1 //===- Writer.cpp ---------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 #include "CallGraphSort.h"
13 #include "InputFiles.h"
14 #include "LLDMapFile.h"
17 #include "SymbolTable.h"
19 #include "lld/Common/ErrorHandler.h"
20 #include "lld/Common/Memory.h"
21 #include "lld/Common/Timer.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/Support/BinaryStreamReader.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/FileOutputBuffer.h"
30 #include "llvm/Support/Parallel.h"
31 #include "llvm/Support/Path.h"
32 #include "llvm/Support/RandomNumberGenerator.h"
33 #include "llvm/Support/xxhash.h"
41 using namespace llvm::COFF
;
42 using namespace llvm::object
;
43 using namespace llvm::support
;
44 using namespace llvm::support::endian
;
46 using namespace lld::coff
;
48 /* To re-generate DOSProgram:
49 $ cat > /tmp/DOSProgram.asm
54 ; Point ds:dx at the $-terminated string.
56 ; Int 21/AH=09h: Write string to standard output.
59 ; Int 21/AH=4Ch: Exit with return code (in AL).
63 db 'This program cannot be run in DOS mode.$'
65 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin
66 $ xxd -i /tmp/DOSProgram.bin
68 static unsigned char dosProgram
[] = {
69 0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c,
70 0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72,
71 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65,
72 0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20,
73 0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00
75 static_assert(sizeof(dosProgram
) % 8 == 0,
76 "DOSProgram size must be multiple of 8");
78 static const int dosStubSize
= sizeof(dos_header
) + sizeof(dosProgram
);
79 static_assert(dosStubSize
% 8 == 0, "DOSStub size must be multiple of 8");
81 static const int numberOfDataDirectory
= 16;
83 // Global vector of all output sections. After output sections are finalized,
84 // this can be indexed by Chunk::getOutputSection.
85 static std::vector
<OutputSection
*> outputSections
;
87 OutputSection
*Chunk::getOutputSection() const {
88 return osidx
== 0 ? nullptr : outputSections
[osidx
- 1];
91 void OutputSection::clear() { outputSections
.clear(); }
95 class DebugDirectoryChunk
: public NonSectionChunk
{
97 DebugDirectoryChunk(const std::vector
<std::pair
<COFF::DebugType
, Chunk
*>> &r
,
99 : records(r
), writeRepro(writeRepro
) {}
101 size_t getSize() const override
{
102 return (records
.size() + int(writeRepro
)) * sizeof(debug_directory
);
105 void writeTo(uint8_t *b
) const override
{
106 auto *d
= reinterpret_cast<debug_directory
*>(b
);
108 for (const std::pair
<COFF::DebugType
, Chunk
*>& record
: records
) {
109 Chunk
*c
= record
.second
;
110 OutputSection
*os
= c
->getOutputSection();
111 uint64_t offs
= os
->getFileOff() + (c
->getRVA() - os
->getRVA());
112 fillEntry(d
, record
.first
, c
->getSize(), c
->getRVA(), offs
);
117 // FIXME: The COFF spec allows either a 0-sized entry to just say
118 // "the timestamp field is really a hash", or a 4-byte size field
119 // followed by that many bytes containing a longer hash (with the
120 // lowest 4 bytes usually being the timestamp in little-endian order).
121 // Consider storing the full 8 bytes computed by xxHash64 here.
122 fillEntry(d
, COFF::IMAGE_DEBUG_TYPE_REPRO
, 0, 0, 0);
126 void setTimeDateStamp(uint32_t timeDateStamp
) {
127 for (support::ulittle32_t
*tds
: timeDateStamps
)
128 *tds
= timeDateStamp
;
132 void fillEntry(debug_directory
*d
, COFF::DebugType debugType
, size_t size
,
133 uint64_t rva
, uint64_t offs
) const {
134 d
->Characteristics
= 0;
135 d
->TimeDateStamp
= 0;
139 d
->SizeOfData
= size
;
140 d
->AddressOfRawData
= rva
;
141 d
->PointerToRawData
= offs
;
143 timeDateStamps
.push_back(&d
->TimeDateStamp
);
146 mutable std::vector
<support::ulittle32_t
*> timeDateStamps
;
147 const std::vector
<std::pair
<COFF::DebugType
, Chunk
*>> &records
;
151 class CVDebugRecordChunk
: public NonSectionChunk
{
153 size_t getSize() const override
{
154 return sizeof(codeview::DebugInfo
) + config
->pdbAltPath
.size() + 1;
157 void writeTo(uint8_t *b
) const override
{
158 // Save off the DebugInfo entry to backfill the file signature (build id)
159 // in Writer::writeBuildId
160 buildId
= reinterpret_cast<codeview::DebugInfo
*>(b
);
162 // variable sized field (PDB Path)
163 char *p
= reinterpret_cast<char *>(b
+ sizeof(*buildId
));
164 if (!config
->pdbAltPath
.empty())
165 memcpy(p
, config
->pdbAltPath
.data(), config
->pdbAltPath
.size());
166 p
[config
->pdbAltPath
.size()] = '\0';
169 mutable codeview::DebugInfo
*buildId
= nullptr;
172 class ExtendedDllCharacteristicsChunk
: public NonSectionChunk
{
174 ExtendedDllCharacteristicsChunk(uint32_t c
) : characteristics(c
) {}
176 size_t getSize() const override
{ return 4; }
178 void writeTo(uint8_t *buf
) const override
{ write32le(buf
, characteristics
); }
180 uint32_t characteristics
= 0;
183 // PartialSection represents a group of chunks that contribute to an
184 // OutputSection. Collating a collection of PartialSections of same name and
185 // characteristics constitutes the OutputSection.
186 class PartialSectionKey
{
189 unsigned characteristics
;
191 bool operator<(const PartialSectionKey
&other
) const {
192 int c
= name
.compare(other
.name
);
196 return characteristics
< other
.characteristics
;
201 // The writer writes a SymbolTable result to a file.
204 Writer() : buffer(errorHandler().outputBuffer
) {}
208 void createSections();
209 void createMiscChunks();
210 void createImportTables();
211 void appendImportThunks();
212 void locateImportTables();
213 void createExportTable();
214 void mergeSections();
215 void removeUnusedSections();
216 void assignAddresses();
217 void finalizeAddresses();
218 void removeEmptySections();
219 void assignOutputSectionIndices();
220 void createSymbolAndStringTable();
221 void openFile(StringRef outputPath
);
222 template <typename PEHeaderTy
> void writeHeader();
223 void createSEHTable();
224 void createRuntimePseudoRelocs();
225 void insertCtorDtorSymbols();
226 void createGuardCFTables();
227 void markSymbolsForRVATable(ObjFile
*file
,
228 ArrayRef
<SectionChunk
*> symIdxChunks
,
229 SymbolRVASet
&tableSymbols
);
230 void getSymbolsFromSections(ObjFile
*file
,
231 ArrayRef
<SectionChunk
*> symIdxChunks
,
232 std::vector
<Symbol
*> &symbols
);
233 void maybeAddRVATable(SymbolRVASet tableSymbols
, StringRef tableSym
,
234 StringRef countSym
, bool hasFlag
=false);
235 void setSectionPermissions();
236 void writeSections();
239 void sortExceptionTable();
240 void sortCRTSectionChunks(std::vector
<Chunk
*> &chunks
);
241 void addSyntheticIdata();
242 void fixPartialSectionChars(StringRef name
, uint32_t chars
);
243 bool fixGnuImportChunks();
244 void fixTlsAlignment();
245 PartialSection
*createPartialSection(StringRef name
, uint32_t outChars
);
246 PartialSection
*findPartialSection(StringRef name
, uint32_t outChars
);
248 llvm::Optional
<coff_symbol16
> createSymbol(Defined
*d
);
249 size_t addEntryToStringTable(StringRef str
);
251 OutputSection
*findSection(StringRef name
);
253 void addBaserelBlocks(std::vector
<Baserel
> &v
);
255 uint32_t getSizeOfInitializedData();
257 std::unique_ptr
<FileOutputBuffer
> &buffer
;
258 std::map
<PartialSectionKey
, PartialSection
*> partialSections
;
259 std::vector
<char> strtab
;
260 std::vector
<llvm::object::coff_symbol16
> outputSymtab
;
262 Chunk
*importTableStart
= nullptr;
263 uint64_t importTableSize
= 0;
264 Chunk
*edataStart
= nullptr;
265 Chunk
*edataEnd
= nullptr;
266 Chunk
*iatStart
= nullptr;
267 uint64_t iatSize
= 0;
268 DelayLoadContents delayIdata
;
270 bool setNoSEHCharacteristic
= false;
271 uint32_t tlsAlignment
= 0;
273 DebugDirectoryChunk
*debugDirectory
= nullptr;
274 std::vector
<std::pair
<COFF::DebugType
, Chunk
*>> debugRecords
;
275 CVDebugRecordChunk
*buildId
= nullptr;
276 ArrayRef
<uint8_t> sectionTable
;
279 uint32_t pointerToSymbolTable
= 0;
280 uint64_t sizeOfImage
;
281 uint64_t sizeOfHeaders
;
283 OutputSection
*textSec
;
284 OutputSection
*rdataSec
;
285 OutputSection
*buildidSec
;
286 OutputSection
*dataSec
;
287 OutputSection
*pdataSec
;
288 OutputSection
*idataSec
;
289 OutputSection
*edataSec
;
290 OutputSection
*didatSec
;
291 OutputSection
*rsrcSec
;
292 OutputSection
*relocSec
;
293 OutputSection
*ctorsSec
;
294 OutputSection
*dtorsSec
;
296 // The first and last .pdata sections in the output file.
298 // We need to keep track of the location of .pdata in whichever section it
299 // gets merged into so that we can sort its contents and emit a correct data
300 // directory entry for the exception table. This is also the case for some
301 // other sections (such as .edata) but because the contents of those sections
302 // are entirely linker-generated we can keep track of their locations using
303 // the chunks that the linker creates. All .pdata chunks come from input
304 // files, so we need to keep track of them separately.
305 Chunk
*firstPdata
= nullptr;
308 } // anonymous namespace
310 static Timer
codeLayoutTimer("Code Layout", Timer::root());
311 static Timer
diskCommitTimer("Commit Output File", Timer::root());
313 void lld::coff::writeResult() { Writer().run(); }
315 void OutputSection::addChunk(Chunk
*c
) {
319 void OutputSection::insertChunkAtStart(Chunk
*c
) {
320 chunks
.insert(chunks
.begin(), c
);
323 void OutputSection::setPermissions(uint32_t c
) {
324 header
.Characteristics
&= ~permMask
;
325 header
.Characteristics
|= c
;
328 void OutputSection::merge(OutputSection
*other
) {
329 chunks
.insert(chunks
.end(), other
->chunks
.begin(), other
->chunks
.end());
330 other
->chunks
.clear();
331 contribSections
.insert(contribSections
.end(), other
->contribSections
.begin(),
332 other
->contribSections
.end());
333 other
->contribSections
.clear();
336 // Write the section header to a given buffer.
337 void OutputSection::writeHeaderTo(uint8_t *buf
) {
338 auto *hdr
= reinterpret_cast<coff_section
*>(buf
);
340 if (stringTableOff
) {
341 // If name is too long, write offset into the string table as a name.
342 sprintf(hdr
->Name
, "/%d", stringTableOff
);
344 assert(!config
->debug
|| name
.size() <= COFF::NameSize
||
345 (hdr
->Characteristics
& IMAGE_SCN_MEM_DISCARDABLE
) == 0);
346 strncpy(hdr
->Name
, name
.data(),
347 std::min(name
.size(), (size_t)COFF::NameSize
));
351 void OutputSection::addContributingPartialSection(PartialSection
*sec
) {
352 contribSections
.push_back(sec
);
355 // Check whether the target address S is in range from a relocation
356 // of type relType at address P.
357 static bool isInRange(uint16_t relType
, uint64_t s
, uint64_t p
, int margin
) {
358 if (config
->machine
== ARMNT
) {
359 int64_t diff
= AbsoluteDifference(s
, p
+ 4) + margin
;
361 case IMAGE_REL_ARM_BRANCH20T
:
362 return isInt
<21>(diff
);
363 case IMAGE_REL_ARM_BRANCH24T
:
364 case IMAGE_REL_ARM_BLX23T
:
365 return isInt
<25>(diff
);
369 } else if (config
->machine
== ARM64
) {
370 int64_t diff
= AbsoluteDifference(s
, p
) + margin
;
372 case IMAGE_REL_ARM64_BRANCH26
:
373 return isInt
<28>(diff
);
374 case IMAGE_REL_ARM64_BRANCH19
:
375 return isInt
<21>(diff
);
376 case IMAGE_REL_ARM64_BRANCH14
:
377 return isInt
<16>(diff
);
382 llvm_unreachable("Unexpected architecture");
386 // Return the last thunk for the given target if it is in range,
387 // or create a new one.
388 static std::pair
<Defined
*, bool>
389 getThunk(DenseMap
<uint64_t, Defined
*> &lastThunks
, Defined
*target
, uint64_t p
,
390 uint16_t type
, int margin
) {
391 Defined
*&lastThunk
= lastThunks
[target
->getRVA()];
392 if (lastThunk
&& isInRange(type
, lastThunk
->getRVA(), p
, margin
))
393 return {lastThunk
, false};
395 switch (config
->machine
) {
397 c
= make
<RangeExtensionThunkARM
>(target
);
400 c
= make
<RangeExtensionThunkARM64
>(target
);
403 llvm_unreachable("Unexpected architecture");
405 Defined
*d
= make
<DefinedSynthetic
>("", c
);
410 // This checks all relocations, and for any relocation which isn't in range
411 // it adds a thunk after the section chunk that contains the relocation.
412 // If the latest thunk for the specific target is in range, that is used
413 // instead of creating a new thunk. All range checks are done with the
414 // specified margin, to make sure that relocations that originally are in
415 // range, but only barely, also get thunks - in case other added thunks makes
416 // the target go out of range.
418 // After adding thunks, we verify that all relocations are in range (with
419 // no extra margin requirements). If this failed, we restart (throwing away
420 // the previously created thunks) and retry with a wider margin.
421 static bool createThunks(OutputSection
*os
, int margin
) {
422 bool addressesChanged
= false;
423 DenseMap
<uint64_t, Defined
*> lastThunks
;
424 DenseMap
<std::pair
<ObjFile
*, Defined
*>, uint32_t> thunkSymtabIndices
;
425 size_t thunksSize
= 0;
426 // Recheck Chunks.size() each iteration, since we can insert more
428 for (size_t i
= 0; i
!= os
->chunks
.size(); ++i
) {
429 SectionChunk
*sc
= dyn_cast_or_null
<SectionChunk
>(os
->chunks
[i
]);
432 size_t thunkInsertionSpot
= i
+ 1;
434 // Try to get a good enough estimate of where new thunks will be placed.
435 // Offset this by the size of the new thunks added so far, to make the
436 // estimate slightly better.
437 size_t thunkInsertionRVA
= sc
->getRVA() + sc
->getSize() + thunksSize
;
438 ObjFile
*file
= sc
->file
;
439 std::vector
<std::pair
<uint32_t, uint32_t>> relocReplacements
;
440 ArrayRef
<coff_relocation
> originalRelocs
=
441 file
->getCOFFObj()->getRelocations(sc
->header
);
442 for (size_t j
= 0, e
= originalRelocs
.size(); j
< e
; ++j
) {
443 const coff_relocation
&rel
= originalRelocs
[j
];
444 Symbol
*relocTarget
= file
->getSymbol(rel
.SymbolTableIndex
);
446 // The estimate of the source address P should be pretty accurate,
447 // but we don't know whether the target Symbol address should be
448 // offset by thunksSize or not (or by some of thunksSize but not all of
449 // it), giving us some uncertainty once we have added one thunk.
450 uint64_t p
= sc
->getRVA() + rel
.VirtualAddress
+ thunksSize
;
452 Defined
*sym
= dyn_cast_or_null
<Defined
>(relocTarget
);
456 uint64_t s
= sym
->getRVA();
458 if (isInRange(rel
.Type
, s
, p
, margin
))
461 // If the target isn't in range, hook it up to an existing or new
465 std::tie(thunk
, wasNew
) = getThunk(lastThunks
, sym
, p
, rel
.Type
, margin
);
467 Chunk
*thunkChunk
= thunk
->getChunk();
469 thunkInsertionRVA
); // Estimate of where it will be located.
470 os
->chunks
.insert(os
->chunks
.begin() + thunkInsertionSpot
, thunkChunk
);
471 thunkInsertionSpot
++;
472 thunksSize
+= thunkChunk
->getSize();
473 thunkInsertionRVA
+= thunkChunk
->getSize();
474 addressesChanged
= true;
477 // To redirect the relocation, add a symbol to the parent object file's
478 // symbol table, and replace the relocation symbol table index with the
480 auto insertion
= thunkSymtabIndices
.insert({{file
, thunk
}, ~0U});
481 uint32_t &thunkSymbolIndex
= insertion
.first
->second
;
482 if (insertion
.second
)
483 thunkSymbolIndex
= file
->addRangeThunkSymbol(thunk
);
484 relocReplacements
.push_back({j
, thunkSymbolIndex
});
487 // Get a writable copy of this section's relocations so they can be
488 // modified. If the relocations point into the object file, allocate new
489 // memory. Otherwise, this must be previously allocated memory that can be
490 // modified in place.
491 ArrayRef
<coff_relocation
> curRelocs
= sc
->getRelocs();
492 MutableArrayRef
<coff_relocation
> newRelocs
;
493 if (originalRelocs
.data() == curRelocs
.data()) {
494 newRelocs
= makeMutableArrayRef(
495 bAlloc
.Allocate
<coff_relocation
>(originalRelocs
.size()),
496 originalRelocs
.size());
498 newRelocs
= makeMutableArrayRef(
499 const_cast<coff_relocation
*>(curRelocs
.data()), curRelocs
.size());
502 // Copy each relocation, but replace the symbol table indices which need
504 auto nextReplacement
= relocReplacements
.begin();
505 auto endReplacement
= relocReplacements
.end();
506 for (size_t i
= 0, e
= originalRelocs
.size(); i
!= e
; ++i
) {
507 newRelocs
[i
] = originalRelocs
[i
];
508 if (nextReplacement
!= endReplacement
&& nextReplacement
->first
== i
) {
509 newRelocs
[i
].SymbolTableIndex
= nextReplacement
->second
;
514 sc
->setRelocs(newRelocs
);
516 return addressesChanged
;
519 // Verify that all relocations are in range, with no extra margin requirements.
520 static bool verifyRanges(const std::vector
<Chunk
*> chunks
) {
521 for (Chunk
*c
: chunks
) {
522 SectionChunk
*sc
= dyn_cast_or_null
<SectionChunk
>(c
);
526 ArrayRef
<coff_relocation
> relocs
= sc
->getRelocs();
527 for (size_t j
= 0, e
= relocs
.size(); j
< e
; ++j
) {
528 const coff_relocation
&rel
= relocs
[j
];
529 Symbol
*relocTarget
= sc
->file
->getSymbol(rel
.SymbolTableIndex
);
531 Defined
*sym
= dyn_cast_or_null
<Defined
>(relocTarget
);
535 uint64_t p
= sc
->getRVA() + rel
.VirtualAddress
;
536 uint64_t s
= sym
->getRVA();
538 if (!isInRange(rel
.Type
, s
, p
, 0))
545 // Assign addresses and add thunks if necessary.
546 void Writer::finalizeAddresses() {
548 if (config
->machine
!= ARMNT
&& config
->machine
!= ARM64
)
551 size_t origNumChunks
= 0;
552 for (OutputSection
*sec
: outputSections
) {
553 sec
->origChunks
= sec
->chunks
;
554 origNumChunks
+= sec
->chunks
.size();
558 int margin
= 1024 * 100;
560 // First check whether we need thunks at all, or if the previous pass of
561 // adding them turned out ok.
562 bool rangesOk
= true;
563 size_t numChunks
= 0;
564 for (OutputSection
*sec
: outputSections
) {
565 if (!verifyRanges(sec
->chunks
)) {
569 numChunks
+= sec
->chunks
.size();
573 log("Added " + Twine(numChunks
- origNumChunks
) + " thunks with " +
574 "margin " + Twine(margin
) + " in " + Twine(pass
) + " passes");
579 fatal("adding thunks hasn't converged after " + Twine(pass
) + " passes");
582 // If the previous pass didn't work out, reset everything back to the
583 // original conditions before retrying with a wider margin. This should
584 // ideally never happen under real circumstances.
585 for (OutputSection
*sec
: outputSections
)
586 sec
->chunks
= sec
->origChunks
;
590 // Try adding thunks everywhere where it is needed, with a margin
591 // to avoid things going out of range due to the added thunks.
592 bool addressesChanged
= false;
593 for (OutputSection
*sec
: outputSections
)
594 addressesChanged
|= createThunks(sec
, margin
);
595 // If the verification above thought we needed thunks, we should have
597 assert(addressesChanged
);
598 (void)addressesChanged
;
600 // Recalculate the layout for the whole image (and verify the ranges at
601 // the start of the next round).
608 // The main function of the writer.
610 ScopedTimer
t1(codeLayoutTimer
);
612 createImportTables();
614 appendImportThunks();
615 // Import thunks must be added before the Control Flow Guard tables are added.
619 removeUnusedSections();
621 removeEmptySections();
622 assignOutputSectionIndices();
623 setSectionPermissions();
624 createSymbolAndStringTable();
626 if (fileSize
> UINT32_MAX
)
627 fatal("image size (" + Twine(fileSize
) + ") " +
628 "exceeds maximum allowable size (" + Twine(UINT32_MAX
) + ")");
630 openFile(config
->outputFile
);
631 if (config
->is64()) {
632 writeHeader
<pe32plus_header
>();
634 writeHeader
<pe32_header
>();
637 sortExceptionTable();
639 // Fix up the alignment in the TLS Directory's characteristic field,
640 // if a specific alignment value is needed
646 if (!config
->pdbPath
.empty() && config
->debug
) {
648 createPDB(symtab
, outputSections
, sectionTable
, buildId
->buildId
);
652 writeLLDMapFile(outputSections
);
653 writeMapFile(outputSections
);
658 ScopedTimer
t2(diskCommitTimer
);
659 if (auto e
= buffer
->commit())
660 fatal("failed to write the output file: " + toString(std::move(e
)));
663 static StringRef
getOutputSectionName(StringRef name
) {
664 StringRef s
= name
.split('$').first
;
666 // Treat a later period as a separator for MinGW, for sections like
668 return s
.substr(0, s
.find('.', 1));
672 static void sortBySectionOrder(std::vector
<Chunk
*> &chunks
) {
673 auto getPriority
= [](const Chunk
*c
) {
674 if (auto *sec
= dyn_cast
<SectionChunk
>(c
))
676 return config
->order
.lookup(sec
->sym
->getName());
680 llvm::stable_sort(chunks
, [=](const Chunk
*a
, const Chunk
*b
) {
681 return getPriority(a
) < getPriority(b
);
685 // Change the characteristics of existing PartialSections that belong to the
686 // section Name to Chars.
687 void Writer::fixPartialSectionChars(StringRef name
, uint32_t chars
) {
688 for (auto it
: partialSections
) {
689 PartialSection
*pSec
= it
.second
;
690 StringRef curName
= pSec
->name
;
691 if (!curName
.consume_front(name
) ||
692 (!curName
.empty() && !curName
.startswith("$")))
694 if (pSec
->characteristics
== chars
)
696 PartialSection
*destSec
= createPartialSection(pSec
->name
, chars
);
697 destSec
->chunks
.insert(destSec
->chunks
.end(), pSec
->chunks
.begin(),
699 pSec
->chunks
.clear();
703 // Sort concrete section chunks from GNU import libraries.
705 // GNU binutils doesn't use short import files, but instead produces import
706 // libraries that consist of object files, with section chunks for the .idata$*
707 // sections. These are linked just as regular static libraries. Each import
708 // library consists of one header object, one object file for every imported
709 // symbol, and one trailer object. In order for the .idata tables/lists to
710 // be formed correctly, the section chunks within each .idata$* section need
711 // to be grouped by library, and sorted alphabetically within each library
712 // (which makes sure the header comes first and the trailer last).
713 bool Writer::fixGnuImportChunks() {
714 uint32_t rdata
= IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ
;
716 // Make sure all .idata$* section chunks are mapped as RDATA in order to
717 // be sorted into the same sections as our own synthesized .idata chunks.
718 fixPartialSectionChars(".idata", rdata
);
720 bool hasIdata
= false;
721 // Sort all .idata$* chunks, grouping chunks from the same library,
722 // with alphabetical ordering of the object fils within a library.
723 for (auto it
: partialSections
) {
724 PartialSection
*pSec
= it
.second
;
725 if (!pSec
->name
.startswith(".idata"))
728 if (!pSec
->chunks
.empty())
730 llvm::stable_sort(pSec
->chunks
, [&](Chunk
*s
, Chunk
*t
) {
731 SectionChunk
*sc1
= dyn_cast_or_null
<SectionChunk
>(s
);
732 SectionChunk
*sc2
= dyn_cast_or_null
<SectionChunk
>(t
);
734 // if SC1, order them ascending. If SC2 or both null,
735 // S is not less than T.
736 return sc1
!= nullptr;
738 // Make a string with "libraryname/objectfile" for sorting, achieving
739 // both grouping by library and sorting of objects within a library,
742 (sc1
->file
->parentName
+ "/" + sc1
->file
->getName()).str();
744 (sc2
->file
->parentName
+ "/" + sc2
->file
->getName()).str();
751 // Add generated idata chunks, for imported symbols and DLLs, and a
752 // terminator in .idata$2.
753 void Writer::addSyntheticIdata() {
754 uint32_t rdata
= IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ
;
757 // Add the .idata content in the right section groups, to allow
758 // chunks from other linked in object files to be grouped together.
759 // See Microsoft PE/COFF spec 5.4 for details.
760 auto add
= [&](StringRef n
, std::vector
<Chunk
*> &v
) {
761 PartialSection
*pSec
= createPartialSection(n
, rdata
);
762 pSec
->chunks
.insert(pSec
->chunks
.end(), v
.begin(), v
.end());
765 // The loader assumes a specific order of data.
766 // Add each type in the correct order.
767 add(".idata$2", idata
.dirs
);
768 add(".idata$4", idata
.lookups
);
769 add(".idata$5", idata
.addresses
);
770 if (!idata
.hints
.empty())
771 add(".idata$6", idata
.hints
);
772 add(".idata$7", idata
.dllNames
);
775 // Locate the first Chunk and size of the import directory list and the
777 void Writer::locateImportTables() {
778 uint32_t rdata
= IMAGE_SCN_CNT_INITIALIZED_DATA
| IMAGE_SCN_MEM_READ
;
780 if (PartialSection
*importDirs
= findPartialSection(".idata$2", rdata
)) {
781 if (!importDirs
->chunks
.empty())
782 importTableStart
= importDirs
->chunks
.front();
783 for (Chunk
*c
: importDirs
->chunks
)
784 importTableSize
+= c
->getSize();
787 if (PartialSection
*importAddresses
= findPartialSection(".idata$5", rdata
)) {
788 if (!importAddresses
->chunks
.empty())
789 iatStart
= importAddresses
->chunks
.front();
790 for (Chunk
*c
: importAddresses
->chunks
)
791 iatSize
+= c
->getSize();
795 // Return whether a SectionChunk's suffix (the dollar and any trailing
796 // suffix) should be removed and sorted into the main suffixless
798 static bool shouldStripSectionSuffix(SectionChunk
*sc
, StringRef name
) {
799 // On MinGW, comdat groups are formed by putting the comdat group name
800 // after the '$' in the section name. For .eh_frame$<symbol>, that must
801 // still be sorted before the .eh_frame trailer from crtend.o, thus just
802 // strip the section name trailer. For other sections, such as
803 // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in
804 // ".tls$"), they must be strictly sorted after .tls. And for the
805 // hypothetical case of comdat .CRT$XCU, we definitely need to keep the
806 // suffix for sorting. Thus, to play it safe, only strip the suffix for
807 // the standard sections.
810 if (!sc
|| !sc
->isCOMDAT())
812 return name
.startswith(".text$") || name
.startswith(".data$") ||
813 name
.startswith(".rdata$") || name
.startswith(".pdata$") ||
814 name
.startswith(".xdata$") || name
.startswith(".eh_frame$");
817 void Writer::sortSections() {
818 if (!config
->callGraphProfile
.empty()) {
819 DenseMap
<const SectionChunk
*, int> order
= computeCallGraphProfileOrder();
820 for (auto it
: order
) {
821 if (DefinedRegular
*sym
= it
.first
->sym
)
822 config
->order
[sym
->getName()] = it
.second
;
825 if (!config
->order
.empty())
826 for (auto it
: partialSections
)
827 sortBySectionOrder(it
.second
->chunks
);
830 // Create output section objects and add them to OutputSections.
831 void Writer::createSections() {
832 // First, create the builtin sections.
833 const uint32_t data
= IMAGE_SCN_CNT_INITIALIZED_DATA
;
834 const uint32_t bss
= IMAGE_SCN_CNT_UNINITIALIZED_DATA
;
835 const uint32_t code
= IMAGE_SCN_CNT_CODE
;
836 const uint32_t discardable
= IMAGE_SCN_MEM_DISCARDABLE
;
837 const uint32_t r
= IMAGE_SCN_MEM_READ
;
838 const uint32_t w
= IMAGE_SCN_MEM_WRITE
;
839 const uint32_t x
= IMAGE_SCN_MEM_EXECUTE
;
841 SmallDenseMap
<std::pair
<StringRef
, uint32_t>, OutputSection
*> sections
;
842 auto createSection
= [&](StringRef name
, uint32_t outChars
) {
843 OutputSection
*&sec
= sections
[{name
, outChars
}];
845 sec
= make
<OutputSection
>(name
, outChars
);
846 outputSections
.push_back(sec
);
851 // Try to match the section order used by link.exe.
852 textSec
= createSection(".text", code
| r
| x
);
853 createSection(".bss", bss
| r
| w
);
854 rdataSec
= createSection(".rdata", data
| r
);
855 buildidSec
= createSection(".buildid", data
| r
);
856 dataSec
= createSection(".data", data
| r
| w
);
857 pdataSec
= createSection(".pdata", data
| r
);
858 idataSec
= createSection(".idata", data
| r
);
859 edataSec
= createSection(".edata", data
| r
);
860 didatSec
= createSection(".didat", data
| r
);
861 rsrcSec
= createSection(".rsrc", data
| r
);
862 relocSec
= createSection(".reloc", data
| discardable
| r
);
863 ctorsSec
= createSection(".ctors", data
| r
| w
);
864 dtorsSec
= createSection(".dtors", data
| r
| w
);
866 // Then bin chunks by name and output characteristics.
867 for (Chunk
*c
: symtab
->getChunks()) {
868 auto *sc
= dyn_cast
<SectionChunk
>(c
);
869 if (sc
&& !sc
->live
) {
871 sc
->printDiscardedMessage();
874 StringRef name
= c
->getSectionName();
875 if (shouldStripSectionSuffix(sc
, name
))
876 name
= name
.split('$').first
;
878 if (name
.startswith(".tls"))
879 tlsAlignment
= std::max(tlsAlignment
, c
->getAlignment());
881 PartialSection
*pSec
= createPartialSection(name
,
882 c
->getOutputCharacteristics());
883 pSec
->chunks
.push_back(c
);
886 fixPartialSectionChars(".rsrc", data
| r
);
887 fixPartialSectionChars(".edata", data
| r
);
888 // Even in non MinGW cases, we might need to link against GNU import
890 bool hasIdata
= fixGnuImportChunks();
900 locateImportTables();
902 // Then create an OutputSection for each section.
903 // '$' and all following characters in input section names are
904 // discarded when determining output section. So, .text$foo
905 // contributes to .text, for example. See PE/COFF spec 3.2.
906 for (auto it
: partialSections
) {
907 PartialSection
*pSec
= it
.second
;
908 StringRef name
= getOutputSectionName(pSec
->name
);
909 uint32_t outChars
= pSec
->characteristics
;
911 if (name
== ".CRT") {
912 // In link.exe, there is a special case for the I386 target where .CRT
913 // sections are treated as if they have output characteristics DATA | R if
914 // their characteristics are DATA | R | W. This implements the same
915 // special case for all architectures.
918 log("Processing section " + pSec
->name
+ " -> " + name
);
920 sortCRTSectionChunks(pSec
->chunks
);
923 OutputSection
*sec
= createSection(name
, outChars
);
924 for (Chunk
*c
: pSec
->chunks
)
927 sec
->addContributingPartialSection(pSec
);
930 // Finally, move some output sections to the end.
931 auto sectionOrder
= [&](const OutputSection
*s
) {
932 // Move DISCARDABLE (or non-memory-mapped) sections to the end of file
933 // because the loader cannot handle holes. Stripping can remove other
934 // discardable ones than .reloc, which is first of them (created early).
935 if (s
->header
.Characteristics
& IMAGE_SCN_MEM_DISCARDABLE
)
937 // .rsrc should come at the end of the non-discardable sections because its
938 // size may change by the Win32 UpdateResources() function, causing
939 // subsequent sections to move (see https://crbug.com/827082).
944 llvm::stable_sort(outputSections
,
945 [&](const OutputSection
*s
, const OutputSection
*t
) {
946 return sectionOrder(s
) < sectionOrder(t
);
950 void Writer::createMiscChunks() {
951 for (MergeChunk
*p
: MergeChunk::instances
) {
953 p
->finalizeContents();
954 rdataSec
->addChunk(p
);
958 // Create thunks for locally-dllimported symbols.
959 if (!symtab
->localImportChunks
.empty()) {
960 for (Chunk
*c
: symtab
->localImportChunks
)
961 rdataSec
->addChunk(c
);
964 // Create Debug Information Chunks
965 OutputSection
*debugInfoSec
= config
->mingw
? buildidSec
: rdataSec
;
966 if (config
->debug
|| config
->repro
|| config
->cetCompat
) {
967 debugDirectory
= make
<DebugDirectoryChunk
>(debugRecords
, config
->repro
);
968 debugDirectory
->setAlignment(4);
969 debugInfoSec
->addChunk(debugDirectory
);
973 // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified. We
974 // output a PDB no matter what, and this chunk provides the only means of
975 // allowing a debugger to match a PDB and an executable. So we need it even
976 // if we're ultimately not going to write CodeView data to the PDB.
977 buildId
= make
<CVDebugRecordChunk
>();
978 debugRecords
.push_back({COFF::IMAGE_DEBUG_TYPE_CODEVIEW
, buildId
});
981 if (config
->cetCompat
) {
982 debugRecords
.push_back({COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS
,
983 make
<ExtendedDllCharacteristicsChunk
>(
984 IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT
)});
987 // Align and add each chunk referenced by the debug data directory.
988 for (std::pair
<COFF::DebugType
, Chunk
*> r
: debugRecords
) {
989 r
.second
->setAlignment(4);
990 debugInfoSec
->addChunk(r
.second
);
993 // Create SEH table. x86-only.
997 // Create /guard:cf tables if requested.
998 if (config
->guardCF
!= GuardCFLevel::Off
)
999 createGuardCFTables();
1001 if (config
->autoImport
)
1002 createRuntimePseudoRelocs();
1005 insertCtorDtorSymbols();
1008 // Create .idata section for the DLL-imported symbol table.
1009 // The format of this section is inherently Windows-specific.
1010 // IdataContents class abstracted away the details for us,
1011 // so we just let it create chunks and add them to the section.
1012 void Writer::createImportTables() {
1013 // Initialize DLLOrder so that import entries are ordered in
1014 // the same order as in the command line. (That affects DLL
1015 // initialization order, and this ordering is MSVC-compatible.)
1016 for (ImportFile
*file
: ImportFile::instances
) {
1020 std::string dll
= StringRef(file
->dllName
).lower();
1021 if (config
->dllOrder
.count(dll
) == 0)
1022 config
->dllOrder
[dll
] = config
->dllOrder
.size();
1024 if (file
->impSym
&& !isa
<DefinedImportData
>(file
->impSym
))
1025 fatal(toString(*file
->impSym
) + " was replaced");
1026 DefinedImportData
*impSym
= cast_or_null
<DefinedImportData
>(file
->impSym
);
1027 if (config
->delayLoads
.count(StringRef(file
->dllName
).lower())) {
1028 if (!file
->thunkSym
)
1029 fatal("cannot delay-load " + toString(file
) +
1030 " due to import of data: " + toString(*impSym
));
1031 delayIdata
.add(impSym
);
1038 void Writer::appendImportThunks() {
1039 if (ImportFile::instances
.empty())
1042 for (ImportFile
*file
: ImportFile::instances
) {
1046 if (!file
->thunkSym
)
1049 if (!isa
<DefinedImportThunk
>(file
->thunkSym
))
1050 fatal(toString(*file
->thunkSym
) + " was replaced");
1051 DefinedImportThunk
*thunk
= cast
<DefinedImportThunk
>(file
->thunkSym
);
1052 if (file
->thunkLive
)
1053 textSec
->addChunk(thunk
->getChunk());
1056 if (!delayIdata
.empty()) {
1057 Defined
*helper
= cast
<Defined
>(config
->delayLoadHelper
);
1058 delayIdata
.create(helper
);
1059 for (Chunk
*c
: delayIdata
.getChunks())
1060 didatSec
->addChunk(c
);
1061 for (Chunk
*c
: delayIdata
.getDataChunks())
1062 dataSec
->addChunk(c
);
1063 for (Chunk
*c
: delayIdata
.getCodeChunks())
1064 textSec
->addChunk(c
);
1068 void Writer::createExportTable() {
1069 if (!edataSec
->chunks
.empty()) {
1070 // Allow using a custom built export table from input object files, instead
1071 // of having the linker synthesize the tables.
1072 if (config
->hadExplicitExports
)
1073 warn("literal .edata sections override exports");
1074 } else if (!config
->exports
.empty()) {
1075 for (Chunk
*c
: edata
.chunks
)
1076 edataSec
->addChunk(c
);
1078 if (!edataSec
->chunks
.empty()) {
1079 edataStart
= edataSec
->chunks
.front();
1080 edataEnd
= edataSec
->chunks
.back();
1082 // Warn on exported deleting destructor.
1083 for (auto e
: config
->exports
)
1084 if (e
.sym
&& e
.sym
->getName().startswith("??_G"))
1085 warn("export of deleting dtor: " + toString(*e
.sym
));
1088 void Writer::removeUnusedSections() {
1089 // Remove sections that we can be sure won't get content, to avoid
1090 // allocating space for their section headers.
1091 auto isUnused
= [this](OutputSection
*s
) {
1093 return false; // This section is populated later.
1094 // MergeChunks have zero size at this point, as their size is finalized
1095 // later. Only remove sections that have no Chunks at all.
1096 return s
->chunks
.empty();
1098 outputSections
.erase(
1099 std::remove_if(outputSections
.begin(), outputSections
.end(), isUnused
),
1100 outputSections
.end());
1103 // The Windows loader doesn't seem to like empty sections,
1104 // so we remove them if any.
1105 void Writer::removeEmptySections() {
1106 auto isEmpty
= [](OutputSection
*s
) { return s
->getVirtualSize() == 0; };
1107 outputSections
.erase(
1108 std::remove_if(outputSections
.begin(), outputSections
.end(), isEmpty
),
1109 outputSections
.end());
1112 void Writer::assignOutputSectionIndices() {
1113 // Assign final output section indices, and assign each chunk to its output
1116 for (OutputSection
*os
: outputSections
) {
1117 os
->sectionIndex
= idx
;
1118 for (Chunk
*c
: os
->chunks
)
1119 c
->setOutputSectionIdx(idx
);
1123 // Merge chunks are containers of chunks, so assign those an output section
1125 for (MergeChunk
*mc
: MergeChunk::instances
)
1127 for (SectionChunk
*sc
: mc
->sections
)
1129 sc
->setOutputSectionIdx(mc
->getOutputSectionIdx());
1132 size_t Writer::addEntryToStringTable(StringRef str
) {
1133 assert(str
.size() > COFF::NameSize
);
1134 size_t offsetOfEntry
= strtab
.size() + 4; // +4 for the size field
1135 strtab
.insert(strtab
.end(), str
.begin(), str
.end());
1136 strtab
.push_back('\0');
1137 return offsetOfEntry
;
1140 Optional
<coff_symbol16
> Writer::createSymbol(Defined
*def
) {
1142 switch (def
->kind()) {
1143 case Symbol::DefinedAbsoluteKind
:
1144 sym
.Value
= def
->getRVA();
1145 sym
.SectionNumber
= IMAGE_SYM_ABSOLUTE
;
1147 case Symbol::DefinedSyntheticKind
:
1148 // Relative symbols are unrepresentable in a COFF symbol table.
1151 // Don't write symbols that won't be written to the output to the symbol
1153 Chunk
*c
= def
->getChunk();
1156 OutputSection
*os
= c
->getOutputSection();
1160 sym
.Value
= def
->getRVA() - os
->getRVA();
1161 sym
.SectionNumber
= os
->sectionIndex
;
1166 // Symbols that are runtime pseudo relocations don't point to the actual
1167 // symbol data itself (as they are imported), but points to the IAT entry
1168 // instead. Avoid emitting them to the symbol table, as they can confuse
1170 if (def
->isRuntimePseudoReloc
)
1173 StringRef name
= def
->getName();
1174 if (name
.size() > COFF::NameSize
) {
1175 sym
.Name
.Offset
.Zeroes
= 0;
1176 sym
.Name
.Offset
.Offset
= addEntryToStringTable(name
);
1178 memset(sym
.Name
.ShortName
, 0, COFF::NameSize
);
1179 memcpy(sym
.Name
.ShortName
, name
.data(), name
.size());
1182 if (auto *d
= dyn_cast
<DefinedCOFF
>(def
)) {
1183 COFFSymbolRef ref
= d
->getCOFFSymbol();
1184 sym
.Type
= ref
.getType();
1185 sym
.StorageClass
= ref
.getStorageClass();
1187 sym
.Type
= IMAGE_SYM_TYPE_NULL
;
1188 sym
.StorageClass
= IMAGE_SYM_CLASS_EXTERNAL
;
1190 sym
.NumberOfAuxSymbols
= 0;
1194 void Writer::createSymbolAndStringTable() {
1195 // PE/COFF images are limited to 8 byte section names. Longer names can be
1196 // supported by writing a non-standard string table, but this string table is
1197 // not mapped at runtime and the long names will therefore be inaccessible.
1198 // link.exe always truncates section names to 8 bytes, whereas binutils always
1199 // preserves long section names via the string table. LLD adopts a hybrid
1200 // solution where discardable sections have long names preserved and
1201 // non-discardable sections have their names truncated, to ensure that any
1202 // section which is mapped at runtime also has its name mapped at runtime.
1203 for (OutputSection
*sec
: outputSections
) {
1204 if (sec
->name
.size() <= COFF::NameSize
)
1206 if ((sec
->header
.Characteristics
& IMAGE_SCN_MEM_DISCARDABLE
) == 0)
1208 if (config
->warnLongSectionNames
) {
1209 warn("section name " + sec
->name
+
1210 " is longer than 8 characters and will use a non-standard string "
1213 sec
->setStringTableOff(addEntryToStringTable(sec
->name
));
1216 if (config
->debugDwarf
|| config
->debugSymtab
) {
1217 for (ObjFile
*file
: ObjFile::instances
) {
1218 for (Symbol
*b
: file
->getSymbols()) {
1219 auto *d
= dyn_cast_or_null
<Defined
>(b
);
1220 if (!d
|| d
->writtenToSymtab
)
1222 d
->writtenToSymtab
= true;
1224 if (Optional
<coff_symbol16
> sym
= createSymbol(d
))
1225 outputSymtab
.push_back(*sym
);
1230 if (outputSymtab
.empty() && strtab
.empty())
1233 // We position the symbol table to be adjacent to the end of the last section.
1234 uint64_t fileOff
= fileSize
;
1235 pointerToSymbolTable
= fileOff
;
1236 fileOff
+= outputSymtab
.size() * sizeof(coff_symbol16
);
1237 fileOff
+= 4 + strtab
.size();
1238 fileSize
= alignTo(fileOff
, config
->fileAlign
);
1241 void Writer::mergeSections() {
1242 if (!pdataSec
->chunks
.empty()) {
1243 firstPdata
= pdataSec
->chunks
.front();
1244 lastPdata
= pdataSec
->chunks
.back();
1247 for (auto &p
: config
->merge
) {
1248 StringRef toName
= p
.second
;
1249 if (p
.first
== toName
)
1253 if (!names
.insert(toName
).second
)
1254 fatal("/merge: cycle found for section '" + p
.first
+ "'");
1255 auto i
= config
->merge
.find(toName
);
1256 if (i
== config
->merge
.end())
1260 OutputSection
*from
= findSection(p
.first
);
1261 OutputSection
*to
= findSection(toName
);
1265 from
->name
= toName
;
1272 // Visits all sections to assign incremental, non-overlapping RVAs and
1274 void Writer::assignAddresses() {
1275 sizeOfHeaders
= dosStubSize
+ sizeof(PEMagic
) + sizeof(coff_file_header
) +
1276 sizeof(data_directory
) * numberOfDataDirectory
+
1277 sizeof(coff_section
) * outputSections
.size();
1279 config
->is64() ? sizeof(pe32plus_header
) : sizeof(pe32_header
);
1280 sizeOfHeaders
= alignTo(sizeOfHeaders
, config
->fileAlign
);
1281 fileSize
= sizeOfHeaders
;
1283 // The first page is kept unmapped.
1284 uint64_t rva
= alignTo(sizeOfHeaders
, config
->align
);
1286 for (OutputSection
*sec
: outputSections
) {
1287 if (sec
== relocSec
)
1289 uint64_t rawSize
= 0, virtualSize
= 0;
1290 sec
->header
.VirtualAddress
= rva
;
1292 // If /FUNCTIONPADMIN is used, functions are padded in order to create a
1293 // hotpatchable image.
1294 const bool isCodeSection
=
1295 (sec
->header
.Characteristics
& IMAGE_SCN_CNT_CODE
) &&
1296 (sec
->header
.Characteristics
& IMAGE_SCN_MEM_READ
) &&
1297 (sec
->header
.Characteristics
& IMAGE_SCN_MEM_EXECUTE
);
1298 uint32_t padding
= isCodeSection
? config
->functionPadMin
: 0;
1300 for (Chunk
*c
: sec
->chunks
) {
1301 if (padding
&& c
->isHotPatchable())
1302 virtualSize
+= padding
;
1303 virtualSize
= alignTo(virtualSize
, c
->getAlignment());
1304 c
->setRVA(rva
+ virtualSize
);
1305 virtualSize
+= c
->getSize();
1307 rawSize
= alignTo(virtualSize
, config
->fileAlign
);
1309 if (virtualSize
> UINT32_MAX
)
1310 error("section larger than 4 GiB: " + sec
->name
);
1311 sec
->header
.VirtualSize
= virtualSize
;
1312 sec
->header
.SizeOfRawData
= rawSize
;
1314 sec
->header
.PointerToRawData
= fileSize
;
1315 rva
+= alignTo(virtualSize
, config
->align
);
1316 fileSize
+= alignTo(rawSize
, config
->fileAlign
);
1318 sizeOfImage
= alignTo(rva
, config
->align
);
1320 // Assign addresses to sections in MergeChunks.
1321 for (MergeChunk
*mc
: MergeChunk::instances
)
1323 mc
->assignSubsectionRVAs();
1326 template <typename PEHeaderTy
> void Writer::writeHeader() {
1327 // Write DOS header. For backwards compatibility, the first part of a PE/COFF
1328 // executable consists of an MS-DOS MZ executable. If the executable is run
1329 // under DOS, that program gets run (usually to just print an error message).
1330 // When run under Windows, the loader looks at AddressOfNewExeHeader and uses
1331 // the PE header instead.
1332 uint8_t *buf
= buffer
->getBufferStart();
1333 auto *dos
= reinterpret_cast<dos_header
*>(buf
);
1334 buf
+= sizeof(dos_header
);
1335 dos
->Magic
[0] = 'M';
1336 dos
->Magic
[1] = 'Z';
1337 dos
->UsedBytesInTheLastPage
= dosStubSize
% 512;
1338 dos
->FileSizeInPages
= divideCeil(dosStubSize
, 512);
1339 dos
->HeaderSizeInParagraphs
= sizeof(dos_header
) / 16;
1341 dos
->AddressOfRelocationTable
= sizeof(dos_header
);
1342 dos
->AddressOfNewExeHeader
= dosStubSize
;
1344 // Write DOS program.
1345 memcpy(buf
, dosProgram
, sizeof(dosProgram
));
1346 buf
+= sizeof(dosProgram
);
1349 memcpy(buf
, PEMagic
, sizeof(PEMagic
));
1350 buf
+= sizeof(PEMagic
);
1352 // Write COFF header
1353 auto *coff
= reinterpret_cast<coff_file_header
*>(buf
);
1354 buf
+= sizeof(*coff
);
1355 coff
->Machine
= config
->machine
;
1356 coff
->NumberOfSections
= outputSections
.size();
1357 coff
->Characteristics
= IMAGE_FILE_EXECUTABLE_IMAGE
;
1358 if (config
->largeAddressAware
)
1359 coff
->Characteristics
|= IMAGE_FILE_LARGE_ADDRESS_AWARE
;
1360 if (!config
->is64())
1361 coff
->Characteristics
|= IMAGE_FILE_32BIT_MACHINE
;
1363 coff
->Characteristics
|= IMAGE_FILE_DLL
;
1364 if (config
->driverUponly
)
1365 coff
->Characteristics
|= IMAGE_FILE_UP_SYSTEM_ONLY
;
1366 if (!config
->relocatable
)
1367 coff
->Characteristics
|= IMAGE_FILE_RELOCS_STRIPPED
;
1368 if (config
->swaprunCD
)
1369 coff
->Characteristics
|= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP
;
1370 if (config
->swaprunNet
)
1371 coff
->Characteristics
|= IMAGE_FILE_NET_RUN_FROM_SWAP
;
1372 coff
->SizeOfOptionalHeader
=
1373 sizeof(PEHeaderTy
) + sizeof(data_directory
) * numberOfDataDirectory
;
1376 auto *pe
= reinterpret_cast<PEHeaderTy
*>(buf
);
1378 pe
->Magic
= config
->is64() ? PE32Header::PE32_PLUS
: PE32Header::PE32
;
1380 // If {Major,Minor}LinkerVersion is left at 0.0, then for some
1381 // reason signing the resulting PE file with Authenticode produces a
1382 // signature that fails to validate on Windows 7 (but is OK on 10).
1383 // Set it to 14.0, which is what VS2015 outputs, and which avoids
1385 pe
->MajorLinkerVersion
= 14;
1386 pe
->MinorLinkerVersion
= 0;
1388 pe
->ImageBase
= config
->imageBase
;
1389 pe
->SectionAlignment
= config
->align
;
1390 pe
->FileAlignment
= config
->fileAlign
;
1391 pe
->MajorImageVersion
= config
->majorImageVersion
;
1392 pe
->MinorImageVersion
= config
->minorImageVersion
;
1393 pe
->MajorOperatingSystemVersion
= config
->majorOSVersion
;
1394 pe
->MinorOperatingSystemVersion
= config
->minorOSVersion
;
1395 pe
->MajorSubsystemVersion
= config
->majorSubsystemVersion
;
1396 pe
->MinorSubsystemVersion
= config
->minorSubsystemVersion
;
1397 pe
->Subsystem
= config
->subsystem
;
1398 pe
->SizeOfImage
= sizeOfImage
;
1399 pe
->SizeOfHeaders
= sizeOfHeaders
;
1400 if (!config
->noEntry
) {
1401 Defined
*entry
= cast
<Defined
>(config
->entry
);
1402 pe
->AddressOfEntryPoint
= entry
->getRVA();
1403 // Pointer to thumb code must have the LSB set, so adjust it.
1404 if (config
->machine
== ARMNT
)
1405 pe
->AddressOfEntryPoint
|= 1;
1407 pe
->SizeOfStackReserve
= config
->stackReserve
;
1408 pe
->SizeOfStackCommit
= config
->stackCommit
;
1409 pe
->SizeOfHeapReserve
= config
->heapReserve
;
1410 pe
->SizeOfHeapCommit
= config
->heapCommit
;
1411 if (config
->appContainer
)
1412 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER
;
1413 if (config
->driverWdm
)
1414 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER
;
1415 if (config
->dynamicBase
)
1416 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE
;
1417 if (config
->highEntropyVA
)
1418 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA
;
1419 if (!config
->allowBind
)
1420 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_NO_BIND
;
1421 if (config
->nxCompat
)
1422 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT
;
1423 if (!config
->allowIsolation
)
1424 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION
;
1425 if (config
->guardCF
!= GuardCFLevel::Off
)
1426 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_GUARD_CF
;
1427 if (config
->integrityCheck
)
1428 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY
;
1429 if (setNoSEHCharacteristic
|| config
->noSEH
)
1430 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_NO_SEH
;
1431 if (config
->terminalServerAware
)
1432 pe
->DLLCharacteristics
|= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE
;
1433 pe
->NumberOfRvaAndSize
= numberOfDataDirectory
;
1434 if (textSec
->getVirtualSize()) {
1435 pe
->BaseOfCode
= textSec
->getRVA();
1436 pe
->SizeOfCode
= textSec
->getRawSize();
1438 pe
->SizeOfInitializedData
= getSizeOfInitializedData();
1440 // Write data directory
1441 auto *dir
= reinterpret_cast<data_directory
*>(buf
);
1442 buf
+= sizeof(*dir
) * numberOfDataDirectory
;
1444 dir
[EXPORT_TABLE
].RelativeVirtualAddress
= edataStart
->getRVA();
1445 dir
[EXPORT_TABLE
].Size
=
1446 edataEnd
->getRVA() + edataEnd
->getSize() - edataStart
->getRVA();
1448 if (importTableStart
) {
1449 dir
[IMPORT_TABLE
].RelativeVirtualAddress
= importTableStart
->getRVA();
1450 dir
[IMPORT_TABLE
].Size
= importTableSize
;
1453 dir
[IAT
].RelativeVirtualAddress
= iatStart
->getRVA();
1454 dir
[IAT
].Size
= iatSize
;
1456 if (rsrcSec
->getVirtualSize()) {
1457 dir
[RESOURCE_TABLE
].RelativeVirtualAddress
= rsrcSec
->getRVA();
1458 dir
[RESOURCE_TABLE
].Size
= rsrcSec
->getVirtualSize();
1461 dir
[EXCEPTION_TABLE
].RelativeVirtualAddress
= firstPdata
->getRVA();
1462 dir
[EXCEPTION_TABLE
].Size
=
1463 lastPdata
->getRVA() + lastPdata
->getSize() - firstPdata
->getRVA();
1465 if (relocSec
->getVirtualSize()) {
1466 dir
[BASE_RELOCATION_TABLE
].RelativeVirtualAddress
= relocSec
->getRVA();
1467 dir
[BASE_RELOCATION_TABLE
].Size
= relocSec
->getVirtualSize();
1469 if (Symbol
*sym
= symtab
->findUnderscore("_tls_used")) {
1470 if (Defined
*b
= dyn_cast
<Defined
>(sym
)) {
1471 dir
[TLS_TABLE
].RelativeVirtualAddress
= b
->getRVA();
1472 dir
[TLS_TABLE
].Size
= config
->is64()
1473 ? sizeof(object::coff_tls_directory64
)
1474 : sizeof(object::coff_tls_directory32
);
1477 if (debugDirectory
) {
1478 dir
[DEBUG_DIRECTORY
].RelativeVirtualAddress
= debugDirectory
->getRVA();
1479 dir
[DEBUG_DIRECTORY
].Size
= debugDirectory
->getSize();
1481 if (Symbol
*sym
= symtab
->findUnderscore("_load_config_used")) {
1482 if (auto *b
= dyn_cast
<DefinedRegular
>(sym
)) {
1483 SectionChunk
*sc
= b
->getChunk();
1484 assert(b
->getRVA() >= sc
->getRVA());
1485 uint64_t offsetInChunk
= b
->getRVA() - sc
->getRVA();
1486 if (!sc
->hasData
|| offsetInChunk
+ 4 > sc
->getSize())
1487 fatal("_load_config_used is malformed");
1489 ArrayRef
<uint8_t> secContents
= sc
->getContents();
1490 uint32_t loadConfigSize
=
1491 *reinterpret_cast<const ulittle32_t
*>(&secContents
[offsetInChunk
]);
1492 if (offsetInChunk
+ loadConfigSize
> sc
->getSize())
1493 fatal("_load_config_used is too large");
1494 dir
[LOAD_CONFIG_TABLE
].RelativeVirtualAddress
= b
->getRVA();
1495 dir
[LOAD_CONFIG_TABLE
].Size
= loadConfigSize
;
1498 if (!delayIdata
.empty()) {
1499 dir
[DELAY_IMPORT_DESCRIPTOR
].RelativeVirtualAddress
=
1500 delayIdata
.getDirRVA();
1501 dir
[DELAY_IMPORT_DESCRIPTOR
].Size
= delayIdata
.getDirSize();
1504 // Write section table
1505 for (OutputSection
*sec
: outputSections
) {
1506 sec
->writeHeaderTo(buf
);
1507 buf
+= sizeof(coff_section
);
1509 sectionTable
= ArrayRef
<uint8_t>(
1510 buf
- outputSections
.size() * sizeof(coff_section
), buf
);
1512 if (outputSymtab
.empty() && strtab
.empty())
1515 coff
->PointerToSymbolTable
= pointerToSymbolTable
;
1516 uint32_t numberOfSymbols
= outputSymtab
.size();
1517 coff
->NumberOfSymbols
= numberOfSymbols
;
1518 auto *symbolTable
= reinterpret_cast<coff_symbol16
*>(
1519 buffer
->getBufferStart() + coff
->PointerToSymbolTable
);
1520 for (size_t i
= 0; i
!= numberOfSymbols
; ++i
)
1521 symbolTable
[i
] = outputSymtab
[i
];
1522 // Create the string table, it follows immediately after the symbol table.
1523 // The first 4 bytes is length including itself.
1524 buf
= reinterpret_cast<uint8_t *>(&symbolTable
[numberOfSymbols
]);
1525 write32le(buf
, strtab
.size() + 4);
1526 if (!strtab
.empty())
1527 memcpy(buf
+ 4, strtab
.data(), strtab
.size());
1530 void Writer::openFile(StringRef path
) {
1532 FileOutputBuffer::create(path
, fileSize
, FileOutputBuffer::F_executable
),
1533 "failed to open " + path
);
1536 void Writer::createSEHTable() {
1537 SymbolRVASet handlers
;
1538 for (ObjFile
*file
: ObjFile::instances
) {
1539 if (!file
->hasSafeSEH())
1540 error("/safeseh: " + file
->getName() + " is not compatible with SEH");
1541 markSymbolsForRVATable(file
, file
->getSXDataChunks(), handlers
);
1544 // Set the "no SEH" characteristic if there really were no handlers, or if
1545 // there is no load config object to point to the table of handlers.
1546 setNoSEHCharacteristic
=
1547 handlers
.empty() || !symtab
->findUnderscore("_load_config_used");
1549 maybeAddRVATable(std::move(handlers
), "__safe_se_handler_table",
1550 "__safe_se_handler_count");
1553 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set
1554 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the
1555 // symbol's offset into that Chunk.
1556 static void addSymbolToRVASet(SymbolRVASet
&rvaSet
, Defined
*s
) {
1557 Chunk
*c
= s
->getChunk();
1558 if (auto *sc
= dyn_cast
<SectionChunk
>(c
))
1559 c
= sc
->repl
; // Look through ICF replacement.
1560 uint32_t off
= s
->getRVA() - (c
? c
->getRVA() : 0);
1561 rvaSet
.insert({c
, off
});
1564 // Given a symbol, add it to the GFIDs table if it is a live, defined, function
1565 // symbol in an executable section.
1566 static void maybeAddAddressTakenFunction(SymbolRVASet
&addressTakenSyms
,
1571 switch (s
->kind()) {
1572 case Symbol::DefinedLocalImportKind
:
1573 case Symbol::DefinedImportDataKind
:
1574 // Defines an __imp_ pointer, so it is data, so it is ignored.
1576 case Symbol::DefinedCommonKind
:
1577 // Common is always data, so it is ignored.
1579 case Symbol::DefinedAbsoluteKind
:
1580 case Symbol::DefinedSyntheticKind
:
1581 // Absolute is never code, synthetic generally isn't and usually isn't
1584 case Symbol::LazyArchiveKind
:
1585 case Symbol::LazyObjectKind
:
1586 case Symbol::LazyDLLSymbolKind
:
1587 case Symbol::UndefinedKind
:
1588 // Undefined symbols resolve to zero, so they don't have an RVA. Lazy
1589 // symbols shouldn't have relocations.
1592 case Symbol::DefinedImportThunkKind
:
1593 // Thunks are always code, include them.
1594 addSymbolToRVASet(addressTakenSyms
, cast
<Defined
>(s
));
1597 case Symbol::DefinedRegularKind
: {
1598 // This is a regular, defined, symbol from a COFF file. Mark the symbol as
1599 // address taken if the symbol type is function and it's in an executable
1601 auto *d
= cast
<DefinedRegular
>(s
);
1602 if (d
->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION
) {
1603 SectionChunk
*sc
= dyn_cast
<SectionChunk
>(d
->getChunk());
1604 if (sc
&& sc
->live
&&
1605 sc
->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE
)
1606 addSymbolToRVASet(addressTakenSyms
, d
);
1613 // Visit all relocations from all section contributions of this object file and
1614 // mark the relocation target as address-taken.
1615 static void markSymbolsWithRelocations(ObjFile
*file
,
1616 SymbolRVASet
&usedSymbols
) {
1617 for (Chunk
*c
: file
->getChunks()) {
1618 // We only care about live section chunks. Common chunks and other chunks
1619 // don't generally contain relocations.
1620 SectionChunk
*sc
= dyn_cast
<SectionChunk
>(c
);
1621 if (!sc
|| !sc
->live
)
1624 for (const coff_relocation
&reloc
: sc
->getRelocs()) {
1625 if (config
->machine
== I386
&& reloc
.Type
== COFF::IMAGE_REL_I386_REL32
)
1626 // Ignore relative relocations on x86. On x86_64 they can't be ignored
1627 // since they're also used to compute absolute addresses.
1630 Symbol
*ref
= sc
->file
->getSymbol(reloc
.SymbolTableIndex
);
1631 maybeAddAddressTakenFunction(usedSymbols
, ref
);
1636 // Create the guard function id table. This is a table of RVAs of all
1637 // address-taken functions. It is sorted and uniqued, just like the safe SEH
1639 void Writer::createGuardCFTables() {
1640 SymbolRVASet addressTakenSyms
;
1641 SymbolRVASet giatsRVASet
;
1642 std::vector
<Symbol
*> giatsSymbols
;
1643 SymbolRVASet longJmpTargets
;
1644 SymbolRVASet ehContTargets
;
1645 for (ObjFile
*file
: ObjFile::instances
) {
1646 // If the object was compiled with /guard:cf, the address taken symbols
1647 // are in .gfids$y sections, the longjmp targets are in .gljmp$y sections,
1648 // and ehcont targets are in .gehcont$y sections. If the object was not
1649 // compiled with /guard:cf, we assume there were no setjmp and ehcont
1650 // targets, and that all code symbols with relocations are possibly
1652 if (file
->hasGuardCF()) {
1653 markSymbolsForRVATable(file
, file
->getGuardFidChunks(), addressTakenSyms
);
1654 markSymbolsForRVATable(file
, file
->getGuardIATChunks(), giatsRVASet
);
1655 getSymbolsFromSections(file
, file
->getGuardIATChunks(), giatsSymbols
);
1656 markSymbolsForRVATable(file
, file
->getGuardLJmpChunks(), longJmpTargets
);
1657 markSymbolsForRVATable(file
, file
->getGuardEHContChunks(), ehContTargets
);
1659 markSymbolsWithRelocations(file
, addressTakenSyms
);
1663 // Mark the image entry as address-taken.
1665 maybeAddAddressTakenFunction(addressTakenSyms
, config
->entry
);
1667 // Mark exported symbols in executable sections as address-taken.
1668 for (Export
&e
: config
->exports
)
1669 maybeAddAddressTakenFunction(addressTakenSyms
, e
.sym
);
1671 // For each entry in the .giats table, check if it has a corresponding load
1672 // thunk (e.g. because the DLL that defines it will be delay-loaded) and, if
1673 // so, add the load thunk to the address taken (.gfids) table.
1674 for (Symbol
*s
: giatsSymbols
) {
1675 if (auto *di
= dyn_cast
<DefinedImportData
>(s
)) {
1676 if (di
->loadThunkSym
)
1677 addSymbolToRVASet(addressTakenSyms
, di
->loadThunkSym
);
1681 // Ensure sections referenced in the gfid table are 16-byte aligned.
1682 for (const ChunkAndOffset
&c
: addressTakenSyms
)
1683 if (c
.inputChunk
->getAlignment() < 16)
1684 c
.inputChunk
->setAlignment(16);
1686 maybeAddRVATable(std::move(addressTakenSyms
), "__guard_fids_table",
1687 "__guard_fids_count");
1689 // Add the Guard Address Taken IAT Entry Table (.giats).
1690 maybeAddRVATable(std::move(giatsRVASet
), "__guard_iat_table",
1691 "__guard_iat_count");
1693 // Add the longjmp target table unless the user told us not to.
1694 if (config
->guardCF
& GuardCFLevel::LongJmp
)
1695 maybeAddRVATable(std::move(longJmpTargets
), "__guard_longjmp_table",
1696 "__guard_longjmp_count");
1698 // Add the ehcont target table unless the user told us not to.
1699 if (config
->guardCF
& GuardCFLevel::EHCont
)
1700 maybeAddRVATable(std::move(ehContTargets
), "__guard_eh_cont_table",
1701 "__guard_eh_cont_count", true);
1703 // Set __guard_flags, which will be used in the load config to indicate that
1704 // /guard:cf was enabled.
1705 uint32_t guardFlags
= uint32_t(coff_guard_flags::CFInstrumented
) |
1706 uint32_t(coff_guard_flags::HasFidTable
);
1707 if (config
->guardCF
& GuardCFLevel::LongJmp
)
1708 guardFlags
|= uint32_t(coff_guard_flags::HasLongJmpTable
);
1709 if (config
->guardCF
& GuardCFLevel::EHCont
)
1710 guardFlags
|= uint32_t(coff_guard_flags::HasEHContTable
);
1711 Symbol
*flagSym
= symtab
->findUnderscore("__guard_flags");
1712 cast
<DefinedAbsolute
>(flagSym
)->setVA(guardFlags
);
1715 // Take a list of input sections containing symbol table indices and add those
1716 // symbols to a vector. The challenge is that symbol RVAs are not known and
1717 // depend on the table size, so we can't directly build a set of integers.
1718 void Writer::getSymbolsFromSections(ObjFile
*file
,
1719 ArrayRef
<SectionChunk
*> symIdxChunks
,
1720 std::vector
<Symbol
*> &symbols
) {
1721 for (SectionChunk
*c
: symIdxChunks
) {
1722 // Skip sections discarded by linker GC. This comes up when a .gfids section
1723 // is associated with something like a vtable and the vtable is discarded.
1724 // In this case, the associated gfids section is discarded, and we don't
1725 // mark the virtual member functions as address-taken by the vtable.
1729 // Validate that the contents look like symbol table indices.
1730 ArrayRef
<uint8_t> data
= c
->getContents();
1731 if (data
.size() % 4 != 0) {
1732 warn("ignoring " + c
->getSectionName() +
1733 " symbol table index section in object " + toString(file
));
1737 // Read each symbol table index and check if that symbol was included in the
1738 // final link. If so, add it to the vector of symbols.
1739 ArrayRef
<ulittle32_t
> symIndices(
1740 reinterpret_cast<const ulittle32_t
*>(data
.data()), data
.size() / 4);
1741 ArrayRef
<Symbol
*> objSymbols
= file
->getSymbols();
1742 for (uint32_t symIndex
: symIndices
) {
1743 if (symIndex
>= objSymbols
.size()) {
1744 warn("ignoring invalid symbol table index in section " +
1745 c
->getSectionName() + " in object " + toString(file
));
1748 if (Symbol
*s
= objSymbols
[symIndex
]) {
1750 symbols
.push_back(cast
<Symbol
>(s
));
1756 // Take a list of input sections containing symbol table indices and add those
1757 // symbols to an RVA table.
1758 void Writer::markSymbolsForRVATable(ObjFile
*file
,
1759 ArrayRef
<SectionChunk
*> symIdxChunks
,
1760 SymbolRVASet
&tableSymbols
) {
1761 std::vector
<Symbol
*> syms
;
1762 getSymbolsFromSections(file
, symIdxChunks
, syms
);
1764 for (Symbol
*s
: syms
)
1765 addSymbolToRVASet(tableSymbols
, cast
<Defined
>(s
));
1768 // Replace the absolute table symbol with a synthetic symbol pointing to
1769 // tableChunk so that we can emit base relocations for it and resolve section
1770 // relative relocations.
1771 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols
, StringRef tableSym
,
1772 StringRef countSym
, bool hasFlag
) {
1773 if (tableSymbols
.empty())
1776 NonSectionChunk
*tableChunk
;
1778 tableChunk
= make
<RVAFlagTableChunk
>(std::move(tableSymbols
));
1780 tableChunk
= make
<RVATableChunk
>(std::move(tableSymbols
));
1781 rdataSec
->addChunk(tableChunk
);
1783 Symbol
*t
= symtab
->findUnderscore(tableSym
);
1784 Symbol
*c
= symtab
->findUnderscore(countSym
);
1785 replaceSymbol
<DefinedSynthetic
>(t
, t
->getName(), tableChunk
);
1786 cast
<DefinedAbsolute
>(c
)->setVA(tableChunk
->getSize() / (hasFlag
? 5 : 4));
1789 // MinGW specific. Gather all relocations that are imported from a DLL even
1790 // though the code didn't expect it to, produce the table that the runtime
1791 // uses for fixing them up, and provide the synthetic symbols that the
1792 // runtime uses for finding the table.
1793 void Writer::createRuntimePseudoRelocs() {
1794 std::vector
<RuntimePseudoReloc
> rels
;
1796 for (Chunk
*c
: symtab
->getChunks()) {
1797 auto *sc
= dyn_cast
<SectionChunk
>(c
);
1798 if (!sc
|| !sc
->live
)
1800 sc
->getRuntimePseudoRelocs(rels
);
1803 if (!config
->pseudoRelocs
) {
1804 // Not writing any pseudo relocs; if some were needed, error out and
1805 // indicate what required them.
1806 for (const RuntimePseudoReloc
&rpr
: rels
)
1807 error("automatic dllimport of " + rpr
.sym
->getName() + " in " +
1808 toString(rpr
.target
->file
) + " requires pseudo relocations");
1813 log("Writing " + Twine(rels
.size()) + " runtime pseudo relocations");
1814 PseudoRelocTableChunk
*table
= make
<PseudoRelocTableChunk
>(rels
);
1815 rdataSec
->addChunk(table
);
1816 EmptyChunk
*endOfList
= make
<EmptyChunk
>();
1817 rdataSec
->addChunk(endOfList
);
1819 Symbol
*headSym
= symtab
->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__");
1820 Symbol
*endSym
= symtab
->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__");
1821 replaceSymbol
<DefinedSynthetic
>(headSym
, headSym
->getName(), table
);
1822 replaceSymbol
<DefinedSynthetic
>(endSym
, endSym
->getName(), endOfList
);
1826 // The MinGW .ctors and .dtors lists have sentinels at each end;
1827 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end.
1828 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__
1829 // and __DTOR_LIST__ respectively.
1830 void Writer::insertCtorDtorSymbols() {
1831 AbsolutePointerChunk
*ctorListHead
= make
<AbsolutePointerChunk
>(-1);
1832 AbsolutePointerChunk
*ctorListEnd
= make
<AbsolutePointerChunk
>(0);
1833 AbsolutePointerChunk
*dtorListHead
= make
<AbsolutePointerChunk
>(-1);
1834 AbsolutePointerChunk
*dtorListEnd
= make
<AbsolutePointerChunk
>(0);
1835 ctorsSec
->insertChunkAtStart(ctorListHead
);
1836 ctorsSec
->addChunk(ctorListEnd
);
1837 dtorsSec
->insertChunkAtStart(dtorListHead
);
1838 dtorsSec
->addChunk(dtorListEnd
);
1840 Symbol
*ctorListSym
= symtab
->findUnderscore("__CTOR_LIST__");
1841 Symbol
*dtorListSym
= symtab
->findUnderscore("__DTOR_LIST__");
1842 replaceSymbol
<DefinedSynthetic
>(ctorListSym
, ctorListSym
->getName(),
1844 replaceSymbol
<DefinedSynthetic
>(dtorListSym
, dtorListSym
->getName(),
1848 // Handles /section options to allow users to overwrite
1849 // section attributes.
1850 void Writer::setSectionPermissions() {
1851 for (auto &p
: config
->section
) {
1852 StringRef name
= p
.first
;
1853 uint32_t perm
= p
.second
;
1854 for (OutputSection
*sec
: outputSections
)
1855 if (sec
->name
== name
)
1856 sec
->setPermissions(perm
);
1860 // Write section contents to a mmap'ed file.
1861 void Writer::writeSections() {
1862 // Record the number of sections to apply section index relocations
1863 // against absolute symbols. See applySecIdx in Chunks.cpp..
1864 DefinedAbsolute::numOutputSections
= outputSections
.size();
1866 uint8_t *buf
= buffer
->getBufferStart();
1867 for (OutputSection
*sec
: outputSections
) {
1868 uint8_t *secBuf
= buf
+ sec
->getFileOff();
1869 // Fill gaps between functions in .text with INT3 instructions
1870 // instead of leaving as NUL bytes (which can be interpreted as
1871 // ADD instructions).
1872 if (sec
->header
.Characteristics
& IMAGE_SCN_CNT_CODE
)
1873 memset(secBuf
, 0xCC, sec
->getRawSize());
1874 parallelForEach(sec
->chunks
, [&](Chunk
*c
) {
1875 c
->writeTo(secBuf
+ c
->getRVA() - sec
->getRVA());
1880 void Writer::writeBuildId() {
1881 // There are two important parts to the build ID.
1882 // 1) If building with debug info, the COFF debug directory contains a
1883 // timestamp as well as a Guid and Age of the PDB.
1884 // 2) In all cases, the PE COFF file header also contains a timestamp.
1885 // For reproducibility, instead of a timestamp we want to use a hash of the
1887 if (config
->debug
) {
1888 assert(buildId
&& "BuildId is not set!");
1889 // BuildId->BuildId was filled in when the PDB was written.
1892 // At this point the only fields in the COFF file which remain unset are the
1893 // "timestamp" in the COFF file header, and the ones in the coff debug
1894 // directory. Now we can hash the file and write that hash to the various
1895 // timestamp fields in the file.
1896 StringRef
outputFileData(
1897 reinterpret_cast<const char *>(buffer
->getBufferStart()),
1898 buffer
->getBufferSize());
1900 uint32_t timestamp
= config
->timestamp
;
1902 bool generateSyntheticBuildId
=
1903 config
->mingw
&& config
->debug
&& config
->pdbPath
.empty();
1905 if (config
->repro
|| generateSyntheticBuildId
)
1906 hash
= xxHash64(outputFileData
);
1909 timestamp
= static_cast<uint32_t>(hash
);
1911 if (generateSyntheticBuildId
) {
1912 // For MinGW builds without a PDB file, we still generate a build id
1913 // to allow associating a crash dump to the executable.
1914 buildId
->buildId
->PDB70
.CVSignature
= OMF::Signature::PDB70
;
1915 buildId
->buildId
->PDB70
.Age
= 1;
1916 memcpy(buildId
->buildId
->PDB70
.Signature
, &hash
, 8);
1917 // xxhash only gives us 8 bytes, so put some fixed data in the other half.
1918 memcpy(&buildId
->buildId
->PDB70
.Signature
[8], "LLD PDB.", 8);
1922 debugDirectory
->setTimeDateStamp(timestamp
);
1924 uint8_t *buf
= buffer
->getBufferStart();
1925 buf
+= dosStubSize
+ sizeof(PEMagic
);
1926 object::coff_file_header
*coffHeader
=
1927 reinterpret_cast<coff_file_header
*>(buf
);
1928 coffHeader
->TimeDateStamp
= timestamp
;
1931 // Sort .pdata section contents according to PE/COFF spec 5.5.
1932 void Writer::sortExceptionTable() {
1935 // We assume .pdata contains function table entries only.
1936 auto bufAddr
= [&](Chunk
*c
) {
1937 OutputSection
*os
= c
->getOutputSection();
1938 return buffer
->getBufferStart() + os
->getFileOff() + c
->getRVA() -
1941 uint8_t *begin
= bufAddr(firstPdata
);
1942 uint8_t *end
= bufAddr(lastPdata
) + lastPdata
->getSize();
1943 if (config
->machine
== AMD64
) {
1944 struct Entry
{ ulittle32_t begin
, end
, unwind
; };
1945 if ((end
- begin
) % sizeof(Entry
) != 0) {
1946 fatal("unexpected .pdata size: " + Twine(end
- begin
) +
1947 " is not a multiple of " + Twine(sizeof(Entry
)));
1950 MutableArrayRef
<Entry
>((Entry
*)begin
, (Entry
*)end
),
1951 [](const Entry
&a
, const Entry
&b
) { return a
.begin
< b
.begin
; });
1954 if (config
->machine
== ARMNT
|| config
->machine
== ARM64
) {
1955 struct Entry
{ ulittle32_t begin
, unwind
; };
1956 if ((end
- begin
) % sizeof(Entry
) != 0) {
1957 fatal("unexpected .pdata size: " + Twine(end
- begin
) +
1958 " is not a multiple of " + Twine(sizeof(Entry
)));
1961 MutableArrayRef
<Entry
>((Entry
*)begin
, (Entry
*)end
),
1962 [](const Entry
&a
, const Entry
&b
) { return a
.begin
< b
.begin
; });
1965 lld::errs() << "warning: don't know how to handle .pdata.\n";
1968 // The CRT section contains, among other things, the array of function
1969 // pointers that initialize every global variable that is not trivially
1970 // constructed. The CRT calls them one after the other prior to invoking
1973 // As per C++ spec, 3.6.2/2.3,
1974 // "Variables with ordered initialization defined within a single
1975 // translation unit shall be initialized in the order of their definitions
1976 // in the translation unit"
1978 // It is therefore critical to sort the chunks containing the function
1979 // pointers in the order that they are listed in the object file (top to
1980 // bottom), otherwise global objects might not be initialized in the
1982 void Writer::sortCRTSectionChunks(std::vector
<Chunk
*> &chunks
) {
1983 auto sectionChunkOrder
= [](const Chunk
*a
, const Chunk
*b
) {
1984 auto sa
= dyn_cast
<SectionChunk
>(a
);
1985 auto sb
= dyn_cast
<SectionChunk
>(b
);
1986 assert(sa
&& sb
&& "Non-section chunks in CRT section!");
1988 StringRef sAObj
= sa
->file
->mb
.getBufferIdentifier();
1989 StringRef sBObj
= sb
->file
->mb
.getBufferIdentifier();
1991 return sAObj
== sBObj
&& sa
->getSectionNumber() < sb
->getSectionNumber();
1993 llvm::stable_sort(chunks
, sectionChunkOrder
);
1995 if (config
->verbose
) {
1996 for (auto &c
: chunks
) {
1997 auto sc
= dyn_cast
<SectionChunk
>(c
);
1998 log(" " + sc
->file
->mb
.getBufferIdentifier().str() +
1999 ", SectionID: " + Twine(sc
->getSectionNumber()));
2004 OutputSection
*Writer::findSection(StringRef name
) {
2005 for (OutputSection
*sec
: outputSections
)
2006 if (sec
->name
== name
)
2011 uint32_t Writer::getSizeOfInitializedData() {
2013 for (OutputSection
*s
: outputSections
)
2014 if (s
->header
.Characteristics
& IMAGE_SCN_CNT_INITIALIZED_DATA
)
2015 res
+= s
->getRawSize();
2019 // Add base relocations to .reloc section.
2020 void Writer::addBaserels() {
2021 if (!config
->relocatable
)
2023 relocSec
->chunks
.clear();
2024 std::vector
<Baserel
> v
;
2025 for (OutputSection
*sec
: outputSections
) {
2026 if (sec
->header
.Characteristics
& IMAGE_SCN_MEM_DISCARDABLE
)
2028 // Collect all locations for base relocations.
2029 for (Chunk
*c
: sec
->chunks
)
2031 // Add the addresses to .reloc section.
2033 addBaserelBlocks(v
);
2038 // Add addresses to .reloc section. Note that addresses are grouped by page.
2039 void Writer::addBaserelBlocks(std::vector
<Baserel
> &v
) {
2040 const uint32_t mask
= ~uint32_t(pageSize
- 1);
2041 uint32_t page
= v
[0].rva
& mask
;
2042 size_t i
= 0, j
= 1;
2043 for (size_t e
= v
.size(); j
< e
; ++j
) {
2044 uint32_t p
= v
[j
].rva
& mask
;
2047 relocSec
->addChunk(make
<BaserelChunk
>(page
, &v
[i
], &v
[0] + j
));
2053 relocSec
->addChunk(make
<BaserelChunk
>(page
, &v
[i
], &v
[0] + j
));
2056 PartialSection
*Writer::createPartialSection(StringRef name
,
2057 uint32_t outChars
) {
2058 PartialSection
*&pSec
= partialSections
[{name
, outChars
}];
2061 pSec
= make
<PartialSection
>(name
, outChars
);
2065 PartialSection
*Writer::findPartialSection(StringRef name
, uint32_t outChars
) {
2066 auto it
= partialSections
.find({name
, outChars
});
2067 if (it
!= partialSections
.end())
2072 void Writer::fixTlsAlignment() {
2074 dyn_cast_or_null
<Defined
>(symtab
->findUnderscore("_tls_used"));
2078 OutputSection
*sec
= tlsSym
->getChunk()->getOutputSection();
2079 assert(sec
&& tlsSym
->getRVA() >= sec
->getRVA() &&
2080 "no output section for _tls_used");
2082 uint8_t *secBuf
= buffer
->getBufferStart() + sec
->getFileOff();
2083 uint64_t tlsOffset
= tlsSym
->getRVA() - sec
->getRVA();
2084 uint64_t directorySize
= config
->is64()
2085 ? sizeof(object::coff_tls_directory64
)
2086 : sizeof(object::coff_tls_directory32
);
2088 if (tlsOffset
+ directorySize
> sec
->getRawSize())
2089 fatal("_tls_used sym is malformed");
2091 if (config
->is64()) {
2092 object::coff_tls_directory64
*tlsDir
=
2093 reinterpret_cast<object::coff_tls_directory64
*>(&secBuf
[tlsOffset
]);
2094 tlsDir
->setAlignment(tlsAlignment
);
2096 object::coff_tls_directory32
*tlsDir
=
2097 reinterpret_cast<object::coff_tls_directory32
*>(&secBuf
[tlsOffset
]);
2098 tlsDir
->setAlignment(tlsAlignment
);