1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines several CodeGen-specific LLVM IR analysis utilities.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/Analysis.h"
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/CodeGen/TargetInstrInfo.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/CodeGen/TargetSubtargetInfo.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include "llvm/Transforms/Utils/GlobalStatus.h"
33 /// Compute the linearized index of a member in a nested aggregate/struct/array
34 /// by recursing and accumulating CurIndex as long as there are indices in the
36 unsigned llvm::ComputeLinearIndex(Type
*Ty
,
37 const unsigned *Indices
,
38 const unsigned *IndicesEnd
,
40 // Base case: We're done.
41 if (Indices
&& Indices
== IndicesEnd
)
44 // Given a struct type, recursively traverse the elements.
45 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
46 for (auto I
: llvm::enumerate(STy
->elements())) {
48 if (Indices
&& *Indices
== I
.index())
49 return ComputeLinearIndex(ET
, Indices
+ 1, IndicesEnd
, CurIndex
);
50 CurIndex
= ComputeLinearIndex(ET
, nullptr, nullptr, CurIndex
);
52 assert(!Indices
&& "Unexpected out of bound");
55 // Given an array type, recursively traverse the elements.
56 else if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
57 Type
*EltTy
= ATy
->getElementType();
58 unsigned NumElts
= ATy
->getNumElements();
59 // Compute the Linear offset when jumping one element of the array
60 unsigned EltLinearOffset
= ComputeLinearIndex(EltTy
, nullptr, nullptr, 0);
62 assert(*Indices
< NumElts
&& "Unexpected out of bound");
63 // If the indice is inside the array, compute the index to the requested
64 // elt and recurse inside the element with the end of the indices list
65 CurIndex
+= EltLinearOffset
* *Indices
;
66 return ComputeLinearIndex(EltTy
, Indices
+1, IndicesEnd
, CurIndex
);
68 CurIndex
+= EltLinearOffset
*NumElts
;
71 // We haven't found the type we're looking for, so keep searching.
75 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
76 /// EVTs that represent all the individual underlying
77 /// non-aggregate types that comprise it.
79 /// If Offsets is non-null, it points to a vector to be filled in
80 /// with the in-memory offsets of each of the individual values.
82 void llvm::ComputeValueVTs(const TargetLowering
&TLI
, const DataLayout
&DL
,
83 Type
*Ty
, SmallVectorImpl
<EVT
> &ValueVTs
,
84 SmallVectorImpl
<EVT
> *MemVTs
,
85 SmallVectorImpl
<uint64_t> *Offsets
,
86 uint64_t StartingOffset
) {
87 // Given a struct type, recursively traverse the elements.
88 if (StructType
*STy
= dyn_cast
<StructType
>(Ty
)) {
89 // If the Offsets aren't needed, don't query the struct layout. This allows
90 // us to support structs with scalable vectors for operations that don't
92 const StructLayout
*SL
= Offsets
? DL
.getStructLayout(STy
) : nullptr;
93 for (StructType::element_iterator EB
= STy
->element_begin(),
95 EE
= STy
->element_end();
97 // Don't compute the element offset if we didn't get a StructLayout above.
98 uint64_t EltOffset
= SL
? SL
->getElementOffset(EI
- EB
) : 0;
99 ComputeValueVTs(TLI
, DL
, *EI
, ValueVTs
, MemVTs
, Offsets
,
100 StartingOffset
+ EltOffset
);
104 // Given an array type, recursively traverse the elements.
105 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(Ty
)) {
106 Type
*EltTy
= ATy
->getElementType();
107 uint64_t EltSize
= DL
.getTypeAllocSize(EltTy
).getFixedValue();
108 for (unsigned i
= 0, e
= ATy
->getNumElements(); i
!= e
; ++i
)
109 ComputeValueVTs(TLI
, DL
, EltTy
, ValueVTs
, MemVTs
, Offsets
,
110 StartingOffset
+ i
* EltSize
);
113 // Interpret void as zero return values.
116 // Base case: we can get an EVT for this LLVM IR type.
117 ValueVTs
.push_back(TLI
.getValueType(DL
, Ty
));
119 MemVTs
->push_back(TLI
.getMemValueType(DL
, Ty
));
121 Offsets
->push_back(StartingOffset
);
124 void llvm::ComputeValueVTs(const TargetLowering
&TLI
, const DataLayout
&DL
,
125 Type
*Ty
, SmallVectorImpl
<EVT
> &ValueVTs
,
126 SmallVectorImpl
<uint64_t> *Offsets
,
127 uint64_t StartingOffset
) {
128 return ComputeValueVTs(TLI
, DL
, Ty
, ValueVTs
, /*MemVTs=*/nullptr, Offsets
,
132 void llvm::computeValueLLTs(const DataLayout
&DL
, Type
&Ty
,
133 SmallVectorImpl
<LLT
> &ValueTys
,
134 SmallVectorImpl
<uint64_t> *Offsets
,
135 uint64_t StartingOffset
) {
136 // Given a struct type, recursively traverse the elements.
137 if (StructType
*STy
= dyn_cast
<StructType
>(&Ty
)) {
138 // If the Offsets aren't needed, don't query the struct layout. This allows
139 // us to support structs with scalable vectors for operations that don't
141 const StructLayout
*SL
= Offsets
? DL
.getStructLayout(STy
) : nullptr;
142 for (unsigned I
= 0, E
= STy
->getNumElements(); I
!= E
; ++I
) {
143 uint64_t EltOffset
= SL
? SL
->getElementOffset(I
) : 0;
144 computeValueLLTs(DL
, *STy
->getElementType(I
), ValueTys
, Offsets
,
145 StartingOffset
+ EltOffset
);
149 // Given an array type, recursively traverse the elements.
150 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(&Ty
)) {
151 Type
*EltTy
= ATy
->getElementType();
152 uint64_t EltSize
= DL
.getTypeAllocSize(EltTy
).getFixedValue();
153 for (unsigned i
= 0, e
= ATy
->getNumElements(); i
!= e
; ++i
)
154 computeValueLLTs(DL
, *EltTy
, ValueTys
, Offsets
,
155 StartingOffset
+ i
* EltSize
);
158 // Interpret void as zero return values.
161 // Base case: we can get an LLT for this LLVM IR type.
162 ValueTys
.push_back(getLLTForType(Ty
, DL
));
163 if (Offsets
!= nullptr)
164 Offsets
->push_back(StartingOffset
* 8);
167 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
168 GlobalValue
*llvm::ExtractTypeInfo(Value
*V
) {
169 V
= V
->stripPointerCasts();
170 GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
);
171 GlobalVariable
*Var
= dyn_cast
<GlobalVariable
>(V
);
173 if (Var
&& Var
->getName() == "llvm.eh.catch.all.value") {
174 assert(Var
->hasInitializer() &&
175 "The EH catch-all value must have an initializer");
176 Value
*Init
= Var
->getInitializer();
177 GV
= dyn_cast
<GlobalValue
>(Init
);
178 if (!GV
) V
= cast
<ConstantPointerNull
>(Init
);
181 assert((GV
|| isa
<ConstantPointerNull
>(V
)) &&
182 "TypeInfo must be a global variable or NULL");
186 /// getFCmpCondCode - Return the ISD condition code corresponding to
187 /// the given LLVM IR floating-point condition code. This includes
188 /// consideration of global floating-point math flags.
190 ISD::CondCode
llvm::getFCmpCondCode(FCmpInst::Predicate Pred
) {
192 case FCmpInst::FCMP_FALSE
: return ISD::SETFALSE
;
193 case FCmpInst::FCMP_OEQ
: return ISD::SETOEQ
;
194 case FCmpInst::FCMP_OGT
: return ISD::SETOGT
;
195 case FCmpInst::FCMP_OGE
: return ISD::SETOGE
;
196 case FCmpInst::FCMP_OLT
: return ISD::SETOLT
;
197 case FCmpInst::FCMP_OLE
: return ISD::SETOLE
;
198 case FCmpInst::FCMP_ONE
: return ISD::SETONE
;
199 case FCmpInst::FCMP_ORD
: return ISD::SETO
;
200 case FCmpInst::FCMP_UNO
: return ISD::SETUO
;
201 case FCmpInst::FCMP_UEQ
: return ISD::SETUEQ
;
202 case FCmpInst::FCMP_UGT
: return ISD::SETUGT
;
203 case FCmpInst::FCMP_UGE
: return ISD::SETUGE
;
204 case FCmpInst::FCMP_ULT
: return ISD::SETULT
;
205 case FCmpInst::FCMP_ULE
: return ISD::SETULE
;
206 case FCmpInst::FCMP_UNE
: return ISD::SETUNE
;
207 case FCmpInst::FCMP_TRUE
: return ISD::SETTRUE
;
208 default: llvm_unreachable("Invalid FCmp predicate opcode!");
212 ISD::CondCode
llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC
) {
214 case ISD::SETOEQ
: case ISD::SETUEQ
: return ISD::SETEQ
;
215 case ISD::SETONE
: case ISD::SETUNE
: return ISD::SETNE
;
216 case ISD::SETOLT
: case ISD::SETULT
: return ISD::SETLT
;
217 case ISD::SETOLE
: case ISD::SETULE
: return ISD::SETLE
;
218 case ISD::SETOGT
: case ISD::SETUGT
: return ISD::SETGT
;
219 case ISD::SETOGE
: case ISD::SETUGE
: return ISD::SETGE
;
224 /// getICmpCondCode - Return the ISD condition code corresponding to
225 /// the given LLVM IR integer condition code.
227 ISD::CondCode
llvm::getICmpCondCode(ICmpInst::Predicate Pred
) {
229 case ICmpInst::ICMP_EQ
: return ISD::SETEQ
;
230 case ICmpInst::ICMP_NE
: return ISD::SETNE
;
231 case ICmpInst::ICMP_SLE
: return ISD::SETLE
;
232 case ICmpInst::ICMP_ULE
: return ISD::SETULE
;
233 case ICmpInst::ICMP_SGE
: return ISD::SETGE
;
234 case ICmpInst::ICMP_UGE
: return ISD::SETUGE
;
235 case ICmpInst::ICMP_SLT
: return ISD::SETLT
;
236 case ICmpInst::ICMP_ULT
: return ISD::SETULT
;
237 case ICmpInst::ICMP_SGT
: return ISD::SETGT
;
238 case ICmpInst::ICMP_UGT
: return ISD::SETUGT
;
240 llvm_unreachable("Invalid ICmp predicate opcode!");
244 static bool isNoopBitcast(Type
*T1
, Type
*T2
,
245 const TargetLoweringBase
& TLI
) {
246 return T1
== T2
|| (T1
->isPointerTy() && T2
->isPointerTy()) ||
247 (isa
<VectorType
>(T1
) && isa
<VectorType
>(T2
) &&
248 TLI
.isTypeLegal(EVT::getEVT(T1
)) && TLI
.isTypeLegal(EVT::getEVT(T2
)));
251 /// Look through operations that will be free to find the earliest source of
254 /// @param ValLoc If V has aggregate type, we will be interested in a particular
255 /// scalar component. This records its address; the reverse of this list gives a
256 /// sequence of indices appropriate for an extractvalue to locate the important
257 /// value. This value is updated during the function and on exit will indicate
258 /// similar information for the Value returned.
260 /// @param DataBits If this function looks through truncate instructions, this
261 /// will record the smallest size attained.
262 static const Value
*getNoopInput(const Value
*V
,
263 SmallVectorImpl
<unsigned> &ValLoc
,
265 const TargetLoweringBase
&TLI
,
266 const DataLayout
&DL
) {
268 // Try to look through V1; if V1 is not an instruction, it can't be looked
270 const Instruction
*I
= dyn_cast
<Instruction
>(V
);
271 if (!I
|| I
->getNumOperands() == 0) return V
;
272 const Value
*NoopInput
= nullptr;
274 Value
*Op
= I
->getOperand(0);
275 if (isa
<BitCastInst
>(I
)) {
276 // Look through truly no-op bitcasts.
277 if (isNoopBitcast(Op
->getType(), I
->getType(), TLI
))
279 } else if (isa
<GetElementPtrInst
>(I
)) {
280 // Look through getelementptr
281 if (cast
<GetElementPtrInst
>(I
)->hasAllZeroIndices())
283 } else if (isa
<IntToPtrInst
>(I
)) {
284 // Look through inttoptr.
285 // Make sure this isn't a truncating or extending cast. We could
286 // support this eventually, but don't bother for now.
287 if (!isa
<VectorType
>(I
->getType()) &&
288 DL
.getPointerSizeInBits() ==
289 cast
<IntegerType
>(Op
->getType())->getBitWidth())
291 } else if (isa
<PtrToIntInst
>(I
)) {
292 // Look through ptrtoint.
293 // Make sure this isn't a truncating or extending cast. We could
294 // support this eventually, but don't bother for now.
295 if (!isa
<VectorType
>(I
->getType()) &&
296 DL
.getPointerSizeInBits() ==
297 cast
<IntegerType
>(I
->getType())->getBitWidth())
299 } else if (isa
<TruncInst
>(I
) &&
300 TLI
.allowTruncateForTailCall(Op
->getType(), I
->getType())) {
301 DataBits
= std::min((uint64_t)DataBits
,
302 I
->getType()->getPrimitiveSizeInBits().getFixedSize());
304 } else if (auto *CB
= dyn_cast
<CallBase
>(I
)) {
305 const Value
*ReturnedOp
= CB
->getReturnedArgOperand();
306 if (ReturnedOp
&& isNoopBitcast(ReturnedOp
->getType(), I
->getType(), TLI
))
307 NoopInput
= ReturnedOp
;
308 } else if (const InsertValueInst
*IVI
= dyn_cast
<InsertValueInst
>(V
)) {
309 // Value may come from either the aggregate or the scalar
310 ArrayRef
<unsigned> InsertLoc
= IVI
->getIndices();
311 if (ValLoc
.size() >= InsertLoc
.size() &&
312 std::equal(InsertLoc
.begin(), InsertLoc
.end(), ValLoc
.rbegin())) {
313 // The type being inserted is a nested sub-type of the aggregate; we
314 // have to remove those initial indices to get the location we're
315 // interested in for the operand.
316 ValLoc
.resize(ValLoc
.size() - InsertLoc
.size());
317 NoopInput
= IVI
->getInsertedValueOperand();
319 // The struct we're inserting into has the value we're interested in, no
320 // change of address.
323 } else if (const ExtractValueInst
*EVI
= dyn_cast
<ExtractValueInst
>(V
)) {
324 // The part we're interested in will inevitably be some sub-section of the
325 // previous aggregate. Combine the two paths to obtain the true address of
327 ArrayRef
<unsigned> ExtractLoc
= EVI
->getIndices();
328 ValLoc
.append(ExtractLoc
.rbegin(), ExtractLoc
.rend());
331 // Terminate if we couldn't find anything to look through.
339 /// Return true if this scalar return value only has bits discarded on its path
340 /// from the "tail call" to the "ret". This includes the obvious noop
341 /// instructions handled by getNoopInput above as well as free truncations (or
342 /// extensions prior to the call).
343 static bool slotOnlyDiscardsData(const Value
*RetVal
, const Value
*CallVal
,
344 SmallVectorImpl
<unsigned> &RetIndices
,
345 SmallVectorImpl
<unsigned> &CallIndices
,
346 bool AllowDifferingSizes
,
347 const TargetLoweringBase
&TLI
,
348 const DataLayout
&DL
) {
350 // Trace the sub-value needed by the return value as far back up the graph as
351 // possible, in the hope that it will intersect with the value produced by the
352 // call. In the simple case with no "returned" attribute, the hope is actually
353 // that we end up back at the tail call instruction itself.
354 unsigned BitsRequired
= UINT_MAX
;
355 RetVal
= getNoopInput(RetVal
, RetIndices
, BitsRequired
, TLI
, DL
);
357 // If this slot in the value returned is undef, it doesn't matter what the
358 // call puts there, it'll be fine.
359 if (isa
<UndefValue
>(RetVal
))
362 // Now do a similar search up through the graph to find where the value
363 // actually returned by the "tail call" comes from. In the simple case without
364 // a "returned" attribute, the search will be blocked immediately and the loop
366 unsigned BitsProvided
= UINT_MAX
;
367 CallVal
= getNoopInput(CallVal
, CallIndices
, BitsProvided
, TLI
, DL
);
369 // There's no hope if we can't actually trace them to (the same part of!) the
371 if (CallVal
!= RetVal
|| CallIndices
!= RetIndices
)
374 // However, intervening truncates may have made the call non-tail. Make sure
375 // all the bits that are needed by the "ret" have been provided by the "tail
376 // call". FIXME: with sufficiently cunning bit-tracking, we could look through
378 if (BitsProvided
< BitsRequired
||
379 (!AllowDifferingSizes
&& BitsProvided
!= BitsRequired
))
385 /// For an aggregate type, determine whether a given index is within bounds or
387 static bool indexReallyValid(Type
*T
, unsigned Idx
) {
388 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(T
))
389 return Idx
< AT
->getNumElements();
391 return Idx
< cast
<StructType
>(T
)->getNumElements();
394 /// Move the given iterators to the next leaf type in depth first traversal.
396 /// Performs a depth-first traversal of the type as specified by its arguments,
397 /// stopping at the next leaf node (which may be a legitimate scalar type or an
398 /// empty struct or array).
400 /// @param SubTypes List of the partial components making up the type from
401 /// outermost to innermost non-empty aggregate. The element currently
402 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
404 /// @param Path Set of extractvalue indices leading from the outermost type
405 /// (SubTypes[0]) to the leaf node currently represented.
407 /// @returns true if a new type was found, false otherwise. Calling this
408 /// function again on a finished iterator will repeatedly return
409 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
410 /// aggregate or a non-aggregate
411 static bool advanceToNextLeafType(SmallVectorImpl
<Type
*> &SubTypes
,
412 SmallVectorImpl
<unsigned> &Path
) {
413 // First march back up the tree until we can successfully increment one of the
414 // coordinates in Path.
415 while (!Path
.empty() && !indexReallyValid(SubTypes
.back(), Path
.back() + 1)) {
420 // If we reached the top, then the iterator is done.
424 // We know there's *some* valid leaf now, so march back down the tree picking
425 // out the left-most element at each node.
428 ExtractValueInst::getIndexedType(SubTypes
.back(), Path
.back());
429 while (DeeperType
->isAggregateType()) {
430 if (!indexReallyValid(DeeperType
, 0))
433 SubTypes
.push_back(DeeperType
);
436 DeeperType
= ExtractValueInst::getIndexedType(DeeperType
, 0);
442 /// Find the first non-empty, scalar-like type in Next and setup the iterator
445 /// Assuming Next is an aggregate of some kind, this function will traverse the
446 /// tree from left to right (i.e. depth-first) looking for the first
447 /// non-aggregate type which will play a role in function return.
449 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
450 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
451 /// i32 in that type.
452 static bool firstRealType(Type
*Next
, SmallVectorImpl
<Type
*> &SubTypes
,
453 SmallVectorImpl
<unsigned> &Path
) {
454 // First initialise the iterator components to the first "leaf" node
455 // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
456 // despite nominally being an aggregate).
457 while (Type
*FirstInner
= ExtractValueInst::getIndexedType(Next
, 0)) {
458 SubTypes
.push_back(Next
);
463 // If there's no Path now, Next was originally scalar already (or empty
464 // leaf). We're done.
468 // Otherwise, use normal iteration to keep looking through the tree until we
469 // find a non-aggregate type.
470 while (ExtractValueInst::getIndexedType(SubTypes
.back(), Path
.back())
471 ->isAggregateType()) {
472 if (!advanceToNextLeafType(SubTypes
, Path
))
479 /// Set the iterator data-structures to the next non-empty, non-aggregate
481 static bool nextRealType(SmallVectorImpl
<Type
*> &SubTypes
,
482 SmallVectorImpl
<unsigned> &Path
) {
484 if (!advanceToNextLeafType(SubTypes
, Path
))
487 assert(!Path
.empty() && "found a leaf but didn't set the path?");
488 } while (ExtractValueInst::getIndexedType(SubTypes
.back(), Path
.back())
489 ->isAggregateType());
495 /// Test if the given instruction is in a position to be optimized
496 /// with a tail-call. This roughly means that it's in a block with
497 /// a return and there's nothing that needs to be scheduled
498 /// between it and the return.
500 /// This function only tests target-independent requirements.
501 bool llvm::isInTailCallPosition(const CallBase
&Call
, const TargetMachine
&TM
) {
502 const BasicBlock
*ExitBB
= Call
.getParent();
503 const Instruction
*Term
= ExitBB
->getTerminator();
504 const ReturnInst
*Ret
= dyn_cast
<ReturnInst
>(Term
);
506 // The block must end in a return statement or unreachable.
508 // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
509 // an unreachable, for now. The way tailcall optimization is currently
510 // implemented means it will add an epilogue followed by a jump. That is
511 // not profitable. Also, if the callee is a special function (e.g.
512 // longjmp on x86), it can end up causing miscompilation that has not
513 // been fully understood.
514 if (!Ret
&& ((!TM
.Options
.GuaranteedTailCallOpt
&&
515 Call
.getCallingConv() != CallingConv::Tail
&&
516 Call
.getCallingConv() != CallingConv::SwiftTail
) ||
517 !isa
<UnreachableInst
>(Term
)))
520 // If I will have a chain, make sure no other instruction that will have a
521 // chain interposes between I and the return.
522 // Check for all calls including speculatable functions.
523 for (BasicBlock::const_iterator BBI
= std::prev(ExitBB
->end(), 2);; --BBI
) {
526 // Debug info intrinsics do not get in the way of tail call optimization.
527 if (isa
<DbgInfoIntrinsic
>(BBI
))
529 // Pseudo probe intrinsics do not block tail call optimization either.
530 if (isa
<PseudoProbeInst
>(BBI
))
532 // A lifetime end, assume or noalias.decl intrinsic should not stop tail
533 // call optimization.
534 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(BBI
))
535 if (II
->getIntrinsicID() == Intrinsic::lifetime_end
||
536 II
->getIntrinsicID() == Intrinsic::assume
||
537 II
->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl
)
539 if (BBI
->mayHaveSideEffects() || BBI
->mayReadFromMemory() ||
540 !isSafeToSpeculativelyExecute(&*BBI
))
544 const Function
*F
= ExitBB
->getParent();
545 return returnTypeIsEligibleForTailCall(
546 F
, &Call
, Ret
, *TM
.getSubtargetImpl(*F
)->getTargetLowering());
549 bool llvm::attributesPermitTailCall(const Function
*F
, const Instruction
*I
,
550 const ReturnInst
*Ret
,
551 const TargetLoweringBase
&TLI
,
552 bool *AllowDifferingSizes
) {
553 // ADS may be null, so don't write to it directly.
555 bool &ADS
= AllowDifferingSizes
? *AllowDifferingSizes
: DummyADS
;
558 AttrBuilder
CallerAttrs(F
->getAttributes(), AttributeList::ReturnIndex
);
559 AttrBuilder
CalleeAttrs(cast
<CallInst
>(I
)->getAttributes(),
560 AttributeList::ReturnIndex
);
562 // Following attributes are completely benign as far as calling convention
563 // goes, they shouldn't affect whether the call is a tail call.
564 for (const auto &Attr
: {Attribute::Alignment
, Attribute::Dereferenceable
,
565 Attribute::DereferenceableOrNull
, Attribute::NoAlias
,
566 Attribute::NonNull
}) {
567 CallerAttrs
.removeAttribute(Attr
);
568 CalleeAttrs
.removeAttribute(Attr
);
571 if (CallerAttrs
.contains(Attribute::ZExt
)) {
572 if (!CalleeAttrs
.contains(Attribute::ZExt
))
576 CallerAttrs
.removeAttribute(Attribute::ZExt
);
577 CalleeAttrs
.removeAttribute(Attribute::ZExt
);
578 } else if (CallerAttrs
.contains(Attribute::SExt
)) {
579 if (!CalleeAttrs
.contains(Attribute::SExt
))
583 CallerAttrs
.removeAttribute(Attribute::SExt
);
584 CalleeAttrs
.removeAttribute(Attribute::SExt
);
587 // Drop sext and zext return attributes if the result is not used.
588 // This enables tail calls for code like:
590 // define void @caller() {
592 // %unused_result = tail call zeroext i1 @callee()
593 // br label %retlabel
597 if (I
->use_empty()) {
598 CalleeAttrs
.removeAttribute(Attribute::SExt
);
599 CalleeAttrs
.removeAttribute(Attribute::ZExt
);
602 // If they're still different, there's some facet we don't understand
603 // (currently only "inreg", but in future who knows). It may be OK but the
604 // only safe option is to reject the tail call.
605 return CallerAttrs
== CalleeAttrs
;
608 /// Check whether B is a bitcast of a pointer type to another pointer type,
609 /// which is equal to A.
610 static bool isPointerBitcastEqualTo(const Value
*A
, const Value
*B
) {
611 assert(A
&& B
&& "Expected non-null inputs!");
613 auto *BitCastIn
= dyn_cast
<BitCastInst
>(B
);
618 if (!A
->getType()->isPointerTy() || !B
->getType()->isPointerTy())
621 return A
== BitCastIn
->getOperand(0);
624 bool llvm::returnTypeIsEligibleForTailCall(const Function
*F
,
625 const Instruction
*I
,
626 const ReturnInst
*Ret
,
627 const TargetLoweringBase
&TLI
) {
628 // If the block ends with a void return or unreachable, it doesn't matter
629 // what the call's return type is.
630 if (!Ret
|| Ret
->getNumOperands() == 0) return true;
632 // If the return value is undef, it doesn't matter what the call's
634 if (isa
<UndefValue
>(Ret
->getOperand(0))) return true;
636 // Make sure the attributes attached to each return are compatible.
637 bool AllowDifferingSizes
;
638 if (!attributesPermitTailCall(F
, I
, Ret
, TLI
, &AllowDifferingSizes
))
641 const Value
*RetVal
= Ret
->getOperand(0), *CallVal
= I
;
642 // Intrinsic like llvm.memcpy has no return value, but the expanded
643 // libcall may or may not have return value. On most platforms, it
644 // will be expanded as memcpy in libc, which returns the first
645 // argument. On other platforms like arm-none-eabi, memcpy may be
646 // expanded as library call without return value, like __aeabi_memcpy.
647 const CallInst
*Call
= cast
<CallInst
>(I
);
648 if (Function
*F
= Call
->getCalledFunction()) {
649 Intrinsic::ID IID
= F
->getIntrinsicID();
650 if (((IID
== Intrinsic::memcpy
&&
651 TLI
.getLibcallName(RTLIB::MEMCPY
) == StringRef("memcpy")) ||
652 (IID
== Intrinsic::memmove
&&
653 TLI
.getLibcallName(RTLIB::MEMMOVE
) == StringRef("memmove")) ||
654 (IID
== Intrinsic::memset
&&
655 TLI
.getLibcallName(RTLIB::MEMSET
) == StringRef("memset"))) &&
656 (RetVal
== Call
->getArgOperand(0) ||
657 isPointerBitcastEqualTo(RetVal
, Call
->getArgOperand(0))))
661 SmallVector
<unsigned, 4> RetPath
, CallPath
;
662 SmallVector
<Type
*, 4> RetSubTypes
, CallSubTypes
;
664 bool RetEmpty
= !firstRealType(RetVal
->getType(), RetSubTypes
, RetPath
);
665 bool CallEmpty
= !firstRealType(CallVal
->getType(), CallSubTypes
, CallPath
);
667 // Nothing's actually returned, it doesn't matter what the callee put there
668 // it's a valid tail call.
672 // Iterate pairwise through each of the value types making up the tail call
673 // and the corresponding return. For each one we want to know whether it's
674 // essentially going directly from the tail call to the ret, via operations
675 // that end up not generating any code.
677 // We allow a certain amount of covariance here. For example it's permitted
678 // for the tail call to define more bits than the ret actually cares about
679 // (e.g. via a truncate).
682 // We've exhausted the values produced by the tail call instruction, the
683 // rest are essentially undef. The type doesn't really matter, but we need
686 ExtractValueInst::getIndexedType(RetSubTypes
.back(), RetPath
.back());
687 CallVal
= UndefValue::get(SlotType
);
690 // The manipulations performed when we're looking through an insertvalue or
691 // an extractvalue would happen at the front of the RetPath list, so since
692 // we have to copy it anyway it's more efficient to create a reversed copy.
693 SmallVector
<unsigned, 4> TmpRetPath(RetPath
.rbegin(), RetPath
.rend());
694 SmallVector
<unsigned, 4> TmpCallPath(CallPath
.rbegin(), CallPath
.rend());
696 // Finally, we can check whether the value produced by the tail call at this
697 // index is compatible with the value we return.
698 if (!slotOnlyDiscardsData(RetVal
, CallVal
, TmpRetPath
, TmpCallPath
,
699 AllowDifferingSizes
, TLI
,
700 F
->getParent()->getDataLayout()))
703 CallEmpty
= !nextRealType(CallSubTypes
, CallPath
);
704 } while(nextRealType(RetSubTypes
, RetPath
));
709 static void collectEHScopeMembers(
710 DenseMap
<const MachineBasicBlock
*, int> &EHScopeMembership
, int EHScope
,
711 const MachineBasicBlock
*MBB
) {
712 SmallVector
<const MachineBasicBlock
*, 16> Worklist
= {MBB
};
713 while (!Worklist
.empty()) {
714 const MachineBasicBlock
*Visiting
= Worklist
.pop_back_val();
715 // Don't follow blocks which start new scopes.
716 if (Visiting
->isEHPad() && Visiting
!= MBB
)
719 // Add this MBB to our scope.
720 auto P
= EHScopeMembership
.insert(std::make_pair(Visiting
, EHScope
));
722 // Don't revisit blocks.
724 assert(P
.first
->second
== EHScope
&& "MBB is part of two scopes!");
728 // Returns are boundaries where scope transfer can occur, don't follow
730 if (Visiting
->isEHScopeReturnBlock())
733 append_range(Worklist
, Visiting
->successors());
737 DenseMap
<const MachineBasicBlock
*, int>
738 llvm::getEHScopeMembership(const MachineFunction
&MF
) {
739 DenseMap
<const MachineBasicBlock
*, int> EHScopeMembership
;
741 // We don't have anything to do if there aren't any EH pads.
742 if (!MF
.hasEHScopes())
743 return EHScopeMembership
;
745 int EntryBBNumber
= MF
.front().getNumber();
746 bool IsSEH
= isAsynchronousEHPersonality(
747 classifyEHPersonality(MF
.getFunction().getPersonalityFn()));
749 const TargetInstrInfo
*TII
= MF
.getSubtarget().getInstrInfo();
750 SmallVector
<const MachineBasicBlock
*, 16> EHScopeBlocks
;
751 SmallVector
<const MachineBasicBlock
*, 16> UnreachableBlocks
;
752 SmallVector
<const MachineBasicBlock
*, 16> SEHCatchPads
;
753 SmallVector
<std::pair
<const MachineBasicBlock
*, int>, 16> CatchRetSuccessors
;
754 for (const MachineBasicBlock
&MBB
: MF
) {
755 if (MBB
.isEHScopeEntry()) {
756 EHScopeBlocks
.push_back(&MBB
);
757 } else if (IsSEH
&& MBB
.isEHPad()) {
758 SEHCatchPads
.push_back(&MBB
);
759 } else if (MBB
.pred_empty()) {
760 UnreachableBlocks
.push_back(&MBB
);
763 MachineBasicBlock::const_iterator MBBI
= MBB
.getFirstTerminator();
765 // CatchPads are not scopes for SEH so do not consider CatchRet to
766 // transfer control to another scope.
767 if (MBBI
== MBB
.end() || MBBI
->getOpcode() != TII
->getCatchReturnOpcode())
770 // FIXME: SEH CatchPads are not necessarily in the parent function:
771 // they could be inside a finally block.
772 const MachineBasicBlock
*Successor
= MBBI
->getOperand(0).getMBB();
773 const MachineBasicBlock
*SuccessorColor
= MBBI
->getOperand(1).getMBB();
774 CatchRetSuccessors
.push_back(
775 {Successor
, IsSEH
? EntryBBNumber
: SuccessorColor
->getNumber()});
778 // We don't have anything to do if there aren't any EH pads.
779 if (EHScopeBlocks
.empty())
780 return EHScopeMembership
;
782 // Identify all the basic blocks reachable from the function entry.
783 collectEHScopeMembers(EHScopeMembership
, EntryBBNumber
, &MF
.front());
784 // All blocks not part of a scope are in the parent function.
785 for (const MachineBasicBlock
*MBB
: UnreachableBlocks
)
786 collectEHScopeMembers(EHScopeMembership
, EntryBBNumber
, MBB
);
787 // Next, identify all the blocks inside the scopes.
788 for (const MachineBasicBlock
*MBB
: EHScopeBlocks
)
789 collectEHScopeMembers(EHScopeMembership
, MBB
->getNumber(), MBB
);
790 // SEH CatchPads aren't really scopes, handle them separately.
791 for (const MachineBasicBlock
*MBB
: SEHCatchPads
)
792 collectEHScopeMembers(EHScopeMembership
, EntryBBNumber
, MBB
);
793 // Finally, identify all the targets of a catchret.
794 for (std::pair
<const MachineBasicBlock
*, int> CatchRetPair
:
796 collectEHScopeMembers(EHScopeMembership
, CatchRetPair
.second
,
798 return EHScopeMembership
;