12860 // regular visitor would check the condition and true expression separately
12861 // but both point to the same place giving duplicate diagnostics.
12862 void VisitBinaryConditionalOperator(BinaryConditionalOperator
*E
) {
12863 Visit(E
->getCond());
12864 Visit(E
->getFalseExpr());
12867 void HandleDeclRefExpr(DeclRefExpr
*DRE
) {
12868 Decl
* ReferenceDecl
= DRE
->getDecl();
12869 if (OrigDecl
!= ReferenceDecl
) return;
12871 if (isReferenceType
) {
12872 diag
= diag::warn_uninit_self_reference_in_reference_init
;
12873 } else if (cast
<VarDecl
>(OrigDecl
)->isStaticLocal()) {
12874 diag
= diag::warn_static_self_reference_in_init
;
12875 } else if (isa
<TranslationUnitDecl
>(OrigDecl
->getDeclContext()) ||
12876 isa
<NamespaceDecl
>(OrigDecl
->getDeclContext()) ||
12877 DRE
->getDecl()->getType()->isRecordType()) {
12878 diag
= diag::warn_uninit_self_reference_in_init
;
12880 // Local variables will be handled by the CFG analysis.
12884 S
.DiagRuntimeBehavior(DRE
->getBeginLoc(), DRE
,
12886 << DRE
->getDecl() << OrigDecl
->getLocation()
12887 << DRE
->getSourceRange());
12891 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
12892 static void CheckSelfReference(Sema
&S
, Decl
* OrigDecl
, Expr
*E
,
12894 // Parameters arguments are occassionially constructed with itself,
12895 // for instance, in recursive functions. Skip them.
12896 if (isa
<ParmVarDecl
>(OrigDecl
))
12899 E
= E
->IgnoreParens();
12901 // Skip checking T a = a where T is not a record or reference type.
12902 // Doing so is a way to silence uninitialized warnings.
12903 if (!DirectInit
&& !cast
<VarDecl
>(OrigDecl
)->getType()->isRecordType())
12904 if (ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
))
12905 if (ICE
->getCastKind() == CK_LValueToRValue
)
12906 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(ICE
->getSubExpr()))
12907 if (DRE
->getDecl() == OrigDecl
)
12910 SelfReferenceChecker(S
, OrigDecl
).CheckExpr(E
);
12912 } // end anonymous namespace
12915 // Simple wrapper to add the name of a variable or (if no variable is
12916 // available) a DeclarationName into a diagnostic.
12917 struct VarDeclOrName
{
12919 DeclarationName Name
;
12921 friend const Sema::SemaDiagnosticBuilder
&
12922 operator<<(const Sema::SemaDiagnosticBuilder
&Diag
, VarDeclOrName VN
) {
12923 return VN
.VDecl
? Diag
<< VN
.VDecl
: Diag
<< VN
.Name
;
12926 } // end anonymous namespace
12928 QualType
Sema::deduceVarTypeFromInitializer(VarDecl
*VDecl
,
12929 DeclarationName Name
, QualType Type
,
12930 TypeSourceInfo
*TSI
,
12931 SourceRange Range
, bool DirectInit
,
12933 bool IsInitCapture
= !VDecl
;
12934 assert((!VDecl
|| !VDecl
->isInitCapture()) &&
12935 "init captures are expected to be deduced prior to initialization");
12937 VarDeclOrName VN
{VDecl
, Name
};
12939 DeducedType
*Deduced
= Type
->getContainedDeducedType();
12940 assert(Deduced
&& "deduceVarTypeFromInitializer for non-deduced type");
12942 // Diagnose auto array declarations in C23, unless it's a supported extension.
12943 if (getLangOpts().C23
&& Type
->isArrayType() &&
12944 !isa_and_present
<StringLiteral
, InitListExpr
>(Init
)) {
12945 Diag(Range
.getBegin(), diag::err_auto_not_allowed
)
12946 << (int)Deduced
->getContainedAutoType()->getKeyword()
12947 << /*in array decl*/ 23 << Range
;
12951 // C++11 [dcl.spec.auto]p3
12953 assert(VDecl
&& "no init for init capture deduction?");
12955 // Except for class argument deduction, and then for an initializing
12956 // declaration only, i.e. no static at class scope or extern.
12957 if (!isa
<DeducedTemplateSpecializationType
>(Deduced
) ||
12958 VDecl
->hasExternalStorage() ||
12959 VDecl
->isStaticDataMember()) {
12960 Diag(VDecl
->getLocation(), diag::err_auto_var_requires_init
)
12961 << VDecl
->getDeclName() << Type
;
12966 ArrayRef
<Expr
*> DeduceInits
;
12968 DeduceInits
= Init
;
12970 auto *PL
= dyn_cast_if_present
<ParenListExpr
>(Init
);
12971 if (DirectInit
&& PL
)
12972 DeduceInits
= PL
->exprs();
12974 if (isa
<DeducedTemplateSpecializationType
>(Deduced
)) {
12975 assert(VDecl
&& "non-auto type for init capture deduction?");
12976 InitializedEntity Entity
= InitializedEntity::InitializeVariable(VDecl
);
12977 InitializationKind Kind
= InitializationKind::CreateForInit(
12978 VDecl
->getLocation(), DirectInit
, Init
);
12979 // FIXME: Initialization should not be taking a mutable list of inits.
12980 SmallVector
<Expr
*, 8> InitsCopy(DeduceInits
);
12981 return DeduceTemplateSpecializationFromInitializer(TSI
, Entity
, Kind
,
12986 if (auto *IL
= dyn_cast
<InitListExpr
>(Init
))
12987 DeduceInits
= IL
->inits();
12990 // Deduction only works if we have exactly one source expression.
12991 if (DeduceInits
.empty()) {
12992 // It isn't possible to write this directly, but it is possible to
12993 // end up in this situation with "auto x(some_pack...);"
12994 Diag(Init
->getBeginLoc(), IsInitCapture
12995 ? diag::err_init_capture_no_expression
12996 : diag::err_auto_var_init_no_expression
)
12997 << VN
<< Type
<< Range
;
13001 if (DeduceInits
.size() > 1) {
13002 Diag(DeduceInits
[1]->getBeginLoc(),
13003 IsInitCapture
? diag::err_init_capture_multiple_expressions
13004 : diag::err_auto_var_init_multiple_expressions
)
13005 << VN
<< Type
<< Range
;
13009 Expr
*DeduceInit
= DeduceInits
[0];
13010 if (DirectInit
&& isa
<InitListExpr
>(DeduceInit
)) {
13011 Diag(Init
->getBeginLoc(), IsInitCapture
13012 ? diag::err_init_capture_paren_braces
13013 : diag::err_auto_var_init_paren_braces
)
13014 << isa
<InitListExpr
>(Init
) << VN
<< Type
<< Range
;
13018 // Expressions default to 'id' when we're in a debugger.
13019 bool DefaultedAnyToId
= false;
13020 if (getLangOpts().DebuggerCastResultToId
&&
13021 Init
->getType() == Context
.UnknownAnyTy
&& !IsInitCapture
) {
13022 ExprResult Result
= forceUnknownAnyToType(Init
, Context
.getObjCIdType());
13023 if (Result
.isInvalid()) {
13026 Init
= Result
.get();
13027 DefaultedAnyToId
= true;
13030 // C++ [dcl.decomp]p1:
13031 // If the assignment-expression [...] has array type A and no ref-qualifier
13032 // is present, e has type cv A
13033 if (VDecl
&& isa
<DecompositionDecl
>(VDecl
) &&
13034 Context
.hasSameUnqualifiedType(Type
, Context
.getAutoDeductType()) &&
13035 DeduceInit
->getType()->isConstantArrayType())
13036 return Context
.getQualifiedType(DeduceInit
->getType(),
13037 Type
.getQualifiers());
13039 QualType DeducedType
;
13040 TemplateDeductionInfo
Info(DeduceInit
->getExprLoc());
13041 TemplateDeductionResult Result
=
13042 DeduceAutoType(TSI
->getTypeLoc(), DeduceInit
, DeducedType
, Info
);
13043 if (Result
!= TemplateDeductionResult::Success
&&
13044 Result
!= TemplateDeductionResult::AlreadyDiagnosed
) {
13045 if (!IsInitCapture
)
13046 DiagnoseAutoDeductionFailure(VDecl
, DeduceInit
);
13047 else if (isa
<InitListExpr
>(Init
))
13048 Diag(Range
.getBegin(),
13049 diag::err_init_capture_deduction_failure_from_init_list
)
13051 << (DeduceInit
->getType().isNull() ? TSI
->getType()
13052 : DeduceInit
->getType())
13053 << DeduceInit
->getSourceRange();
13055 Diag(Range
.getBegin(), diag::err_init_capture_deduction_failure
)
13056 << VN
<< TSI
->getType()
13057 << (DeduceInit
->getType().isNull() ? TSI
->getType()
13058 : DeduceInit
->getType())
13059 << DeduceInit
->getSourceRange();
13062 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
13063 // 'id' instead of a specific object type prevents most of our usual
13065 // We only want to warn outside of template instantiations, though:
13066 // inside a template, the 'id' could have come from a parameter.
13067 if (!inTemplateInstantiation() && !DefaultedAnyToId
&& !IsInitCapture
&&
13068 !DeducedType
.isNull() && DeducedType
->isObjCIdType()) {
13069 SourceLocation Loc
= TSI
->getTypeLoc().getBeginLoc();
13070 Diag(Loc
, diag::warn_auto_var_is_id
) << VN
<< Range
;
13073 return DeducedType
;
13076 bool Sema::DeduceVariableDeclarationType(VarDecl
*VDecl
, bool DirectInit
,
13078 assert(!Init
|| !Init
->containsErrors());
13079 QualType DeducedType
= deduceVarTypeFromInitializer(
13080 VDecl
, VDecl
->getDeclName(), VDecl
->getType(), VDecl
->getTypeSourceInfo(),
13081 VDecl
->getSourceRange(), DirectInit
, Init
);
13082 if (DeducedType
.isNull()) {
13083 VDecl
->setInvalidDecl();
13087 VDecl
->setType(DeducedType
);
13088 assert(VDecl
->isLinkageValid());
13090 // In ARC, infer lifetime.
13091 if (getLangOpts().ObjCAutoRefCount
&& ObjC().inferObjCARCLifetime(VDecl
))
13092 VDecl
->setInvalidDecl();
13094 if (getLangOpts().OpenCL
)
13095 deduceOpenCLAddressSpace(VDecl
);
13097 // If this is a redeclaration, check that the type we just deduced matches
13098 // the previously declared type.
13099 if (VarDecl
*Old
= VDecl
->getPreviousDecl()) {
13100 // We never need to merge the type, because we cannot form an incomplete
13101 // array of auto, nor deduce such a type.
13102 MergeVarDeclTypes(VDecl
, Old
, /*MergeTypeWithPrevious*/ false);
13105 // Check the deduced type is valid for a variable declaration.
13106 CheckVariableDeclarationType(VDecl
);
13107 return VDecl
->isInvalidDecl();
13110 void Sema::checkNonTrivialCUnionInInitializer(const Expr
*Init
,
13111 SourceLocation Loc
) {
13112 if (auto *EWC
= dyn_cast
<ExprWithCleanups
>(Init
))
13113 Init
= EWC
->getSubExpr();
13115 if (auto *CE
= dyn_cast
<ConstantExpr
>(Init
))
13116 Init
= CE
->getSubExpr();
13118 QualType InitType
= Init
->getType();
13119 assert((InitType
.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13120 InitType
.hasNonTrivialToPrimitiveCopyCUnion()) &&
13121 "shouldn't be called if type doesn't have a non-trivial C struct");
13122 if (auto *ILE
= dyn_cast
<InitListExpr
>(Init
)) {
13123 for (auto *I
: ILE
->inits()) {
13124 if (!I
->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
13125 !I
->getType().hasNonTrivialToPrimitiveCopyCUnion())
13127 SourceLocation SL
= I
->getExprLoc();
13128 checkNonTrivialCUnionInInitializer(I
, SL
.isValid() ? SL
: Loc
);
13133 if (isa
<ImplicitValueInitExpr
>(Init
)) {
13134 if (InitType
.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13135 checkNonTrivialCUnion(InitType
, Loc
, NTCUC_DefaultInitializedObject
,
13138 // Assume all other explicit initializers involving copying some existing
13140 // TODO: ignore any explicit initializers where we can guarantee
13142 if (InitType
.hasNonTrivialToPrimitiveCopyCUnion())
13143 checkNonTrivialCUnion(InitType
, Loc
, NTCUC_CopyInit
, NTCUK_Copy
);
13149 bool shouldIgnoreForRecordTriviality(const FieldDecl
*FD
) {
13150 // Ignore unavailable fields. A field can be marked as unavailable explicitly
13151 // in the source code or implicitly by the compiler if it is in a union
13152 // defined in a system header and has non-trivial ObjC ownership
13153 // qualifications. We don't want those fields to participate in determining
13154 // whether the containing union is non-trivial.
13155 return FD
->hasAttr
<UnavailableAttr
>();
13158 struct DiagNonTrivalCUnionDefaultInitializeVisitor
13159 : DefaultInitializedTypeVisitor
<DiagNonTrivalCUnionDefaultInitializeVisitor
,
13162 DefaultInitializedTypeVisitor
<DiagNonTrivalCUnionDefaultInitializeVisitor
,
13165 DiagNonTrivalCUnionDefaultInitializeVisitor(
13166 QualType OrigTy
, SourceLocation OrigLoc
,
13167 Sema::NonTrivialCUnionContext UseContext
, Sema
&S
)
13168 : OrigTy(OrigTy
), OrigLoc(OrigLoc
), UseContext(UseContext
), S(S
) {}
13170 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK
, QualType QT
,
13171 const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13172 if (const auto *AT
= S
.Context
.getAsArrayType(QT
))
13173 return this->asDerived().visit(S
.Context
.getBaseElementType(AT
), FD
,
13174 InNonTrivialUnion
);
13175 return Super::visitWithKind(PDIK
, QT
, FD
, InNonTrivialUnion
);
13178 void visitARCStrong(QualType QT
, const FieldDecl
*FD
,
13179 bool InNonTrivialUnion
) {
13180 if (InNonTrivialUnion
)
13181 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13182 << 1 << 0 << QT
<< FD
->getName();
13185 void visitARCWeak(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13186 if (InNonTrivialUnion
)
13187 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13188 << 1 << 0 << QT
<< FD
->getName();
13191 void visitStruct(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13192 const RecordDecl
*RD
= QT
->castAs
<RecordType
>()->getDecl();
13193 if (RD
->isUnion()) {
13194 if (OrigLoc
.isValid()) {
13195 bool IsUnion
= false;
13196 if (auto *OrigRD
= OrigTy
->getAsRecordDecl())
13197 IsUnion
= OrigRD
->isUnion();
13198 S
.Diag(OrigLoc
, diag::err_non_trivial_c_union_in_invalid_context
)
13199 << 0 << OrigTy
<< IsUnion
<< UseContext
;
13200 // Reset OrigLoc so that this diagnostic is emitted only once.
13201 OrigLoc
= SourceLocation();
13203 InNonTrivialUnion
= true;
13206 if (InNonTrivialUnion
)
13207 S
.Diag(RD
->getLocation(), diag::note_non_trivial_c_union
)
13208 << 0 << 0 << QT
.getUnqualifiedType() << "";
13210 for (const FieldDecl
*FD
: RD
->fields())
13211 if (!shouldIgnoreForRecordTriviality(FD
))
13212 asDerived().visit(FD
->getType(), FD
, InNonTrivialUnion
);
13215 void visitTrivial(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {}
13217 // The non-trivial C union type or the struct/union type that contains a
13218 // non-trivial C union.
13220 SourceLocation OrigLoc
;
13221 Sema::NonTrivialCUnionContext UseContext
;
13225 struct DiagNonTrivalCUnionDestructedTypeVisitor
13226 : DestructedTypeVisitor
<DiagNonTrivalCUnionDestructedTypeVisitor
, void> {
13228 DestructedTypeVisitor
<DiagNonTrivalCUnionDestructedTypeVisitor
, void>;
13230 DiagNonTrivalCUnionDestructedTypeVisitor(
13231 QualType OrigTy
, SourceLocation OrigLoc
,
13232 Sema::NonTrivialCUnionContext UseContext
, Sema
&S
)
13233 : OrigTy(OrigTy
), OrigLoc(OrigLoc
), UseContext(UseContext
), S(S
) {}
13235 void visitWithKind(QualType::DestructionKind DK
, QualType QT
,
13236 const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13237 if (const auto *AT
= S
.Context
.getAsArrayType(QT
))
13238 return this->asDerived().visit(S
.Context
.getBaseElementType(AT
), FD
,
13239 InNonTrivialUnion
);
13240 return Super::visitWithKind(DK
, QT
, FD
, InNonTrivialUnion
);
13243 void visitARCStrong(QualType QT
, const FieldDecl
*FD
,
13244 bool InNonTrivialUnion
) {
13245 if (InNonTrivialUnion
)
13246 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13247 << 1 << 1 << QT
<< FD
->getName();
13250 void visitARCWeak(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13251 if (InNonTrivialUnion
)
13252 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13253 << 1 << 1 << QT
<< FD
->getName();
13256 void visitStruct(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13257 const RecordDecl
*RD
= QT
->castAs
<RecordType
>()->getDecl();
13258 if (RD
->isUnion()) {
13259 if (OrigLoc
.isValid()) {
13260 bool IsUnion
= false;
13261 if (auto *OrigRD
= OrigTy
->getAsRecordDecl())
13262 IsUnion
= OrigRD
->isUnion();
13263 S
.Diag(OrigLoc
, diag::err_non_trivial_c_union_in_invalid_context
)
13264 << 1 << OrigTy
<< IsUnion
<< UseContext
;
13265 // Reset OrigLoc so that this diagnostic is emitted only once.
13266 OrigLoc
= SourceLocation();
13268 InNonTrivialUnion
= true;
13271 if (InNonTrivialUnion
)
13272 S
.Diag(RD
->getLocation(), diag::note_non_trivial_c_union
)
13273 << 0 << 1 << QT
.getUnqualifiedType() << "";
13275 for (const FieldDecl
*FD
: RD
->fields())
13276 if (!shouldIgnoreForRecordTriviality(FD
))
13277 asDerived().visit(FD
->getType(), FD
, InNonTrivialUnion
);
13280 void visitTrivial(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {}
13281 void visitCXXDestructor(QualType QT
, const FieldDecl
*FD
,
13282 bool InNonTrivialUnion
) {}
13284 // The non-trivial C union type or the struct/union type that contains a
13285 // non-trivial C union.
13287 SourceLocation OrigLoc
;
13288 Sema::NonTrivialCUnionContext UseContext
;
13292 struct DiagNonTrivalCUnionCopyVisitor
13293 : CopiedTypeVisitor
<DiagNonTrivalCUnionCopyVisitor
, false, void> {
13294 using Super
= CopiedTypeVisitor
<DiagNonTrivalCUnionCopyVisitor
, false, void>;
13296 DiagNonTrivalCUnionCopyVisitor(QualType OrigTy
, SourceLocation OrigLoc
,
13297 Sema::NonTrivialCUnionContext UseContext
,
13299 : OrigTy(OrigTy
), OrigLoc(OrigLoc
), UseContext(UseContext
), S(S
) {}
13301 void visitWithKind(QualType::PrimitiveCopyKind PCK
, QualType QT
,
13302 const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13303 if (const auto *AT
= S
.Context
.getAsArrayType(QT
))
13304 return this->asDerived().visit(S
.Context
.getBaseElementType(AT
), FD
,
13305 InNonTrivialUnion
);
13306 return Super::visitWithKind(PCK
, QT
, FD
, InNonTrivialUnion
);
13309 void visitARCStrong(QualType QT
, const FieldDecl
*FD
,
13310 bool InNonTrivialUnion
) {
13311 if (InNonTrivialUnion
)
13312 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13313 << 1 << 2 << QT
<< FD
->getName();
13316 void visitARCWeak(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13317 if (InNonTrivialUnion
)
13318 S
.Diag(FD
->getLocation(), diag::note_non_trivial_c_union
)
13319 << 1 << 2 << QT
<< FD
->getName();
13322 void visitStruct(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {
13323 const RecordDecl
*RD
= QT
->castAs
<RecordType
>()->getDecl();
13324 if (RD
->isUnion()) {
13325 if (OrigLoc
.isValid()) {
13326 bool IsUnion
= false;
13327 if (auto *OrigRD
= OrigTy
->getAsRecordDecl())
13328 IsUnion
= OrigRD
->isUnion();
13329 S
.Diag(OrigLoc
, diag::err_non_trivial_c_union_in_invalid_context
)
13330 << 2 << OrigTy
<< IsUnion
<< UseContext
;
13331 // Reset OrigLoc so that this diagnostic is emitted only once.
13332 OrigLoc
= SourceLocation();
13334 InNonTrivialUnion
= true;
13337 if (InNonTrivialUnion
)
13338 S
.Diag(RD
->getLocation(), diag::note_non_trivial_c_union
)
13339 << 0 << 2 << QT
.getUnqualifiedType() << "";
13341 for (const FieldDecl
*FD
: RD
->fields())
13342 if (!shouldIgnoreForRecordTriviality(FD
))
13343 asDerived().visit(FD
->getType(), FD
, InNonTrivialUnion
);
13346 void preVisit(QualType::PrimitiveCopyKind PCK
, QualType QT
,
13347 const FieldDecl
*FD
, bool InNonTrivialUnion
) {}
13348 void visitTrivial(QualType QT
, const FieldDecl
*FD
, bool InNonTrivialUnion
) {}
13349 void visitVolatileTrivial(QualType QT
, const FieldDecl
*FD
,
13350 bool InNonTrivialUnion
) {}
13352 // The non-trivial C union type or the struct/union type that contains a
13353 // non-trivial C union.
13355 SourceLocation OrigLoc
;
13356 Sema::NonTrivialCUnionContext UseContext
;
13362 void Sema::checkNonTrivialCUnion(QualType QT
, SourceLocation Loc
,
13363 NonTrivialCUnionContext UseContext
,
13364 unsigned NonTrivialKind
) {
13365 assert((QT
.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13366 QT
.hasNonTrivialToPrimitiveDestructCUnion() ||
13367 QT
.hasNonTrivialToPrimitiveCopyCUnion()) &&
13368 "shouldn't be called if type doesn't have a non-trivial C union");
13370 if ((NonTrivialKind
& NTCUK_Init
) &&
13371 QT
.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13372 DiagNonTrivalCUnionDefaultInitializeVisitor(QT
, Loc
, UseContext
, *this)
13373 .visit(QT
, nullptr, false);
13374 if ((NonTrivialKind
& NTCUK_Destruct
) &&
13375 QT
.hasNonTrivialToPrimitiveDestructCUnion())
13376 DiagNonTrivalCUnionDestructedTypeVisitor(QT
, Loc
, UseContext
, *this)
13377 .visit(QT
, nullptr, false);
13378 if ((NonTrivialKind
& NTCUK_Copy
) && QT
.hasNonTrivialToPrimitiveCopyCUnion())
13379 DiagNonTrivalCUnionCopyVisitor(QT
, Loc
, UseContext
, *this)
13380 .visit(QT
, nullptr, false);
13383 void Sema::AddInitializerToDecl(Decl
*RealDecl
, Expr
*Init
, bool DirectInit
) {
13384 // If there is no declaration, there was an error parsing it. Just ignore
13385 // the initializer.
13387 CorrectDelayedTyposInExpr(Init
, dyn_cast_or_null
<VarDecl
>(RealDecl
));
13391 if (auto *Method
= dyn_cast
<CXXMethodDecl
>(RealDecl
)) {
13392 if (!Method
->isInvalidDecl()) {
13393 // Pure-specifiers are handled in ActOnPureSpecifier.
13394 Diag(Method
->getLocation(), diag::err_member_function_initialization
)
13395 << Method
->getDeclName() << Init
->getSourceRange();
13396 Method
->setInvalidDecl();
13401 VarDecl
*VDecl
= dyn_cast
<VarDecl
>(RealDecl
);
13403 assert(!isa
<FieldDecl
>(RealDecl
) && "field init shouldn't get here");
13404 Diag(RealDecl
->getLocation(), diag::err_illegal_initializer
);
13405 RealDecl
->setInvalidDecl();
13409 if (VDecl
->isInvalidDecl()) {
13410 ExprResult Res
= CorrectDelayedTyposInExpr(Init
, VDecl
);
13411 SmallVector
<Expr
*> SubExprs
;
13412 if (Res
.isUsable())
13413 SubExprs
.push_back(Res
.get());
13414 ExprResult Recovery
=
13415 CreateRecoveryExpr(Init
->getBeginLoc(), Init
->getEndLoc(), SubExprs
);
13416 if (Expr
*E
= Recovery
.get())
13421 // WebAssembly tables can't be used to initialise a variable.
13422 if (!Init
->getType().isNull() && Init
->getType()->isWebAssemblyTableType()) {
13423 Diag(Init
->getExprLoc(), diag::err_wasm_table_art
) << 0;
13424 VDecl
->setInvalidDecl();
13428 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
13429 if (VDecl
->getType()->isUndeducedType()) {
13430 // Attempt typo correction early so that the type of the init expression can
13431 // be deduced based on the chosen correction if the original init contains a
13433 ExprResult Res
= CorrectDelayedTyposInExpr(Init
, VDecl
);
13434 if (!Res
.isUsable()) {
13435 // There are unresolved typos in Init, just drop them.
13436 // FIXME: improve the recovery strategy to preserve the Init.
13437 RealDecl
->setInvalidDecl();
13440 if (Res
.get()->containsErrors()) {
13441 // Invalidate the decl as we don't know the type for recovery-expr yet.
13442 RealDecl
->setInvalidDecl();
13443 VDecl
->setInit(Res
.get());
13448 if (DeduceVariableDeclarationType(VDecl
, DirectInit
, Init
))
13452 // dllimport cannot be used on variable definitions.
13453 if (VDecl
->hasAttr
<DLLImportAttr
>() && !VDecl
->isStaticDataMember()) {
13454 Diag(VDecl
->getLocation(), diag::err_attribute_dllimport_data_definition
);
13455 VDecl
->setInvalidDecl();
13459 // C99 6.7.8p5. If the declaration of an identifier has block scope, and
13460 // the identifier has external or internal linkage, the declaration shall
13461 // have no initializer for the identifier.
13462 // C++14 [dcl.init]p5 is the same restriction for C++.
13463 if (VDecl
->isLocalVarDecl() && VDecl
->hasExternalStorage()) {
13464 Diag(VDecl
->getLocation(), diag::err_block_extern_cant_init
);
13465 VDecl
->setInvalidDecl();
13469 if (!VDecl
->getType()->isDependentType()) {
13470 // A definition must end up with a complete type, which means it must be
13471 // complete with the restriction that an array type might be completed by
13472 // the initializer; note that later code assumes this restriction.
13473 QualType BaseDeclType
= VDecl
->getType();
13474 if (const ArrayType
*Array
= Context
.getAsIncompleteArrayType(BaseDeclType
))
13475 BaseDeclType
= Array
->getElementType();
13476 if (RequireCompleteType(VDecl
->getLocation(), BaseDeclType
,
13477 diag::err_typecheck_decl_incomplete_type
)) {
13478 RealDecl
->setInvalidDecl();
13482 // The variable can not have an abstract class type.
13483 if (RequireNonAbstractType(VDecl
->getLocation(), VDecl
->getType(),
13484 diag::err_abstract_type_in_decl
,
13485 AbstractVariableType
))
13486 VDecl
->setInvalidDecl();
13489 // C++ [module.import/6] external definitions are not permitted in header
13491 if (getLangOpts().CPlusPlusModules
&& currentModuleIsHeaderUnit() &&
13492 !VDecl
->isInvalidDecl() && VDecl
->isThisDeclarationADefinition() &&
13493 VDecl
->getFormalLinkage() == Linkage::External
&& !VDecl
->isInline() &&
13494 !VDecl
->isTemplated() && !isa
<VarTemplateSpecializationDecl
>(VDecl
) &&
13495 !VDecl
->getInstantiatedFromStaticDataMember()) {
13496 Diag(VDecl
->getLocation(), diag::err_extern_def_in_header_unit
);
13497 VDecl
->setInvalidDecl();
13500 // If adding the initializer will turn this declaration into a definition,
13501 // and we already have a definition for this variable, diagnose or otherwise
13502 // handle the situation.
13503 if (VarDecl
*Def
= VDecl
->getDefinition())
13504 if (Def
!= VDecl
&&
13505 (!VDecl
->isStaticDataMember() || VDecl
->isOutOfLine()) &&
13506 !VDecl
->isThisDeclarationADemotedDefinition() &&
13507 checkVarDeclRedefinition(Def
, VDecl
))
13510 if (getLangOpts().CPlusPlus
) {
13511 // C++ [class.static.data]p4
13512 // If a static data member is of const integral or const
13513 // enumeration type, its declaration in the class definition can
13514 // specify a constant-initializer which shall be an integral
13515 // constant expression (5.19). In that case, the member can appear
13516 // in integral constant expressions. The member shall still be
13517 // defined in a namespace scope if it is used in the program and the
13518 // namespace scope definition shall not contain an initializer.
13520 // We already performed a redefinition check above, but for static
13521 // data members we also need to check whether there was an in-class
13522 // declaration with an initializer.
13523 if (VDecl
->isStaticDataMember() && VDecl
->getCanonicalDecl()->hasInit()) {
13524 Diag(Init
->getExprLoc(), diag::err_static_data_member_reinitialization
)
13525 << VDecl
->getDeclName();
13526 Diag(VDecl
->getCanonicalDecl()->getInit()->getExprLoc(),
13527 diag::note_previous_initializer
)
13532 if (VDecl
->hasLocalStorage())
13533 setFunctionHasBranchProtectedScope();
13535 if (DiagnoseUnexpandedParameterPack(Init
, UPPC_Initializer
)) {
13536 VDecl
->setInvalidDecl();
13541 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
13542 // a kernel function cannot be initialized."
13543 if (VDecl
->getType().getAddressSpace() == LangAS::opencl_local
) {
13544 Diag(VDecl
->getLocation(), diag::err_local_cant_init
);
13545 VDecl
->setInvalidDecl();
13549 // The LoaderUninitialized attribute acts as a definition (of undef).
13550 if (VDecl
->hasAttr
<LoaderUninitializedAttr
>()) {
13551 Diag(VDecl
->getLocation(), diag::err_loader_uninitialized_cant_init
);
13552 VDecl
->setInvalidDecl();
13556 // Get the decls type and save a reference for later, since
13557 // CheckInitializerTypes may change it.
13558 QualType DclT
= VDecl
->getType(), SavT
= DclT
;
13560 // Expressions default to 'id' when we're in a debugger
13561 // and we are assigning it to a variable of Objective-C pointer type.
13562 if (getLangOpts().DebuggerCastResultToId
&& DclT
->isObjCObjectPointerType() &&
13563 Init
->getType() == Context
.UnknownAnyTy
) {
13564 ExprResult Result
= forceUnknownAnyToType(Init
, Context
.getObjCIdType());
13565 if (!Result
.isUsable()) {
13566 VDecl
->setInvalidDecl();
13569 Init
= Result
.get();
13572 // Perform the initialization.
13573 ParenListExpr
*CXXDirectInit
= dyn_cast
<ParenListExpr
>(Init
);
13574 bool IsParenListInit
= false;
13575 if (!VDecl
->isInvalidDecl()) {
13576 InitializedEntity Entity
= InitializedEntity::InitializeVariable(VDecl
);
13577 InitializationKind Kind
= InitializationKind::CreateForInit(
13578 VDecl
->getLocation(), DirectInit
, Init
);
13580 MultiExprArg Args
= Init
;
13582 Args
= MultiExprArg(CXXDirectInit
->getExprs(),
13583 CXXDirectInit
->getNumExprs());
13585 // Try to correct any TypoExprs in the initialization arguments.
13586 for (size_t Idx
= 0; Idx
< Args
.size(); ++Idx
) {
13587 ExprResult Res
= CorrectDelayedTyposInExpr(
13588 Args
[Idx
], VDecl
, /*RecoverUncorrectedTypos=*/true,
13589 [this, Entity
, Kind
](Expr
*E
) {
13590 InitializationSequence
Init(*this, Entity
, Kind
, MultiExprArg(E
));
13591 return Init
.Failed() ? ExprError() : E
;
13593 if (!Res
.isUsable()) {
13594 VDecl
->setInvalidDecl();
13595 } else if (Res
.get() != Args
[Idx
]) {
13596 Args
[Idx
] = Res
.get();
13599 if (VDecl
->isInvalidDecl())
13602 InitializationSequence
InitSeq(*this, Entity
, Kind
, Args
,
13603 /*TopLevelOfInitList=*/false,
13604 /*TreatUnavailableAsInvalid=*/false);
13605 ExprResult Result
= InitSeq
.Perform(*this, Entity
, Kind
, Args
, &DclT
);
13606 if (!Result
.isUsable()) {
13607 // If the provided initializer fails to initialize the var decl,
13608 // we attach a recovery expr for better recovery.
13609 auto RecoveryExpr
=
13610 CreateRecoveryExpr(Init
->getBeginLoc(), Init
->getEndLoc(), Args
);
13611 if (RecoveryExpr
.get())
13612 VDecl
->setInit(RecoveryExpr
.get());
13613 // In general, for error recovery purposes, the initializer doesn't play
13614 // part in the valid bit of the declaration. There are a few exceptions:
13615 // 1) if the var decl has a deduced auto type, and the type cannot be
13616 // deduced by an invalid initializer;
13617 // 2) if the var decl is a decomposition decl with a non-deduced type,
13618 // and the initialization fails (e.g. `int [a] = {1, 2};`);
13619 // Case 1) was already handled elsewhere.
13620 if (isa
<DecompositionDecl
>(VDecl
)) // Case 2)
13621 VDecl
->setInvalidDecl();
13625 Init
= Result
.getAs
<Expr
>();
13626 IsParenListInit
= !InitSeq
.steps().empty() &&
13627 InitSeq
.step_begin()->Kind
==
13628 InitializationSequence::SK_ParenthesizedListInit
;
13629 QualType VDeclType
= VDecl
->getType();
13630 if (!Init
->getType().isNull() && !Init
->getType()->isDependentType() &&
13631 !VDeclType
->isDependentType() &&
13632 Context
.getAsIncompleteArrayType(VDeclType
) &&
13633 Context
.getAsIncompleteArrayType(Init
->getType())) {
13634 // Bail out if it is not possible to deduce array size from the
13636 Diag(VDecl
->getLocation(), diag::err_typecheck_decl_incomplete_type
)
13638 VDecl
->setInvalidDecl();
13643 // Check for self-references within variable initializers.
13644 // Variables declared within a function/method body (except for references)
13645 // are handled by a dataflow analysis.
13646 // This is undefined behavior in C++, but valid in C.
13647 if (getLangOpts().CPlusPlus
)
13648 if (!VDecl
->hasLocalStorage() || VDecl
->getType()->isRecordType() ||
13649 VDecl
->getType()->isReferenceType())
13650 CheckSelfReference(*this, RealDecl
, Init
, DirectInit
);
13652 // If the type changed, it means we had an incomplete type that was
13653 // completed by the initializer. For example:
13654 // int ary[] = { 1, 3, 5 };
13655 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
13656 if (!VDecl
->isInvalidDecl() && (DclT
!= SavT
))
13657 VDecl
->setType(DclT
);
13659 if (!VDecl
->isInvalidDecl()) {
13660 checkUnsafeAssigns(VDecl
->getLocation(), VDecl
->getType(), Init
);
13662 if (VDecl
->hasAttr
<BlocksAttr
>())
13663 ObjC().checkRetainCycles(VDecl
, Init
);
13665 // It is safe to assign a weak reference into a strong variable.
13666 // Although this code can still have problems:
13667 // id x = self.weakProp;
13668 // id y = self.weakProp;
13669 // we do not warn to warn spuriously when 'x' and 'y' are on separate
13670 // paths through the function. This should be revisited if
13671 // -Wrepeated-use-of-weak is made flow-sensitive.
13672 if (FunctionScopeInfo
*FSI
= getCurFunction())
13673 if ((VDecl
->getType().getObjCLifetime() == Qualifiers::OCL_Strong
||
13674 VDecl
->getType().isNonWeakInMRRWithObjCWeak(Context
)) &&
13675 !Diags
.isIgnored(diag::warn_arc_repeated_use_of_weak
,
13676 Init
->getBeginLoc()))
13677 FSI
->markSafeWeakUse(Init
);
13680 // The initialization is usually a full-expression.
13682 // FIXME: If this is a braced initialization of an aggregate, it is not
13683 // an expression, and each individual field initializer is a separate
13684 // full-expression. For instance, in:
13686 // struct Temp { ~Temp(); };
13687 // struct S { S(Temp); };
13688 // struct T { S a, b; } t = { Temp(), Temp() }
13690 // we should destroy the first Temp before constructing the second.
13691 ExprResult Result
=
13692 ActOnFinishFullExpr(Init
, VDecl
->getLocation(),
13693 /*DiscardedValue*/ false, VDecl
->isConstexpr());
13694 if (!Result
.isUsable()) {
13695 VDecl
->setInvalidDecl();
13698 Init
= Result
.get();
13700 // Attach the initializer to the decl.
13701 VDecl
->setInit(Init
);
13703 if (VDecl
->isLocalVarDecl()) {
13704 // Don't check the initializer if the declaration is malformed.
13705 if (VDecl
->isInvalidDecl()) {
13708 // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
13709 // This is true even in C++ for OpenCL.
13710 } else if (VDecl
->getType().getAddressSpace() == LangAS::opencl_constant
) {
13711 CheckForConstantInitializer(Init
);
13713 // Otherwise, C++ does not restrict the initializer.
13714 } else if (getLangOpts().CPlusPlus
) {
13717 // C99 6.7.8p4: All the expressions in an initializer for an object that has
13718 // static storage duration shall be constant expressions or string literals.
13719 } else if (VDecl
->getStorageClass() == SC_Static
) {
13720 CheckForConstantInitializer(Init
);
13722 // C89 is stricter than C99 for aggregate initializers.
13723 // C89 6.5.7p3: All the expressions [...] in an initializer list
13724 // for an object that has aggregate or union type shall be
13725 // constant expressions.
13726 } else if (!getLangOpts().C99
&& VDecl
->getType()->isAggregateType() &&
13727 isa
<InitListExpr
>(Init
)) {
13728 CheckForConstantInitializer(Init
, diag::ext_aggregate_init_not_constant
);
13731 if (auto *E
= dyn_cast
<ExprWithCleanups
>(Init
))
13732 if (auto *BE
= dyn_cast
<BlockExpr
>(E
->getSubExpr()->IgnoreParens()))
13733 if (VDecl
->hasLocalStorage())
13734 BE
->getBlockDecl()->setCanAvoidCopyToHeap();
13735 } else if (VDecl
->isStaticDataMember() && !VDecl
->isInline() &&
13736 VDecl
->getLexicalDeclContext()->isRecord()) {
13737 // This is an in-class initialization for a static data member, e.g.,
13740 // static const int value = 17;
13743 // C++ [class.mem]p4:
13744 // A member-declarator can contain a constant-initializer only
13745 // if it declares a static member (9.4) of const integral or
13746 // const enumeration type, see 9.4.2.
13748 // C++11 [class.static.data]p3:
13749 // If a non-volatile non-inline const static data member is of integral
13750 // or enumeration type, its declaration in the class definition can
13751 // specify a brace-or-equal-initializer in which every initializer-clause
13752 // that is an assignment-expression is a constant expression. A static
13753 // data member of literal type can be declared in the class definition
13754 // with the constexpr specifier; if so, its declaration shall specify a
13755 // brace-or-equal-initializer in which every initializer-clause that is
13756 // an assignment-expression is a constant expression.
13758 // Do nothing on dependent types.
13759 if (DclT
->isDependentType()) {
13761 // Allow any 'static constexpr' members, whether or not they are of literal
13762 // type. We separately check that every constexpr variable is of literal
13764 } else if (VDecl
->isConstexpr()) {
13766 // Require constness.
13767 } else if (!DclT
.isConstQualified()) {
13768 Diag(VDecl
->getLocation(), diag::err_in_class_initializer_non_const
)
13769 << Init
->getSourceRange();
13770 VDecl
->setInvalidDecl();
13772 // We allow integer constant expressions in all cases.
13773 } else if (DclT
->isIntegralOrEnumerationType()) {
13774 // Check whether the expression is a constant expression.
13775 SourceLocation Loc
;
13776 if (getLangOpts().CPlusPlus11
&& DclT
.isVolatileQualified())
13777 // In C++11, a non-constexpr const static data member with an
13778 // in-class initializer cannot be volatile.
13779 Diag(VDecl
->getLocation(), diag::err_in_class_initializer_volatile
);
13780 else if (Init
->isValueDependent())
13781 ; // Nothing to check.
13782 else if (Init
->isIntegerConstantExpr(Context
, &Loc
))
13783 ; // Ok, it's an ICE!
13784 else if (Init
->getType()->isScopedEnumeralType() &&
13785 Init
->isCXX11ConstantExpr(Context
))
13786 ; // Ok, it is a scoped-enum constant expression.
13787 else if (Init
->isEvaluatable(Context
)) {
13788 // If we can constant fold the initializer through heroics, accept it,
13789 // but report this as a use of an extension for -pedantic.
13790 Diag(Loc
, diag::ext_in_class_initializer_non_constant
)
13791 << Init
->getSourceRange();
13793 // Otherwise, this is some crazy unknown case. Report the issue at the
13794 // location provided by the isIntegerConstantExpr failed check.
13795 Diag(Loc
, diag::err_in_class_initializer_non_constant
)
13796 << Init
->getSourceRange();
13797 VDecl
->setInvalidDecl();
13800 // We allow foldable floating-point constants as an extension.
13801 } else if (DclT
->isFloatingType()) { // also permits complex, which is ok
13802 // In C++98, this is a GNU extension. In C++11, it is not, but we support
13803 // it anyway and provide a fixit to add the 'constexpr'.
13804 if (getLangOpts().CPlusPlus11
) {
13805 Diag(VDecl
->getLocation(),
13806 diag::ext_in_class_initializer_float_type_cxx11
)
13807 << DclT
<< Init
->getSourceRange();
13808 Diag(VDecl
->getBeginLoc(),
13809 diag::note_in_class_initializer_float_type_cxx11
)
13810 << FixItHint::CreateInsertion(VDecl
->getBeginLoc(), "constexpr ");
13812 Diag(VDecl
->getLocation(), diag::ext_in_class_initializer_float_type
)
13813 << DclT
<< Init
->getSourceRange();
13815 if (!Init
->isValueDependent() && !Init
->isEvaluatable(Context
)) {
13816 Diag(Init
->getExprLoc(), diag::err_in_class_initializer_non_constant
)
13817 << Init
->getSourceRange();
13818 VDecl
->setInvalidDecl();
13822 // Suggest adding 'constexpr' in C++11 for literal types.
13823 } else if (getLangOpts().CPlusPlus11
&& DclT
->isLiteralType(Context
)) {
13824 Diag(VDecl
->getLocation(), diag::err_in_class_initializer_literal_type
)
13825 << DclT
<< Init
->getSourceRange()
13826 << FixItHint::CreateInsertion(VDecl
->getBeginLoc(), "constexpr ");
13827 VDecl
->setConstexpr(true);
13830 Diag(VDecl
->getLocation(), diag::err_in_class_initializer_bad_type
)
13831 << DclT
<< Init
->getSourceRange();
13832 VDecl
->setInvalidDecl();
13834 } else if (VDecl
->isFileVarDecl()) {
13835 // In C, extern is typically used to avoid tentative definitions when
13836 // declaring variables in headers, but adding an initializer makes it a
13837 // definition. This is somewhat confusing, so GCC and Clang both warn on it.
13838 // In C++, extern is often used to give implicitly static const variables
13839 // external linkage, so don't warn in that case. If selectany is present,
13840 // this might be header code intended for C and C++ inclusion, so apply the
13842 if (VDecl
->getStorageClass() == SC_Extern
&&
13843 ((!getLangOpts().CPlusPlus
&& !VDecl
->hasAttr
<SelectAnyAttr
>()) ||
13844 !Context
.getBaseElementType(VDecl
->getType()).isConstQualified()) &&
13845 !(getLangOpts().CPlusPlus
&& VDecl
->isExternC()) &&
13846 !isTemplateInstantiation(VDecl
->getTemplateSpecializationKind()))
13847 Diag(VDecl
->getLocation(), diag::warn_extern_init
);
13849 // In Microsoft C++ mode, a const variable defined in namespace scope has
13850 // external linkage by default if the variable is declared with
13851 // __declspec(dllexport).
13852 if (Context
.getTargetInfo().getCXXABI().isMicrosoft() &&
13853 getLangOpts().CPlusPlus
&& VDecl
->getType().isConstQualified() &&
13854 VDecl
->hasAttr
<DLLExportAttr
>() && VDecl
->getDefinition())
13855 VDecl
->setStorageClass(SC_Extern
);
13857 // C99 6.7.8p4. All file scoped initializers need to be constant.
13858 // Avoid duplicate diagnostics for constexpr variables.
13859 if (!getLangOpts().CPlusPlus
&& !VDecl
->isInvalidDecl() &&
13860 !VDecl
->isConstexpr())
13861 CheckForConstantInitializer(Init
);
13864 QualType InitType
= Init
->getType();
13865 if (!InitType
.isNull() &&
13866 (InitType
.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13867 InitType
.hasNonTrivialToPrimitiveCopyCUnion()))
13868 checkNonTrivialCUnionInInitializer(Init
, Init
->getExprLoc());
13870 // We will represent direct-initialization similarly to copy-initialization:
13871 // int x(1); -as-> int x = 1;
13872 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
13874 // Clients that want to distinguish between the two forms, can check for
13875 // direct initializer using VarDecl::getInitStyle().
13876 // A major benefit is that clients that don't particularly care about which
13877 // exactly form was it (like the CodeGen) can handle both cases without
13878 // special case code.
13881 // The form of initialization (using parentheses or '=') is generally
13882 // insignificant, but does matter when the entity being initialized has a
13884 if (CXXDirectInit
) {
13885 assert(DirectInit
&& "Call-style initializer must be direct init.");
13886 VDecl
->setInitStyle(IsParenListInit
? VarDecl::ParenListInit
13887 : VarDecl::CallInit
);
13888 } else if (DirectInit
) {
13889 // This must be list-initialization. No other way is direct-initialization.
13890 VDecl
->setInitStyle(VarDecl::ListInit
);
13893 if (LangOpts
.OpenMP
&&
13894 (LangOpts
.OpenMPIsTargetDevice
|| !LangOpts
.OMPTargetTriples
.empty()) &&
13895 VDecl
->isFileVarDecl())
13896 DeclsToCheckForDeferredDiags
.insert(VDecl
);
13897 CheckCompleteVariableDeclaration(VDecl
);
13900 void Sema::ActOnInitializerError(Decl
*D
) {
13901 // Our main concern here is re-establishing invariants like "a
13902 // variable's type is either dependent or complete".
13903 if (!D
|| D
->isInvalidDecl()) return;
13905 VarDecl
*VD
= dyn_cast
<VarDecl
>(D
);
13908 // Bindings are not usable if we can't make sense of the initializer.
13909 if (auto *DD
= dyn_cast
<DecompositionDecl
>(D
))
13910 for (auto *BD
: DD
->bindings())
13911 BD
->setInvalidDecl();
13913 // Auto types are meaningless if we can't make sense of the initializer.
13914 if (VD
->getType()->isUndeducedType()) {
13915 D
->setInvalidDecl();
13919 QualType Ty
= VD
->getType();
13920 if (Ty
->isDependentType()) return;
13922 // Require a complete type.
13923 if (RequireCompleteType(VD
->getLocation(),
13924 Context
.getBaseElementType(Ty
),
13925 diag::err_typecheck_decl_incomplete_type
)) {
13926 VD
->setInvalidDecl();
13930 // Require a non-abstract type.
13931 if (RequireNonAbstractType(VD
->getLocation(), Ty
,
13932 diag::err_abstract_type_in_decl
,
13933 AbstractVariableType
)) {
13934 VD
->setInvalidDecl();
13938 // Don't bother complaining about constructors or destructors,
13942 void Sema::ActOnUninitializedDecl(Decl
*RealDecl
) {
13943 // If there is no declaration, there was an error parsing it. Just ignore it.
13947 if (VarDecl
*Var
= dyn_cast
<VarDecl
>(RealDecl
)) {
13948 QualType Type
= Var
->getType();
13950 // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
13951 if (isa
<DecompositionDecl
>(RealDecl
)) {
13952 Diag(Var
->getLocation(), diag::err_decomp_decl_requires_init
) << Var
;
13953 Var
->setInvalidDecl();
13957 if (Type
->isUndeducedType() &&
13958 DeduceVariableDeclarationType(Var
, false, nullptr))
13961 // C++11 [class.static.data]p3: A static data member can be declared with
13962 // the constexpr specifier; if so, its declaration shall specify
13963 // a brace-or-equal-initializer.
13964 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
13965 // the definition of a variable [...] or the declaration of a static data
13967 if (Var
->isConstexpr() && !Var
->isThisDeclarationADefinition() &&
13968 !Var
->isThisDeclarationADemotedDefinition()) {
13969 if (Var
->isStaticDataMember()) {
13970 // C++1z removes the relevant rule; the in-class declaration is always
13971 // a definition there.
13972 if (!getLangOpts().CPlusPlus17
&&
13973 !Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
13974 Diag(Var
->getLocation(),
13975 diag::err_constexpr_static_mem_var_requires_init
)
13977 Var
->setInvalidDecl();
13981 Diag(Var
->getLocation(), diag::err_invalid_constexpr_var_decl
);
13982 Var
->setInvalidDecl();
13987 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
13989 if (!Var
->isInvalidDecl() &&
13990 Var
->getType().getAddressSpace() == LangAS::opencl_constant
&&
13991 Var
->getStorageClass() != SC_Extern
&& !Var
->getInit()) {
13992 bool HasConstExprDefaultConstructor
= false;
13993 if (CXXRecordDecl
*RD
= Var
->getType()->getAsCXXRecordDecl()) {
13994 for (auto *Ctor
: RD
->ctors()) {
13995 if (Ctor
->isConstexpr() && Ctor
->getNumParams() == 0 &&
13996 Ctor
->getMethodQualifiers().getAddressSpace() ==
13997 LangAS::opencl_constant
) {
13998 HasConstExprDefaultConstructor
= true;
14002 if (!HasConstExprDefaultConstructor
) {
14003 Diag(Var
->getLocation(), diag::err_opencl_constant_no_init
);
14004 Var
->setInvalidDecl();
14009 if (!Var
->isInvalidDecl() && RealDecl
->hasAttr
<LoaderUninitializedAttr
>()) {
14010 if (Var
->getStorageClass() == SC_Extern
) {
14011 Diag(Var
->getLocation(), diag::err_loader_uninitialized_extern_decl
)
14013 Var
->setInvalidDecl();
14016 if (RequireCompleteType(Var
->getLocation(), Var
->getType(),
14017 diag::err_typecheck_decl_incomplete_type
)) {
14018 Var
->setInvalidDecl();
14021 if (CXXRecordDecl
*RD
= Var
->getType()->getAsCXXRecordDecl()) {
14022 if (!RD
->hasTrivialDefaultConstructor()) {
14023 Diag(Var
->getLocation(), diag::err_loader_uninitialized_trivial_ctor
);
14024 Var
->setInvalidDecl();
14028 // The declaration is uninitialized, no need for further checks.
14032 VarDecl::DefinitionKind DefKind
= Var
->isThisDeclarationADefinition();
14033 if (!Var
->isInvalidDecl() && DefKind
!= VarDecl::DeclarationOnly
&&
14034 Var
->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
14035 checkNonTrivialCUnion(Var
->getType(), Var
->getLocation(),
14036 NTCUC_DefaultInitializedObject
, NTCUK_Init
);
14040 case VarDecl::Definition
:
14041 if (!Var
->isStaticDataMember() || !Var
->getAnyInitializer())
14044 // We have an out-of-line definition of a static data member
14045 // that has an in-class initializer, so we type-check this like
14050 case VarDecl::DeclarationOnly
:
14051 // It's only a declaration.
14053 // Block scope. C99 6.7p7: If an identifier for an object is
14054 // declared with no linkage (C99 6.2.2p6), the type for the
14055 // object shall be complete.
14056 if (!Type
->isDependentType() && Var
->isLocalVarDecl() &&
14057 !Var
->hasLinkage() && !Var
->isInvalidDecl() &&
14058 RequireCompleteType(Var
->getLocation(), Type
,
14059 diag::err_typecheck_decl_incomplete_type
))
14060 Var
->setInvalidDecl();
14062 // Make sure that the type is not abstract.
14063 if (!Type
->isDependentType() && !Var
->isInvalidDecl() &&
14064 RequireNonAbstractType(Var
->getLocation(), Type
,
14065 diag::err_abstract_type_in_decl
,
14066 AbstractVariableType
))
14067 Var
->setInvalidDecl();
14068 if (!Type
->isDependentType() && !Var
->isInvalidDecl() &&
14069 Var
->getStorageClass() == SC_PrivateExtern
) {
14070 Diag(Var
->getLocation(), diag::warn_private_extern
);
14071 Diag(Var
->getLocation(), diag::note_private_extern
);
14074 if (Context
.getTargetInfo().allowDebugInfoForExternalRef() &&
14075 !Var
->isInvalidDecl())
14076 ExternalDeclarations
.push_back(Var
);
14080 case VarDecl::TentativeDefinition
:
14081 // File scope. C99 6.9.2p2: A declaration of an identifier for an
14082 // object that has file scope without an initializer, and without a
14083 // storage-class specifier or with the storage-class specifier "static",
14084 // constitutes a tentative definition. Note: A tentative definition with
14085 // external linkage is valid (C99 6.2.2p5).
14086 if (!Var
->isInvalidDecl()) {
14087 if (const IncompleteArrayType
*ArrayT
14088 = Context
.getAsIncompleteArrayType(Type
)) {
14089 if (RequireCompleteSizedType(
14090 Var
->getLocation(), ArrayT
->getElementType(),
14091 diag::err_array_incomplete_or_sizeless_type
))
14092 Var
->setInvalidDecl();
14093 } else if (Var
->getStorageClass() == SC_Static
) {
14094 // C99 6.9.2p3: If the declaration of an identifier for an object is
14095 // a tentative definition and has internal linkage (C99 6.2.2p3), the
14096 // declared type shall not be an incomplete type.
14097 // NOTE: code such as the following
14098 // static struct s;
14099 // struct s { int a; };
14100 // is accepted by gcc. Hence here we issue a warning instead of
14101 // an error and we do not invalidate the static declaration.
14102 // NOTE: to avoid multiple warnings, only check the first declaration.
14103 if (Var
->isFirstDecl())
14104 RequireCompleteType(Var
->getLocation(), Type
,
14105 diag::ext_typecheck_decl_incomplete_type
);
14109 // Record the tentative definition; we're done.
14110 if (!Var
->isInvalidDecl())
14111 TentativeDefinitions
.push_back(Var
);
14115 // Provide a specific diagnostic for uninitialized variable
14116 // definitions with incomplete array type.
14117 if (Type
->isIncompleteArrayType()) {
14118 if (Var
->isConstexpr())
14119 Diag(Var
->getLocation(), diag::err_constexpr_var_requires_const_init
)
14122 Diag(Var
->getLocation(),
14123 diag::err_typecheck_incomplete_array_needs_initializer
);
14124 Var
->setInvalidDecl();
14128 // Provide a specific diagnostic for uninitialized variable
14129 // definitions with reference type.
14130 if (Type
->isReferenceType()) {
14131 Diag(Var
->getLocation(), diag::err_reference_var_requires_init
)
14132 << Var
<< SourceRange(Var
->getLocation(), Var
->getLocation());
14136 // Do not attempt to type-check the default initializer for a
14137 // variable with dependent type.
14138 if (Type
->isDependentType())
14141 if (Var
->isInvalidDecl())
14144 if (!Var
->hasAttr
<AliasAttr
>()) {
14145 if (RequireCompleteType(Var
->getLocation(),
14146 Context
.getBaseElementType(Type
),
14147 diag::err_typecheck_decl_incomplete_type
)) {
14148 Var
->setInvalidDecl();
14155 // The variable can not have an abstract class type.
14156 if (RequireNonAbstractType(Var
->getLocation(), Type
,
14157 diag::err_abstract_type_in_decl
,
14158 AbstractVariableType
)) {
14159 Var
->setInvalidDecl();
14163 // Check for jumps past the implicit initializer. C++0x
14164 // clarifies that this applies to a "variable with automatic
14165 // storage duration", not a "local variable".
14166 // C++11 [stmt.dcl]p3
14167 // A program that jumps from a point where a variable with automatic
14168 // storage duration is not in scope to a point where it is in scope is
14169 // ill-formed unless the variable has scalar type, class type with a
14170 // trivial default constructor and a trivial destructor, a cv-qualified
14171 // version of one of these types, or an array of one of the preceding
14172 // types and is declared without an initializer.
14173 if (getLangOpts().CPlusPlus
&& Var
->hasLocalStorage()) {
14174 if (const RecordType
*Record
14175 = Context
.getBaseElementType(Type
)->getAs
<RecordType
>()) {
14176 CXXRecordDecl
*CXXRecord
= cast
<CXXRecordDecl
>(Record
->getDecl());
14177 // Mark the function (if we're in one) for further checking even if the
14178 // looser rules of C++11 do not require such checks, so that we can
14179 // diagnose incompatibilities with C++98.
14180 if (!CXXRecord
->isPOD())
14181 setFunctionHasBranchProtectedScope();
14184 // In OpenCL, we can't initialize objects in the __local address space,
14185 // even implicitly, so don't synthesize an implicit initializer.
14186 if (getLangOpts().OpenCL
&&
14187 Var
->getType().getAddressSpace() == LangAS::opencl_local
)
14189 // C++03 [dcl.init]p9:
14190 // If no initializer is specified for an object, and the
14191 // object is of (possibly cv-qualified) non-POD class type (or
14192 // array thereof), the object shall be default-initialized; if
14193 // the object is of const-qualified type, the underlying class
14194 // type shall have a user-declared default
14195 // constructor. Otherwise, if no initializer is specified for
14196 // a non- static object, the object and its subobjects, if
14197 // any, have an indeterminate initial value); if the object
14198 // or any of its subobjects are of const-qualified type, the
14199 // program is ill-formed.
14200 // C++0x [dcl.init]p11:
14201 // If no initializer is specified for an object, the object is
14202 // default-initialized; [...].
14203 InitializedEntity Entity
= InitializedEntity::InitializeVariable(Var
);
14204 InitializationKind Kind
14205 = InitializationKind::CreateDefault(Var
->getLocation());
14207 InitializationSequence
InitSeq(*this, Entity
, Kind
, {});
14208 ExprResult Init
= InitSeq
.Perform(*this, Entity
, Kind
, {});
14211 Var
->setInit(MaybeCreateExprWithCleanups(Init
.get()));
14212 // This is important for template substitution.
14213 Var
->setInitStyle(VarDecl::CallInit
);
14214 } else if (Init
.isInvalid()) {
14215 // If default-init fails, attach a recovery-expr initializer to track
14216 // that initialization was attempted and failed.
14217 auto RecoveryExpr
=
14218 CreateRecoveryExpr(Var
->getLocation(), Var
->getLocation(), {});
14219 if (RecoveryExpr
.get())
14220 Var
->setInit(RecoveryExpr
.get());
14223 CheckCompleteVariableDeclaration(Var
);
14227 void Sema::ActOnCXXForRangeDecl(Decl
*D
) {
14228 // If there is no declaration, there was an error parsing it. Ignore it.
14232 VarDecl
*VD
= dyn_cast
<VarDecl
>(D
);
14234 Diag(D
->getLocation(), diag::err_for_range_decl_must_be_var
);
14235 D
->setInvalidDecl();
14239 VD
->setCXXForRangeDecl(true);
14241 // for-range-declaration cannot be given a storage class specifier.
14243 switch (VD
->getStorageClass()) {
14252 case SC_PrivateExtern
:
14263 // for-range-declaration cannot be given a storage class specifier con't.
14264 switch (VD
->getTSCSpec()) {
14265 case TSCS_thread_local
:
14268 case TSCS___thread
:
14269 case TSCS__Thread_local
:
14270 case TSCS_unspecified
:
14275 Diag(VD
->getOuterLocStart(), diag::err_for_range_storage_class
)
14277 D
->setInvalidDecl();
14281 StmtResult
Sema::ActOnCXXForRangeIdentifier(Scope
*S
, SourceLocation IdentLoc
,
14282 IdentifierInfo
*Ident
,
14283 ParsedAttributes
&Attrs
) {
14284 // C++1y [stmt.iter]p1:
14285 // A range-based for statement of the form
14286 // for ( for-range-identifier : for-range-initializer ) statement
14287 // is equivalent to
14288 // for ( auto&& for-range-identifier : for-range-initializer ) statement
14289 DeclSpec
DS(Attrs
.getPool().getFactory());
14291 const char *PrevSpec
;
14293 DS
.SetTypeSpecType(DeclSpec::TST_auto
, IdentLoc
, PrevSpec
, DiagID
,
14294 getPrintingPolicy());
14296 Declarator
D(DS
, ParsedAttributesView::none(), DeclaratorContext::ForInit
);
14297 D
.SetIdentifier(Ident
, IdentLoc
);
14298 D
.takeAttributes(Attrs
);
14300 D
.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc
, /*lvalue*/ false),
14302 Decl
*Var
= ActOnDeclarator(S
, D
);
14303 cast
<VarDecl
>(Var
)->setCXXForRangeDecl(true);
14304 FinalizeDeclaration(Var
);
14305 return ActOnDeclStmt(FinalizeDeclaratorGroup(S
, DS
, Var
), IdentLoc
,
14306 Attrs
.Range
.getEnd().isValid() ? Attrs
.Range
.getEnd()
14310 void Sema::CheckCompleteVariableDeclaration(VarDecl
*var
) {
14311 if (var
->isInvalidDecl()) return;
14313 CUDA().MaybeAddConstantAttr(var
);
14315 if (getLangOpts().OpenCL
) {
14316 // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
14318 if (var
->getTypeSourceInfo()->getType()->isBlockPointerType() &&
14320 Diag(var
->getLocation(), diag::err_opencl_invalid_block_declaration
)
14322 var
->setInvalidDecl();
14327 // In Objective-C, don't allow jumps past the implicit initialization of a
14328 // local retaining variable.
14329 if (getLangOpts().ObjC
&&
14330 var
->hasLocalStorage()) {
14331 switch (var
->getType().getObjCLifetime()) {
14332 case Qualifiers::OCL_None
:
14333 case Qualifiers::OCL_ExplicitNone
:
14334 case Qualifiers::OCL_Autoreleasing
:
14337 case Qualifiers::OCL_Weak
:
14338 case Qualifiers::OCL_Strong
:
14339 setFunctionHasBranchProtectedScope();
14344 if (var
->hasLocalStorage() &&
14345 var
->getType().isDestructedType() == QualType::DK_nontrivial_c_struct
)
14346 setFunctionHasBranchProtectedScope();
14348 // Warn about externally-visible variables being defined without a
14349 // prior declaration. We only want to do this for global
14350 // declarations, but we also specifically need to avoid doing it for
14351 // class members because the linkage of an anonymous class can
14352 // change if it's later given a typedef name.
14353 if (var
->isThisDeclarationADefinition() &&
14354 var
->getDeclContext()->getRedeclContext()->isFileContext() &&
14355 var
->isExternallyVisible() && var
->hasLinkage() &&
14356 !var
->isInline() && !var
->getDescribedVarTemplate() &&
14357 var
->getStorageClass() != SC_Register
&&
14358 !isa
<VarTemplatePartialSpecializationDecl
>(var
) &&
14359 !isTemplateInstantiation(var
->getTemplateSpecializationKind()) &&
14360 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations
,
14361 var
->getLocation())) {
14362 // Find a previous declaration that's not a definition.
14363 VarDecl
*prev
= var
->getPreviousDecl();
14364 while (prev
&& prev
->isThisDeclarationADefinition())
14365 prev
= prev
->getPreviousDecl();
14368 Diag(var
->getLocation(), diag::warn_missing_variable_declarations
) << var
;
14369 Diag(var
->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage
)
14370 << /* variable */ 0;
14374 // Cache the result of checking for constant initialization.
14375 std::optional
<bool> CacheHasConstInit
;
14376 const Expr
*CacheCulprit
= nullptr;
14377 auto checkConstInit
= [&]() mutable {
14378 if (!CacheHasConstInit
)
14379 CacheHasConstInit
= var
->getInit()->isConstantInitializer(
14380 Context
, var
->getType()->isReferenceType(), &CacheCulprit
);
14381 return *CacheHasConstInit
;
14384 if (var
->getTLSKind() == VarDecl::TLS_Static
) {
14385 if (var
->getType().isDestructedType()) {
14386 // GNU C++98 edits for __thread, [basic.start.term]p3:
14387 // The type of an object with thread storage duration shall not
14388 // have a non-trivial destructor.
14389 Diag(var
->getLocation(), diag::err_thread_nontrivial_dtor
);
14390 if (getLangOpts().CPlusPlus11
)
14391 Diag(var
->getLocation(), diag::note_use_thread_local
);
14392 } else if (getLangOpts().CPlusPlus
&& var
->hasInit()) {
14393 if (!checkConstInit()) {
14394 // GNU C++98 edits for __thread, [basic.start.init]p4:
14395 // An object of thread storage duration shall not require dynamic
14397 // FIXME: Need strict checking here.
14398 Diag(CacheCulprit
->getExprLoc(), diag::err_thread_dynamic_init
)
14399 << CacheCulprit
->getSourceRange();
14400 if (getLangOpts().CPlusPlus11
)
14401 Diag(var
->getLocation(), diag::note_use_thread_local
);
14407 if (!var
->getType()->isStructureType() && var
->hasInit() &&
14408 isa
<InitListExpr
>(var
->getInit())) {
14409 const auto *ILE
= cast
<InitListExpr
>(var
->getInit());
14410 unsigned NumInits
= ILE
->getNumInits();
14412 for (unsigned I
= 0; I
< NumInits
; ++I
) {
14413 const auto *Init
= ILE
->getInit(I
);
14416 const auto *SL
= dyn_cast
<StringLiteral
>(Init
->IgnoreImpCasts());
14420 unsigned NumConcat
= SL
->getNumConcatenated();
14421 // Diagnose missing comma in string array initialization.
14422 // Do not warn when all the elements in the initializer are concatenated
14423 // together. Do not warn for macros too.
14424 if (NumConcat
== 2 && !SL
->getBeginLoc().isMacroID()) {
14425 bool OnlyOneMissingComma
= true;
14426 for (unsigned J
= I
+ 1; J
< NumInits
; ++J
) {
14427 const auto *Init
= ILE
->getInit(J
);
14430 const auto *SLJ
= dyn_cast
<StringLiteral
>(Init
->IgnoreImpCasts());
14431 if (!SLJ
|| SLJ
->getNumConcatenated() > 1) {
14432 OnlyOneMissingComma
= false;
14437 if (OnlyOneMissingComma
) {
14438 SmallVector
<FixItHint
, 1> Hints
;
14439 for (unsigned i
= 0; i
< NumConcat
- 1; ++i
)
14440 Hints
.push_back(FixItHint::CreateInsertion(
14441 PP
.getLocForEndOfToken(SL
->getStrTokenLoc(i
)), ","));
14443 Diag(SL
->getStrTokenLoc(1),
14444 diag::warn_concatenated_literal_array_init
)
14446 Diag(SL
->getBeginLoc(),
14447 diag::note_concatenated_string_literal_silence
);
14449 // In any case, stop now.
14456 QualType type
= var
->getType();
14458 if (var
->hasAttr
<BlocksAttr
>())
14459 getCurFunction()->addByrefBlockVar(var
);
14461 Expr
*Init
= var
->getInit();
14462 bool GlobalStorage
= var
->hasGlobalStorage();
14463 bool IsGlobal
= GlobalStorage
&& !var
->isStaticLocal();
14464 QualType baseType
= Context
.getBaseElementType(type
);
14465 bool HasConstInit
= true;
14467 if (getLangOpts().C23
&& var
->isConstexpr() && !Init
)
14468 Diag(var
->getLocation(), diag::err_constexpr_var_requires_const_init
)
14471 // Check whether the initializer is sufficiently constant.
14472 if ((getLangOpts().CPlusPlus
|| (getLangOpts().C23
&& var
->isConstexpr())) &&
14473 !type
->isDependentType() && Init
&& !Init
->isValueDependent() &&
14474 (GlobalStorage
|| var
->isConstexpr() ||
14475 var
->mightBeUsableInConstantExpressions(Context
))) {
14476 // If this variable might have a constant initializer or might be usable in
14477 // constant expressions, check whether or not it actually is now. We can't
14478 // do this lazily, because the result might depend on things that change
14479 // later, such as which constexpr functions happen to be defined.
14480 SmallVector
<PartialDiagnosticAt
, 8> Notes
;
14481 if (!getLangOpts().CPlusPlus11
&& !getLangOpts().C23
) {
14482 // Prior to C++11, in contexts where a constant initializer is required,
14483 // the set of valid constant initializers is described by syntactic rules
14484 // in [expr.const]p2-6.
14485 // FIXME: Stricter checking for these rules would be useful for constinit /
14486 // -Wglobal-constructors.
14487 HasConstInit
= checkConstInit();
14489 // Compute and cache the constant value, and remember that we have a
14490 // constant initializer.
14491 if (HasConstInit
) {
14492 (void)var
->checkForConstantInitialization(Notes
);
14494 } else if (CacheCulprit
) {
14495 Notes
.emplace_back(CacheCulprit
->getExprLoc(),
14496 PDiag(diag::note_invalid_subexpr_in_const_expr
));
14497 Notes
.back().second
<< CacheCulprit
->getSourceRange();
14500 // Evaluate the initializer to see if it's a constant initializer.
14501 HasConstInit
= var
->checkForConstantInitialization(Notes
);
14504 if (HasConstInit
) {
14505 // FIXME: Consider replacing the initializer with a ConstantExpr.
14506 } else if (var
->isConstexpr()) {
14507 SourceLocation DiagLoc
= var
->getLocation();
14508 // If the note doesn't add any useful information other than a source
14509 // location, fold it into the primary diagnostic.
14510 if (Notes
.size() == 1 && Notes
[0].second
.getDiagID() ==
14511 diag::note_invalid_subexpr_in_const_expr
) {
14512 DiagLoc
= Notes
[0].first
;
14515 Diag(DiagLoc
, diag::err_constexpr_var_requires_const_init
)
14516 << var
<< Init
->getSourceRange();
14517 for (unsigned I
= 0, N
= Notes
.size(); I
!= N
; ++I
)
14518 Diag(Notes
[I
].first
, Notes
[I
].second
);
14519 } else if (GlobalStorage
&& var
->hasAttr
<ConstInitAttr
>()) {
14520 auto *Attr
= var
->getAttr
<ConstInitAttr
>();
14521 Diag(var
->getLocation(), diag::err_require_constant_init_failed
)
14522 << Init
->getSourceRange();
14523 Diag(Attr
->getLocation(), diag::note_declared_required_constant_init_here
)
14524 << Attr
->getRange() << Attr
->isConstinit();
14525 for (auto &it
: Notes
)
14526 Diag(it
.first
, it
.second
);
14527 } else if (IsGlobal
&&
14528 !getDiagnostics().isIgnored(diag::warn_global_constructor
,
14529 var
->getLocation())) {
14530 // Warn about globals which don't have a constant initializer. Don't
14531 // warn about globals with a non-trivial destructor because we already
14532 // warned about them.
14533 CXXRecordDecl
*RD
= baseType
->getAsCXXRecordDecl();
14534 if (!(RD
&& !RD
->hasTrivialDestructor())) {
14535 // checkConstInit() here permits trivial default initialization even in
14536 // C++11 onwards, where such an initializer is not a constant initializer
14537 // but nonetheless doesn't require a global constructor.
14538 if (!checkConstInit())
14539 Diag(var
->getLocation(), diag::warn_global_constructor
)
14540 << Init
->getSourceRange();
14545 // Apply section attributes and pragmas to global variables.
14546 if (GlobalStorage
&& var
->isThisDeclarationADefinition() &&
14547 !inTemplateInstantiation()) {
14548 PragmaStack
<StringLiteral
*> *Stack
= nullptr;
14549 int SectionFlags
= ASTContext::PSF_Read
;
14551 Context
.getTargetInfo().getTriple().isWindowsMSVCEnvironment();
14552 std::optional
<QualType::NonConstantStorageReason
> Reason
;
14553 if (HasConstInit
&&
14554 !(Reason
= var
->getType().isNonConstantStorage(Context
, true, false))) {
14555 Stack
= &ConstSegStack
;
14557 SectionFlags
|= ASTContext::PSF_Write
;
14558 Stack
= var
->hasInit() && HasConstInit
? &DataSegStack
: &BSSSegStack
;
14560 if (const SectionAttr
*SA
= var
->getAttr
<SectionAttr
>()) {
14561 if (SA
->getSyntax() == AttributeCommonInfo::AS_Declspec
)
14562 SectionFlags
|= ASTContext::PSF_Implicit
;
14563 UnifySection(SA
->getName(), SectionFlags
, var
);
14564 } else if (Stack
->CurrentValue
) {
14565 if (Stack
!= &ConstSegStack
&& MSVCEnv
&&
14566 ConstSegStack
.CurrentValue
!= ConstSegStack
.DefaultValue
&&
14567 var
->getType().isConstQualified()) {
14568 assert((!Reason
|| Reason
!= QualType::NonConstantStorageReason::
14569 NonConstNonReferenceType
) &&
14570 "This case should've already been handled elsewhere");
14571 Diag(var
->getLocation(), diag::warn_section_msvc_compat
)
14572 << var
<< ConstSegStack
.CurrentValue
<< (int)(!HasConstInit
14573 ? QualType::NonConstantStorageReason::NonTrivialCtor
14576 SectionFlags
|= ASTContext::PSF_Implicit
;
14577 auto SectionName
= Stack
->CurrentValue
->getString();
14578 var
->addAttr(SectionAttr::CreateImplicit(Context
, SectionName
,
14579 Stack
->CurrentPragmaLocation
,
14580 SectionAttr::Declspec_allocate
));
14581 if (UnifySection(SectionName
, SectionFlags
, var
))
14582 var
->dropAttr
<SectionAttr
>();
14585 // Apply the init_seg attribute if this has an initializer. If the
14586 // initializer turns out to not be dynamic, we'll end up ignoring this
14588 if (CurInitSeg
&& var
->getInit())
14589 var
->addAttr(InitSegAttr::CreateImplicit(Context
, CurInitSeg
->getString(),
14593 // All the following checks are C++ only.
14594 if (!getLangOpts().CPlusPlus
) {
14595 // If this variable must be emitted, add it as an initializer for the
14597 if (Context
.DeclMustBeEmitted(var
) && !ModuleScopes
.empty())
14598 Context
.addModuleInitializer(ModuleScopes
.back().Module
, var
);
14602 // Require the destructor.
14603 if (!type
->isDependentType())
14604 if (const RecordType
*recordType
= baseType
->getAs
<RecordType
>())
14605 FinalizeVarWithDestructor(var
, recordType
);
14607 // If this variable must be emitted, add it as an initializer for the current
14609 if (Context
.DeclMustBeEmitted(var
) && !ModuleScopes
.empty())
14610 Context
.addModuleInitializer(ModuleScopes
.back().Module
, var
);
14612 // Build the bindings if this is a structured binding declaration.
14613 if (auto *DD
= dyn_cast
<DecompositionDecl
>(var
))
14614 CheckCompleteDecompositionDeclaration(DD
);
14617 void Sema::CheckStaticLocalForDllExport(VarDecl
*VD
) {
14618 assert(VD
->isStaticLocal());
14620 auto *FD
= dyn_cast_or_null
<FunctionDecl
>(VD
->getParentFunctionOrMethod());
14622 // Find outermost function when VD is in lambda function.
14623 while (FD
&& !getDLLAttr(FD
) &&
14624 !FD
->hasAttr
<DLLExportStaticLocalAttr
>() &&
14625 !FD
->hasAttr
<DLLImportStaticLocalAttr
>()) {
14626 FD
= dyn_cast_or_null
<FunctionDecl
>(FD
->getParentFunctionOrMethod());
14632 // Static locals inherit dll attributes from their function.
14633 if (Attr
*A
= getDLLAttr(FD
)) {
14634 auto *NewAttr
= cast
<InheritableAttr
>(A
->clone(getASTContext()));
14635 NewAttr
->setInherited(true);
14636 VD
->addAttr(NewAttr
);
14637 } else if (Attr
*A
= FD
->getAttr
<DLLExportStaticLocalAttr
>()) {
14638 auto *NewAttr
= DLLExportAttr::CreateImplicit(getASTContext(), *A
);
14639 NewAttr
->setInherited(true);
14640 VD
->addAttr(NewAttr
);
14642 // Export this function to enforce exporting this static variable even
14643 // if it is not used in this compilation unit.
14644 if (!FD
->hasAttr
<DLLExportAttr
>())
14645 FD
->addAttr(NewAttr
);
14647 } else if (Attr
*A
= FD
->getAttr
<DLLImportStaticLocalAttr
>()) {
14648 auto *NewAttr
= DLLImportAttr::CreateImplicit(getASTContext(), *A
);
14649 NewAttr
->setInherited(true);
14650 VD
->addAttr(NewAttr
);
14654 void Sema::CheckThreadLocalForLargeAlignment(VarDecl
*VD
) {
14655 assert(VD
->getTLSKind());
14657 // Perform TLS alignment check here after attributes attached to the variable
14658 // which may affect the alignment have been processed. Only perform the check
14659 // if the target has a maximum TLS alignment (zero means no constraints).
14660 if (unsigned MaxAlign
= Context
.getTargetInfo().getMaxTLSAlign()) {
14661 // Protect the check so that it's not performed on dependent types and
14662 // dependent alignments (we can't determine the alignment in that case).
14663 if (!VD
->hasDependentAlignment()) {
14664 CharUnits MaxAlignChars
= Context
.toCharUnitsFromBits(MaxAlign
);
14665 if (Context
.getDeclAlign(VD
) > MaxAlignChars
) {
14666 Diag(VD
->getLocation(), diag::err_tls_var_aligned_over_maximum
)
14667 << (unsigned)Context
.getDeclAlign(VD
).getQuantity() << VD
14668 << (unsigned)MaxAlignChars
.getQuantity();
14674 void Sema::FinalizeDeclaration(Decl
*ThisDecl
) {
14675 // Note that we are no longer parsing the initializer for this declaration.
14676 ParsingInitForAutoVars
.erase(ThisDecl
);
14678 VarDecl
*VD
= dyn_cast_or_null
<VarDecl
>(ThisDecl
);
14682 // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
14683 if (VD
->hasGlobalStorage() && VD
->isThisDeclarationADefinition() &&
14684 !inTemplateInstantiation() && !VD
->hasAttr
<SectionAttr
>()) {
14685 if (PragmaClangBSSSection
.Valid
)
14686 VD
->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
14687 Context
, PragmaClangBSSSection
.SectionName
,
14688 PragmaClangBSSSection
.PragmaLocation
));
14689 if (PragmaClangDataSection
.Valid
)
14690 VD
->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
14691 Context
, PragmaClangDataSection
.SectionName
,
14692 PragmaClangDataSection
.PragmaLocation
));
14693 if (PragmaClangRodataSection
.Valid
)
14694 VD
->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
14695 Context
, PragmaClangRodataSection
.SectionName
,
14696 PragmaClangRodataSection
.PragmaLocation
));
14697 if (PragmaClangRelroSection
.Valid
)
14698 VD
->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
14699 Context
, PragmaClangRelroSection
.SectionName
,
14700 PragmaClangRelroSection
.PragmaLocation
));
14703 if (auto *DD
= dyn_cast
<DecompositionDecl
>(ThisDecl
)) {
14704 for (auto *BD
: DD
->bindings()) {
14705 FinalizeDeclaration(BD
);
14709 CheckInvalidBuiltinCountedByRef(VD
->getInit(), InitializerKind
);
14711 checkAttributesAfterMerging(*this, *VD
);
14713 if (VD
->isStaticLocal())
14714 CheckStaticLocalForDllExport(VD
);
14716 if (VD
->getTLSKind())
14717 CheckThreadLocalForLargeAlignment(VD
);
14719 // Perform check for initializers of device-side global variables.
14720 // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
14721 // 7.5). We must also apply the same checks to all __shared__
14722 // variables whether they are local or not. CUDA also allows
14723 // constant initializers for __constant__ and __device__ variables.
14724 if (getLangOpts().CUDA
)
14725 CUDA().checkAllowedInitializer(VD
);
14727 // Grab the dllimport or dllexport attribute off of the VarDecl.
14728 const InheritableAttr
*DLLAttr
= getDLLAttr(VD
);
14730 // Imported static data members cannot be defined out-of-line.
14731 if (const auto *IA
= dyn_cast_or_null
<DLLImportAttr
>(DLLAttr
)) {
14732 if (VD
->isStaticDataMember() && VD
->isOutOfLine() &&
14733 VD
->isThisDeclarationADefinition()) {
14734 // We allow definitions of dllimport class template static data members
14736 CXXRecordDecl
*Context
=
14737 cast
<CXXRecordDecl
>(VD
->getFirstDecl()->getDeclContext());
14738 bool IsClassTemplateMember
=
14739 isa
<ClassTemplatePartialSpecializationDecl
>(Context
) ||
14740 Context
->getDescribedClassTemplate();
14742 Diag(VD
->getLocation(),
14743 IsClassTemplateMember
14744 ? diag::warn_attribute_dllimport_static_field_definition
14745 : diag::err_attribute_dllimport_static_field_definition
);
14746 Diag(IA
->getLocation(), diag::note_attribute
);
14747 if (!IsClassTemplateMember
)
14748 VD
->setInvalidDecl();
14752 // dllimport/dllexport variables cannot be thread local, their TLS index
14753 // isn't exported with the variable.
14754 if (DLLAttr
&& VD
->getTLSKind()) {
14755 auto *F
= dyn_cast_or_null
<FunctionDecl
>(VD
->getParentFunctionOrMethod());
14756 if (F
&& getDLLAttr(F
)) {
14757 assert(VD
->isStaticLocal());
14758 // But if this is a static local in a dlimport/dllexport function, the
14759 // function will never be inlined, which means the var would never be
14760 // imported, so having it marked import/export is safe.
14762 Diag(VD
->getLocation(), diag::err_attribute_dll_thread_local
) << VD
14764 VD
->setInvalidDecl();
14768 if (UsedAttr
*Attr
= VD
->getAttr
<UsedAttr
>()) {
14769 if (!Attr
->isInherited() && !VD
->isThisDeclarationADefinition()) {
14770 Diag(Attr
->getLocation(), diag::warn_attribute_ignored_on_non_definition
)
14772 VD
->dropAttr
<UsedAttr
>();
14775 if (RetainAttr
*Attr
= VD
->getAttr
<RetainAttr
>()) {
14776 if (!Attr
->isInherited() && !VD
->isThisDeclarationADefinition()) {
14777 Diag(Attr
->getLocation(), diag::warn_attribute_ignored_on_non_definition
)
14779 VD
->dropAttr
<RetainAttr
>();
14783 const DeclContext
*DC
= VD
->getDeclContext();
14784 // If there's a #pragma GCC visibility in scope, and this isn't a class
14785 // member, set the visibility of this variable.
14786 if (DC
->getRedeclContext()->isFileContext() && VD
->isExternallyVisible())
14787 AddPushedVisibilityAttribute(VD
);
14789 // FIXME: Warn on unused var template partial specializations.
14790 if (VD
->isFileVarDecl() && !isa
<VarTemplatePartialSpecializationDecl
>(VD
))
14791 MarkUnusedFileScopedDecl(VD
);
14793 // Now we have parsed the initializer and can update the table of magic
14795 if (!VD
->hasAttr
<TypeTagForDatatypeAttr
>() ||
14796 !VD
->getType()->isIntegralOrEnumerationType())
14799 for (const auto *I
: ThisDecl
->specific_attrs
<TypeTagForDatatypeAttr
>()) {
14800 const Expr
*MagicValueExpr
= VD
->getInit();
14801 if (!MagicValueExpr
) {
14804 std::optional
<llvm::APSInt
> MagicValueInt
;
14805 if (!(MagicValueInt
= MagicValueExpr
->getIntegerConstantExpr(Context
))) {
14806 Diag(I
->getRange().getBegin(),
14807 diag::err_type_tag_for_datatype_not_ice
)
14808 << LangOpts
.CPlusPlus
<< MagicValueExpr
->getSourceRange();
14811 if (MagicValueInt
->getActiveBits() > 64) {
14812 Diag(I
->getRange().getBegin(),
14813 diag::err_type_tag_for_datatype_too_large
)
14814 << LangOpts
.CPlusPlus
<< MagicValueExpr
->getSourceRange();
14817 uint64_t MagicValue
= MagicValueInt
->getZExtValue();
14818 RegisterTypeTagForDatatype(I
->getArgumentKind(),
14820 I
->getMatchingCType(),
14821 I
->getLayoutCompatible(),
14822 I
->getMustBeNull());
14826 static bool hasDeducedAuto(DeclaratorDecl
*DD
) {
14827 auto *VD
= dyn_cast
<VarDecl
>(DD
);
14828 return VD
&& !VD
->getType()->hasAutoForTrailingReturnType();
14831 Sema::DeclGroupPtrTy
Sema::FinalizeDeclaratorGroup(Scope
*S
, const DeclSpec
&DS
,
14832 ArrayRef
<Decl
*> Group
) {
14833 SmallVector
<Decl
*, 8> Decls
;
14835 if (DS
.isTypeSpecOwned())
14836 Decls
.push_back(DS
.getRepAsDecl());
14838 DeclaratorDecl
*FirstDeclaratorInGroup
= nullptr;
14839 DecompositionDecl
*FirstDecompDeclaratorInGroup
= nullptr;
14840 bool DiagnosedMultipleDecomps
= false;
14841 DeclaratorDecl
*FirstNonDeducedAutoInGroup
= nullptr;
14842 bool DiagnosedNonDeducedAuto
= false;
14844 for (Decl
*D
: Group
) {
14847 // Check if the Decl has been declared in '#pragma omp declare target'
14848 // directive and has static storage duration.
14849 if (auto *VD
= dyn_cast
<VarDecl
>(D
);
14850 LangOpts
.OpenMP
&& VD
&& VD
->hasAttr
<OMPDeclareTargetDeclAttr
>() &&
14851 VD
->hasGlobalStorage())
14852 OpenMP().ActOnOpenMPDeclareTargetInitializer(D
);
14853 // For declarators, there are some additional syntactic-ish checks we need
14855 if (auto *DD
= dyn_cast
<DeclaratorDecl
>(D
)) {
14856 if (!FirstDeclaratorInGroup
)
14857 FirstDeclaratorInGroup
= DD
;
14858 if (!FirstDecompDeclaratorInGroup
)
14859 FirstDecompDeclaratorInGroup
= dyn_cast
<DecompositionDecl
>(D
);
14860 if (!FirstNonDeducedAutoInGroup
&& DS
.hasAutoTypeSpec() &&
14861 !hasDeducedAuto(DD
))
14862 FirstNonDeducedAutoInGroup
= DD
;
14864 if (FirstDeclaratorInGroup
!= DD
) {
14865 // A decomposition declaration cannot be combined with any other
14866 // declaration in the same group.
14867 if (FirstDecompDeclaratorInGroup
&& !DiagnosedMultipleDecomps
) {
14868 Diag(FirstDecompDeclaratorInGroup
->getLocation(),
14869 diag::err_decomp_decl_not_alone
)
14870 << FirstDeclaratorInGroup
->getSourceRange()
14871 << DD
->getSourceRange();
14872 DiagnosedMultipleDecomps
= true;
14875 // A declarator that uses 'auto' in any way other than to declare a
14876 // variable with a deduced type cannot be combined with any other
14877 // declarator in the same group.
14878 if (FirstNonDeducedAutoInGroup
&& !DiagnosedNonDeducedAuto
) {
14879 Diag(FirstNonDeducedAutoInGroup
->getLocation(),
14880 diag::err_auto_non_deduced_not_alone
)
14881 << FirstNonDeducedAutoInGroup
->getType()
14882 ->hasAutoForTrailingReturnType()
14883 << FirstDeclaratorInGroup
->getSourceRange()
14884 << DD
->getSourceRange();
14885 DiagnosedNonDeducedAuto
= true;
14890 Decls
.push_back(D
);
14893 if (DeclSpec::isDeclRep(DS
.getTypeSpecType())) {
14894 if (TagDecl
*Tag
= dyn_cast_or_null
<TagDecl
>(DS
.getRepAsDecl())) {
14895 handleTagNumbering(Tag
, S
);
14896 if (FirstDeclaratorInGroup
&& !Tag
->hasNameForLinkage() &&
14897 getLangOpts().CPlusPlus
)
14898 Context
.addDeclaratorForUnnamedTagDecl(Tag
, FirstDeclaratorInGroup
);
14902 return BuildDeclaratorGroup(Decls
);
14905 Sema::DeclGroupPtrTy
14906 Sema::BuildDeclaratorGroup(MutableArrayRef
<Decl
*> Group
) {
14907 // C++14 [dcl.spec.auto]p7: (DR1347)
14908 // If the type that replaces the placeholder type is not the same in each
14909 // deduction, the program is ill-formed.
14910 if (Group
.size() > 1) {
14912 VarDecl
*DeducedDecl
= nullptr;
14913 for (unsigned i
= 0, e
= Group
.size(); i
!= e
; ++i
) {
14914 VarDecl
*D
= dyn_cast
<VarDecl
>(Group
[i
]);
14915 if (!D
|| D
->isInvalidDecl())
14917 DeducedType
*DT
= D
->getType()->getContainedDeducedType();
14918 if (!DT
|| DT
->getDeducedType().isNull())
14920 if (Deduced
.isNull()) {
14921 Deduced
= DT
->getDeducedType();
14923 } else if (!Context
.hasSameType(DT
->getDeducedType(), Deduced
)) {
14924 auto *AT
= dyn_cast
<AutoType
>(DT
);
14925 auto Dia
= Diag(D
->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
14926 diag::err_auto_different_deductions
)
14927 << (AT
? (unsigned)AT
->getKeyword() : 3) << Deduced
14928 << DeducedDecl
->getDeclName() << DT
->getDeducedType()
14929 << D
->getDeclName();
14930 if (DeducedDecl
->hasInit())
14931 Dia
<< DeducedDecl
->getInit()->getSourceRange();
14933 Dia
<< D
->getInit()->getSourceRange();
14934 D
->setInvalidDecl();
14940 ActOnDocumentableDecls(Group
);
14942 return DeclGroupPtrTy::make(
14943 DeclGroupRef::Create(Context
, Group
.data(), Group
.size()));
14946 void Sema::ActOnDocumentableDecl(Decl
*D
) {
14947 ActOnDocumentableDecls(D
);
14950 void Sema::ActOnDocumentableDecls(ArrayRef
<Decl
*> Group
) {
14951 // Don't parse the comment if Doxygen diagnostics are ignored.
14952 if (Group
.empty() || !Group
[0])
14955 if (Diags
.isIgnored(diag::warn_doc_param_not_found
,
14956 Group
[0]->getLocation()) &&
14957 Diags
.isIgnored(diag::warn_unknown_comment_command_name
,
14958 Group
[0]->getLocation()))
14961 if (Group
.size() >= 2) {
14962 // This is a decl group. Normally it will contain only declarations
14963 // produced from declarator list. But in case we have any definitions or
14964 // additional declaration references:
14965 // 'typedef struct S {} S;'
14966 // 'typedef struct S *S;'
14968 // FinalizeDeclaratorGroup adds these as separate declarations.
14969 Decl
*MaybeTagDecl
= Group
[0];
14970 if (MaybeTagDecl
&& isa
<TagDecl
>(MaybeTagDecl
)) {
14971 Group
= Group
.slice(1);
14975 // FIMXE: We assume every Decl in the group is in the same file.
14976 // This is false when preprocessor constructs the group from decls in
14977 // different files (e. g. macros or #include).
14978 Context
.attachCommentsToJustParsedDecls(Group
, &getPreprocessor());
14981 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope
*S
, Declarator
&D
) {
14982 // Check that there are no default arguments inside the type of this
14984 if (getLangOpts().CPlusPlus
)
14985 CheckExtraCXXDefaultArguments(D
);
14987 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
14988 if (D
.getCXXScopeSpec().isSet()) {
14989 Diag(D
.getIdentifierLoc(), diag::err_qualified_param_declarator
)
14990 << D
.getCXXScopeSpec().getRange();
14993 // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
14994 // simple identifier except [...irrelevant cases...].
14995 switch (D
.getName().getKind()) {
14996 case UnqualifiedIdKind::IK_Identifier
:
14999 case UnqualifiedIdKind::IK_OperatorFunctionId
:
15000 case UnqualifiedIdKind::IK_ConversionFunctionId
:
15001 case UnqualifiedIdKind::IK_LiteralOperatorId
:
15002 case UnqualifiedIdKind::IK_ConstructorName
:
15003 case UnqualifiedIdKind::IK_DestructorName
:
15004 case UnqualifiedIdKind::IK_ImplicitSelfParam
:
15005 case UnqualifiedIdKind::IK_DeductionGuideName
:
15006 Diag(D
.getIdentifierLoc(), diag::err_bad_parameter_name
)
15007 << GetNameForDeclarator(D
).getName();
15010 case UnqualifiedIdKind::IK_TemplateId
:
15011 case UnqualifiedIdKind::IK_ConstructorTemplateId
:
15012 // GetNameForDeclarator would not produce a useful name in this case.
15013 Diag(D
.getIdentifierLoc(), diag::err_bad_parameter_name_template_id
);
15018 static void CheckExplicitObjectParameter(Sema
&S
, ParmVarDecl
*P
,
15019 SourceLocation ExplicitThisLoc
) {
15020 if (!ExplicitThisLoc
.isValid())
15022 assert(S
.getLangOpts().CPlusPlus
&&
15023 "explicit parameter in non-cplusplus mode");
15024 if (!S
.getLangOpts().CPlusPlus23
)
15025 S
.Diag(ExplicitThisLoc
, diag::err_cxx20_deducing_this
)
15026 << P
->getSourceRange();
15028 // C++2b [dcl.fct/7] An explicit object parameter shall not be a function
15030 if (P
->isParameterPack()) {
15031 S
.Diag(P
->getBeginLoc(), diag::err_explicit_object_parameter_pack
)
15032 << P
->getSourceRange();
15035 P
->setExplicitObjectParameterLoc(ExplicitThisLoc
);
15036 if (LambdaScopeInfo
*LSI
= S
.getCurLambda())
15037 LSI
->ExplicitObjectParameter
= P
;
15040 Decl
*Sema::ActOnParamDeclarator(Scope
*S
, Declarator
&D
,
15041 SourceLocation ExplicitThisLoc
) {
15042 const DeclSpec
&DS
= D
.getDeclSpec();
15044 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
15045 // C2y 6.7.7.4p4: A parameter declaration shall not specify a void type,
15046 // except for the special case of a single unnamed parameter of type void
15047 // with no storage class specifier, no type qualifier, and no following
15048 // ellipsis terminator.
15049 // Clang applies the C2y rules for 'register void' in all C language modes,
15050 // same as GCC, because it's questionable what that could possibly mean.
15052 // C++03 [dcl.stc]p2 also permits 'auto'.
15053 StorageClass SC
= SC_None
;
15054 if (DS
.getStorageClassSpec() == DeclSpec::SCS_register
) {
15056 // In C++11, the 'register' storage class specifier is deprecated.
15057 // In C++17, it is not allowed, but we tolerate it as an extension.
15058 if (getLangOpts().CPlusPlus11
) {
15059 Diag(DS
.getStorageClassSpecLoc(), getLangOpts().CPlusPlus17
15060 ? diag::ext_register_storage_class
15061 : diag::warn_deprecated_register
)
15062 << FixItHint::CreateRemoval(DS
.getStorageClassSpecLoc());
15063 } else if (!getLangOpts().CPlusPlus
&&
15064 DS
.getTypeSpecType() == DeclSpec::TST_void
&&
15065 D
.getNumTypeObjects() == 0) {
15066 Diag(DS
.getStorageClassSpecLoc(),
15067 diag::err_invalid_storage_class_in_func_decl
)
15068 << FixItHint::CreateRemoval(DS
.getStorageClassSpecLoc());
15069 D
.getMutableDeclSpec().ClearStorageClassSpecs();
15071 } else if (getLangOpts().CPlusPlus
&&
15072 DS
.getStorageClassSpec() == DeclSpec::SCS_auto
) {
15074 } else if (DS
.getStorageClassSpec() != DeclSpec::SCS_unspecified
) {
15075 Diag(DS
.getStorageClassSpecLoc(),
15076 diag::err_invalid_storage_class_in_func_decl
);
15077 D
.getMutableDeclSpec().ClearStorageClassSpecs();
15080 if (DeclSpec::TSCS TSCS
= DS
.getThreadStorageClassSpec())
15081 Diag(DS
.getThreadStorageClassSpecLoc(), diag::err_invalid_thread
)
15082 << DeclSpec::getSpecifierName(TSCS
);
15083 if (DS
.isInlineSpecified())
15084 Diag(DS
.getInlineSpecLoc(), diag::err_inline_non_function
)
15085 << getLangOpts().CPlusPlus17
;
15086 if (DS
.hasConstexprSpecifier())
15087 Diag(DS
.getConstexprSpecLoc(), diag::err_invalid_constexpr
)
15088 << 0 << static_cast<int>(D
.getDeclSpec().getConstexprSpecifier());
15090 DiagnoseFunctionSpecifiers(DS
);
15092 CheckFunctionOrTemplateParamDeclarator(S
, D
);
15094 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(D
);
15095 QualType parmDeclType
= TInfo
->getType();
15097 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
15098 const IdentifierInfo
*II
= D
.getIdentifier();
15100 LookupResult
R(*this, II
, D
.getIdentifierLoc(), LookupOrdinaryName
,
15101 RedeclarationKind::ForVisibleRedeclaration
);
15104 NamedDecl
*PrevDecl
= *R
.begin();
15105 if (R
.isSingleResult() && PrevDecl
->isTemplateParameter()) {
15106 // Maybe we will complain about the shadowed template parameter.
15107 DiagnoseTemplateParameterShadow(D
.getIdentifierLoc(), PrevDecl
);
15108 // Just pretend that we didn't see the previous declaration.
15109 PrevDecl
= nullptr;
15111 if (PrevDecl
&& S
->isDeclScope(PrevDecl
)) {
15112 Diag(D
.getIdentifierLoc(), diag::err_param_redefinition
) << II
;
15113 Diag(PrevDecl
->getLocation(), diag::note_previous_declaration
);
15114 // Recover by removing the name
15116 D
.SetIdentifier(nullptr, D
.getIdentifierLoc());
15117 D
.setInvalidType(true);
15122 // Temporarily put parameter variables in the translation unit, not
15123 // the enclosing context. This prevents them from accidentally
15124 // looking like class members in C++.
15126 CheckParameter(Context
.getTranslationUnitDecl(), D
.getBeginLoc(),
15127 D
.getIdentifierLoc(), II
, parmDeclType
, TInfo
, SC
);
15129 if (D
.isInvalidType())
15130 New
->setInvalidDecl();
15132 CheckExplicitObjectParameter(*this, New
, ExplicitThisLoc
);
15134 assert(S
->isFunctionPrototypeScope());
15135 assert(S
->getFunctionPrototypeDepth() >= 1);
15136 New
->setScopeInfo(S
->getFunctionPrototypeDepth() - 1,
15137 S
->getNextFunctionPrototypeIndex());
15139 // Add the parameter declaration into this scope.
15142 IdResolver
.AddDecl(New
);
15144 ProcessDeclAttributes(S
, New
, D
);
15146 if (D
.getDeclSpec().isModulePrivateSpecified())
15147 Diag(New
->getLocation(), diag::err_module_private_local
)
15148 << 1 << New
<< SourceRange(D
.getDeclSpec().getModulePrivateSpecLoc())
15149 << FixItHint::CreateRemoval(D
.getDeclSpec().getModulePrivateSpecLoc());
15151 if (New
->hasAttr
<BlocksAttr
>()) {
15152 Diag(New
->getLocation(), diag::err_block_on_nonlocal
);
15155 if (getLangOpts().OpenCL
)
15156 deduceOpenCLAddressSpace(New
);
15161 ParmVarDecl
*Sema::BuildParmVarDeclForTypedef(DeclContext
*DC
,
15162 SourceLocation Loc
,
15164 /* FIXME: setting StartLoc == Loc.
15165 Would it be worth to modify callers so as to provide proper source
15166 location for the unnamed parameters, embedding the parameter's type? */
15167 ParmVarDecl
*Param
= ParmVarDecl::Create(Context
, DC
, Loc
, Loc
, nullptr,
15168 T
, Context
.getTrivialTypeSourceInfo(T
, Loc
),
15170 Param
->setImplicit();
15174 void Sema::DiagnoseUnusedParameters(ArrayRef
<ParmVarDecl
*> Parameters
) {
15175 // Don't diagnose unused-parameter errors in template instantiations; we
15176 // will already have done so in the template itself.
15177 if (inTemplateInstantiation())
15180 for (const ParmVarDecl
*Parameter
: Parameters
) {
15181 if (!Parameter
->isReferenced() && Parameter
->getDeclName() &&
15182 !Parameter
->hasAttr
<UnusedAttr
>() &&
15183 !Parameter
->getIdentifier()->isPlaceholder()) {
15184 Diag(Parameter
->getLocation(), diag::warn_unused_parameter
)
15185 << Parameter
->getDeclName();
15190 void Sema::DiagnoseSizeOfParametersAndReturnValue(
15191 ArrayRef
<ParmVarDecl
*> Parameters
, QualType ReturnTy
, NamedDecl
*D
) {
15192 if (LangOpts
.NumLargeByValueCopy
== 0) // No check.
15195 // Warn if the return value is pass-by-value and larger than the specified
15197 if (!ReturnTy
->isDependentType() && ReturnTy
.isPODType(Context
)) {
15198 unsigned Size
= Context
.getTypeSizeInChars(ReturnTy
).getQuantity();
15199 if (Size
> LangOpts
.NumLargeByValueCopy
)
15200 Diag(D
->getLocation(), diag::warn_return_value_size
) << D
<< Size
;
15203 // Warn if any parameter is pass-by-value and larger than the specified
15205 for (const ParmVarDecl
*Parameter
: Parameters
) {
15206 QualType T
= Parameter
->getType();
15207 if (T
->isDependentType() || !T
.isPODType(Context
))
15209 unsigned Size
= Context
.getTypeSizeInChars(T
).getQuantity();
15210 if (Size
> LangOpts
.NumLargeByValueCopy
)
15211 Diag(Parameter
->getLocation(), diag::warn_parameter_size
)
15212 << Parameter
<< Size
;
15216 ParmVarDecl
*Sema::CheckParameter(DeclContext
*DC
, SourceLocation StartLoc
,
15217 SourceLocation NameLoc
,
15218 const IdentifierInfo
*Name
, QualType T
,
15219 TypeSourceInfo
*TSInfo
, StorageClass SC
) {
15220 // In ARC, infer a lifetime qualifier for appropriate parameter types.
15221 if (getLangOpts().ObjCAutoRefCount
&&
15222 T
.getObjCLifetime() == Qualifiers::OCL_None
&&
15223 T
->isObjCLifetimeType()) {
15225 Qualifiers::ObjCLifetime lifetime
;
15227 // Special cases for arrays:
15228 // - if it's const, use __unsafe_unretained
15229 // - otherwise, it's an error
15230 if (T
->isArrayType()) {
15231 if (!T
.isConstQualified()) {
15232 if (DelayedDiagnostics
.shouldDelayDiagnostics())
15233 DelayedDiagnostics
.add(
15234 sema::DelayedDiagnostic::makeForbiddenType(
15235 NameLoc
, diag::err_arc_array_param_no_ownership
, T
, false));
15237 Diag(NameLoc
, diag::err_arc_array_param_no_ownership
)
15238 << TSInfo
->getTypeLoc().getSourceRange();
15240 lifetime
= Qualifiers::OCL_ExplicitNone
;
15242 lifetime
= T
->getObjCARCImplicitLifetime();
15244 T
= Context
.getLifetimeQualifiedType(T
, lifetime
);
15247 ParmVarDecl
*New
= ParmVarDecl::Create(Context
, DC
, StartLoc
, NameLoc
, Name
,
15248 Context
.getAdjustedParameterType(T
),
15249 TSInfo
, SC
, nullptr);
15251 // Make a note if we created a new pack in the scope of a lambda, so that
15252 // we know that references to that pack must also be expanded within the
15254 if (New
->isParameterPack())
15255 if (auto *CSI
= getEnclosingLambdaOrBlock())
15256 CSI
->LocalPacks
.push_back(New
);
15258 if (New
->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
15259 New
->getType().hasNonTrivialToPrimitiveCopyCUnion())
15260 checkNonTrivialCUnion(New
->getType(), New
->getLocation(),
15261 NTCUC_FunctionParam
, NTCUK_Destruct
|NTCUK_Copy
);
15263 // Parameter declarators cannot be interface types. All ObjC objects are
15264 // passed by reference.
15265 if (T
->isObjCObjectType()) {
15266 SourceLocation TypeEndLoc
=
15267 getLocForEndOfToken(TSInfo
->getTypeLoc().getEndLoc());
15269 diag::err_object_cannot_be_passed_returned_by_value
) << 1 << T
15270 << FixItHint::CreateInsertion(TypeEndLoc
, "*");
15271 T
= Context
.getObjCObjectPointerType(T
);
15275 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
15276 // duration shall not be qualified by an address-space qualifier."
15277 // Since all parameters have automatic store duration, they can not have
15278 // an address space.
15279 if (T
.getAddressSpace() != LangAS::Default
&&
15280 // OpenCL allows function arguments declared to be an array of a type
15281 // to be qualified with an address space.
15282 !(getLangOpts().OpenCL
&&
15283 (T
->isArrayType() || T
.getAddressSpace() == LangAS::opencl_private
)) &&
15284 // WebAssembly allows reference types as parameters. Funcref in particular
15285 // lives in a different address space.
15286 !(T
->isFunctionPointerType() &&
15287 T
.getAddressSpace() == LangAS::wasm_funcref
)) {
15288 Diag(NameLoc
, diag::err_arg_with_address_space
);
15289 New
->setInvalidDecl();
15292 // PPC MMA non-pointer types are not allowed as function argument types.
15293 if (Context
.getTargetInfo().getTriple().isPPC64() &&
15294 PPC().CheckPPCMMAType(New
->getOriginalType(), New
->getLocation())) {
15295 New
->setInvalidDecl();
15301 void Sema::ActOnFinishKNRParamDeclarations(Scope
*S
, Declarator
&D
,
15302 SourceLocation LocAfterDecls
) {
15303 DeclaratorChunk::FunctionTypeInfo
&FTI
= D
.getFunctionTypeInfo();
15305 // C99 6.9.1p6 "If a declarator includes an identifier list, each declaration
15306 // in the declaration list shall have at least one declarator, those
15307 // declarators shall only declare identifiers from the identifier list, and
15308 // every identifier in the identifier list shall be declared.
15310 // C89 3.7.1p5 "If a declarator includes an identifier list, only the
15311 // identifiers it names shall be declared in the declaration list."
15313 // This is why we only diagnose in C99 and later. Note, the other conditions
15314 // listed are checked elsewhere.
15315 if (!FTI
.hasPrototype
) {
15316 for (int i
= FTI
.NumParams
; i
!= 0; /* decrement in loop */) {
15318 if (FTI
.Params
[i
].Param
== nullptr) {
15319 if (getLangOpts().C99
) {
15320 SmallString
<256> Code
;
15321 llvm::raw_svector_ostream(Code
)
15322 << " int " << FTI
.Params
[i
].Ident
->getName() << ";\n";
15323 Diag(FTI
.Params
[i
].IdentLoc
, diag::ext_param_not_declared
)
15324 << FTI
.Params
[i
].Ident
15325 << FixItHint::CreateInsertion(LocAfterDecls
, Code
);
15328 // Implicitly declare the argument as type 'int' for lack of a better
15330 AttributeFactory attrs
;
15331 DeclSpec
DS(attrs
);
15332 const char* PrevSpec
; // unused
15333 unsigned DiagID
; // unused
15334 DS
.SetTypeSpecType(DeclSpec::TST_int
, FTI
.Params
[i
].IdentLoc
, PrevSpec
,
15335 DiagID
, Context
.getPrintingPolicy());
15336 // Use the identifier location for the type source range.
15337 DS
.SetRangeStart(FTI
.Params
[i
].IdentLoc
);
15338 DS
.SetRangeEnd(FTI
.Params
[i
].IdentLoc
);
15339 Declarator
ParamD(DS
, ParsedAttributesView::none(),
15340 DeclaratorContext::KNRTypeList
);
15341 ParamD
.SetIdentifier(FTI
.Params
[i
].Ident
, FTI
.Params
[i
].IdentLoc
);
15342 FTI
.Params
[i
].Param
= ActOnParamDeclarator(S
, ParamD
);
15349 Sema::ActOnStartOfFunctionDef(Scope
*FnBodyScope
, Declarator
&D
,
15350 MultiTemplateParamsArg TemplateParameterLists
,
15351 SkipBodyInfo
*SkipBody
, FnBodyKind BodyKind
) {
15352 assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
15353 assert(D
.isFunctionDeclarator() && "Not a function declarator!");
15354 Scope
*ParentScope
= FnBodyScope
->getParent();
15356 // Check if we are in an `omp begin/end declare variant` scope. If we are, and
15357 // we define a non-templated function definition, we will create a declaration
15358 // instead (=BaseFD), and emit the definition with a mangled name afterwards.
15359 // The base function declaration will have the equivalent of an `omp declare
15360 // variant` annotation which specifies the mangled definition as a
15361 // specialization function under the OpenMP context defined as part of the
15362 // `omp begin declare variant`.
15363 SmallVector
<FunctionDecl
*, 4> Bases
;
15364 if (LangOpts
.OpenMP
&& OpenMP().isInOpenMPDeclareVariantScope())
15365 OpenMP().ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
15366 ParentScope
, D
, TemplateParameterLists
, Bases
);
15368 D
.setFunctionDefinitionKind(FunctionDefinitionKind::Definition
);
15369 Decl
*DP
= HandleDeclarator(ParentScope
, D
, TemplateParameterLists
);
15370 Decl
*Dcl
= ActOnStartOfFunctionDef(FnBodyScope
, DP
, SkipBody
, BodyKind
);
15372 if (!Bases
.empty())
15373 OpenMP().ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl
,
15379 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl
*D
) {
15380 Consumer
.HandleInlineFunctionDefinition(D
);
15383 static bool FindPossiblePrototype(const FunctionDecl
*FD
,
15384 const FunctionDecl
*&PossiblePrototype
) {
15385 for (const FunctionDecl
*Prev
= FD
->getPreviousDecl(); Prev
;
15386 Prev
= Prev
->getPreviousDecl()) {
15387 // Ignore any declarations that occur in function or method
15388 // scope, because they aren't visible from the header.
15389 if (Prev
->getLexicalDeclContext()->isFunctionOrMethod())
15392 PossiblePrototype
= Prev
;
15393 return Prev
->getType()->isFunctionProtoType();
15399 ShouldWarnAboutMissingPrototype(const FunctionDecl
*FD
,
15400 const FunctionDecl
*&PossiblePrototype
) {
15401 // Don't warn about invalid declarations.
15402 if (FD
->isInvalidDecl())
15405 // Or declarations that aren't global.
15406 if (!FD
->isGlobal())
15409 // Don't warn about C++ member functions.
15410 if (isa
<CXXMethodDecl
>(FD
))
15413 // Don't warn about 'main'.
15414 if (isa
<TranslationUnitDecl
>(FD
->getDeclContext()->getRedeclContext()))
15415 if (IdentifierInfo
*II
= FD
->getIdentifier())
15416 if (II
->isStr("main") || II
->isStr("efi_main"))
15419 if (FD
->isMSVCRTEntryPoint())
15422 // Don't warn about inline functions.
15423 if (FD
->isInlined())
15426 // Don't warn about function templates.
15427 if (FD
->getDescribedFunctionTemplate())
15430 // Don't warn about function template specializations.
15431 if (FD
->isFunctionTemplateSpecialization())
15434 // Don't warn for OpenCL kernels.
15435 if (FD
->hasAttr
<OpenCLKernelAttr
>())
15438 // Don't warn on explicitly deleted functions.
15439 if (FD
->isDeleted())
15442 // Don't warn on implicitly local functions (such as having local-typed
15444 if (!FD
->isExternallyVisible())
15447 // If we were able to find a potential prototype, don't warn.
15448 if (FindPossiblePrototype(FD
, PossiblePrototype
))
15455 Sema::CheckForFunctionRedefinition(FunctionDecl
*FD
,
15456 const FunctionDecl
*EffectiveDefinition
,
15457 SkipBodyInfo
*SkipBody
) {
15458 const FunctionDecl
*Definition
= EffectiveDefinition
;
15460 !FD
->isDefined(Definition
, /*CheckForPendingFriendDefinition*/ true))
15463 if (Definition
->getFriendObjectKind() != Decl::FOK_None
) {
15464 if (FunctionDecl
*OrigDef
= Definition
->getInstantiatedFromMemberFunction()) {
15465 if (FunctionDecl
*OrigFD
= FD
->getInstantiatedFromMemberFunction()) {
15466 // A merged copy of the same function, instantiated as a member of
15467 // the same class, is OK.
15468 if (declaresSameEntity(OrigFD
, OrigDef
) &&
15469 declaresSameEntity(cast
<Decl
>(Definition
->getLexicalDeclContext()),
15470 cast
<Decl
>(FD
->getLexicalDeclContext())))
15476 if (canRedefineFunction(Definition
, getLangOpts()))
15479 // Don't emit an error when this is redefinition of a typo-corrected
15481 if (TypoCorrectedFunctionDefinitions
.count(Definition
))
15484 // If we don't have a visible definition of the function, and it's inline or
15485 // a template, skip the new definition.
15486 if (SkipBody
&& !hasVisibleDefinition(Definition
) &&
15487 (Definition
->getFormalLinkage() == Linkage::Internal
||
15488 Definition
->isInlined() || Definition
->getDescribedFunctionTemplate() ||
15489 Definition
->getNumTemplateParameterLists())) {
15490 SkipBody
->ShouldSkip
= true;
15491 SkipBody
->Previous
= const_cast<FunctionDecl
*>(Definition
);
15492 if (auto *TD
= Definition
->getDescribedFunctionTemplate())
15493 makeMergedDefinitionVisible(TD
);
15494 makeMergedDefinitionVisible(const_cast<FunctionDecl
*>(Definition
));
15498 if (getLangOpts().GNUMode
&& Definition
->isInlineSpecified() &&
15499 Definition
->getStorageClass() == SC_Extern
)
15500 Diag(FD
->getLocation(), diag::err_redefinition_extern_inline
)
15501 << FD
<< getLangOpts().CPlusPlus
;
15503 Diag(FD
->getLocation(), diag::err_redefinition
) << FD
;
15505 Diag(Definition
->getLocation(), diag::note_previous_definition
);
15506 FD
->setInvalidDecl();
15509 LambdaScopeInfo
*Sema::RebuildLambdaScopeInfo(CXXMethodDecl
*CallOperator
) {
15510 CXXRecordDecl
*LambdaClass
= CallOperator
->getParent();
15512 LambdaScopeInfo
*LSI
= PushLambdaScope();
15513 LSI
->CallOperator
= CallOperator
;
15514 LSI
->Lambda
= LambdaClass
;
15515 LSI
->ReturnType
= CallOperator
->getReturnType();
15516 // When this function is called in situation where the context of the call
15517 // operator is not entered, we set AfterParameterList to false, so that
15518 // `tryCaptureVariable` finds explicit captures in the appropriate context.
15519 // There is also at least a situation as in FinishTemplateArgumentDeduction(),
15520 // where we would set the CurContext to the lambda operator before
15521 // substituting into it. In this case the flag needs to be true such that
15522 // tryCaptureVariable can correctly handle potential captures thereof.
15523 LSI
->AfterParameterList
= CurContext
== CallOperator
;
15525 // GLTemplateParameterList is necessary for getCurGenericLambda() which is
15526 // used at the point of dealing with potential captures.
15528 // We don't use LambdaClass->isGenericLambda() because this value doesn't
15529 // flip for instantiated generic lambdas, where no FunctionTemplateDecls are
15530 // associated. (Technically, we could recover that list from their
15531 // instantiation patterns, but for now, the GLTemplateParameterList seems
15532 // unnecessary in these cases.)
15533 if (FunctionTemplateDecl
*FTD
= CallOperator
->getDescribedFunctionTemplate())
15534 LSI
->GLTemplateParameterList
= FTD
->getTemplateParameters();
15535 const LambdaCaptureDefault LCD
= LambdaClass
->getLambdaCaptureDefault();
15537 if (LCD
== LCD_None
)
15538 LSI
->ImpCaptureStyle
= CapturingScopeInfo::ImpCap_None
;
15539 else if (LCD
== LCD_ByCopy
)
15540 LSI
->ImpCaptureStyle
= CapturingScopeInfo::ImpCap_LambdaByval
;
15541 else if (LCD
== LCD_ByRef
)
15542 LSI
->ImpCaptureStyle
= CapturingScopeInfo::ImpCap_LambdaByref
;
15543 DeclarationNameInfo DNI
= CallOperator
->getNameInfo();
15545 LSI
->IntroducerRange
= DNI
.getCXXOperatorNameRange();
15546 LSI
->Mutable
= !CallOperator
->isConst();
15547 if (CallOperator
->isExplicitObjectMemberFunction())
15548 LSI
->ExplicitObjectParameter
= CallOperator
->getParamDecl(0);
15550 // Add the captures to the LSI so they can be noted as already
15551 // captured within tryCaptureVar.
15552 auto I
= LambdaClass
->field_begin();
15553 for (const auto &C
: LambdaClass
->captures()) {
15554 if (C
.capturesVariable()) {
15555 ValueDecl
*VD
= C
.getCapturedVar();
15556 if (VD
->isInitCapture())
15557 CurrentInstantiationScope
->InstantiatedLocal(VD
, VD
);
15558 const bool ByRef
= C
.getCaptureKind() == LCK_ByRef
;
15559 LSI
->addCapture(VD
, /*IsBlock*/false, ByRef
,
15560 /*RefersToEnclosingVariableOrCapture*/true, C
.getLocation(),
15561 /*EllipsisLoc*/C
.isPackExpansion()
15562 ? C
.getEllipsisLoc() : SourceLocation(),
15563 I
->getType(), /*Invalid*/false);
15565 } else if (C
.capturesThis()) {
15566 LSI
->addThisCapture(/*Nested*/ false, C
.getLocation(), I
->getType(),
15567 C
.getCaptureKind() == LCK_StarThis
);
15569 LSI
->addVLATypeCapture(C
.getLocation(), I
->getCapturedVLAType(),
15577 Decl
*Sema::ActOnStartOfFunctionDef(Scope
*FnBodyScope
, Decl
*D
,
15578 SkipBodyInfo
*SkipBody
,
15579 FnBodyKind BodyKind
) {
15581 // Parsing the function declaration failed in some way. Push on a fake scope
15582 // anyway so we can try to parse the function body.
15583 PushFunctionScope();
15584 PushExpressionEvaluationContext(ExprEvalContexts
.back().Context
);
15588 FunctionDecl
*FD
= nullptr;
15590 if (FunctionTemplateDecl
*FunTmpl
= dyn_cast
<FunctionTemplateDecl
>(D
))
15591 FD
= FunTmpl
->getTemplatedDecl();
15593 FD
= cast
<FunctionDecl
>(D
);
15595 // Do not push if it is a lambda because one is already pushed when building
15596 // the lambda in ActOnStartOfLambdaDefinition().
15597 if (!isLambdaCallOperator(FD
))
15598 // [expr.const]/p14.1
15599 // An expression or conversion is in an immediate function context if it is
15600 // potentially evaluated and either: its innermost enclosing non-block scope
15601 // is a function parameter scope of an immediate function.
15602 PushExpressionEvaluationContext(
15603 FD
->isConsteval() ? ExpressionEvaluationContext::ImmediateFunctionContext
15604 : ExprEvalContexts
.back().Context
);
15606 // Each ExpressionEvaluationContextRecord also keeps track of whether the
15607 // context is nested in an immediate function context, so smaller contexts
15608 // that appear inside immediate functions (like variable initializers) are
15609 // considered to be inside an immediate function context even though by
15610 // themselves they are not immediate function contexts. But when a new
15611 // function is entered, we need to reset this tracking, since the entered
15612 // function might be not an immediate function.
15613 ExprEvalContexts
.back().InImmediateFunctionContext
= FD
->isConsteval();
15614 ExprEvalContexts
.back().InImmediateEscalatingFunctionContext
=
15615 getLangOpts().CPlusPlus20
&& FD
->isImmediateEscalating();
15617 // Check for defining attributes before the check for redefinition.
15618 if (const auto *Attr
= FD
->getAttr
<AliasAttr
>()) {
15619 Diag(Attr
->getLocation(), diag::err_alias_is_definition
) << FD
<< 0;
15620 FD
->dropAttr
<AliasAttr
>();
15621 FD
->setInvalidDecl();
15623 if (const auto *Attr
= FD
->getAttr
<IFuncAttr
>()) {
15624 Diag(Attr
->getLocation(), diag::err_alias_is_definition
) << FD
<< 1;
15625 FD
->dropAttr
<IFuncAttr
>();
15626 FD
->setInvalidDecl();
15628 if (const auto *Attr
= FD
->getAttr
<TargetVersionAttr
>()) {
15629 if (Context
.getTargetInfo().getTriple().isAArch64() &&
15630 !Context
.getTargetInfo().hasFeature("fmv") &&
15631 !Attr
->isDefaultVersion()) {
15632 // If function multi versioning disabled skip parsing function body
15633 // defined with non-default target_version attribute
15635 SkipBody
->ShouldSkip
= true;
15640 if (auto *Ctor
= dyn_cast
<CXXConstructorDecl
>(FD
)) {
15641 if (Ctor
->getTemplateSpecializationKind() == TSK_ExplicitSpecialization
&&
15642 Ctor
->isDefaultConstructor() &&
15643 Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
15644 // If this is an MS ABI dllexport default constructor, instantiate any
15645 // default arguments.
15646 InstantiateDefaultCtorDefaultArgs(Ctor
);
15650 // See if this is a redefinition. If 'will have body' (or similar) is already
15651 // set, then these checks were already performed when it was set.
15652 if (!FD
->willHaveBody() && !FD
->isLateTemplateParsed() &&
15653 !FD
->isThisDeclarationInstantiatedFromAFriendDefinition()) {
15654 CheckForFunctionRedefinition(FD
, nullptr, SkipBody
);
15656 // If we're skipping the body, we're done. Don't enter the scope.
15657 if (SkipBody
&& SkipBody
->ShouldSkip
)
15661 // Mark this function as "will have a body eventually". This lets users to
15662 // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
15664 FD
->setWillHaveBody();
15666 // If we are instantiating a generic lambda call operator, push
15667 // a LambdaScopeInfo onto the function stack. But use the information
15668 // that's already been calculated (ActOnLambdaExpr) to prime the current
15669 // LambdaScopeInfo.
15670 // When the template operator is being specialized, the LambdaScopeInfo,
15671 // has to be properly restored so that tryCaptureVariable doesn't try
15672 // and capture any new variables. In addition when calculating potential
15673 // captures during transformation of nested lambdas, it is necessary to
15674 // have the LSI properly restored.
15675 if (isGenericLambdaCallOperatorSpecialization(FD
)) {
15676 // C++2c 7.5.5.2p17 A member of a closure type shall not be explicitly
15677 // instantiated, explicitly specialized.
15678 if (FD
->getTemplateSpecializationInfo()
15679 ->isExplicitInstantiationOrSpecialization()) {
15680 Diag(FD
->getLocation(), diag::err_lambda_explicit_spec
);
15681 FD
->setInvalidDecl();
15682 PushFunctionScope();
15684 assert(inTemplateInstantiation() &&
15685 "There should be an active template instantiation on the stack "
15686 "when instantiating a generic lambda!");
15687 RebuildLambdaScopeInfo(cast
<CXXMethodDecl
>(D
));
15690 // Enter a new function scope
15691 PushFunctionScope();
15694 // Builtin functions cannot be defined.
15695 if (unsigned BuiltinID
= FD
->getBuiltinID()) {
15696 if (!Context
.BuiltinInfo
.isPredefinedLibFunction(BuiltinID
) &&
15697 !Context
.BuiltinInfo
.isPredefinedRuntimeFunction(BuiltinID
)) {
15698 Diag(FD
->getLocation(), diag::err_builtin_definition
) << FD
;
15699 FD
->setInvalidDecl();
15703 // The return type of a function definition must be complete (C99 6.9.1p3).
15704 // C++23 [dcl.fct.def.general]/p2
15705 // The type of [...] the return for a function definition
15706 // shall not be a (possibly cv-qualified) class type that is incomplete
15707 // or abstract within the function body unless the function is deleted.
15708 QualType ResultType
= FD
->getReturnType();
15709 if (!ResultType
->isDependentType() && !ResultType
->isVoidType() &&
15710 !FD
->isInvalidDecl() && BodyKind
!= FnBodyKind::Delete
&&
15711 (RequireCompleteType(FD
->getLocation(), ResultType
,
15712 diag::err_func_def_incomplete_result
) ||
15713 RequireNonAbstractType(FD
->getLocation(), FD
->getReturnType(),
15714 diag::err_abstract_type_in_decl
,
15715 AbstractReturnType
)))
15716 FD
->setInvalidDecl();
15719 PushDeclContext(FnBodyScope
, FD
);
15721 // Check the validity of our function parameters
15722 if (BodyKind
!= FnBodyKind::Delete
)
15723 CheckParmsForFunctionDef(FD
->parameters(),
15724 /*CheckParameterNames=*/true);
15726 // Add non-parameter declarations already in the function to the current
15729 for (Decl
*NPD
: FD
->decls()) {
15730 auto *NonParmDecl
= dyn_cast
<NamedDecl
>(NPD
);
15733 assert(!isa
<ParmVarDecl
>(NonParmDecl
) &&
15734 "parameters should not be in newly created FD yet");
15736 // If the decl has a name, make it accessible in the current scope.
15737 if (NonParmDecl
->getDeclName())
15738 PushOnScopeChains(NonParmDecl
, FnBodyScope
, /*AddToContext=*/false);
15740 // Similarly, dive into enums and fish their constants out, making them
15741 // accessible in this scope.
15742 if (auto *ED
= dyn_cast
<EnumDecl
>(NonParmDecl
)) {
15743 for (auto *EI
: ED
->enumerators())
15744 PushOnScopeChains(EI
, FnBodyScope
, /*AddToContext=*/false);
15749 // Introduce our parameters into the function scope
15750 for (auto *Param
: FD
->parameters()) {
15751 Param
->setOwningFunction(FD
);
15753 // If this has an identifier, add it to the scope stack.
15754 if (Param
->getIdentifier() && FnBodyScope
) {
15755 CheckShadow(FnBodyScope
, Param
);
15757 PushOnScopeChains(Param
, FnBodyScope
);
15761 // C++ [module.import/6] external definitions are not permitted in header
15762 // units. Deleted and Defaulted functions are implicitly inline (but the
15763 // inline state is not set at this point, so check the BodyKind explicitly).
15764 // FIXME: Consider an alternate location for the test where the inlined()
15765 // state is complete.
15766 if (getLangOpts().CPlusPlusModules
&& currentModuleIsHeaderUnit() &&
15767 !FD
->isInvalidDecl() && !FD
->isInlined() &&
15768 BodyKind
!= FnBodyKind::Delete
&& BodyKind
!= FnBodyKind::Default
&&
15769 FD
->getFormalLinkage() == Linkage::External
&& !FD
->isTemplated() &&
15770 !FD
->isTemplateInstantiation()) {
15771 assert(FD
->isThisDeclarationADefinition());
15772 Diag(FD
->getLocation(), diag::err_extern_def_in_header_unit
);
15773 FD
->setInvalidDecl();
15776 // Ensure that the function's exception specification is instantiated.
15777 if (const FunctionProtoType
*FPT
= FD
->getType()->getAs
<FunctionProtoType
>())
15778 ResolveExceptionSpec(D
->getLocation(), FPT
);
15780 // dllimport cannot be applied to non-inline function definitions.
15781 if (FD
->hasAttr
<DLLImportAttr
>() && !FD
->isInlined() &&
15782 !FD
->isTemplateInstantiation()) {
15783 assert(!FD
->hasAttr
<DLLExportAttr
>());
15784 Diag(FD
->getLocation(), diag::err_attribute_dllimport_function_definition
);
15785 FD
->setInvalidDecl();
15789 // Some function attributes (like OptimizeNoneAttr) need actions before
15790 // parsing body started.
15791 applyFunctionAttributesBeforeParsingBody(D
);
15793 // We want to attach documentation to original Decl (which might be
15794 // a function template).
15795 ActOnDocumentableDecl(D
);
15796 if (getCurLexicalContext()->isObjCContainer() &&
15797 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl
&&
15798 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation
)
15799 Diag(FD
->getLocation(), diag::warn_function_def_in_objc_container
);
15801 maybeAddDeclWithEffects(FD
);
15806 void Sema::applyFunctionAttributesBeforeParsingBody(Decl
*FD
) {
15807 if (!FD
|| FD
->isInvalidDecl())
15809 if (auto *TD
= dyn_cast
<FunctionTemplateDecl
>(FD
))
15810 FD
= TD
->getTemplatedDecl();
15811 if (FD
&& FD
->hasAttr
<OptimizeNoneAttr
>()) {
15812 FPOptionsOverride FPO
;
15813 FPO
.setDisallowOptimizations();
15814 CurFPFeatures
.applyChanges(FPO
);
15815 FpPragmaStack
.CurrentValue
=
15816 CurFPFeatures
.getChangesFrom(FPOptions(LangOpts
));
15820 void Sema::computeNRVO(Stmt
*Body
, FunctionScopeInfo
*Scope
) {
15821 ReturnStmt
**Returns
= Scope
->Returns
.data();
15823 for (unsigned I
= 0, E
= Scope
->Returns
.size(); I
!= E
; ++I
) {
15824 if (const VarDecl
*NRVOCandidate
= Returns
[I
]->getNRVOCandidate()) {
15825 if (!NRVOCandidate
->isNRVOVariable())
15826 Returns
[I
]->setNRVOCandidate(nullptr);
15831 bool Sema::canDelayFunctionBody(const Declarator
&D
) {
15832 // We can't delay parsing the body of a constexpr function template (yet).
15833 if (D
.getDeclSpec().hasConstexprSpecifier())
15836 // We can't delay parsing the body of a function template with a deduced
15837 // return type (yet).
15838 if (D
.getDeclSpec().hasAutoTypeSpec()) {
15839 // If the placeholder introduces a non-deduced trailing return type,
15840 // we can still delay parsing it.
15841 if (D
.getNumTypeObjects()) {
15842 const auto &Outer
= D
.getTypeObject(D
.getNumTypeObjects() - 1);
15843 if (Outer
.Kind
== DeclaratorChunk::Function
&&
15844 Outer
.Fun
.hasTrailingReturnType()) {
15845 QualType Ty
= GetTypeFromParser(Outer
.Fun
.getTrailingReturnType());
15846 return Ty
.isNull() || !Ty
->isUndeducedType();
15855 bool Sema::canSkipFunctionBody(Decl
*D
) {
15856 // We cannot skip the body of a function (or function template) which is
15857 // constexpr, since we may need to evaluate its body in order to parse the
15858 // rest of the file.
15859 // We cannot skip the body of a function with an undeduced return type,
15860 // because any callers of that function need to know the type.
15861 if (const FunctionDecl
*FD
= D
->getAsFunction()) {
15862 if (FD
->isConstexpr())
15864 // We can't simply call Type::isUndeducedType here, because inside template
15865 // auto can be deduced to a dependent type, which is not considered
15867 if (FD
->getReturnType()->getContainedDeducedType())
15870 return Consumer
.shouldSkipFunctionBody(D
);
15873 Decl
*Sema::ActOnSkippedFunctionBody(Decl
*Decl
) {
15876 if (FunctionDecl
*FD
= Decl
->getAsFunction())
15877 FD
->setHasSkippedBody();
15878 else if (ObjCMethodDecl
*MD
= dyn_cast
<ObjCMethodDecl
>(Decl
))
15879 MD
->setHasSkippedBody();
15883 Decl
*Sema::ActOnFinishFunctionBody(Decl
*D
, Stmt
*BodyArg
) {
15884 return ActOnFinishFunctionBody(D
, BodyArg
, /*IsInstantiation=*/false);
15887 /// RAII object that pops an ExpressionEvaluationContext when exiting a function
15889 class ExitFunctionBodyRAII
{
15891 ExitFunctionBodyRAII(Sema
&S
, bool IsLambda
) : S(S
), IsLambda(IsLambda
) {}
15892 ~ExitFunctionBodyRAII() {
15894 S
.PopExpressionEvaluationContext();
15899 bool IsLambda
= false;
15902 static void diagnoseImplicitlyRetainedSelf(Sema
&S
) {
15903 llvm::DenseMap
<const BlockDecl
*, bool> EscapeInfo
;
15905 auto IsOrNestedInEscapingBlock
= [&](const BlockDecl
*BD
) {
15906 if (auto It
= EscapeInfo
.find(BD
); It
!= EscapeInfo
.end())
15910 const BlockDecl
*CurBD
= BD
;
15913 R
= !CurBD
->doesNotEscape();
15916 CurBD
= CurBD
->getParent()->getInnermostBlockDecl();
15919 return EscapeInfo
[BD
] = R
;
15922 // If the location where 'self' is implicitly retained is inside a escaping
15923 // block, emit a diagnostic.
15924 for (const std::pair
<SourceLocation
, const BlockDecl
*> &P
:
15925 S
.ImplicitlyRetainedSelfLocs
)
15926 if (IsOrNestedInEscapingBlock(P
.second
))
15927 S
.Diag(P
.first
, diag::warn_implicitly_retains_self
)
15928 << FixItHint::CreateInsertion(P
.first
, "self->");
15931 static bool methodHasName(const FunctionDecl
*FD
, StringRef Name
) {
15932 return isa
<CXXMethodDecl
>(FD
) && FD
->param_empty() &&
15933 FD
->getDeclName().isIdentifier() && FD
->getName() == Name
;
15936 bool Sema::CanBeGetReturnObject(const FunctionDecl
*FD
) {
15937 return methodHasName(FD
, "get_return_object");
15940 bool Sema::CanBeGetReturnTypeOnAllocFailure(const FunctionDecl
*FD
) {
15941 return FD
->isStatic() &&
15942 methodHasName(FD
, "get_return_object_on_allocation_failure");
15945 void Sema::CheckCoroutineWrapper(FunctionDecl
*FD
) {
15946 RecordDecl
*RD
= FD
->getReturnType()->getAsRecordDecl();
15947 if (!RD
|| !RD
->getUnderlyingDecl()->hasAttr
<CoroReturnTypeAttr
>())
15949 // Allow some_promise_type::get_return_object().
15950 if (CanBeGetReturnObject(FD
) || CanBeGetReturnTypeOnAllocFailure(FD
))
15952 if (!FD
->hasAttr
<CoroWrapperAttr
>())
15953 Diag(FD
->getLocation(), diag::err_coroutine_return_type
) << RD
;
15956 Decl
*Sema::ActOnFinishFunctionBody(Decl
*dcl
, Stmt
*Body
,
15957 bool IsInstantiation
) {
15958 FunctionScopeInfo
*FSI
= getCurFunction();
15959 FunctionDecl
*FD
= dcl
? dcl
->getAsFunction() : nullptr;
15961 if (FSI
->UsesFPIntrin
&& FD
&& !FD
->hasAttr
<StrictFPAttr
>())
15962 FD
->addAttr(StrictFPAttr::CreateImplicit(Context
));
15964 sema::AnalysisBasedWarnings::Policy WP
= AnalysisWarnings
.getDefaultPolicy();
15965 sema::AnalysisBasedWarnings::Policy
*ActivePolicy
= nullptr;
15967 // If we skip function body, we can't tell if a function is a coroutine.
15968 if (getLangOpts().Coroutines
&& FD
&& !FD
->hasSkippedBody()) {
15969 if (FSI
->isCoroutine())
15970 CheckCompletedCoroutineBody(FD
, Body
);
15972 CheckCoroutineWrapper(FD
);
15975 // Diagnose invalid SYCL kernel entry point function declarations
15976 // and build SYCLKernelCallStmts for valid ones.
15977 if (FD
&& !FD
->isInvalidDecl() && FD
->hasAttr
<SYCLKernelEntryPointAttr
>()) {
15978 SYCLKernelEntryPointAttr
*SKEPAttr
=
15979 FD
->getAttr
<SYCLKernelEntryPointAttr
>();
15980 if (FD
->isDefaulted()) {
15981 Diag(SKEPAttr
->getLocation(), diag::err_sycl_entry_point_invalid
)
15982 << /*defaulted function*/ 3;
15983 SKEPAttr
->setInvalidAttr();
15984 } else if (FD
->isDeleted()) {
15985 Diag(SKEPAttr
->getLocation(), diag::err_sycl_entry_point_invalid
)
15986 << /*deleted function*/ 2;
15987 SKEPAttr
->setInvalidAttr();
15988 } else if (FSI
->isCoroutine()) {
15989 Diag(SKEPAttr
->getLocation(), diag::err_sycl_entry_point_invalid
)
15990 << /*coroutine*/ 7;
15991 SKEPAttr
->setInvalidAttr();
15992 } else if (Body
&& isa
<CXXTryStmt
>(Body
)) {
15993 Diag(SKEPAttr
->getLocation(), diag::err_sycl_entry_point_invalid
)
15994 << /*function defined with a function try block*/ 8;
15995 SKEPAttr
->setInvalidAttr();
15998 if (Body
&& !FD
->isTemplated() && !SKEPAttr
->isInvalidAttr()) {
16000 SYCL().BuildSYCLKernelCallStmt(FD
, cast
<CompoundStmt
>(Body
));
16001 if (SR
.isInvalid())
16008 // Do not call PopExpressionEvaluationContext() if it is a lambda because
16009 // one is already popped when finishing the lambda in BuildLambdaExpr().
16010 // This is meant to pop the context added in ActOnStartOfFunctionDef().
16011 ExitFunctionBodyRAII
ExitRAII(*this, isLambdaCallOperator(FD
));
16013 // If this is called by Parser::ParseFunctionDefinition() after marking
16014 // the declaration as deleted, and if the deleted-function-body contains
16015 // a message (C++26), then a DefaultedOrDeletedInfo will have already been
16016 // added to store that message; do not overwrite it in that case.
16018 // Since this would always set the body to 'nullptr' in that case anyway,
16019 // which is already done when the function decl is initially created,
16020 // always skipping this irrespective of whether there is a delete message
16021 // should not be a problem.
16022 if (!FD
->isDeletedAsWritten())
16024 FD
->setWillHaveBody(false);
16026 if (getLangOpts().CPlusPlus14
) {
16027 if (!FD
->isInvalidDecl() && Body
&& !FD
->isDependentContext() &&
16028 FD
->getReturnType()->isUndeducedType()) {
16029 // For a function with a deduced result type to return void,
16030 // the result type as written must be 'auto' or 'decltype(auto)',
16031 // possibly cv-qualified or constrained, but not ref-qualified.
16032 if (!FD
->getReturnType()->getAs
<AutoType
>()) {
16033 Diag(dcl
->getLocation(), diag::err_auto_fn_no_return_but_not_auto
)
16034 << FD
->getReturnType();
16035 FD
->setInvalidDecl();
16037 // Falling off the end of the function is the same as 'return;'.
16038 Expr
*Dummy
= nullptr;
16039 if (DeduceFunctionTypeFromReturnExpr(
16040 FD
, dcl
->getLocation(), Dummy
,
16041 FD
->getReturnType()->getAs
<AutoType
>()))
16042 FD
->setInvalidDecl();
16045 } else if (getLangOpts().CPlusPlus
&& isLambdaCallOperator(FD
)) {
16046 // In C++11, we don't use 'auto' deduction rules for lambda call
16047 // operators because we don't support return type deduction.
16048 auto *LSI
= getCurLambda();
16049 if (LSI
->HasImplicitReturnType
) {
16050 deduceClosureReturnType(*LSI
);
16052 // C++11 [expr.prim.lambda]p4:
16053 // [...] if there are no return statements in the compound-statement
16054 // [the deduced type is] the type void
16056 LSI
->ReturnType
.isNull() ? Context
.VoidTy
: LSI
->ReturnType
;
16058 // Update the return type to the deduced type.
16059 const auto *Proto
= FD
->getType()->castAs
<FunctionProtoType
>();
16060 FD
->setType(Context
.getFunctionType(RetType
, Proto
->getParamTypes(),
16061 Proto
->getExtProtoInfo()));
16065 // If the function implicitly returns zero (like 'main') or is naked,
16066 // don't complain about missing return statements.
16067 if (FD
->hasImplicitReturnZero() || FD
->hasAttr
<NakedAttr
>())
16068 WP
.disableCheckFallThrough();
16070 // MSVC permits the use of pure specifier (=0) on function definition,
16071 // defined at class scope, warn about this non-standard construct.
16072 if (getLangOpts().MicrosoftExt
&& FD
->isPureVirtual() &&
16073 !FD
->isOutOfLine())
16074 Diag(FD
->getLocation(), diag::ext_pure_function_definition
);
16076 if (!FD
->isInvalidDecl()) {
16077 // Don't diagnose unused parameters of defaulted, deleted or naked
16079 if (!FD
->isDeleted() && !FD
->isDefaulted() && !FD
->hasSkippedBody() &&
16080 !FD
->hasAttr
<NakedAttr
>())
16081 DiagnoseUnusedParameters(FD
->parameters());
16082 DiagnoseSizeOfParametersAndReturnValue(FD
->parameters(),
16083 FD
->getReturnType(), FD
);
16085 // If this is a structor, we need a vtable.
16086 if (CXXConstructorDecl
*Constructor
= dyn_cast
<CXXConstructorDecl
>(FD
))
16087 MarkVTableUsed(FD
->getLocation(), Constructor
->getParent());
16088 else if (CXXDestructorDecl
*Destructor
=
16089 dyn_cast
<CXXDestructorDecl
>(FD
))
16090 MarkVTableUsed(FD
->getLocation(), Destructor
->getParent());
16092 // Try to apply the named return value optimization. We have to check
16093 // if we can do this here because lambdas keep return statements around
16094 // to deduce an implicit return type.
16095 if (FD
->getReturnType()->isRecordType() &&
16096 (!getLangOpts().CPlusPlus
|| !FD
->isDependentContext()))
16097 computeNRVO(Body
, FSI
);
16100 // GNU warning -Wmissing-prototypes:
16101 // Warn if a global function is defined without a previous
16102 // prototype declaration. This warning is issued even if the
16103 // definition itself provides a prototype. The aim is to detect
16104 // global functions that fail to be declared in header files.
16105 const FunctionDecl
*PossiblePrototype
= nullptr;
16106 if (ShouldWarnAboutMissingPrototype(FD
, PossiblePrototype
)) {
16107 Diag(FD
->getLocation(), diag::warn_missing_prototype
) << FD
;
16109 if (PossiblePrototype
) {
16110 // We found a declaration that is not a prototype,
16111 // but that could be a zero-parameter prototype
16112 if (TypeSourceInfo
*TI
= PossiblePrototype
->getTypeSourceInfo()) {
16113 TypeLoc TL
= TI
->getTypeLoc();
16114 if (FunctionNoProtoTypeLoc FTL
= TL
.getAs
<FunctionNoProtoTypeLoc
>())
16115 Diag(PossiblePrototype
->getLocation(),
16116 diag::note_declaration_not_a_prototype
)
16117 << (FD
->getNumParams() != 0)
16118 << (FD
->getNumParams() == 0 ? FixItHint::CreateInsertion(
16119 FTL
.getRParenLoc(), "void")
16123 // Returns true if the token beginning at this Loc is `const`.
16124 auto isLocAtConst
= [&](SourceLocation Loc
, const SourceManager
&SM
,
16125 const LangOptions
&LangOpts
) {
16126 std::pair
<FileID
, unsigned> LocInfo
= SM
.getDecomposedLoc(Loc
);
16127 if (LocInfo
.first
.isInvalid())
16130 bool Invalid
= false;
16131 StringRef Buffer
= SM
.getBufferData(LocInfo
.first
, &Invalid
);
16135 if (LocInfo
.second
> Buffer
.size())
16138 const char *LexStart
= Buffer
.data() + LocInfo
.second
;
16139 StringRef
StartTok(LexStart
, Buffer
.size() - LocInfo
.second
);
16141 return StartTok
.consume_front("const") &&
16142 (StartTok
.empty() || isWhitespace(StartTok
[0]) ||
16143 StartTok
.starts_with("/*") || StartTok
.starts_with("//"));
16146 auto findBeginLoc
= [&]() {
16147 // If the return type has `const` qualifier, we want to insert
16148 // `static` before `const` (and not before the typename).
16149 if ((FD
->getReturnType()->isAnyPointerType() &&
16150 FD
->getReturnType()->getPointeeType().isConstQualified()) ||
16151 FD
->getReturnType().isConstQualified()) {
16152 // But only do this if we can determine where the `const` is.
16154 if (isLocAtConst(FD
->getBeginLoc(), getSourceManager(),
16157 return FD
->getBeginLoc();
16159 return FD
->getTypeSpecStartLoc();
16161 Diag(FD
->getTypeSpecStartLoc(),
16162 diag::note_static_for_internal_linkage
)
16163 << /* function */ 1
16164 << (FD
->getStorageClass() == SC_None
16165 ? FixItHint::CreateInsertion(findBeginLoc(), "static ")
16170 // We might not have found a prototype because we didn't wish to warn on
16171 // the lack of a missing prototype. Try again without the checks for
16172 // whether we want to warn on the missing prototype.
16173 if (!PossiblePrototype
)
16174 (void)FindPossiblePrototype(FD
, PossiblePrototype
);
16176 // If the function being defined does not have a prototype, then we may
16177 // need to diagnose it as changing behavior in C23 because we now know
16178 // whether the function accepts arguments or not. This only handles the
16179 // case where the definition has no prototype but does have parameters
16180 // and either there is no previous potential prototype, or the previous
16181 // potential prototype also has no actual prototype. This handles cases
16183 // void f(); void f(a) int a; {}
16184 // void g(a) int a; {}
16185 // See MergeFunctionDecl() for other cases of the behavior change
16186 // diagnostic. See GetFullTypeForDeclarator() for handling of a function
16187 // type without a prototype.
16188 if (!FD
->hasWrittenPrototype() && FD
->getNumParams() != 0 &&
16189 (!PossiblePrototype
|| (!PossiblePrototype
->hasWrittenPrototype() &&
16190 !PossiblePrototype
->isImplicit()))) {
16191 // The function definition has parameters, so this will change behavior
16192 // in C23. If there is a possible prototype, it comes before the
16193 // function definition.
16194 // FIXME: The declaration may have already been diagnosed as being
16195 // deprecated in GetFullTypeForDeclarator() if it had no arguments, but
16196 // there's no way to test for the "changes behavior" condition in
16197 // SemaType.cpp when forming the declaration's function type. So, we do
16198 // this awkward dance instead.
16200 // If we have a possible prototype and it declares a function with a
16201 // prototype, we don't want to diagnose it; if we have a possible
16202 // prototype and it has no prototype, it may have already been
16203 // diagnosed in SemaType.cpp as deprecated depending on whether
16204 // -Wstrict-prototypes is enabled. If we already warned about it being
16205 // deprecated, add a note that it also changes behavior. If we didn't
16206 // warn about it being deprecated (because the diagnostic is not
16207 // enabled), warn now that it is deprecated and changes behavior.
16209 // This K&R C function definition definitely changes behavior in C23,
16211 Diag(FD
->getLocation(), diag::warn_non_prototype_changes_behavior
)
16212 << /*definition*/ 1 << /* not supported in C23 */ 0;
16214 // If we have a possible prototype for the function which is a user-
16215 // visible declaration, we already tested that it has no prototype.
16216 // This will change behavior in C23. This gets a warning rather than a
16217 // note because it's the same behavior-changing problem as with the
16219 if (PossiblePrototype
)
16220 Diag(PossiblePrototype
->getLocation(),
16221 diag::warn_non_prototype_changes_behavior
)
16222 << /*declaration*/ 0 << /* conflicting */ 1 << /*subsequent*/ 1
16223 << /*definition*/ 1;
16226 // Warn on CPUDispatch with an actual body.
16227 if (FD
->isMultiVersion() && FD
->hasAttr
<CPUDispatchAttr
>() && Body
)
16228 if (const auto *CmpndBody
= dyn_cast
<CompoundStmt
>(Body
))
16229 if (!CmpndBody
->body_empty())
16230 Diag(CmpndBody
->body_front()->getBeginLoc(),
16231 diag::warn_dispatch_body_ignored
);
16233 if (auto *MD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
16234 const CXXMethodDecl
*KeyFunction
;
16235 if (MD
->isOutOfLine() && (MD
= MD
->getCanonicalDecl()) &&
16237 (KeyFunction
= Context
.getCurrentKeyFunction(MD
->getParent())) &&
16238 MD
== KeyFunction
->getCanonicalDecl()) {
16239 // Update the key-function state if necessary for this ABI.
16240 if (FD
->isInlined() &&
16241 !Context
.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
16242 Context
.setNonKeyFunction(MD
);
16244 // If the newly-chosen key function is already defined, then we
16245 // need to mark the vtable as used retroactively.
16246 KeyFunction
= Context
.getCurrentKeyFunction(MD
->getParent());
16247 const FunctionDecl
*Definition
;
16248 if (KeyFunction
&& KeyFunction
->isDefined(Definition
))
16249 MarkVTableUsed(Definition
->getLocation(), MD
->getParent(), true);
16251 // We just defined they key function; mark the vtable as used.
16252 MarkVTableUsed(FD
->getLocation(), MD
->getParent(), true);
16257 assert((FD
== getCurFunctionDecl(/*AllowLambdas=*/true)) &&
16258 "Function parsing confused");
16259 } else if (ObjCMethodDecl
*MD
= dyn_cast_or_null
<ObjCMethodDecl
>(dcl
)) {
16260 assert(MD
== getCurMethodDecl() && "Method parsing confused");
16262 if (!MD
->isInvalidDecl()) {
16263 DiagnoseSizeOfParametersAndReturnValue(MD
->parameters(),
16264 MD
->getReturnType(), MD
);
16267 computeNRVO(Body
, FSI
);
16269 if (FSI
->ObjCShouldCallSuper
) {
16270 Diag(MD
->getEndLoc(), diag::warn_objc_missing_super_call
)
16271 << MD
->getSelector().getAsString();
16272 FSI
->ObjCShouldCallSuper
= false;
16274 if (FSI
->ObjCWarnForNoDesignatedInitChain
) {
16275 const ObjCMethodDecl
*InitMethod
= nullptr;
16276 bool isDesignated
=
16277 MD
->isDesignatedInitializerForTheInterface(&InitMethod
);
16278 assert(isDesignated
&& InitMethod
);
16279 (void)isDesignated
;
16281 auto superIsNSObject
= [&](const ObjCMethodDecl
*MD
) {
16282 auto IFace
= MD
->getClassInterface();
16285 auto SuperD
= IFace
->getSuperClass();
16288 return SuperD
->getIdentifier() ==
16289 ObjC().NSAPIObj
->getNSClassId(NSAPI::ClassId_NSObject
);
16291 // Don't issue this warning for unavailable inits or direct subclasses
16293 if (!MD
->isUnavailable() && !superIsNSObject(MD
)) {
16294 Diag(MD
->getLocation(),
16295 diag::warn_objc_designated_init_missing_super_call
);
16296 Diag(InitMethod
->getLocation(),
16297 diag::note_objc_designated_init_marked_here
);
16299 FSI
->ObjCWarnForNoDesignatedInitChain
= false;
16301 if (FSI
->ObjCWarnForNoInitDelegation
) {
16302 // Don't issue this warning for unavailable inits.
16303 if (!MD
->isUnavailable())
16304 Diag(MD
->getLocation(),
16305 diag::warn_objc_secondary_init_missing_init_call
);
16306 FSI
->ObjCWarnForNoInitDelegation
= false;
16309 diagnoseImplicitlyRetainedSelf(*this);
16311 // Parsing the function declaration failed in some way. Pop the fake scope
16313 PopFunctionScopeInfo(ActivePolicy
, dcl
);
16317 if (Body
&& FSI
->HasPotentialAvailabilityViolations
)
16318 DiagnoseUnguardedAvailabilityViolations(dcl
);
16320 assert(!FSI
->ObjCShouldCallSuper
&&
16321 "This should only be set for ObjC methods, which should have been "
16322 "handled in the block above.");
16324 // Verify and clean out per-function state.
16325 if (Body
&& (!FD
|| !FD
->isDefaulted())) {
16326 // C++ constructors that have function-try-blocks can't have return
16327 // statements in the handlers of that block. (C++ [except.handle]p14)
16329 if (FD
&& isa
<CXXConstructorDecl
>(FD
) && isa
<CXXTryStmt
>(Body
))
16330 DiagnoseReturnInConstructorExceptionHandler(cast
<CXXTryStmt
>(Body
));
16332 // Verify that gotos and switch cases don't jump into scopes illegally.
16333 if (FSI
->NeedsScopeChecking() && !PP
.isCodeCompletionEnabled())
16334 DiagnoseInvalidJumps(Body
);
16336 if (CXXDestructorDecl
*Destructor
= dyn_cast
<CXXDestructorDecl
>(dcl
)) {
16337 if (!Destructor
->getParent()->isDependentType())
16338 CheckDestructor(Destructor
);
16340 MarkBaseAndMemberDestructorsReferenced(Destructor
->getLocation(),
16341 Destructor
->getParent());
16344 // If any errors have occurred, clear out any temporaries that may have
16345 // been leftover. This ensures that these temporaries won't be picked up
16346 // for deletion in some later function.
16347 if (hasUncompilableErrorOccurred() ||
16348 hasAnyUnrecoverableErrorsInThisFunction() ||
16349 getDiagnostics().getSuppressAllDiagnostics()) {
16350 DiscardCleanupsInEvaluationContext();
16352 if (!hasUncompilableErrorOccurred() && !isa
<FunctionTemplateDecl
>(dcl
)) {
16353 // Since the body is valid, issue any analysis-based warnings that are
16355 ActivePolicy
= &WP
;
16358 if (!IsInstantiation
&& FD
&&
16359 (FD
->isConstexpr() || FD
->hasAttr
<MSConstexprAttr
>()) &&
16360 !FD
->isInvalidDecl() &&
16361 !CheckConstexprFunctionDefinition(FD
, CheckConstexprKind::Diagnose
))
16362 FD
->setInvalidDecl();
16364 if (FD
&& FD
->hasAttr
<NakedAttr
>()) {
16365 for (const Stmt
*S
: Body
->children()) {
16366 // Allow local register variables without initializer as they don't
16367 // require prologue.
16368 bool RegisterVariables
= false;
16369 if (auto *DS
= dyn_cast
<DeclStmt
>(S
)) {
16370 for (const auto *Decl
: DS
->decls()) {
16371 if (const auto *Var
= dyn_cast
<VarDecl
>(Decl
)) {
16372 RegisterVariables
=
16373 Var
->hasAttr
<AsmLabelAttr
>() && !Var
->hasInit();
16374 if (!RegisterVariables
)
16379 if (RegisterVariables
)
16381 if (!isa
<AsmStmt
>(S
) && !isa
<NullStmt
>(S
)) {
16382 Diag(S
->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function
);
16383 Diag(FD
->getAttr
<NakedAttr
>()->getLocation(), diag::note_attribute
);
16384 FD
->setInvalidDecl();
16390 assert(ExprCleanupObjects
.size() ==
16391 ExprEvalContexts
.back().NumCleanupObjects
&&
16392 "Leftover temporaries in function");
16393 assert(!Cleanup
.exprNeedsCleanups() &&
16394 "Unaccounted cleanups in function");
16395 assert(MaybeODRUseExprs
.empty() &&
16396 "Leftover expressions for odr-use checking");
16398 } // Pops the ExitFunctionBodyRAII scope, which needs to happen before we pop
16399 // the declaration context below. Otherwise, we're unable to transform
16400 // 'this' expressions when transforming immediate context functions.
16403 CheckImmediateEscalatingFunctionDefinition(FD
, getCurFunction());
16405 if (!IsInstantiation
)
16408 PopFunctionScopeInfo(ActivePolicy
, dcl
);
16409 // If any errors have occurred, clear out any temporaries that may have
16410 // been leftover. This ensures that these temporaries won't be picked up for
16411 // deletion in some later function.
16412 if (hasUncompilableErrorOccurred()) {
16413 DiscardCleanupsInEvaluationContext();
16416 if (FD
&& ((LangOpts
.OpenMP
&& (LangOpts
.OpenMPIsTargetDevice
||
16417 !LangOpts
.OMPTargetTriples
.empty())) ||
16418 LangOpts
.CUDA
|| LangOpts
.SYCLIsDevice
)) {
16419 auto ES
= getEmissionStatus(FD
);
16420 if (ES
== Sema::FunctionEmissionStatus::Emitted
||
16421 ES
== Sema::FunctionEmissionStatus::Unknown
)
16422 DeclsToCheckForDeferredDiags
.insert(FD
);
16425 if (FD
&& !FD
->isDeleted())
16426 checkTypeSupport(FD
->getType(), FD
->getLocation(), FD
);
16431 /// When we finish delayed parsing of an attribute, we must attach it to the
16433 void Sema::ActOnFinishDelayedAttribute(Scope
*S
, Decl
*D
,
16434 ParsedAttributes
&Attrs
) {
16435 // Always attach attributes to the underlying decl.
16436 if (TemplateDecl
*TD
= dyn_cast
<TemplateDecl
>(D
))
16437 D
= TD
->getTemplatedDecl();
16438 ProcessDeclAttributeList(S
, D
, Attrs
);
16439 ProcessAPINotes(D
);
16441 if (CXXMethodDecl
*Method
= dyn_cast_or_null
<CXXMethodDecl
>(D
))
16442 if (Method
->isStatic())
16443 checkThisInStaticMemberFunctionAttributes(Method
);
16446 NamedDecl
*Sema::ImplicitlyDefineFunction(SourceLocation Loc
,
16447 IdentifierInfo
&II
, Scope
*S
) {
16448 // It is not valid to implicitly define a function in C23.
16449 assert(LangOpts
.implicitFunctionsAllowed() &&
16450 "Implicit function declarations aren't allowed in this language mode");
16452 // Find the scope in which the identifier is injected and the corresponding
16454 // FIXME: C89 does not say what happens if there is no enclosing block scope.
16455 // In that case, we inject the declaration into the translation unit scope
16457 Scope
*BlockScope
= S
;
16458 while (!BlockScope
->isCompoundStmtScope() && BlockScope
->getParent())
16459 BlockScope
= BlockScope
->getParent();
16461 // Loop until we find a DeclContext that is either a function/method or the
16462 // translation unit, which are the only two valid places to implicitly define
16463 // a function. This avoids accidentally defining the function within a tag
16464 // declaration, for example.
16465 Scope
*ContextScope
= BlockScope
;
16466 while (!ContextScope
->getEntity() ||
16467 (!ContextScope
->getEntity()->isFunctionOrMethod() &&
16468 !ContextScope
->getEntity()->isTranslationUnit()))
16469 ContextScope
= ContextScope
->getParent();
16470 ContextRAII
SavedContext(*this, ContextScope
->getEntity());
16472 // Before we produce a declaration for an implicitly defined
16473 // function, see whether there was a locally-scoped declaration of
16474 // this name as a function or variable. If so, use that
16475 // (non-visible) declaration, and complain about it.
16476 NamedDecl
*ExternCPrev
= findLocallyScopedExternCDecl(&II
);
16478 // We still need to inject the function into the enclosing block scope so
16479 // that later (non-call) uses can see it.
16480 PushOnScopeChains(ExternCPrev
, BlockScope
, /*AddToContext*/false);
16482 // C89 footnote 38:
16483 // If in fact it is not defined as having type "function returning int",
16484 // the behavior is undefined.
16485 if (!isa
<FunctionDecl
>(ExternCPrev
) ||
16486 !Context
.typesAreCompatible(
16487 cast
<FunctionDecl
>(ExternCPrev
)->getType(),
16488 Context
.getFunctionNoProtoType(Context
.IntTy
))) {
16489 Diag(Loc
, diag::ext_use_out_of_scope_declaration
)
16490 << ExternCPrev
<< !getLangOpts().C99
;
16491 Diag(ExternCPrev
->getLocation(), diag::note_previous_declaration
);
16492 return ExternCPrev
;
16496 // Extension in C99 (defaults to error). Legal in C89, but warn about it.
16498 if (II
.getName().starts_with("__builtin_"))
16499 diag_id
= diag::warn_builtin_unknown
;
16500 // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
16501 else if (getLangOpts().C99
)
16502 diag_id
= diag::ext_implicit_function_decl_c99
;
16504 diag_id
= diag::warn_implicit_function_decl
;
16506 TypoCorrection Corrected
;
16507 // Because typo correction is expensive, only do it if the implicit
16508 // function declaration is going to be treated as an error.
16510 // Perform the correction before issuing the main diagnostic, as some
16511 // consumers use typo-correction callbacks to enhance the main diagnostic.
16512 if (S
&& !ExternCPrev
&&
16513 (Diags
.getDiagnosticLevel(diag_id
, Loc
) >= DiagnosticsEngine::Error
)) {
16514 DeclFilterCCC
<FunctionDecl
> CCC
{};
16515 Corrected
= CorrectTypo(DeclarationNameInfo(&II
, Loc
), LookupOrdinaryName
,
16516 S
, nullptr, CCC
, CTK_NonError
);
16519 Diag(Loc
, diag_id
) << &II
;
16521 // If the correction is going to suggest an implicitly defined function,
16522 // skip the correction as not being a particularly good idea.
16523 bool Diagnose
= true;
16524 if (const auto *D
= Corrected
.getCorrectionDecl())
16525 Diagnose
= !D
->isImplicit();
16527 diagnoseTypo(Corrected
, PDiag(diag::note_function_suggestion
),
16528 /*ErrorRecovery*/ false);
16531 // If we found a prior declaration of this function, don't bother building
16532 // another one. We've already pushed that one into scope, so there's nothing
16535 return ExternCPrev
;
16537 // Set a Declarator for the implicit definition: int foo();
16539 AttributeFactory attrFactory
;
16540 DeclSpec
DS(attrFactory
);
16542 bool Error
= DS
.SetTypeSpecType(DeclSpec::TST_int
, Loc
, Dummy
, DiagID
,
16543 Context
.getPrintingPolicy());
16544 (void)Error
; // Silence warning.
16545 assert(!Error
&& "Error setting up implicit decl!");
16546 SourceLocation NoLoc
;
16547 Declarator
D(DS
, ParsedAttributesView::none(), DeclaratorContext::Block
);
16548 D
.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
16549 /*IsAmbiguous=*/false,
16550 /*LParenLoc=*/NoLoc
,
16551 /*Params=*/nullptr,
16553 /*EllipsisLoc=*/NoLoc
,
16554 /*RParenLoc=*/NoLoc
,
16555 /*RefQualifierIsLvalueRef=*/true,
16556 /*RefQualifierLoc=*/NoLoc
,
16557 /*MutableLoc=*/NoLoc
, EST_None
,
16558 /*ESpecRange=*/SourceRange(),
16559 /*Exceptions=*/nullptr,
16560 /*ExceptionRanges=*/nullptr,
16561 /*NumExceptions=*/0,
16562 /*NoexceptExpr=*/nullptr,
16563 /*ExceptionSpecTokens=*/nullptr,
16564 /*DeclsInPrototype=*/{}, Loc
, Loc
,
16566 std::move(DS
.getAttributes()), SourceLocation());
16567 D
.SetIdentifier(&II
, Loc
);
16569 // Insert this function into the enclosing block scope.
16570 FunctionDecl
*FD
= cast
<FunctionDecl
>(ActOnDeclarator(BlockScope
, D
));
16573 AddKnownFunctionAttributes(FD
);
16578 void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
16579 FunctionDecl
*FD
) {
16580 if (FD
->isInvalidDecl())
16583 if (FD
->getDeclName().getCXXOverloadedOperator() != OO_New
&&
16584 FD
->getDeclName().getCXXOverloadedOperator() != OO_Array_New
)
16587 std::optional
<unsigned> AlignmentParam
;
16588 bool IsNothrow
= false;
16589 if (!FD
->isReplaceableGlobalAllocationFunction(&AlignmentParam
, &IsNothrow
))
16592 // C++2a [basic.stc.dynamic.allocation]p4:
16593 // An allocation function that has a non-throwing exception specification
16594 // indicates failure by returning a null pointer value. Any other allocation
16595 // function never returns a null pointer value and indicates failure only by
16596 // throwing an exception [...]
16598 // However, -fcheck-new invalidates this possible assumption, so don't add
16599 // NonNull when that is enabled.
16600 if (!IsNothrow
&& !FD
->hasAttr
<ReturnsNonNullAttr
>() &&
16601 !getLangOpts().CheckNew
)
16602 FD
->addAttr(ReturnsNonNullAttr::CreateImplicit(Context
, FD
->getLocation()));
16604 // C++2a [basic.stc.dynamic.allocation]p2:
16605 // An allocation function attempts to allocate the requested amount of
16606 // storage. [...] If the request succeeds, the value returned by a
16607 // replaceable allocation function is a [...] pointer value p0 different
16608 // from any previously returned value p1 [...]
16610 // However, this particular information is being added in codegen,
16611 // because there is an opt-out switch for it (-fno-assume-sane-operator-new)
16613 // C++2a [basic.stc.dynamic.allocation]p2:
16614 // An allocation function attempts to allocate the requested amount of
16615 // storage. If it is successful, it returns the address of the start of a
16616 // block of storage whose length in bytes is at least as large as the
16618 if (!FD
->hasAttr
<AllocSizeAttr
>()) {
16619 FD
->addAttr(AllocSizeAttr::CreateImplicit(
16620 Context
, /*ElemSizeParam=*/ParamIdx(1, FD
),
16621 /*NumElemsParam=*/ParamIdx(), FD
->getLocation()));
16624 // C++2a [basic.stc.dynamic.allocation]p3:
16625 // For an allocation function [...], the pointer returned on a successful
16626 // call shall represent the address of storage that is aligned as follows:
16627 // (3.1) If the allocation function takes an argument of type
16628 // std​::​align_Âval_Ât, the storage will have the alignment
16629 // specified by the value of this argument.
16630 if (AlignmentParam
&& !FD
->hasAttr
<AllocAlignAttr
>()) {
16631 FD
->addAttr(AllocAlignAttr::CreateImplicit(
16632 Context
, ParamIdx(*AlignmentParam
, FD
), FD
->getLocation()));
16636 // C++2a [basic.stc.dynamic.allocation]p3:
16637 // For an allocation function [...], the pointer returned on a successful
16638 // call shall represent the address of storage that is aligned as follows:
16639 // (3.2) Otherwise, if the allocation function is named operator new[],
16640 // the storage is aligned for any object that does not have
16641 // new-extended alignment ([basic.align]) and is no larger than the
16643 // (3.3) Otherwise, the storage is aligned for any object that does not
16644 // have new-extended alignment and is of the requested size.
16647 void Sema::AddKnownFunctionAttributes(FunctionDecl
*FD
) {
16648 if (FD
->isInvalidDecl())
16651 // If this is a built-in function, map its builtin attributes to
16652 // actual attributes.
16653 if (unsigned BuiltinID
= FD
->getBuiltinID()) {
16654 // Handle printf-formatting attributes.
16655 unsigned FormatIdx
;
16657 if (Context
.BuiltinInfo
.isPrintfLike(BuiltinID
, FormatIdx
, HasVAListArg
)) {
16658 if (!FD
->hasAttr
<FormatAttr
>()) {
16659 const char *fmt
= "printf";
16660 unsigned int NumParams
= FD
->getNumParams();
16661 if (FormatIdx
< NumParams
&& // NumParams may be 0 (e.g. vfprintf)
16662 FD
->getParamDecl(FormatIdx
)->getType()->isObjCObjectPointerType())
16664 FD
->addAttr(FormatAttr::CreateImplicit(Context
,
16665 &Context
.Idents
.get(fmt
),
16667 HasVAListArg
? 0 : FormatIdx
+2,
16668 FD
->getLocation()));
16671 if (Context
.BuiltinInfo
.isScanfLike(BuiltinID
, FormatIdx
,
16673 if (!FD
->hasAttr
<FormatAttr
>())
16674 FD
->addAttr(FormatAttr::CreateImplicit(Context
,
16675 &Context
.Idents
.get("scanf"),
16677 HasVAListArg
? 0 : FormatIdx
+2,
16678 FD
->getLocation()));
16681 // Handle automatically recognized callbacks.
16682 SmallVector
<int, 4> Encoding
;
16683 if (!FD
->hasAttr
<CallbackAttr
>() &&
16684 Context
.BuiltinInfo
.performsCallback(BuiltinID
, Encoding
))
16685 FD
->addAttr(CallbackAttr::CreateImplicit(
16686 Context
, Encoding
.data(), Encoding
.size(), FD
->getLocation()));
16688 // Mark const if we don't care about errno and/or floating point exceptions
16689 // that are the only thing preventing the function from being const. This
16690 // allows IRgen to use LLVM intrinsics for such functions.
16691 bool NoExceptions
=
16692 getLangOpts().getDefaultExceptionMode() == LangOptions::FPE_Ignore
;
16693 bool ConstWithoutErrnoAndExceptions
=
16694 Context
.BuiltinInfo
.isConstWithoutErrnoAndExceptions(BuiltinID
);
16695 bool ConstWithoutExceptions
=
16696 Context
.BuiltinInfo
.isConstWithoutExceptions(BuiltinID
);
16697 if (!FD
->hasAttr
<ConstAttr
>() &&
16698 (ConstWithoutErrnoAndExceptions
|| ConstWithoutExceptions
) &&
16699 (!ConstWithoutErrnoAndExceptions
||
16700 (!getLangOpts().MathErrno
&& NoExceptions
)) &&
16701 (!ConstWithoutExceptions
|| NoExceptions
))
16702 FD
->addAttr(ConstAttr::CreateImplicit(Context
, FD
->getLocation()));
16704 // We make "fma" on GNU or Windows const because we know it does not set
16705 // errno in those environments even though it could set errno based on the
16707 const llvm::Triple
&Trip
= Context
.getTargetInfo().getTriple();
16708 if ((Trip
.isGNUEnvironment() || Trip
.isOSMSVCRT()) &&
16709 !FD
->hasAttr
<ConstAttr
>()) {
16710 switch (BuiltinID
) {
16711 case Builtin::BI__builtin_fma
:
16712 case Builtin::BI__builtin_fmaf
:
16713 case Builtin::BI__builtin_fmal
:
16714 case Builtin::BIfma
:
16715 case Builtin::BIfmaf
:
16716 case Builtin::BIfmal
:
16717 FD
->addAttr(ConstAttr::CreateImplicit(Context
, FD
->getLocation()));
16724 if (Context
.BuiltinInfo
.isReturnsTwice(BuiltinID
) &&
16725 !FD
->hasAttr
<ReturnsTwiceAttr
>())
16726 FD
->addAttr(ReturnsTwiceAttr::CreateImplicit(Context
,
16727 FD
->getLocation()));
16728 if (Context
.BuiltinInfo
.isNoThrow(BuiltinID
) && !FD
->hasAttr
<NoThrowAttr
>())
16729 FD
->addAttr(NoThrowAttr::CreateImplicit(Context
, FD
->getLocation()));
16730 if (Context
.BuiltinInfo
.isPure(BuiltinID
) && !FD
->hasAttr
<PureAttr
>())
16731 FD
->addAttr(PureAttr::CreateImplicit(Context
, FD
->getLocation()));
16732 if (Context
.BuiltinInfo
.isConst(BuiltinID
) && !FD
->hasAttr
<ConstAttr
>())
16733 FD
->addAttr(ConstAttr::CreateImplicit(Context
, FD
->getLocation()));
16734 if (getLangOpts().CUDA
&& Context
.BuiltinInfo
.isTSBuiltin(BuiltinID
) &&
16735 !FD
->hasAttr
<CUDADeviceAttr
>() && !FD
->hasAttr
<CUDAHostAttr
>()) {
16736 // Add the appropriate attribute, depending on the CUDA compilation mode
16737 // and which target the builtin belongs to. For example, during host
16738 // compilation, aux builtins are __device__, while the rest are __host__.
16739 if (getLangOpts().CUDAIsDevice
!=
16740 Context
.BuiltinInfo
.isAuxBuiltinID(BuiltinID
))
16741 FD
->addAttr(CUDADeviceAttr::CreateImplicit(Context
, FD
->getLocation()));
16743 FD
->addAttr(CUDAHostAttr::CreateImplicit(Context
, FD
->getLocation()));
16746 // Add known guaranteed alignment for allocation functions.
16747 switch (BuiltinID
) {
16748 case Builtin::BImemalign
:
16749 case Builtin::BIaligned_alloc
:
16750 if (!FD
->hasAttr
<AllocAlignAttr
>())
16751 FD
->addAttr(AllocAlignAttr::CreateImplicit(Context
, ParamIdx(1, FD
),
16752 FD
->getLocation()));
16758 // Add allocsize attribute for allocation functions.
16759 switch (BuiltinID
) {
16760 case Builtin::BIcalloc
:
16761 FD
->addAttr(AllocSizeAttr::CreateImplicit(
16762 Context
, ParamIdx(1, FD
), ParamIdx(2, FD
), FD
->getLocation()));
16764 case Builtin::BImemalign
:
16765 case Builtin::BIaligned_alloc
:
16766 case Builtin::BIrealloc
:
16767 FD
->addAttr(AllocSizeAttr::CreateImplicit(Context
, ParamIdx(2, FD
),
16768 ParamIdx(), FD
->getLocation()));
16770 case Builtin::BImalloc
:
16771 FD
->addAttr(AllocSizeAttr::CreateImplicit(Context
, ParamIdx(1, FD
),
16772 ParamIdx(), FD
->getLocation()));
16779 LazyProcessLifetimeCaptureByParams(FD
);
16780 inferLifetimeBoundAttribute(FD
);
16781 inferLifetimeCaptureByAttribute(FD
);
16782 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD
);
16784 // If C++ exceptions are enabled but we are told extern "C" functions cannot
16785 // throw, add an implicit nothrow attribute to any extern "C" function we come
16787 if (getLangOpts().CXXExceptions
&& getLangOpts().ExternCNoUnwind
&&
16788 FD
->isExternC() && !FD
->hasAttr
<NoThrowAttr
>()) {
16789 const auto *FPT
= FD
->getType()->getAs
<FunctionProtoType
>();
16790 if (!FPT
|| FPT
->getExceptionSpecType() == EST_None
)
16791 FD
->addAttr(NoThrowAttr::CreateImplicit(Context
, FD
->getLocation()));
16794 IdentifierInfo
*Name
= FD
->getIdentifier();
16797 if ((!getLangOpts().CPlusPlus
&& FD
->getDeclContext()->isTranslationUnit()) ||
16798 (isa
<LinkageSpecDecl
>(FD
->getDeclContext()) &&
16799 cast
<LinkageSpecDecl
>(FD
->getDeclContext())->getLanguage() ==
16800 LinkageSpecLanguageIDs::C
)) {
16801 // Okay: this could be a libc/libm/Objective-C function we know
16806 if (Name
->isStr("asprintf") || Name
->isStr("vasprintf")) {
16807 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
16808 // target-specific builtins, perhaps?
16809 if (!FD
->hasAttr
<FormatAttr
>())
16810 FD
->addAttr(FormatAttr::CreateImplicit(Context
,
16811 &Context
.Idents
.get("printf"), 2,
16812 Name
->isStr("vasprintf") ? 0 : 3,
16813 FD
->getLocation()));
16816 if (Name
->isStr("__CFStringMakeConstantString")) {
16817 // We already have a __builtin___CFStringMakeConstantString,
16818 // but builds that use -fno-constant-cfstrings don't go through that.
16819 if (!FD
->hasAttr
<FormatArgAttr
>())
16820 FD
->addAttr(FormatArgAttr::CreateImplicit(Context
, ParamIdx(1, FD
),
16821 FD
->getLocation()));
16825 TypedefDecl
*Sema::ParseTypedefDecl(Scope
*S
, Declarator
&D
, QualType T
,
16826 TypeSourceInfo
*TInfo
) {
16827 assert(D
.getIdentifier() && "Wrong callback for declspec without declarator");
16828 assert(!T
.isNull() && "GetTypeForDeclarator() returned null type");
16831 assert(D
.isInvalidType() && "no declarator info for valid type");
16832 TInfo
= Context
.getTrivialTypeSourceInfo(T
);
16835 // Scope manipulation handled by caller.
16836 TypedefDecl
*NewTD
=
16837 TypedefDecl::Create(Context
, CurContext
, D
.getBeginLoc(),
16838 D
.getIdentifierLoc(), D
.getIdentifier(), TInfo
);
16840 // Bail out immediately if we have an invalid declaration.
16841 if (D
.isInvalidType()) {
16842 NewTD
->setInvalidDecl();
16846 if (D
.getDeclSpec().isModulePrivateSpecified()) {
16847 if (CurContext
->isFunctionOrMethod())
16848 Diag(NewTD
->getLocation(), diag::err_module_private_local
)
16850 << SourceRange(D
.getDeclSpec().getModulePrivateSpecLoc())
16851 << FixItHint::CreateRemoval(
16852 D
.getDeclSpec().getModulePrivateSpecLoc());
16854 NewTD
->setModulePrivate();
16857 // C++ [dcl.typedef]p8:
16858 // If the typedef declaration defines an unnamed class (or
16859 // enum), the first typedef-name declared by the declaration
16860 // to be that class type (or enum type) is used to denote the
16861 // class type (or enum type) for linkage purposes only.
16862 // We need to check whether the type was declared in the declaration.
16863 switch (D
.getDeclSpec().getTypeSpecType()) {
16866 case TST_interface
:
16869 TagDecl
*tagFromDeclSpec
= cast
<TagDecl
>(D
.getDeclSpec().getRepAsDecl());
16870 setTagNameForLinkagePurposes(tagFromDeclSpec
, NewTD
);
16881 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo
*TI
) {
16882 SourceLocation UnderlyingLoc
= TI
->getTypeLoc().getBeginLoc();
16883 QualType T
= TI
->getType();
16885 if (T
->isDependentType())
16888 // This doesn't use 'isIntegralType' despite the error message mentioning
16889 // integral type because isIntegralType would also allow enum types in C.
16890 if (const BuiltinType
*BT
= T
->getAs
<BuiltinType
>())
16891 if (BT
->isInteger())
16894 return Diag(UnderlyingLoc
, diag::err_enum_invalid_underlying
)
16895 << T
<< T
->isBitIntType();
16898 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc
, bool IsScoped
,
16899 QualType EnumUnderlyingTy
, bool IsFixed
,
16900 const EnumDecl
*Prev
) {
16901 if (IsScoped
!= Prev
->isScoped()) {
16902 Diag(EnumLoc
, diag::err_enum_redeclare_scoped_mismatch
)
16903 << Prev
->isScoped();
16904 Diag(Prev
->getLocation(), diag::note_previous_declaration
);
16908 if (IsFixed
&& Prev
->isFixed()) {
16909 if (!EnumUnderlyingTy
->isDependentType() &&
16910 !Prev
->getIntegerType()->isDependentType() &&
16911 !Context
.hasSameUnqualifiedType(EnumUnderlyingTy
,
16912 Prev
->getIntegerType())) {
16913 // TODO: Highlight the underlying type of the redeclaration.
16914 Diag(EnumLoc
, diag::err_enum_redeclare_type_mismatch
)
16915 << EnumUnderlyingTy
<< Prev
->getIntegerType();
16916 Diag(Prev
->getLocation(), diag::note_previous_declaration
)
16917 << Prev
->getIntegerTypeRange();
16920 } else if (IsFixed
!= Prev
->isFixed()) {
16921 Diag(EnumLoc
, diag::err_enum_redeclare_fixed_mismatch
)
16922 << Prev
->isFixed();
16923 Diag(Prev
->getLocation(), diag::note_previous_declaration
);
16930 /// Get diagnostic %select index for tag kind for
16931 /// redeclaration diagnostic message.
16932 /// WARNING: Indexes apply to particular diagnostics only!
16934 /// \returns diagnostic %select index.
16935 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag
) {
16937 case TagTypeKind::Struct
:
16939 case TagTypeKind::Interface
:
16941 case TagTypeKind::Class
:
16943 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
16947 /// Determine if tag kind is a class-key compatible with
16948 /// class for redeclaration (class, struct, or __interface).
16950 /// \returns true iff the tag kind is compatible.
16951 static bool isClassCompatTagKind(TagTypeKind Tag
)
16953 return Tag
== TagTypeKind::Struct
|| Tag
== TagTypeKind::Class
||
16954 Tag
== TagTypeKind::Interface
;
16957 Sema::NonTagKind
Sema::getNonTagTypeDeclKind(const Decl
*PrevDecl
,
16959 if (isa
<TypedefDecl
>(PrevDecl
))
16960 return NTK_Typedef
;
16961 else if (isa
<TypeAliasDecl
>(PrevDecl
))
16962 return NTK_TypeAlias
;
16963 else if (isa
<ClassTemplateDecl
>(PrevDecl
))
16964 return NTK_Template
;
16965 else if (isa
<TypeAliasTemplateDecl
>(PrevDecl
))
16966 return NTK_TypeAliasTemplate
;
16967 else if (isa
<TemplateTemplateParmDecl
>(PrevDecl
))
16968 return NTK_TemplateTemplateArgument
;
16970 case TagTypeKind::Struct
:
16971 case TagTypeKind::Interface
:
16972 case TagTypeKind::Class
:
16973 return getLangOpts().CPlusPlus
? NTK_NonClass
: NTK_NonStruct
;
16974 case TagTypeKind::Union
:
16975 return NTK_NonUnion
;
16976 case TagTypeKind::Enum
:
16977 return NTK_NonEnum
;
16979 llvm_unreachable("invalid TTK");
16982 bool Sema::isAcceptableTagRedeclaration(const TagDecl
*Previous
,
16983 TagTypeKind NewTag
, bool isDefinition
,
16984 SourceLocation NewTagLoc
,
16985 const IdentifierInfo
*Name
) {
16986 // C++ [dcl.type.elab]p3:
16987 // The class-key or enum keyword present in the
16988 // elaborated-type-specifier shall agree in kind with the
16989 // declaration to which the name in the elaborated-type-specifier
16990 // refers. This rule also applies to the form of
16991 // elaborated-type-specifier that declares a class-name or
16992 // friend class since it can be construed as referring to the
16993 // definition of the class. Thus, in any
16994 // elaborated-type-specifier, the enum keyword shall be used to
16995 // refer to an enumeration (7.2), the union class-key shall be
16996 // used to refer to a union (clause 9), and either the class or
16997 // struct class-key shall be used to refer to a class (clause 9)
16998 // declared using the class or struct class-key.
16999 TagTypeKind OldTag
= Previous
->getTagKind();
17000 if (OldTag
!= NewTag
&&
17001 !(isClassCompatTagKind(OldTag
) && isClassCompatTagKind(NewTag
)))
17004 // Tags are compatible, but we might still want to warn on mismatched tags.
17005 // Non-class tags can't be mismatched at this point.
17006 if (!isClassCompatTagKind(NewTag
))
17009 // Declarations for which -Wmismatched-tags is disabled are entirely ignored
17010 // by our warning analysis. We don't want to warn about mismatches with (eg)
17011 // declarations in system headers that are designed to be specialized, but if
17012 // a user asks us to warn, we should warn if their code contains mismatched
17014 auto IsIgnoredLoc
= [&](SourceLocation Loc
) {
17015 return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch
,
17018 if (IsIgnoredLoc(NewTagLoc
))
17021 auto IsIgnored
= [&](const TagDecl
*Tag
) {
17022 return IsIgnoredLoc(Tag
->getLocation());
17024 while (IsIgnored(Previous
)) {
17025 Previous
= Previous
->getPreviousDecl();
17028 OldTag
= Previous
->getTagKind();
17031 bool isTemplate
= false;
17032 if (const CXXRecordDecl
*Record
= dyn_cast
<CXXRecordDecl
>(Previous
))
17033 isTemplate
= Record
->getDescribedClassTemplate();
17035 if (inTemplateInstantiation()) {
17036 if (OldTag
!= NewTag
) {
17037 // In a template instantiation, do not offer fix-its for tag mismatches
17038 // since they usually mess up the template instead of fixing the problem.
17039 Diag(NewTagLoc
, diag::warn_struct_class_tag_mismatch
)
17040 << getRedeclDiagFromTagKind(NewTag
) << isTemplate
<< Name
17041 << getRedeclDiagFromTagKind(OldTag
);
17042 // FIXME: Note previous location?
17047 if (isDefinition
) {
17048 // On definitions, check all previous tags and issue a fix-it for each
17049 // one that doesn't match the current tag.
17050 if (Previous
->getDefinition()) {
17051 // Don't suggest fix-its for redefinitions.
17055 bool previousMismatch
= false;
17056 for (const TagDecl
*I
: Previous
->redecls()) {
17057 if (I
->getTagKind() != NewTag
) {
17058 // Ignore previous declarations for which the warning was disabled.
17062 if (!previousMismatch
) {
17063 previousMismatch
= true;
17064 Diag(NewTagLoc
, diag::warn_struct_class_previous_tag_mismatch
)
17065 << getRedeclDiagFromTagKind(NewTag
) << isTemplate
<< Name
17066 << getRedeclDiagFromTagKind(I
->getTagKind());
17068 Diag(I
->getInnerLocStart(), diag::note_struct_class_suggestion
)
17069 << getRedeclDiagFromTagKind(NewTag
)
17070 << FixItHint::CreateReplacement(I
->getInnerLocStart(),
17071 TypeWithKeyword::getTagTypeKindName(NewTag
));
17077 // Identify the prevailing tag kind: this is the kind of the definition (if
17078 // there is a non-ignored definition), or otherwise the kind of the prior
17079 // (non-ignored) declaration.
17080 const TagDecl
*PrevDef
= Previous
->getDefinition();
17081 if (PrevDef
&& IsIgnored(PrevDef
))
17083 const TagDecl
*Redecl
= PrevDef
? PrevDef
: Previous
;
17084 if (Redecl
->getTagKind() != NewTag
) {
17085 Diag(NewTagLoc
, diag::warn_struct_class_tag_mismatch
)
17086 << getRedeclDiagFromTagKind(NewTag
) << isTemplate
<< Name
17087 << getRedeclDiagFromTagKind(OldTag
);
17088 Diag(Redecl
->getLocation(), diag::note_previous_use
);
17090 // If there is a previous definition, suggest a fix-it.
17092 Diag(NewTagLoc
, diag::note_struct_class_suggestion
)
17093 << getRedeclDiagFromTagKind(Redecl
->getTagKind())
17094 << FixItHint::CreateReplacement(SourceRange(NewTagLoc
),
17095 TypeWithKeyword::getTagTypeKindName(Redecl
->getTagKind()));
17102 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
17103 /// from an outer enclosing namespace or file scope inside a friend declaration.
17104 /// This should provide the commented out code in the following snippet:
17108 /// struct Y { friend struct /*N::*/ X; };
17111 static FixItHint
createFriendTagNNSFixIt(Sema
&SemaRef
, NamedDecl
*ND
, Scope
*S
,
17112 SourceLocation NameLoc
) {
17113 // While the decl is in a namespace, do repeated lookup of that name and see
17114 // if we get the same namespace back. If we do not, continue until
17115 // translation unit scope, at which point we have a fully qualified NNS.
17116 SmallVector
<IdentifierInfo
*, 4> Namespaces
;
17117 DeclContext
*DC
= ND
->getDeclContext()->getRedeclContext();
17118 for (; !DC
->isTranslationUnit(); DC
= DC
->getParent()) {
17119 // This tag should be declared in a namespace, which can only be enclosed by
17120 // other namespaces. Bail if there's an anonymous namespace in the chain.
17121 NamespaceDecl
*Namespace
= dyn_cast
<NamespaceDecl
>(DC
);
17122 if (!Namespace
|| Namespace
->isAnonymousNamespace())
17123 return FixItHint();
17124 IdentifierInfo
*II
= Namespace
->getIdentifier();
17125 Namespaces
.push_back(II
);
17126 NamedDecl
*Lookup
= SemaRef
.LookupSingleName(
17127 S
, II
, NameLoc
, Sema::LookupNestedNameSpecifierName
);
17128 if (Lookup
== Namespace
)
17132 // Once we have all the namespaces, reverse them to go outermost first, and
17134 SmallString
<64> Insertion
;
17135 llvm::raw_svector_ostream
OS(Insertion
);
17136 if (DC
->isTranslationUnit())
17138 std::reverse(Namespaces
.begin(), Namespaces
.end());
17139 for (auto *II
: Namespaces
)
17140 OS
<< II
->getName() << "::";
17141 return FixItHint::CreateInsertion(NameLoc
, Insertion
);
17144 /// Determine whether a tag originally declared in context \p OldDC can
17145 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
17146 /// found a declaration in \p OldDC as a previous decl, perhaps through a
17147 /// using-declaration).
17148 static bool isAcceptableTagRedeclContext(Sema
&S
, DeclContext
*OldDC
,
17149 DeclContext
*NewDC
) {
17150 OldDC
= OldDC
->getRedeclContext();
17151 NewDC
= NewDC
->getRedeclContext();
17153 if (OldDC
->Equals(NewDC
))
17156 // In MSVC mode, we allow a redeclaration if the contexts are related (either
17157 // encloses the other).
17158 if (S
.getLangOpts().MSVCCompat
&&
17159 (OldDC
->Encloses(NewDC
) || NewDC
->Encloses(OldDC
)))
17166 Sema::ActOnTag(Scope
*S
, unsigned TagSpec
, TagUseKind TUK
, SourceLocation KWLoc
,
17167 CXXScopeSpec
&SS
, IdentifierInfo
*Name
, SourceLocation NameLoc
,
17168 const ParsedAttributesView
&Attrs
, AccessSpecifier AS
,
17169 SourceLocation ModulePrivateLoc
,
17170 MultiTemplateParamsArg TemplateParameterLists
, bool &OwnedDecl
,
17171 bool &IsDependent
, SourceLocation ScopedEnumKWLoc
,
17172 bool ScopedEnumUsesClassTag
, TypeResult UnderlyingType
,
17173 bool IsTypeSpecifier
, bool IsTemplateParamOrArg
,
17174 OffsetOfKind OOK
, SkipBodyInfo
*SkipBody
) {
17175 // If this is not a definition, it must have a name.
17176 IdentifierInfo
*OrigName
= Name
;
17177 assert((Name
!= nullptr || TUK
== TagUseKind::Definition
) &&
17178 "Nameless record must be a definition!");
17179 assert(TemplateParameterLists
.size() == 0 || TUK
!= TagUseKind::Reference
);
17182 TagTypeKind Kind
= TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec
);
17183 bool ScopedEnum
= ScopedEnumKWLoc
.isValid();
17185 // FIXME: Check member specializations more carefully.
17186 bool isMemberSpecialization
= false;
17187 bool Invalid
= false;
17189 // We only need to do this matching if we have template parameters
17190 // or a scope specifier, which also conveniently avoids this work
17191 // for non-C++ cases.
17192 if (TemplateParameterLists
.size() > 0 ||
17193 (SS
.isNotEmpty() && TUK
!= TagUseKind::Reference
)) {
17194 TemplateParameterList
*TemplateParams
=
17195 MatchTemplateParametersToScopeSpecifier(
17196 KWLoc
, NameLoc
, SS
, nullptr, TemplateParameterLists
,
17197 TUK
== TagUseKind::Friend
, isMemberSpecialization
, Invalid
);
17199 // C++23 [dcl.type.elab] p2:
17200 // If an elaborated-type-specifier is the sole constituent of a
17201 // declaration, the declaration is ill-formed unless it is an explicit
17202 // specialization, an explicit instantiation or it has one of the
17203 // following forms: [...]
17204 // C++23 [dcl.enum] p1:
17205 // If the enum-head-name of an opaque-enum-declaration contains a
17206 // nested-name-specifier, the declaration shall be an explicit
17209 // FIXME: Class template partial specializations can be forward declared
17210 // per CWG2213, but the resolution failed to allow qualified forward
17211 // declarations. This is almost certainly unintentional, so we allow them.
17212 if (TUK
== TagUseKind::Declaration
&& SS
.isNotEmpty() &&
17213 !isMemberSpecialization
)
17214 Diag(SS
.getBeginLoc(), diag::err_standalone_class_nested_name_specifier
)
17215 << TypeWithKeyword::getTagTypeKindName(Kind
) << SS
.getRange();
17217 if (TemplateParams
) {
17218 if (Kind
== TagTypeKind::Enum
) {
17219 Diag(KWLoc
, diag::err_enum_template
);
17223 if (TemplateParams
->size() > 0) {
17224 // This is a declaration or definition of a class template (which may
17225 // be a member of another template).
17231 DeclResult Result
= CheckClassTemplate(
17232 S
, TagSpec
, TUK
, KWLoc
, SS
, Name
, NameLoc
, Attrs
, TemplateParams
,
17233 AS
, ModulePrivateLoc
,
17234 /*FriendLoc*/ SourceLocation(), TemplateParameterLists
.size() - 1,
17235 TemplateParameterLists
.data(), SkipBody
);
17236 return Result
.get();
17238 // The "template<>" header is extraneous.
17239 Diag(TemplateParams
->getTemplateLoc(), diag::err_template_tag_noparams
)
17240 << TypeWithKeyword::getTagTypeKindName(Kind
) << Name
;
17241 isMemberSpecialization
= true;
17245 if (!TemplateParameterLists
.empty() && isMemberSpecialization
&&
17246 CheckTemplateDeclScope(S
, TemplateParameterLists
.back()))
17250 if (TUK
== TagUseKind::Friend
&& Kind
== TagTypeKind::Enum
) {
17251 // C++23 [dcl.type.elab]p4:
17252 // If an elaborated-type-specifier appears with the friend specifier as
17253 // an entire member-declaration, the member-declaration shall have one
17254 // of the following forms:
17255 // friend class-key nested-name-specifier(opt) identifier ;
17256 // friend class-key simple-template-id ;
17257 // friend class-key nested-name-specifier template(opt)
17258 // simple-template-id ;
17260 // Since enum is not a class-key, so declarations like "friend enum E;"
17261 // are ill-formed. Although CWG2363 reaffirms that such declarations are
17262 // invalid, most implementations accept so we issue a pedantic warning.
17263 Diag(KWLoc
, diag::ext_enum_friend
) << FixItHint::CreateRemoval(
17264 ScopedEnum
? SourceRange(KWLoc
, ScopedEnumKWLoc
) : KWLoc
);
17265 assert(ScopedEnum
|| !ScopedEnumUsesClassTag
);
17266 Diag(KWLoc
, diag::note_enum_friend
)
17267 << (ScopedEnum
+ ScopedEnumUsesClassTag
);
17270 // Figure out the underlying type if this a enum declaration. We need to do
17271 // this early, because it's needed to detect if this is an incompatible
17273 llvm::PointerUnion
<const Type
*, TypeSourceInfo
*> EnumUnderlying
;
17274 bool IsFixed
= !UnderlyingType
.isUnset() || ScopedEnum
;
17276 if (Kind
== TagTypeKind::Enum
) {
17277 if (UnderlyingType
.isInvalid() || (!UnderlyingType
.get() && ScopedEnum
)) {
17278 // No underlying type explicitly specified, or we failed to parse the
17279 // type, default to int.
17280 EnumUnderlying
= Context
.IntTy
.getTypePtr();
17281 } else if (UnderlyingType
.get()) {
17282 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
17283 // integral type; any cv-qualification is ignored.
17284 TypeSourceInfo
*TI
= nullptr;
17285 GetTypeFromParser(UnderlyingType
.get(), &TI
);
17286 EnumUnderlying
= TI
;
17288 if (CheckEnumUnderlyingType(TI
))
17289 // Recover by falling back to int.
17290 EnumUnderlying
= Context
.IntTy
.getTypePtr();
17292 if (DiagnoseUnexpandedParameterPack(TI
->getTypeLoc().getBeginLoc(), TI
,
17293 UPPC_FixedUnderlyingType
))
17294 EnumUnderlying
= Context
.IntTy
.getTypePtr();
17296 } else if (Context
.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
17297 // For MSVC ABI compatibility, unfixed enums must use an underlying type
17298 // of 'int'. However, if this is an unfixed forward declaration, don't set
17299 // the underlying type unless the user enables -fms-compatibility. This
17300 // makes unfixed forward declared enums incomplete and is more conforming.
17301 if (TUK
== TagUseKind::Definition
|| getLangOpts().MSVCCompat
)
17302 EnumUnderlying
= Context
.IntTy
.getTypePtr();
17306 DeclContext
*SearchDC
= CurContext
;
17307 DeclContext
*DC
= CurContext
;
17308 bool isStdBadAlloc
= false;
17309 bool isStdAlignValT
= false;
17311 RedeclarationKind Redecl
= forRedeclarationInCurContext();
17312 if (TUK
== TagUseKind::Friend
|| TUK
== TagUseKind::Reference
)
17313 Redecl
= RedeclarationKind::NotForRedeclaration
;
17315 /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
17316 /// implemented asks for structural equivalence checking, the returned decl
17317 /// here is passed back to the parser, allowing the tag body to be parsed.
17318 auto createTagFromNewDecl
= [&]() -> TagDecl
* {
17319 assert(!getLangOpts().CPlusPlus
&& "not meant for C++ usage");
17320 // If there is an identifier, use the location of the identifier as the
17321 // location of the decl, otherwise use the location of the struct/union
17323 SourceLocation Loc
= NameLoc
.isValid() ? NameLoc
: KWLoc
;
17324 TagDecl
*New
= nullptr;
17326 if (Kind
== TagTypeKind::Enum
) {
17327 New
= EnumDecl::Create(Context
, SearchDC
, KWLoc
, Loc
, Name
, nullptr,
17328 ScopedEnum
, ScopedEnumUsesClassTag
, IsFixed
);
17329 // If this is an undefined enum, bail.
17330 if (TUK
!= TagUseKind::Definition
&& !Invalid
)
17332 if (EnumUnderlying
) {
17333 EnumDecl
*ED
= cast
<EnumDecl
>(New
);
17334 if (TypeSourceInfo
*TI
= dyn_cast
<TypeSourceInfo
*>(EnumUnderlying
))
17335 ED
->setIntegerTypeSourceInfo(TI
);
17337 ED
->setIntegerType(QualType(cast
<const Type
*>(EnumUnderlying
), 0));
17338 QualType EnumTy
= ED
->getIntegerType();
17339 ED
->setPromotionType(Context
.isPromotableIntegerType(EnumTy
)
17340 ? Context
.getPromotedIntegerType(EnumTy
)
17343 } else { // struct/union
17344 New
= RecordDecl::Create(Context
, Kind
, SearchDC
, KWLoc
, Loc
, Name
,
17348 if (RecordDecl
*RD
= dyn_cast
<RecordDecl
>(New
)) {
17349 // Add alignment attributes if necessary; these attributes are checked
17350 // when the ASTContext lays out the structure.
17352 // It is important for implementing the correct semantics that this
17353 // happen here (in ActOnTag). The #pragma pack stack is
17354 // maintained as a result of parser callbacks which can occur at
17355 // many points during the parsing of a struct declaration (because
17356 // the #pragma tokens are effectively skipped over during the
17357 // parsing of the struct).
17358 if (TUK
== TagUseKind::Definition
&&
17359 (!SkipBody
|| !SkipBody
->ShouldSkip
)) {
17360 AddAlignmentAttributesForRecord(RD
);
17361 AddMsStructLayoutForRecord(RD
);
17364 New
->setLexicalDeclContext(CurContext
);
17368 LookupResult
Previous(*this, Name
, NameLoc
, LookupTagName
, Redecl
);
17369 if (Name
&& SS
.isNotEmpty()) {
17370 // We have a nested-name tag ('struct foo::bar').
17372 // Check for invalid 'foo::'.
17373 if (SS
.isInvalid()) {
17375 goto CreateNewDecl
;
17378 // If this is a friend or a reference to a class in a dependent
17379 // context, don't try to make a decl for it.
17380 if (TUK
== TagUseKind::Friend
|| TUK
== TagUseKind::Reference
) {
17381 DC
= computeDeclContext(SS
, false);
17383 IsDependent
= true;
17387 DC
= computeDeclContext(SS
, true);
17389 Diag(SS
.getRange().getBegin(), diag::err_dependent_nested_name_spec
)
17395 if (RequireCompleteDeclContext(SS
, DC
))
17399 // Look-up name inside 'foo::'.
17400 LookupQualifiedName(Previous
, DC
);
17402 if (Previous
.isAmbiguous())
17405 if (Previous
.empty()) {
17406 // Name lookup did not find anything. However, if the
17407 // nested-name-specifier refers to the current instantiation,
17408 // and that current instantiation has any dependent base
17409 // classes, we might find something at instantiation time: treat
17410 // this as a dependent elaborated-type-specifier.
17411 // But this only makes any sense for reference-like lookups.
17412 if (Previous
.wasNotFoundInCurrentInstantiation() &&
17413 (TUK
== TagUseKind::Reference
|| TUK
== TagUseKind::Friend
)) {
17414 IsDependent
= true;
17418 // A tag 'foo::bar' must already exist.
17419 Diag(NameLoc
, diag::err_not_tag_in_scope
)
17420 << llvm::to_underlying(Kind
) << Name
<< DC
<< SS
.getRange();
17423 goto CreateNewDecl
;
17426 // C++14 [class.mem]p14:
17427 // If T is the name of a class, then each of the following shall have a
17428 // name different from T:
17429 // -- every member of class T that is itself a type
17430 if (TUK
!= TagUseKind::Reference
&& TUK
!= TagUseKind::Friend
&&
17431 DiagnoseClassNameShadow(SearchDC
, DeclarationNameInfo(Name
, NameLoc
)))
17434 // If this is a named struct, check to see if there was a previous forward
17435 // declaration or definition.
17436 // FIXME: We're looking into outer scopes here, even when we
17437 // shouldn't be. Doing so can result in ambiguities that we
17438 // shouldn't be diagnosing.
17439 LookupName(Previous
, S
);
17441 // When declaring or defining a tag, ignore ambiguities introduced
17442 // by types using'ed into this scope.
17443 if (Previous
.isAmbiguous() &&
17444 (TUK
== TagUseKind::Definition
|| TUK
== TagUseKind::Declaration
)) {
17445 LookupResult::Filter F
= Previous
.makeFilter();
17446 while (F
.hasNext()) {
17447 NamedDecl
*ND
= F
.next();
17448 if (!ND
->getDeclContext()->getRedeclContext()->Equals(
17449 SearchDC
->getRedeclContext()))
17455 // C++11 [namespace.memdef]p3:
17456 // If the name in a friend declaration is neither qualified nor
17457 // a template-id and the declaration is a function or an
17458 // elaborated-type-specifier, the lookup to determine whether
17459 // the entity has been previously declared shall not consider
17460 // any scopes outside the innermost enclosing namespace.
17462 // MSVC doesn't implement the above rule for types, so a friend tag
17463 // declaration may be a redeclaration of a type declared in an enclosing
17464 // scope. They do implement this rule for friend functions.
17466 // Does it matter that this should be by scope instead of by
17467 // semantic context?
17468 if (!Previous
.empty() && TUK
== TagUseKind::Friend
) {
17469 DeclContext
*EnclosingNS
= SearchDC
->getEnclosingNamespaceContext();
17470 LookupResult::Filter F
= Previous
.makeFilter();
17471 bool FriendSawTagOutsideEnclosingNamespace
= false;
17472 while (F
.hasNext()) {
17473 NamedDecl
*ND
= F
.next();
17474 DeclContext
*DC
= ND
->getDeclContext()->getRedeclContext();
17475 if (DC
->isFileContext() &&
17476 !EnclosingNS
->Encloses(ND
->getDeclContext())) {
17477 if (getLangOpts().MSVCCompat
)
17478 FriendSawTagOutsideEnclosingNamespace
= true;
17485 // Diagnose this MSVC extension in the easy case where lookup would have
17486 // unambiguously found something outside the enclosing namespace.
17487 if (Previous
.isSingleResult() && FriendSawTagOutsideEnclosingNamespace
) {
17488 NamedDecl
*ND
= Previous
.getFoundDecl();
17489 Diag(NameLoc
, diag::ext_friend_tag_redecl_outside_namespace
)
17490 << createFriendTagNNSFixIt(*this, ND
, S
, NameLoc
);
17494 // Note: there used to be some attempt at recovery here.
17495 if (Previous
.isAmbiguous())
17498 if (!getLangOpts().CPlusPlus
&& TUK
!= TagUseKind::Reference
) {
17499 // FIXME: This makes sure that we ignore the contexts associated
17500 // with C structs, unions, and enums when looking for a matching
17501 // tag declaration or definition. See the similar lookup tweak
17502 // in Sema::LookupName; is there a better way to deal with this?
17503 while (isa
<RecordDecl
, EnumDecl
, ObjCContainerDecl
>(SearchDC
))
17504 SearchDC
= SearchDC
->getParent();
17505 } else if (getLangOpts().CPlusPlus
) {
17506 // Inside ObjCContainer want to keep it as a lexical decl context but go
17507 // past it (most often to TranslationUnit) to find the semantic decl
17509 while (isa
<ObjCContainerDecl
>(SearchDC
))
17510 SearchDC
= SearchDC
->getParent();
17512 } else if (getLangOpts().CPlusPlus
) {
17513 // Don't use ObjCContainerDecl as the semantic decl context for anonymous
17514 // TagDecl the same way as we skip it for named TagDecl.
17515 while (isa
<ObjCContainerDecl
>(SearchDC
))
17516 SearchDC
= SearchDC
->getParent();
17519 if (Previous
.isSingleResult() &&
17520 Previous
.getFoundDecl()->isTemplateParameter()) {
17521 // Maybe we will complain about the shadowed template parameter.
17522 DiagnoseTemplateParameterShadow(NameLoc
, Previous
.getFoundDecl());
17523 // Just pretend that we didn't see the previous declaration.
17527 if (getLangOpts().CPlusPlus
&& Name
&& DC
&& StdNamespace
&&
17528 DC
->Equals(getStdNamespace())) {
17529 if (Name
->isStr("bad_alloc")) {
17530 // This is a declaration of or a reference to "std::bad_alloc".
17531 isStdBadAlloc
= true;
17533 // If std::bad_alloc has been implicitly declared (but made invisible to
17534 // name lookup), fill in this implicit declaration as the previous
17535 // declaration, so that the declarations get chained appropriately.
17536 if (Previous
.empty() && StdBadAlloc
)
17537 Previous
.addDecl(getStdBadAlloc());
17538 } else if (Name
->isStr("align_val_t")) {
17539 isStdAlignValT
= true;
17540 if (Previous
.empty() && StdAlignValT
)
17541 Previous
.addDecl(getStdAlignValT());
17545 // If we didn't find a previous declaration, and this is a reference
17546 // (or friend reference), move to the correct scope. In C++, we
17547 // also need to do a redeclaration lookup there, just in case
17548 // there's a shadow friend decl.
17549 if (Name
&& Previous
.empty() &&
17550 (TUK
== TagUseKind::Reference
|| TUK
== TagUseKind::Friend
||
17551 IsTemplateParamOrArg
)) {
17552 if (Invalid
) goto CreateNewDecl
;
17553 assert(SS
.isEmpty());
17555 if (TUK
== TagUseKind::Reference
|| IsTemplateParamOrArg
) {
17556 // C++ [basic.scope.pdecl]p5:
17557 // -- for an elaborated-type-specifier of the form
17559 // class-key identifier
17561 // if the elaborated-type-specifier is used in the
17562 // decl-specifier-seq or parameter-declaration-clause of a
17563 // function defined in namespace scope, the identifier is
17564 // declared as a class-name in the namespace that contains
17565 // the declaration; otherwise, except as a friend
17566 // declaration, the identifier is declared in the smallest
17567 // non-class, non-function-prototype scope that contains the
17570 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
17571 // C structs and unions.
17573 // It is an error in C++ to declare (rather than define) an enum
17574 // type, including via an elaborated type specifier. We'll
17575 // diagnose that later; for now, declare the enum in the same
17576 // scope as we would have picked for any other tag type.
17578 // GNU C also supports this behavior as part of its incomplete
17579 // enum types extension, while GNU C++ does not.
17581 // Find the context where we'll be declaring the tag.
17582 // FIXME: We would like to maintain the current DeclContext as the
17583 // lexical context,
17584 SearchDC
= getTagInjectionContext(SearchDC
);
17586 // Find the scope where we'll be declaring the tag.
17587 S
= getTagInjectionScope(S
, getLangOpts());
17589 assert(TUK
== TagUseKind::Friend
);
17590 CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(SearchDC
);
17592 // C++ [namespace.memdef]p3:
17593 // If a friend declaration in a non-local class first declares a
17594 // class or function, the friend class or function is a member of
17595 // the innermost enclosing namespace.
17596 SearchDC
= RD
->isLocalClass() ? RD
->isLocalClass()
17597 : SearchDC
->getEnclosingNamespaceContext();
17600 // In C++, we need to do a redeclaration lookup to properly
17601 // diagnose some problems.
17602 // FIXME: redeclaration lookup is also used (with and without C++) to find a
17603 // hidden declaration so that we don't get ambiguity errors when using a
17604 // type declared by an elaborated-type-specifier. In C that is not correct
17605 // and we should instead merge compatible types found by lookup.
17606 if (getLangOpts().CPlusPlus
) {
17607 // FIXME: This can perform qualified lookups into function contexts,
17608 // which are meaningless.
17609 Previous
.setRedeclarationKind(forRedeclarationInCurContext());
17610 LookupQualifiedName(Previous
, SearchDC
);
17612 Previous
.setRedeclarationKind(forRedeclarationInCurContext());
17613 LookupName(Previous
, S
);
17617 // If we have a known previous declaration to use, then use it.
17618 if (Previous
.empty() && SkipBody
&& SkipBody
->Previous
)
17619 Previous
.addDecl(SkipBody
->Previous
);
17621 if (!Previous
.empty()) {
17622 NamedDecl
*PrevDecl
= Previous
.getFoundDecl();
17623 NamedDecl
*DirectPrevDecl
= Previous
.getRepresentativeDecl();
17625 // It's okay to have a tag decl in the same scope as a typedef
17626 // which hides a tag decl in the same scope. Finding this
17627 // with a redeclaration lookup can only actually happen in C++.
17629 // This is also okay for elaborated-type-specifiers, which is
17630 // technically forbidden by the current standard but which is
17631 // okay according to the likely resolution of an open issue;
17632 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
17633 if (getLangOpts().CPlusPlus
) {
17634 if (TypedefNameDecl
*TD
= dyn_cast
<TypedefNameDecl
>(PrevDecl
)) {
17635 if (const TagType
*TT
= TD
->getUnderlyingType()->getAs
<TagType
>()) {
17636 TagDecl
*Tag
= TT
->getDecl();
17637 if (Tag
->getDeclName() == Name
&&
17638 Tag
->getDeclContext()->getRedeclContext()
17639 ->Equals(TD
->getDeclContext()->getRedeclContext())) {
17642 Previous
.addDecl(Tag
);
17643 Previous
.resolveKind();
17649 // If this is a redeclaration of a using shadow declaration, it must
17650 // declare a tag in the same context. In MSVC mode, we allow a
17651 // redefinition if either context is within the other.
17652 if (auto *Shadow
= dyn_cast
<UsingShadowDecl
>(DirectPrevDecl
)) {
17653 auto *OldTag
= dyn_cast
<TagDecl
>(PrevDecl
);
17654 if (SS
.isEmpty() && TUK
!= TagUseKind::Reference
&&
17655 TUK
!= TagUseKind::Friend
&&
17656 isDeclInScope(Shadow
, SearchDC
, S
, isMemberSpecialization
) &&
17657 !(OldTag
&& isAcceptableTagRedeclContext(
17658 *this, OldTag
->getDeclContext(), SearchDC
))) {
17659 Diag(KWLoc
, diag::err_using_decl_conflict_reverse
);
17660 Diag(Shadow
->getTargetDecl()->getLocation(),
17661 diag::note_using_decl_target
);
17662 Diag(Shadow
->getIntroducer()->getLocation(), diag::note_using_decl
)
17664 // Recover by ignoring the old declaration.
17666 goto CreateNewDecl
;
17670 if (TagDecl
*PrevTagDecl
= dyn_cast
<TagDecl
>(PrevDecl
)) {
17671 // If this is a use of a previous tag, or if the tag is already declared
17672 // in the same scope (so that the definition/declaration completes or
17673 // rementions the tag), reuse the decl.
17674 if (TUK
== TagUseKind::Reference
|| TUK
== TagUseKind::Friend
||
17675 isDeclInScope(DirectPrevDecl
, SearchDC
, S
,
17676 SS
.isNotEmpty() || isMemberSpecialization
)) {
17677 // Make sure that this wasn't declared as an enum and now used as a
17678 // struct or something similar.
17679 if (!isAcceptableTagRedeclaration(PrevTagDecl
, Kind
,
17680 TUK
== TagUseKind::Definition
, KWLoc
,
17682 bool SafeToContinue
=
17683 (PrevTagDecl
->getTagKind() != TagTypeKind::Enum
&&
17684 Kind
!= TagTypeKind::Enum
);
17685 if (SafeToContinue
)
17686 Diag(KWLoc
, diag::err_use_with_wrong_tag
)
17688 << FixItHint::CreateReplacement(SourceRange(KWLoc
),
17689 PrevTagDecl
->getKindName());
17691 Diag(KWLoc
, diag::err_use_with_wrong_tag
) << Name
;
17692 Diag(PrevTagDecl
->getLocation(), diag::note_previous_use
);
17694 if (SafeToContinue
)
17695 Kind
= PrevTagDecl
->getTagKind();
17697 // Recover by making this an anonymous redefinition.
17704 if (Kind
== TagTypeKind::Enum
&&
17705 PrevTagDecl
->getTagKind() == TagTypeKind::Enum
) {
17706 const EnumDecl
*PrevEnum
= cast
<EnumDecl
>(PrevTagDecl
);
17707 if (TUK
== TagUseKind::Reference
|| TUK
== TagUseKind::Friend
)
17708 return PrevTagDecl
;
17710 QualType EnumUnderlyingTy
;
17711 if (TypeSourceInfo
*TI
=
17712 dyn_cast_if_present
<TypeSourceInfo
*>(EnumUnderlying
))
17713 EnumUnderlyingTy
= TI
->getType().getUnqualifiedType();
17714 else if (const Type
*T
=
17715 dyn_cast_if_present
<const Type
*>(EnumUnderlying
))
17716 EnumUnderlyingTy
= QualType(T
, 0);
17718 // All conflicts with previous declarations are recovered by
17719 // returning the previous declaration, unless this is a definition,
17720 // in which case we want the caller to bail out.
17721 if (CheckEnumRedeclaration(NameLoc
.isValid() ? NameLoc
: KWLoc
,
17722 ScopedEnum
, EnumUnderlyingTy
,
17723 IsFixed
, PrevEnum
))
17724 return TUK
== TagUseKind::Declaration
? PrevTagDecl
: nullptr;
17727 // C++11 [class.mem]p1:
17728 // A member shall not be declared twice in the member-specification,
17729 // except that a nested class or member class template can be declared
17730 // and then later defined.
17731 if (TUK
== TagUseKind::Declaration
&& PrevDecl
->isCXXClassMember() &&
17732 S
->isDeclScope(PrevDecl
)) {
17733 Diag(NameLoc
, diag::ext_member_redeclared
);
17734 Diag(PrevTagDecl
->getLocation(), diag::note_previous_declaration
);
17738 // If this is a use, just return the declaration we found, unless
17739 // we have attributes.
17740 if (TUK
== TagUseKind::Reference
|| TUK
== TagUseKind::Friend
) {
17741 if (!Attrs
.empty()) {
17742 // FIXME: Diagnose these attributes. For now, we create a new
17743 // declaration to hold them.
17744 } else if (TUK
== TagUseKind::Reference
&&
17745 (PrevTagDecl
->getFriendObjectKind() ==
17746 Decl::FOK_Undeclared
||
17747 PrevDecl
->getOwningModule() != getCurrentModule()) &&
17749 // This declaration is a reference to an existing entity, but
17750 // has different visibility from that entity: it either makes
17751 // a friend visible or it makes a type visible in a new module.
17752 // In either case, create a new declaration. We only do this if
17753 // the declaration would have meant the same thing if no prior
17754 // declaration were found, that is, if it was found in the same
17755 // scope where we would have injected a declaration.
17756 if (!getTagInjectionContext(CurContext
)->getRedeclContext()
17757 ->Equals(PrevDecl
->getDeclContext()->getRedeclContext()))
17758 return PrevTagDecl
;
17759 // This is in the injected scope, create a new declaration in
17761 S
= getTagInjectionScope(S
, getLangOpts());
17763 return PrevTagDecl
;
17767 // Diagnose attempts to redefine a tag.
17768 if (TUK
== TagUseKind::Definition
) {
17769 if (NamedDecl
*Def
= PrevTagDecl
->getDefinition()) {
17770 // If we're defining a specialization and the previous definition
17771 // is from an implicit instantiation, don't emit an error
17772 // here; we'll catch this in the general case below.
17773 bool IsExplicitSpecializationAfterInstantiation
= false;
17774 if (isMemberSpecialization
) {
17775 if (CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(Def
))
17776 IsExplicitSpecializationAfterInstantiation
=
17777 RD
->getTemplateSpecializationKind() !=
17778 TSK_ExplicitSpecialization
;
17779 else if (EnumDecl
*ED
= dyn_cast
<EnumDecl
>(Def
))
17780 IsExplicitSpecializationAfterInstantiation
=
17781 ED
->getTemplateSpecializationKind() !=
17782 TSK_ExplicitSpecialization
;
17785 // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
17786 // not keep more that one definition around (merge them). However,
17787 // ensure the decl passes the structural compatibility check in
17788 // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
17789 NamedDecl
*Hidden
= nullptr;
17790 if (SkipBody
&& !hasVisibleDefinition(Def
, &Hidden
)) {
17791 // There is a definition of this tag, but it is not visible. We
17792 // explicitly make use of C++'s one definition rule here, and
17793 // assume that this definition is identical to the hidden one
17794 // we already have. Make the existing definition visible and
17795 // use it in place of this one.
17796 if (!getLangOpts().CPlusPlus
) {
17797 // Postpone making the old definition visible until after we
17798 // complete parsing the new one and do the structural
17800 SkipBody
->CheckSameAsPrevious
= true;
17801 SkipBody
->New
= createTagFromNewDecl();
17802 SkipBody
->Previous
= Def
;
17805 SkipBody
->ShouldSkip
= true;
17806 SkipBody
->Previous
= Def
;
17807 makeMergedDefinitionVisible(Hidden
);
17808 // Carry on and handle it like a normal definition. We'll
17809 // skip starting the definition later.
17811 } else if (!IsExplicitSpecializationAfterInstantiation
) {
17812 // A redeclaration in function prototype scope in C isn't
17813 // visible elsewhere, so merely issue a warning.
17814 if (!getLangOpts().CPlusPlus
&& S
->containedInPrototypeScope())
17815 Diag(NameLoc
, diag::warn_redefinition_in_param_list
) << Name
;
17817 Diag(NameLoc
, diag::err_redefinition
) << Name
;
17818 notePreviousDefinition(Def
,
17819 NameLoc
.isValid() ? NameLoc
: KWLoc
);
17820 // If this is a redefinition, recover by making this
17821 // struct be anonymous, which will make any later
17822 // references get the previous definition.
17828 // If the type is currently being defined, complain
17829 // about a nested redefinition.
17830 auto *TD
= Context
.getTagDeclType(PrevTagDecl
)->getAsTagDecl();
17831 if (TD
->isBeingDefined()) {
17832 Diag(NameLoc
, diag::err_nested_redefinition
) << Name
;
17833 Diag(PrevTagDecl
->getLocation(),
17834 diag::note_previous_definition
);
17841 // Okay, this is definition of a previously declared or referenced
17842 // tag. We're going to create a new Decl for it.
17845 // Okay, we're going to make a redeclaration. If this is some kind
17846 // of reference, make sure we build the redeclaration in the same DC
17847 // as the original, and ignore the current access specifier.
17848 if (TUK
== TagUseKind::Friend
|| TUK
== TagUseKind::Reference
) {
17849 SearchDC
= PrevTagDecl
->getDeclContext();
17853 // If we get here we have (another) forward declaration or we
17854 // have a definition. Just create a new decl.
17857 // If we get here, this is a definition of a new tag type in a nested
17858 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
17859 // new decl/type. We set PrevDecl to NULL so that the entities
17860 // have distinct types.
17863 // If we get here, we're going to create a new Decl. If PrevDecl
17864 // is non-NULL, it's a definition of the tag declared by
17865 // PrevDecl. If it's NULL, we have a new definition.
17867 // Otherwise, PrevDecl is not a tag, but was found with tag
17868 // lookup. This is only actually possible in C++, where a few
17869 // things like templates still live in the tag namespace.
17871 // Use a better diagnostic if an elaborated-type-specifier
17872 // found the wrong kind of type on the first
17873 // (non-redeclaration) lookup.
17874 if ((TUK
== TagUseKind::Reference
|| TUK
== TagUseKind::Friend
) &&
17875 !Previous
.isForRedeclaration()) {
17876 NonTagKind NTK
= getNonTagTypeDeclKind(PrevDecl
, Kind
);
17877 Diag(NameLoc
, diag::err_tag_reference_non_tag
)
17878 << PrevDecl
<< NTK
<< llvm::to_underlying(Kind
);
17879 Diag(PrevDecl
->getLocation(), diag::note_declared_at
);
17882 // Otherwise, only diagnose if the declaration is in scope.
17883 } else if (!isDeclInScope(DirectPrevDecl
, SearchDC
, S
,
17884 SS
.isNotEmpty() || isMemberSpecialization
)) {
17887 // Diagnose implicit declarations introduced by elaborated types.
17888 } else if (TUK
== TagUseKind::Reference
|| TUK
== TagUseKind::Friend
) {
17889 NonTagKind NTK
= getNonTagTypeDeclKind(PrevDecl
, Kind
);
17890 Diag(NameLoc
, diag::err_tag_reference_conflict
) << NTK
;
17891 Diag(PrevDecl
->getLocation(), diag::note_previous_decl
) << PrevDecl
;
17894 // Otherwise it's a declaration. Call out a particularly common
17896 } else if (TypedefNameDecl
*TND
= dyn_cast
<TypedefNameDecl
>(PrevDecl
)) {
17898 if (isa
<TypeAliasDecl
>(PrevDecl
)) Kind
= 1;
17899 Diag(NameLoc
, diag::err_tag_definition_of_typedef
)
17900 << Name
<< Kind
<< TND
->getUnderlyingType();
17901 Diag(PrevDecl
->getLocation(), diag::note_previous_decl
) << PrevDecl
;
17904 // Otherwise, diagnose.
17906 // The tag name clashes with something else in the target scope,
17907 // issue an error and recover by making this tag be anonymous.
17908 Diag(NameLoc
, diag::err_redefinition_different_kind
) << Name
;
17909 notePreviousDefinition(PrevDecl
, NameLoc
);
17914 // The existing declaration isn't relevant to us; we're in a
17915 // new scope, so clear out the previous declaration.
17922 TagDecl
*PrevDecl
= nullptr;
17923 if (Previous
.isSingleResult())
17924 PrevDecl
= cast
<TagDecl
>(Previous
.getFoundDecl());
17926 // If there is an identifier, use the location of the identifier as the
17927 // location of the decl, otherwise use the location of the struct/union
17929 SourceLocation Loc
= NameLoc
.isValid() ? NameLoc
: KWLoc
;
17931 // Otherwise, create a new declaration. If there is a previous
17932 // declaration of the same entity, the two will be linked via
17936 if (Kind
== TagTypeKind::Enum
) {
17937 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
17938 // enum X { A, B, C } D; D should chain to X.
17939 New
= EnumDecl::Create(Context
, SearchDC
, KWLoc
, Loc
, Name
,
17940 cast_or_null
<EnumDecl
>(PrevDecl
), ScopedEnum
,
17941 ScopedEnumUsesClassTag
, IsFixed
);
17943 if (isStdAlignValT
&& (!StdAlignValT
|| getStdAlignValT()->isImplicit()))
17944 StdAlignValT
= cast
<EnumDecl
>(New
);
17946 // If this is an undefined enum, warn.
17947 if (TUK
!= TagUseKind::Definition
&& !Invalid
) {
17949 if (IsFixed
&& cast
<EnumDecl
>(New
)->isFixed()) {
17950 // C++0x: 7.2p2: opaque-enum-declaration.
17951 // Conflicts are diagnosed above. Do nothing.
17953 else if (PrevDecl
&& (Def
= cast
<EnumDecl
>(PrevDecl
)->getDefinition())) {
17954 Diag(Loc
, diag::ext_forward_ref_enum_def
)
17956 Diag(Def
->getLocation(), diag::note_previous_definition
);
17958 unsigned DiagID
= diag::ext_forward_ref_enum
;
17959 if (getLangOpts().MSVCCompat
)
17960 DiagID
= diag::ext_ms_forward_ref_enum
;
17961 else if (getLangOpts().CPlusPlus
)
17962 DiagID
= diag::err_forward_ref_enum
;
17967 if (EnumUnderlying
) {
17968 EnumDecl
*ED
= cast
<EnumDecl
>(New
);
17969 if (TypeSourceInfo
*TI
= dyn_cast
<TypeSourceInfo
*>(EnumUnderlying
))
17970 ED
->setIntegerTypeSourceInfo(TI
);
17972 ED
->setIntegerType(QualType(cast
<const Type
*>(EnumUnderlying
), 0));
17973 QualType EnumTy
= ED
->getIntegerType();
17974 ED
->setPromotionType(Context
.isPromotableIntegerType(EnumTy
)
17975 ? Context
.getPromotedIntegerType(EnumTy
)
17977 assert(ED
->isComplete() && "enum with type should be complete");
17980 // struct/union/class
17982 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
17983 // struct X { int A; } D; D should chain to X.
17984 if (getLangOpts().CPlusPlus
) {
17985 // FIXME: Look for a way to use RecordDecl for simple structs.
17986 New
= CXXRecordDecl::Create(Context
, Kind
, SearchDC
, KWLoc
, Loc
, Name
,
17987 cast_or_null
<CXXRecordDecl
>(PrevDecl
));
17989 if (isStdBadAlloc
&& (!StdBadAlloc
|| getStdBadAlloc()->isImplicit()))
17990 StdBadAlloc
= cast
<CXXRecordDecl
>(New
);
17992 New
= RecordDecl::Create(Context
, Kind
, SearchDC
, KWLoc
, Loc
, Name
,
17993 cast_or_null
<RecordDecl
>(PrevDecl
));
17996 // Only C23 and later allow defining new types in 'offsetof()'.
17997 if (OOK
!= OOK_Outside
&& TUK
== TagUseKind::Definition
&&
17998 !getLangOpts().CPlusPlus
&& !getLangOpts().C23
)
17999 Diag(New
->getLocation(), diag::ext_type_defined_in_offsetof
)
18000 << (OOK
== OOK_Macro
) << New
->getSourceRange();
18002 // C++11 [dcl.type]p3:
18003 // A type-specifier-seq shall not define a class or enumeration [...].
18004 if (!Invalid
&& getLangOpts().CPlusPlus
&&
18005 (IsTypeSpecifier
|| IsTemplateParamOrArg
) &&
18006 TUK
== TagUseKind::Definition
) {
18007 Diag(New
->getLocation(), diag::err_type_defined_in_type_specifier
)
18008 << Context
.getTagDeclType(New
);
18012 if (!Invalid
&& getLangOpts().CPlusPlus
&& TUK
== TagUseKind::Definition
&&
18013 DC
->getDeclKind() == Decl::Enum
) {
18014 Diag(New
->getLocation(), diag::err_type_defined_in_enum
)
18015 << Context
.getTagDeclType(New
);
18019 // Maybe add qualifier info.
18020 if (SS
.isNotEmpty()) {
18022 // If this is either a declaration or a definition, check the
18023 // nested-name-specifier against the current context.
18024 if ((TUK
== TagUseKind::Definition
|| TUK
== TagUseKind::Declaration
) &&
18025 diagnoseQualifiedDeclaration(SS
, DC
, OrigName
, Loc
,
18026 /*TemplateId=*/nullptr,
18027 isMemberSpecialization
))
18030 New
->setQualifierInfo(SS
.getWithLocInContext(Context
));
18031 if (TemplateParameterLists
.size() > 0) {
18032 New
->setTemplateParameterListsInfo(Context
, TemplateParameterLists
);
18039 if (RecordDecl
*RD
= dyn_cast
<RecordDecl
>(New
)) {
18040 // Add alignment attributes if necessary; these attributes are checked when
18041 // the ASTContext lays out the structure.
18043 // It is important for implementing the correct semantics that this
18044 // happen here (in ActOnTag). The #pragma pack stack is
18045 // maintained as a result of parser callbacks which can occur at
18046 // many points during the parsing of a struct declaration (because
18047 // the #pragma tokens are effectively skipped over during the
18048 // parsing of the struct).
18049 if (TUK
== TagUseKind::Definition
&& (!SkipBody
|| !SkipBody
->ShouldSkip
)) {
18050 AddAlignmentAttributesForRecord(RD
);
18051 AddMsStructLayoutForRecord(RD
);
18055 if (ModulePrivateLoc
.isValid()) {
18056 if (isMemberSpecialization
)
18057 Diag(New
->getLocation(), diag::err_module_private_specialization
)
18059 << FixItHint::CreateRemoval(ModulePrivateLoc
);
18060 // __module_private__ does not apply to local classes. However, we only
18061 // diagnose this as an error when the declaration specifiers are
18062 // freestanding. Here, we just ignore the __module_private__.
18063 else if (!SearchDC
->isFunctionOrMethod())
18064 New
->setModulePrivate();
18067 // If this is a specialization of a member class (of a class template),
18068 // check the specialization.
18069 if (isMemberSpecialization
&& CheckMemberSpecialization(New
, Previous
))
18072 // If we're declaring or defining a tag in function prototype scope in C,
18073 // note that this type can only be used within the function and add it to
18074 // the list of decls to inject into the function definition scope.
18075 if ((Name
|| Kind
== TagTypeKind::Enum
) &&
18076 getNonFieldDeclScope(S
)->isFunctionPrototypeScope()) {
18077 if (getLangOpts().CPlusPlus
) {
18078 // C++ [dcl.fct]p6:
18079 // Types shall not be defined in return or parameter types.
18080 if (TUK
== TagUseKind::Definition
&& !IsTypeSpecifier
) {
18081 Diag(Loc
, diag::err_type_defined_in_param_type
)
18085 if (TUK
== TagUseKind::Declaration
)
18087 } else if (!PrevDecl
) {
18088 Diag(Loc
, diag::warn_decl_in_param_list
) << Context
.getTagDeclType(New
);
18093 New
->setInvalidDecl();
18095 // Set the lexical context. If the tag has a C++ scope specifier, the
18096 // lexical context will be different from the semantic context.
18097 New
->setLexicalDeclContext(CurContext
);
18099 // Mark this as a friend decl if applicable.
18100 // In Microsoft mode, a friend declaration also acts as a forward
18101 // declaration so we always pass true to setObjectOfFriendDecl to make
18102 // the tag name visible.
18103 if (TUK
== TagUseKind::Friend
)
18104 New
->setObjectOfFriendDecl(getLangOpts().MSVCCompat
);
18106 // Set the access specifier.
18107 if (!Invalid
&& SearchDC
->isRecord())
18108 SetMemberAccessSpecifier(New
, PrevDecl
, AS
);
18111 CheckRedeclarationInModule(New
, PrevDecl
);
18113 if (TUK
== TagUseKind::Definition
&& (!SkipBody
|| !SkipBody
->ShouldSkip
))
18114 New
->startDefinition();
18116 ProcessDeclAttributeList(S
, New
, Attrs
);
18117 AddPragmaAttributes(S
, New
);
18119 // If this has an identifier, add it to the scope stack.
18120 if (TUK
== TagUseKind::Friend
) {
18121 // We might be replacing an existing declaration in the lookup tables;
18122 // if so, borrow its access specifier.
18124 New
->setAccess(PrevDecl
->getAccess());
18126 DeclContext
*DC
= New
->getDeclContext()->getRedeclContext();
18127 DC
->makeDeclVisibleInContext(New
);
18128 if (Name
) // can be null along some error paths
18129 if (Scope
*EnclosingScope
= getScopeForDeclContext(S
, DC
))
18130 PushOnScopeChains(New
, EnclosingScope
, /* AddToContext = */ false);
18132 S
= getNonFieldDeclScope(S
);
18133 PushOnScopeChains(New
, S
, true);
18135 CurContext
->addDecl(New
);
18138 // If this is the C FILE type, notify the AST context.
18139 if (IdentifierInfo
*II
= New
->getIdentifier())
18140 if (!New
->isInvalidDecl() &&
18141 New
->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
18143 Context
.setFILEDecl(New
);
18146 mergeDeclAttributes(New
, PrevDecl
);
18148 if (auto *CXXRD
= dyn_cast
<CXXRecordDecl
>(New
)) {
18149 inferGslOwnerPointerAttribute(CXXRD
);
18150 inferNullableClassAttribute(CXXRD
);
18153 // If there's a #pragma GCC visibility in scope, set the visibility of this
18155 AddPushedVisibilityAttribute(New
);
18157 if (isMemberSpecialization
&& !New
->isInvalidDecl())
18158 CompleteMemberSpecialization(New
, Previous
);
18161 // In C++, don't return an invalid declaration. We can't recover well from
18162 // the cases where we make the type anonymous.
18163 if (Invalid
&& getLangOpts().CPlusPlus
) {
18164 if (New
->isBeingDefined())
18165 if (auto RD
= dyn_cast
<RecordDecl
>(New
))
18166 RD
->completeDefinition();
18168 } else if (SkipBody
&& SkipBody
->ShouldSkip
) {
18169 return SkipBody
->Previous
;
18175 void Sema::ActOnTagStartDefinition(Scope
*S
, Decl
*TagD
) {
18176 AdjustDeclIfTemplate(TagD
);
18177 TagDecl
*Tag
= cast
<TagDecl
>(TagD
);
18179 // Enter the tag context.
18180 PushDeclContext(S
, Tag
);
18182 ActOnDocumentableDecl(TagD
);
18184 // If there's a #pragma GCC visibility in scope, set the visibility of this
18186 AddPushedVisibilityAttribute(Tag
);
18189 bool Sema::ActOnDuplicateDefinition(Decl
*Prev
, SkipBodyInfo
&SkipBody
) {
18190 if (!hasStructuralCompatLayout(Prev
, SkipBody
.New
))
18193 // Make the previous decl visible.
18194 makeMergedDefinitionVisible(SkipBody
.Previous
);
18198 void Sema::ActOnStartCXXMemberDeclarations(Scope
*S
, Decl
*TagD
,
18199 SourceLocation FinalLoc
,
18200 bool IsFinalSpelledSealed
,
18202 SourceLocation LBraceLoc
) {
18203 AdjustDeclIfTemplate(TagD
);
18204 CXXRecordDecl
*Record
= cast
<CXXRecordDecl
>(TagD
);
18206 FieldCollector
->StartClass();
18208 if (!Record
->getIdentifier())
18212 Record
->markAbstract();
18214 if (FinalLoc
.isValid()) {
18215 Record
->addAttr(FinalAttr::Create(Context
, FinalLoc
,
18216 IsFinalSpelledSealed
18217 ? FinalAttr::Keyword_sealed
18218 : FinalAttr::Keyword_final
));
18221 // [...] The class-name is also inserted into the scope of the
18222 // class itself; this is known as the injected-class-name. For
18223 // purposes of access checking, the injected-class-name is treated
18224 // as if it were a public member name.
18225 CXXRecordDecl
*InjectedClassName
= CXXRecordDecl::Create(
18226 Context
, Record
->getTagKind(), CurContext
, Record
->getBeginLoc(),
18227 Record
->getLocation(), Record
->getIdentifier(),
18228 /*PrevDecl=*/nullptr,
18229 /*DelayTypeCreation=*/true);
18230 Context
.getTypeDeclType(InjectedClassName
, Record
);
18231 InjectedClassName
->setImplicit();
18232 InjectedClassName
->setAccess(AS_public
);
18233 if (ClassTemplateDecl
*Template
= Record
->getDescribedClassTemplate())
18234 InjectedClassName
->setDescribedClassTemplate(Template
);
18235 PushOnScopeChains(InjectedClassName
, S
);
18236 assert(InjectedClassName
->isInjectedClassName() &&
18237 "Broken injected-class-name");
18240 void Sema::ActOnTagFinishDefinition(Scope
*S
, Decl
*TagD
,
18241 SourceRange BraceRange
) {
18242 AdjustDeclIfTemplate(TagD
);
18243 TagDecl
*Tag
= cast
<TagDecl
>(TagD
);
18244 Tag
->setBraceRange(BraceRange
);
18246 // Make sure we "complete" the definition even it is invalid.
18247 if (Tag
->isBeingDefined()) {
18248 assert(Tag
->isInvalidDecl() && "We should already have completed it");
18249 if (RecordDecl
*RD
= dyn_cast
<RecordDecl
>(Tag
))
18250 RD
->completeDefinition();
18253 if (auto *RD
= dyn_cast
<CXXRecordDecl
>(Tag
)) {
18254 FieldCollector
->FinishClass();
18255 if (RD
->hasAttr
<SYCLSpecialClassAttr
>()) {
18256 auto *Def
= RD
->getDefinition();
18257 assert(Def
&& "The record is expected to have a completed definition");
18258 unsigned NumInitMethods
= 0;
18259 for (auto *Method
: Def
->methods()) {
18260 if (!Method
->getIdentifier())
18262 if (Method
->getName() == "__init")
18265 if (NumInitMethods
> 1 || !Def
->hasInitMethod())
18266 Diag(RD
->getLocation(), diag::err_sycl_special_type_num_init_method
);
18269 // If we're defining a dynamic class in a module interface unit, we always
18270 // need to produce the vtable for it, even if the vtable is not used in the
18273 // The case where the current class is not dynamic is handled in
18275 if (getCurrentModule() && getCurrentModule()->isInterfaceOrPartition())
18276 MarkVTableUsed(RD
->getLocation(), RD
, /*DefinitionRequired=*/true);
18279 // Exit this scope of this tag's definition.
18282 if (getCurLexicalContext()->isObjCContainer() &&
18283 Tag
->getDeclContext()->isFileContext())
18284 Tag
->setTopLevelDeclInObjCContainer();
18286 // Notify the consumer that we've defined a tag.
18287 if (!Tag
->isInvalidDecl())
18288 Consumer
.HandleTagDeclDefinition(Tag
);
18290 // Clangs implementation of #pragma align(packed) differs in bitfield layout
18291 // from XLs and instead matches the XL #pragma pack(1) behavior.
18292 if (Context
.getTargetInfo().getTriple().isOSAIX() &&
18293 AlignPackStack
.hasValue()) {
18294 AlignPackInfo APInfo
= AlignPackStack
.CurrentValue
;
18295 // Only diagnose #pragma align(packed).
18296 if (!APInfo
.IsAlignAttr() || APInfo
.getAlignMode() != AlignPackInfo::Packed
)
18298 const RecordDecl
*RD
= dyn_cast
<RecordDecl
>(Tag
);
18301 // Only warn if there is at least 1 bitfield member.
18302 if (llvm::any_of(RD
->fields(),
18303 [](const FieldDecl
*FD
) { return FD
->isBitField(); }))
18304 Diag(BraceRange
.getBegin(), diag::warn_pragma_align_not_xl_compatible
);
18308 void Sema::ActOnTagDefinitionError(Scope
*S
, Decl
*TagD
) {
18309 AdjustDeclIfTemplate(TagD
);
18310 TagDecl
*Tag
= cast
<TagDecl
>(TagD
);
18311 Tag
->setInvalidDecl();
18313 // Make sure we "complete" the definition even it is invalid.
18314 if (Tag
->isBeingDefined()) {
18315 if (RecordDecl
*RD
= dyn_cast
<RecordDecl
>(Tag
))
18316 RD
->completeDefinition();
18319 // We're undoing ActOnTagStartDefinition here, not
18320 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
18321 // the FieldCollector.
18326 // Note that FieldName may be null for anonymous bitfields.
18327 ExprResult
Sema::VerifyBitField(SourceLocation FieldLoc
,
18328 const IdentifierInfo
*FieldName
,
18329 QualType FieldTy
, bool IsMsStruct
,
18332 if (BitWidth
->containsErrors())
18333 return ExprError();
18335 // C99 6.7.2.1p4 - verify the field type.
18336 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
18337 if (!FieldTy
->isDependentType() && !FieldTy
->isIntegralOrEnumerationType()) {
18338 // Handle incomplete and sizeless types with a specific error.
18339 if (RequireCompleteSizedType(FieldLoc
, FieldTy
,
18340 diag::err_field_incomplete_or_sizeless
))
18341 return ExprError();
18343 return Diag(FieldLoc
, diag::err_not_integral_type_bitfield
)
18344 << FieldName
<< FieldTy
<< BitWidth
->getSourceRange();
18345 return Diag(FieldLoc
, diag::err_not_integral_type_anon_bitfield
)
18346 << FieldTy
<< BitWidth
->getSourceRange();
18347 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr
*>(BitWidth
),
18348 UPPC_BitFieldWidth
))
18349 return ExprError();
18351 // If the bit-width is type- or value-dependent, don't try to check
18353 if (BitWidth
->isValueDependent() || BitWidth
->isTypeDependent())
18356 llvm::APSInt Value
;
18357 ExprResult ICE
= VerifyIntegerConstantExpression(BitWidth
, &Value
, AllowFold
);
18358 if (ICE
.isInvalid())
18360 BitWidth
= ICE
.get();
18362 // Zero-width bitfield is ok for anonymous field.
18363 if (Value
== 0 && FieldName
)
18364 return Diag(FieldLoc
, diag::err_bitfield_has_zero_width
)
18365 << FieldName
<< BitWidth
->getSourceRange();
18367 if (Value
.isSigned() && Value
.isNegative()) {
18369 return Diag(FieldLoc
, diag::err_bitfield_has_negative_width
)
18370 << FieldName
<< toString(Value
, 10);
18371 return Diag(FieldLoc
, diag::err_anon_bitfield_has_negative_width
)
18372 << toString(Value
, 10);
18375 // The size of the bit-field must not exceed our maximum permitted object
18377 if (Value
.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context
)) {
18378 return Diag(FieldLoc
, diag::err_bitfield_too_wide
)
18379 << !FieldName
<< FieldName
<< toString(Value
, 10);
18382 if (!FieldTy
->isDependentType()) {
18383 uint64_t TypeStorageSize
= Context
.getTypeSize(FieldTy
);
18384 uint64_t TypeWidth
= Context
.getIntWidth(FieldTy
);
18385 bool BitfieldIsOverwide
= Value
.ugt(TypeWidth
);
18387 // Over-wide bitfields are an error in C or when using the MSVC bitfield
18389 bool CStdConstraintViolation
=
18390 BitfieldIsOverwide
&& !getLangOpts().CPlusPlus
;
18391 bool MSBitfieldViolation
=
18392 Value
.ugt(TypeStorageSize
) &&
18393 (IsMsStruct
|| Context
.getTargetInfo().getCXXABI().isMicrosoft());
18394 if (CStdConstraintViolation
|| MSBitfieldViolation
) {
18395 unsigned DiagWidth
=
18396 CStdConstraintViolation
? TypeWidth
: TypeStorageSize
;
18397 return Diag(FieldLoc
, diag::err_bitfield_width_exceeds_type_width
)
18398 << (bool)FieldName
<< FieldName
<< toString(Value
, 10)
18399 << !CStdConstraintViolation
<< DiagWidth
;
18402 // Warn on types where the user might conceivably expect to get all
18403 // specified bits as value bits: that's all integral types other than
18405 if (BitfieldIsOverwide
&& !FieldTy
->isBooleanType() && FieldName
) {
18406 Diag(FieldLoc
, diag::warn_bitfield_width_exceeds_type_width
)
18407 << FieldName
<< toString(Value
, 10)
18408 << (unsigned)TypeWidth
;
18412 if (isa
<ConstantExpr
>(BitWidth
))
18414 return ConstantExpr::Create(getASTContext(), BitWidth
, APValue
{Value
});
18417 Decl
*Sema::ActOnField(Scope
*S
, Decl
*TagD
, SourceLocation DeclStart
,
18418 Declarator
&D
, Expr
*BitfieldWidth
) {
18419 FieldDecl
*Res
= HandleField(S
, cast_if_present
<RecordDecl
>(TagD
), DeclStart
,
18421 /*InitStyle=*/ICIS_NoInit
, AS_public
);
18425 FieldDecl
*Sema::HandleField(Scope
*S
, RecordDecl
*Record
,
18426 SourceLocation DeclStart
,
18427 Declarator
&D
, Expr
*BitWidth
,
18428 InClassInitStyle InitStyle
,
18429 AccessSpecifier AS
) {
18430 if (D
.isDecompositionDeclarator()) {
18431 const DecompositionDeclarator
&Decomp
= D
.getDecompositionDeclarator();
18432 Diag(Decomp
.getLSquareLoc(), diag::err_decomp_decl_context
)
18433 << Decomp
.getSourceRange();
18437 const IdentifierInfo
*II
= D
.getIdentifier();
18438 SourceLocation Loc
= DeclStart
;
18439 if (II
) Loc
= D
.getIdentifierLoc();
18441 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(D
);
18442 QualType T
= TInfo
->getType();
18443 if (getLangOpts().CPlusPlus
) {
18444 CheckExtraCXXDefaultArguments(D
);
18446 if (DiagnoseUnexpandedParameterPack(D
.getIdentifierLoc(), TInfo
,
18447 UPPC_DataMemberType
)) {
18448 D
.setInvalidType();
18450 TInfo
= Context
.getTrivialTypeSourceInfo(T
, Loc
);
18454 DiagnoseFunctionSpecifiers(D
.getDeclSpec());
18456 if (D
.getDeclSpec().isInlineSpecified())
18457 Diag(D
.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function
)
18458 << getLangOpts().CPlusPlus17
;
18459 if (DeclSpec::TSCS TSCS
= D
.getDeclSpec().getThreadStorageClassSpec())
18460 Diag(D
.getDeclSpec().getThreadStorageClassSpecLoc(),
18461 diag::err_invalid_thread
)
18462 << DeclSpec::getSpecifierName(TSCS
);
18464 // Check to see if this name was declared as a member previously
18465 NamedDecl
*PrevDecl
= nullptr;
18466 LookupResult
Previous(*this, II
, Loc
, LookupMemberName
,
18467 RedeclarationKind::ForVisibleRedeclaration
);
18468 LookupName(Previous
, S
);
18469 switch (Previous
.getResultKind()) {
18470 case LookupResult::Found
:
18471 case LookupResult::FoundUnresolvedValue
:
18472 PrevDecl
= Previous
.getAsSingle
<NamedDecl
>();
18475 case LookupResult::FoundOverloaded
:
18476 PrevDecl
= Previous
.getRepresentativeDecl();
18479 case LookupResult::NotFound
:
18480 case LookupResult::NotFoundInCurrentInstantiation
:
18481 case LookupResult::Ambiguous
:
18484 Previous
.suppressDiagnostics();
18486 if (PrevDecl
&& PrevDecl
->isTemplateParameter()) {
18487 // Maybe we will complain about the shadowed template parameter.
18488 DiagnoseTemplateParameterShadow(D
.getIdentifierLoc(), PrevDecl
);
18489 // Just pretend that we didn't see the previous declaration.
18490 PrevDecl
= nullptr;
18493 if (PrevDecl
&& !isDeclInScope(PrevDecl
, Record
, S
))
18494 PrevDecl
= nullptr;
18497 = (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable
);
18498 SourceLocation TSSL
= D
.getBeginLoc();
18500 = CheckFieldDecl(II
, T
, TInfo
, Record
, Loc
, Mutable
, BitWidth
, InitStyle
,
18501 TSSL
, AS
, PrevDecl
, &D
);
18503 if (NewFD
->isInvalidDecl())
18504 Record
->setInvalidDecl();
18506 if (D
.getDeclSpec().isModulePrivateSpecified())
18507 NewFD
->setModulePrivate();
18509 if (NewFD
->isInvalidDecl() && PrevDecl
) {
18510 // Don't introduce NewFD into scope; there's already something
18511 // with the same name in the same scope.
18513 PushOnScopeChains(NewFD
, S
);
18515 Record
->addDecl(NewFD
);
18520 FieldDecl
*Sema::CheckFieldDecl(DeclarationName Name
, QualType T
,
18521 TypeSourceInfo
*TInfo
,
18522 RecordDecl
*Record
, SourceLocation Loc
,
18523 bool Mutable
, Expr
*BitWidth
,
18524 InClassInitStyle InitStyle
,
18525 SourceLocation TSSL
,
18526 AccessSpecifier AS
, NamedDecl
*PrevDecl
,
18528 const IdentifierInfo
*II
= Name
.getAsIdentifierInfo();
18529 bool InvalidDecl
= false;
18530 if (D
) InvalidDecl
= D
->isInvalidType();
18532 // If we receive a broken type, recover by assuming 'int' and
18533 // marking this declaration as invalid.
18534 if (T
.isNull() || T
->containsErrors()) {
18535 InvalidDecl
= true;
18539 QualType EltTy
= Context
.getBaseElementType(T
);
18540 if (!EltTy
->isDependentType() && !EltTy
->containsErrors()) {
18541 bool isIncomplete
=
18542 LangOpts
.HLSL
// HLSL allows sizeless builtin types
18543 ? RequireCompleteType(Loc
, EltTy
, diag::err_incomplete_type
)
18544 : RequireCompleteSizedType(Loc
, EltTy
,
18545 diag::err_field_incomplete_or_sizeless
);
18546 if (isIncomplete
) {
18547 // Fields of incomplete type force their record to be invalid.
18548 Record
->setInvalidDecl();
18549 InvalidDecl
= true;
18552 EltTy
->isIncompleteType(&Def
);
18553 if (Def
&& Def
->isInvalidDecl()) {
18554 Record
->setInvalidDecl();
18555 InvalidDecl
= true;
18560 // TR 18037 does not allow fields to be declared with address space
18561 if (T
.hasAddressSpace() || T
->isDependentAddressSpaceType() ||
18562 T
->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
18563 Diag(Loc
, diag::err_field_with_address_space
);
18564 Record
->setInvalidDecl();
18565 InvalidDecl
= true;
18568 if (LangOpts
.OpenCL
) {
18569 // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
18570 // used as structure or union field: image, sampler, event or block types.
18571 if (T
->isEventT() || T
->isImageType() || T
->isSamplerT() ||
18572 T
->isBlockPointerType()) {
18573 Diag(Loc
, diag::err_opencl_type_struct_or_union_field
) << T
;
18574 Record
->setInvalidDecl();
18575 InvalidDecl
= true;
18577 // OpenCL v1.2 s6.9.c: bitfields are not supported, unless Clang extension
18579 if (BitWidth
&& !getOpenCLOptions().isAvailableOption(
18580 "__cl_clang_bitfields", LangOpts
)) {
18581 Diag(Loc
, diag::err_opencl_bitfields
);
18582 InvalidDecl
= true;
18586 // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
18587 if (!InvalidDecl
&& getLangOpts().CPlusPlus
&& !II
&& BitWidth
&&
18588 T
.hasQualifiers()) {
18589 InvalidDecl
= true;
18590 Diag(Loc
, diag::err_anon_bitfield_qualifiers
);
18593 // C99 6.7.2.1p8: A member of a structure or union may have any type other
18594 // than a variably modified type.
18595 if (!InvalidDecl
&& T
->isVariablyModifiedType()) {
18596 if (!tryToFixVariablyModifiedVarType(
18597 TInfo
, T
, Loc
, diag::err_typecheck_field_variable_size
))
18598 InvalidDecl
= true;
18601 // Fields can not have abstract class types
18602 if (!InvalidDecl
&& RequireNonAbstractType(Loc
, T
,
18603 diag::err_abstract_type_in_decl
,
18604 AbstractFieldType
))
18605 InvalidDecl
= true;
18608 BitWidth
= nullptr;
18609 // If this is declared as a bit-field, check the bit-field.
18612 VerifyBitField(Loc
, II
, T
, Record
->isMsStruct(Context
), BitWidth
).get();
18614 InvalidDecl
= true;
18615 BitWidth
= nullptr;
18619 // Check that 'mutable' is consistent with the type of the declaration.
18620 if (!InvalidDecl
&& Mutable
) {
18621 unsigned DiagID
= 0;
18622 if (T
->isReferenceType())
18623 DiagID
= getLangOpts().MSVCCompat
? diag::ext_mutable_reference
18624 : diag::err_mutable_reference
;
18625 else if (T
.isConstQualified())
18626 DiagID
= diag::err_mutable_const
;
18629 SourceLocation ErrLoc
= Loc
;
18630 if (D
&& D
->getDeclSpec().getStorageClassSpecLoc().isValid())
18631 ErrLoc
= D
->getDeclSpec().getStorageClassSpecLoc();
18632 Diag(ErrLoc
, DiagID
);
18633 if (DiagID
!= diag::ext_mutable_reference
) {
18635 InvalidDecl
= true;
18640 // C++11 [class.union]p8 (DR1460):
18641 // At most one variant member of a union may have a
18642 // brace-or-equal-initializer.
18643 if (InitStyle
!= ICIS_NoInit
)
18644 checkDuplicateDefaultInit(*this, cast
<CXXRecordDecl
>(Record
), Loc
);
18646 FieldDecl
*NewFD
= FieldDecl::Create(Context
, Record
, TSSL
, Loc
, II
, T
, TInfo
,
18647 BitWidth
, Mutable
, InitStyle
);
18649 NewFD
->setInvalidDecl();
18651 if (PrevDecl
&& !isa
<TagDecl
>(PrevDecl
) &&
18652 !PrevDecl
->isPlaceholderVar(getLangOpts())) {
18653 Diag(Loc
, diag::err_duplicate_member
) << II
;
18654 Diag(PrevDecl
->getLocation(), diag::note_previous_declaration
);
18655 NewFD
->setInvalidDecl();
18658 if (!InvalidDecl
&& getLangOpts().CPlusPlus
) {
18659 if (Record
->isUnion()) {
18660 if (const RecordType
*RT
= EltTy
->getAs
<RecordType
>()) {
18661 CXXRecordDecl
* RDecl
= cast
<CXXRecordDecl
>(RT
->getDecl());
18662 if (RDecl
->getDefinition()) {
18663 // C++ [class.union]p1: An object of a class with a non-trivial
18664 // constructor, a non-trivial copy constructor, a non-trivial
18665 // destructor, or a non-trivial copy assignment operator
18666 // cannot be a member of a union, nor can an array of such
18668 if (CheckNontrivialField(NewFD
))
18669 NewFD
->setInvalidDecl();
18673 // C++ [class.union]p1: If a union contains a member of reference type,
18674 // the program is ill-formed, except when compiling with MSVC extensions
18676 if (EltTy
->isReferenceType()) {
18677 const bool HaveMSExt
=
18678 getLangOpts().MicrosoftExt
&&
18679 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015
);
18681 Diag(NewFD
->getLocation(),
18682 HaveMSExt
? diag::ext_union_member_of_reference_type
18683 : diag::err_union_member_of_reference_type
)
18684 << NewFD
->getDeclName() << EltTy
;
18686 NewFD
->setInvalidDecl();
18691 // FIXME: We need to pass in the attributes given an AST
18692 // representation, not a parser representation.
18694 // FIXME: The current scope is almost... but not entirely... correct here.
18695 ProcessDeclAttributes(getCurScope(), NewFD
, *D
);
18697 if (NewFD
->hasAttrs())
18698 CheckAlignasUnderalignment(NewFD
);
18701 // In auto-retain/release, infer strong retension for fields of
18702 // retainable type.
18703 if (getLangOpts().ObjCAutoRefCount
&& ObjC().inferObjCARCLifetime(NewFD
))
18704 NewFD
->setInvalidDecl();
18706 if (T
.isObjCGCWeak())
18707 Diag(Loc
, diag::warn_attribute_weak_on_field
);
18709 // PPC MMA non-pointer types are not allowed as field types.
18710 if (Context
.getTargetInfo().getTriple().isPPC64() &&
18711 PPC().CheckPPCMMAType(T
, NewFD
->getLocation()))
18712 NewFD
->setInvalidDecl();
18714 NewFD
->setAccess(AS
);
18718 bool Sema::CheckNontrivialField(FieldDecl
*FD
) {
18720 assert(getLangOpts().CPlusPlus
&& "valid check only for C++");
18722 if (FD
->isInvalidDecl() || FD
->getType()->isDependentType())
18725 QualType EltTy
= Context
.getBaseElementType(FD
->getType());
18726 if (const RecordType
*RT
= EltTy
->getAs
<RecordType
>()) {
18727 CXXRecordDecl
*RDecl
= cast
<CXXRecordDecl
>(RT
->getDecl());
18728 if (RDecl
->getDefinition()) {
18729 // We check for copy constructors before constructors
18730 // because otherwise we'll never get complaints about
18731 // copy constructors.
18733 CXXSpecialMemberKind member
= CXXSpecialMemberKind::Invalid
;
18734 // We're required to check for any non-trivial constructors. Since the
18735 // implicit default constructor is suppressed if there are any
18736 // user-declared constructors, we just need to check that there is a
18737 // trivial default constructor and a trivial copy constructor. (We don't
18738 // worry about move constructors here, since this is a C++98 check.)
18739 if (RDecl
->hasNonTrivialCopyConstructor())
18740 member
= CXXSpecialMemberKind::CopyConstructor
;
18741 else if (!RDecl
->hasTrivialDefaultConstructor())
18742 member
= CXXSpecialMemberKind::DefaultConstructor
;
18743 else if (RDecl
->hasNonTrivialCopyAssignment())
18744 member
= CXXSpecialMemberKind::CopyAssignment
;
18745 else if (RDecl
->hasNonTrivialDestructor())
18746 member
= CXXSpecialMemberKind::Destructor
;
18748 if (member
!= CXXSpecialMemberKind::Invalid
) {
18749 if (!getLangOpts().CPlusPlus11
&&
18750 getLangOpts().ObjCAutoRefCount
&& RDecl
->hasObjectMember()) {
18751 // Objective-C++ ARC: it is an error to have a non-trivial field of
18752 // a union. However, system headers in Objective-C programs
18753 // occasionally have Objective-C lifetime objects within unions,
18754 // and rather than cause the program to fail, we make those
18755 // members unavailable.
18756 SourceLocation Loc
= FD
->getLocation();
18757 if (getSourceManager().isInSystemHeader(Loc
)) {
18758 if (!FD
->hasAttr
<UnavailableAttr
>())
18759 FD
->addAttr(UnavailableAttr::CreateImplicit(Context
, "",
18760 UnavailableAttr::IR_ARCFieldWithOwnership
, Loc
));
18767 getLangOpts().CPlusPlus11
18768 ? diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member
18769 : diag::err_illegal_union_or_anon_struct_member
)
18770 << FD
->getParent()->isUnion() << FD
->getDeclName()
18771 << llvm::to_underlying(member
);
18772 DiagnoseNontrivial(RDecl
, member
);
18773 return !getLangOpts().CPlusPlus11
;
18781 void Sema::ActOnLastBitfield(SourceLocation DeclLoc
,
18782 SmallVectorImpl
<Decl
*> &AllIvarDecls
) {
18783 if (LangOpts
.ObjCRuntime
.isFragile() || AllIvarDecls
.empty())
18786 Decl
*ivarDecl
= AllIvarDecls
[AllIvarDecls
.size()-1];
18787 ObjCIvarDecl
*Ivar
= cast
<ObjCIvarDecl
>(ivarDecl
);
18789 if (!Ivar
->isBitField() || Ivar
->isZeroLengthBitField())
18791 ObjCInterfaceDecl
*ID
= dyn_cast
<ObjCInterfaceDecl
>(CurContext
);
18793 if (ObjCCategoryDecl
*CD
= dyn_cast
<ObjCCategoryDecl
>(CurContext
)) {
18794 if (!CD
->IsClassExtension())
18797 // No need to add this to end of @implementation.
18801 // All conditions are met. Add a new bitfield to the tail end of ivars.
18802 llvm::APInt
Zero(Context
.getTypeSize(Context
.IntTy
), 0);
18803 Expr
* BW
= IntegerLiteral::Create(Context
, Zero
, Context
.IntTy
, DeclLoc
);
18805 ConstantExpr::Create(Context
, BW
, APValue(llvm::APSInt(Zero
)));
18807 Ivar
= ObjCIvarDecl::Create(
18808 Context
, cast
<ObjCContainerDecl
>(CurContext
), DeclLoc
, DeclLoc
, nullptr,
18809 Context
.CharTy
, Context
.getTrivialTypeSourceInfo(Context
.CharTy
, DeclLoc
),
18810 ObjCIvarDecl::Private
, BitWidth
, true);
18811 AllIvarDecls
.push_back(Ivar
);
18814 /// [class.dtor]p4:
18815 /// At the end of the definition of a class, overload resolution is
18816 /// performed among the prospective destructors declared in that class with
18817 /// an empty argument list to select the destructor for the class, also
18818 /// known as the selected destructor.
18820 /// We do the overload resolution here, then mark the selected constructor in the AST.
18821 /// Later CXXRecordDecl::getDestructor() will return the selected constructor.
18822 static void ComputeSelectedDestructor(Sema
&S
, CXXRecordDecl
*Record
) {
18823 if (!Record
->hasUserDeclaredDestructor()) {
18827 SourceLocation Loc
= Record
->getLocation();
18828 OverloadCandidateSet
OCS(Loc
, OverloadCandidateSet::CSK_Normal
);
18830 for (auto *Decl
: Record
->decls()) {
18831 if (auto *DD
= dyn_cast
<CXXDestructorDecl
>(Decl
)) {
18832 if (DD
->isInvalidDecl())
18834 S
.AddOverloadCandidate(DD
, DeclAccessPair::make(DD
, DD
->getAccess()), {},
18836 assert(DD
->isIneligibleOrNotSelected() && "Selecting a destructor but a destructor was already selected.");
18843 OverloadCandidateSet::iterator Best
;
18845 OverloadCandidateDisplayKind DisplayKind
;
18847 switch (OCS
.BestViableFunction(S
, Loc
, Best
)) {
18850 Record
->addedSelectedDestructor(dyn_cast
<CXXDestructorDecl
>(Best
->Function
));
18854 Msg
= diag::err_ambiguous_destructor
;
18855 DisplayKind
= OCD_AmbiguousCandidates
;
18858 case OR_No_Viable_Function
:
18859 Msg
= diag::err_no_viable_destructor
;
18860 DisplayKind
= OCD_AllCandidates
;
18865 // OpenCL have got their own thing going with destructors. It's slightly broken,
18866 // but we allow it.
18867 if (!S
.LangOpts
.OpenCL
) {
18868 PartialDiagnostic Diag
= S
.PDiag(Msg
) << Record
;
18869 OCS
.NoteCandidates(PartialDiagnosticAt(Loc
, Diag
), S
, DisplayKind
, {});
18870 Record
->setInvalidDecl();
18872 // It's a bit hacky: At this point we've raised an error but we want the
18873 // rest of the compiler to continue somehow working. However almost
18874 // everything we'll try to do with the class will depend on there being a
18875 // destructor. So let's pretend the first one is selected and hope for the
18877 Record
->addedSelectedDestructor(dyn_cast
<CXXDestructorDecl
>(OCS
.begin()->Function
));
18881 /// [class.mem.special]p5
18882 /// Two special member functions are of the same kind if:
18883 /// - they are both default constructors,
18884 /// - they are both copy or move constructors with the same first parameter
18886 /// - they are both copy or move assignment operators with the same first
18887 /// parameter type and the same cv-qualifiers and ref-qualifier, if any.
18888 static bool AreSpecialMemberFunctionsSameKind(ASTContext
&Context
,
18891 CXXSpecialMemberKind CSM
) {
18892 // We don't want to compare templates to non-templates: See
18893 // https://github.com/llvm/llvm-project/issues/59206
18894 if (CSM
== CXXSpecialMemberKind::DefaultConstructor
)
18895 return bool(M1
->getDescribedFunctionTemplate()) ==
18896 bool(M2
->getDescribedFunctionTemplate());
18897 // FIXME: better resolve CWG
18898 // https://cplusplus.github.io/CWG/issues/2787.html
18899 if (!Context
.hasSameType(M1
->getNonObjectParameter(0)->getType(),
18900 M2
->getNonObjectParameter(0)->getType()))
18902 if (!Context
.hasSameType(M1
->getFunctionObjectParameterReferenceType(),
18903 M2
->getFunctionObjectParameterReferenceType()))
18909 /// [class.mem.special]p6:
18910 /// An eligible special member function is a special member function for which:
18911 /// - the function is not deleted,
18912 /// - the associated constraints, if any, are satisfied, and
18913 /// - no special member function of the same kind whose associated constraints
18914 /// [CWG2595], if any, are satisfied is more constrained.
18915 static void SetEligibleMethods(Sema
&S
, CXXRecordDecl
*Record
,
18916 ArrayRef
<CXXMethodDecl
*> Methods
,
18917 CXXSpecialMemberKind CSM
) {
18918 SmallVector
<bool, 4> SatisfactionStatus
;
18920 for (CXXMethodDecl
*Method
: Methods
) {
18921 const Expr
*Constraints
= Method
->getTrailingRequiresClause();
18923 SatisfactionStatus
.push_back(true);
18925 ConstraintSatisfaction Satisfaction
;
18926 if (S
.CheckFunctionConstraints(Method
, Satisfaction
))
18927 SatisfactionStatus
.push_back(false);
18929 SatisfactionStatus
.push_back(Satisfaction
.IsSatisfied
);
18933 for (size_t i
= 0; i
< Methods
.size(); i
++) {
18934 if (!SatisfactionStatus
[i
])
18936 CXXMethodDecl
*Method
= Methods
[i
];
18937 CXXMethodDecl
*OrigMethod
= Method
;
18938 if (FunctionDecl
*MF
= OrigMethod
->getInstantiatedFromMemberFunction())
18939 OrigMethod
= cast
<CXXMethodDecl
>(MF
);
18941 const Expr
*Constraints
= OrigMethod
->getTrailingRequiresClause();
18942 bool AnotherMethodIsMoreConstrained
= false;
18943 for (size_t j
= 0; j
< Methods
.size(); j
++) {
18944 if (i
== j
|| !SatisfactionStatus
[j
])
18946 CXXMethodDecl
*OtherMethod
= Methods
[j
];
18947 if (FunctionDecl
*MF
= OtherMethod
->getInstantiatedFromMemberFunction())
18948 OtherMethod
= cast
<CXXMethodDecl
>(MF
);
18950 if (!AreSpecialMemberFunctionsSameKind(S
.Context
, OrigMethod
, OtherMethod
,
18954 const Expr
*OtherConstraints
= OtherMethod
->getTrailingRequiresClause();
18955 if (!OtherConstraints
)
18957 if (!Constraints
) {
18958 AnotherMethodIsMoreConstrained
= true;
18961 if (S
.IsAtLeastAsConstrained(OtherMethod
, {OtherConstraints
}, OrigMethod
,
18963 AnotherMethodIsMoreConstrained
)) {
18964 // There was an error with the constraints comparison. Exit the loop
18965 // and don't consider this function eligible.
18966 AnotherMethodIsMoreConstrained
= true;
18968 if (AnotherMethodIsMoreConstrained
)
18971 // FIXME: Do not consider deleted methods as eligible after implementing
18972 // DR1734 and DR1496.
18973 if (!AnotherMethodIsMoreConstrained
) {
18974 Method
->setIneligibleOrNotSelected(false);
18975 Record
->addedEligibleSpecialMemberFunction(Method
,
18976 1 << llvm::to_underlying(CSM
));
18981 static void ComputeSpecialMemberFunctionsEligiblity(Sema
&S
,
18982 CXXRecordDecl
*Record
) {
18983 SmallVector
<CXXMethodDecl
*, 4> DefaultConstructors
;
18984 SmallVector
<CXXMethodDecl
*, 4> CopyConstructors
;
18985 SmallVector
<CXXMethodDecl
*, 4> MoveConstructors
;
18986 SmallVector
<CXXMethodDecl
*, 4> CopyAssignmentOperators
;
18987 SmallVector
<CXXMethodDecl
*, 4> MoveAssignmentOperators
;
18989 for (auto *Decl
: Record
->decls()) {
18990 auto *MD
= dyn_cast
<CXXMethodDecl
>(Decl
);
18992 auto *FTD
= dyn_cast
<FunctionTemplateDecl
>(Decl
);
18994 MD
= dyn_cast
<CXXMethodDecl
>(FTD
->getTemplatedDecl());
18998 if (auto *CD
= dyn_cast
<CXXConstructorDecl
>(MD
)) {
18999 if (CD
->isInvalidDecl())
19001 if (CD
->isDefaultConstructor())
19002 DefaultConstructors
.push_back(MD
);
19003 else if (CD
->isCopyConstructor())
19004 CopyConstructors
.push_back(MD
);
19005 else if (CD
->isMoveConstructor())
19006 MoveConstructors
.push_back(MD
);
19007 } else if (MD
->isCopyAssignmentOperator()) {
19008 CopyAssignmentOperators
.push_back(MD
);
19009 } else if (MD
->isMoveAssignmentOperator()) {
19010 MoveAssignmentOperators
.push_back(MD
);
19014 SetEligibleMethods(S
, Record
, DefaultConstructors
,
19015 CXXSpecialMemberKind::DefaultConstructor
);
19016 SetEligibleMethods(S
, Record
, CopyConstructors
,
19017 CXXSpecialMemberKind::CopyConstructor
);
19018 SetEligibleMethods(S
, Record
, MoveConstructors
,
19019 CXXSpecialMemberKind::MoveConstructor
);
19020 SetEligibleMethods(S
, Record
, CopyAssignmentOperators
,
19021 CXXSpecialMemberKind::CopyAssignment
);
19022 SetEligibleMethods(S
, Record
, MoveAssignmentOperators
,
19023 CXXSpecialMemberKind::MoveAssignment
);
19026 void Sema::ActOnFields(Scope
*S
, SourceLocation RecLoc
, Decl
*EnclosingDecl
,
19027 ArrayRef
<Decl
*> Fields
, SourceLocation LBrac
,
19028 SourceLocation RBrac
,
19029 const ParsedAttributesView
&Attrs
) {
19030 assert(EnclosingDecl
&& "missing record or interface decl");
19032 // If this is an Objective-C @implementation or category and we have
19033 // new fields here we should reset the layout of the interface since
19034 // it will now change.
19035 if (!Fields
.empty() && isa
<ObjCContainerDecl
>(EnclosingDecl
)) {
19036 ObjCContainerDecl
*DC
= cast
<ObjCContainerDecl
>(EnclosingDecl
);
19037 switch (DC
->getKind()) {
19039 case Decl::ObjCCategory
:
19040 Context
.ResetObjCLayout(cast
<ObjCCategoryDecl
>(DC
)->getClassInterface());
19042 case Decl::ObjCImplementation
:
19044 ResetObjCLayout(cast
<ObjCImplementationDecl
>(DC
)->getClassInterface());
19049 RecordDecl
*Record
= dyn_cast
<RecordDecl
>(EnclosingDecl
);
19050 CXXRecordDecl
*CXXRecord
= dyn_cast
<CXXRecordDecl
>(EnclosingDecl
);
19052 // Start counting up the number of named members; make sure to include
19053 // members of anonymous structs and unions in the total.
19054 unsigned NumNamedMembers
= 0;
19056 for (const auto *I
: Record
->decls()) {
19057 if (const auto *IFD
= dyn_cast
<IndirectFieldDecl
>(I
))
19058 if (IFD
->getDeclName())
19063 // Verify that all the fields are okay.
19064 SmallVector
<FieldDecl
*, 32> RecFields
;
19066 for (ArrayRef
<Decl
*>::iterator i
= Fields
.begin(), end
= Fields
.end();
19068 FieldDecl
*FD
= cast
<FieldDecl
>(*i
);
19070 // Get the type for the field.
19071 const Type
*FDTy
= FD
->getType().getTypePtr();
19073 if (!FD
->isAnonymousStructOrUnion()) {
19074 // Remember all fields written by the user.
19075 RecFields
.push_back(FD
);
19078 // If the field is already invalid for some reason, don't emit more
19079 // diagnostics about it.
19080 if (FD
->isInvalidDecl()) {
19081 EnclosingDecl
->setInvalidDecl();
19086 // A structure or union shall not contain a member with
19087 // incomplete or function type (hence, a structure shall not
19088 // contain an instance of itself, but may contain a pointer to
19089 // an instance of itself), except that the last member of a
19090 // structure with more than one named member may have incomplete
19091 // array type; such a structure (and any union containing,
19092 // possibly recursively, a member that is such a structure)
19093 // shall not be a member of a structure or an element of an
19095 bool IsLastField
= (i
+ 1 == Fields
.end());
19096 if (FDTy
->isFunctionType()) {
19097 // Field declared as a function.
19098 Diag(FD
->getLocation(), diag::err_field_declared_as_function
)
19099 << FD
->getDeclName();
19100 FD
->setInvalidDecl();
19101 EnclosingDecl
->setInvalidDecl();
19103 } else if (FDTy
->isIncompleteArrayType() &&
19104 (Record
|| isa
<ObjCContainerDecl
>(EnclosingDecl
))) {
19106 // Flexible array member.
19107 // Microsoft and g++ is more permissive regarding flexible array.
19108 // It will accept flexible array in union and also
19109 // as the sole element of a struct/class.
19110 unsigned DiagID
= 0;
19111 if (!Record
->isUnion() && !IsLastField
) {
19112 Diag(FD
->getLocation(), diag::err_flexible_array_not_at_end
)
19113 << FD
->getDeclName() << FD
->getType()
19114 << llvm::to_underlying(Record
->getTagKind());
19115 Diag((*(i
+ 1))->getLocation(), diag::note_next_field_declaration
);
19116 FD
->setInvalidDecl();
19117 EnclosingDecl
->setInvalidDecl();
19119 } else if (Record
->isUnion())
19120 DiagID
= getLangOpts().MicrosoftExt
19121 ? diag::ext_flexible_array_union_ms
19122 : diag::ext_flexible_array_union_gnu
;
19123 else if (NumNamedMembers
< 1)
19124 DiagID
= getLangOpts().MicrosoftExt
19125 ? diag::ext_flexible_array_empty_aggregate_ms
19126 : diag::ext_flexible_array_empty_aggregate_gnu
;
19129 Diag(FD
->getLocation(), DiagID
)
19130 << FD
->getDeclName() << llvm::to_underlying(Record
->getTagKind());
19131 // While the layout of types that contain virtual bases is not specified
19132 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
19133 // virtual bases after the derived members. This would make a flexible
19134 // array member declared at the end of an object not adjacent to the end
19136 if (CXXRecord
&& CXXRecord
->getNumVBases() != 0)
19137 Diag(FD
->getLocation(), diag::err_flexible_array_virtual_base
)
19138 << FD
->getDeclName() << llvm::to_underlying(Record
->getTagKind());
19139 if (!getLangOpts().C99
)
19140 Diag(FD
->getLocation(), diag::ext_c99_flexible_array_member
)
19141 << FD
->getDeclName() << llvm::to_underlying(Record
->getTagKind());
19143 // If the element type has a non-trivial destructor, we would not
19144 // implicitly destroy the elements, so disallow it for now.
19146 // FIXME: GCC allows this. We should probably either implicitly delete
19147 // the destructor of the containing class, or just allow this.
19148 QualType BaseElem
= Context
.getBaseElementType(FD
->getType());
19149 if (!BaseElem
->isDependentType() && BaseElem
.isDestructedType()) {
19150 Diag(FD
->getLocation(), diag::err_flexible_array_has_nontrivial_dtor
)
19151 << FD
->getDeclName() << FD
->getType();
19152 FD
->setInvalidDecl();
19153 EnclosingDecl
->setInvalidDecl();
19156 // Okay, we have a legal flexible array member at the end of the struct.
19157 Record
->setHasFlexibleArrayMember(true);
19159 // In ObjCContainerDecl ivars with incomplete array type are accepted,
19160 // unless they are followed by another ivar. That check is done
19161 // elsewhere, after synthesized ivars are known.
19163 } else if (!FDTy
->isDependentType() &&
19164 (LangOpts
.HLSL
// HLSL allows sizeless builtin types
19165 ? RequireCompleteType(FD
->getLocation(), FD
->getType(),
19166 diag::err_incomplete_type
)
19167 : RequireCompleteSizedType(
19168 FD
->getLocation(), FD
->getType(),
19169 diag::err_field_incomplete_or_sizeless
))) {
19171 FD
->setInvalidDecl();
19172 EnclosingDecl
->setInvalidDecl();
19174 } else if (const RecordType
*FDTTy
= FDTy
->getAs
<RecordType
>()) {
19175 if (Record
&& FDTTy
->getDecl()->hasFlexibleArrayMember()) {
19176 // A type which contains a flexible array member is considered to be a
19177 // flexible array member.
19178 Record
->setHasFlexibleArrayMember(true);
19179 if (!Record
->isUnion()) {
19180 // If this is a struct/class and this is not the last element, reject
19181 // it. Note that GCC supports variable sized arrays in the middle of
19184 Diag(FD
->getLocation(), diag::ext_variable_sized_type_in_struct
)
19185 << FD
->getDeclName() << FD
->getType();
19187 // We support flexible arrays at the end of structs in
19188 // other structs as an extension.
19189 Diag(FD
->getLocation(), diag::ext_flexible_array_in_struct
)
19190 << FD
->getDeclName();
19194 if (isa
<ObjCContainerDecl
>(EnclosingDecl
) &&
19195 RequireNonAbstractType(FD
->getLocation(), FD
->getType(),
19196 diag::err_abstract_type_in_decl
,
19197 AbstractIvarType
)) {
19198 // Ivars can not have abstract class types
19199 FD
->setInvalidDecl();
19201 if (Record
&& FDTTy
->getDecl()->hasObjectMember())
19202 Record
->setHasObjectMember(true);
19203 if (Record
&& FDTTy
->getDecl()->hasVolatileMember())
19204 Record
->setHasVolatileMember(true);
19205 } else if (FDTy
->isObjCObjectType()) {
19206 /// A field cannot be an Objective-c object
19207 Diag(FD
->getLocation(), diag::err_statically_allocated_object
)
19208 << FixItHint::CreateInsertion(FD
->getLocation(), "*");
19209 QualType T
= Context
.getObjCObjectPointerType(FD
->getType());
19211 } else if (Record
&& Record
->isUnion() &&
19212 FD
->getType().hasNonTrivialObjCLifetime() &&
19213 getSourceManager().isInSystemHeader(FD
->getLocation()) &&
19214 !getLangOpts().CPlusPlus
&& !FD
->hasAttr
<UnavailableAttr
>() &&
19215 (FD
->getType().getObjCLifetime() != Qualifiers::OCL_Strong
||
19216 !Context
.hasDirectOwnershipQualifier(FD
->getType()))) {
19217 // For backward compatibility, fields of C unions declared in system
19218 // headers that have non-trivial ObjC ownership qualifications are marked
19219 // as unavailable unless the qualifier is explicit and __strong. This can
19220 // break ABI compatibility between programs compiled with ARC and MRR, but
19221 // is a better option than rejecting programs using those unions under
19223 FD
->addAttr(UnavailableAttr::CreateImplicit(
19224 Context
, "", UnavailableAttr::IR_ARCFieldWithOwnership
,
19225 FD
->getLocation()));
19226 } else if (getLangOpts().ObjC
&&
19227 getLangOpts().getGC() != LangOptions::NonGC
&& Record
&&
19228 !Record
->hasObjectMember()) {
19229 if (FD
->getType()->isObjCObjectPointerType() ||
19230 FD
->getType().isObjCGCStrong())
19231 Record
->setHasObjectMember(true);
19232 else if (Context
.getAsArrayType(FD
->getType())) {
19233 QualType BaseType
= Context
.getBaseElementType(FD
->getType());
19234 if (BaseType
->isRecordType() &&
19235 BaseType
->castAs
<RecordType
>()->getDecl()->hasObjectMember())
19236 Record
->setHasObjectMember(true);
19237 else if (BaseType
->isObjCObjectPointerType() ||
19238 BaseType
.isObjCGCStrong())
19239 Record
->setHasObjectMember(true);
19243 if (Record
&& !getLangOpts().CPlusPlus
&&
19244 !shouldIgnoreForRecordTriviality(FD
)) {
19245 QualType FT
= FD
->getType();
19246 if (FT
.isNonTrivialToPrimitiveDefaultInitialize()) {
19247 Record
->setNonTrivialToPrimitiveDefaultInitialize(true);
19248 if (FT
.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
19250 Record
->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
19252 QualType::PrimitiveCopyKind PCK
= FT
.isNonTrivialToPrimitiveCopy();
19253 if (PCK
!= QualType::PCK_Trivial
&& PCK
!= QualType::PCK_VolatileTrivial
) {
19254 Record
->setNonTrivialToPrimitiveCopy(true);
19255 if (FT
.hasNonTrivialToPrimitiveCopyCUnion() || Record
->isUnion())
19256 Record
->setHasNonTrivialToPrimitiveCopyCUnion(true);
19258 if (FD
->hasAttr
<ExplicitInitAttr
>())
19259 Record
->setHasUninitializedExplicitInitFields(true);
19260 if (FT
.isDestructedType()) {
19261 Record
->setNonTrivialToPrimitiveDestroy(true);
19262 Record
->setParamDestroyedInCallee(true);
19263 if (FT
.hasNonTrivialToPrimitiveDestructCUnion() || Record
->isUnion())
19264 Record
->setHasNonTrivialToPrimitiveDestructCUnion(true);
19267 if (const auto *RT
= FT
->getAs
<RecordType
>()) {
19268 if (RT
->getDecl()->getArgPassingRestrictions() ==
19269 RecordArgPassingKind::CanNeverPassInRegs
)
19270 Record
->setArgPassingRestrictions(
19271 RecordArgPassingKind::CanNeverPassInRegs
);
19272 } else if (FT
.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak
)
19273 Record
->setArgPassingRestrictions(
19274 RecordArgPassingKind::CanNeverPassInRegs
);
19277 if (Record
&& FD
->getType().isVolatileQualified())
19278 Record
->setHasVolatileMember(true);
19279 // Keep track of the number of named members.
19280 if (FD
->getIdentifier())
19284 // Okay, we successfully defined 'Record'.
19286 bool Completed
= false;
19288 Scope
*Parent
= S
->getParent();
19289 if (Parent
&& Parent
->isTypeAliasScope() &&
19290 Parent
->isTemplateParamScope())
19291 Record
->setInvalidDecl();
19295 if (!CXXRecord
->isInvalidDecl()) {
19296 // Set access bits correctly on the directly-declared conversions.
19297 for (CXXRecordDecl::conversion_iterator
19298 I
= CXXRecord
->conversion_begin(),
19299 E
= CXXRecord
->conversion_end(); I
!= E
; ++I
)
19300 I
.setAccess((*I
)->getAccess());
19303 // Add any implicitly-declared members to this class.
19304 AddImplicitlyDeclaredMembersToClass(CXXRecord
);
19306 if (!CXXRecord
->isDependentType()) {
19307 if (!CXXRecord
->isInvalidDecl()) {
19308 // If we have virtual base classes, we may end up finding multiple
19309 // final overriders for a given virtual function. Check for this
19311 if (CXXRecord
->getNumVBases()) {
19312 CXXFinalOverriderMap FinalOverriders
;
19313 CXXRecord
->getFinalOverriders(FinalOverriders
);
19315 for (CXXFinalOverriderMap::iterator M
= FinalOverriders
.begin(),
19316 MEnd
= FinalOverriders
.end();
19318 for (OverridingMethods::iterator SO
= M
->second
.begin(),
19319 SOEnd
= M
->second
.end();
19320 SO
!= SOEnd
; ++SO
) {
19321 assert(SO
->second
.size() > 0 &&
19322 "Virtual function without overriding functions?");
19323 if (SO
->second
.size() == 1)
19326 // C++ [class.virtual]p2:
19327 // In a derived class, if a virtual member function of a base
19328 // class subobject has more than one final overrider the
19329 // program is ill-formed.
19330 Diag(Record
->getLocation(), diag::err_multiple_final_overriders
)
19331 << (const NamedDecl
*)M
->first
<< Record
;
19332 Diag(M
->first
->getLocation(),
19333 diag::note_overridden_virtual_function
);
19334 for (OverridingMethods::overriding_iterator
19335 OM
= SO
->second
.begin(),
19336 OMEnd
= SO
->second
.end();
19338 Diag(OM
->Method
->getLocation(), diag::note_final_overrider
)
19339 << (const NamedDecl
*)M
->first
<< OM
->Method
->getParent();
19341 Record
->setInvalidDecl();
19344 CXXRecord
->completeDefinition(&FinalOverriders
);
19348 ComputeSelectedDestructor(*this, CXXRecord
);
19349 ComputeSpecialMemberFunctionsEligiblity(*this, CXXRecord
);
19354 Record
->completeDefinition();
19356 // Handle attributes before checking the layout.
19357 ProcessDeclAttributeList(S
, Record
, Attrs
);
19359 // Check to see if a FieldDecl is a pointer to a function.
19360 auto IsFunctionPointerOrForwardDecl
= [&](const Decl
*D
) {
19361 const FieldDecl
*FD
= dyn_cast
<FieldDecl
>(D
);
19363 // Check whether this is a forward declaration that was inserted by
19364 // Clang. This happens when a non-forward declared / defined type is
19368 // struct bar *(*f)();
19369 // struct bar *(*g)();
19372 // "struct bar" shows up in the decl AST as a "RecordDecl" with an
19373 // incomplete definition.
19374 if (const auto *TD
= dyn_cast
<TagDecl
>(D
))
19375 return !TD
->isCompleteDefinition();
19378 QualType FieldType
= FD
->getType().getDesugaredType(Context
);
19379 if (isa
<PointerType
>(FieldType
)) {
19380 QualType PointeeType
= cast
<PointerType
>(FieldType
)->getPointeeType();
19381 return PointeeType
.getDesugaredType(Context
)->isFunctionType();
19386 // Maybe randomize the record's decls. We automatically randomize a record
19387 // of function pointers, unless it has the "no_randomize_layout" attribute.
19388 if (!getLangOpts().CPlusPlus
&&
19389 (Record
->hasAttr
<RandomizeLayoutAttr
>() ||
19390 (!Record
->hasAttr
<NoRandomizeLayoutAttr
>() &&
19391 llvm::all_of(Record
->decls(), IsFunctionPointerOrForwardDecl
))) &&
19392 !Record
->isUnion() && !getLangOpts().RandstructSeed
.empty() &&
19393 !Record
->isRandomized()) {
19394 SmallVector
<Decl
*, 32> NewDeclOrdering
;
19395 if (randstruct::randomizeStructureLayout(Context
, Record
,
19397 Record
->reorderDecls(NewDeclOrdering
);
19400 // We may have deferred checking for a deleted destructor. Check now.
19402 auto *Dtor
= CXXRecord
->getDestructor();
19403 if (Dtor
&& Dtor
->isImplicit() &&
19404 ShouldDeleteSpecialMember(Dtor
, CXXSpecialMemberKind::Destructor
)) {
19405 CXXRecord
->setImplicitDestructorIsDeleted();
19406 SetDeclDeleted(Dtor
, CXXRecord
->getLocation());
19410 if (Record
->hasAttrs()) {
19411 CheckAlignasUnderalignment(Record
);
19413 if (const MSInheritanceAttr
*IA
= Record
->getAttr
<MSInheritanceAttr
>())
19414 checkMSInheritanceAttrOnDefinition(cast
<CXXRecordDecl
>(Record
),
19415 IA
->getRange(), IA
->getBestCase(),
19416 IA
->getInheritanceModel());
19419 // Check if the structure/union declaration is a type that can have zero
19420 // size in C. For C this is a language extension, for C++ it may cause
19421 // compatibility problems.
19422 bool CheckForZeroSize
;
19423 if (!getLangOpts().CPlusPlus
) {
19424 CheckForZeroSize
= true;
19426 // For C++ filter out types that cannot be referenced in C code.
19427 CXXRecordDecl
*CXXRecord
= cast
<CXXRecordDecl
>(Record
);
19429 CXXRecord
->getLexicalDeclContext()->isExternCContext() &&
19430 !CXXRecord
->isDependentType() && !inTemplateInstantiation() &&
19431 CXXRecord
->isCLike();
19433 if (CheckForZeroSize
) {
19434 bool ZeroSize
= true;
19435 bool IsEmpty
= true;
19436 unsigned NonBitFields
= 0;
19437 for (RecordDecl::field_iterator I
= Record
->field_begin(),
19438 E
= Record
->field_end();
19439 (NonBitFields
== 0 || ZeroSize
) && I
!= E
; ++I
) {
19441 if (I
->isUnnamedBitField()) {
19442 if (!I
->isZeroLengthBitField())
19446 QualType FieldType
= I
->getType();
19447 if (FieldType
->isIncompleteType() ||
19448 !Context
.getTypeSizeInChars(FieldType
).isZero())
19453 // Empty structs are an extension in C (C99 6.7.2.1p7). They are
19454 // allowed in C++, but warn if its declaration is inside
19455 // extern "C" block.
19457 Diag(RecLoc
, getLangOpts().CPlusPlus
?
19458 diag::warn_zero_size_struct_union_in_extern_c
:
19459 diag::warn_zero_size_struct_union_compat
)
19460 << IsEmpty
<< Record
->isUnion() << (NonBitFields
> 1);
19463 // Structs without named members are extension in C (C99 6.7.2.1p7),
19464 // but are accepted by GCC. In C2y, this became implementation-defined
19465 // (C2y 6.7.3.2p10).
19466 if (NonBitFields
== 0 && !getLangOpts().CPlusPlus
&& !getLangOpts().C2y
) {
19467 Diag(RecLoc
, IsEmpty
? diag::ext_empty_struct_union
19468 : diag::ext_no_named_members_in_struct_union
)
19469 << Record
->isUnion();
19473 ObjCIvarDecl
**ClsFields
=
19474 reinterpret_cast<ObjCIvarDecl
**>(RecFields
.data());
19475 if (ObjCInterfaceDecl
*ID
= dyn_cast
<ObjCInterfaceDecl
>(EnclosingDecl
)) {
19476 ID
->setEndOfDefinitionLoc(RBrac
);
19477 // Add ivar's to class's DeclContext.
19478 for (unsigned i
= 0, e
= RecFields
.size(); i
!= e
; ++i
) {
19479 ClsFields
[i
]->setLexicalDeclContext(ID
);
19480 ID
->addDecl(ClsFields
[i
]);
19482 // Must enforce the rule that ivars in the base classes may not be
19484 if (ID
->getSuperClass())
19485 ObjC().DiagnoseDuplicateIvars(ID
, ID
->getSuperClass());
19486 } else if (ObjCImplementationDecl
*IMPDecl
=
19487 dyn_cast
<ObjCImplementationDecl
>(EnclosingDecl
)) {
19488 assert(IMPDecl
&& "ActOnFields - missing ObjCImplementationDecl");
19489 for (unsigned I
= 0, N
= RecFields
.size(); I
!= N
; ++I
)
19490 // Ivar declared in @implementation never belongs to the implementation.
19491 // Only it is in implementation's lexical context.
19492 ClsFields
[I
]->setLexicalDeclContext(IMPDecl
);
19493 ObjC().CheckImplementationIvars(IMPDecl
, ClsFields
, RecFields
.size(),
19495 IMPDecl
->setIvarLBraceLoc(LBrac
);
19496 IMPDecl
->setIvarRBraceLoc(RBrac
);
19497 } else if (ObjCCategoryDecl
*CDecl
=
19498 dyn_cast
<ObjCCategoryDecl
>(EnclosingDecl
)) {
19499 // case of ivars in class extension; all other cases have been
19500 // reported as errors elsewhere.
19501 // FIXME. Class extension does not have a LocEnd field.
19502 // CDecl->setLocEnd(RBrac);
19503 // Add ivar's to class extension's DeclContext.
19504 // Diagnose redeclaration of private ivars.
19505 ObjCInterfaceDecl
*IDecl
= CDecl
->getClassInterface();
19506 for (unsigned i
= 0, e
= RecFields
.size(); i
!= e
; ++i
) {
19508 if (const ObjCIvarDecl
*ClsIvar
=
19509 IDecl
->getIvarDecl(ClsFields
[i
]->getIdentifier())) {
19510 Diag(ClsFields
[i
]->getLocation(),
19511 diag::err_duplicate_ivar_declaration
);
19512 Diag(ClsIvar
->getLocation(), diag::note_previous_definition
);
19515 for (const auto *Ext
: IDecl
->known_extensions()) {
19516 if (const ObjCIvarDecl
*ClsExtIvar
19517 = Ext
->getIvarDecl(ClsFields
[i
]->getIdentifier())) {
19518 Diag(ClsFields
[i
]->getLocation(),
19519 diag::err_duplicate_ivar_declaration
);
19520 Diag(ClsExtIvar
->getLocation(), diag::note_previous_definition
);
19525 ClsFields
[i
]->setLexicalDeclContext(CDecl
);
19526 CDecl
->addDecl(ClsFields
[i
]);
19528 CDecl
->setIvarLBraceLoc(LBrac
);
19529 CDecl
->setIvarRBraceLoc(RBrac
);
19532 ProcessAPINotes(Record
);
19535 /// Determine whether the given integral value is representable within
19536 /// the given type T.
19537 static bool isRepresentableIntegerValue(ASTContext
&Context
,
19538 llvm::APSInt
&Value
,
19540 assert((T
->isIntegralType(Context
) || T
->isEnumeralType()) &&
19541 "Integral type required!");
19542 unsigned BitWidth
= Context
.getIntWidth(T
);
19544 if (Value
.isUnsigned() || Value
.isNonNegative()) {
19545 if (T
->isSignedIntegerOrEnumerationType())
19547 return Value
.getActiveBits() <= BitWidth
;
19549 return Value
.getSignificantBits() <= BitWidth
;
19552 // Given an integral type, return the next larger integral type
19553 // (or a NULL type of no such type exists).
19554 static QualType
getNextLargerIntegralType(ASTContext
&Context
, QualType T
) {
19555 // FIXME: Int128/UInt128 support, which also needs to be introduced into
19556 // enum checking below.
19557 assert((T
->isIntegralType(Context
) ||
19558 T
->isEnumeralType()) && "Integral type required!");
19559 const unsigned NumTypes
= 4;
19560 QualType SignedIntegralTypes
[NumTypes
] = {
19561 Context
.ShortTy
, Context
.IntTy
, Context
.LongTy
, Context
.LongLongTy
19563 QualType UnsignedIntegralTypes
[NumTypes
] = {
19564 Context
.UnsignedShortTy
, Context
.UnsignedIntTy
, Context
.UnsignedLongTy
,
19565 Context
.UnsignedLongLongTy
19568 unsigned BitWidth
= Context
.getTypeSize(T
);
19569 QualType
*Types
= T
->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
19570 : UnsignedIntegralTypes
;
19571 for (unsigned I
= 0; I
!= NumTypes
; ++I
)
19572 if (Context
.getTypeSize(Types
[I
]) > BitWidth
)
19578 EnumConstantDecl
*Sema::CheckEnumConstant(EnumDecl
*Enum
,
19579 EnumConstantDecl
*LastEnumConst
,
19580 SourceLocation IdLoc
,
19581 IdentifierInfo
*Id
,
19583 unsigned IntWidth
= Context
.getTargetInfo().getIntWidth();
19584 llvm::APSInt
EnumVal(IntWidth
);
19587 if (Val
&& DiagnoseUnexpandedParameterPack(Val
, UPPC_EnumeratorValue
))
19591 Val
= DefaultLvalueConversion(Val
).get();
19594 if (Enum
->isDependentType() || Val
->isTypeDependent() ||
19595 Val
->containsErrors())
19596 EltTy
= Context
.DependentTy
;
19598 // FIXME: We don't allow folding in C++11 mode for an enum with a fixed
19599 // underlying type, but do allow it in all other contexts.
19600 if (getLangOpts().CPlusPlus11
&& Enum
->isFixed()) {
19601 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
19602 // constant-expression in the enumerator-definition shall be a converted
19603 // constant expression of the underlying type.
19604 EltTy
= Enum
->getIntegerType();
19605 ExprResult Converted
=
19606 CheckConvertedConstantExpression(Val
, EltTy
, EnumVal
,
19608 if (Converted
.isInvalid())
19611 Val
= Converted
.get();
19612 } else if (!Val
->isValueDependent() &&
19614 VerifyIntegerConstantExpression(Val
, &EnumVal
, AllowFold
)
19616 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
19618 if (Enum
->isComplete()) {
19619 EltTy
= Enum
->getIntegerType();
19621 // In Obj-C and Microsoft mode, require the enumeration value to be
19622 // representable in the underlying type of the enumeration. In C++11,
19623 // we perform a non-narrowing conversion as part of converted constant
19624 // expression checking.
19625 if (!isRepresentableIntegerValue(Context
, EnumVal
, EltTy
)) {
19626 if (Context
.getTargetInfo()
19628 .isWindowsMSVCEnvironment()) {
19629 Diag(IdLoc
, diag::ext_enumerator_too_large
) << EltTy
;
19631 Diag(IdLoc
, diag::err_enumerator_too_large
) << EltTy
;
19635 // Cast to the underlying type.
19636 Val
= ImpCastExprToType(Val
, EltTy
,
19637 EltTy
->isBooleanType() ? CK_IntegralToBoolean
19640 } else if (getLangOpts().CPlusPlus
) {
19641 // C++11 [dcl.enum]p5:
19642 // If the underlying type is not fixed, the type of each enumerator
19643 // is the type of its initializing value:
19644 // - If an initializer is specified for an enumerator, the
19645 // initializing value has the same type as the expression.
19646 EltTy
= Val
->getType();
19649 // The expression that defines the value of an enumeration constant
19650 // shall be an integer constant expression that has a value
19651 // representable as an int.
19653 // Complain if the value is not representable in an int.
19654 if (!isRepresentableIntegerValue(Context
, EnumVal
, Context
.IntTy
)) {
19655 Diag(IdLoc
, getLangOpts().C23
19656 ? diag::warn_c17_compat_enum_value_not_int
19657 : diag::ext_c23_enum_value_not_int
)
19658 << 0 << toString(EnumVal
, 10) << Val
->getSourceRange()
19659 << (EnumVal
.isUnsigned() || EnumVal
.isNonNegative());
19660 } else if (!Context
.hasSameType(Val
->getType(), Context
.IntTy
)) {
19661 // Force the type of the expression to 'int'.
19662 Val
= ImpCastExprToType(Val
, Context
.IntTy
, CK_IntegralCast
).get();
19664 EltTy
= Val
->getType();
19671 if (Enum
->isDependentType())
19672 EltTy
= Context
.DependentTy
;
19673 else if (!LastEnumConst
) {
19674 // C++0x [dcl.enum]p5:
19675 // If the underlying type is not fixed, the type of each enumerator
19676 // is the type of its initializing value:
19677 // - If no initializer is specified for the first enumerator, the
19678 // initializing value has an unspecified integral type.
19680 // GCC uses 'int' for its unspecified integral type, as does
19682 if (Enum
->isFixed()) {
19683 EltTy
= Enum
->getIntegerType();
19686 EltTy
= Context
.IntTy
;
19689 // Assign the last value + 1.
19690 EnumVal
= LastEnumConst
->getInitVal();
19692 EltTy
= LastEnumConst
->getType();
19694 // Check for overflow on increment.
19695 if (EnumVal
< LastEnumConst
->getInitVal()) {
19696 // C++0x [dcl.enum]p5:
19697 // If the underlying type is not fixed, the type of each enumerator
19698 // is the type of its initializing value:
19700 // - Otherwise the type of the initializing value is the same as
19701 // the type of the initializing value of the preceding enumerator
19702 // unless the incremented value is not representable in that type,
19703 // in which case the type is an unspecified integral type
19704 // sufficient to contain the incremented value. If no such type
19705 // exists, the program is ill-formed.
19706 QualType T
= getNextLargerIntegralType(Context
, EltTy
);
19707 if (T
.isNull() || Enum
->isFixed()) {
19708 // There is no integral type larger enough to represent this
19709 // value. Complain, then allow the value to wrap around.
19710 EnumVal
= LastEnumConst
->getInitVal();
19711 EnumVal
= EnumVal
.zext(EnumVal
.getBitWidth() * 2);
19713 if (Enum
->isFixed())
19714 // When the underlying type is fixed, this is ill-formed.
19715 Diag(IdLoc
, diag::err_enumerator_wrapped
)
19716 << toString(EnumVal
, 10)
19719 Diag(IdLoc
, diag::ext_enumerator_increment_too_large
)
19720 << toString(EnumVal
, 10);
19725 // Retrieve the last enumerator's value, extent that type to the
19726 // type that is supposed to be large enough to represent the incremented
19727 // value, then increment.
19728 EnumVal
= LastEnumConst
->getInitVal();
19729 EnumVal
.setIsSigned(EltTy
->isSignedIntegerOrEnumerationType());
19730 EnumVal
= EnumVal
.zextOrTrunc(Context
.getIntWidth(EltTy
));
19733 // If we're not in C++, diagnose the overflow of enumerator values,
19734 // which in C99 means that the enumerator value is not representable in
19735 // an int (C99 6.7.2.2p2). However C23 permits enumerator values that
19736 // are representable in some larger integral type and we allow it in
19737 // older language modes as an extension.
19738 // Exclude fixed enumerators since they are diagnosed with an error for
19740 if (!getLangOpts().CPlusPlus
&& !T
.isNull() && !Enum
->isFixed())
19741 Diag(IdLoc
, getLangOpts().C23
19742 ? diag::warn_c17_compat_enum_value_not_int
19743 : diag::ext_c23_enum_value_not_int
)
19744 << 1 << toString(EnumVal
, 10) << 1;
19745 } else if (!getLangOpts().CPlusPlus
&& !EltTy
->isDependentType() &&
19746 !isRepresentableIntegerValue(Context
, EnumVal
, EltTy
)) {
19747 // Enforce C99 6.7.2.2p2 even when we compute the next value.
19748 Diag(IdLoc
, getLangOpts().C23
? diag::warn_c17_compat_enum_value_not_int
19749 : diag::ext_c23_enum_value_not_int
)
19750 << 1 << toString(EnumVal
, 10) << 1;
19755 if (!EltTy
->isDependentType()) {
19756 // Make the enumerator value match the signedness and size of the
19757 // enumerator's type.
19758 EnumVal
= EnumVal
.extOrTrunc(Context
.getIntWidth(EltTy
));
19759 EnumVal
.setIsSigned(EltTy
->isSignedIntegerOrEnumerationType());
19762 return EnumConstantDecl::Create(Context
, Enum
, IdLoc
, Id
, EltTy
,
19766 SkipBodyInfo
Sema::shouldSkipAnonEnumBody(Scope
*S
, IdentifierInfo
*II
,
19767 SourceLocation IILoc
) {
19768 if (!(getLangOpts().Modules
|| getLangOpts().ModulesLocalVisibility
) ||
19769 !getLangOpts().CPlusPlus
)
19770 return SkipBodyInfo();
19772 // We have an anonymous enum definition. Look up the first enumerator to
19773 // determine if we should merge the definition with an existing one and
19775 NamedDecl
*PrevDecl
= LookupSingleName(S
, II
, IILoc
, LookupOrdinaryName
,
19776 forRedeclarationInCurContext());
19777 auto *PrevECD
= dyn_cast_or_null
<EnumConstantDecl
>(PrevDecl
);
19779 return SkipBodyInfo();
19781 EnumDecl
*PrevED
= cast
<EnumDecl
>(PrevECD
->getDeclContext());
19783 if (!PrevED
->getDeclName() && !hasVisibleDefinition(PrevED
, &Hidden
)) {
19785 Skip
.Previous
= Hidden
;
19789 return SkipBodyInfo();
19792 Decl
*Sema::ActOnEnumConstant(Scope
*S
, Decl
*theEnumDecl
, Decl
*lastEnumConst
,
19793 SourceLocation IdLoc
, IdentifierInfo
*Id
,
19794 const ParsedAttributesView
&Attrs
,
19795 SourceLocation EqualLoc
, Expr
*Val
) {
19796 EnumDecl
*TheEnumDecl
= cast
<EnumDecl
>(theEnumDecl
);
19797 EnumConstantDecl
*LastEnumConst
=
19798 cast_or_null
<EnumConstantDecl
>(lastEnumConst
);
19800 // The scope passed in may not be a decl scope. Zip up the scope tree until
19801 // we find one that is.
19802 S
= getNonFieldDeclScope(S
);
19804 // Verify that there isn't already something declared with this name in this
19806 LookupResult
R(*this, Id
, IdLoc
, LookupOrdinaryName
,
19807 RedeclarationKind::ForVisibleRedeclaration
);
19809 NamedDecl
*PrevDecl
= R
.getAsSingle
<NamedDecl
>();
19811 if (PrevDecl
&& PrevDecl
->isTemplateParameter()) {
19812 // Maybe we will complain about the shadowed template parameter.
19813 DiagnoseTemplateParameterShadow(IdLoc
, PrevDecl
);
19814 // Just pretend that we didn't see the previous declaration.
19815 PrevDecl
= nullptr;
19818 // C++ [class.mem]p15:
19819 // If T is the name of a class, then each of the following shall have a name
19820 // different from T:
19821 // - every enumerator of every member of class T that is an unscoped
19823 if (getLangOpts().CPlusPlus
&& !TheEnumDecl
->isScoped())
19824 DiagnoseClassNameShadow(TheEnumDecl
->getDeclContext(),
19825 DeclarationNameInfo(Id
, IdLoc
));
19827 EnumConstantDecl
*New
=
19828 CheckEnumConstant(TheEnumDecl
, LastEnumConst
, IdLoc
, Id
, Val
);
19833 if (!TheEnumDecl
->isScoped() && isa
<ValueDecl
>(PrevDecl
)) {
19834 // Check for other kinds of shadowing not already handled.
19835 CheckShadow(New
, PrevDecl
, R
);
19838 // When in C++, we may get a TagDecl with the same name; in this case the
19839 // enum constant will 'hide' the tag.
19840 assert((getLangOpts().CPlusPlus
|| !isa
<TagDecl
>(PrevDecl
)) &&
19841 "Received TagDecl when not in C++!");
19842 if (!isa
<TagDecl
>(PrevDecl
) && isDeclInScope(PrevDecl
, CurContext
, S
)) {
19843 if (isa
<EnumConstantDecl
>(PrevDecl
))
19844 Diag(IdLoc
, diag::err_redefinition_of_enumerator
) << Id
;
19846 Diag(IdLoc
, diag::err_redefinition
) << Id
;
19847 notePreviousDefinition(PrevDecl
, IdLoc
);
19852 // Process attributes.
19853 ProcessDeclAttributeList(S
, New
, Attrs
);
19854 AddPragmaAttributes(S
, New
);
19855 ProcessAPINotes(New
);
19857 // Register this decl in the current scope stack.
19858 New
->setAccess(TheEnumDecl
->getAccess());
19859 PushOnScopeChains(New
, S
);
19861 ActOnDocumentableDecl(New
);
19866 // Returns true when the enum initial expression does not trigger the
19867 // duplicate enum warning. A few common cases are exempted as follows:
19868 // Element2 = Element1
19869 // Element2 = Element1 + 1
19870 // Element2 = Element1 - 1
19871 // Where Element2 and Element1 are from the same enum.
19872 static bool ValidDuplicateEnum(EnumConstantDecl
*ECD
, EnumDecl
*Enum
) {
19873 Expr
*InitExpr
= ECD
->getInitExpr();
19876 InitExpr
= InitExpr
->IgnoreImpCasts();
19878 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(InitExpr
)) {
19879 if (!BO
->isAdditiveOp())
19881 IntegerLiteral
*IL
= dyn_cast
<IntegerLiteral
>(BO
->getRHS());
19884 if (IL
->getValue() != 1)
19887 InitExpr
= BO
->getLHS();
19890 // This checks if the elements are from the same enum.
19891 DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(InitExpr
);
19895 EnumConstantDecl
*EnumConstant
= dyn_cast
<EnumConstantDecl
>(DRE
->getDecl());
19899 if (cast
<EnumDecl
>(TagDecl::castFromDeclContext(ECD
->getDeclContext())) !=
19906 // Emits a warning when an element is implicitly set a value that
19907 // a previous element has already been set to.
19908 static void CheckForDuplicateEnumValues(Sema
&S
, ArrayRef
<Decl
*> Elements
,
19909 EnumDecl
*Enum
, QualType EnumType
) {
19910 // Avoid anonymous enums
19911 if (!Enum
->getIdentifier())
19914 // Only check for small enums.
19915 if (Enum
->getNumPositiveBits() > 63 || Enum
->getNumNegativeBits() > 64)
19918 if (S
.Diags
.isIgnored(diag::warn_duplicate_enum_values
, Enum
->getLocation()))
19921 typedef SmallVector
<EnumConstantDecl
*, 3> ECDVector
;
19922 typedef SmallVector
<std::unique_ptr
<ECDVector
>, 3> DuplicatesVector
;
19924 typedef llvm::PointerUnion
<EnumConstantDecl
*, ECDVector
*> DeclOrVector
;
19926 // DenseMaps cannot contain the all ones int64_t value, so use unordered_map.
19927 typedef std::unordered_map
<int64_t, DeclOrVector
> ValueToVectorMap
;
19929 // Use int64_t as a key to avoid needing special handling for map keys.
19930 auto EnumConstantToKey
= [](const EnumConstantDecl
*D
) {
19931 llvm::APSInt Val
= D
->getInitVal();
19932 return Val
.isSigned() ? Val
.getSExtValue() : Val
.getZExtValue();
19935 DuplicatesVector DupVector
;
19936 ValueToVectorMap EnumMap
;
19938 // Populate the EnumMap with all values represented by enum constants without
19940 for (auto *Element
: Elements
) {
19941 EnumConstantDecl
*ECD
= cast_or_null
<EnumConstantDecl
>(Element
);
19943 // Null EnumConstantDecl means a previous diagnostic has been emitted for
19944 // this constant. Skip this enum since it may be ill-formed.
19949 // Constants with initializers are handled in the next loop.
19950 if (ECD
->getInitExpr())
19953 // Duplicate values are handled in the next loop.
19954 EnumMap
.insert({EnumConstantToKey(ECD
), ECD
});
19957 if (EnumMap
.size() == 0)
19960 // Create vectors for any values that has duplicates.
19961 for (auto *Element
: Elements
) {
19962 // The last loop returned if any constant was null.
19963 EnumConstantDecl
*ECD
= cast
<EnumConstantDecl
>(Element
);
19964 if (!ValidDuplicateEnum(ECD
, Enum
))
19967 auto Iter
= EnumMap
.find(EnumConstantToKey(ECD
));
19968 if (Iter
== EnumMap
.end())
19971 DeclOrVector
& Entry
= Iter
->second
;
19972 if (EnumConstantDecl
*D
= dyn_cast
<EnumConstantDecl
*>(Entry
)) {
19973 // Ensure constants are different.
19977 // Create new vector and push values onto it.
19978 auto Vec
= std::make_unique
<ECDVector
>();
19980 Vec
->push_back(ECD
);
19982 // Update entry to point to the duplicates vector.
19985 // Store the vector somewhere we can consult later for quick emission of
19987 DupVector
.emplace_back(std::move(Vec
));
19991 ECDVector
*Vec
= cast
<ECDVector
*>(Entry
);
19992 // Make sure constants are not added more than once.
19993 if (*Vec
->begin() == ECD
)
19996 Vec
->push_back(ECD
);
19999 // Emit diagnostics.
20000 for (const auto &Vec
: DupVector
) {
20001 assert(Vec
->size() > 1 && "ECDVector should have at least 2 elements.");
20003 // Emit warning for one enum constant.
20004 auto *FirstECD
= Vec
->front();
20005 S
.Diag(FirstECD
->getLocation(), diag::warn_duplicate_enum_values
)
20006 << FirstECD
<< toString(FirstECD
->getInitVal(), 10)
20007 << FirstECD
->getSourceRange();
20009 // Emit one note for each of the remaining enum constants with
20011 for (auto *ECD
: llvm::drop_begin(*Vec
))
20012 S
.Diag(ECD
->getLocation(), diag::note_duplicate_element
)
20013 << ECD
<< toString(ECD
->getInitVal(), 10)
20014 << ECD
->getSourceRange();
20018 bool Sema::IsValueInFlagEnum(const EnumDecl
*ED
, const llvm::APInt
&Val
,
20019 bool AllowMask
) const {
20020 assert(ED
->isClosedFlag() && "looking for value in non-flag or open enum");
20021 assert(ED
->isCompleteDefinition() && "expected enum definition");
20023 auto R
= FlagBitsCache
.insert(std::make_pair(ED
, llvm::APInt()));
20024 llvm::APInt
&FlagBits
= R
.first
->second
;
20027 for (auto *E
: ED
->enumerators()) {
20028 const auto &EVal
= E
->getInitVal();
20029 // Only single-bit enumerators introduce new flag values.
20030 if (EVal
.isPowerOf2())
20031 FlagBits
= FlagBits
.zext(EVal
.getBitWidth()) | EVal
;
20035 // A value is in a flag enum if either its bits are a subset of the enum's
20036 // flag bits (the first condition) or we are allowing masks and the same is
20037 // true of its complement (the second condition). When masks are allowed, we
20038 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
20040 // While it's true that any value could be used as a mask, the assumption is
20041 // that a mask will have all of the insignificant bits set. Anything else is
20042 // likely a logic error.
20043 llvm::APInt FlagMask
= ~FlagBits
.zextOrTrunc(Val
.getBitWidth());
20044 return !(FlagMask
& Val
) || (AllowMask
&& !(FlagMask
& ~Val
));
20047 void Sema::ActOnEnumBody(SourceLocation EnumLoc
, SourceRange BraceRange
,
20048 Decl
*EnumDeclX
, ArrayRef
<Decl
*> Elements
, Scope
*S
,
20049 const ParsedAttributesView
&Attrs
) {
20050 EnumDecl
*Enum
= cast
<EnumDecl
>(EnumDeclX
);
20051 QualType EnumType
= Context
.getTypeDeclType(Enum
);
20053 ProcessDeclAttributeList(S
, Enum
, Attrs
);
20054 ProcessAPINotes(Enum
);
20056 if (Enum
->isDependentType()) {
20057 for (unsigned i
= 0, e
= Elements
.size(); i
!= e
; ++i
) {
20058 EnumConstantDecl
*ECD
=
20059 cast_or_null
<EnumConstantDecl
>(Elements
[i
]);
20060 if (!ECD
) continue;
20062 ECD
->setType(EnumType
);
20065 Enum
->completeDefinition(Context
.DependentTy
, Context
.DependentTy
, 0, 0);
20069 // Verify that all the values are okay, compute the size of the values, and
20070 // reverse the list.
20071 unsigned NumNegativeBits
= 0;
20072 unsigned NumPositiveBits
= 0;
20073 bool MembersRepresentableByInt
= true;
20075 for (unsigned i
= 0, e
= Elements
.size(); i
!= e
; ++i
) {
20076 EnumConstantDecl
*ECD
=
20077 cast_or_null
<EnumConstantDecl
>(Elements
[i
]);
20078 if (!ECD
) continue; // Already issued a diagnostic.
20080 llvm::APSInt InitVal
= ECD
->getInitVal();
20082 // Keep track of the size of positive and negative values.
20083 if (InitVal
.isUnsigned() || InitVal
.isNonNegative()) {
20084 // If the enumerator is zero that should still be counted as a positive
20085 // bit since we need a bit to store the value zero.
20086 unsigned ActiveBits
= InitVal
.getActiveBits();
20087 NumPositiveBits
= std::max({NumPositiveBits
, ActiveBits
, 1u});
20090 std::max(NumNegativeBits
, (unsigned)InitVal
.getSignificantBits());
20092 MembersRepresentableByInt
&=
20093 isRepresentableIntegerValue(Context
, InitVal
, Context
.IntTy
);
20096 // If we have an empty set of enumerators we still need one bit.
20097 // From [dcl.enum]p8
20098 // If the enumerator-list is empty, the values of the enumeration are as if
20099 // the enumeration had a single enumerator with value 0
20100 if (!NumPositiveBits
&& !NumNegativeBits
)
20101 NumPositiveBits
= 1;
20103 // Figure out the type that should be used for this enum.
20105 unsigned BestWidth
;
20107 // C++0x N3000 [conv.prom]p3:
20108 // An rvalue of an unscoped enumeration type whose underlying
20109 // type is not fixed can be converted to an rvalue of the first
20110 // of the following types that can represent all the values of
20111 // the enumeration: int, unsigned int, long int, unsigned long
20112 // int, long long int, or unsigned long long int.
20114 // An identifier declared as an enumeration constant has type int.
20115 // The C99 rule is modified by C23.
20116 QualType BestPromotionType
;
20118 bool Packed
= Enum
->hasAttr
<PackedAttr
>();
20119 // -fshort-enums is the equivalent to specifying the packed attribute on all
20120 // enum definitions.
20121 if (LangOpts
.ShortEnums
)
20124 // If the enum already has a type because it is fixed or dictated by the
20125 // target, promote that type instead of analyzing the enumerators.
20126 if (Enum
->isComplete()) {
20127 BestType
= Enum
->getIntegerType();
20128 if (Context
.isPromotableIntegerType(BestType
))
20129 BestPromotionType
= Context
.getPromotedIntegerType(BestType
);
20131 BestPromotionType
= BestType
;
20133 BestWidth
= Context
.getIntWidth(BestType
);
20135 bool EnumTooLarge
= Context
.computeBestEnumTypes(
20136 Packed
, NumNegativeBits
, NumPositiveBits
, BestType
, BestPromotionType
);
20137 BestWidth
= Context
.getIntWidth(BestType
);
20139 Diag(Enum
->getLocation(), diag::ext_enum_too_large
);
20142 // Loop over all of the enumerator constants, changing their types to match
20143 // the type of the enum if needed.
20144 for (auto *D
: Elements
) {
20145 auto *ECD
= cast_or_null
<EnumConstantDecl
>(D
);
20146 if (!ECD
) continue; // Already issued a diagnostic.
20148 // C99 says the enumerators have int type, but we allow, as an
20149 // extension, the enumerators to be larger than int size. If each
20150 // enumerator value fits in an int, type it as an int, otherwise type it the
20151 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
20152 // that X has type 'int', not 'unsigned'.
20154 // Determine whether the value fits into an int.
20155 llvm::APSInt InitVal
= ECD
->getInitVal();
20157 // If it fits into an integer type, force it. Otherwise force it to match
20158 // the enum decl type.
20162 if (!getLangOpts().CPlusPlus
&& !Enum
->isFixed() &&
20163 MembersRepresentableByInt
) {
20164 // C23 6.7.3.3.3p15:
20165 // The enumeration member type for an enumerated type without fixed
20166 // underlying type upon completion is:
20167 // - int if all the values of the enumeration are representable as an
20169 // - the enumerated type
20170 NewTy
= Context
.IntTy
;
20171 NewWidth
= Context
.getTargetInfo().getIntWidth();
20173 } else if (ECD
->getType() == BestType
) {
20174 // Already the right type!
20175 if (getLangOpts().CPlusPlus
)
20176 // C++ [dcl.enum]p4: Following the closing brace of an
20177 // enum-specifier, each enumerator has the type of its
20179 ECD
->setType(EnumType
);
20183 NewWidth
= BestWidth
;
20184 NewSign
= BestType
->isSignedIntegerOrEnumerationType();
20187 // Adjust the APSInt value.
20188 InitVal
= InitVal
.extOrTrunc(NewWidth
);
20189 InitVal
.setIsSigned(NewSign
);
20190 ECD
->setInitVal(Context
, InitVal
);
20192 // Adjust the Expr initializer and type.
20193 if (ECD
->getInitExpr() &&
20194 !Context
.hasSameType(NewTy
, ECD
->getInitExpr()->getType()))
20195 ECD
->setInitExpr(ImplicitCastExpr::Create(
20196 Context
, NewTy
, CK_IntegralCast
, ECD
->getInitExpr(),
20197 /*base paths*/ nullptr, VK_PRValue
, FPOptionsOverride()));
20198 if (getLangOpts().CPlusPlus
)
20199 // C++ [dcl.enum]p4: Following the closing brace of an
20200 // enum-specifier, each enumerator has the type of its
20202 ECD
->setType(EnumType
);
20204 ECD
->setType(NewTy
);
20207 Enum
->completeDefinition(BestType
, BestPromotionType
,
20208 NumPositiveBits
, NumNegativeBits
);
20210 CheckForDuplicateEnumValues(*this, Elements
, Enum
, EnumType
);
20212 if (Enum
->isClosedFlag()) {
20213 for (Decl
*D
: Elements
) {
20214 EnumConstantDecl
*ECD
= cast_or_null
<EnumConstantDecl
>(D
);
20215 if (!ECD
) continue; // Already issued a diagnostic.
20217 llvm::APSInt InitVal
= ECD
->getInitVal();
20218 if (InitVal
!= 0 && !InitVal
.isPowerOf2() &&
20219 !IsValueInFlagEnum(Enum
, InitVal
, true))
20220 Diag(ECD
->getLocation(), diag::warn_flag_enum_constant_out_of_range
)
20225 // Now that the enum type is defined, ensure it's not been underaligned.
20226 if (Enum
->hasAttrs())
20227 CheckAlignasUnderalignment(Enum
);
20230 Decl
*Sema::ActOnFileScopeAsmDecl(Expr
*expr
,
20231 SourceLocation StartLoc
,
20232 SourceLocation EndLoc
) {
20233 StringLiteral
*AsmString
= cast
<StringLiteral
>(expr
);
20235 FileScopeAsmDecl
*New
= FileScopeAsmDecl::Create(Context
, CurContext
,
20236 AsmString
, StartLoc
,
20238 CurContext
->addDecl(New
);
20242 TopLevelStmtDecl
*Sema::ActOnStartTopLevelStmtDecl(Scope
*S
) {
20243 auto *New
= TopLevelStmtDecl::Create(Context
, /*Statement=*/nullptr);
20244 CurContext
->addDecl(New
);
20245 PushDeclContext(S
, New
);
20246 PushFunctionScope();
20247 PushCompoundScope(false);
20251 void Sema::ActOnFinishTopLevelStmtDecl(TopLevelStmtDecl
*D
, Stmt
*Statement
) {
20252 D
->setStmt(Statement
);
20253 PopCompoundScope();
20254 PopFunctionScopeInfo();
20258 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo
* Name
,
20259 IdentifierInfo
* AliasName
,
20260 SourceLocation PragmaLoc
,
20261 SourceLocation NameLoc
,
20262 SourceLocation AliasNameLoc
) {
20263 NamedDecl
*PrevDecl
= LookupSingleName(TUScope
, Name
, NameLoc
,
20264 LookupOrdinaryName
);
20265 AttributeCommonInfo
Info(AliasName
, SourceRange(AliasNameLoc
),
20266 AttributeCommonInfo::Form::Pragma());
20267 AsmLabelAttr
*Attr
= AsmLabelAttr::CreateImplicit(
20268 Context
, AliasName
->getName(), /*IsLiteralLabel=*/true, Info
);
20270 // If a declaration that:
20271 // 1) declares a function or a variable
20272 // 2) has external linkage
20273 // already exists, add a label attribute to it.
20274 if (PrevDecl
&& (isa
<FunctionDecl
>(PrevDecl
) || isa
<VarDecl
>(PrevDecl
))) {
20275 if (isDeclExternC(PrevDecl
))
20276 PrevDecl
->addAttr(Attr
);
20278 Diag(PrevDecl
->getLocation(), diag::warn_redefine_extname_not_applied
)
20279 << /*Variable*/(isa
<FunctionDecl
>(PrevDecl
) ? 0 : 1) << PrevDecl
;
20280 // Otherwise, add a label attribute to ExtnameUndeclaredIdentifiers.
20282 (void)ExtnameUndeclaredIdentifiers
.insert(std::make_pair(Name
, Attr
));
20285 void Sema::ActOnPragmaWeakID(IdentifierInfo
* Name
,
20286 SourceLocation PragmaLoc
,
20287 SourceLocation NameLoc
) {
20288 Decl
*PrevDecl
= LookupSingleName(TUScope
, Name
, NameLoc
, LookupOrdinaryName
);
20291 PrevDecl
->addAttr(WeakAttr::CreateImplicit(Context
, PragmaLoc
));
20293 (void)WeakUndeclaredIdentifiers
[Name
].insert(WeakInfo(nullptr, NameLoc
));
20297 void Sema::ActOnPragmaWeakAlias(IdentifierInfo
* Name
,
20298 IdentifierInfo
* AliasName
,
20299 SourceLocation PragmaLoc
,
20300 SourceLocation NameLoc
,
20301 SourceLocation AliasNameLoc
) {
20302 Decl
*PrevDecl
= LookupSingleName(TUScope
, AliasName
, AliasNameLoc
,
20303 LookupOrdinaryName
);
20304 WeakInfo W
= WeakInfo(Name
, NameLoc
);
20306 if (PrevDecl
&& (isa
<FunctionDecl
>(PrevDecl
) || isa
<VarDecl
>(PrevDecl
))) {
20307 if (!PrevDecl
->hasAttr
<AliasAttr
>())
20308 if (NamedDecl
*ND
= dyn_cast
<NamedDecl
>(PrevDecl
))
20309 DeclApplyPragmaWeak(TUScope
, ND
, W
);
20311 (void)WeakUndeclaredIdentifiers
[AliasName
].insert(W
);
20315 Sema::FunctionEmissionStatus
Sema::getEmissionStatus(const FunctionDecl
*FD
,
20317 assert(FD
&& "Expected non-null FunctionDecl");
20319 // SYCL functions can be template, so we check if they have appropriate
20320 // attribute prior to checking if it is a template.
20321 if (LangOpts
.SYCLIsDevice
&& FD
->hasAttr
<SYCLKernelAttr
>())
20322 return FunctionEmissionStatus::Emitted
;
20324 // Templates are emitted when they're instantiated.
20325 if (FD
->isDependentContext())
20326 return FunctionEmissionStatus::TemplateDiscarded
;
20328 // Check whether this function is an externally visible definition.
20329 auto IsEmittedForExternalSymbol
= [this, FD
]() {
20330 // We have to check the GVA linkage of the function's *definition* -- if we
20331 // only have a declaration, we don't know whether or not the function will
20332 // be emitted, because (say) the definition could include "inline".
20333 const FunctionDecl
*Def
= FD
->getDefinition();
20335 // We can't compute linkage when we skip function bodies.
20336 return Def
&& !Def
->hasSkippedBody() &&
20337 !isDiscardableGVALinkage(
20338 getASTContext().GetGVALinkageForFunction(Def
));
20341 if (LangOpts
.OpenMPIsTargetDevice
) {
20342 // In OpenMP device mode we will not emit host only functions, or functions
20343 // we don't need due to their linkage.
20344 std::optional
<OMPDeclareTargetDeclAttr::DevTypeTy
> DevTy
=
20345 OMPDeclareTargetDeclAttr::getDeviceType(FD
->getCanonicalDecl());
20346 // DevTy may be changed later by
20347 // #pragma omp declare target to(*) device_type(*).
20348 // Therefore DevTy having no value does not imply host. The emission status
20349 // will be checked again at the end of compilation unit with Final = true.
20351 if (*DevTy
== OMPDeclareTargetDeclAttr::DT_Host
)
20352 return FunctionEmissionStatus::OMPDiscarded
;
20353 // If we have an explicit value for the device type, or we are in a target
20354 // declare context, we need to emit all extern and used symbols.
20355 if (OpenMP().isInOpenMPDeclareTargetContext() || DevTy
)
20356 if (IsEmittedForExternalSymbol())
20357 return FunctionEmissionStatus::Emitted
;
20358 // Device mode only emits what it must, if it wasn't tagged yet and needed,
20361 return FunctionEmissionStatus::OMPDiscarded
;
20362 } else if (LangOpts
.OpenMP
> 45) {
20363 // In OpenMP host compilation prior to 5.0 everything was an emitted host
20364 // function. In 5.0, no_host was introduced which might cause a function to
20366 std::optional
<OMPDeclareTargetDeclAttr::DevTypeTy
> DevTy
=
20367 OMPDeclareTargetDeclAttr::getDeviceType(FD
->getCanonicalDecl());
20369 if (*DevTy
== OMPDeclareTargetDeclAttr::DT_NoHost
)
20370 return FunctionEmissionStatus::OMPDiscarded
;
20373 if (Final
&& LangOpts
.OpenMP
&& !LangOpts
.CUDA
)
20374 return FunctionEmissionStatus::Emitted
;
20376 if (LangOpts
.CUDA
) {
20377 // When compiling for device, host functions are never emitted. Similarly,
20378 // when compiling for host, device and global functions are never emitted.
20379 // (Technically, we do emit a host-side stub for global functions, but this
20380 // doesn't count for our purposes here.)
20381 CUDAFunctionTarget T
= CUDA().IdentifyTarget(FD
);
20382 if (LangOpts
.CUDAIsDevice
&& T
== CUDAFunctionTarget::Host
)
20383 return FunctionEmissionStatus::CUDADiscarded
;
20384 if (!LangOpts
.CUDAIsDevice
&&
20385 (T
== CUDAFunctionTarget::Device
|| T
== CUDAFunctionTarget::Global
))
20386 return FunctionEmissionStatus::CUDADiscarded
;
20388 if (IsEmittedForExternalSymbol())
20389 return FunctionEmissionStatus::Emitted
;
20392 // Otherwise, the function is known-emitted if it's in our set of
20393 // known-emitted functions.
20394 return FunctionEmissionStatus::Unknown
;
20397 bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl
*Callee
) {
20398 // Host-side references to a __global__ function refer to the stub, so the
20399 // function itself is never emitted and therefore should not be marked.
20400 // If we have host fn calls kernel fn calls host+device, the HD function
20401 // does not get instantiated on the host. We model this by omitting at the
20402 // call to the kernel from the callgraph. This ensures that, when compiling
20403 // for host, only HD functions actually called from the host get marked as
20405 return LangOpts
.CUDA
&& !LangOpts
.CUDAIsDevice
&&
20406 CUDA().IdentifyTarget(Callee
) == CUDAFunctionTarget::Global
;