[DAGCombiner] Add target hook function to decide folding (mul (add x, c1), c2)
[llvm-project.git] / lld / COFF / Writer.cpp
blob37cbe2bb96a80fda113d81eaf6d25be92f59c716
1 //===- Writer.cpp ---------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "Writer.h"
10 #include "CallGraphSort.h"
11 #include "Config.h"
12 #include "DLL.h"
13 #include "InputFiles.h"
14 #include "LLDMapFile.h"
15 #include "MapFile.h"
16 #include "PDB.h"
17 #include "SymbolTable.h"
18 #include "Symbols.h"
19 #include "lld/Common/ErrorHandler.h"
20 #include "lld/Common/Memory.h"
21 #include "lld/Common/Timer.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/Support/BinaryStreamReader.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/Endian.h"
29 #include "llvm/Support/FileOutputBuffer.h"
30 #include "llvm/Support/Parallel.h"
31 #include "llvm/Support/Path.h"
32 #include "llvm/Support/RandomNumberGenerator.h"
33 #include "llvm/Support/xxhash.h"
34 #include <algorithm>
35 #include <cstdio>
36 #include <map>
37 #include <memory>
38 #include <utility>
40 using namespace llvm;
41 using namespace llvm::COFF;
42 using namespace llvm::object;
43 using namespace llvm::support;
44 using namespace llvm::support::endian;
45 using namespace lld;
46 using namespace lld::coff;
48 /* To re-generate DOSProgram:
49 $ cat > /tmp/DOSProgram.asm
50 org 0
51 ; Copy cs to ds.
52 push cs
53 pop ds
54 ; Point ds:dx at the $-terminated string.
55 mov dx, str
56 ; Int 21/AH=09h: Write string to standard output.
57 mov ah, 0x9
58 int 0x21
59 ; Int 21/AH=4Ch: Exit with return code (in AL).
60 mov ax, 0x4C01
61 int 0x21
62 str:
63 db 'This program cannot be run in DOS mode.$'
64 align 8, db 0
65 $ nasm -fbin /tmp/DOSProgram.asm -o /tmp/DOSProgram.bin
66 $ xxd -i /tmp/DOSProgram.bin
68 static unsigned char dosProgram[] = {
69 0x0e, 0x1f, 0xba, 0x0e, 0x00, 0xb4, 0x09, 0xcd, 0x21, 0xb8, 0x01, 0x4c,
70 0xcd, 0x21, 0x54, 0x68, 0x69, 0x73, 0x20, 0x70, 0x72, 0x6f, 0x67, 0x72,
71 0x61, 0x6d, 0x20, 0x63, 0x61, 0x6e, 0x6e, 0x6f, 0x74, 0x20, 0x62, 0x65,
72 0x20, 0x72, 0x75, 0x6e, 0x20, 0x69, 0x6e, 0x20, 0x44, 0x4f, 0x53, 0x20,
73 0x6d, 0x6f, 0x64, 0x65, 0x2e, 0x24, 0x00, 0x00
75 static_assert(sizeof(dosProgram) % 8 == 0,
76 "DOSProgram size must be multiple of 8");
78 static const int dosStubSize = sizeof(dos_header) + sizeof(dosProgram);
79 static_assert(dosStubSize % 8 == 0, "DOSStub size must be multiple of 8");
81 static const int numberOfDataDirectory = 16;
83 // Global vector of all output sections. After output sections are finalized,
84 // this can be indexed by Chunk::getOutputSection.
85 static std::vector<OutputSection *> outputSections;
87 OutputSection *Chunk::getOutputSection() const {
88 return osidx == 0 ? nullptr : outputSections[osidx - 1];
91 void OutputSection::clear() { outputSections.clear(); }
93 namespace {
95 class DebugDirectoryChunk : public NonSectionChunk {
96 public:
97 DebugDirectoryChunk(const std::vector<std::pair<COFF::DebugType, Chunk *>> &r,
98 bool writeRepro)
99 : records(r), writeRepro(writeRepro) {}
101 size_t getSize() const override {
102 return (records.size() + int(writeRepro)) * sizeof(debug_directory);
105 void writeTo(uint8_t *b) const override {
106 auto *d = reinterpret_cast<debug_directory *>(b);
108 for (const std::pair<COFF::DebugType, Chunk *>& record : records) {
109 Chunk *c = record.second;
110 OutputSection *os = c->getOutputSection();
111 uint64_t offs = os->getFileOff() + (c->getRVA() - os->getRVA());
112 fillEntry(d, record.first, c->getSize(), c->getRVA(), offs);
113 ++d;
116 if (writeRepro) {
117 // FIXME: The COFF spec allows either a 0-sized entry to just say
118 // "the timestamp field is really a hash", or a 4-byte size field
119 // followed by that many bytes containing a longer hash (with the
120 // lowest 4 bytes usually being the timestamp in little-endian order).
121 // Consider storing the full 8 bytes computed by xxHash64 here.
122 fillEntry(d, COFF::IMAGE_DEBUG_TYPE_REPRO, 0, 0, 0);
126 void setTimeDateStamp(uint32_t timeDateStamp) {
127 for (support::ulittle32_t *tds : timeDateStamps)
128 *tds = timeDateStamp;
131 private:
132 void fillEntry(debug_directory *d, COFF::DebugType debugType, size_t size,
133 uint64_t rva, uint64_t offs) const {
134 d->Characteristics = 0;
135 d->TimeDateStamp = 0;
136 d->MajorVersion = 0;
137 d->MinorVersion = 0;
138 d->Type = debugType;
139 d->SizeOfData = size;
140 d->AddressOfRawData = rva;
141 d->PointerToRawData = offs;
143 timeDateStamps.push_back(&d->TimeDateStamp);
146 mutable std::vector<support::ulittle32_t *> timeDateStamps;
147 const std::vector<std::pair<COFF::DebugType, Chunk *>> &records;
148 bool writeRepro;
151 class CVDebugRecordChunk : public NonSectionChunk {
152 public:
153 size_t getSize() const override {
154 return sizeof(codeview::DebugInfo) + config->pdbAltPath.size() + 1;
157 void writeTo(uint8_t *b) const override {
158 // Save off the DebugInfo entry to backfill the file signature (build id)
159 // in Writer::writeBuildId
160 buildId = reinterpret_cast<codeview::DebugInfo *>(b);
162 // variable sized field (PDB Path)
163 char *p = reinterpret_cast<char *>(b + sizeof(*buildId));
164 if (!config->pdbAltPath.empty())
165 memcpy(p, config->pdbAltPath.data(), config->pdbAltPath.size());
166 p[config->pdbAltPath.size()] = '\0';
169 mutable codeview::DebugInfo *buildId = nullptr;
172 class ExtendedDllCharacteristicsChunk : public NonSectionChunk {
173 public:
174 ExtendedDllCharacteristicsChunk(uint32_t c) : characteristics(c) {}
176 size_t getSize() const override { return 4; }
178 void writeTo(uint8_t *buf) const override { write32le(buf, characteristics); }
180 uint32_t characteristics = 0;
183 // PartialSection represents a group of chunks that contribute to an
184 // OutputSection. Collating a collection of PartialSections of same name and
185 // characteristics constitutes the OutputSection.
186 class PartialSectionKey {
187 public:
188 StringRef name;
189 unsigned characteristics;
191 bool operator<(const PartialSectionKey &other) const {
192 int c = name.compare(other.name);
193 if (c == 1)
194 return false;
195 if (c == 0)
196 return characteristics < other.characteristics;
197 return true;
201 // The writer writes a SymbolTable result to a file.
202 class Writer {
203 public:
204 Writer() : buffer(errorHandler().outputBuffer) {}
205 void run();
207 private:
208 void createSections();
209 void createMiscChunks();
210 void createImportTables();
211 void appendImportThunks();
212 void locateImportTables();
213 void createExportTable();
214 void mergeSections();
215 void removeUnusedSections();
216 void assignAddresses();
217 void finalizeAddresses();
218 void removeEmptySections();
219 void assignOutputSectionIndices();
220 void createSymbolAndStringTable();
221 void openFile(StringRef outputPath);
222 template <typename PEHeaderTy> void writeHeader();
223 void createSEHTable();
224 void createRuntimePseudoRelocs();
225 void insertCtorDtorSymbols();
226 void createGuardCFTables();
227 void markSymbolsForRVATable(ObjFile *file,
228 ArrayRef<SectionChunk *> symIdxChunks,
229 SymbolRVASet &tableSymbols);
230 void getSymbolsFromSections(ObjFile *file,
231 ArrayRef<SectionChunk *> symIdxChunks,
232 std::vector<Symbol *> &symbols);
233 void maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
234 StringRef countSym, bool hasFlag=false);
235 void setSectionPermissions();
236 void writeSections();
237 void writeBuildId();
238 void sortSections();
239 void sortExceptionTable();
240 void sortCRTSectionChunks(std::vector<Chunk *> &chunks);
241 void addSyntheticIdata();
242 void fixPartialSectionChars(StringRef name, uint32_t chars);
243 bool fixGnuImportChunks();
244 void fixTlsAlignment();
245 PartialSection *createPartialSection(StringRef name, uint32_t outChars);
246 PartialSection *findPartialSection(StringRef name, uint32_t outChars);
248 llvm::Optional<coff_symbol16> createSymbol(Defined *d);
249 size_t addEntryToStringTable(StringRef str);
251 OutputSection *findSection(StringRef name);
252 void addBaserels();
253 void addBaserelBlocks(std::vector<Baserel> &v);
255 uint32_t getSizeOfInitializedData();
257 std::unique_ptr<FileOutputBuffer> &buffer;
258 std::map<PartialSectionKey, PartialSection *> partialSections;
259 std::vector<char> strtab;
260 std::vector<llvm::object::coff_symbol16> outputSymtab;
261 IdataContents idata;
262 Chunk *importTableStart = nullptr;
263 uint64_t importTableSize = 0;
264 Chunk *edataStart = nullptr;
265 Chunk *edataEnd = nullptr;
266 Chunk *iatStart = nullptr;
267 uint64_t iatSize = 0;
268 DelayLoadContents delayIdata;
269 EdataContents edata;
270 bool setNoSEHCharacteristic = false;
271 uint32_t tlsAlignment = 0;
273 DebugDirectoryChunk *debugDirectory = nullptr;
274 std::vector<std::pair<COFF::DebugType, Chunk *>> debugRecords;
275 CVDebugRecordChunk *buildId = nullptr;
276 ArrayRef<uint8_t> sectionTable;
278 uint64_t fileSize;
279 uint32_t pointerToSymbolTable = 0;
280 uint64_t sizeOfImage;
281 uint64_t sizeOfHeaders;
283 OutputSection *textSec;
284 OutputSection *rdataSec;
285 OutputSection *buildidSec;
286 OutputSection *dataSec;
287 OutputSection *pdataSec;
288 OutputSection *idataSec;
289 OutputSection *edataSec;
290 OutputSection *didatSec;
291 OutputSection *rsrcSec;
292 OutputSection *relocSec;
293 OutputSection *ctorsSec;
294 OutputSection *dtorsSec;
296 // The first and last .pdata sections in the output file.
298 // We need to keep track of the location of .pdata in whichever section it
299 // gets merged into so that we can sort its contents and emit a correct data
300 // directory entry for the exception table. This is also the case for some
301 // other sections (such as .edata) but because the contents of those sections
302 // are entirely linker-generated we can keep track of their locations using
303 // the chunks that the linker creates. All .pdata chunks come from input
304 // files, so we need to keep track of them separately.
305 Chunk *firstPdata = nullptr;
306 Chunk *lastPdata;
308 } // anonymous namespace
310 static Timer codeLayoutTimer("Code Layout", Timer::root());
311 static Timer diskCommitTimer("Commit Output File", Timer::root());
313 void lld::coff::writeResult() { Writer().run(); }
315 void OutputSection::addChunk(Chunk *c) {
316 chunks.push_back(c);
319 void OutputSection::insertChunkAtStart(Chunk *c) {
320 chunks.insert(chunks.begin(), c);
323 void OutputSection::setPermissions(uint32_t c) {
324 header.Characteristics &= ~permMask;
325 header.Characteristics |= c;
328 void OutputSection::merge(OutputSection *other) {
329 chunks.insert(chunks.end(), other->chunks.begin(), other->chunks.end());
330 other->chunks.clear();
331 contribSections.insert(contribSections.end(), other->contribSections.begin(),
332 other->contribSections.end());
333 other->contribSections.clear();
336 // Write the section header to a given buffer.
337 void OutputSection::writeHeaderTo(uint8_t *buf) {
338 auto *hdr = reinterpret_cast<coff_section *>(buf);
339 *hdr = header;
340 if (stringTableOff) {
341 // If name is too long, write offset into the string table as a name.
342 sprintf(hdr->Name, "/%d", stringTableOff);
343 } else {
344 assert(!config->debug || name.size() <= COFF::NameSize ||
345 (hdr->Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0);
346 strncpy(hdr->Name, name.data(),
347 std::min(name.size(), (size_t)COFF::NameSize));
351 void OutputSection::addContributingPartialSection(PartialSection *sec) {
352 contribSections.push_back(sec);
355 // Check whether the target address S is in range from a relocation
356 // of type relType at address P.
357 static bool isInRange(uint16_t relType, uint64_t s, uint64_t p, int margin) {
358 if (config->machine == ARMNT) {
359 int64_t diff = AbsoluteDifference(s, p + 4) + margin;
360 switch (relType) {
361 case IMAGE_REL_ARM_BRANCH20T:
362 return isInt<21>(diff);
363 case IMAGE_REL_ARM_BRANCH24T:
364 case IMAGE_REL_ARM_BLX23T:
365 return isInt<25>(diff);
366 default:
367 return true;
369 } else if (config->machine == ARM64) {
370 int64_t diff = AbsoluteDifference(s, p) + margin;
371 switch (relType) {
372 case IMAGE_REL_ARM64_BRANCH26:
373 return isInt<28>(diff);
374 case IMAGE_REL_ARM64_BRANCH19:
375 return isInt<21>(diff);
376 case IMAGE_REL_ARM64_BRANCH14:
377 return isInt<16>(diff);
378 default:
379 return true;
381 } else {
382 llvm_unreachable("Unexpected architecture");
386 // Return the last thunk for the given target if it is in range,
387 // or create a new one.
388 static std::pair<Defined *, bool>
389 getThunk(DenseMap<uint64_t, Defined *> &lastThunks, Defined *target, uint64_t p,
390 uint16_t type, int margin) {
391 Defined *&lastThunk = lastThunks[target->getRVA()];
392 if (lastThunk && isInRange(type, lastThunk->getRVA(), p, margin))
393 return {lastThunk, false};
394 Chunk *c;
395 switch (config->machine) {
396 case ARMNT:
397 c = make<RangeExtensionThunkARM>(target);
398 break;
399 case ARM64:
400 c = make<RangeExtensionThunkARM64>(target);
401 break;
402 default:
403 llvm_unreachable("Unexpected architecture");
405 Defined *d = make<DefinedSynthetic>("", c);
406 lastThunk = d;
407 return {d, true};
410 // This checks all relocations, and for any relocation which isn't in range
411 // it adds a thunk after the section chunk that contains the relocation.
412 // If the latest thunk for the specific target is in range, that is used
413 // instead of creating a new thunk. All range checks are done with the
414 // specified margin, to make sure that relocations that originally are in
415 // range, but only barely, also get thunks - in case other added thunks makes
416 // the target go out of range.
418 // After adding thunks, we verify that all relocations are in range (with
419 // no extra margin requirements). If this failed, we restart (throwing away
420 // the previously created thunks) and retry with a wider margin.
421 static bool createThunks(OutputSection *os, int margin) {
422 bool addressesChanged = false;
423 DenseMap<uint64_t, Defined *> lastThunks;
424 DenseMap<std::pair<ObjFile *, Defined *>, uint32_t> thunkSymtabIndices;
425 size_t thunksSize = 0;
426 // Recheck Chunks.size() each iteration, since we can insert more
427 // elements into it.
428 for (size_t i = 0; i != os->chunks.size(); ++i) {
429 SectionChunk *sc = dyn_cast_or_null<SectionChunk>(os->chunks[i]);
430 if (!sc)
431 continue;
432 size_t thunkInsertionSpot = i + 1;
434 // Try to get a good enough estimate of where new thunks will be placed.
435 // Offset this by the size of the new thunks added so far, to make the
436 // estimate slightly better.
437 size_t thunkInsertionRVA = sc->getRVA() + sc->getSize() + thunksSize;
438 ObjFile *file = sc->file;
439 std::vector<std::pair<uint32_t, uint32_t>> relocReplacements;
440 ArrayRef<coff_relocation> originalRelocs =
441 file->getCOFFObj()->getRelocations(sc->header);
442 for (size_t j = 0, e = originalRelocs.size(); j < e; ++j) {
443 const coff_relocation &rel = originalRelocs[j];
444 Symbol *relocTarget = file->getSymbol(rel.SymbolTableIndex);
446 // The estimate of the source address P should be pretty accurate,
447 // but we don't know whether the target Symbol address should be
448 // offset by thunksSize or not (or by some of thunksSize but not all of
449 // it), giving us some uncertainty once we have added one thunk.
450 uint64_t p = sc->getRVA() + rel.VirtualAddress + thunksSize;
452 Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
453 if (!sym)
454 continue;
456 uint64_t s = sym->getRVA();
458 if (isInRange(rel.Type, s, p, margin))
459 continue;
461 // If the target isn't in range, hook it up to an existing or new
462 // thunk.
463 Defined *thunk;
464 bool wasNew;
465 std::tie(thunk, wasNew) = getThunk(lastThunks, sym, p, rel.Type, margin);
466 if (wasNew) {
467 Chunk *thunkChunk = thunk->getChunk();
468 thunkChunk->setRVA(
469 thunkInsertionRVA); // Estimate of where it will be located.
470 os->chunks.insert(os->chunks.begin() + thunkInsertionSpot, thunkChunk);
471 thunkInsertionSpot++;
472 thunksSize += thunkChunk->getSize();
473 thunkInsertionRVA += thunkChunk->getSize();
474 addressesChanged = true;
477 // To redirect the relocation, add a symbol to the parent object file's
478 // symbol table, and replace the relocation symbol table index with the
479 // new index.
480 auto insertion = thunkSymtabIndices.insert({{file, thunk}, ~0U});
481 uint32_t &thunkSymbolIndex = insertion.first->second;
482 if (insertion.second)
483 thunkSymbolIndex = file->addRangeThunkSymbol(thunk);
484 relocReplacements.push_back({j, thunkSymbolIndex});
487 // Get a writable copy of this section's relocations so they can be
488 // modified. If the relocations point into the object file, allocate new
489 // memory. Otherwise, this must be previously allocated memory that can be
490 // modified in place.
491 ArrayRef<coff_relocation> curRelocs = sc->getRelocs();
492 MutableArrayRef<coff_relocation> newRelocs;
493 if (originalRelocs.data() == curRelocs.data()) {
494 newRelocs = makeMutableArrayRef(
495 bAlloc.Allocate<coff_relocation>(originalRelocs.size()),
496 originalRelocs.size());
497 } else {
498 newRelocs = makeMutableArrayRef(
499 const_cast<coff_relocation *>(curRelocs.data()), curRelocs.size());
502 // Copy each relocation, but replace the symbol table indices which need
503 // thunks.
504 auto nextReplacement = relocReplacements.begin();
505 auto endReplacement = relocReplacements.end();
506 for (size_t i = 0, e = originalRelocs.size(); i != e; ++i) {
507 newRelocs[i] = originalRelocs[i];
508 if (nextReplacement != endReplacement && nextReplacement->first == i) {
509 newRelocs[i].SymbolTableIndex = nextReplacement->second;
510 ++nextReplacement;
514 sc->setRelocs(newRelocs);
516 return addressesChanged;
519 // Verify that all relocations are in range, with no extra margin requirements.
520 static bool verifyRanges(const std::vector<Chunk *> chunks) {
521 for (Chunk *c : chunks) {
522 SectionChunk *sc = dyn_cast_or_null<SectionChunk>(c);
523 if (!sc)
524 continue;
526 ArrayRef<coff_relocation> relocs = sc->getRelocs();
527 for (size_t j = 0, e = relocs.size(); j < e; ++j) {
528 const coff_relocation &rel = relocs[j];
529 Symbol *relocTarget = sc->file->getSymbol(rel.SymbolTableIndex);
531 Defined *sym = dyn_cast_or_null<Defined>(relocTarget);
532 if (!sym)
533 continue;
535 uint64_t p = sc->getRVA() + rel.VirtualAddress;
536 uint64_t s = sym->getRVA();
538 if (!isInRange(rel.Type, s, p, 0))
539 return false;
542 return true;
545 // Assign addresses and add thunks if necessary.
546 void Writer::finalizeAddresses() {
547 assignAddresses();
548 if (config->machine != ARMNT && config->machine != ARM64)
549 return;
551 size_t origNumChunks = 0;
552 for (OutputSection *sec : outputSections) {
553 sec->origChunks = sec->chunks;
554 origNumChunks += sec->chunks.size();
557 int pass = 0;
558 int margin = 1024 * 100;
559 while (true) {
560 // First check whether we need thunks at all, or if the previous pass of
561 // adding them turned out ok.
562 bool rangesOk = true;
563 size_t numChunks = 0;
564 for (OutputSection *sec : outputSections) {
565 if (!verifyRanges(sec->chunks)) {
566 rangesOk = false;
567 break;
569 numChunks += sec->chunks.size();
571 if (rangesOk) {
572 if (pass > 0)
573 log("Added " + Twine(numChunks - origNumChunks) + " thunks with " +
574 "margin " + Twine(margin) + " in " + Twine(pass) + " passes");
575 return;
578 if (pass >= 10)
579 fatal("adding thunks hasn't converged after " + Twine(pass) + " passes");
581 if (pass > 0) {
582 // If the previous pass didn't work out, reset everything back to the
583 // original conditions before retrying with a wider margin. This should
584 // ideally never happen under real circumstances.
585 for (OutputSection *sec : outputSections)
586 sec->chunks = sec->origChunks;
587 margin *= 2;
590 // Try adding thunks everywhere where it is needed, with a margin
591 // to avoid things going out of range due to the added thunks.
592 bool addressesChanged = false;
593 for (OutputSection *sec : outputSections)
594 addressesChanged |= createThunks(sec, margin);
595 // If the verification above thought we needed thunks, we should have
596 // added some.
597 assert(addressesChanged);
598 (void)addressesChanged;
600 // Recalculate the layout for the whole image (and verify the ranges at
601 // the start of the next round).
602 assignAddresses();
604 pass++;
608 // The main function of the writer.
609 void Writer::run() {
610 ScopedTimer t1(codeLayoutTimer);
612 createImportTables();
613 createSections();
614 appendImportThunks();
615 // Import thunks must be added before the Control Flow Guard tables are added.
616 createMiscChunks();
617 createExportTable();
618 mergeSections();
619 removeUnusedSections();
620 finalizeAddresses();
621 removeEmptySections();
622 assignOutputSectionIndices();
623 setSectionPermissions();
624 createSymbolAndStringTable();
626 if (fileSize > UINT32_MAX)
627 fatal("image size (" + Twine(fileSize) + ") " +
628 "exceeds maximum allowable size (" + Twine(UINT32_MAX) + ")");
630 openFile(config->outputFile);
631 if (config->is64()) {
632 writeHeader<pe32plus_header>();
633 } else {
634 writeHeader<pe32_header>();
636 writeSections();
637 sortExceptionTable();
639 // Fix up the alignment in the TLS Directory's characteristic field,
640 // if a specific alignment value is needed
641 if (tlsAlignment)
642 fixTlsAlignment();
644 t1.stop();
646 if (!config->pdbPath.empty() && config->debug) {
647 assert(buildId);
648 createPDB(symtab, outputSections, sectionTable, buildId->buildId);
650 writeBuildId();
652 writeLLDMapFile(outputSections);
653 writeMapFile(outputSections);
655 if (errorCount())
656 return;
658 ScopedTimer t2(diskCommitTimer);
659 if (auto e = buffer->commit())
660 fatal("failed to write the output file: " + toString(std::move(e)));
663 static StringRef getOutputSectionName(StringRef name) {
664 StringRef s = name.split('$').first;
666 // Treat a later period as a separator for MinGW, for sections like
667 // ".ctors.01234".
668 return s.substr(0, s.find('.', 1));
671 // For /order.
672 static void sortBySectionOrder(std::vector<Chunk *> &chunks) {
673 auto getPriority = [](const Chunk *c) {
674 if (auto *sec = dyn_cast<SectionChunk>(c))
675 if (sec->sym)
676 return config->order.lookup(sec->sym->getName());
677 return 0;
680 llvm::stable_sort(chunks, [=](const Chunk *a, const Chunk *b) {
681 return getPriority(a) < getPriority(b);
685 // Change the characteristics of existing PartialSections that belong to the
686 // section Name to Chars.
687 void Writer::fixPartialSectionChars(StringRef name, uint32_t chars) {
688 for (auto it : partialSections) {
689 PartialSection *pSec = it.second;
690 StringRef curName = pSec->name;
691 if (!curName.consume_front(name) ||
692 (!curName.empty() && !curName.startswith("$")))
693 continue;
694 if (pSec->characteristics == chars)
695 continue;
696 PartialSection *destSec = createPartialSection(pSec->name, chars);
697 destSec->chunks.insert(destSec->chunks.end(), pSec->chunks.begin(),
698 pSec->chunks.end());
699 pSec->chunks.clear();
703 // Sort concrete section chunks from GNU import libraries.
705 // GNU binutils doesn't use short import files, but instead produces import
706 // libraries that consist of object files, with section chunks for the .idata$*
707 // sections. These are linked just as regular static libraries. Each import
708 // library consists of one header object, one object file for every imported
709 // symbol, and one trailer object. In order for the .idata tables/lists to
710 // be formed correctly, the section chunks within each .idata$* section need
711 // to be grouped by library, and sorted alphabetically within each library
712 // (which makes sure the header comes first and the trailer last).
713 bool Writer::fixGnuImportChunks() {
714 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
716 // Make sure all .idata$* section chunks are mapped as RDATA in order to
717 // be sorted into the same sections as our own synthesized .idata chunks.
718 fixPartialSectionChars(".idata", rdata);
720 bool hasIdata = false;
721 // Sort all .idata$* chunks, grouping chunks from the same library,
722 // with alphabetical ordering of the object fils within a library.
723 for (auto it : partialSections) {
724 PartialSection *pSec = it.second;
725 if (!pSec->name.startswith(".idata"))
726 continue;
728 if (!pSec->chunks.empty())
729 hasIdata = true;
730 llvm::stable_sort(pSec->chunks, [&](Chunk *s, Chunk *t) {
731 SectionChunk *sc1 = dyn_cast_or_null<SectionChunk>(s);
732 SectionChunk *sc2 = dyn_cast_or_null<SectionChunk>(t);
733 if (!sc1 || !sc2) {
734 // if SC1, order them ascending. If SC2 or both null,
735 // S is not less than T.
736 return sc1 != nullptr;
738 // Make a string with "libraryname/objectfile" for sorting, achieving
739 // both grouping by library and sorting of objects within a library,
740 // at once.
741 std::string key1 =
742 (sc1->file->parentName + "/" + sc1->file->getName()).str();
743 std::string key2 =
744 (sc2->file->parentName + "/" + sc2->file->getName()).str();
745 return key1 < key2;
748 return hasIdata;
751 // Add generated idata chunks, for imported symbols and DLLs, and a
752 // terminator in .idata$2.
753 void Writer::addSyntheticIdata() {
754 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
755 idata.create();
757 // Add the .idata content in the right section groups, to allow
758 // chunks from other linked in object files to be grouped together.
759 // See Microsoft PE/COFF spec 5.4 for details.
760 auto add = [&](StringRef n, std::vector<Chunk *> &v) {
761 PartialSection *pSec = createPartialSection(n, rdata);
762 pSec->chunks.insert(pSec->chunks.end(), v.begin(), v.end());
765 // The loader assumes a specific order of data.
766 // Add each type in the correct order.
767 add(".idata$2", idata.dirs);
768 add(".idata$4", idata.lookups);
769 add(".idata$5", idata.addresses);
770 if (!idata.hints.empty())
771 add(".idata$6", idata.hints);
772 add(".idata$7", idata.dllNames);
775 // Locate the first Chunk and size of the import directory list and the
776 // IAT.
777 void Writer::locateImportTables() {
778 uint32_t rdata = IMAGE_SCN_CNT_INITIALIZED_DATA | IMAGE_SCN_MEM_READ;
780 if (PartialSection *importDirs = findPartialSection(".idata$2", rdata)) {
781 if (!importDirs->chunks.empty())
782 importTableStart = importDirs->chunks.front();
783 for (Chunk *c : importDirs->chunks)
784 importTableSize += c->getSize();
787 if (PartialSection *importAddresses = findPartialSection(".idata$5", rdata)) {
788 if (!importAddresses->chunks.empty())
789 iatStart = importAddresses->chunks.front();
790 for (Chunk *c : importAddresses->chunks)
791 iatSize += c->getSize();
795 // Return whether a SectionChunk's suffix (the dollar and any trailing
796 // suffix) should be removed and sorted into the main suffixless
797 // PartialSection.
798 static bool shouldStripSectionSuffix(SectionChunk *sc, StringRef name) {
799 // On MinGW, comdat groups are formed by putting the comdat group name
800 // after the '$' in the section name. For .eh_frame$<symbol>, that must
801 // still be sorted before the .eh_frame trailer from crtend.o, thus just
802 // strip the section name trailer. For other sections, such as
803 // .tls$$<symbol> (where non-comdat .tls symbols are otherwise stored in
804 // ".tls$"), they must be strictly sorted after .tls. And for the
805 // hypothetical case of comdat .CRT$XCU, we definitely need to keep the
806 // suffix for sorting. Thus, to play it safe, only strip the suffix for
807 // the standard sections.
808 if (!config->mingw)
809 return false;
810 if (!sc || !sc->isCOMDAT())
811 return false;
812 return name.startswith(".text$") || name.startswith(".data$") ||
813 name.startswith(".rdata$") || name.startswith(".pdata$") ||
814 name.startswith(".xdata$") || name.startswith(".eh_frame$");
817 void Writer::sortSections() {
818 if (!config->callGraphProfile.empty()) {
819 DenseMap<const SectionChunk *, int> order = computeCallGraphProfileOrder();
820 for (auto it : order) {
821 if (DefinedRegular *sym = it.first->sym)
822 config->order[sym->getName()] = it.second;
825 if (!config->order.empty())
826 for (auto it : partialSections)
827 sortBySectionOrder(it.second->chunks);
830 // Create output section objects and add them to OutputSections.
831 void Writer::createSections() {
832 // First, create the builtin sections.
833 const uint32_t data = IMAGE_SCN_CNT_INITIALIZED_DATA;
834 const uint32_t bss = IMAGE_SCN_CNT_UNINITIALIZED_DATA;
835 const uint32_t code = IMAGE_SCN_CNT_CODE;
836 const uint32_t discardable = IMAGE_SCN_MEM_DISCARDABLE;
837 const uint32_t r = IMAGE_SCN_MEM_READ;
838 const uint32_t w = IMAGE_SCN_MEM_WRITE;
839 const uint32_t x = IMAGE_SCN_MEM_EXECUTE;
841 SmallDenseMap<std::pair<StringRef, uint32_t>, OutputSection *> sections;
842 auto createSection = [&](StringRef name, uint32_t outChars) {
843 OutputSection *&sec = sections[{name, outChars}];
844 if (!sec) {
845 sec = make<OutputSection>(name, outChars);
846 outputSections.push_back(sec);
848 return sec;
851 // Try to match the section order used by link.exe.
852 textSec = createSection(".text", code | r | x);
853 createSection(".bss", bss | r | w);
854 rdataSec = createSection(".rdata", data | r);
855 buildidSec = createSection(".buildid", data | r);
856 dataSec = createSection(".data", data | r | w);
857 pdataSec = createSection(".pdata", data | r);
858 idataSec = createSection(".idata", data | r);
859 edataSec = createSection(".edata", data | r);
860 didatSec = createSection(".didat", data | r);
861 rsrcSec = createSection(".rsrc", data | r);
862 relocSec = createSection(".reloc", data | discardable | r);
863 ctorsSec = createSection(".ctors", data | r | w);
864 dtorsSec = createSection(".dtors", data | r | w);
866 // Then bin chunks by name and output characteristics.
867 for (Chunk *c : symtab->getChunks()) {
868 auto *sc = dyn_cast<SectionChunk>(c);
869 if (sc && !sc->live) {
870 if (config->verbose)
871 sc->printDiscardedMessage();
872 continue;
874 StringRef name = c->getSectionName();
875 if (shouldStripSectionSuffix(sc, name))
876 name = name.split('$').first;
878 if (name.startswith(".tls"))
879 tlsAlignment = std::max(tlsAlignment, c->getAlignment());
881 PartialSection *pSec = createPartialSection(name,
882 c->getOutputCharacteristics());
883 pSec->chunks.push_back(c);
886 fixPartialSectionChars(".rsrc", data | r);
887 fixPartialSectionChars(".edata", data | r);
888 // Even in non MinGW cases, we might need to link against GNU import
889 // libraries.
890 bool hasIdata = fixGnuImportChunks();
891 if (!idata.empty())
892 hasIdata = true;
894 if (hasIdata)
895 addSyntheticIdata();
897 sortSections();
899 if (hasIdata)
900 locateImportTables();
902 // Then create an OutputSection for each section.
903 // '$' and all following characters in input section names are
904 // discarded when determining output section. So, .text$foo
905 // contributes to .text, for example. See PE/COFF spec 3.2.
906 for (auto it : partialSections) {
907 PartialSection *pSec = it.second;
908 StringRef name = getOutputSectionName(pSec->name);
909 uint32_t outChars = pSec->characteristics;
911 if (name == ".CRT") {
912 // In link.exe, there is a special case for the I386 target where .CRT
913 // sections are treated as if they have output characteristics DATA | R if
914 // their characteristics are DATA | R | W. This implements the same
915 // special case for all architectures.
916 outChars = data | r;
918 log("Processing section " + pSec->name + " -> " + name);
920 sortCRTSectionChunks(pSec->chunks);
923 OutputSection *sec = createSection(name, outChars);
924 for (Chunk *c : pSec->chunks)
925 sec->addChunk(c);
927 sec->addContributingPartialSection(pSec);
930 // Finally, move some output sections to the end.
931 auto sectionOrder = [&](const OutputSection *s) {
932 // Move DISCARDABLE (or non-memory-mapped) sections to the end of file
933 // because the loader cannot handle holes. Stripping can remove other
934 // discardable ones than .reloc, which is first of them (created early).
935 if (s->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
936 return 2;
937 // .rsrc should come at the end of the non-discardable sections because its
938 // size may change by the Win32 UpdateResources() function, causing
939 // subsequent sections to move (see https://crbug.com/827082).
940 if (s == rsrcSec)
941 return 1;
942 return 0;
944 llvm::stable_sort(outputSections,
945 [&](const OutputSection *s, const OutputSection *t) {
946 return sectionOrder(s) < sectionOrder(t);
950 void Writer::createMiscChunks() {
951 for (MergeChunk *p : MergeChunk::instances) {
952 if (p) {
953 p->finalizeContents();
954 rdataSec->addChunk(p);
958 // Create thunks for locally-dllimported symbols.
959 if (!symtab->localImportChunks.empty()) {
960 for (Chunk *c : symtab->localImportChunks)
961 rdataSec->addChunk(c);
964 // Create Debug Information Chunks
965 OutputSection *debugInfoSec = config->mingw ? buildidSec : rdataSec;
966 if (config->debug || config->repro || config->cetCompat) {
967 debugDirectory = make<DebugDirectoryChunk>(debugRecords, config->repro);
968 debugDirectory->setAlignment(4);
969 debugInfoSec->addChunk(debugDirectory);
972 if (config->debug) {
973 // Make a CVDebugRecordChunk even when /DEBUG:CV is not specified. We
974 // output a PDB no matter what, and this chunk provides the only means of
975 // allowing a debugger to match a PDB and an executable. So we need it even
976 // if we're ultimately not going to write CodeView data to the PDB.
977 buildId = make<CVDebugRecordChunk>();
978 debugRecords.push_back({COFF::IMAGE_DEBUG_TYPE_CODEVIEW, buildId});
981 if (config->cetCompat) {
982 debugRecords.push_back({COFF::IMAGE_DEBUG_TYPE_EX_DLLCHARACTERISTICS,
983 make<ExtendedDllCharacteristicsChunk>(
984 IMAGE_DLL_CHARACTERISTICS_EX_CET_COMPAT)});
987 // Align and add each chunk referenced by the debug data directory.
988 for (std::pair<COFF::DebugType, Chunk *> r : debugRecords) {
989 r.second->setAlignment(4);
990 debugInfoSec->addChunk(r.second);
993 // Create SEH table. x86-only.
994 if (config->safeSEH)
995 createSEHTable();
997 // Create /guard:cf tables if requested.
998 if (config->guardCF != GuardCFLevel::Off)
999 createGuardCFTables();
1001 if (config->autoImport)
1002 createRuntimePseudoRelocs();
1004 if (config->mingw)
1005 insertCtorDtorSymbols();
1008 // Create .idata section for the DLL-imported symbol table.
1009 // The format of this section is inherently Windows-specific.
1010 // IdataContents class abstracted away the details for us,
1011 // so we just let it create chunks and add them to the section.
1012 void Writer::createImportTables() {
1013 // Initialize DLLOrder so that import entries are ordered in
1014 // the same order as in the command line. (That affects DLL
1015 // initialization order, and this ordering is MSVC-compatible.)
1016 for (ImportFile *file : ImportFile::instances) {
1017 if (!file->live)
1018 continue;
1020 std::string dll = StringRef(file->dllName).lower();
1021 if (config->dllOrder.count(dll) == 0)
1022 config->dllOrder[dll] = config->dllOrder.size();
1024 if (file->impSym && !isa<DefinedImportData>(file->impSym))
1025 fatal(toString(*file->impSym) + " was replaced");
1026 DefinedImportData *impSym = cast_or_null<DefinedImportData>(file->impSym);
1027 if (config->delayLoads.count(StringRef(file->dllName).lower())) {
1028 if (!file->thunkSym)
1029 fatal("cannot delay-load " + toString(file) +
1030 " due to import of data: " + toString(*impSym));
1031 delayIdata.add(impSym);
1032 } else {
1033 idata.add(impSym);
1038 void Writer::appendImportThunks() {
1039 if (ImportFile::instances.empty())
1040 return;
1042 for (ImportFile *file : ImportFile::instances) {
1043 if (!file->live)
1044 continue;
1046 if (!file->thunkSym)
1047 continue;
1049 if (!isa<DefinedImportThunk>(file->thunkSym))
1050 fatal(toString(*file->thunkSym) + " was replaced");
1051 DefinedImportThunk *thunk = cast<DefinedImportThunk>(file->thunkSym);
1052 if (file->thunkLive)
1053 textSec->addChunk(thunk->getChunk());
1056 if (!delayIdata.empty()) {
1057 Defined *helper = cast<Defined>(config->delayLoadHelper);
1058 delayIdata.create(helper);
1059 for (Chunk *c : delayIdata.getChunks())
1060 didatSec->addChunk(c);
1061 for (Chunk *c : delayIdata.getDataChunks())
1062 dataSec->addChunk(c);
1063 for (Chunk *c : delayIdata.getCodeChunks())
1064 textSec->addChunk(c);
1068 void Writer::createExportTable() {
1069 if (!edataSec->chunks.empty()) {
1070 // Allow using a custom built export table from input object files, instead
1071 // of having the linker synthesize the tables.
1072 if (config->hadExplicitExports)
1073 warn("literal .edata sections override exports");
1074 } else if (!config->exports.empty()) {
1075 for (Chunk *c : edata.chunks)
1076 edataSec->addChunk(c);
1078 if (!edataSec->chunks.empty()) {
1079 edataStart = edataSec->chunks.front();
1080 edataEnd = edataSec->chunks.back();
1082 // Warn on exported deleting destructor.
1083 for (auto e : config->exports)
1084 if (e.sym && e.sym->getName().startswith("??_G"))
1085 warn("export of deleting dtor: " + toString(*e.sym));
1088 void Writer::removeUnusedSections() {
1089 // Remove sections that we can be sure won't get content, to avoid
1090 // allocating space for their section headers.
1091 auto isUnused = [this](OutputSection *s) {
1092 if (s == relocSec)
1093 return false; // This section is populated later.
1094 // MergeChunks have zero size at this point, as their size is finalized
1095 // later. Only remove sections that have no Chunks at all.
1096 return s->chunks.empty();
1098 outputSections.erase(
1099 std::remove_if(outputSections.begin(), outputSections.end(), isUnused),
1100 outputSections.end());
1103 // The Windows loader doesn't seem to like empty sections,
1104 // so we remove them if any.
1105 void Writer::removeEmptySections() {
1106 auto isEmpty = [](OutputSection *s) { return s->getVirtualSize() == 0; };
1107 outputSections.erase(
1108 std::remove_if(outputSections.begin(), outputSections.end(), isEmpty),
1109 outputSections.end());
1112 void Writer::assignOutputSectionIndices() {
1113 // Assign final output section indices, and assign each chunk to its output
1114 // section.
1115 uint32_t idx = 1;
1116 for (OutputSection *os : outputSections) {
1117 os->sectionIndex = idx;
1118 for (Chunk *c : os->chunks)
1119 c->setOutputSectionIdx(idx);
1120 ++idx;
1123 // Merge chunks are containers of chunks, so assign those an output section
1124 // too.
1125 for (MergeChunk *mc : MergeChunk::instances)
1126 if (mc)
1127 for (SectionChunk *sc : mc->sections)
1128 if (sc && sc->live)
1129 sc->setOutputSectionIdx(mc->getOutputSectionIdx());
1132 size_t Writer::addEntryToStringTable(StringRef str) {
1133 assert(str.size() > COFF::NameSize);
1134 size_t offsetOfEntry = strtab.size() + 4; // +4 for the size field
1135 strtab.insert(strtab.end(), str.begin(), str.end());
1136 strtab.push_back('\0');
1137 return offsetOfEntry;
1140 Optional<coff_symbol16> Writer::createSymbol(Defined *def) {
1141 coff_symbol16 sym;
1142 switch (def->kind()) {
1143 case Symbol::DefinedAbsoluteKind:
1144 sym.Value = def->getRVA();
1145 sym.SectionNumber = IMAGE_SYM_ABSOLUTE;
1146 break;
1147 case Symbol::DefinedSyntheticKind:
1148 // Relative symbols are unrepresentable in a COFF symbol table.
1149 return None;
1150 default: {
1151 // Don't write symbols that won't be written to the output to the symbol
1152 // table.
1153 Chunk *c = def->getChunk();
1154 if (!c)
1155 return None;
1156 OutputSection *os = c->getOutputSection();
1157 if (!os)
1158 return None;
1160 sym.Value = def->getRVA() - os->getRVA();
1161 sym.SectionNumber = os->sectionIndex;
1162 break;
1166 // Symbols that are runtime pseudo relocations don't point to the actual
1167 // symbol data itself (as they are imported), but points to the IAT entry
1168 // instead. Avoid emitting them to the symbol table, as they can confuse
1169 // debuggers.
1170 if (def->isRuntimePseudoReloc)
1171 return None;
1173 StringRef name = def->getName();
1174 if (name.size() > COFF::NameSize) {
1175 sym.Name.Offset.Zeroes = 0;
1176 sym.Name.Offset.Offset = addEntryToStringTable(name);
1177 } else {
1178 memset(sym.Name.ShortName, 0, COFF::NameSize);
1179 memcpy(sym.Name.ShortName, name.data(), name.size());
1182 if (auto *d = dyn_cast<DefinedCOFF>(def)) {
1183 COFFSymbolRef ref = d->getCOFFSymbol();
1184 sym.Type = ref.getType();
1185 sym.StorageClass = ref.getStorageClass();
1186 } else {
1187 sym.Type = IMAGE_SYM_TYPE_NULL;
1188 sym.StorageClass = IMAGE_SYM_CLASS_EXTERNAL;
1190 sym.NumberOfAuxSymbols = 0;
1191 return sym;
1194 void Writer::createSymbolAndStringTable() {
1195 // PE/COFF images are limited to 8 byte section names. Longer names can be
1196 // supported by writing a non-standard string table, but this string table is
1197 // not mapped at runtime and the long names will therefore be inaccessible.
1198 // link.exe always truncates section names to 8 bytes, whereas binutils always
1199 // preserves long section names via the string table. LLD adopts a hybrid
1200 // solution where discardable sections have long names preserved and
1201 // non-discardable sections have their names truncated, to ensure that any
1202 // section which is mapped at runtime also has its name mapped at runtime.
1203 for (OutputSection *sec : outputSections) {
1204 if (sec->name.size() <= COFF::NameSize)
1205 continue;
1206 if ((sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE) == 0)
1207 continue;
1208 if (config->warnLongSectionNames) {
1209 warn("section name " + sec->name +
1210 " is longer than 8 characters and will use a non-standard string "
1211 "table");
1213 sec->setStringTableOff(addEntryToStringTable(sec->name));
1216 if (config->debugDwarf || config->debugSymtab) {
1217 for (ObjFile *file : ObjFile::instances) {
1218 for (Symbol *b : file->getSymbols()) {
1219 auto *d = dyn_cast_or_null<Defined>(b);
1220 if (!d || d->writtenToSymtab)
1221 continue;
1222 d->writtenToSymtab = true;
1224 if (Optional<coff_symbol16> sym = createSymbol(d))
1225 outputSymtab.push_back(*sym);
1230 if (outputSymtab.empty() && strtab.empty())
1231 return;
1233 // We position the symbol table to be adjacent to the end of the last section.
1234 uint64_t fileOff = fileSize;
1235 pointerToSymbolTable = fileOff;
1236 fileOff += outputSymtab.size() * sizeof(coff_symbol16);
1237 fileOff += 4 + strtab.size();
1238 fileSize = alignTo(fileOff, config->fileAlign);
1241 void Writer::mergeSections() {
1242 if (!pdataSec->chunks.empty()) {
1243 firstPdata = pdataSec->chunks.front();
1244 lastPdata = pdataSec->chunks.back();
1247 for (auto &p : config->merge) {
1248 StringRef toName = p.second;
1249 if (p.first == toName)
1250 continue;
1251 StringSet<> names;
1252 while (1) {
1253 if (!names.insert(toName).second)
1254 fatal("/merge: cycle found for section '" + p.first + "'");
1255 auto i = config->merge.find(toName);
1256 if (i == config->merge.end())
1257 break;
1258 toName = i->second;
1260 OutputSection *from = findSection(p.first);
1261 OutputSection *to = findSection(toName);
1262 if (!from)
1263 continue;
1264 if (!to) {
1265 from->name = toName;
1266 continue;
1268 to->merge(from);
1272 // Visits all sections to assign incremental, non-overlapping RVAs and
1273 // file offsets.
1274 void Writer::assignAddresses() {
1275 sizeOfHeaders = dosStubSize + sizeof(PEMagic) + sizeof(coff_file_header) +
1276 sizeof(data_directory) * numberOfDataDirectory +
1277 sizeof(coff_section) * outputSections.size();
1278 sizeOfHeaders +=
1279 config->is64() ? sizeof(pe32plus_header) : sizeof(pe32_header);
1280 sizeOfHeaders = alignTo(sizeOfHeaders, config->fileAlign);
1281 fileSize = sizeOfHeaders;
1283 // The first page is kept unmapped.
1284 uint64_t rva = alignTo(sizeOfHeaders, config->align);
1286 for (OutputSection *sec : outputSections) {
1287 if (sec == relocSec)
1288 addBaserels();
1289 uint64_t rawSize = 0, virtualSize = 0;
1290 sec->header.VirtualAddress = rva;
1292 // If /FUNCTIONPADMIN is used, functions are padded in order to create a
1293 // hotpatchable image.
1294 const bool isCodeSection =
1295 (sec->header.Characteristics & IMAGE_SCN_CNT_CODE) &&
1296 (sec->header.Characteristics & IMAGE_SCN_MEM_READ) &&
1297 (sec->header.Characteristics & IMAGE_SCN_MEM_EXECUTE);
1298 uint32_t padding = isCodeSection ? config->functionPadMin : 0;
1300 for (Chunk *c : sec->chunks) {
1301 if (padding && c->isHotPatchable())
1302 virtualSize += padding;
1303 virtualSize = alignTo(virtualSize, c->getAlignment());
1304 c->setRVA(rva + virtualSize);
1305 virtualSize += c->getSize();
1306 if (c->hasData)
1307 rawSize = alignTo(virtualSize, config->fileAlign);
1309 if (virtualSize > UINT32_MAX)
1310 error("section larger than 4 GiB: " + sec->name);
1311 sec->header.VirtualSize = virtualSize;
1312 sec->header.SizeOfRawData = rawSize;
1313 if (rawSize != 0)
1314 sec->header.PointerToRawData = fileSize;
1315 rva += alignTo(virtualSize, config->align);
1316 fileSize += alignTo(rawSize, config->fileAlign);
1318 sizeOfImage = alignTo(rva, config->align);
1320 // Assign addresses to sections in MergeChunks.
1321 for (MergeChunk *mc : MergeChunk::instances)
1322 if (mc)
1323 mc->assignSubsectionRVAs();
1326 template <typename PEHeaderTy> void Writer::writeHeader() {
1327 // Write DOS header. For backwards compatibility, the first part of a PE/COFF
1328 // executable consists of an MS-DOS MZ executable. If the executable is run
1329 // under DOS, that program gets run (usually to just print an error message).
1330 // When run under Windows, the loader looks at AddressOfNewExeHeader and uses
1331 // the PE header instead.
1332 uint8_t *buf = buffer->getBufferStart();
1333 auto *dos = reinterpret_cast<dos_header *>(buf);
1334 buf += sizeof(dos_header);
1335 dos->Magic[0] = 'M';
1336 dos->Magic[1] = 'Z';
1337 dos->UsedBytesInTheLastPage = dosStubSize % 512;
1338 dos->FileSizeInPages = divideCeil(dosStubSize, 512);
1339 dos->HeaderSizeInParagraphs = sizeof(dos_header) / 16;
1341 dos->AddressOfRelocationTable = sizeof(dos_header);
1342 dos->AddressOfNewExeHeader = dosStubSize;
1344 // Write DOS program.
1345 memcpy(buf, dosProgram, sizeof(dosProgram));
1346 buf += sizeof(dosProgram);
1348 // Write PE magic
1349 memcpy(buf, PEMagic, sizeof(PEMagic));
1350 buf += sizeof(PEMagic);
1352 // Write COFF header
1353 auto *coff = reinterpret_cast<coff_file_header *>(buf);
1354 buf += sizeof(*coff);
1355 coff->Machine = config->machine;
1356 coff->NumberOfSections = outputSections.size();
1357 coff->Characteristics = IMAGE_FILE_EXECUTABLE_IMAGE;
1358 if (config->largeAddressAware)
1359 coff->Characteristics |= IMAGE_FILE_LARGE_ADDRESS_AWARE;
1360 if (!config->is64())
1361 coff->Characteristics |= IMAGE_FILE_32BIT_MACHINE;
1362 if (config->dll)
1363 coff->Characteristics |= IMAGE_FILE_DLL;
1364 if (config->driverUponly)
1365 coff->Characteristics |= IMAGE_FILE_UP_SYSTEM_ONLY;
1366 if (!config->relocatable)
1367 coff->Characteristics |= IMAGE_FILE_RELOCS_STRIPPED;
1368 if (config->swaprunCD)
1369 coff->Characteristics |= IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP;
1370 if (config->swaprunNet)
1371 coff->Characteristics |= IMAGE_FILE_NET_RUN_FROM_SWAP;
1372 coff->SizeOfOptionalHeader =
1373 sizeof(PEHeaderTy) + sizeof(data_directory) * numberOfDataDirectory;
1375 // Write PE header
1376 auto *pe = reinterpret_cast<PEHeaderTy *>(buf);
1377 buf += sizeof(*pe);
1378 pe->Magic = config->is64() ? PE32Header::PE32_PLUS : PE32Header::PE32;
1380 // If {Major,Minor}LinkerVersion is left at 0.0, then for some
1381 // reason signing the resulting PE file with Authenticode produces a
1382 // signature that fails to validate on Windows 7 (but is OK on 10).
1383 // Set it to 14.0, which is what VS2015 outputs, and which avoids
1384 // that problem.
1385 pe->MajorLinkerVersion = 14;
1386 pe->MinorLinkerVersion = 0;
1388 pe->ImageBase = config->imageBase;
1389 pe->SectionAlignment = config->align;
1390 pe->FileAlignment = config->fileAlign;
1391 pe->MajorImageVersion = config->majorImageVersion;
1392 pe->MinorImageVersion = config->minorImageVersion;
1393 pe->MajorOperatingSystemVersion = config->majorOSVersion;
1394 pe->MinorOperatingSystemVersion = config->minorOSVersion;
1395 pe->MajorSubsystemVersion = config->majorSubsystemVersion;
1396 pe->MinorSubsystemVersion = config->minorSubsystemVersion;
1397 pe->Subsystem = config->subsystem;
1398 pe->SizeOfImage = sizeOfImage;
1399 pe->SizeOfHeaders = sizeOfHeaders;
1400 if (!config->noEntry) {
1401 Defined *entry = cast<Defined>(config->entry);
1402 pe->AddressOfEntryPoint = entry->getRVA();
1403 // Pointer to thumb code must have the LSB set, so adjust it.
1404 if (config->machine == ARMNT)
1405 pe->AddressOfEntryPoint |= 1;
1407 pe->SizeOfStackReserve = config->stackReserve;
1408 pe->SizeOfStackCommit = config->stackCommit;
1409 pe->SizeOfHeapReserve = config->heapReserve;
1410 pe->SizeOfHeapCommit = config->heapCommit;
1411 if (config->appContainer)
1412 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_APPCONTAINER;
1413 if (config->driverWdm)
1414 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_WDM_DRIVER;
1415 if (config->dynamicBase)
1416 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE;
1417 if (config->highEntropyVA)
1418 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_HIGH_ENTROPY_VA;
1419 if (!config->allowBind)
1420 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_BIND;
1421 if (config->nxCompat)
1422 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NX_COMPAT;
1423 if (!config->allowIsolation)
1424 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_ISOLATION;
1425 if (config->guardCF != GuardCFLevel::Off)
1426 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_GUARD_CF;
1427 if (config->integrityCheck)
1428 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_FORCE_INTEGRITY;
1429 if (setNoSEHCharacteristic || config->noSEH)
1430 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_NO_SEH;
1431 if (config->terminalServerAware)
1432 pe->DLLCharacteristics |= IMAGE_DLL_CHARACTERISTICS_TERMINAL_SERVER_AWARE;
1433 pe->NumberOfRvaAndSize = numberOfDataDirectory;
1434 if (textSec->getVirtualSize()) {
1435 pe->BaseOfCode = textSec->getRVA();
1436 pe->SizeOfCode = textSec->getRawSize();
1438 pe->SizeOfInitializedData = getSizeOfInitializedData();
1440 // Write data directory
1441 auto *dir = reinterpret_cast<data_directory *>(buf);
1442 buf += sizeof(*dir) * numberOfDataDirectory;
1443 if (edataStart) {
1444 dir[EXPORT_TABLE].RelativeVirtualAddress = edataStart->getRVA();
1445 dir[EXPORT_TABLE].Size =
1446 edataEnd->getRVA() + edataEnd->getSize() - edataStart->getRVA();
1448 if (importTableStart) {
1449 dir[IMPORT_TABLE].RelativeVirtualAddress = importTableStart->getRVA();
1450 dir[IMPORT_TABLE].Size = importTableSize;
1452 if (iatStart) {
1453 dir[IAT].RelativeVirtualAddress = iatStart->getRVA();
1454 dir[IAT].Size = iatSize;
1456 if (rsrcSec->getVirtualSize()) {
1457 dir[RESOURCE_TABLE].RelativeVirtualAddress = rsrcSec->getRVA();
1458 dir[RESOURCE_TABLE].Size = rsrcSec->getVirtualSize();
1460 if (firstPdata) {
1461 dir[EXCEPTION_TABLE].RelativeVirtualAddress = firstPdata->getRVA();
1462 dir[EXCEPTION_TABLE].Size =
1463 lastPdata->getRVA() + lastPdata->getSize() - firstPdata->getRVA();
1465 if (relocSec->getVirtualSize()) {
1466 dir[BASE_RELOCATION_TABLE].RelativeVirtualAddress = relocSec->getRVA();
1467 dir[BASE_RELOCATION_TABLE].Size = relocSec->getVirtualSize();
1469 if (Symbol *sym = symtab->findUnderscore("_tls_used")) {
1470 if (Defined *b = dyn_cast<Defined>(sym)) {
1471 dir[TLS_TABLE].RelativeVirtualAddress = b->getRVA();
1472 dir[TLS_TABLE].Size = config->is64()
1473 ? sizeof(object::coff_tls_directory64)
1474 : sizeof(object::coff_tls_directory32);
1477 if (debugDirectory) {
1478 dir[DEBUG_DIRECTORY].RelativeVirtualAddress = debugDirectory->getRVA();
1479 dir[DEBUG_DIRECTORY].Size = debugDirectory->getSize();
1481 if (Symbol *sym = symtab->findUnderscore("_load_config_used")) {
1482 if (auto *b = dyn_cast<DefinedRegular>(sym)) {
1483 SectionChunk *sc = b->getChunk();
1484 assert(b->getRVA() >= sc->getRVA());
1485 uint64_t offsetInChunk = b->getRVA() - sc->getRVA();
1486 if (!sc->hasData || offsetInChunk + 4 > sc->getSize())
1487 fatal("_load_config_used is malformed");
1489 ArrayRef<uint8_t> secContents = sc->getContents();
1490 uint32_t loadConfigSize =
1491 *reinterpret_cast<const ulittle32_t *>(&secContents[offsetInChunk]);
1492 if (offsetInChunk + loadConfigSize > sc->getSize())
1493 fatal("_load_config_used is too large");
1494 dir[LOAD_CONFIG_TABLE].RelativeVirtualAddress = b->getRVA();
1495 dir[LOAD_CONFIG_TABLE].Size = loadConfigSize;
1498 if (!delayIdata.empty()) {
1499 dir[DELAY_IMPORT_DESCRIPTOR].RelativeVirtualAddress =
1500 delayIdata.getDirRVA();
1501 dir[DELAY_IMPORT_DESCRIPTOR].Size = delayIdata.getDirSize();
1504 // Write section table
1505 for (OutputSection *sec : outputSections) {
1506 sec->writeHeaderTo(buf);
1507 buf += sizeof(coff_section);
1509 sectionTable = ArrayRef<uint8_t>(
1510 buf - outputSections.size() * sizeof(coff_section), buf);
1512 if (outputSymtab.empty() && strtab.empty())
1513 return;
1515 coff->PointerToSymbolTable = pointerToSymbolTable;
1516 uint32_t numberOfSymbols = outputSymtab.size();
1517 coff->NumberOfSymbols = numberOfSymbols;
1518 auto *symbolTable = reinterpret_cast<coff_symbol16 *>(
1519 buffer->getBufferStart() + coff->PointerToSymbolTable);
1520 for (size_t i = 0; i != numberOfSymbols; ++i)
1521 symbolTable[i] = outputSymtab[i];
1522 // Create the string table, it follows immediately after the symbol table.
1523 // The first 4 bytes is length including itself.
1524 buf = reinterpret_cast<uint8_t *>(&symbolTable[numberOfSymbols]);
1525 write32le(buf, strtab.size() + 4);
1526 if (!strtab.empty())
1527 memcpy(buf + 4, strtab.data(), strtab.size());
1530 void Writer::openFile(StringRef path) {
1531 buffer = CHECK(
1532 FileOutputBuffer::create(path, fileSize, FileOutputBuffer::F_executable),
1533 "failed to open " + path);
1536 void Writer::createSEHTable() {
1537 SymbolRVASet handlers;
1538 for (ObjFile *file : ObjFile::instances) {
1539 if (!file->hasSafeSEH())
1540 error("/safeseh: " + file->getName() + " is not compatible with SEH");
1541 markSymbolsForRVATable(file, file->getSXDataChunks(), handlers);
1544 // Set the "no SEH" characteristic if there really were no handlers, or if
1545 // there is no load config object to point to the table of handlers.
1546 setNoSEHCharacteristic =
1547 handlers.empty() || !symtab->findUnderscore("_load_config_used");
1549 maybeAddRVATable(std::move(handlers), "__safe_se_handler_table",
1550 "__safe_se_handler_count");
1553 // Add a symbol to an RVA set. Two symbols may have the same RVA, but an RVA set
1554 // cannot contain duplicates. Therefore, the set is uniqued by Chunk and the
1555 // symbol's offset into that Chunk.
1556 static void addSymbolToRVASet(SymbolRVASet &rvaSet, Defined *s) {
1557 Chunk *c = s->getChunk();
1558 if (auto *sc = dyn_cast<SectionChunk>(c))
1559 c = sc->repl; // Look through ICF replacement.
1560 uint32_t off = s->getRVA() - (c ? c->getRVA() : 0);
1561 rvaSet.insert({c, off});
1564 // Given a symbol, add it to the GFIDs table if it is a live, defined, function
1565 // symbol in an executable section.
1566 static void maybeAddAddressTakenFunction(SymbolRVASet &addressTakenSyms,
1567 Symbol *s) {
1568 if (!s)
1569 return;
1571 switch (s->kind()) {
1572 case Symbol::DefinedLocalImportKind:
1573 case Symbol::DefinedImportDataKind:
1574 // Defines an __imp_ pointer, so it is data, so it is ignored.
1575 break;
1576 case Symbol::DefinedCommonKind:
1577 // Common is always data, so it is ignored.
1578 break;
1579 case Symbol::DefinedAbsoluteKind:
1580 case Symbol::DefinedSyntheticKind:
1581 // Absolute is never code, synthetic generally isn't and usually isn't
1582 // determinable.
1583 break;
1584 case Symbol::LazyArchiveKind:
1585 case Symbol::LazyObjectKind:
1586 case Symbol::LazyDLLSymbolKind:
1587 case Symbol::UndefinedKind:
1588 // Undefined symbols resolve to zero, so they don't have an RVA. Lazy
1589 // symbols shouldn't have relocations.
1590 break;
1592 case Symbol::DefinedImportThunkKind:
1593 // Thunks are always code, include them.
1594 addSymbolToRVASet(addressTakenSyms, cast<Defined>(s));
1595 break;
1597 case Symbol::DefinedRegularKind: {
1598 // This is a regular, defined, symbol from a COFF file. Mark the symbol as
1599 // address taken if the symbol type is function and it's in an executable
1600 // section.
1601 auto *d = cast<DefinedRegular>(s);
1602 if (d->getCOFFSymbol().getComplexType() == COFF::IMAGE_SYM_DTYPE_FUNCTION) {
1603 SectionChunk *sc = dyn_cast<SectionChunk>(d->getChunk());
1604 if (sc && sc->live &&
1605 sc->getOutputCharacteristics() & IMAGE_SCN_MEM_EXECUTE)
1606 addSymbolToRVASet(addressTakenSyms, d);
1608 break;
1613 // Visit all relocations from all section contributions of this object file and
1614 // mark the relocation target as address-taken.
1615 static void markSymbolsWithRelocations(ObjFile *file,
1616 SymbolRVASet &usedSymbols) {
1617 for (Chunk *c : file->getChunks()) {
1618 // We only care about live section chunks. Common chunks and other chunks
1619 // don't generally contain relocations.
1620 SectionChunk *sc = dyn_cast<SectionChunk>(c);
1621 if (!sc || !sc->live)
1622 continue;
1624 for (const coff_relocation &reloc : sc->getRelocs()) {
1625 if (config->machine == I386 && reloc.Type == COFF::IMAGE_REL_I386_REL32)
1626 // Ignore relative relocations on x86. On x86_64 they can't be ignored
1627 // since they're also used to compute absolute addresses.
1628 continue;
1630 Symbol *ref = sc->file->getSymbol(reloc.SymbolTableIndex);
1631 maybeAddAddressTakenFunction(usedSymbols, ref);
1636 // Create the guard function id table. This is a table of RVAs of all
1637 // address-taken functions. It is sorted and uniqued, just like the safe SEH
1638 // table.
1639 void Writer::createGuardCFTables() {
1640 SymbolRVASet addressTakenSyms;
1641 SymbolRVASet giatsRVASet;
1642 std::vector<Symbol *> giatsSymbols;
1643 SymbolRVASet longJmpTargets;
1644 SymbolRVASet ehContTargets;
1645 for (ObjFile *file : ObjFile::instances) {
1646 // If the object was compiled with /guard:cf, the address taken symbols
1647 // are in .gfids$y sections, the longjmp targets are in .gljmp$y sections,
1648 // and ehcont targets are in .gehcont$y sections. If the object was not
1649 // compiled with /guard:cf, we assume there were no setjmp and ehcont
1650 // targets, and that all code symbols with relocations are possibly
1651 // address-taken.
1652 if (file->hasGuardCF()) {
1653 markSymbolsForRVATable(file, file->getGuardFidChunks(), addressTakenSyms);
1654 markSymbolsForRVATable(file, file->getGuardIATChunks(), giatsRVASet);
1655 getSymbolsFromSections(file, file->getGuardIATChunks(), giatsSymbols);
1656 markSymbolsForRVATable(file, file->getGuardLJmpChunks(), longJmpTargets);
1657 markSymbolsForRVATable(file, file->getGuardEHContChunks(), ehContTargets);
1658 } else {
1659 markSymbolsWithRelocations(file, addressTakenSyms);
1663 // Mark the image entry as address-taken.
1664 if (config->entry)
1665 maybeAddAddressTakenFunction(addressTakenSyms, config->entry);
1667 // Mark exported symbols in executable sections as address-taken.
1668 for (Export &e : config->exports)
1669 maybeAddAddressTakenFunction(addressTakenSyms, e.sym);
1671 // For each entry in the .giats table, check if it has a corresponding load
1672 // thunk (e.g. because the DLL that defines it will be delay-loaded) and, if
1673 // so, add the load thunk to the address taken (.gfids) table.
1674 for (Symbol *s : giatsSymbols) {
1675 if (auto *di = dyn_cast<DefinedImportData>(s)) {
1676 if (di->loadThunkSym)
1677 addSymbolToRVASet(addressTakenSyms, di->loadThunkSym);
1681 // Ensure sections referenced in the gfid table are 16-byte aligned.
1682 for (const ChunkAndOffset &c : addressTakenSyms)
1683 if (c.inputChunk->getAlignment() < 16)
1684 c.inputChunk->setAlignment(16);
1686 maybeAddRVATable(std::move(addressTakenSyms), "__guard_fids_table",
1687 "__guard_fids_count");
1689 // Add the Guard Address Taken IAT Entry Table (.giats).
1690 maybeAddRVATable(std::move(giatsRVASet), "__guard_iat_table",
1691 "__guard_iat_count");
1693 // Add the longjmp target table unless the user told us not to.
1694 if (config->guardCF & GuardCFLevel::LongJmp)
1695 maybeAddRVATable(std::move(longJmpTargets), "__guard_longjmp_table",
1696 "__guard_longjmp_count");
1698 // Add the ehcont target table unless the user told us not to.
1699 if (config->guardCF & GuardCFLevel::EHCont)
1700 maybeAddRVATable(std::move(ehContTargets), "__guard_eh_cont_table",
1701 "__guard_eh_cont_count", true);
1703 // Set __guard_flags, which will be used in the load config to indicate that
1704 // /guard:cf was enabled.
1705 uint32_t guardFlags = uint32_t(coff_guard_flags::CFInstrumented) |
1706 uint32_t(coff_guard_flags::HasFidTable);
1707 if (config->guardCF & GuardCFLevel::LongJmp)
1708 guardFlags |= uint32_t(coff_guard_flags::HasLongJmpTable);
1709 if (config->guardCF & GuardCFLevel::EHCont)
1710 guardFlags |= uint32_t(coff_guard_flags::HasEHContTable);
1711 Symbol *flagSym = symtab->findUnderscore("__guard_flags");
1712 cast<DefinedAbsolute>(flagSym)->setVA(guardFlags);
1715 // Take a list of input sections containing symbol table indices and add those
1716 // symbols to a vector. The challenge is that symbol RVAs are not known and
1717 // depend on the table size, so we can't directly build a set of integers.
1718 void Writer::getSymbolsFromSections(ObjFile *file,
1719 ArrayRef<SectionChunk *> symIdxChunks,
1720 std::vector<Symbol *> &symbols) {
1721 for (SectionChunk *c : symIdxChunks) {
1722 // Skip sections discarded by linker GC. This comes up when a .gfids section
1723 // is associated with something like a vtable and the vtable is discarded.
1724 // In this case, the associated gfids section is discarded, and we don't
1725 // mark the virtual member functions as address-taken by the vtable.
1726 if (!c->live)
1727 continue;
1729 // Validate that the contents look like symbol table indices.
1730 ArrayRef<uint8_t> data = c->getContents();
1731 if (data.size() % 4 != 0) {
1732 warn("ignoring " + c->getSectionName() +
1733 " symbol table index section in object " + toString(file));
1734 continue;
1737 // Read each symbol table index and check if that symbol was included in the
1738 // final link. If so, add it to the vector of symbols.
1739 ArrayRef<ulittle32_t> symIndices(
1740 reinterpret_cast<const ulittle32_t *>(data.data()), data.size() / 4);
1741 ArrayRef<Symbol *> objSymbols = file->getSymbols();
1742 for (uint32_t symIndex : symIndices) {
1743 if (symIndex >= objSymbols.size()) {
1744 warn("ignoring invalid symbol table index in section " +
1745 c->getSectionName() + " in object " + toString(file));
1746 continue;
1748 if (Symbol *s = objSymbols[symIndex]) {
1749 if (s->isLive())
1750 symbols.push_back(cast<Symbol>(s));
1756 // Take a list of input sections containing symbol table indices and add those
1757 // symbols to an RVA table.
1758 void Writer::markSymbolsForRVATable(ObjFile *file,
1759 ArrayRef<SectionChunk *> symIdxChunks,
1760 SymbolRVASet &tableSymbols) {
1761 std::vector<Symbol *> syms;
1762 getSymbolsFromSections(file, symIdxChunks, syms);
1764 for (Symbol *s : syms)
1765 addSymbolToRVASet(tableSymbols, cast<Defined>(s));
1768 // Replace the absolute table symbol with a synthetic symbol pointing to
1769 // tableChunk so that we can emit base relocations for it and resolve section
1770 // relative relocations.
1771 void Writer::maybeAddRVATable(SymbolRVASet tableSymbols, StringRef tableSym,
1772 StringRef countSym, bool hasFlag) {
1773 if (tableSymbols.empty())
1774 return;
1776 NonSectionChunk *tableChunk;
1777 if (hasFlag)
1778 tableChunk = make<RVAFlagTableChunk>(std::move(tableSymbols));
1779 else
1780 tableChunk = make<RVATableChunk>(std::move(tableSymbols));
1781 rdataSec->addChunk(tableChunk);
1783 Symbol *t = symtab->findUnderscore(tableSym);
1784 Symbol *c = symtab->findUnderscore(countSym);
1785 replaceSymbol<DefinedSynthetic>(t, t->getName(), tableChunk);
1786 cast<DefinedAbsolute>(c)->setVA(tableChunk->getSize() / (hasFlag ? 5 : 4));
1789 // MinGW specific. Gather all relocations that are imported from a DLL even
1790 // though the code didn't expect it to, produce the table that the runtime
1791 // uses for fixing them up, and provide the synthetic symbols that the
1792 // runtime uses for finding the table.
1793 void Writer::createRuntimePseudoRelocs() {
1794 std::vector<RuntimePseudoReloc> rels;
1796 for (Chunk *c : symtab->getChunks()) {
1797 auto *sc = dyn_cast<SectionChunk>(c);
1798 if (!sc || !sc->live)
1799 continue;
1800 sc->getRuntimePseudoRelocs(rels);
1803 if (!config->pseudoRelocs) {
1804 // Not writing any pseudo relocs; if some were needed, error out and
1805 // indicate what required them.
1806 for (const RuntimePseudoReloc &rpr : rels)
1807 error("automatic dllimport of " + rpr.sym->getName() + " in " +
1808 toString(rpr.target->file) + " requires pseudo relocations");
1809 return;
1812 if (!rels.empty())
1813 log("Writing " + Twine(rels.size()) + " runtime pseudo relocations");
1814 PseudoRelocTableChunk *table = make<PseudoRelocTableChunk>(rels);
1815 rdataSec->addChunk(table);
1816 EmptyChunk *endOfList = make<EmptyChunk>();
1817 rdataSec->addChunk(endOfList);
1819 Symbol *headSym = symtab->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST__");
1820 Symbol *endSym = symtab->findUnderscore("__RUNTIME_PSEUDO_RELOC_LIST_END__");
1821 replaceSymbol<DefinedSynthetic>(headSym, headSym->getName(), table);
1822 replaceSymbol<DefinedSynthetic>(endSym, endSym->getName(), endOfList);
1825 // MinGW specific.
1826 // The MinGW .ctors and .dtors lists have sentinels at each end;
1827 // a (uintptr_t)-1 at the start and a (uintptr_t)0 at the end.
1828 // There's a symbol pointing to the start sentinel pointer, __CTOR_LIST__
1829 // and __DTOR_LIST__ respectively.
1830 void Writer::insertCtorDtorSymbols() {
1831 AbsolutePointerChunk *ctorListHead = make<AbsolutePointerChunk>(-1);
1832 AbsolutePointerChunk *ctorListEnd = make<AbsolutePointerChunk>(0);
1833 AbsolutePointerChunk *dtorListHead = make<AbsolutePointerChunk>(-1);
1834 AbsolutePointerChunk *dtorListEnd = make<AbsolutePointerChunk>(0);
1835 ctorsSec->insertChunkAtStart(ctorListHead);
1836 ctorsSec->addChunk(ctorListEnd);
1837 dtorsSec->insertChunkAtStart(dtorListHead);
1838 dtorsSec->addChunk(dtorListEnd);
1840 Symbol *ctorListSym = symtab->findUnderscore("__CTOR_LIST__");
1841 Symbol *dtorListSym = symtab->findUnderscore("__DTOR_LIST__");
1842 replaceSymbol<DefinedSynthetic>(ctorListSym, ctorListSym->getName(),
1843 ctorListHead);
1844 replaceSymbol<DefinedSynthetic>(dtorListSym, dtorListSym->getName(),
1845 dtorListHead);
1848 // Handles /section options to allow users to overwrite
1849 // section attributes.
1850 void Writer::setSectionPermissions() {
1851 for (auto &p : config->section) {
1852 StringRef name = p.first;
1853 uint32_t perm = p.second;
1854 for (OutputSection *sec : outputSections)
1855 if (sec->name == name)
1856 sec->setPermissions(perm);
1860 // Write section contents to a mmap'ed file.
1861 void Writer::writeSections() {
1862 // Record the number of sections to apply section index relocations
1863 // against absolute symbols. See applySecIdx in Chunks.cpp..
1864 DefinedAbsolute::numOutputSections = outputSections.size();
1866 uint8_t *buf = buffer->getBufferStart();
1867 for (OutputSection *sec : outputSections) {
1868 uint8_t *secBuf = buf + sec->getFileOff();
1869 // Fill gaps between functions in .text with INT3 instructions
1870 // instead of leaving as NUL bytes (which can be interpreted as
1871 // ADD instructions).
1872 if (sec->header.Characteristics & IMAGE_SCN_CNT_CODE)
1873 memset(secBuf, 0xCC, sec->getRawSize());
1874 parallelForEach(sec->chunks, [&](Chunk *c) {
1875 c->writeTo(secBuf + c->getRVA() - sec->getRVA());
1880 void Writer::writeBuildId() {
1881 // There are two important parts to the build ID.
1882 // 1) If building with debug info, the COFF debug directory contains a
1883 // timestamp as well as a Guid and Age of the PDB.
1884 // 2) In all cases, the PE COFF file header also contains a timestamp.
1885 // For reproducibility, instead of a timestamp we want to use a hash of the
1886 // PE contents.
1887 if (config->debug) {
1888 assert(buildId && "BuildId is not set!");
1889 // BuildId->BuildId was filled in when the PDB was written.
1892 // At this point the only fields in the COFF file which remain unset are the
1893 // "timestamp" in the COFF file header, and the ones in the coff debug
1894 // directory. Now we can hash the file and write that hash to the various
1895 // timestamp fields in the file.
1896 StringRef outputFileData(
1897 reinterpret_cast<const char *>(buffer->getBufferStart()),
1898 buffer->getBufferSize());
1900 uint32_t timestamp = config->timestamp;
1901 uint64_t hash = 0;
1902 bool generateSyntheticBuildId =
1903 config->mingw && config->debug && config->pdbPath.empty();
1905 if (config->repro || generateSyntheticBuildId)
1906 hash = xxHash64(outputFileData);
1908 if (config->repro)
1909 timestamp = static_cast<uint32_t>(hash);
1911 if (generateSyntheticBuildId) {
1912 // For MinGW builds without a PDB file, we still generate a build id
1913 // to allow associating a crash dump to the executable.
1914 buildId->buildId->PDB70.CVSignature = OMF::Signature::PDB70;
1915 buildId->buildId->PDB70.Age = 1;
1916 memcpy(buildId->buildId->PDB70.Signature, &hash, 8);
1917 // xxhash only gives us 8 bytes, so put some fixed data in the other half.
1918 memcpy(&buildId->buildId->PDB70.Signature[8], "LLD PDB.", 8);
1921 if (debugDirectory)
1922 debugDirectory->setTimeDateStamp(timestamp);
1924 uint8_t *buf = buffer->getBufferStart();
1925 buf += dosStubSize + sizeof(PEMagic);
1926 object::coff_file_header *coffHeader =
1927 reinterpret_cast<coff_file_header *>(buf);
1928 coffHeader->TimeDateStamp = timestamp;
1931 // Sort .pdata section contents according to PE/COFF spec 5.5.
1932 void Writer::sortExceptionTable() {
1933 if (!firstPdata)
1934 return;
1935 // We assume .pdata contains function table entries only.
1936 auto bufAddr = [&](Chunk *c) {
1937 OutputSection *os = c->getOutputSection();
1938 return buffer->getBufferStart() + os->getFileOff() + c->getRVA() -
1939 os->getRVA();
1941 uint8_t *begin = bufAddr(firstPdata);
1942 uint8_t *end = bufAddr(lastPdata) + lastPdata->getSize();
1943 if (config->machine == AMD64) {
1944 struct Entry { ulittle32_t begin, end, unwind; };
1945 if ((end - begin) % sizeof(Entry) != 0) {
1946 fatal("unexpected .pdata size: " + Twine(end - begin) +
1947 " is not a multiple of " + Twine(sizeof(Entry)));
1949 parallelSort(
1950 MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
1951 [](const Entry &a, const Entry &b) { return a.begin < b.begin; });
1952 return;
1954 if (config->machine == ARMNT || config->machine == ARM64) {
1955 struct Entry { ulittle32_t begin, unwind; };
1956 if ((end - begin) % sizeof(Entry) != 0) {
1957 fatal("unexpected .pdata size: " + Twine(end - begin) +
1958 " is not a multiple of " + Twine(sizeof(Entry)));
1960 parallelSort(
1961 MutableArrayRef<Entry>((Entry *)begin, (Entry *)end),
1962 [](const Entry &a, const Entry &b) { return a.begin < b.begin; });
1963 return;
1965 lld::errs() << "warning: don't know how to handle .pdata.\n";
1968 // The CRT section contains, among other things, the array of function
1969 // pointers that initialize every global variable that is not trivially
1970 // constructed. The CRT calls them one after the other prior to invoking
1971 // main().
1973 // As per C++ spec, 3.6.2/2.3,
1974 // "Variables with ordered initialization defined within a single
1975 // translation unit shall be initialized in the order of their definitions
1976 // in the translation unit"
1978 // It is therefore critical to sort the chunks containing the function
1979 // pointers in the order that they are listed in the object file (top to
1980 // bottom), otherwise global objects might not be initialized in the
1981 // correct order.
1982 void Writer::sortCRTSectionChunks(std::vector<Chunk *> &chunks) {
1983 auto sectionChunkOrder = [](const Chunk *a, const Chunk *b) {
1984 auto sa = dyn_cast<SectionChunk>(a);
1985 auto sb = dyn_cast<SectionChunk>(b);
1986 assert(sa && sb && "Non-section chunks in CRT section!");
1988 StringRef sAObj = sa->file->mb.getBufferIdentifier();
1989 StringRef sBObj = sb->file->mb.getBufferIdentifier();
1991 return sAObj == sBObj && sa->getSectionNumber() < sb->getSectionNumber();
1993 llvm::stable_sort(chunks, sectionChunkOrder);
1995 if (config->verbose) {
1996 for (auto &c : chunks) {
1997 auto sc = dyn_cast<SectionChunk>(c);
1998 log(" " + sc->file->mb.getBufferIdentifier().str() +
1999 ", SectionID: " + Twine(sc->getSectionNumber()));
2004 OutputSection *Writer::findSection(StringRef name) {
2005 for (OutputSection *sec : outputSections)
2006 if (sec->name == name)
2007 return sec;
2008 return nullptr;
2011 uint32_t Writer::getSizeOfInitializedData() {
2012 uint32_t res = 0;
2013 for (OutputSection *s : outputSections)
2014 if (s->header.Characteristics & IMAGE_SCN_CNT_INITIALIZED_DATA)
2015 res += s->getRawSize();
2016 return res;
2019 // Add base relocations to .reloc section.
2020 void Writer::addBaserels() {
2021 if (!config->relocatable)
2022 return;
2023 relocSec->chunks.clear();
2024 std::vector<Baserel> v;
2025 for (OutputSection *sec : outputSections) {
2026 if (sec->header.Characteristics & IMAGE_SCN_MEM_DISCARDABLE)
2027 continue;
2028 // Collect all locations for base relocations.
2029 for (Chunk *c : sec->chunks)
2030 c->getBaserels(&v);
2031 // Add the addresses to .reloc section.
2032 if (!v.empty())
2033 addBaserelBlocks(v);
2034 v.clear();
2038 // Add addresses to .reloc section. Note that addresses are grouped by page.
2039 void Writer::addBaserelBlocks(std::vector<Baserel> &v) {
2040 const uint32_t mask = ~uint32_t(pageSize - 1);
2041 uint32_t page = v[0].rva & mask;
2042 size_t i = 0, j = 1;
2043 for (size_t e = v.size(); j < e; ++j) {
2044 uint32_t p = v[j].rva & mask;
2045 if (p == page)
2046 continue;
2047 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2048 i = j;
2049 page = p;
2051 if (i == j)
2052 return;
2053 relocSec->addChunk(make<BaserelChunk>(page, &v[i], &v[0] + j));
2056 PartialSection *Writer::createPartialSection(StringRef name,
2057 uint32_t outChars) {
2058 PartialSection *&pSec = partialSections[{name, outChars}];
2059 if (pSec)
2060 return pSec;
2061 pSec = make<PartialSection>(name, outChars);
2062 return pSec;
2065 PartialSection *Writer::findPartialSection(StringRef name, uint32_t outChars) {
2066 auto it = partialSections.find({name, outChars});
2067 if (it != partialSections.end())
2068 return it->second;
2069 return nullptr;
2072 void Writer::fixTlsAlignment() {
2073 Defined *tlsSym =
2074 dyn_cast_or_null<Defined>(symtab->findUnderscore("_tls_used"));
2075 if (!tlsSym)
2076 return;
2078 OutputSection *sec = tlsSym->getChunk()->getOutputSection();
2079 assert(sec && tlsSym->getRVA() >= sec->getRVA() &&
2080 "no output section for _tls_used");
2082 uint8_t *secBuf = buffer->getBufferStart() + sec->getFileOff();
2083 uint64_t tlsOffset = tlsSym->getRVA() - sec->getRVA();
2084 uint64_t directorySize = config->is64()
2085 ? sizeof(object::coff_tls_directory64)
2086 : sizeof(object::coff_tls_directory32);
2088 if (tlsOffset + directorySize > sec->getRawSize())
2089 fatal("_tls_used sym is malformed");
2091 if (config->is64()) {
2092 object::coff_tls_directory64 *tlsDir =
2093 reinterpret_cast<object::coff_tls_directory64 *>(&secBuf[tlsOffset]);
2094 tlsDir->setAlignment(tlsAlignment);
2095 } else {
2096 object::coff_tls_directory32 *tlsDir =
2097 reinterpret_cast<object::coff_tls_directory32 *>(&secBuf[tlsOffset]);
2098 tlsDir->setAlignment(tlsAlignment);