1 //===- Symbols.h ------------------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #ifndef LLD_COFF_SYMBOLS_H
10 #define LLD_COFF_SYMBOLS_H
14 #include "lld/Common/LLVM.h"
15 #include "lld/Common/Memory.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/Object/Archive.h"
18 #include "llvm/Object/COFF.h"
25 std::string
toString(coff::Symbol
&b
);
27 // There are two different ways to convert an Archive::Symbol to a string:
28 // One for Microsoft name mangling and one for Itanium name mangling.
29 // Call the functions toCOFFString and toELFString, not just toString.
30 std::string
toCOFFString(const coff::Archive::Symbol
&b
);
34 using llvm::object::Archive
;
35 using llvm::object::COFFSymbolRef
;
36 using llvm::object::coff_import_header
;
37 using llvm::object::coff_symbol_generic
;
44 // The base class for real symbol classes.
48 // The order of these is significant. We start with the regular defined
49 // symbols as those are the most prevalent and the zero tag is the cheapest
50 // to set. Among the defined kinds, the lower the kind is preferred over
51 // the higher kind when testing whether one symbol should take precedence
53 DefinedRegularKind
= 0,
55 DefinedLocalImportKind
,
56 DefinedImportThunkKind
,
57 DefinedImportDataKind
,
66 LastDefinedCOFFKind
= DefinedCommonKind
,
67 LastDefinedKind
= DefinedSyntheticKind
,
70 Kind
kind() const { return static_cast<Kind
>(symbolKind
); }
72 // Returns the symbol name.
74 // COFF symbol names are read lazily for a performance reason.
75 // Non-external symbol names are never used by the linker except for logging
76 // or debugging. Their internal references are resolved not by name but by
77 // symbol index. And because they are not external, no one can refer them by
78 // name. Object files contain lots of non-external symbols, and creating
79 // StringRefs for them (which involves lots of strlen() on the string table)
80 // is a waste of time.
81 if (nameData
== nullptr)
83 return StringRef(nameData
, nameSize
);
86 void replaceKeepingName(Symbol
*other
, size_t size
);
88 // Returns the file from which this symbol was created.
91 // Indicates that this symbol will be included in the final image. Only valid
92 // after calling markLive.
96 return symbolKind
== LazyArchiveKind
|| symbolKind
== LazyObjectKind
||
97 symbolKind
== LazyDLLSymbolKind
;
105 explicit Symbol(Kind k
, StringRef n
= "")
106 : symbolKind(k
), isExternal(true), isCOMDAT(false),
107 writtenToSymtab(false), pendingArchiveLoad(false), isGCRoot(false),
108 isRuntimePseudoReloc(false), deferUndefined(false), canInline(true),
109 nameSize(n
.size()), nameData(n
.empty() ? nullptr : n
.data()) {}
111 const unsigned symbolKind
: 8;
112 unsigned isExternal
: 1;
115 // This bit is used by the \c DefinedRegular subclass.
116 unsigned isCOMDAT
: 1;
118 // This bit is used by Writer::createSymbolAndStringTable() to prevent
119 // symbols from being written to the symbol table more than once.
120 unsigned writtenToSymtab
: 1;
122 // True if this symbol was referenced by a regular (non-bitcode) object.
123 unsigned isUsedInRegularObj
: 1;
125 // True if we've seen both a lazy and an undefined symbol with this symbol
126 // name, which means that we have enqueued an archive member load and should
127 // not load any more archive members to resolve the same symbol.
128 unsigned pendingArchiveLoad
: 1;
130 /// True if we've already added this symbol to the list of GC roots.
131 unsigned isGCRoot
: 1;
133 unsigned isRuntimePseudoReloc
: 1;
135 // True if we want to allow this symbol to be undefined in the early
136 // undefined check pass in SymbolTable::reportUnresolvable(), as it
137 // might be fixed up later.
138 unsigned deferUndefined
: 1;
140 // False if LTO shouldn't inline whatever this symbol points to. If a symbol
141 // is overwritten after LTO, LTO shouldn't inline the symbol because it
142 // doesn't know the final contents of the symbol.
143 unsigned canInline
: 1;
146 // Symbol name length. Assume symbol lengths fit in a 32-bit integer.
149 const char *nameData
;
152 // The base class for any defined symbols, including absolute symbols,
154 class Defined
: public Symbol
{
156 Defined(Kind k
, StringRef n
) : Symbol(k
, n
) {}
158 static bool classof(const Symbol
*s
) { return s
->kind() <= LastDefinedKind
; }
160 // Returns the RVA (relative virtual address) of this symbol. The
161 // writer sets and uses RVAs.
164 // Returns the chunk containing this symbol. Absolute symbols and __ImageBase
165 // do not have chunks, so this may return null.
169 // Symbols defined via a COFF object file or bitcode file. For COFF files, this
170 // stores a coff_symbol_generic*, and names of internal symbols are lazily
171 // loaded through that. For bitcode files, Sym is nullptr and the name is stored
172 // as a decomposed StringRef.
173 class DefinedCOFF
: public Defined
{
177 DefinedCOFF(Kind k
, InputFile
*f
, StringRef n
, const coff_symbol_generic
*s
)
178 : Defined(k
, n
), file(f
), sym(s
) {}
180 static bool classof(const Symbol
*s
) {
181 return s
->kind() <= LastDefinedCOFFKind
;
184 InputFile
*getFile() { return file
; }
186 COFFSymbolRef
getCOFFSymbol();
191 const coff_symbol_generic
*sym
;
194 // Regular defined symbols read from object file symbol tables.
195 class DefinedRegular
: public DefinedCOFF
{
197 DefinedRegular(InputFile
*f
, StringRef n
, bool isCOMDAT
,
198 bool isExternal
= false,
199 const coff_symbol_generic
*s
= nullptr,
200 SectionChunk
*c
= nullptr)
201 : DefinedCOFF(DefinedRegularKind
, f
, n
, s
), data(c
? &c
->repl
: nullptr) {
202 this->isExternal
= isExternal
;
203 this->isCOMDAT
= isCOMDAT
;
206 static bool classof(const Symbol
*s
) {
207 return s
->kind() == DefinedRegularKind
;
210 uint64_t getRVA() const { return (*data
)->getRVA() + sym
->Value
; }
211 SectionChunk
*getChunk() const { return *data
; }
212 uint32_t getValue() const { return sym
->Value
; }
217 class DefinedCommon
: public DefinedCOFF
{
219 DefinedCommon(InputFile
*f
, StringRef n
, uint64_t size
,
220 const coff_symbol_generic
*s
= nullptr,
221 CommonChunk
*c
= nullptr)
222 : DefinedCOFF(DefinedCommonKind
, f
, n
, s
), data(c
), size(size
) {
223 this->isExternal
= true;
226 static bool classof(const Symbol
*s
) {
227 return s
->kind() == DefinedCommonKind
;
230 uint64_t getRVA() { return data
->getRVA(); }
231 CommonChunk
*getChunk() { return data
; }
235 uint64_t getSize() const { return size
; }
241 class DefinedAbsolute
: public Defined
{
243 DefinedAbsolute(StringRef n
, COFFSymbolRef s
)
244 : Defined(DefinedAbsoluteKind
, n
), va(s
.getValue()) {
245 isExternal
= s
.isExternal();
248 DefinedAbsolute(StringRef n
, uint64_t v
)
249 : Defined(DefinedAbsoluteKind
, n
), va(v
) {}
251 static bool classof(const Symbol
*s
) {
252 return s
->kind() == DefinedAbsoluteKind
;
255 uint64_t getRVA() { return va
- config
->imageBase
; }
256 void setVA(uint64_t v
) { va
= v
; }
257 uint64_t getVA() const { return va
; }
259 // Section index relocations against absolute symbols resolve to
260 // this 16 bit number, and it is the largest valid section index
261 // plus one. This variable keeps it.
262 static uint16_t numOutputSections
;
268 // This symbol is used for linker-synthesized symbols like __ImageBase and
269 // __safe_se_handler_table.
270 class DefinedSynthetic
: public Defined
{
272 explicit DefinedSynthetic(StringRef name
, Chunk
*c
)
273 : Defined(DefinedSyntheticKind
, name
), c(c
) {}
275 static bool classof(const Symbol
*s
) {
276 return s
->kind() == DefinedSyntheticKind
;
279 // A null chunk indicates that this is __ImageBase. Otherwise, this is some
280 // other synthesized chunk, like SEHTableChunk.
281 uint32_t getRVA() { return c
? c
->getRVA() : 0; }
282 Chunk
*getChunk() { return c
; }
288 // This class represents a symbol defined in an archive file. It is
289 // created from an archive file header, and it knows how to load an
290 // object file from an archive to replace itself with a defined
291 // symbol. If the resolver finds both Undefined and LazyArchive for
292 // the same name, it will ask the LazyArchive to load a file.
293 class LazyArchive
: public Symbol
{
295 LazyArchive(ArchiveFile
*f
, const Archive::Symbol s
)
296 : Symbol(LazyArchiveKind
, s
.getName()), file(f
), sym(s
) {}
298 static bool classof(const Symbol
*s
) { return s
->kind() == LazyArchiveKind
; }
300 MemoryBufferRef
getMemberBuffer();
303 const Archive::Symbol sym
;
306 class LazyObject
: public Symbol
{
308 LazyObject(LazyObjFile
*f
, StringRef n
)
309 : Symbol(LazyObjectKind
, n
), file(f
) {}
310 static bool classof(const Symbol
*s
) { return s
->kind() == LazyObjectKind
; }
315 class LazyDLLSymbol
: public Symbol
{
317 LazyDLLSymbol(DLLFile
*f
, DLLFile::Symbol
*s
, StringRef n
)
318 : Symbol(LazyDLLSymbolKind
, n
), file(f
), sym(s
) {}
319 static bool classof(const Symbol
*s
) {
320 return s
->kind() == LazyDLLSymbolKind
;
324 DLLFile::Symbol
*sym
;
327 // Undefined symbols.
328 class Undefined
: public Symbol
{
330 explicit Undefined(StringRef n
) : Symbol(UndefinedKind
, n
) {}
332 static bool classof(const Symbol
*s
) { return s
->kind() == UndefinedKind
; }
334 // An undefined symbol can have a fallback symbol which gives an
335 // undefined symbol a second chance if it would remain undefined.
336 // If it remains undefined, it'll be replaced with whatever the
337 // Alias pointer points to.
338 Symbol
*weakAlias
= nullptr;
340 // If this symbol is external weak, try to resolve it to a defined
341 // symbol by searching the chain of fallback symbols. Returns the symbol if
342 // successful, otherwise returns null.
343 Defined
*getWeakAlias();
346 // Windows-specific classes.
348 // This class represents a symbol imported from a DLL. This has two
349 // names for internal use and external use. The former is used for
350 // name resolution, and the latter is used for the import descriptor
351 // table in an output. The former has "__imp_" prefix.
352 class DefinedImportData
: public Defined
{
354 DefinedImportData(StringRef n
, ImportFile
*f
)
355 : Defined(DefinedImportDataKind
, n
), file(f
) {
358 static bool classof(const Symbol
*s
) {
359 return s
->kind() == DefinedImportDataKind
;
362 uint64_t getRVA() { return file
->location
->getRVA(); }
363 Chunk
*getChunk() { return file
->location
; }
364 void setLocation(Chunk
*addressTable
) { file
->location
= addressTable
; }
366 StringRef
getDLLName() { return file
->dllName
; }
367 StringRef
getExternalName() { return file
->externalName
; }
368 uint16_t getOrdinal() { return file
->hdr
->OrdinalHint
; }
372 // This is a pointer to the synthetic symbol associated with the load thunk
373 // for this symbol that will be called if the DLL is delay-loaded. This is
374 // needed for Control Flow Guard because if this DefinedImportData symbol is a
375 // valid call target, the corresponding load thunk must also be marked as a
376 // valid call target.
377 DefinedSynthetic
*loadThunkSym
= nullptr;
380 // This class represents a symbol for a jump table entry which jumps
381 // to a function in a DLL. Linker are supposed to create such symbols
382 // without "__imp_" prefix for all function symbols exported from
383 // DLLs, so that you can call DLL functions as regular functions with
384 // a regular name. A function pointer is given as a DefinedImportData.
385 class DefinedImportThunk
: public Defined
{
387 DefinedImportThunk(StringRef name
, DefinedImportData
*s
, uint16_t machine
);
389 static bool classof(const Symbol
*s
) {
390 return s
->kind() == DefinedImportThunkKind
;
393 uint64_t getRVA() { return data
->getRVA(); }
394 Chunk
*getChunk() { return data
; }
396 DefinedImportData
*wrappedSym
;
402 // If you have a symbol "foo" in your object file, a symbol name
403 // "__imp_foo" becomes automatically available as a pointer to "foo".
404 // This class is for such automatically-created symbols.
405 // Yes, this is an odd feature. We didn't intend to implement that.
406 // This is here just for compatibility with MSVC.
407 class DefinedLocalImport
: public Defined
{
409 DefinedLocalImport(StringRef n
, Defined
*s
)
410 : Defined(DefinedLocalImportKind
, n
), data(make
<LocalImportChunk
>(s
)) {}
412 static bool classof(const Symbol
*s
) {
413 return s
->kind() == DefinedLocalImportKind
;
416 uint64_t getRVA() { return data
->getRVA(); }
417 Chunk
*getChunk() { return data
; }
420 LocalImportChunk
*data
;
423 inline uint64_t Defined::getRVA() {
425 case DefinedAbsoluteKind
:
426 return cast
<DefinedAbsolute
>(this)->getRVA();
427 case DefinedSyntheticKind
:
428 return cast
<DefinedSynthetic
>(this)->getRVA();
429 case DefinedImportDataKind
:
430 return cast
<DefinedImportData
>(this)->getRVA();
431 case DefinedImportThunkKind
:
432 return cast
<DefinedImportThunk
>(this)->getRVA();
433 case DefinedLocalImportKind
:
434 return cast
<DefinedLocalImport
>(this)->getRVA();
435 case DefinedCommonKind
:
436 return cast
<DefinedCommon
>(this)->getRVA();
437 case DefinedRegularKind
:
438 return cast
<DefinedRegular
>(this)->getRVA();
439 case LazyArchiveKind
:
441 case LazyDLLSymbolKind
:
443 llvm_unreachable("Cannot get the address for an undefined symbol.");
445 llvm_unreachable("unknown symbol kind");
448 inline Chunk
*Defined::getChunk() {
450 case DefinedRegularKind
:
451 return cast
<DefinedRegular
>(this)->getChunk();
452 case DefinedAbsoluteKind
:
454 case DefinedSyntheticKind
:
455 return cast
<DefinedSynthetic
>(this)->getChunk();
456 case DefinedImportDataKind
:
457 return cast
<DefinedImportData
>(this)->getChunk();
458 case DefinedImportThunkKind
:
459 return cast
<DefinedImportThunk
>(this)->getChunk();
460 case DefinedLocalImportKind
:
461 return cast
<DefinedLocalImport
>(this)->getChunk();
462 case DefinedCommonKind
:
463 return cast
<DefinedCommon
>(this)->getChunk();
464 case LazyArchiveKind
:
466 case LazyDLLSymbolKind
:
468 llvm_unreachable("Cannot get the chunk of an undefined symbol.");
470 llvm_unreachable("unknown symbol kind");
473 // A buffer class that is large enough to hold any Symbol-derived
474 // object. We allocate memory using this class and instantiate a symbol
475 // using the placement new.
477 alignas(DefinedRegular
) char a
[sizeof(DefinedRegular
)];
478 alignas(DefinedCommon
) char b
[sizeof(DefinedCommon
)];
479 alignas(DefinedAbsolute
) char c
[sizeof(DefinedAbsolute
)];
480 alignas(DefinedSynthetic
) char d
[sizeof(DefinedSynthetic
)];
481 alignas(LazyArchive
) char e
[sizeof(LazyArchive
)];
482 alignas(Undefined
) char f
[sizeof(Undefined
)];
483 alignas(DefinedImportData
) char g
[sizeof(DefinedImportData
)];
484 alignas(DefinedImportThunk
) char h
[sizeof(DefinedImportThunk
)];
485 alignas(DefinedLocalImport
) char i
[sizeof(DefinedLocalImport
)];
486 alignas(LazyObject
) char j
[sizeof(LazyObject
)];
487 alignas(LazyDLLSymbol
) char k
[sizeof(LazyDLLSymbol
)];
490 template <typename T
, typename
... ArgT
>
491 void replaceSymbol(Symbol
*s
, ArgT
&&... arg
) {
492 static_assert(std::is_trivially_destructible
<T
>(),
493 "Symbol types must be trivially destructible");
494 static_assert(sizeof(T
) <= sizeof(SymbolUnion
), "Symbol too small");
495 static_assert(alignof(T
) <= alignof(SymbolUnion
),
496 "SymbolUnion not aligned enough");
497 assert(static_cast<Symbol
*>(static_cast<T
*>(nullptr)) == nullptr &&
499 bool canInline
= s
->canInline
;
500 new (s
) T(std::forward
<ArgT
>(arg
)...);
501 s
->canInline
= canInline
;